WO2011122792A2 - 해도사 제조용 방사구금 - Google Patents

해도사 제조용 방사구금 Download PDF

Info

Publication number
WO2011122792A2
WO2011122792A2 PCT/KR2011/002057 KR2011002057W WO2011122792A2 WO 2011122792 A2 WO2011122792 A2 WO 2011122792A2 KR 2011002057 W KR2011002057 W KR 2011002057W WO 2011122792 A2 WO2011122792 A2 WO 2011122792A2
Authority
WO
WIPO (PCT)
Prior art keywords
island
sea
component supply
spinneret
yarn
Prior art date
Application number
PCT/KR2011/002057
Other languages
English (en)
French (fr)
Other versions
WO2011122792A3 (ko
Inventor
지성대
김규창
조덕재
김진수
김도현
양인영
이현수
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Publication of WO2011122792A2 publication Critical patent/WO2011122792A2/ko
Publication of WO2011122792A3 publication Critical patent/WO2011122792A3/ko

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles

Definitions

  • the present invention relates to a spinneret for manufacturing sea island yarns, and more particularly, to prevent island-in-the-sea joints of seaweed yarns that are radiated even when the number of island portions increases, and to increase the number of island components. It relates to spinnerets. Background Art
  • the island-in-the-sea yarn is a yarn having a cross-sectional structure in which island components are dispersed in the sea component, and since the sea component remains only when the sea component is eluted or dissolved in the post-processing process after spinning, waste of resin and solvents are used to elute the sea component.
  • the ultra-fine yarn that can not be obtained by the normal micro-fiber manufacturing method is widely used as a yarn for manufacturing industrial materials such as artificial suede, filters, cleaning products.
  • the sea component in the conventional islands-in-the-sea yarn is a component that elutes or dissolves in the post-processing process after spinning, and the island component is a component that continues to form fibers after removing the sea component.
  • Such a process for producing suede-woven fabrics using sea island yarns has to go through complicated steps such as weight loss, brushing, and dyeing. Since it is very important for the stabilization of, the cross-sectional arrangement and configuration of the island component fibers is a key factor in determining the quality.
  • island-in-the-sea yarns are manufactured by complex spinning in island-in-sea form using alkali-soluble polymers as sea components and fiber-forming polymers as island components. It is produced for the purpose of making fibers.
  • it is treated with an alkaline solution to elute the sea component, which is an alkali-soluble polymer, thereby producing an ultrafine fiber composed only of the island component.
  • the method of manufacturing ultrafine fibers from island-in-the-sea yarns has the advantages of superior spinning and stretching operations and more fineness of fine fibers compared to the method of producing ultrafine fibers by direct spinning, while weaving or knitting
  • a step of eluting and removing the degradable powder polymer with an organic solvent or the like is necessary. Since the quality of the final agent can be improved depending on the degree of fineness of the island component fibers, it is true that many researches and developments have been conducted to further refine the fineness of the island component fibers.
  • FIG. La is a cross-sectional view of the spherical partial plate of the spinneret for producing island-in-the-sea yarn for producing a conventional island-in-the-sea yarn.
  • the spinneret partial distribution plate 1 of the spinnerets for manufacturing sea island yarns is provided with a sea component supply unit for supplying the sea component polymer to the island component supply unit 2 to which the island component polymer is supplied and the outer peripheral surface of the island component supply unit 2 ( 3) consists of.
  • the conductive component supply unit 2 is typically formed with a plurality of conductive component supply passages 5 radially around a single spinning core 4, and according to the desired number of conductive components, The number can vary.
  • the sea component supply path 6 is formed in the sea component supply part 3 surrounding the outer periphery of the island component supply part 2.
  • the sea component supplied to the sea component supply path 6 in the inside of the spinneret is the island component supply part ( 2) is introduced into the ceramic component supply unit (2) while the inner layer to surround the conductive component supply path (5).
  • Figure lb, lc is a cross-section of the conventional islands of the art seaweed (331 part of the figure) is discharged through the spinneret of Figure la described above
  • Figure lb is a portion of the island centered around a single spinning core (11) inside the island (12) is arranged concentrically and the cross-sectional area of the islands in the total island-in-the-sea yarn is 60-70%.
  • Also shown in FIG. Lc is a concentric portion of the island portion 14 arranged concentrically around a single spinning core 13 within the island-in-the-sea yarn and has a cross-sectional area of 70-803 ⁇ 4 in the cross-sectional area of the island-in-the-sea yarn.
  • Such a cross-sectional structure is not abnormal when the number of the drawing parts is small, but when the number of drawing parts increases (about 300 or more) or when the cross-sectional area of the drawing parts increases, adjacent to the spinning core 11 formed at the center of the island In the case of the drawing part, the density becomes large, and in the spinning process, the phenomenon of agglomeration between the coating parts located around the spinning core occurs. In other words, as the number of islands of islands in the sea island increases and the cross-sectional area increases, side effects of the islands of the islands of the islands agglomerate to form masses (conjugation phenomenon). From this point of view, the existing state of island-in-the-sea yarns with 37 or less existing island-based fibers are expanded and applied as they are. Since it is not possible to ensure stable formation of fiber cross sections, special design techniques for arranging the conductive fiber in the island-in-the-sea yarn cross section are urgently required.
  • the present invention is the first problem to be conceived in order to solve the problems of the prior art described above, the present 'invention to be solved is being able to prevent the aggregation phenomena of a partial, even if the number of a partial increasing dramatically even with a color-developing It is to provide a spinneret for manufacturing sea island yarn that can be manufactured.
  • the second problem to be solved by the present invention is to provide a spinneret for manufacturing island-in-the-sea yarns that can produce island-in-the-sea yarns that do not occur when applied to the luminance-enhanced film without aggregation of the islands.
  • the present invention to achieve the first object,
  • Detention phase for manufacturing island-in-the-sea yarn including a island component supply passage and a sea component injection portion formed on the outer circumferential surface of the island component supply portion and including a sea component supply passage for injecting the sea component polymer.
  • the island component supply passage is divided into a plurality of groups inside the island component supply section, and includes a plurality of island component supply sections and a plurality of sea component supply sections.
  • a lower portion plate formed at a lower portion of the gold plate and a lower portion plate, and having at least one discharge port for collecting and discharging some or all of the polymers having passed through the plurality of island component supply portions and the plurality of sea component supply portions. It provides a spinneret for manufacturing sea island containing a.
  • At least one sea component supply passage may be formed therein.
  • the island component supply passage may be arranged grouped around two or more spinning cores.
  • the radiation core has a single radiation reference core in the center of the island component supply unit and a plurality of radiation peripheral cores may be arranged around the radiation core.
  • the separation distance between the radiation reference core and the plurality of radiation peripheral cores may be substantially the same or different.
  • the radial peripheral core is 3 ⁇ 20 Can be a dog.
  • the radiation peripheral core may be 6-10.
  • 10 to 300 island component supply paths may be arranged for one radiation reference core or one radiation peripheral core.
  • a sea component supply path may be formed between the radiation reference core and the spinning peripheral core.
  • the number of island component supply paths included in one island component supply unit may be 38 to 1500.
  • the number of island component supply paths included in one island component supply unit may be 500 to 1500.
  • the number of island component supply paths included in one island component supply unit may be 1000 to 1500.
  • the number of the island component supply unit may be 2 to 20.
  • the number of the island component supply unit may be 5 to 15.
  • the number of island component supply paths included in the entire island component supply unit may be 10000-20,000.
  • the shape of the grouped islands supply path may be arranged in a circular, elliptical, polygonal or heterosection.
  • the shapes of the grouped island component feed passages may be identical or different.
  • the spinning core may be arranged based on the center of the island component supply unit.
  • a sea component supply path may be formed at the center of the island component supply unit.
  • the number of the spinning core may be 3 to 20.
  • the number of the spinning core may be 6-10.
  • the sea component between the spinning core Supply passages may be formed.
  • the diameter of the island component supply unit is
  • the diameter of the island component supply passage may be 0.1-0.3.
  • the diameter of the sea component supply passage may be 0.2 ⁇ 2.0.
  • the island component supply unit may include 2 to 20.
  • the maximum value of the center distance between adjacent island component supply paths within the same group is greater than the maximum value of the center distance between adjacent island component supply paths between neighboring groups. Can be small.
  • the number of the discharge holes may be smaller than the number of the island component supply parts, more preferably, the number of the discharge holes may be less than half the number of the island component supply parts, and Preferably, the number of the discharge holes may be one.
  • the lower stopper plate may be formed with one or more flow paths for guiding the island component polymer passed through the metal powder supply section and the sea component polymer passed through the sea component supply section to the discharge port. Can be.
  • the discharge port may be formed in an area where the flow path and the flow path intersect.
  • the spinning core may be formed in the group to which the spinning core belongs.
  • the term 'radiation core' means that the island component supply paths are grouped (arranged) and arranged around a certain point in the inner part of the spinneret. ) To mean a certain point that is the center.
  • the term 'radiation reference core' refers to the radiation core which is the center when a plurality of radiation cores exist and the other radiation cores are arranged around one radiation core, and the 'radiation peripheral core' refers to one radiation core. It means the remaining spinning core is arranged as.
  • the island component supply passage is grouped and arranged' means that the plurality of island component supply passages are partitioned and arranged in a uniform shape with respect to one spinning core. For example, in the case of two spinning cores inside the spinneret, the island component supply paths are arranged in a uniform shape around each spinning core, so that the island parts are divided into two groups within the sea yarn that is radiated therethrough. Will be.
  • Photochromic fiber' refers to a fiber whose color is expressed by the interference of light due to the structural / optical design of the fiber, rather than being colored by the physical / chemical combination of a material having a color such as a dye or a pigment. Wami.
  • 'Fiber has birefringence' means that when light is irradiated on fibers with different refractive indices according to the direction, the light incident on the polymer is refracted by two different directions of light.
  • 'Isotropic' means that when light passes through an object, the refractive index is constant regardless of the direction.
  • Anisotropy means that the optical properties of an object vary depending on the direction of light.
  • the anisotropic object has birefringence and corresponds to isotropy.
  • Light modulation' means that the irradiated light reflects, refracts, scatters, or changes in light intensity, wave periodicity, or light properties.
  • the term 'morning' refers to a phenomenon in which some filaments are cut when several filaments are gathered together to form a single thread.
  • the island-in-the-sea yarn manufactured through the spinneret for manufacturing the island-in-the-sea yarn according to the present invention does not cause agglomeration of the island portion at the center of the island-in-the-sea island even when the island portion is divided into two or more groups. . Therefore, since more than 500 islands can be arranged in one island island, the fineness of islands can be reduced, which is very advantageous to produce microfiber yarn, and it is possible to produce more than 500 ultrafine yarns in one island island as well. Significant savings can be achieved.
  • the island-in-the-sea yarn manufactured through the spinneret for manufacturing the island-in-the-sea yarn of the present invention expresses a specific color according to the ratio and fiber diameter without adding a compound causing color development, such as dye, due to its excellent light modulation effect. Can be utilized.
  • the photochromic fiber of the present invention can be colored in various colors depending on the intensity, location and viewing angle of light.
  • the island-in-the-sea yarn manufactured through the spinneret for manufacturing the island-in-the-sea yarn of the present invention has different optical properties between the island portion and the sea portion, an optical modulation interface is formed at the interface between the island portion and the sea portion, so that the You can maximize the modulation effect Also, even if the number of parts increases, the parts do not aggregate. Therefore, the area of the light modulation interface can be maximized compared to the normal island-in-the-sea yarn having one radiation core, so that the light modulation effect is significantly increased.
  • the luminance-enhanced film including the island-in-the-sea yarn of the present invention has an excellent light modulation effect, so that the luminance is remarkably improved as compared with the case of using ordinary birefringent fibers or island-in-the-sea yarns. Furthermore, in the case of manufacturing sea island yarns having a number of drawing portions of 10000 or more by discharging the polymers supplied through a plurality of island component supply units and sea component supply units through a small number of discharge ports, the occurrence of hair phenomena may be caused by using them in the luminance-enhanced film. You can prevent it.
  • FIG. La is a top view of the portion of the upper portion of the spinneret for producing a spinneret for conventional sea island yarn
  • FIGS. Lb and lc are electron micrographs of a cross-sectional view of a conventional sea island yarn manufactured therefrom.
  • Figure 2a is a top view of the upper distribution plate of the detention of spinnerets for the island-in-the-sea yarn manufacturing according to a preferred embodiment of the present invention
  • Figure 2b is a cross-sectional view of the group-shaped islands produced by this.
  • Figure 3a is a top view of the portion of the upper portion of the spinneret for spin island manufacturing spinneret according to another embodiment of the present invention
  • Figure 3b is an electron micrograph of the group-shaped islands prepared by this.
  • Figure 4a is a top view of the upper portion of the detention part of the spinneret for producing sea island yarn according to another embodiment of the present invention
  • Figure 4b is a cross-sectional view of the group-shaped sea island yarn manufactured through this.
  • Figure 5 is a top view of the upper portion of the detention part of the spinneret for producing sea islands according to another preferred embodiment of the present invention.
  • Figure 6 is a photograph of the lower holding plate of the spinneret for manufacturing conventional islands.
  • FIG. 7 is an enlarged photograph of a fabric used in a luminance-enhanced film including islands-in-the-sea yarns.
  • 8 is a photograph of the lower holding plate of the spinneret for producing sea island yarn according to another preferred embodiment of the present invention
  • FIG. 9 is an electron micrograph of the island-in-the-sea yarn manufactured therefrom
  • FIG. 10 is a sea island yarn of FIG. 9. This is an enlarged photograph of the fabric used in the luminance-enhanced film.
  • FIG. 11 is a cross-sectional view illustrating a path of light incident on a birefringent island-in-the-sea yarn manufactured through the spinneret of the present invention.
  • the island-in-the-sea yarn manufactured using a spinneret for manufacturing a conventional island-in-the-sea yarn is arranged in a concentric shape with a concentric portion around a single spinning core or randomly arranged without any spinning core.
  • the number of islands is small, there is no abnormality, but when the number of islands increases (about 300 or more), the density of the islands adjacent to the spinning core formed at the center of the island becomes large, In the bundles located around the radiating core in the agglomeration phenomenon occurs.
  • the greater the number of islands of islands in the sea island there is a side effect of forming agglomerates of the island portion of the islands.
  • the spinneret for manufacturing island-in-the-sea yarn includes a island component supply path and is formed on an outer circumferential surface of the island component supply unit for injecting the island component polymer and injects the sea component polymer.
  • the spinnerette for producing island-in-the-sea yarn comprising a depressor partial plate for island-in-the-sea yarn production having a sea component injection unit including a furnace
  • the island-in-the-water supply path is provided in a plurality of groups within the island-component supply unit.
  • a compartmental plate formed in a lower portion of the detention part partial plate including a plurality of island component supply units and a plurality of sea component supply units, and a plurality of island component supply units and a plurality of sea component supply units.
  • a spinneret for producing island-in-the-sea yarns was provided to include a spinneret for producing island-in-the-sea yarns, including a lower stopper plate having one or more discharge ports for collecting and discharging some or all of the polymers, thereby preventing the occurrence of a conductive bond.
  • the island component feeders are grouped and arranged around two or more spinning cores in order to solve the above-mentioned problems. This prevents excessive accumulation of islands in one spinning core and forms more than 500 islands inside one island, producing ultra-fine yarn and simultaneously producing hundreds of ultrafine yarns in one island. Significantly reduced costs.
  • FIG. 2A is a top view of a part of the detention part part plate of the spinneret for producing sea island yarn according to a preferred embodiment of the present invention.
  • Gold plate portion 200 is the island component supply section 210 for injecting the island component polymer and the sea component for injecting the sea component polymer while wrapping it
  • the island component supply unit 210 has four inside thereof.
  • a plurality of island component supply passages 215 are grouped around the spinning cores 211, 212, 213, and 214 to form a group.
  • a circle is illustrated in the shape of the group, but is not limited thereto. Heteromorphic cross sections such as, ovals, and polygons are possible.
  • the island component supply unit 210 may be a sea component supply path 216 therein, the sea component ball
  • the feed path 216 is not limited in the number and location of formation, but is preferably formed between the group and the group consisting of the island component supply paths, it is advantageous to prevent the conjugation phenomenon. Meanwhile .
  • One or more sea component supply paths 216 formed in the island component supply unit 210 may be formed according to a situation.
  • the sea component supply unit 220 surrounding the outer circumferential surface of the island component supply unit 210 is provided with sea component supply paths 221, 222, 223, and 224, similarly to the spinnerets for manufacturing sea islands.
  • the supply paths 221, 222, 223 and 224 are not limited in number but preferably
  • the number of the spinning cores 211, 212, 213, and 214 may be formed.
  • Figure 2b is a cross-sectional view of the longitudinal direction of the island-in-the-sea yarn manufactured by the spinneret including the capped partial plate of Figure 2a, four spinning cores are formed inside the island-in-the-sea yarn 250 and the spinning core (251; Contour portions 255, 256, 257, 258 are grouped and arranged around 252, 253, 254. In other words, a plurality of conductive portions 255, 256, 257, and 258 are partitioned and arranged around each of the radiating cores 251, 252, 253, and 254. The island will form a group to exist.
  • the cross-sectional shape of each group of the conductive parts 255, 256, 257, and 258 arranged around the spinning cores 251, 252, 253, and 254 is composed of the ceramic component supply path in the detention part partial plate of FIG. 2A.
  • the cross-sectional shape of the group is circular, the arrangement of the edges of the cross-section may be disturbed due to die swelling phenomenon during the spinning process of island islands. Therefore, the cross-sectional shape of the group of the islands of the radiated islands is not limited in kind, such as semi-circular, fan-shaped, circular, elliptical, polygonal and heteromorphic cross section, the cross-sectional shape of each group may be the same or different.
  • the radiation core is shown in bold as a black point, but this is merely an expression method for clearly illustrating the radiation core, and means a point that is the center of the actual group, and the point is a degree part. It may be or may be partial, but it must be located within the group. Furthermore, the blank space inside the sea lion may actually be filled with seams or only a sea portion.
  • one radiation reference core may be positioned at the center of the island component supply unit, and a plurality of radiation peripheral cores may be disposed around the same, and in the following embodiment except for overlapping substrates Only the characteristic parts will be described.
  • Figure 3a is a top view of the detention part partial plate 300 of the spinneret for producing sea island yarn of the present invention, specifically, the island component supply unit 310, the core component centering on one radiation reference core 311 in the center thereof Supply paths form a group and the radiation reference core (311) Seven radial peripheral cores (312, 313, 314, 315, 316, 317, 318) are arranged on the outer side.
  • Sea component supply paths (319, 320, 321, 322, 323, 324, 325) are formed between the radiation reference core (311) and each of the radiation peripheral cores (312, 313, 314, 315, 316, 317, 318). It is formed.
  • the sea component supply unit 330 surrounding the outer circumferential surface of the island component supply unit 310 has a sea component supply path (331, 332, 333, 334, 334, 335, 336, 337) in the same manner as in the spinnerets for spinnerets for manufacturing sea islands. ) Is formed, but is not limited thereto.
  • 3B is an electron micrograph of the island-in-the-sea yarn radiated through the spinneret including the detentional partial plate of FIG.
  • a single radiation reference core 351 is formed at the center of the island.
  • Seven spinneret cores 352 to 358 are formed around the center.
  • the separation distance between the radiation reference core 351 and the plurality of radiation peripheral cores 352 to 358 may be substantially coincident or not coincident. Substantial coincidence of the separation distance between the radiation reference core 351 and the plurality of radiation peripheral cores 352 to 358 is effective in minimizing the aggregation effect of the island portion.
  • the radiation reference core 351 when the cross-sectional shape is elliptical, the radiation reference core 351 so that the separation distance between the radiation reference core 351 and the plurality of radiation peripheral cores 352-358 is long in the long axis direction and short in the short axis direction of the ellipse. ) And a plurality of spinning peripheral cores (352 ⁇ 358) is good.
  • the number of the radiation peripheral core is preferably 3 to 20, more preferably 6 to 10 may be formed, as shown in Figure 3b is arranged based on one radiation reference core 351
  • the effect is most effective when the number of the number of radially peripheral cores (352 to 358) is 6 to 8 and the number of islands grouped to the radiation reference core (351) and the radiation peripheral cores (352 to 358) is 100 to 200. great.
  • the spinning core may be arranged based on the center of the island component supply unit, and more preferably, the spinning core may not be formed at the center of the island component supply unit.
  • the spinning core may not be formed at the center of the island component supply unit.
  • Figure 4a is a top view of the upper portion of the detention part of the spinneret for producing sea island yarn according to a preferred embodiment 2 of the present invention, specifically, in the island component supply unit 410, the center 430 of the island component supply unit 410 Three spinning cores 411, 412, 413 are formed on the basis of the eight spinning cores 411, 412, 413, and eight spinning cores 414, 415, 416, 417, 418, 419 outside the three spinning cores 411, 412, 413. , 420, 421 are formed.
  • three spinning cores 411, 412, 413 formed therein and eight spinning cores formed outside the three spinning cores 411, 412, 413 414, 415, 416, 417, 418, 419, 420, and 421 are all arranged based on the center 430 of the island.
  • the number of the spinning core is preferably 3 to 20, more preferably 6 to 10, but is not limited thereto.
  • a sea component supply path 430 may be formed between the three spinning cores 411, 412, and 413, that is, at the center of the island component supplying part 410, and three spinning cores 411, 412, and 413.
  • FIG. 4B is a cross-sectional view of a longitudinal direction of the island-in-the-sea yarns radiated through the spinneret including the capped partial plate of FIG.
  • the number of island component supply passages arranged in one island component supply unit may be 38 to 1500, and more preferably, the number of island component supply passages arranged in one island component supply unit is
  • the number may be 500 to 1500, and most preferably, the number of the island component supply paths arranged inside the one island component supply unit may be 1000 to 1500.
  • 10 to 300 island component supply paths may be arranged with respect to the one spinning core, and more preferably 100 to 150 island component supply paths may be arranged, but is not limited thereto.
  • the number of island component supply paths arranged around the one spinning core described above is the island-in-the-sea yarn and the fineness of the island portion, the fineness of the desired micro-fine yarn, and the light modulation efficiency described below within the range where the aggregation of the island portions does not occur. This can be adjusted appropriately within the range that can be maximized.
  • the diameter of the island component supply passage used in the present invention is preferably 0.1-0.3 kPa, and the diameter of the sea component supply passage may be 0.2-2.0 kPa.
  • the diameter of one group formed by gathering the island component supply paths may be 5 to 20 mm and the diameter of the island component supply part may be 15 to 50 mm, but is not limited thereto.
  • the spinneret of the present invention like the normal spinnerets, the diameter of the lower billet plate, which is the portion where the actual sea islands are discharged, is narrower than the upper billet plate and the lower billet plate is formed in the upper part plate.
  • Cross-section of the spinneret as a whole reduces the diameter of the discharge port formed in the It may have a funnel shape and may have a cylindrical shape in which the diameter of the lower holding plate is not reduced.
  • the maximum value of the center distance between adjacent island component supply paths within the same group may be smaller than the maximum value of the center distance between adjacent island component supply paths between adjacent (adjacent) groups. . That is, since the detentional partial plate of the present invention may have a non-uniform spacing between adjacent groups and groups formed therein, adjacent island component supply paths forming a boundary between groups (groups belonging to different groups and adjacent to each other) The longest part of the center distance of the center supply paths) is greater than the maximum of the center distances of adjacent islands supply paths within the same group.
  • the island-in-the-sea fineness manufactured through the spinneret described above satisfies the single yarn fineness of the conventional island-in-the-sea yarn, but may preferably have a single yarn fineness of 0.5-60 denier, and more preferably a single yarn fineness of 30 to 60 denier. It can have The single yarn fineness of the island portion of the island-in-the-sea yarn is 0.0001 to 1.0 denier is advantageous to achieve the object of the invention.
  • the group island-in-the-sea island of the present invention can be arranged to the maximum number of islands can be very useful for producing a plurality of ultra-fine yarn.
  • the shape of the cross-section of the detention part partial plate of the present invention may be circular, but it is possible to design by deforming to various shapes of the detention part partial plate according to the shape of the desired island, the shape of the detention part when the cross-sectional shape is circular
  • the diameter of the cross section of the backplate may vary depending on the diameter of the desired island-in-the-sea yarn, but may preferably be 70-250 mm.
  • the thickness of the detentional partial plate may be 10 ⁇ 30mm, but is not limited thereto.
  • FIG. 5 illustrates a detention part partial plate 500 according to an embodiment of the present invention, in which the dosing component supply parts 510 and 511 are formed in twelve part distribution plate 500.
  • FIG. 6 is a photograph of a lower holding plate 600 in which discharge portions corresponding to the number of island components of a conventional portion of the upper plate are formed, and each of the 12 discharge portions 610, 630, and 650 connected to the twelve island supply portions. ) And 12 solutions at a time through each outlet It will be able to emit the yarn (Fig. 3b).
  • FIG. 7 is a fabric 700 including the birefringent island-in-the-sea yarn of FIG. 3B, wherein the fabric 700 is a warp, and the birefringent island-in-the-sea yarn 710 is a slit (monosa).
  • FIG. 8 is a view of the lower metal plate according to the preferred embodiment of the present invention, unlike the conventional lower metal plate of FIG. Only one discharge port 810 through which the island-in-the-sea yarn is radiated is formed in the lower metal plate 800 of FIG. 8. In other words, even when using the upper portion distribution plate formed with the twelve island component supply units shown in FIG.
  • the number of discharge holes formed in the lower sphere plate is smaller than the number of the island component supply portions, thereby allowing each city to be individually formed.
  • the plurality of polymers supplied to the powder supply part and the marine powder supply part may be collected inside the spinneret and spun into a plurality of island-in-the-sea yarns.
  • a plurality of island component polymers and sea component polymers for manufacturing twelve islands of yarn are combined into one, and as a result, the number of island portions is 12192 as shown in FIG. 9.
  • the island-in-the-sea yarn (monosa) having a diameter of 40 to 80 can be produced.
  • FIG. 10 is a warp yarn 1010 in the form of mono yarns in FIG. 9, and the isotropic fibers are woven in a weft yarn 1020.
  • the fabric 1000 included in the luminance-enhanced film unlike trimming does not occur in the island-in-the-sea yarn unlike FIG. 7, it is possible to eventually block the cow phenomenon.
  • the reverse polarization effect does not occur in the portion where the trimming occurs, and thus the optical modulation efficiency can be maintained, and since the defects do not occur in the luminance-enhanced film, the visibility of the optical modulation object can be dramatically improved.
  • we can improve the weaving work because the phenomenon of the thread being cut off does not occur during the passing of the weaving machine and Radius Heald.
  • the number of toe outlets may be smaller than the number of the conductive component supply units, and more preferably, the number of discharge ports may be less than half the number of the conductive component supply units. And, most preferably, the number of the discharge port may be one.
  • the lower plate 800 is a flow path (820, 821) for allowing the polymer supplied from each island component supply and sea component supply to flow toward one discharge port (810) It may include.
  • the flow paths 820 and 821 may be designed in various numbers and shapes according to the arrangement of the spinneret, and the discharge holes 810 may be formed in an area where the flow path and the flow path intersect.
  • the diameter of the lower retainer plate is typically the same as or smaller than the diameter of the upper platelet, the diameter of the discharge port can be 0.2 1.0 mm, the length of the flow path can be 40-120 mm, and the width of the flow path is 4-10 It may be a country, but is not limited to this, and various designs can be made according to the specifications of the island.
  • the liquid crystal display luminance-enhanced film including the same may be manufactured when the sea portion is still used.
  • liquid crystal display devices are not necessarily high utilization efficiency of light emitted from the backlight. This is because more than 50% of the light emitted from the backlight is absorbed by the rear axis optical film. Therefore, in order to increase the utilization efficiency of the backlight light in the liquid crystal display device, a brightness enhancing film is installed between the optical cavity and the liquid crystal assembly.
  • the isotropic optical insects and the anisotropic optical layers of flat plates having different refractive indices are alternately stacked, and the optical thickness between the optical layers, which can be optimized for selective reflection and transmission of incident polarized light by stretching them, Since it is manufactured to have a refractive, there was a problem that the manufacturing process of the luminance-enhanced film is complicated.
  • each optical charge of the luminance-enhanced film has a flat plate structure, it is necessary to separate P-polarized light and S-polarized light in response to a wide range of incident angles of incident polarization. Excessive increase in the number of floors caused a problem of exponentially increasing production costs.
  • due to the structure in which the number of laminated layers of the optical layer is excessively formed there is a problem in that optical performance decreases due to light loss.
  • the light incident from the light source is reflected, scattered, and refracted at the birefringent interface, which is an interface between the group-type island-in-the-sea yarn and the isotropic substrate, thereby generating light modulation.
  • the birefringent interface which is an interface between the group-type island-in-the-sea yarn and the isotropic substrate, thereby generating light modulation.
  • light emitted from an external light source can be largely divided into S-polarized light and P-polarized light. When only a specific polarized light is desired, P-polarized light passes through the luminance-enhanced film without being affected by the birefringent interface.
  • S-polarized light is modulated into a wavelength of random refraction, scattering, and reflection at the birefringent interface, that is, S-polarized light or P-polarized light, and is then reflected by a reflector near a light source and irradiated to the luminance-enhanced film.
  • the inventors of the present invention do not manufacture the laminated birefringent fibers as the polymer having the birefringent interface, so the production cost is low and the production is easy.
  • the effect of brightness enhancement is insignificant. Instead, they found a problem that was difficult to apply to industrial sites. Accordingly, the above-mentioned problem was overcome by using a birefringent island-in-the-sea yarn as a polymer having the birefringent interface.
  • the birefringent island-in-the-sea yarns were used, it was confirmed that the effects of light modulation efficiency and luminance improvement were remarkably improved compared with the case of using ordinary fibers.
  • the island portion of the portion constituting the island-in-the-sea yarn has this anisotropy, and the sea portion partitioning the island portion has isotropy.
  • the interface between the island-in-the-sea yarn and the base material not only the interface between the island-in-the-sea yarn and the base material, but also the interface between the islands and sea portions of the island-in-the-sea yarn has a birefringent interface, so that the birefringence interface occurs only at the interface between the base material and the birefringent fibers.
  • the light modulation effect is significantly increased, and it can be applied to the actual industrial site by replacing the laminated luminance-enhanced film.
  • birefringent island-in-the-sea yarn is superior to the use of ordinary birefringent fibers, and the efficiency of brightness enhancement is excellent, and the optical properties of the island portion and the sea portion in the birefringent island-in-the-sea islands are different.
  • Birefringence The luminance enhancement efficiency is remarkably improved as compared with the case where the interface can be formed. Specifically, in an island-in-the-sea island comprising an optically isotropic sea portion and an island portion having anisotropy, the magnitude of the substantial coincidence or mismatch of the refraction along the XJ and Z axes in space affects the degree of scattering of the polarized light along that axis.
  • the scattering power changes in proportion to the square of the refractive index mismatch.
  • the greater the degree of mismatch in refractive index along a particular axis the more strongly scattered light is polarized along that axis.
  • the discrepancy along a particular axis is small, the light polarized along that axis is scattered to a lesser extent. If the refraction of the sea portion along a certain axis is substantially coincident with the refractive index of this island portion, the incident light polarized by an electric field parallel to this axis will not be scattered, regardless of the size, shape and density of the portion of the island. Will pass.
  • FIG. 5 is a cross-sectional view showing a path of light transmitted through the birefringent islands-in-the-sea yarn of the present invention.
  • the P wave (solid line) is transmitted without being affected by the interface between the birefringent island-in-the-sea and the birefringence interface between the island and sea in the birefringent island-in-the-sea yarn, while the S-wave (dotted line)
  • the modulation of light occurs due to the influence of the birefringent interface between the boundary surface of the island and the sea portion inside the sea islands and / or the birefringent islands.
  • the group-like sea yarn of the present invention can be utilized as a photochromic fiber by expressing a specific color according to the sea island ratio and fiber diameter without adding a dye or the like.
  • the difference between the refractive indices of the island portion and the sea portion in the islands and sea portions of the islands-in-the-sea yarn is 0.05 or less and the difference in refractive index in the other one axial direction is 0.1 or more.
  • P waves pass through the birefringent interface of island-in-the-sea yarns, but S waves can cause light modulation.
  • the difference in refractive index in the longitudinal direction of the sea portion and the seam portion of the island-in-the-sea yarn is 0.1 or more, and the light modulation efficiency is maximized when the refractive indices of the sea portion and the seam portion in the remaining two axial directions substantially coincide.
  • the optical properties of the island portion and the sea portion should be different, and the area of the light modulation interface should be wide.
  • the number of the drawing parts should be large, and preferably, the number of drawing parts should exceed 500.
  • the refractive index of the island portion is anisotropic and the refractive index of the sea portion is isotropically arranged in the conventional islands and islands, when the number of the island portions exceeds 500, the island portions may be agglomerated. There is a fatal problem in that the area is reduced and the light modulation efficiency is lowered.
  • the present invention when two or more spinning cores are formed as described above, even when 500 or more drawing parts are disposed, preferably 1000 or more drawing parts can be prevented from being aggregated. As a result, the light modulation efficiency of the island-in-the-sea yarn is maximized, and when the island-in-the-sea yarn radiated through the spinneret of the present invention is added to the luminance-enhanced film, the light modulation effect and a dramatic improvement in brightness can be expected.
  • the sea portion and / or island portion which can be used in the present invention, may be used in any component used as a conventional sea island material, and preferably polyethylene naphthalate (PEN) or copolyethylene naphthalate (co-PEN).
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS heat resistant polystyrene
  • P MA polymethyl methacrylate
  • P MA polybutylene tere Phthalate
  • PP polypropylene
  • PE polyethylene
  • ABS acrylonitrile butadiene styrene
  • Polyurethane PU
  • polyimide PI
  • polyvinylchloride PVC
  • SAN styrene acrylonitrile mixture
  • EVA ethylene vinyl acetate
  • PA polyamide
  • POM polyacetal
  • phenol At least one of an epoxy (EP), urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), elastomer and cycloolefin polymer.
  • PEN polyethylene naphthalate
  • copolyethylene naphthalate and polycarbonate alloy alone or in combination as sea parts
  • the brightness is remarkably improved as compared with the birefringent island-in-the-sea yarn made of a conventional material.
  • polycarbonate polyethylene naphthalate
  • the polycarbonate alloy (al loy) is preferably composed of polycarbonate and modified glycol polycyclonuxylene dimethylene terephthalate (PCTG), more preferably modified with polycarbonate
  • PCTG modified glycol polycyclonuxylene dimethylene terephthalate
  • PC G glycol polycyclonuclear dimethyl dimethylene terephthalate
  • the polycarbonate and the modified glycol polycyclonuclear silane dimethylene terephthalate (PCTG) in a weight ratio of 4: 6-6: 4 exhibit the best effect on brightness enhancement.
  • the island and sea sections are located in two axial directions. Selecting a material with substantially the same refractive index but having a large difference in refractive index in one axial direction is effective for improving the light modulation efficiency.
  • methods for changing an isotropic material to birefringence are commonly known and, for example, when drawn under suitable temperature conditions, the polymer molecules are oriented so that the material becomes birefringent.
  • the island-in-the-sea yarn manufactured through the spinneret for manufacturing the island-in-the-sea yarn in the present invention is arranged so that the island portions are grouped around two or more spinning cores, so even when the number of the island portions is 500 or more, No aggregation occurs. Therefore, since 500 or more islands can be arranged in one island island, the fineness of the islands can be reduced, which is very advantageous for producing microfiber yarn, and it is possible to produce more than 500 ultrafine yarns in one island island. This can significantly reduce the cost.
  • the group islands-in-the-sea yarn according to the present invention can be utilized as a photochromic fiber by expressing a specific color according to the sea island ratio, fiber diameter without adding a compound causing color development, such as dye due to the excellent light modulation effect, When used in the brightness enhancement film without eluting it can maximize the light modulation effect of the film.
  • the island portion of the island-in-the-sea yarn produced by producing a bottom island gold plate having at least one discharge port for collecting and discharging a part or all of the polymers passing through the plurality of island component supply units and the plurality of sea component supply units Since the number of can be more than 10,000, it is possible to solve the cow phenomenon occurring in the brightness-enhanced film.
  • the spinneret having the cross-section of the upper distribution plate of FIG. 3A is disposed in a spinneret (127 parts are arranged in one spinning core and the total number of the parts is 1016). Through this composition, the unstretched yarn is 150/24.
  • the spinning temperature is 305, and the spinning speed is 1,500 M / min.
  • the stretched yarn 50/24 was obtained through the stretching of the boat.
  • 3B is an electron micrograph of the island-in-the-sea yarn radiated through the spinneret of FIG. 3A.
  • the island component and the sea component were supplied to the mold to prepare a birefringent island-in-the-sea yarn having a cross section of FIG. 9 (mono yarn, number of island components: 12192, diameter: 66).
  • the prepared birefringent island-in-the-sea yarn (monosa) was inclined (40de / lf i la), and an isotropic PC alloy fiber (melting temperature: 145 * C), which was the same as the above-mentioned sea component, was prepared at 60/24, Weaving with fabric.
  • FIG. 10 is an SEM of the surface of a fabric woven using the island-in-the-sea yarn of FIG. 9.
  • FIG. Lb is an electron micrograph of the island-in-the-sea yarn radiated through the spinneret of FIG.
  • Example 2 After weaving 24 strands of the island-in-the-sea yarn manufactured in Example 1 (80de / 24fi la), it was inclined, and an isotropic PC alloy fiber (melting temperature: 145:), which was the same as the above-mentioned seaweed, was prepared at 60/24 and wefted it. Was woven into a woven fabric.
  • the spinneret for producing island-in-the-sea yarn of the present invention is a light side without the occurrence of Because of its excellent performance and no defects, it can be widely used for manufacturing island-in-the-sea yarns applied to optical devices such as cameras, optical devices such as cameras, and liquid crystal display devices such as mobile phones, LCDs, and LEDs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

도성분 공급부 내부에 도성분 공급로가 복수개의 군으로 구획된 구금상부분 배판 및 복수개의 도성분 공급부를 통과한 폴리머를 일부 또는 전부 취합하여 방사 하는 토출구를 구비한 하부구금판을 포함하는 해도사 제조용 방사구금이 제공된다. 이를 통해 제조된 해도사는 도부분의 개수가 500개 이상이 경우에도 해도사 의 중심부분에서 도부분의 뭉침현상이 발생하지 않는다. 그러므로, 하나의 해도사 에서 500개 이상의 도부분을 배치시킬 수 있으므로 도부분의 섬도를 줄일 수 있어 초극세사를 생산하는데 매우 유리할 뿐 아니라 하나의 해도사에서 500개 이상의 초 극세사를 생산할 수 있어 생산비용을 현저하게 절감할 수 있다.

Description

【명세서】
【발명의 명칭】
해도사 제조용 방사구금
【기술분야】
본 발명은 해도사 제조용 방사구금에 관한 것으로, 보다 상세하게는 도부분 의 개수가 많아지는 경우에도 방사되는 해도사의 도접합 현상을 방지할 수 있으며 도성분의 개수를 비약적으로 늘릴 수 있는 해도사 제조용 방사구금에 관한 것이다. 【배경기술】
해도사는 해성분 내에 도성분들이 분산된 단면구조를 갖는 원사로서 , 방사 후 후가공 공정에서 해성분을 용출 또는 용해하여 제거하면 도성분만이 남기 때문 에 수지의 낭비와 해성분을 용출시키기 위한 용제의 사용 등으로 인한 비용증가 및 환경오염이 발생하는 문제는 있으나 통상의 극세섬유 제조방법으로는 얻을 수 없는 초극세사의 제조가 가능하여 인조스웨이드나 필터, 클리닝 제품과 같은 산업용 소 재 제조용 원사로 널리 사용되고 있다.
통상적인 해도사에서 해성분이란 방사 후 후가공 공정에서 용출 또는 용해되 는 성분이고, 도성분은 해성분 제거 후에도 계속 남아 섬유를 형성하는 성분이다. 이러한, 해도사를 사용하여 스웨이드조 직편물 등을 제조하는 공정은 감량, 기 모, 염색 등의 복잡한 여러 단계를 거쳐야 하고, 무엇보다도 극세화된 도성분 섬유의 섬도 균일성과 균일한 기모성이 품질의 안정화에 있어서 매우 중요하므로, 도성분 섬유의 단면내 배열과 구성이 품질을 결정하는 핵심 인자라 할 수 있다.
따라서 , 해도사는 도성분의 활용을 극대화 하기 위하여 알칼리 이용해성 (易 容解性) 폴리머를 해성분으로 사용하고 섬유형성성 폴리머를 도성분으로 사용하여 이들을 해도형으로 복합 방사하여 제조되며, 주로 극세섬유를 제조하기 위한 목적 으로 생산되고 있다. 다시 말해 해도사 제조 후 이를 알칼리 용액으로 처리하여 알 칼리 이용해성 폴리머인 해성분을 용출하므로서 도성분만으로 구성되는 극세섬유를 제조하게 된다. 이와 같이 해도사로부터 극세섬유를 제조하는 방법은 직접방사로 극세섬유를 제조하는 방법에 비해 방사 및 연신조업성이 우수하고 보다 세섬도인 극세섬유를 얻을 수 있는 장점이 있는 한편 , 제직 또는 편직후 가공공정에서 해성 분 폴리머를 유기용제 등으로 용출, 제거하는 공정이 필요하다. 도성분 섬유의 극 세화 정도에 따라서 최종제 품질 향상을 기할 수 있으므로, 도성분 섬유의 섬도를 보다 더 극세화하기 위한 연구 , 개발이 많이 진행되고 있는 것이 사실이다.
현재까지 통상적으로 상업화되어 있는 기술은 도성분 섬유의 개수가 37개 이 하의 수준이며 또한 극세화된 도성분 섬유의 섬도가 0.05데니어 수준에 머무르고 있는 것이 현실이다. 그러므로 도성분의 섬유의 개수를 38개 이상으로 확대하므로 서 도성분 섬유의 섬도를 0.04데니어 이하로 제조할 수 있는 기술 개발이 필요하다 할 수 있다.
그러나 도성분의 개수가 38개 이상일 경우에는 단면의 형성 구조가 매우 중 요하며, 해도사 단면내의 도성분 섬유 배열이 매우 정교하게 설계되어야만 한다. 구체적으로 도 la는 통상의 해도사를 제작하기 위한 해도사 제조용 방사구금의 구 금상부분배판의 단면도이다. 구체적으로 해도사 제조용 방사구금 중 구금상부분배 판 (1)은 도성분 폴리머가 공급되는 도성분 공급부 (2)와 상기 도성분 공급부 (2)의 외주면을 둘러싸고 해성분 폴리머가 공급되는 해성분 공급부 (3)로 구성된다. 이 중 도성분 공급부 (2)는 통상적으로 하나의 방사코어 (4)를 중심으로 복수개의 도성분 공급로 (5)가 방사형으로 형성되며 원하는 도성분의 개수에 따라 도성분 공급로 (5) 의 개수가 달라질 수 있다. 상기 도성분 공급부 (2)의 외주변을 둘러싼 해성분 공급 부 (3)에는 해성분 공급로 (6)가 형성된다. 상기 도 la의 해도사 방사용 방사구금의 구금상부분배판에서는 각각의 공급로를 통해 도성분과 해성분을 주입하면 방사구금 의 내부에서 해성분 공급로 (6)에 공급된 해성분이 도성분 공급부 (2)로 유입되어 상 기 도성분 공급부 (2) 내부를 층진하면서 도성분 공급로 (5)를 에워싸게 된다. 이런 과정을 통해 해성분의 내부에 형성된 다수개의 도부분을 가지는 해도사를 생산할 수 있는 것이다.
도 lb, lc는 상술한 도 la의 방사구금을 통해 방사되는 종래의 해도사의 단 면 (도부분 331도)으로서, 도 lb는 해도사의 내부에 하나의 방사코어 (11)를 중심으 로 도부분 (12)이 동심원 형상으로 배열되어 있으며 전체 해도사의 단면적에서 도부 분이 차지하는 단면적이 60 - 70%이다. 도 lc 역시 해도사의 내부에 하나의 방사 코어 ( 13)를 중심으로 도부분 (14)이 동심원 형상으로 배열되어 있으며 전체 해도사 의 단면적에서 도부분이 차지하는 단면적이 70 ~ 80¾이다. 이러한 단면의 구조는 도부분의 개수가 적을 때는 이상이 없으나, 도부분의 개수가 많아지거나 (약 300개 이상) 도부분의 단면적이 증가하게 되면, 해도사의 중심에 형성된 방사코어 (11)에 인접한 도부분의 경우 밀집도가 커지게 되어, 방사과정에서 방사코어 주변에 위치 하는 도부분간에 서로 뭉치는 현상이 발생하게 된다. 다시 말해 해도사의 도부분의 개수가 많아지고 단면적이 증가할수록 해도사의 중심부분의 도부분이 뭉쳐서 덩어 리를 형성하게 되는 부작용 (도접합 현상)이 발생하는 것이다. 이 러한 관점에서 볼 때 기존의 도성분 섬유가 37개 이하인 해도사의 배열 상태를 그대로 확대 적용하는 것으로는 섬유 단면의 안정적인 형성을 확보할 수 없기 때문에 해도사 단면내 도성 분 섬유의 배열을 위한 특별한 설계 기술이 절실하게 요구되었다.
【발명의 상세한 설명】
【기술적 과제】
본 발명은 상술한 종래기술의 문제점을 해결하고자 안출된 것으로, 본' 발명 이 해결하고자 하는 첫번째 과제는 도부분의 개수가 비약적으로 늘어나는 경우에도 도부분의 뭉침현상을 방지할 수 있으면서 발색성을 가지는 해도사를 제조할 수 있 는 해도사 제조용 방사구금을 제공하는 것이다.
본 발명이 해결하고자 하는 두번째 과제는 도부분의 뭉침현상이 발생하지 않 으면서도 휘도강화필름에 적용 시 모우현상이 발생하지 않는 해도사를 제조할 수 있는 해도사 제조용 방사구금을 제공하는 것이다.
【기술적 해결방법】
본 발명은 상기 첫번째 과제를 달성하기 위하여 ,
도성분 공급로를 포함하며 도성분 폴리머를 주입하는 도성분 공급부와 상기 도성분 공급부의 외주면에 형성되며 해성분 폴리머를 주입하는 해성분 공급로를 포 함하는 해성분 주입부가 형성된 해도사 제조용 구금상부분배판을 포함하는 해도사 제조용 방사구금에 있어서, 상기 도성분 공급부의 내부에 상기 도성분 공급로가 복 수개의 군으로 구획되고, 복수개의 도성분 공급부 및 복수개의 해성분 공급부를 포 함하는 구금상부분배판, 및 상기 구금상부분배판의 하부에 형성되며 , 상기 복수개 의 도성분 공급부 및 복수개의 해성분 공급부를 통과한 폴리머들 중 일부 또는 전 부를 취합하여 토출하는 하나 이상의 토출구가 형성된 하부구금판을 포함하는 해도 사 제조용 방사구금을 제공한다.
본 발명의 바람직한 실시예에 따르면 , 상기 도성분 공급부는 내부에 해성분 공급로가 하나 이상 형성될 수 있다.
본 발명의 바람직한 다른 실시예에 따르면, 상기 도성분 공급로는 2개 이상 의 방사코어를 중심으로 그룹화 (grouping)되어 배열될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사코어는 도성분 공급 부의 중심에 하나의 방사기준코어가 위치하고 이를 중심으로 복수개의 방사주변코 어가 배열될 수 있다。
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사기준코어와 복수개 의 방사주변코어간의 이격거리가 실질적으로 일치하거나 상이할 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사주변코어는 3 ~ 20 개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사주변코어는 6 - 10 개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 하나의 방사기준코어 또 는 하나의 방사주변코어에 대하여 도성분 공급로가 10 ~ 300개가 배열될 수 있다. 본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사기준코어와 방사주 변코어 사이에 해성분 공급로가 형성될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 하나의 도성분 공급부에 포함 된 도성분 공급로의 개수가 38 ~ 1500개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 하나의 도성분 공급부에 포함 된 도성분 공급로의 개수가 500 ~ 1500개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 하나의 도성분 공급부에 포함 된 도성분 공급로의 개수가 1000 ~ 1500개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부의 개수는 2 ~ 20개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부의 개수는 5 ~ 15개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 전체 도성분 공급부에 포함된 도성분 공급로의 개수가 10000 - 20000개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면, 상기 그룹화된 도성분 공급로 의 형상이 원형 , 타원형, 다각형 또는 이형단면으로 정렬될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 그룹화된 도성분 공급로 의 형상이 일치하거나 상이할 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부의 중심을 기준으로 방사코어가 배열될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부의 중심에 는 해성분 공급로가 형성될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사코어의 개수는 3 ~ 20개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사코어의 개수는 6 - 10개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사코어 사이에 해성분 공급로가 형성될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부의 직경은
15 ~ 50醒일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급로의 직경은 0.1 - 0.3國일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 해성분 공급로의 직경은 0.2 ~ 2.0國일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 도성분 공급부를 2 ~ 20 개 포함할 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 복수개의 군은 동일한 군 내부의 인접한 도성분 공급로간의 중심거리의 최대값이 서로 이웃하는 군 사이 의 인접한 도성분 공급로간의 중심거리의 최대값보다 작을 수 있다.
상술한 두번째 기술적 과제를 달성하기 위하여 바람직하게는 상기 토출구의 개수가 상기 도성분 공급부의 개수보다 작을 수 있으며 , 보다 바람직하게는 상기 토출구의 개수는 상기 도성분 공급부의 개수의 절반 이하일 수 있고, 가장 바람직 하게는 상기 토출구의 개수는 1개일 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 하부구금판은 상기 도성 분 공급부를 통과한 도성분 폴리머 및 해성분 공급부를 통과한 해성분 폴리머를 상 기 토출구로 안내하기 위한 하나 이상의 유로가 형성될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면, 상기 토출구는 상기 유로와 유로가 교차하는 영역에 형성될 수 있다.
본 발명의 바람직한 또 다른 실시예에 따르면 , 상기 방사코어는 상기 방사코 어가 속한 그룹내부에 형성될 수 있다.
본 명세서에서 사용된 용어에 대해 간략히 설명한다.
별도로 설명되어 있지 않다면 , '방사 ( ^絲)코어 '라 함은 방사구금의 상부구 금을 기준으로 도성분 공급로가 내부의 일정한 지점을 중심으로 그룹화되어 (구획되 어 ) 배열된 경우 (군을 형성 ) 그 중심이 되는 일정한 지점을 의미하는 것이다.
'방사기준코어 '란 복수개의 방사코어가 존재하며 하나의 방사코어를 중심으 로 나머지 방사코어가 배열되는 경우 그 중심이 되는 방사코어를 의미하고, '방사 주변코어 '는 하나의 방사코어를 중심으로 배열되는 나머지 방사코어를 의미한다.
'도성분 공급로가 그룹화되어 배열된 '이라 함은, 복수개의 도성분 공급로가 하나의 방사코어를 중심으로 일정한 형상을 가지고 구획되어 정렬된 것을 의미하는 것으로, 예를 들어 방사구금의 내부에 방사코어가 2개인 경우 각각의 방사코어를 중심으로 도성분 공급로가 일정한 형상으로 정렬되므로 결국 이를 통해 방사된 해 도사 내부에서 도부분은 2개의 군으로 구획되는 것이다.
'광발색 섬유'라 함은 염료나 안료와 같은 색을 띠는 물질의 물리적 /화학적 결합에 의해 색을 띄는 것이 아니라 섬유의 구조적 /광학적 설계에 의한 빛의 간섭 현상을 이용하여 색이 발현되는 섬유를 와미한다.
'섬유가 복굴절성을 가진다 '는 의미는 방향에 따라 굴절률이 다른 섬유에 빛 을 조사하는 경우 중합체에 입사한 빛이 방향이 다른 두 개의 빛으로 굴절된다는 것이다.
'등방성 '이라 함은 빛이 물체를 통과할 때, 방향에 상관없이 굴절률이 일정 한 것을 의미한다.
'이방성 '이라 함은 빛의 방향에 따라 물체의 광학적 성질이 다른 것으로 이 방성 물체는 복굴절성을 가지며 등방성에 대응된다.
'광변조'라 함은 조사된 빛이 반사, 굴절 , 산란하거나 빛의 세기, 파동의 주 기 또는 빛의 성질이 변화하는 것을 의미한다.
'모우 (毛羽)현상'이라 함은 여러가닥의 필라멘트가 모여 실 한 가닥을 구성 하는 경우, 그 중 일부의 필라멘트가 절단되는 현상을 의미한다.
【유리한 효과】
본 발명에 따른 해도사 제조용 방사구금을 통해 제조된 해도사는 도부분이 2 개 이상의 군으로 구획되어 배열되므로 도부분의 개수가 10000개 이상인 경우에도 해도사의 중심부분에서 도부분의 뭉침현상이 발생하지 않는다. 그러므로, 하나의 해도사에서 500개 이상의 도부분을 배치시킬 수 있으므로 도부분의 섬도를 줄일 수 있어 초극세사를 생산하는데 매우 유리할 뿐 아니라 하나의 해도사에서 500개 이상 의 초극세사를 생산할 수 있어 생산비용을 현저하게 절감할 수 있다.
또한, 본 발명의 해도사 제조용 방사구금을 통해 제조된 해도사는 뛰어난 광 변조 효과로 인하여 염료 등의 발색성을 유발하는 화합물을 첨가하지 않고도 해도 비율, 섬유직경에 따라 특정 색을 발현시켜 광발색 섬유로 활용될 수 있다. 본 발 명의 광발색 섬유는 광의 세기 , 위치 및 보는 각도에 따라 다양한 색으로 발색될 수 있다.
나아가, 본 발명의 해도사 제조용 방사구금을 통해 제조된 해도사는 도부분 과 해부분의 광학적 성질을 달리하는 경우 도부분과 해부분의 경계면에 광변조 계 면이 형성되므로 통상의 복굴절성 섬유에 비하여 광변조 효과를 극대화시킬 수 있 으며 도부분의 개수가 많아지는 경우에도 도부분이 뭉쳐지지 않는다. 따라서, 방 사코어가 하나인 통상의 해도사에 비하여 광변조 계면의 면적이 극대화될 수 있으 므로 광변조 효과가 현저하게 상승된다. 그러므로, 본 발명의 해도사를 포함하는 휘도강화필름은 광변조 효과가 매우 우수하므로 통상의 복굴절성 섬유나 해도사를 사용하는 경우에 비하여 휘도가 비약적으로 향상되는 효과를 가진다. 나아가 여러 개의 도성분 공급부 및 해성분 공급부를 통해 공급된 폴리머를 적은개수의 토출구 를 통해 토출하여 도부분의 개수가 10000개 이상인 해도사를 제조하는 경우 이를 휘도강화필름에 사용하면 모우현상의 발생을 방지할 수 있다.
【도면의 간단한 설명】
도 la는 종래의 해도사 제조용 방사구금 중 구금상부분배판의 상면도이고, 도 lb 및 도 lc는 이를 통해 제조된 종래의 해도사 단면에 대한 전자현미경 사진이 다.
도 2a는 본 발명의 바람직한 실시예에 따른 해도사 제조용 방사구금 중 구금 상부분배판의 상면도이고, 도 2b는 이를 통해 제조된 그룹형 해도사의 단면도이다. 도 3a는 본 발명의 바람직한 다른 실시예에 따른 해도사 제조용 방사구금 중 구금상부분배판의 상면도이고, 도 3b는 이를 통해 제조된 그룹형 해도사의 전자현 미경 사진이다.
도 4a는 본 발명의 바람직한 또 다른 실시예에 따른 해도사 제조용 방사구금 중 구금상부분배판의 상면도이고, 도 4b는 이를 통해 제조된 그룹형 해도사의 단면 도이다.
도 5는 본 발명의 바람직한 또 다른 실시예에 따른 해도사 제조용 방사구금 중 구금상부분배판의 상면도이다.
도 6은 종래의 해도사 제조용 방사구금 중 하부구금판의 사진이다.
도 7은 해도사를 포함하는 휘도강화필름에 사용되는 직물의 확대사진이다. 도 8은 본 발명의 바람직한 또 다른 실시예에 따른 해도사 제조용 방사구금 중 하부구금판의 사진이고, 도 9는 이를 통해 제조된 해도사의 전자현미경 사진이 며 , 도 10은 도 9의 해도사를 포함한 휘도강화필름에 사용되는 직물의 확대사진이 다.
도 11은 본 발명의 방사구금을 통해 제조된 복굴절성 해도사에 입사한 광의 경로를 도시한 단면도이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세하게 설명하기로 한다. 상술한 바와 같이 , 종래의 해도사 제조용 방사구금을 통해 제조된 해도사는 해도사 내부에 하나의 방사코어를 중심으로 도부분이 동심원 형상으로 배열되어 있 거나 방사코어가 없이 랜덤하게 도부분이 배열되나 이러한 단면의 구조는 도부분의 개수가 적을 때는 이상이 없으나, 도부분의 개수가 많아지게 되면 (약 300개 이상) , 해도사의 중심에 형성된 방사코어에 인접한 도부분의 경우 밀집도가 커지게 되어, 방사과정에서 방사코어 주변에 위치하는 도부분간에 서로 뭉치는 현상이 발생하게 된다. 다시 말해 해도사의 도부분의 개수가 많아질수록 해도사의 중심부분의 도부 분이 뭉쳐서 덩어리를 형성하게 되는 부작용이 있다.
이에 본 발명의 일실시예에 따른 해도사 제조용 방사구금은 도성분 공급로를 포함하며 도성분 폴리머를 주입하는 도성분 공급부와 상기 도성분 공급부의 외주면 에 형성되며 해성분 폴리머를 주입하는 해성분 공급로를 포함하는 해성분 주입부가 형성된 해도사 제조용 구금상부분배판을 포함하는 해도사 제조용 방사구금에 있어 서 , 상기 도성분 공급부의 내부에 상기 도성분 공급로가 복수개의 군으로
구획되고, 복수개의 도성분 공급부 및 복수개의 해성분 공급부를 포함하는 구금상 부분배판, 및 상기 구금상부분배판의 하부에 형성되며, 상기 복수개의 도성분 공급 부 및 복수개의 해성분 공급부를 통과한 폴리머들 중 일부 또는 전부를 취합하여 토출하는 하나 이상의 토출구가 형성된 하부구금판을 포함하는 해도사 제조용 방사 구금을 제공하여 도접합의 발생을 방지하였다. 보다 바람직하게는 상기 도성분 공 급로는 2개 이상의 방사코어를 중심으로 그룹화 (grouping)하여 배열시켜 상술한 문 제점의 해결을 모색하였다. 이를 통해 하나의 방사코어에 도부분이 지나치게 집적 되는 현상을 방지하고 하나의 해도사 내부에 500개 이상의 도부분을 형성시켜 초극 세사를 생산함과 동시에 하나의 해도사에서 수백개의 초극세사를 생산할 수 있어 생산비용을 현저하게 절감시켰다.
먼저 , 본 발명의 방사구금 중 상부에 형성되는 구금상부분배판을 설명한다。 도 2a는 본 발명의 바람직한 실시예에 따른 해도사 제조용 방사구금의 구금상부분 배판의 일부분의 상면도로서 , 상기 구금상부분배판 (200)은 도성분 폴리머를 주입하 는 도성분 공급부 (210)와 이를 감싸면서 해성분 폴리머를 주입하는 해성분
공급부 (220)로 구성된다. 상기 도성분 공급부 (210)는 그 내부에 4개의
방사코어 (211, 212, 213, 214)를 중심으로 복수개의 도성분 공급로 (215)가 그룹화 되어 군을 형성하며 , 본 발명에서는 상기 군의 형상으로 원형을 도시하였지만, 이 에 한정되는 것은 아니며 , 타원형 , 다각형 등 이형단면이 가능하다. 또한 도성분 공급부 (210)는 그 내부에 해성분 공급로 (216)가 형성될 수 있으며 , 상기 해성분 공 급로 (216)는 그 형성되는 위치 및 개수에 제한은 없으나 바람직하게는 도성분 공급 로들로 이루어진 그룹과 그룹 사이에 형성되는 것이 도접합 현상을 방지하는데 유 리하다. 한편 . 상기 도성분 공급부 (210) 내부에 형성되는 해성분 공급로 (216)는 상 황에 따라 하나 또는 다수개가 형성될 수 있다. 상기 도성분 공급부 (210)의 외주면 을 감싸는 해성분 공급부 (220)에는 통상의 해도사 제조용 방사구금과 마찬가지로 해성분 공급로 (221, 222, 223, 224)가 형성되며 , 이 때 형성되는 해성분
공급로 (221 , 222, 223, 224)는 그 개수에 제한은 없으나 바람직하게는
방사코어 (211, 212, 213, 214)의 개수만큼 형성될 수 있다.
도 2b는 상기 도 2a의 구금상부분배판을 포함하는 방사구금을 통해 제조된 해도사의 길이방향에 대한 단면도로서 , 해도사 (250)의 내부에 4개의 방사코어가 형 성되고 방사코어 (251, 252, 253, 254)를 중심으로 도부분 (255, 256, 257, 258)이 그룹화되어 배열된다. 다시 말해 , 각각의 방사코어 (251, 252, 253 , 254)를 중심으 로 복수개의 도부분 (255, 256, 257, 258)이 구획되어 배열됨으로서 그 단면을 관찰 하면 방사코어의 개수만큼 구획된 도부분이 군을 형성하여 존재하게 되는 것이다. 이 경우 방사코어 (251, 252 , 253, 254)를 중심으로 배열된 도부분 (255, 256, 257, 258)의 각 그룹의 단면형상은 도 2a의 구금상부분배판에서 도성분 공급로로 구성된 군의 단면형상이 원형임에도 불구하고 해도사의 방사과정에서 다이 스웰링 (Die swel l ing) 현상으로 인하여 단면의 가장자리 부분이 팽창되면서 배열이 흐트러질 수 있다. 따라서 , 방사된 해도사의 도부분의 그룹의 단면형상은 반원형 , 부채꼴, 원형 , 타원형 , 다각형 및 이형단면 등 종류의 제한이 없으며 , 각 그룹의 단면형상 은 동일하거나 상이할 수 있다. 한편 , 본 명세서의 도면에서는 방사코어를 검은점 으로 굵게 표시하였지만, 이는 방사코어를 명확히 도시하기 위한 표현방식에 불과 하며, 실제 그룹의 중심이 되는 하나의 지점을 의미하는 것으로서 상기 지점이 도 부분일 수도 있고 해부분일 수도 있으나 그룹 내부에 위치하여야 한다. 나아가, 해 도사 내부의 공백부분은 실제로는 도부분으로 채워져있을 수도 있고 해부분만 존재 할 수도 있다.
본 발명의 바람직한 1 구현예에 따르면 도성분 공급부의 중심에 하나의 방 사기준코어가 위치하고 이를 중심으로 복수개의 방사주변코어가 배치될 수 있으며, 이하에서는 중복되는 기재를 제외하고 상기 1 구현예에서 특징적인 부분만을 서술 하기로 한다. 도 3a는 본 발명의 바람직한 해도사 제조용 방사구금의 구금상부분배 판 (300)의 상면도로서 , 구체적으로 도성분 공급부 (310)에는 그 중앙에 하나의 방사 기준코어 (311)를 중심으로 도성분 공급로가 군을 형성하고 상기 방사기준코어 (311) 를 중심으로 외곽에는 7개의 방사주변코어 (312, 313, 314, 315, 316, 317, 318)가 배치된다. 상기 방사기준코어 (311)와 각각의 방사주변코어 (312, 313, 314, 315, 316, 317, 318) 사이에는 해성분 공급로 (319, 320, 321 , 322, 323, 324, 325)가 형 성된다. 상기 도성분 공급부 (310)의 외주면을 감싸는 해성분 공급부 (330)에는 통상 의 해도사 제조용 방사구금용 구금상부분배판과 마찬가지로 해성분 공급로 (331, 332 , 333 , 334 , 335 , 336 , 337)가 형성되나 이에 한정되는 것은 아니다. 도 3b는 상기 도 3a의 구금상부분배판을 포함하는 방사구금을 통해 방사된 해도사의 전자현 미경 사진으로서 해도사의 중심에 하나의 방사기준코어 (351)가 형성되고 상기 방사 기준코어 (351)을 중심으로 7개의 방사주변코어 (352 ~ 358)가 형성된다. 이 경우 바 람직하게는 상기 방사기준코어 (351)와 복수개의 방사주변코어 (352 - 358)간의 이격 거리가 실질적으로 일치하거나 일치하지 않을 수 있지만, 해도사의 길이방향의 단 면이 원형인 경우 상기 방사기준코어 (351)와 복수개의 방사주변코어 (352 - 358)간 의 이격거리가 실질적으로 일치하는 것이 도부분의 뭉침효과를 최소화하는데 효과 적이다. 반면 , 단면의 형상이 타원형인 경우에는 상기 방사기준코어 (351)와 복수개 의 방사주변코어 (352 - 358)간의 이격거리가 타원의 장축방향으로는 길고 단축방향 으로는 짧도록 방사기준코어 (351) 및 복수개의 방사주변코어 (352 ~ 358)를 형성하 는 것이 좋다.
한편 , 상기 방사주변코어의 개수는 바람직하게는 3 ~ 20개가 형성될 수 있고, 보다 바람직하게는 6 ~ 10개가 형성될 수 있으나, 도 3b와 같이 하나의 방사 기준코어 (351)를 기준으로 배열된 방사주변코어 (352 - 358)의 개수가 6 - 8개이며 상기 방사기준코어 (351) 및 방사주변코어 (352 ~ 358)에 그룹화된 도부분의 개수가 100 ~ 200개일 때 그 효과가 가장 우수하다.
본 발명의 바람직한 2 구현예에 따르면, 도성분 공급부의 중심을 기준으로 방사코어가 배열될 수 있으며 , 보다 바람직하게는, 상기 도성분 공급부의 중심에는 방사코어가 형성되지 않을 수 있다. 이하에서는 중복되는 기재를 제외하고 상기 2 구현예에서 특징적인 부분만을 서술하기로 한다. 구체적으로, 도 4a는 본 발명의 바람직한 2 구현예에 따른 해도사 제조용 방사구금의 구금상부분배판의 상면도로 서 , 구체적으로 도성분 공급부 (410)에는 도성분 공급부 (410)의 중심 (430)을 기준으 로 3개의 방사코어 (411 , 412, 413)가 형성되고 , 상기 3개의 방사코어 (411 , 412 , 413)의 외부에는 8개의 방사코어 (414, 415, 416, 417 , 418 , 419 , 420 , 421)가 형성 된다。 이 때 , 상기 내부에 형성된 3개의 방사코어 (411, 412, 413) 및 상기 3개의 방사코어 (411, 412 , 413)의 외부에 형성되는 8개의 방사코어 (414, 415, 416, 417, 418 , 419 , 420 , 421)는 모두 해도사의 중심 (430)을 기준으로 배열된 것이다. 이 경 우 상기 방사코어의 개수는 바람직하게는 3 ~ 20개이고, 보다 바람직하게는 6 ~ 10 개일 수 있으나, 이에 제한되지 않는다. 한편 , 상기 3개의 방사코어 (411 , 412 , 413)의 사이, 즉 도성분 공급부 (410)의 중심에는 해성분 공급로 (430)가 형성될 수 있으며 , 3개의 방사코어 (411, 412, 413)와 외부의 8개의 방사코어 (414, 415, 416, 417, 418, 419, 420, 421) 사이에는 복수개의 해성분 공급로 (422, 423 , 424 , 425, 426 , 427 , 428 , 429)가 형성될 수 있다. 나아가, 해성분 공급부 (440)에도 복수개의 해성분 공급로 (441, 442 , 443 , 444 , 445 , 4346 , 447 , 448)가 형성될 수 있다. 도 4b는 도 4a의 구금상부분배판을 포함하는 방사구금을 통해 방사된 해도사의 길이방 향의 단면도로서 해도사의 중심 (451)을 기준으로 3개의 방사코어 (452, 453 , 454)가 형성되고, 상기 3개의 방사코어 (452 , 453, 454)의 외부에는 8개의 방사코어 (455, 456 , 457 , 458 , 459 , 460 , 461, 462)가 형성된다. 이 때 , 상기 내부에 형성된 3개 의 방사코어 (452, 453 , 454) 및 상기 3개의 방사코어 (452 , 453 , 454)의 외부에 형 성되는 8개의 방사코어 (455, 456 , 457 , 458 , 459 , 460 , 461 , 462)는 모두 해도사의 중심 (451)을 기준으로 배열된 것이다.
한편 , 본 발명에서 하나의 도성분 공급부의 내부에 배열되는 도성분 공급로 의 개수는 38 ~ 1500개일 수 있으며 , 보다 바람직하게는 하나의 도성분 공급부의 내부에 배열되는 도성분 공급로의 개수가 500 ~ 1500개일 수 있으나 방사코어의 수 를 적절하게 조절하는 경우, 가장 바람직하게는, 하나의 도성분 공급부의 내부에 배열되는 도성분 공급로의 개수가 1000 - 1500개일 수 있다. 나아가, 상기 하나의 방사코어에 대하여 도성분 공급로가 10 ~ 300개가 배열될 수 있으며 , 보다 바람직 하게는 도성분 공급로가 100 ~ 150개가 배열될 수 있으나 이에 한정되지 않는다. 결국, 상술한 하나의 방사코어의 주변에 배열되는 도성분 공급로의 개수는 도부분 의 뭉침현상이 일어나지 않는 범위내에서 해도사 및 도부분의 섬도, 목적하는 극세 사의 섬도 및 후술하는 광변조 효율이 극대화될 수 있는 범위내에서 적절하게 조절 될 수 있다. 한편 , 본 발명에 사용되는 도성분 공급로의 직경은 바람직하게는 0.1 - 0.3醒이고, 해성분 공급로의 직경은 0.2 - 2.0醒일 수 있다. 도성분 공급로가 모 여서 형성된 하나의 군의 직경은 5 ~ 20讓 일 수 있으며 ᅤ 도성분 공급부의 직경은 15 ~ 50mm일 수 있으나 이에 제한되지 않는다. 한편 , 본 발명의 방사구금은 통상의 방사구금과 마찬가지로 실제 해도사가 토출되는 부분인 하부구금판의 직경이 구금 상부분배판에 비하여 좁아지고 구금상부분배판에 형성된 도성분 주입부의 직경보다 하부구금판에 형성된 토출구의 직경이 줄어들게되어 전체적으로 방사구금의 횡단면 이 깔때기 형상을 가질 수 있으며 하부구금판의 직경이 줄어들지 않는 원통형의 형 상을 가질 수도 있다.
한편 , 본 발명의 구금상부분배판은 동일한 그룹 내부의 인접한 도성분 공급 로간의 중심거리의 최대값이 서로 이웃하는 (인접한) 그룹 사이의 인접한 도성분 공 급로간의 중심거리의 최대값보다 작을 수 있다. 즉 본 발명의 구금상부분배판은 내 부에 형성되는 상호 인접한 그룹과 그룹간의 간격이 일정하지 않을 수 있으므로 , 그룹과 그룹간의 경계를 형성하는 인접한 도성분 공급로 (서로 상이한 그룹에 속하 면서 인접한 도성분 공급로간의 중심거리 )의 중심거리 중 가장 긴 부분이 동일한 그룹 내부의 인접한 도성분 공급로의 중심거리의 최대값보다 크게 된다. 그 결과 그룹과 그룹사이에 도성분 공급로가 존재하지 않고 이격된 빈 공간이 존재하게 되 므로 중심부분의 도접합을 피하는데 큰 도움이 되는 것이다. 한편 상술한 방사구금 을 통해 제조된 해도사의 섬도는 통상의 해도사의 단사 섬도를 만족하면 족하나 바 람직하게는 0.5 - 60 데니어의 단사섬도를 가질 수 있으며 보다 바람직하게는 30 ~ 60데니어의 단사섬도를 가질 수 있다. 상기 해도사 중 도부분의 단사섬도는 0.0001 ~ 1.0 데니어인 것이 발명의 목적을 달성하는데 유리하다. 결국 본 발명의 그룹형 해도사는 도부분의 개수를 최대로 배치할 수 있으므로 다수의 초극세사를 생산하는데 매우 유용하게 활용될 수 있다.
또한 본 발명의 구금상부분배판의 단면의 형상은 원형일 수 있으나 목적하는 해도사의 형상에 따라 구금상부분배판의 다양한 형상으로 변형하여 설계하는 것이 가능하며 , 단면의 형상이 원형인 경우 구금상부분배판의 단면의 직경은 목적하는 해도사의 직경에 따라 달라질 수 있으나 바람직하게는 70 - 250mm일 수 있다. 또한 구금상부분배판의 두께는 10 ~ 30mm 일 수 있으나 이에 제한되지 않는다.
다음, 상기 구금상부분배판의 하부에 형성되어 해도사를 토출하는 하부구금 판을 설명한다. 종래의 해도사 제조용 방사구금에서는 방사효율을 높이기 위하여 하나의 구금상부분배판에 상기 도성분 공급부를 복수개를 형성하였다. 이 경우 상 기 구금상부분배판과 연결된 하부구금판에 형성된 토출구의 개수는 상기 도성분 공 급부의 개수와 일치하게 되며 이를 통해 하나의 방사구금에서 다수의 해도사를 방 사할 수 있게 되었다. 예를 들어 , 도 5는 본 발명의 일실시예에 따른 구금상부분배 판 (500)으로서, 상기 구금상부분배판 (500)에는 도성분 공급부 (510, 511)가 12개가 형성된다. 도 6은 종래의 구금상부분배판의 도성분의 개수와 일치하는 토출부가 형 성된 하부구금판 (600)의 사진으로서 상기 12개의 도성분 공급부와 연결된 각각의 12개의 토출부 (610, 630, 650)이 형성되며 각각의 토출구를 통해 한번에 12개의 해 도사 (도 3b)를 방사할 수 있게 되는 것이다.
그런데, 상기 도 5의 구금상부분배판 및 도 6의 하부구금판을 통해 제조된 해도사 (도 3b, 도성분의 개수 1016개 , 직경 19 /皿)를 휘도강화필름에 사용하여 휘 도를 향상시키기 위해서는 모노사 자체로는 광변조 효율이 낮으므로 실제로는 40 de (데니어 ) /12 fi la (가닥) , 80/24(de/f i la)로 합사하고 이를 직물로 제직하여 광변 조 물체 내부에 배치하게 된다ᅳ 구체적으로 도 7은 상기 도 3b의 복굴절성 해도사 를 포함하는 직물 (700)로서 , 상기 직물 (700)은 경사로서 복굴절성 해도사 (710) 가 닥 (모노사)을 80/24(de/fi la)로 합사하고 위사로서 등방성 섬유 (720)를 합사하여 직물을 제직한 것이다. 그 결과 광변조 효율은 개선되었지만 모노사의 직경이 작고 합사되는 가닥수가 많아지게 되어 연신공정에서 일부 해도사에서 사절 (도 7의 A, B, C)이 나타나 결국 모우현상이 발생하여 휘도강화필름의 결점으로 나타나게 되었 다.
이를 개선하기 위하여 상기 구금상부분배판의 하부에 형성되며 , 상기 복수개 의 도성분 공급부 및 복수개의 해성분 공급부를 통과한 폴리머들 중 일부 또는 전 부를 취합하여 토출하는 하나 이상의 토출구가 형성된 하부구금판 제조하고 이를 통해 해도사를 방사하여 상술한 문제의 해결을 모색하였다„ 구체적으로, 도 8은 본 발명의 바람직한 일실시예에 따른 하부구금판의 사진으로서 도 6의 종래의 하부구 금판과는 달리 도 8의 하부구금판 (800)에는 해도사가 방사되는 토출구 (810)가 하나 만 형성된다. 다시 말해 , 도 5에 도시된 12개의 도성분 공급부가 형성된 구금상부 분배판을 사용하는 경우에도 하부구금판에 형성되는 토출구의 개수를 도성분 공급 부의 개수보다 작게 형성하여 이를 통해 개별적으로 각각의 도성분 공급부 및 해성 분 공급부에 공급된 복수개의 폴리머들이 방사구금의 내부에서 취합되어 복수개의 해도사로 방사될 수 있는 것이다. 도 8과 같이 토출구 (810)의 개수를 하나만 형성 하는 경우에는 12개의 해도사를 제조하기 위한 복수개의 도성분 폴리머 및 해성분 폴리머가 하나로 합쳐지게 되어 결국 도 9와 같이 도부분의 개수가 12192개이고 직 경이 40 ~ 80 인 해도사 (모노사)를 제조할 수 있게 된다ᅳ 상기 도 9의 해도사는 그 중심부분에 도부분이 밀집되지 않은 이격된 공간을 가지므로 도접합 현상이 발 생하지 않는다.
이를 통해 하나의 해도사 (모노사)의 내부에 도부분의 개수가 10000개 이상인 해도사를 제조하고 이를 직물로 제직하는 경우 휘도는 유지하면서도 해도사의 사절 이 발생하지 않게 되어 모우현상을 방지할 수 있다. 구체적으로 도 10은 도 9의 해 도사를 모노사의 형태로 경사 (1010)로 하고, 등방성 섬유를 위사 (1020)로 제직한 휘도강화필름에 포함되는 직물 ( 1000)로서 도 7과는 달리 해도사에서 사절이 발생하 지 않으므로 결국 모우현상을 차단할 수 있게된다. 이를 통해 사절이 발생한 부분 에서 역편광 효과가 발생하지 않으므로 광변조 효율을 유지할 수 있을 뿐 아니라 휘도강화필름에 결점이 발생하지 않으므로 광변조 물체의 시인성이 비약적으로 개 선될 수 있을 뿐 있다. 또한 제직기의 바되와 종광 (Radius Heald)의 통과 시 사절 된 섬유가 걸리는 현상이 발생하지 않으므로 제직작업성을 향상시킬 수 있다.
한편 , 방사구금의 내부에서 개별 폴리머들을 합치기 위하여 바람직하게는 토 출구의 개수가 상기 도성분 공급부의 개수보다 작은 수 있으며 , 보다 바람직하게는 상기 토출구의 개수는 상기 도성분 공급부의 개수의 절반 이하일 수 있고, 가장 바 람직하게는 상기 토출구의 개수는 1개일 수 있다.
한편 , 본 발명의 한 측면에 따르면 , 상기 구금하부판 (800)은 각각의 도성분 공급부 및 해성분 공급부에서 공급된 폴리머들을 하나의 토출구 (810)를 향해 흐를 수 있도록 하기 위한 유로 (820 , 821)를 포함할 수 있다. 이 경우 유로 (820 , 821)는 방사구금의 배치에 따라 개수 및 형태가 다양하게 설계될 수 있으며 토출구 (810) 는 유로와 유로가 교차하는 영역에 형성될 수 있다. 하부구금판의 직경은 통상적으 로 구금상부분배판의 직경과 동일하거나 작을 수 있고 토출구의 직경은 0.2 1.0 隨 일 수 있으며 유로의 길이는 40 ~ 120 mm일 수 있고, 유로의 너비는 4 ~ 10 國 일 수 있으나 이에 한정되지 않으며 목적하는 해도사의 스펙에 따라 다양하게 설계 가 가능하다.
한편 본 발명의 해도사 제조용 방사구금을 통해 제조된 해도사에서 해부분을 용출시키지 않고 그래도 사용하는 경우 이를 포함하는 액정디스플레이용 휘도강화 필름을 제조할 수 있다.
종래의 액정표시장치는 백라이트로부터 발사되는 광의 이용효율이 반드시 높 다고는 할 수 없다. 이는, 백라이트로부터 발사되는 광 중 50%이상이 배면축 광학 필름에 의해 흡수되기 때문이다. 따라서, 액정표시장치에 있어서의 백라이트 광의 이용효율을 높이기 위해서 , 광학캐비티와 액정어셈블리 사이에 휘도강화필름을 설 치하게 된다. 그러나 종래의 휘도강화필름은 굴절률이 상이한 평판상의 등방성 광 학충과 이방성 광학층이 교호적으로 적층되고, 이를 신장처리하여 입사편광의 선택 적 반사 및 투과에 최적화될 수 있는 각 광학층간의 광학적 두께 및 굴절를을 갖 도록 제작되기 때문에 , 휘도강화필름의 제작공정이 복잡하다는 문제점이 있었다. 특히, 휘도강화필름의 각 광학충이 평판 구조를 가지고 있어서 , 입사편광의 광범위 한 입사각 범위에 대응하여 P편광과 S편광을 분리하여야 하기 때문에 , 광학층의 적 층수가 과도하게 증가하여 생산비가 기하급수적으로 증가하는 문제가 있었다. 또 한, 광학층의 적층수가 과도하게 형성되는 구조에 의하여 광손실에 의한 광학적 성 능 저하가 발생하는 문제점이 있었다.
이에 본 발명의 해도사 제조용 방사구금을 통해 제조된 해도사를 배치시켜 광원으로부터 입사되는 빛이 상기 그룹형 해도사와 등방성 기재간의 경계면인 복굴 절성 계면에서 반사, 산란 및 굴절되어 광변조를 발생시켜 휘도를 비약적으로 향상 시킬 수 있다. 구체적으로 , 도 U을 참조하면 외부광원에서 조사되는 빛은 크게 S 편광과 P편광으로 나눌 수 있는데 , 특정한 편광만을 원하는 경우 P편광은 복굴절성 계면의 영향을 받지 않고 휘도강화필름을 통과하는 반면 , S편광은 상기 복굴절성 계면에서 굴절, 산란, 반사 랜덤한 형태의 파장, 즉 S편광 또는 P편광로 변조되고 이를 광원부근의 반사판 등을 통하여 반사하여 다시 휘도강화필름에 조사하는 경우
P편광은 휘도강화필름을 통과하고 S편광은 다시 산란되거나 반사된다. 이러한 과정 이 반복되면 원하는 P편광을 얻을 수 있게 된다. 따라서 기재와의 경계면에 복굴절 성 계면을 가지는 그룹형 해도사가 기재 내에 다수개가 배치되는 경우 종래의 휘도 강화필름을 적층형으로 구성하지 않아도 휘도를 비약적으로 향상시킬 수 있게 된다.
나아가, 본 발명자들은 상기 복굴절성 계면을 가지는 중합체로서 일반적인 복굴절성 섬유를 사용하는 경우 적층형으로 제조하지 않으므로 생산비가 저렴하고 생산이 용이한 장점이 있지만 휘도증진의 효과가 미미하여 상술한 적층형 휘도강화 필름을 대신하여 산업현장에 적용되기 어려운 문제가 있음을 발견하게 되었다. 이에 상기 복굴절성 계면을 가지는 중합체로서 복굴절성 해도사를 사용하여 상술한 문제를 극복하였다. 구체적으로 복굴절성 해도사를 사용하는 경우 통상의 섬유를 사용하는 경우보다 광변조 효율 및 휘도향상의 효과가 현저하게 향상되는 것을 확인할 수 있었다. 보다 구체적으로, 해도사를 구성하는 부분 중 도부분은 이 방성을 가지며 , 상기 도부분을 구획하는 해부분은 등방성을 가지게 된다. 이 경우 해도사와 기재와의 경계면 뿐만 아니라, 해도사의 내부를 구성하는 다수의 도부분 과 해부분의 경계면 역시 복굴절성 계면을 가지게 되므로 기재와 복굴절성 섬유사 이의 경계면에서만 복굴절 계면이 발생되는 통상의 복굴절성 섬유에 비하여 광변조 효과가 현저하게 상승하게 되어 적층형 휘도강화필름을 대체하여 실제 산업현장에 적용될 수 있는 것이다. 따라서 , 통상의 복굴절성 섬유를 사용하는 것에 비하여 복 굴절성 해도사를 사용하는 것이 휘도강화의 효율이 우수하며, 상기 복굴절성 해도 사도 내부에 도부분과 해부분의 광학적 성질이 상이하여 해도사 내부에서 복굴절 계면을 형성할 수 있는 것이 그렇지 않은 경우에 비하여 휘도강화 효율이 현저하게 향상된다. 구체적으로 , 광학적 등방성인 해부분과 이방성을 가지는 도부분을 포함 하는 해도사 있어서 공간상의 XJ 및 Z축에 따른 굴절를의 실질적 인 일치 또는 불 일치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으 로 , 산란능은 굴절률 불일치의 제곱에 비 례하여 변화한다. 따라서 , 특정 축에 따른 굴절률의 불일치의 정도가 더 클수톡 , 그 축에 따라 편광된 광선이 더 강하게 산란 된다. 반대로 , 특정 축에 따른 불일치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란된다. 어떤 축에 따라 해부분의 굴절를이 도부분의 굴절률과 실질적으로 일치되는 경우, 이러한 축에 평 행한 전기장으로 편광된 입사광은 해도 사의 부분의 크기 , 모양 및 밀도와 상관없이 산란되지 않고 해도사를 통해 통과할 것이다. 또한, 그 축에 따른 굴절률이 실질적으로 일치되는 경우, 광선은 실질적으 로 산란되지 않고 물체를 통해 통과한다. 보다 구체적으로 , 도 5는 본 발명의 복굴 절성 해도사로 투과되는 광의 경로를 나타내는 단면도이다. 이 경우 P파 (실선 )는 외부와 복굴절성 해도사의 경계면 및 복굴절성 해도사 내부의 도부분과 해부분의 경 계면의 복굴절성 계면에 영향을 받지 않고 투과되나, S파 (점선 )는 기재와 복굴절 성 해도사의 경계면 및 /또는 복굴절성 해도사 내부의 도부분과 해부분의 경계면의 복굴절성 계면에 영향을 받아 광의 변조가 일어난다. 그 결과 본 발명의 그룹형 해 도사는 염료 등을 첨가하지 않고서도 해도비율, 섬유직경에 따라 특정 색을 발현시 켜 광발색 섬유로 활용할 수 있는 것이다.
한편 , 본 발명에서는 상기 해도사 중 도부분과 해부분의 굴절을은 2개의 축 방향에 대한 굴절율의 차이가 0.05 이하이고 나머지 1개의 축방향에 대한 굴절율의 차이가 0.1 이상인 것이 바람직하다. 이 럴 경우 P파는 해도사의 복굴절성 계면을 통과하나 S파는 광변조를 일으킬 수 있는 것이다. 보다 바람직하게는 상기 해도사 의 해부분과 도부분의 길이방향에 대한 굴절율의 차이는 0.1 이상이고, 나머지 2개 의 축방향에 대한 해부분과 도부분의 굴절율이 실질적으로 일치되는 경우 광변조 효율이 극대화될 수 있다. 결국 , 상술한 바와 같이 해도사의 광변조 효율을 극대화 시키기 위해서는 도부분과 해부분의 광학적 성 질이 상이하여야 하며 , 광변조 계면 의 면적이 넓어야 한다. 이를 위해서는 도부분의 개수가 많아져야 하며 바람직하게 는 도부분의 개수가 500개를 넘어야 한다. 그러나 상술한 바와 같이 종래의 해도사 에서 도부분의 굴절율이 이방성 이고 해부분의 굴절율이 등방성으로 배열한다 하더 라도 도부분의 개수가 500개가 넘게되면 도부분이 뭉치는 현상이 발생하게 되어 광 변조 계면의 면적이 축소되어 광변조 효율이 떨어지는 치명 적 인 문제가 있다. 이에 본 발명에서는 상술한 바와 같이 방사코어를 2개 이상 형성시켜 도부분을 500개 이 상 바람직하게는 1000개 이상 배치시키는 경우에도 도부분이 뭉치는 현상을 방지할 수 있다. 그 결과 해도사의 광변조 효율이 극대화되어 휘도강화필름에 본 발명의 방사구금을 통해 방사된 해도사를 첨가하는 경우 광변조 효과 및 휘도의 비약적인 향상을 기대할 수 있다.
본 발명에 사용될 수 있는, 상기 해부분 및 /또는 도부분은 통상의 해도사의 재질로 사용되는 어떠한 성분이라도 사용가능하며, 바람직하게는 폴리에틸렌나프탈 레이트 (PEN) , 코폴리에틸렌나프탈레이트 (co-PEN) , 폴리에틸렌테레프탈레이트 (PET) , 폴리카보네이트 (PC) , 폴리카보네이트 (PC) 얼로이 , 폴리스타이렌 (PS) , 내열폴리스타 이렌 (PS) , 폴리메틸메타아크릴레이트 (P MA) , 폴리부틸렌테레프탈레이트 (PBT) , 폴리 프로필렌 (PP) , 폴리에틸렌 (PE) , 아크릴로니트릴부타디엔스티렌 (ABS) ,
폴리우레탄 (PU) ,폴리이미드 (PI ) ,폴리비닐클로라이드 (PVC) , 스타이렌아크릴로니트릴 흔합 (SAN) ,에틸렌초산비닐 (EVA) , 폴리아미드 (PA) , 폴리아세탈 (POM) , 페놀, 에폭시 (EP) , 요소 (UF) , 멜라닌 (MF) , 불포화포리에스테르 (UP) , 실리콘 (SI ) , 엘라스 토머 및 사이크로올레핀폴리머 중 어느 하나 이상일 수 있다. 하지만, 가장 바람 직하게는 복굴절성 해도사로서 폴리에틸렌나프탈레이트 (PEN)를 도부분으로 사용하 고, 코폴리에틸렌나프탈레이트와 폴리카보네이트 얼로이 (al loy)를 단독 또는 흔합 하여 해부분으로 사용하는 경우 통상의 물질로 제조된 복굴절성 해도사에 비하여 휘도가 비약적으로 향상된다. 특히 상기 해부분으로서 폴리카보네이트
얼로이 (al loy)를 사용하는 경우 가장 우수한 광변조 물성을 가지는 복굴절성 해도 사를 제조할 수 있다. 이 경우 상기 폴리카보네이트 얼로이 (al loy)는 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로핵실렌 디메틸렌테레프탈레이트 (poly cyclohexylene dimethylene terephthalate, PCTG)로 이루어질 수 있으며 , 보다 바 람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로핵실렌 디메틸렌테레프탈레 이트 (PC G)가 15 : 85 ~ 85 : 15의 중량비로 이루어진 폴리카보네이트 얼로이를 사 용하는 것이 휘도증진에 효과적이다. 만일 폴리카보네이트가 15% 미만으로 첨가되 면 방사성 확보에 필요한 폴리머의 점도가 높아져 통상의 방사기를 사용할 수 없 는 문제가 있고, 85%를 초과하면 유리전이 온도가 높아져 노즐 토출이후, 방사장력 이 높아져 방사성 확보가 어려운 문제가 있다。
가장 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로핵실렌 디메틸 렌테레프탈레이트 (PCTG)가 4 : 6 - 6 : 4의 중량비로 이루어지는 것이 휘도증진에 가장 우수한 효과를 나타낸다. 나아가, 상기 도부분과 해부분은 2개의 축방향에 대 한 굴절율은 실질적으로 일치하나 하나의 축방향에 대한 굴절율의 차이가 큰 물질 을 선택하는 것이 광변조 효율을 개선하는데 효과적이다. 한편 , 등방성 재료를 복 굴절성으로 변화시키는 방법은 통상적으로 알려진 것이며 예를 들어 적절한 온도 조건 하에서 연신시키는 경우, 중합체 분자들은 배향되어 재료는 복굴절성으로 된 다.
결국, 본 발명에 해도사 제조용 방사구금을 통해 제조된 해도사는 2개 이상 의 방사코어를 중심으로 도부분이 그룹화되어 배열되므로 도부분의 개수가 500개 이상이 경우에도 해도사의 중심부분에서 도부분의 뭉침현상이 발생하지 않는다. 그 러므로, 하나의 해도사에서 500개 이상의 도부분을 배치시킬 수 있으므로 도부분의 섬도를 줄일 수 있어 초극세사를 생산하는데 매우 유리할 뿐 아니라 하나의 해도사 에서 500개 이상의 초극세사를 생산할 수 있어 생산비용을 현저하게 절감할 수 있 다. 또한, 본 발명에 따른 그룹형 해도사는 뛰어난 광변조 효과로 인하여 염료 등 의 발색성을 유발하는 화합물을 첨가하지 않고도 해도비율, 섬유직경에 따라 특정 색을 발현시켜 광발색 섬유로 활용될 수 있으며, 이를 용출시키지 않고 휘도강화필 름에 사용하는 경우 필름의 광변조 효과를 극대화시킬 수 있다.
나아가, 복수개의 도성분 공급부 및 복수개의 해성분 공급부를 통과한 폴리 머들 중 일부 또는 전부를 취합하여 토출하는 하나 이상의 토출구가 형성된 하부구 금판 제조하고 이를 통해 해도사를 생산하면 생산된 해도사의 도부분의 개수가 10000개 이상이 될 수 있으므로 휘도강화필름에 발생하는 모우현상을 해결할 수 있 다.
【발명의 실시를 위한 형태】
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예 및 실험 예에 한정되는 것은 아니다.
<실시예 1>
폴리카보네이트와 변성 글리콜 폴리시클로핵실렌
디메틸렌테레프탈레이트 (PCTG)가 5 : 5로 흔합된 등방성 PC 얼로이를 해성분으로 하고 (nx=1.57, ny=1.57, nz=1.57) , 이방성 PEN (nx=lᅳ 88, ny=1.57, nz=1.57)으로 도부분으로 구성하였다. 도 3b와 같은 단면의 해도사를 얻기 위하여 도 3a의 구금 상부분배판의 단면을 가지는 방사구금 (하나의 방사코어에 도부분이 127개가 배열되 어 전체 도부분의 개수가 1016개 )에 배치하였다. 이와 같은 조성을 통해 미연신사 150/24로 하여 방사온도는 305 방사속도는 1500 M/min의 조건으로 방사한 후, 3 배의 연신을 통해 연신사 50/24를 얻었다. 도 3b는 도 3a의 방사구금을 통해 방사 된 해도사의 전자현미경 사진으로서 도접합 현상이 관찰되지 않는다.
<실시예 2>
폴리카보네이트와 변성 글리콜 폴리시클로핵실렌
디메틸렌테레프탈레이트 (PCTG)가 5 : 5로 흔합된 등방성 PC 얼로이를 해성분으로 하고 (nx=1.57. ny=1.57, nz=1.57, 용융온도 : 145TC ) , 이방성 PEN (nx=1.88, ny=1.57, nz=1.57. 용융개시온도 : 으로 도부분으로 구성하였다. 도 5에 대 응하는 12개의 도성분 공급부가 포함된 구금상부분배판과 도 8의 하나의 토출구를 갖는 하부구금판을 갖는 방사구금에 상기 도성분과 해성분을 공급하여 도 9의 단면 을 갖는 복굴절성 해도사 (모노사, 도성분 개수 : 12192개, 직경 : 66 )를 제조하 였다.
제조된 복굴절성 해도사 (모노사)를 경사로 하고 (40de/lf i la) 상기 해성분과 동일한 성분인 등방성 PC 얼로이 섬유 (용융온도 : 145*C )를 60/24로 제조하고 이를 위사로 하여 직물로 제직하였다.
도 10은 도 9의 해도사를 사용하여 제직한 직물의 표면에 대한 SEM
사진이다. 상기 사진을 통해 경사로 사용된 복굴절성 해도사에서 사절이 발생하지 않는 것을 확인할 수 있다.
<비교예 1>
도 la에서 도시된 바와 같이 방사코어가 1개이고 이를 중심으로 334개의 도 성분 공급로가 형성된 구금상부분배판을 포함하는 방사구금을 통해 해도사를 방사 한 것을 제외하고는 실시예 1과 동일하게 실시하였다. 도 lb는 도 la의 방사구금을 통해 방사된 해도사의 전자현미경 사진으로서 해도사의 중앙부분에 도접합 현상이 관찰된다.
<비교예 2>
실시예 1에서 제조된 해도사 24가닥을 합사 (80de/24fi la)한 후 이를 경사로 하고 상기 해성분과 동일한 성분인 등방성 PC 얼로이 섬유 (용융온도 : 145 : )를 60/24로 제조하고 이를 위사로 하여 직물로 제직하였다.
도 7은 비교예 2를 통해 제조된 직물의 표면에 대한 SEM 사진이다. 상기 사 진을 통해 경사로 사용된 복굴절성 해도사간에 얽힘 및 사절 (A, B, C)이 발생한 것 을 확인할 수 있다.
【산업상 이용가능성】
본 발명의 해도사 제조용 방사구금은 도접합 현상이 발생하지 않으면서 광변 조 성능이 우수하고 결점이 발생하지 않으므로, 극세사가 사용되는 분야, 카메라 등과 같은 광학기기 및 휴대폰, LCD, LED 등 고휘도가 요구되는 액정표시장치에 적 용되는 해도사를 제조하는데 널리 사용될 수 있다.

Claims

【청구의 범위】
【청구항 11
도성분 공급로를 포함하며 도성분 폴리머를 주입하는 도성분 공급부와 상기 도성분 공급부의 외주면에 형성되며 해성분 폴리머를 주입하는 해성분 공급로를 포 함하는 해성분 주입부가 형성된 해도사 제조용 구금상부분배판을 포함하는 해도사 제조용 방사구금에 있어서 ,
상기 도성분 공급부의 내부에 상기 도성분 공급로가 복수개의 군으로 구획되 고, 복수개의 도성분 공급부 및 복수개의 해성분 공급부를 포함하는 구금상부분배 판; 및
상기 구금상부분배판의 하부에 형성되며, 상기 복수개의 도성분 공급부 및 복수개의 해성분 공급부를 통과한 폴리머들 중 일부 또는 전부를 취합하여 토출하 는 하나 이상의 토출구가 형성된 하부구금판;을 포함하는 해도사 제조용 방사구금.
【청구항 2]
겨 U항에 있어서,
상기 토출구의 개수가 상기 도성분 공급부의 개수보다 작은 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 3]
제 2항에 있어서 ,
상기 토출구의 개수는 상기 도성분 공급부의 개수의 절반 이하인 것을 특징 으로 하는 해도사 제조용 방사구금.
【청구항 4]
제 3항에 있어서 ,
상기 토출구의 개수는 1개인 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 5】
제 1항에 있어서 ,
상기 하부구금판은 상기 도성분 공급부를 통과한 도성분 폴리머 및 해성분 공급부를 통과한 해성분 폴리머를 상기 토출구로 안내하기 위한 하나 이상의 유로 가 형성된 것을 특징으로 하는 해도사 제조용 방사구금。
【청구항 6】
제 5항에 있어서 ,
상기 토출구는 상기 유로와 유로가 교차하는 영역에 형성되는 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 7】
제 1항에 있어서 , 상기 도성분 공급로는 2개 이상의 방사코어를 중심으로 그 룹화 (grouping)되어 배열되는 것을 특징으로 4하는 해도사 제조용 방사구금.
【청구항 8]
제 7항에 있어서 , 상기 방사코어는 도성분 공급부의 중심에 하나의 방사기준 코어가 위치하고 이를 중심으로 복수개의 방사주변코어가 배열되는 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 9]
제 8항에 있어서, 상기 방사주변코어는 3 ~ 20개인 것을 특징으로 하는 해도 사 제조용 방사구금.
【청구항 10】
제 8항에 있어서, 상기 방사주변코어는 6 - 10개인 것을 특징으로 하는 해도 사 제조용 방사구금.
【청구항 11】
저】 8항에 있어서 , 상기 하나의 방사기준코어 또는 하나의 방사주변코어에 대 하여 도성분 공급로 10 ~ 300개가 배열되는 것을 특징으로 하는 해도사 제조용 방 사구금.
【청구항 12】
제 8항에 있어서 , 상기 방사기준코어와 방사주변코어 사이에 해성분 공급로가 형성되는 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 13]
저 U항에 있어서 , 하나의 도성분 공급부에 포함된 도성분 공급로의 개수가 38 - 1500개인 것을 특징으로 하는 해도사 제조용 방사구금 .
【청구항 14]
제 1항에 있어서, 하나의 도성분 공급부에 포함된 도성분 공급로의 개수가 1000 - 1500개인 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 15】
게 1항에 있어서 , 전체 도성분 공급부에 포함된 도성분 공급로의 개수가
10000 - 20000개인 것을 특징으로 하는 해도사 제조용 방사구금 .
【청구항 16]
제 1항에 있어서, 상기 도성분 공급부의 개수는 5 - 15개인 것을 특징으로 하 는 해도사 제조용 방사구금 .
【청구항 17]
계 1항에 있어서, 상기 도성분 공급부의 직경은 15 ~ 50mm이고, 해성분 공급 로의 직경은 0.2 - 2.0匪이며 , 상기 군의 직경은 8 ~ 15匪인 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 18】
제 1항에 있어서 , 상기 도성분 공급부는 내부에 해성분 공급로가 하나 이상 형성된 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 19】
제 1항에 있어서 , 상기 복수개의 군은 동일한 군 내부의 인접한 도성분 공급 로간의 중심거리의 최대값이 서로 이웃하는 군 사이의 인접한 도성분 공급로간의 중심거리의 최대값보다 작은 것을 특징으로 하는 해도사 제조용 방사구금.
【청구항 20】
제 7항에 있어서, 상기 방사코어는 상기 방사코어가 속한 그룹내부에 형성되 는 것을 특징으로 하는 해도사 제조용 방사구금.
PCT/KR2011/002057 2010-03-30 2011-03-25 해도사 제조용 방사구금 WO2011122792A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100028219A KR101198450B1 (ko) 2010-03-30 2010-03-30 해도사 제조용 방사구금
KR10-2010-0028219 2010-03-30

Publications (2)

Publication Number Publication Date
WO2011122792A2 true WO2011122792A2 (ko) 2011-10-06
WO2011122792A3 WO2011122792A3 (ko) 2012-03-08

Family

ID=44712716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002057 WO2011122792A2 (ko) 2010-03-30 2011-03-25 해도사 제조용 방사구금

Country Status (2)

Country Link
KR (1) KR101198450B1 (ko)
WO (1) WO2011122792A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115108A (ko) 2015-03-26 2016-10-06 주식회사 영도벨벳 벨벳 제조방법 및 이를 이용한 벨벳

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412534B1 (ko) * 2000-11-21 2003-12-31 주식회사 코오롱 해도형 복합섬유 방사용 구금장치
JP2005256253A (ja) * 2004-03-15 2005-09-22 Kasen Nozuru Seisakusho:Kk 海島型複合繊維用口金装置、芯鞘型複合流形成部品、及び海島型複合繊維の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950949B1 (ko) * 2009-01-30 2010-04-02 웅진케미칼 주식회사 복굴절성 해도사를 이용한 휘도강화용 직물의 제조방법 및 이를 적용한 휘도강화시트와 액정표시장치의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412534B1 (ko) * 2000-11-21 2003-12-31 주식회사 코오롱 해도형 복합섬유 방사용 구금장치
JP2005256253A (ja) * 2004-03-15 2005-09-22 Kasen Nozuru Seisakusho:Kk 海島型複合繊維用口金装置、芯鞘型複合流形成部品、及び海島型複合繊維の製造方法

Also Published As

Publication number Publication date
KR101198450B1 (ko) 2012-11-06
WO2011122792A3 (ko) 2012-03-08
KR20110108815A (ko) 2011-10-06

Similar Documents

Publication Publication Date Title
KR100975351B1 (ko) 휘도강화필름
KR100953437B1 (ko) 해도사 제조용 방사구금
WO2011122792A2 (ko) 해도사 제조용 방사구금
KR100951700B1 (ko) 광변조 물체의 제조방법
KR101249643B1 (ko) 해도사 제조용 구금상부분배판 및 이를 포함하는 해도사 제조용 방사구금
KR101198207B1 (ko) 광변조 물체
US8986832B2 (en) Optical-modulation object
US20100195234A1 (en) Luminance-enhanced film
KR100951699B1 (ko) 광변조 물체
KR101167776B1 (ko) 휘도강화필름
KR101094130B1 (ko) 액정표시장치
KR101167777B1 (ko) 액정표시장치
KR100950948B1 (ko) 복굴절성 해도사를 이용한 휘도강화용 직물, 이를 이용한 휘도강화시트 및 액정표시장치
US20110157513A1 (en) Liquid crystal display device
KR100950949B1 (ko) 복굴절성 해도사를 이용한 휘도강화용 직물의 제조방법 및 이를 적용한 휘도강화시트와 액정표시장치의 제조방법
KR101095391B1 (ko) 휘도강화필름의 제조방법
KR101094131B1 (ko) 휘도강화필름
KR20110111037A (ko) 휘도강화필름의 제조방법
KR101109134B1 (ko) 광변조필름의 제조방법
KR20110111036A (ko) 휘도강화필름
KR100951703B1 (ko) 휘도강화시트의 제조방법 및 이에 의해 제조된 휘도강화시트
KR100951704B1 (ko) 휘도강화시트의 제조방법 및 이에 의해 제조된 휘도강화시트
TWI428644B (zh) 輝度增強膜
KR100951701B1 (ko) 광변조 물체
KR100951705B1 (ko) 휘도강화시트의 제조방법 및 이에 의해 제조된 휘도강화시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762964

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762964

Country of ref document: EP

Kind code of ref document: A2