WO2011122733A1 - Apparatus for manufacturing a glass optical device, and method for manufacturing a glass optical device - Google Patents

Apparatus for manufacturing a glass optical device, and method for manufacturing a glass optical device Download PDF

Info

Publication number
WO2011122733A1
WO2011122733A1 PCT/KR2010/003292 KR2010003292W WO2011122733A1 WO 2011122733 A1 WO2011122733 A1 WO 2011122733A1 KR 2010003292 W KR2010003292 W KR 2010003292W WO 2011122733 A1 WO2011122733 A1 WO 2011122733A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
lower mold
glass material
glass optical
molten glass
Prior art date
Application number
PCT/KR2010/003292
Other languages
French (fr)
Korean (ko)
Inventor
강상도
장광호
권형준
오성하
백승준
김형준
Original Assignee
(주) 한빛옵토라인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 한빛옵토라인 filed Critical (주) 한빛옵토라인
Publication of WO2011122733A1 publication Critical patent/WO2011122733A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/02Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing in machines with rotary tables
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/04Annealing glass products in a continuous way
    • C03B25/06Annealing glass products in a continuous way with horizontal displacement of the glass products

Definitions

  • the present invention relates to an apparatus for manufacturing a glass optical device and a method for manufacturing a glass optical device, and more particularly, to accurate molten glass material without using a processed gob (pre-form GOB or ball GOB).
  • the present invention relates to a method for manufacturing a glass optical device in a large amount by integrating a feeding process, a mold pressing step, and a slow cooling process, and a glass optical device manufacturing apparatus.
  • Glass optical devices such as lenses, prisms, and windows using conventional glass materials are manufactured by directly processing glass materials into desired shapes and then applying optical properties through polishing.
  • this is a task that requires skilled skills, and particularly in the case of precision optical devices such as aspherical optical devices, there are many difficulties in terms of technology, time, and cost.
  • the optical glass material is processed in the form of a pre-form GOB in advance in accordance with the optical device to be manufactured, put into a mold, and then the optical device is molded by heating and pressing. And a method of forming a glass rod-shaped glass material by melting, transferring it to a mold and cutting, heating, and pressing.
  • a molding method in which a preform gob is prepared by injecting a preform gob into a mold for preform rather than material processing, thereby preparing a preform gob, and then injecting the manufactured preform gob into another optical device manufacturing mold.
  • the method of using preform gobs introduced in Japanese Patent Publication No. 61-32263 uses glass materials processing techniques such as curvature grinding and polishing, which are close to the final optical element, which requires the skilled technique and time mentioned before optical element manufacturing.
  • the preform gob must be manufactured by using high-temperature mold, which is the core of molding, by applying high heat directly. There are many limitations in terms of time and money.
  • the process of curvature grinding and polishing such as to produce the preform gob may be lost (glass) material (loss).
  • the method of melting and cutting the glass rod which is the glass material introduced in Korean Patent Application No. 193-0004316, into the mold is difficult to control precise glass material input, and the melting and pressing process of the glass rod does not proceed integrally. Loss and defect of glass material occurs during the movement and cutting process of molten glass rod for optical device manufacturing. In addition, this method is incomplete for obtaining an optical element of high precision, and is narrowly used to manufacture all optical elements, and is mainly used only for the manufacture of low precision glass cups, glass structures, lighting optical elements, and the like.
  • the problem to be solved by the present invention is to solve the above-mentioned problems of the prior art without the use of a preform gob, it is possible to manufacture a glass optical device in a large amount by integrating the precise molten glass material injection, mold pressing process, slow cooling process
  • the present invention provides a method and apparatus for manufacturing a glass optical device.
  • the present invention comprises the steps of melting a glass material using a glass melting part, transferring a lower mold to a lower portion of a fixed quantity supply device using a mold transfer device in a heating chamber maintained at a constant temperature, and a molten glass material The molten glass material into the lower mold while controlling the desired weight and shape using a fixed-quantity feeding device; and transferring the lower mold to the lower portion of the upper mold in the heating chamber by using a mold transfer device; Pressing down the upper mold to the upper portion of the lower mold in the chamber to press-mold the molten glass material, taking out the glass optical element formed and molded from the upper mold and the lower mold, and transferring the glass optical element to the slow cooling furnace; It provides a method of manufacturing a glass optical device comprising a slow cooling.
  • the manufacturing method of the glass optical device, the lower mold in order to minimize the internal stress and thermal stress caused by the temperature difference between the surface of the lower mold and the molten glass material before the lower mold is transferred to the lower portion of the metering device.
  • the preheating unit may further include the step of being preheated.
  • Taking out the glass optical element and transferring the glass optical element to the slow cooling furnace includes moving the upper mold upward to open the upper portion of the glass optical element, and moving the lower mold to the takeout part using the mold transfer device. And removing the glass optical element from the lower mold by using the extraction means, and transferring the glass optical element to the slow cooling furnace by using the extraction means.
  • Taking out the glass optical element and transferring the glass optical element to a slow cooling furnace includes moving the upper mold upward to open the upper portion of the glass optical element, and detaching the glass optical element from the lower mold using a takeout means. And transferring the glass optical element to a slow cooling furnace by using the extraction means.
  • the molten glass material has a viscosity in the range of 10 3 to 10 10 poise, and the temperature in the heating chamber is kept constant in the temperature range of 400 ° C to 800 ° C.
  • the upper mold is located on the upper side next to the lower mold at the position where the molten glass material is injected, and when the lower mold is moved to the lower side, the upper mold is lowered to press and mold the molten glass material injected into the lower mold, and the pressing force of the upper mold is applied. It is preferable that it has the range of 100 kg / cm ⁇ 2> -500 kg / cm ⁇ 2>.
  • a lower mold provided to be movable along the movement path constituting the cycle
  • a mold transfer device for moving the lower mold along the movement path constituting the cycle, and is provided to be movable up and down
  • the upper mold for lowering the press-molded molten glass material, the region into which the molten glass material is put into the lower mold, and surrounding the region where the press-molding is performed by the upper mold and the lower mold.
  • It provides a glass optical device manufacturing apparatus including a heating chamber for maintaining a constant temperature while providing a space.
  • the glass optical device manufacturing apparatus the glass melting portion for melting the glass material, and the quantity connected to the molten glass material to the lower mold while controlling the molten glass material connected to the glass melting portion to the desired weight and shape It may further include a supply device.
  • the glass optical device manufacturing apparatus includes: a takeout means for taking out and transporting a glass optical element formed by compression molding by the upper mold and the lower mold to a slow cooling furnace, and slowly cooling the glass optical element transferred by the takeout means.
  • a slow cooling furnace may be further included.
  • the lower mold, the preheating portion is pre-heated, the molten glass material input portion through which the molten glass material is put into the lower mold through the quantitative supply device, the lower mold is moved to the lower position where the upper mold is melted by pressing by the upper mold and the lower mold It may have a molding path in which the glass material is molded, and a movement path that cycles the extraction part for taking out the glass optical element from the lower mold in order to transfer the glass optical element formed by molding the molten glass material to the slow cooling furnace.
  • the heating chamber is preferably provided so that the molten glass material can be kept constant in the temperature range of 400 °C to 800 °C having a viscosity of 10 3 ⁇ 10 10 poise (poise) range.
  • the upper mold is located on the upper side next to the lower mold at the position where the molten glass material is injected, and when the lower mold is moved to the lower side, the upper mold is lowered to press the molten glass material injected into the lower mold, and the press molding is performed. It is preferable that the force moved to the upper side and the pressure applied by the upper mold have a range of 100 kg / cm 2 to 500 kg / cm 2.
  • the processing time for manufacturing the preform gob can be shortened, and the processing cost for manufacturing the preform gob can be reduced.
  • the present invention is composed of an integral type in which the steps of melting the glass material, precisely input the molten glass material, molding and slow cooling are precisely controlled, saving manufacturing time, no loss of raw materials, and excellent glass optical elements. There is an advantage to manufacture.
  • a glass optical device that can be widely applied to various optical device industries such as optical lenses, display lighting, optical communication, and light fusion technology using glass materials can be manufactured regardless of performance and size.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a glass optical device according to a preferred embodiment of the present invention.
  • FIG. 2 is a view schematically showing a glass optical device manufacturing apparatus according to a preferred embodiment of the present invention.
  • FIG 3 is a view schematically showing the glass melter and the metering device.
  • a glass material of a tablet type is introduced into a glass melting furnace to melt a glass material, and then the molten glass material is introduced while the molten glass material is controlled to a desired weight and shape by using a fixed amount feeder.
  • the molten glass material is directly injected into the lower mold in the heating chamber for controlling the molding temperature and pressurized into the upper mold to manufacture the glass optical device.
  • the formed glass optical element is manufactured as a glass optical element product while being passed through a stepwise and precise slow cooling furnace capable of being prevented from changing optical characteristics such as refractive index by being transferred from the lower mold to the slow cooling furnace by the extraction means.
  • 1 is a flowchart illustrating a method of manufacturing a glass optical device according to a preferred embodiment of the present invention.
  • 2 is a view schematically showing a glass optical device manufacturing apparatus according to a preferred embodiment of the present invention.
  • 3 is a view schematically showing the glass melter and the metering device.
  • the manufacturing method of the glass optical device of the present invention by melting the glass material at a suitable and uniform temperature using the glass melting portion 150 (S10) and the mold transfer device ( Transferring the lower mold to the lower portion of the metering supply device 160 in the heating chamber 140 for controlling the molding temperature of the molten glass material using the (120) (S20), and quantified the molten glass material Injecting the molten glass material into the lower mold 110 while controlling to the desired weight and shape using the feeder 160 (S30), and the lower portion in the heating chamber 140 by using the mold transfer device 120 Transferring the mold 110 to the lower portion of the upper mold 130 (S40), lowering the upper mold 130 to the upper portion of the lower mold 110, and pressing the molded molten glass material (S50); Slow cooling by taking out the glass optical element formed and molded in the upper mold 130 and the lower mold 110 In a step (S60) and a step (S70) that gradually cooled the glass optical element to transfer.
  • the lower mold 110 is provided to be movable along the movement path constituting the cycle, and the mold transfer device 120 for moving the lower mold 110 along the movement path constituting the cycle ), And the upper mold 130 and the lower mold 110 for pressing the molten glass material by pressing down when the lower mold 110 is transferred to the lower side and the molten glass material is injected into the lower mold 110.
  • the glass optical device manufacturing apparatus, the glass mold 150 for melting the glass material, and the lower mold 110 is connected to the glass melt 150, while controlling the molten glass material to the desired weight and shape It may further include a quantitative supply device 160 for injecting the molten glass material.
  • the glass optical device manufacturing apparatus includes a drawing unit (not shown) for taking out and transporting the glass optical element formed by compression molding by the upper mold 130 and the lower mold 110 to a slow cooling furnace, and the extracting means.
  • a slow cooling furnace (not shown) may be further included for slow cooling the glass optical element transferred by the.
  • the glass melting part 150 includes a heating part 152 capable of melting the glass material at an appropriate and uniform temperature, and a crucible type melting furnace 154a, 154b, and 154c for stably storing the molten glass material. do.
  • the heating method of the heating unit 152 may be a heating method using electricity, gas, heavy oil, etc., a heating method using a high frequency induction heating and a halogen lamp may also be used.
  • the temperature of the melting furnaces 154a, 154b, and 154c heated by the heating part 152 has the range of 1000 to 2000 degreeC normally.
  • the viscosity of the molten glass material by the heating of the heating unit 152 is 1 to 10 It has a poise degree and can control the temperature according to the type of molten glass material.
  • the temperature of the heating unit 152 has a feature that can control the temperature according to the properties of the glass material.
  • the configuration of the melting furnace (154a, 154b, 154c) includes an inner melting furnace made of a heat-resistant material frame (154a) and a crucible-shaped platinum (Pt) frame (154b) having a thickness of 0.5 to 2mm in the outermost, A refractory filler is provided between the ash frame 154a and the platinum (Pt) frame 154b to form a structure in which the refractory 154c is filled.
  • the refractory refers to a non-metal inorganic material that is poorly soluble at a high temperature used in high temperature industry, the lowest temperature that the refractory can withstand is about 1,580 °C, the material that can be used at a temperature higher than that is called a refractory.
  • Refractories are typically Al 2 O 3 And ZrO 2 Etc.
  • TiO 2 , CaO, MgO, Na 2 O and the like may be used to suit the purpose.
  • the metering supply device 160 is connected to the lower portion of the glass melter 150 is a device for injecting the molten glass material into the lower mold (110).
  • the quantitative supply device 160 is a plunger (162) for controlling the discharge of the molten glass material through the stroke (stroke) control, and the weight of the molten glass material by controlling the discharge inner diameter during the discharge of the molten glass material
  • Side of the flanger 162 may be further provided with a wing-shaped control unit (not shown), the control unit serves to prevent the inflow of bubbles.
  • Metering supply device 160 is one of the device elements that play the most important role in the size, shape, quality of the product to be produced by controlling the uniform amount and shape of the molten glass material.
  • the aforementioned flanger 162, the nozzle unit 164, and the cutting unit 166 may be made of cast iron or cemented carbide, and the outside thereof may be made of platinum (pt).
  • the mold transfer device 120 may precisely control the position of the lower mold 110 by using a precise sub-motor, and may be of a type in which a plurality of lower molds 110 are directly fixed.
  • a plurality of lower mold 110 is provided to be movable by the mold transfer device 120, the movement path of each of the lower mold 110 forms a path to return to the original position in a cycle (cycle).
  • the precise position control of the lower mold 110 is not performed by the mold transfer device 120, serious problems may occur in the quality of the produced product due to an error of material input, molding, and take-out.
  • the lower mold 110 by the mold transfer device 120 is taken out into the slow cooling furnace by the molten glass material input portion (region A), the molding portion (region B) by the upper mold 130, the robot is molded. It has a moving path based on the take-out portion (region C), the preheating portion (region D) for preheating the lower mold (110).
  • the lower mold 110 has a path including a molten glass material input part, a molding part, a blowout part, and a preheating part, and is provided to be movable while forming a cycle.
  • the movement path of the lower mold 110 is formed in the form of a circular transfer path and moves along the initial starting point to form a cycle of reaching the initial starting point again. For example, when the lower mold 110 starts from a preheating unit where the preheating is performed at a predetermined temperature by a pin heater or the like, the molten glass material is introduced into the lower mold 110 through the metering supply device 160.
  • the upper mold 130 After passing through the molten glass material input portion, the upper mold 130 is moved to the lower position where the molten glass material is molded by the compression by the upper mold 130 and the lower mold 110, the molten glass material is molded In order to transfer the formed glass optical element to the slow cooling furnace, it has a circular conveyance (movement) path passing through the extraction part which takes out the glass optical element from the lower mold 110, and the first starting point reaches the preheating part again.
  • the material of the lower mold 110 may be cemented carbide, graphite, silicon carbide (SiC), stainless steel, boron nitride and the like.
  • the upper mold 130 is located on the upper side of the lower mold (110).
  • the upper mold 130 may be provided with two or more as shown in FIG.
  • the upper mold 130 is provided to be movable up and down, and when the lower mold 110 into which the molten glass material is injected moves and is positioned below the upper mold 130, the upper mold 130 is lowered to cover the lower mold 110.
  • the molten glass material can be pressed.
  • the vertical movement of the upper mold 130 may use a pneumatic cylinder or the like.
  • Cemented carbide, graphite, silicon carbide (SiC), stainless steel, boron nitride, etc. may be used as the material of the upper mold 130.
  • the heating chamber 140 maintains or controls the optimum molding temperature when the molten glass material is introduced into the lower mold 110, as well as may be generated while the heat is rapidly cooled after molding by the upper mold 130. It is provided to prevent thermal strain.
  • the heating chamber 140 has a space surrounding the region A into which the molten glass material is injected into the lower mold 110 and the region B through which the compression molding is performed by the upper mold 130 and the lower mold 110. Maintain constant temperature while providing.
  • the heating chamber 140 may provide a space that partially surrounds the region D in which the lower mold 110 is preheated.
  • the heating system of the heating chamber 140 may be a heating method using electricity, gas, heavy oil, and the like, and may also include a heating method using high frequency induction heating and a halogen lamp.
  • the temperature in the heating chamber 140 may be applied differently depending on the annealing temperature (annealing temperature) of the glass material, and generally has a temperature range of about 400 °C to 800 °C. In this temperature range, the glass material has a viscosity of about 10 3 to 10 10 poise.
  • the heating chamber 140 is formed in a shape surrounding the lower mold 110 and the upper mold 130 described above, the molten glass material in the heating chamber 140 (made in the area A), the upper mold 130 The molding process is performed in the region B, and the extraction process of the glass optical elements formed from the upper mold 130 and the lower mold 110 is generally performed in the region C, but in the region B after the molding is completed. May be made).
  • the upper portion of the heating chamber 140 may be provided separately from the molten glass material input portion and the slow cooling furnace transfer portion of the molded glass optical element.
  • the heating chamber 140 may include a cooling system, and the cooling system may be water-cooled, gas-cooled, or air-cooled or oil-cooled.
  • the glass optical element formed by molding the molten glass material by the upper mold 130 and the lower mold 110 is taken out by a extraction means such as a robot and transferred to a slow cooling furnace.
  • the take-out means may be a take-out and transfer device such as a robot with adsorption capacity, and the slow cooling furnace transfer of the glass optical element by the take-out means may be performed in an automated manner.
  • the extraction means may be provided to directly adsorb and transport the glass optical element, and the extraction means may be selectively configured according to the size and shape of the glass optical element.
  • the slow cooling furnace is configured in the form of a chamber, and is configured to control heat according to the material properties of the glass optical device in order to prevent shrinkage, optical properties, and appearance deformation that may occur while heat is rapidly cooled after molding.
  • glass materials have a poor thermal conductivity, and as a result of cooling, a large temperature difference is generated between the surface and the interior, and the interior is subjected to a tensile stress, so that the strain acts as a detrimental factor for the optical properties.
  • the slow cooling furnace is responsible for the step and uniform slow cooling of the molded glass optical device. When the formed glass optical element is rapidly cooled, the transmittance, refractive index, and appearance are poor on either side of the glass optical element. Can be cracked or even cracked.
  • Slow cooling furnace 10 the viscosity of the completed molding of the glass optical device 10 To 10 13 Two or more stages, such as stage 1, 10, to allow slow slow cooling within a range that does not affect optical performance by poise. 13 To 10 14 Poise, step 2 10 14 To 10 15 Poise, step 3 10 15 To 10 16 It is preferable that slow cooling progresses in multiple steps, such as poise. Different temperature stages can be set depending on the characteristics of the glass material, and other temperature stages can be added for precise slow cooling.
  • the glass material is melted at an appropriate and uniform temperature by using the glass melting part 150.
  • the glass material is put into the melting furnace of the glass melting part 150 and is heated by the heating part so that the glass material is melted.
  • the heating method of the heating unit may be a heating method using electricity, gas, heavy oil, high frequency induction heating, halogen lamp. It is preferable that the temperature of the melting furnace heated by the said heating part has a range of 1000 degreeC-2000 degreeC, and the viscosity of the molten glass material by heating of a heating part is 1-10. It is desirable to have a poise degree.
  • the temperature heated by the heating unit may be controlled to an appropriate temperature according to the type and characteristics of the molten glass material.
  • the lower mold 110 is transferred to the lower portion of the metering feeder 160 in the heating chamber 140 using the mold transfer device 120.
  • the lower mold 110 may be preheated (done in the D region) by using a pin heater or the like in the preheater before being transferred to the lower portion of the metering device 160.
  • the preheating of the lower mold 110 is performed, the temperature difference between the surface of the lower mold 110 and the molten glass material becomes smaller, and thus, an advantage of minimizing the internal stress caused by the temperature difference and the resulting thermal stress is obtained. have.
  • the position of the lower mold 110 is precisely controlled by the mold transfer device 120.
  • the temperature of the lower mold 110 is maintained at the optimum molding temperature by the heating chamber 140, and the molten glass material is melted because it is maintained at the molding temperature in the heating chamber 140 even if the lower mold 110 is introduced.
  • the glass material can be maintained at a constant molding temperature to suppress the occurrence of thermal strain.
  • the heating method of the heating chamber 140 may be a heating method using electricity, gas, heavy oil, high frequency induction heating, halogen lamp.
  • the temperature in the heating chamber 140 may be differently applied according to the annealing temperature of the glass material, and generally has a temperature range of about 400 ° C. to 800 ° C., and the viscosity of the molten glass material in the temperature range. Has a range of 10 3 to 10 10 poise.
  • the molten glass material is injected into the lower mold 110 by controlling the molten glass material to a desired weight and shape using the metering supply device 160. Control the discharge of the molten glass material through stroke control while preventing the inflow of bubbles through the metering supply device 160, and cut the molten glass material discharged at an appropriate timing to cut to the desired weight and shape to melt
  • the glass material is to be injected into the lower mold (110).
  • the viscosity of the molten glass material passing through the cut portion 166 is in the range of 10 3 to 10 5 poise (poise).
  • the lower mold 110 is transferred to the lower portion of the upper mold 130 in the heating chamber 140 using the mold transfer device 120.
  • the position of the lower mold 110 is precisely controlled by the mold transfer device 120.
  • the temperature of the lower mold 110 is maintained at the optimum molding temperature by the heating chamber 140, and the molten glass material can be maintained at a constant molding temperature because it is maintained at the molding temperature in the heating chamber 140 It is possible to suppress the occurrence of strain (thermal strain).
  • the temperature in the heating chamber 140 may be differently applied according to the annealing temperature of the glass material, and generally has a temperature range of about 400 ° C. to 800 ° C., wherein the molten glass material is 10 It has a viscosity of about 3-10 10 poise.
  • the upper mold 130 is lowered to the upper portion of the lower mold 110 to press-mold the molten glass material.
  • the molten glass material is injected into the lower mold 110 formed in the heating chamber 140 and the lower mold 110 moves under the upper mold 130 located next to the upper mold 130. It proceeds in the form of pressing the upper mold 130.
  • the upper mold 130 is located on the side of the lower mold 110, and when the lower mold 110 is moved below the upper mold 130, the upper mold 130 is lowered by the pneumatic cylinder to lower the upper mold 130 ( The molten glass material located at 110 is pressed to form. It is preferable that the viscosity of the molten glass material during molding is about 10 8 to 10 10 poise, and the pressing force of the upper mold 130 preferably has a range of 100 kg / cm 2 to 500 kg / cm 2.
  • the glass optical elements formed and molded in the upper mold 130 and the lower mold 110 are taken out and transferred to the slow cooling furnace. This will be described in more detail.
  • the upper mold 130 is moved upwards using a pneumatic cylinder to form a molten glass material to form a glass optical element.
  • the top will be open.
  • the lower mold 110 When the upper mold 130 is moved to the top, the lower mold 110 is moved to the take-out portion (C region) by the mold transfer device 120.
  • the glass optical element is detached from the lower mold 110 and transferred to the slow cooling furnace by using extraction means such as a robot.
  • the lower mold 110 may be moved to the slow cooling furnace by removing the glass optical element from the lower mold 110 using a takeout means such as a robot without moving to the takeout portion.
  • the slow cooling furnace transfer of the glass optical element is made by obtaining the glass optical element of a desired shape by molding by the upper mold 130 and the lower mold 110, and then moving the lower mold 110 to the extraction unit along the circular transfer path. .
  • the slow cooling furnace transfer of the glass optical element by the takeout means can be carried out in an automated manner.
  • the transfer of the glass optical device may include a method of directly absorbing and transporting the glass optical device by a extraction unit such as a robot having adsorption ability, and may be selectively configured according to the size and shape of the glass optical device.
  • the glass optical element transferred by the takeout means is moved to the slow cooling furnace along the slow cooling furnace inlet.
  • the slow cooling furnace configured in the form of a chamber is configured to control heat according to the material characteristics of the glass optical device in order to prevent shrinkage, optical characteristics, and appearance deformation that may be generated while the heat cools quickly after molding.
  • glass materials have a poor thermal conductivity, and as a result of cooling, a large temperature difference is generated between the surface and the interior, so that the interior is subjected to tensile stress, so that the strain acts as a decisive factor in the optical properties. desirable.
  • the heating chamber 140 which maintains a constant temperature in order to minimize the change in the optical performance of the glass optical device after being transferred to the slow cooling part after molding, is one of the necessary components, and the slow cooling furnace is a stepwise uniformity of the molded glass optical device.
  • the slow cooling furnace is a stepwise uniformity of the molded glass optical device.
  • the transmittance, refractive index, and appearance are poor on either side of the glass optical element. Can be cracked or even cracked.
  • Slow cooling furnace 10 the viscosity of the completed molding of the glass optical device 10 To 10 13 Two or more stages, such as stage 1, 10, to allow slow slow cooling within a range that does not affect optical performance by poise.
  • step 2 10 14 To 10 15 Poise
  • step 3 10 15 To 10 16 It is preferable to make slow cooling advance in several steps, such as poise. Different temperature stages can be set depending on the characteristics of the glass material, and other temperature stages can be added for precise slow cooling.
  • the present invention can produce a glass optical device that can be widely applied to various optical device industries such as optical lenses, display lighting, optical communication, light fusion technology, etc. using glass materials regardless of performance and size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

The present invention relates to a method for manufacturing a glass optical device, and an apparatus for manufacturing a glass optical device, wherein the method comprises the steps of: using a glass melting unit to melt a glass raw material; using a mold conveying apparatus to convey a lower mold to the lower portion of a fixed amount supplying apparatus, in a heating chamber maintained at a certain temperature; using the fixed amount supplying apparatus to feed the melted glass raw material into the lower mold, while controlling the melted glass raw material in terms of weight and shape thereof; using the mold conveying apparatus to convey the lower mold to the lower portion of an upper mold, in the heating chamber; lowering the upper mold to the upper portion of the lower mold, in the heating chamber, and pressure-forming the melted glass raw material; ejecting a glass optical device formed in the upper mold and the lower mold, and conveying the glass optical device to an annealing furnace; and annealing the glass optical device. According to the present invention, precise inputting of melted glass raw material, a mold pressurizing process, and an annealing process can be integrated, without using a pre-form GOB, so as to enable mass production of glass optical devices.

Description

유리광학소자 제조장치 및 유리광학소자의 제조방법Glass optical device manufacturing apparatus and glass optical device manufacturing method
본 발명은 유리광학소자 제조장치 및 유리광학소자의 제조방법에 관한 것으로, 더욱 상세하게는 가공된 고브(프리폼 고브; pre-form GOB 또는 볼 고브; Ball GOB)를 사용함이 없이도 정확한 용융 유리소재의 투입, 금형 가압공정, 서냉 공정을 일체화시켜 대량으로 유리광학소자를 제조할 수 있는 방법 및 유리광학소자 제조장치에 관한 것이다.The present invention relates to an apparatus for manufacturing a glass optical device and a method for manufacturing a glass optical device, and more particularly, to accurate molten glass material without using a processed gob (pre-form GOB or ball GOB). The present invention relates to a method for manufacturing a glass optical device in a large amount by integrating a feeding process, a mold pressing step, and a slow cooling process, and a glass optical device manufacturing apparatus.
전통적인 유리소재를 이용한 렌즈, 프리즘, 윈도우 등의 유리광학소자들은 유리소재를 직접 가공하여 원하는 형태로 만든 후 연마과정을 거쳐 광학적 특성을 부여하여 제조하고 있다. 하지만 이는 숙련된 기술이 요구되는 작업이며, 특히 비구면 광학소자 같은 정밀 광학소자인 경우에는 기술적, 시간적, 비용적으로 많은 어려움이 따르고 있다.Glass optical devices such as lenses, prisms, and windows using conventional glass materials are manufactured by directly processing glass materials into desired shapes and then applying optical properties through polishing. However, this is a task that requires skilled skills, and particularly in the case of precision optical devices such as aspherical optical devices, there are many difficulties in terms of technology, time, and cost.
광학소자를 제조하는 종래의 방법으로는, 제조하고자 하는 광학소자에 맞추어 미리 광학용 유리소재를 프리폼 고브(pre-form GOB) 형태로 가공하여 금형에 투입한 후 가열 및 압착에 의해 광학소자를 성형하는 방법과, 유리봉 형태의 유리소재를 이용하여 용융 후 금형에 이송시켜 절단, 가열 및 압착에 의해 성형하는 방법 등이 있다.In the conventional method of manufacturing an optical device, the optical glass material is processed in the form of a pre-form GOB in advance in accordance with the optical device to be manufactured, put into a mold, and then the optical device is molded by heating and pressing. And a method of forming a glass rod-shaped glass material by melting, transferring it to a mold and cutting, heating, and pressing.
최근에는 프리폼 고브를 소재 가공이 아닌 프리폼용 금형에 용융된 유리소재를 투입하여 프리폼 고브를 제조하고, 제조된 프리폼 고브를 또 다른 광학소자 제조 금형에 투입하여 가열 및 압착하는 성형방법이 알려져 있다.Recently, a molding method is known in which a preform gob is prepared by injecting a preform gob into a mold for preform rather than material processing, thereby preparing a preform gob, and then injecting the manufactured preform gob into another optical device manufacturing mold.
이러한 언급된 방식들은 방식에 따라 일반적인 광학소자를 비롯하여 정밀 광학소자에 이르기까지 유리소재를 원하는 형태로 직접 제작이 가능하게 하였으며, 과거 방식에 비해 생산적, 기술적 측면에서 많은 발전들을 가져왔다.These mentioned methods enable the direct manufacture of glass materials in the desired form, ranging from general optical devices to precision optical devices, depending on the method, and have brought many advances in productive and technical aspects compared to the past methods.
그러나 이러한 종래의 방법들은 각기 많은 문제점들을 가지고 있다.However, these conventional methods have many problems.
일본 특허공고 소61-32263호에서 소개되는 프리폼 고브를 사용하는 방식은 광학소자 제조 전에 앞서 언급하였던 숙련된 기술과 시간을 필요로 하는 최종 광학소자와 근사한 곡률 연삭, 연마와 같은 유리소재 가공기술을 이용하여 프리폼 고브를 제조하여야 하고, 또한 이 방식은 성형의 핵심인 고가의 금형에 직접 높은 열을 가하여 성형하는 방법이므로 금형의 산화 및 코팅 박리의 위험성 등 금형의 수명을 단축시키는 문제점들이 발생되어 여전히 시간적, 비용적으로 많은 한계를 보인다. 또한, 프리폼 고브를 제조하기 위해 곡률 연삭 및 연마 등의 공정을 진행함에 따라 유리소재의 손실(loss)이 발생할 수 있다. The method of using preform gobs introduced in Japanese Patent Publication No. 61-32263 uses glass materials processing techniques such as curvature grinding and polishing, which are close to the final optical element, which requires the skilled technique and time mentioned before optical element manufacturing. The preform gob must be manufactured by using high-temperature mold, which is the core of molding, by applying high heat directly. There are many limitations in terms of time and money. In addition, as the process of curvature grinding and polishing, such as to produce the preform gob may be lost (glass) material (loss).
대한민국 특허출원 특1993-0004316에서 소개된 유리소재인 유리봉을 용융, 절단시켜 금형에 투입하는 방법은 정확한 유리소재 투입의 제어가 어려울 뿐만 아니라, 유리봉의 용융 및 가압 공정이 일체형으로 진행되지 못하므로 광학소자 제조를 위한 용융 유리봉의 이동 및 절단 공정 진행시 유리소재의 손실 및 결함이 발생된다. 또한, 이 방법은 고정밀도의 광학소자를 얻기에는 불완전한 방법으로 모든 광학소자를 제조하기에는 그 범위가 협소하여 정밀도가 낮은 유리컵, 유리구조물, 조명용 광학소자 등의 제조에만 주로 사용된다.The method of melting and cutting the glass rod, which is the glass material introduced in Korean Patent Application No. 193-0004316, into the mold is difficult to control precise glass material input, and the melting and pressing process of the glass rod does not proceed integrally. Loss and defect of glass material occurs during the movement and cutting process of molten glass rod for optical device manufacturing. In addition, this method is incomplete for obtaining an optical element of high precision, and is narrowly used to manufacture all optical elements, and is mainly used only for the manufacture of low precision glass cups, glass structures, lighting optical elements, and the like.
용융 유리소재를 프리폼용 금형에 투입하여 프로폼 고브를 만든 후 제조된 프리폼 고브를 다시 광학소자 제조를 위한 금형에 투입하고 가열 및 압착하여 광학소자를 제조하는 방법은 두 번 이상의 가열, 압착 공정이 필요하므로 생산시간이 길어지고, 2대 이상의 가열 및 압착 기구를 필요로 하며, 고가의 금형의 소모량이 많아져 생산원가가 상승하는 문제가 있다.A method of manufacturing an optical device by injecting a molten glass material into a preform mold to make a proform gob, then putting the manufactured preform gob back into a mold for manufacturing an optical device, and heating and compressing requires two or more heating and pressing processes. Therefore, the production time is long, requires two or more heating and pressing mechanisms, there is a problem that the consumption of expensive mold increases, the production cost increases.
본 발명이 해결하려는 과제는 상기에 언급하였던 종래의 문제점들을 해결하기 위해 프리폼 고브를 사용함이 없이도 정확한 용융 유리소재의 투입, 금형 가압공정, 서냉 공정을 일체화시켜 대량으로 유리광학소자를 제조할 수 있는 방법 및 유리광학소자 제조장치를 제공함에 있다. The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art without the use of a preform gob, it is possible to manufacture a glass optical device in a large amount by integrating the precise molten glass material injection, mold pressing process, slow cooling process The present invention provides a method and apparatus for manufacturing a glass optical device.
본 발명은, 유리용융부를 이용하여 유리소재를 용융시키는 단계와, 일정 온도로 유지되는 가열챔버 내에서 하부금형을 금형이송장치를 이용하여 정량공급장치의 하부로 이송시키는 단계와, 용융된 유리소재를 정량공급장치를 이용하여 원하는 중량과 모양으로 제어하면서 하부금형에 용융 유리소재를 투입하는 단계와, 금형이송장치를 이용하여 가열챔버 내에서 하부금형을 상부금형의 하부로 이송시키는 단계와, 가열챔버 내에서 상부금형을 하부금형의 상부로 하강시켜 용융 유리소재를 압착 성형하는 단계와, 상부금형과 하부금형에서 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송시키는 단계 및 상기 유리광학소자를 서냉시키는 단계를 포함하는 유리광학소자의 제조방법을 제공한다. The present invention comprises the steps of melting a glass material using a glass melting part, transferring a lower mold to a lower portion of a fixed quantity supply device using a mold transfer device in a heating chamber maintained at a constant temperature, and a molten glass material The molten glass material into the lower mold while controlling the desired weight and shape using a fixed-quantity feeding device; and transferring the lower mold to the lower portion of the upper mold in the heating chamber by using a mold transfer device; Pressing down the upper mold to the upper portion of the lower mold in the chamber to press-mold the molten glass material, taking out the glass optical element formed and molded from the upper mold and the lower mold, and transferring the glass optical element to the slow cooling furnace; It provides a method of manufacturing a glass optical device comprising a slow cooling.
상기 유리광학소자의 제조방법은, 상기 하부금형이 정량공급장치의 하부로 이송되기 전에, 하부금형의 표면과 용융 유리소재 간의 온도 차에 의해 발생되는 내부 응력과 열적 스트레스를 최소화하기 위하여 상기 하부금형이 예열부에서 예열되는 단계를 더 포함할 수 있다. The manufacturing method of the glass optical device, the lower mold in order to minimize the internal stress and thermal stress caused by the temperature difference between the surface of the lower mold and the molten glass material before the lower mold is transferred to the lower portion of the metering device. The preheating unit may further include the step of being preheated.
상기 유리광학소자를 취출하여 서냉로로 이송시키는 단계는, 상기 상부금형을 상부로 이동시켜 상기 유리광학소자의 상부가 개방되는 단계와, 상기 금형이송장치를 이용하여 상기 하부금형은 취출부로 이동시키는 단계와, 취출수단을 이용하여 하부금형으로부터 상기 유리광학소자를 탈착하는 단계 및 상기 취출수단을 이용하여 상기 유리광학소자를 서냉로로 이송시키는 단계를 포함할 수 있다. Taking out the glass optical element and transferring the glass optical element to the slow cooling furnace includes moving the upper mold upward to open the upper portion of the glass optical element, and moving the lower mold to the takeout part using the mold transfer device. And removing the glass optical element from the lower mold by using the extraction means, and transferring the glass optical element to the slow cooling furnace by using the extraction means.
상기 유리광학소자를 취출하여 서냉로로 이송시키는 단계는, 상기 상부금형을 상부로 이동시켜 상기 유리광학소자의 상부가 개방되는 단계와, 취출수단을 이용하여 하부금형으로부터 상기 유리광학소자를 탈착하는 단계 및 상기 취출수단을 이용하여 상기 유리광학소자를 서냉로로 이송시키는 단계를 포함할 수 있다. Taking out the glass optical element and transferring the glass optical element to a slow cooling furnace includes moving the upper mold upward to open the upper portion of the glass optical element, and detaching the glass optical element from the lower mold using a takeout means. And transferring the glass optical element to a slow cooling furnace by using the extraction means.
상기 용융 유리소재가 103 ∼ 1010 포이즈(poise) 범위의 점도를 갖게 상기 가열챔버 내의 온도는 400℃∼800℃의 온도 범위로 일정하게 유지되는 것이 바람직하다. It is preferable that the molten glass material has a viscosity in the range of 10 3 to 10 10 poise, and the temperature in the heating chamber is kept constant in the temperature range of 400 ° C to 800 ° C.
상기 상부금형은 용융 유리소재가 투입되는 위치의 하부금형 옆 상측에 위치되고, 상기 하부금형이 하부로 이동되면 하부로 하강하여 하부금형에 투입된 용융 유리소재를 가압하여 성형하고, 상부금형의 가압 힘은 100kg/㎠ ∼ 500kg/㎠의 범위를 갖는 것이 바람직하다. The upper mold is located on the upper side next to the lower mold at the position where the molten glass material is injected, and when the lower mold is moved to the lower side, the upper mold is lowered to press and mold the molten glass material injected into the lower mold, and the pressing force of the upper mold is applied. It is preferable that it has the range of 100 kg / cm <2> -500 kg / cm <2>.
또한, 본 발명은, 사이클을 이루는 이동 경로를 따라 이동 가능하게 구비되는 하부금형과, 사이클을 이루는 이동 경로를 따라 상기 하부금형을 이동시키기 위한 금형이송장치와, 상하로 이동 가능하게 구비되며, 하부금형이 하부로 이송되면 하강하여 용융 유리소재를 압착 성형하기 위한 상부금형과, 상기 하부금형에 용융 유리소재가 투입되는 영역과, 상기 상부금형과 상기 하부금형에 의해 압착 성형이 이루어지는 영역을 둘러싸는 공간을 제공하면서 일정 온도로 유지하기 위한 가열챔버를 포함하는 유리광학소자 제조장치를 제공한다.In addition, the present invention, a lower mold provided to be movable along the movement path constituting the cycle, a mold transfer device for moving the lower mold along the movement path constituting the cycle, and is provided to be movable up and down, When the mold is transported to the lower side, the upper mold for lowering the press-molded molten glass material, the region into which the molten glass material is put into the lower mold, and surrounding the region where the press-molding is performed by the upper mold and the lower mold. It provides a glass optical device manufacturing apparatus including a heating chamber for maintaining a constant temperature while providing a space.
상기 유리광학소자 제조장치는, 유리소재를 용융시키기 위한 유리용융부, 및 상기 유리용융부에 연결되어 있고 용융된 유리소재를 원하는 중량과 모양으로 제어하면서 하부금형에 용융 유리소재를 투입하기 위한 정량공급장치를 더 포함할 수 있다. The glass optical device manufacturing apparatus, the glass melting portion for melting the glass material, and the quantity connected to the molten glass material to the lower mold while controlling the molten glass material connected to the glass melting portion to the desired weight and shape It may further include a supply device.
상기 유리광학소자 제조장치는, 상기 상부금형과 상기 하부금형에 의해 압착 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송하기 위한 취출수단, 및 상기 취출수단에 의해 이송된 유리광학소자를 서냉시키기 위한 서냉로를 더 포함할 수 있다. The glass optical device manufacturing apparatus includes: a takeout means for taking out and transporting a glass optical element formed by compression molding by the upper mold and the lower mold to a slow cooling furnace, and slowly cooling the glass optical element transferred by the takeout means. A slow cooling furnace may be further included.
상기 하부금형은, 예열이 이루어지는 예열부, 정량공급장치를 통해 용융 유리소재가 하부금형에 투입되는 용융 유리소재 투입부, 상부금형이 위치한 하부로 이동되어 상부금형과 하부금형에 의한 압착에 의해 용융 유리소재가 성형되는 성형부, 및 용융 유리소재가 성형되어 형성된 유리광학소자를 서냉로로 이송시키기 위해 하부금형으로부터 유리광학소자를 취출하는 취출부를 사이클로 하는 이동 경로를 가질 수 있다. The lower mold, the preheating portion is pre-heated, the molten glass material input portion through which the molten glass material is put into the lower mold through the quantitative supply device, the lower mold is moved to the lower position where the upper mold is melted by pressing by the upper mold and the lower mold It may have a molding path in which the glass material is molded, and a movement path that cycles the extraction part for taking out the glass optical element from the lower mold in order to transfer the glass optical element formed by molding the molten glass material to the slow cooling furnace.
상기 가열챔버는 상기 용융 유리소재가 103 ∼ 1010 포이즈(poise) 범위의 점도를 갖게 400℃∼800℃의 온도 범위로 일정하게 유지될 수 있게 구비되는 것이 바람직하다. The heating chamber is preferably provided so that the molten glass material can be kept constant in the temperature range of 400 ℃ to 800 ℃ having a viscosity of 10 3 ~ 10 10 poise (poise) range.
상기 상부금형은 용융 유리소재가 투입되는 위치의 하부금형 옆 상측에 위치되고, 상기 하부금형이 하부로 이동되면 하부로 하강하여 하부금형에 투입된 용융 유리소재를 가압하여 성형하고, 압착 성형이 이루어지면 상부로 이동되며, 상부금형에 의해 가압되는 힘은 100kg/㎠ ∼ 500kg/㎠의 범위를 갖는 것이 바람직하다.The upper mold is located on the upper side next to the lower mold at the position where the molten glass material is injected, and when the lower mold is moved to the lower side, the upper mold is lowered to press the molten glass material injected into the lower mold, and the press molding is performed. It is preferable that the force moved to the upper side and the pressure applied by the upper mold have a range of 100 kg / cm 2 to 500 kg / cm 2.
본 발명에 의하면, 프리폼 고브를 사용하지 않으므로 프리폼 고브 제조를 위한 가공시간을 단축할 수 있고, 또한 프리폼 고브 제조를 위한 가공비용을 절약할 수 있는 장점이 있다. According to the present invention, since the preform gob is not used, the processing time for manufacturing the preform gob can be shortened, and the processing cost for manufacturing the preform gob can be reduced.
또한, 본 발명에 의하면, 유리소재의 용융, 정확한 용융 유리소재의 투입, 성형 및 서냉의 단계가 정밀하게 제어되는 일체형으로 구성되어 제조 시간이 절약되고 원료의 손실이 없으며, 품질이 우수한 유리광학소자를 제조할 수 있는 장점이 있다. In addition, according to the present invention, it is composed of an integral type in which the steps of melting the glass material, precisely input the molten glass material, molding and slow cooling are precisely controlled, saving manufacturing time, no loss of raw materials, and excellent glass optical elements. There is an advantage to manufacture.
또한, 용융된 유리 소재의 직접 투입과 유리봉 용융 투입방식 등의 기존 공정에서 열제어 및 수동 이동 간의 진동, 광학소자 제조 후 외각 컷팅(cutting), 센터링(centering) 등의 후 공정에서 비롯되는 문제점에 있으나, 본 발명에서는 이러한 문제점이 개선될 수 있고 원가 절감 뿐만 아니라 품질과 성능이 우수한 유리광학소자를 제조할 수가 있다. In addition, in the existing processes such as direct injection of molten glass material and glass rod melting injection method, problems caused by vibrations between thermal control and manual movement, and post-processing such as cutting and centering after optical device manufacturing However, in the present invention, such a problem can be improved and cost can be manufactured as well as glass optics excellent in quality and performance.
또한, 본 발명에 의하면, 경제적이고 높은 생산성을 바탕으로 고품질의 유리광학소자를 대량 생산할 수 있는 장점이 있다.In addition, according to the present invention, there is an advantage that can mass-produce a high quality glass optical device based on economical and high productivity.
또한, 본 발명에 의하면, 성능과 크기에 상관없이 유리소재를 이용한 광학렌즈, 디스플레이 조명, 광통신, 광 융합기술 분야 등의 다양한 광학소자 산업에 폭넓게 적용될 수 있는 유리광학소자를 제조할 수가 있다.In addition, according to the present invention, a glass optical device that can be widely applied to various optical device industries such as optical lenses, display lighting, optical communication, and light fusion technology using glass materials can be manufactured regardless of performance and size.
도 1은 본 발명의 바람직한 실시예에 따른 유리광학소자의 제조방법을 설명하기 위하여 도시한 공정 순서도이다. 1 is a flowchart illustrating a method of manufacturing a glass optical device according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 유리광학소자 제조장치를 개략적으로 도시한 도면이다. 2 is a view schematically showing a glass optical device manufacturing apparatus according to a preferred embodiment of the present invention.
도 3은 유리용융부와 정량공급장치를 개략적으로 도시한 도면이다. 3 is a view schematically showing the glass melter and the metering device.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하기로 한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. 도면상에서 동일 부호는 동일한 요소를 지칭한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments are provided to those skilled in the art to fully understand the present invention, and may be modified in various forms, and the scope of the present invention is limited to the embodiments described below. It doesn't happen. Like numbers refer to like elements in the figures.
본 발명은 타블렛 타입의 유리소재를 유리용융로에 투입하여 유리소재를 용융시킨 후 용융된 유리소재를 정량공급장치에 의해 하부금형으로 원하는 중량과 형상으로 제어하면서 용융 유리소재를 투입시킨다. 이때 용융 유리소재는 성형 온도를 제어해 주기 위한 가열챔버 안의 하부금형에 직접 투입되고 상부금형으로 가압하여 유리광학소자를 제조한다. 성형되어 형성된 유리광학소자는 취출수단에 의해 하부금형에서 서냉로로 이송되어 굴절율 등의 광학적 특성 변화를 방지할 수 있는 단계적이고 정밀한 서냉로를 통과하면서 유리광학소자 제품으로 제조된다.According to the present invention, a glass material of a tablet type is introduced into a glass melting furnace to melt a glass material, and then the molten glass material is introduced while the molten glass material is controlled to a desired weight and shape by using a fixed amount feeder. In this case, the molten glass material is directly injected into the lower mold in the heating chamber for controlling the molding temperature and pressurized into the upper mold to manufacture the glass optical device. The formed glass optical element is manufactured as a glass optical element product while being passed through a stepwise and precise slow cooling furnace capable of being prevented from changing optical characteristics such as refractive index by being transferred from the lower mold to the slow cooling furnace by the extraction means.
도 1은 본 발명의 바람직한 실시예에 따른 유리광학소자의 제조방법을 설명하기 위하여 도시한 공정 순서도이다. 도 2은 본 발명의 바람직한 실시예에 따른 유리광학소자 제조장치를 개략적으로 도시한 도면이다. 도 3은 유리용융부와 정량공급장치를 개략적으로 도시한 도면이다. 1 is a flowchart illustrating a method of manufacturing a glass optical device according to a preferred embodiment of the present invention. 2 is a view schematically showing a glass optical device manufacturing apparatus according to a preferred embodiment of the present invention. 3 is a view schematically showing the glass melter and the metering device.
도 1 내지 도 3을 참조하면, 본 발명의 유리광학소자의 제조방법은, 유리용융부(150)를 이용하여 유리소재를 적절하고 균일한 온도로 용융시키는 단계(S10)와, 금형이송장치(120)를 이용하여 용융된 유리소재의 성형온도를 제어해 주기 위한 가열챔버(140) 내에서 하부금형을 정량공급장치(160)의 하부로 이송시키는 단계(S20)와, 용융된 유리소재를 정량공급장치(160)를 이용하여 원하는 중량과 모양으로 제어하면서 하부금형(110)에 용융 유리소재를 투입하는 단계(S30)와, 금형이송장치(120)를 이용하여 가열챔버(140) 내에서 하부금형(110)을 상부금형(130)의 하부로 이송시키는 단계(S40)와, 상부금형(130)을 하부금형(110)의 상부로 하강시켜 용융 유리소재를 압착 성형하는 단계(S50)와, 상부금형(130)과 하부금형(110)에서 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송시키는 단계(S60) 및 상기 유리광학소자를 서냉시키는 단계(S70)를 포함한다. 1 to 3, the manufacturing method of the glass optical device of the present invention, by melting the glass material at a suitable and uniform temperature using the glass melting portion 150 (S10) and the mold transfer device ( Transferring the lower mold to the lower portion of the metering supply device 160 in the heating chamber 140 for controlling the molding temperature of the molten glass material using the (120) (S20), and quantified the molten glass material Injecting the molten glass material into the lower mold 110 while controlling to the desired weight and shape using the feeder 160 (S30), and the lower portion in the heating chamber 140 by using the mold transfer device 120 Transferring the mold 110 to the lower portion of the upper mold 130 (S40), lowering the upper mold 130 to the upper portion of the lower mold 110, and pressing the molded molten glass material (S50); Slow cooling by taking out the glass optical element formed and molded in the upper mold 130 and the lower mold 110 In a step (S60) and a step (S70) that gradually cooled the glass optical element to transfer.
본 발명의 유리광학소자 제조장치는, 사이클을 이루는 이동 경로를 따라 이동 가능하게 구비되는 하부금형(110)과, 사이클을 이루는 이동 경로를 따라 하부금형(110)을 이동시키기 위한 금형이송장치(120)와, 상하로 이동 가능하게 구비되며 하부금형(110)이 하부로 이송되면 하강하여 용융 유리소재를 압착 성형하기 위한 상부금형(130)과, 하부금형(110)에 용융 유리소재가 투입되는 영역(A)과 상기 상부금형(130)과 상기 하부금형(110)에 의해 압착 성형이 이루어지는 영역(B)을 둘러싸는 공간을 제공하면서 일정 온도로 유지하기 위한 가열챔버(140)를 포함한다. 상기 유리광학소자 제조장치는, 유리소재를 용융시키기 위한 유리용융부(150), 및 상기 유리용융부(150)에 연결되어 있고 용융된 유리소재를 원하는 중량과 모양으로 제어하면서 하부금형(110)에 용융 유리소재를 투입하기 위한 정량공급장치(160)를 더 포함할 수 있다. 상기 유리광학소자 제조장치는, 상기 상부금형(130)과 상기 하부금형(110)에 의해 압착 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송하기 위한 취출수단(미도시), 및 상기 취출수단에 의해 이송된 유리광학소자를 서냉시키기 위한 서냉로(미도시)를 더 포함할 수 있다. Glass optical device manufacturing apparatus of the present invention, the lower mold 110 is provided to be movable along the movement path constituting the cycle, and the mold transfer device 120 for moving the lower mold 110 along the movement path constituting the cycle ), And the upper mold 130 and the lower mold 110 for pressing the molten glass material by pressing down when the lower mold 110 is transferred to the lower side and the molten glass material is injected into the lower mold 110. (A) and the heating chamber 140 for maintaining at a constant temperature while providing a space surrounding the region (B) where the compression molding is made by the upper mold 130 and the lower mold 110. The glass optical device manufacturing apparatus, the glass mold 150 for melting the glass material, and the lower mold 110 is connected to the glass melt 150, while controlling the molten glass material to the desired weight and shape It may further include a quantitative supply device 160 for injecting the molten glass material. The glass optical device manufacturing apparatus includes a drawing unit (not shown) for taking out and transporting the glass optical element formed by compression molding by the upper mold 130 and the lower mold 110 to a slow cooling furnace, and the extracting means. A slow cooling furnace (not shown) may be further included for slow cooling the glass optical element transferred by the.
상기 유리용융부(150)는 유리소재를 적절하고 균일한 온도로 용융시킬 수 있는 가열부(152)와, 용융된 유리소재를 안정하게 보관하는 도가니 타입의 용융로(154a, 154b, 154c)로 포함한다. 이때, 가열부(152)의 가열방식은 전기, 가스, 중유 등을 이용한 가열방식이 될 수 있으며, 고주파 유도가열 및 할로겐 램프를 이용한 가열방식 또한 사용될 수 있다. 가열부(152)에 의해 가열되는 용융로(154a, 154b, 154c)의 온도는 통상적으로 1000℃∼2000℃까지의 범위를 가진다. 이때 가열부(152)의 가열에 의한 용융 유리소재의 점도는 1∼10 포이즈(poise) 정도를 가지며, 용융 유리소재의 종류에 따라 온도를 제어할 수 있다. 가열부(152)의 온도는 유리소재의 특성에 따라 온도를 제어할 수 있는 특징을 가진다. 상기 용융로(154a, 154b, 154c)의 구성은 최외각에 내열재 프레임(154a)과 그 내부에 도가니 모양의 백금(Pt) 프레임(154b)이 0.5∼2mm 두께로 만들어진 내부 용융로를 포함하며, 내열재 프레임(154a)과 백금(Pt) 프레임(154b) 사이에 내화물 충진부가 구비되어 내화물(154c)이 충진되어 있는 구조로 이루어질 수 있다. 이때, 내화물이란 고온 공업에서 사용하는 고온에서 난용성인 비금속 무기재료를 가리키며, 내화물이 견딜 수 있는 최하온도는 1,580℃ 정도로서 그 이상의 온도에서 사용할 수 있는 재료를 내화물이라 한다. 내화물로는 대표적으로 Al2O3와 ZrO2 등이 있으며, 그 외에도 TiO2, CaO, MgO, Na2O 등이 용도에 맞게 사용될 수 있다. The glass melting part 150 includes a heating part 152 capable of melting the glass material at an appropriate and uniform temperature, and a crucible type melting furnace 154a, 154b, and 154c for stably storing the molten glass material. do. At this time, the heating method of the heating unit 152 may be a heating method using electricity, gas, heavy oil, etc., a heating method using a high frequency induction heating and a halogen lamp may also be used. The temperature of the melting furnaces 154a, 154b, and 154c heated by the heating part 152 has the range of 1000 to 2000 degreeC normally. At this time, the viscosity of the molten glass material by the heating of the heating unit 152 is 1 to 10 It has a poise degree and can control the temperature according to the type of molten glass material. The temperature of the heating unit 152 has a feature that can control the temperature according to the properties of the glass material. The configuration of the melting furnace (154a, 154b, 154c) includes an inner melting furnace made of a heat-resistant material frame (154a) and a crucible-shaped platinum (Pt) frame (154b) having a thickness of 0.5 to 2mm in the outermost, A refractory filler is provided between the ash frame 154a and the platinum (Pt) frame 154b to form a structure in which the refractory 154c is filled. In this case, the refractory refers to a non-metal inorganic material that is poorly soluble at a high temperature used in high temperature industry, the lowest temperature that the refractory can withstand is about 1,580 ℃, the material that can be used at a temperature higher than that is called a refractory. Refractories are typically Al2O3And ZrO2 Etc. In addition, TiO2, CaO, MgO, Na2O and the like may be used to suit the purpose.
상기 정량공급장치(160)는 유리용융부(150)의 하부에 연결되어 하부금형(110)에 용융 유리소재를 투입하는 장치이다. 상기 정량공급장치(160)는 스트로크(stroke) 제어를 통해 용융 유리소재의 토출을 조절하는 플렌저(plunger)(162)와, 용융 유리소재의 토출시 토출 내경을 제어하여 용융 유리소재의 중량 및 형상을 제어하는 노즐부(164)와, 토출되는 용융 유리소재를 절단의 타이밍(timing)을 이용하여 원하는 중량 및 형상으로 절단해 주는 절단부(166)를 포함한다. 플렌저(162)의 측면에는 날개 모양의 조절부(미도시)가 더 구비될 수 있고, 상기 조절부는 기포 유입을 방지하는 역할을 한다. 정량공급장치(160)는 용융된 유리소재의 균일한 양과 모양을 제어하여 생산하고자 하는 제품의 크기, 모양, 품질 등에 가장 중요한 역할을 하는 장치요소 중 하나이다. 상기에 언급한 플렌저(162), 노즐부(164) 및 절단부(166)는 주철이나 초경 등으로 제작될 수 있으며 외부는 백금(pt) 재질로 제작될 수 있다.The metering supply device 160 is connected to the lower portion of the glass melter 150 is a device for injecting the molten glass material into the lower mold (110). The quantitative supply device 160 is a plunger (162) for controlling the discharge of the molten glass material through the stroke (stroke) control, and the weight of the molten glass material by controlling the discharge inner diameter during the discharge of the molten glass material A nozzle portion 164 for controlling the shape, and a cutting portion 166 for cutting the discharged molten glass material to the desired weight and shape using the timing of the cutting. Side of the flanger 162 may be further provided with a wing-shaped control unit (not shown), the control unit serves to prevent the inflow of bubbles. Metering supply device 160 is one of the device elements that play the most important role in the size, shape, quality of the product to be produced by controlling the uniform amount and shape of the molten glass material. The aforementioned flanger 162, the nozzle unit 164, and the cutting unit 166 may be made of cast iron or cemented carbide, and the outside thereof may be made of platinum (pt).
상기 금형이송장치(120)는 정밀한 서브 모터를 이용하여 하부금형(110)의 위치를 정밀하게 제어할 수 있으며, 다수의 하부금형(110)이 직접 고정되는 타입으로 구성될 수 있다. 다수의 하부금형(110)은 금형이송장치(120)에 의해 이동가능하게 구비되고, 각 하부금형(110)의 이동 경로는 사이클(cycle)을 이루어서 원래의 위치로 복귀되는 경로를 이룬다. 금형이송장치(120)에 의해 하부금형(110)의 정밀한 위치 제어가 되지 않을시 소재 투입, 성형, 취출의 오류로 인해 생산되는 제품의 품질에 심각한 문제가 발생될 수 있다. 이때 금형이송장치(120)에 의해 하부금형(110)은 용융 유리소재 투입부(A 영역), 상부금형(130)에 의해 렌즈가 성형되는 성형부(B 영역), 로봇에 의해 서냉로로 취출되는 취출부(C 영역), 하부금형(110)을 예열하는 예열부(D 영역)를 기본으로 하는 이동 경로를 가진다. The mold transfer device 120 may precisely control the position of the lower mold 110 by using a precise sub-motor, and may be of a type in which a plurality of lower molds 110 are directly fixed. A plurality of lower mold 110 is provided to be movable by the mold transfer device 120, the movement path of each of the lower mold 110 forms a path to return to the original position in a cycle (cycle). When the precise position control of the lower mold 110 is not performed by the mold transfer device 120, serious problems may occur in the quality of the produced product due to an error of material input, molding, and take-out. At this time, the lower mold 110 by the mold transfer device 120 is taken out into the slow cooling furnace by the molten glass material input portion (region A), the molding portion (region B) by the upper mold 130, the robot is molded. It has a moving path based on the take-out portion (region C), the preheating portion (region D) for preheating the lower mold (110).
하부금형(110)은 용융 유리소재 투입부, 성형부, 취출부 및 예열부를 포함하는 경로가 사이클(cycle)을 이루면서 이동 가능하게 구비된다. 하부금형(110)의 이동 경로는 원형의 이송로 형태로 이루어 최초 출발지점을 따라 이동되어 다시 최초 출발지점에 도달하는 사이클을 이룬다. 예컨대, 하부금형(110)이 핀 히터(pin heater) 등에 의해 소정 온도로 예열이 이루어지는 예열부에서 출발이 이루어지면, 정량공급장치(160)를 통해 용융 유리소재가 하부금형(110)에 투입되는 용융 유리소재 투입부를 거치고, 상부금형(130)이 위치한 하부로 이동되어 상부금형(130)과 하부금형(110)에 의한 압착에 의해 용융 유리소재가 성형되는 성형부를 거치고, 용융 유리소재가 성형되어 형성된 유리광학소자를 서냉로로 이송시키기 위해 하부금형(110)으로부터 유리광학소자를 취출하는 취출부를 통과하여 다시 최초 출발지점이 예열부에 도달하는 원형의 이송(이동) 경로를 가진다. 하부금형(110)의 소재로는 초경합금, 그라파이트, 실리콘 카바이드(SiC), 스테인레스 스틸, 보론 나이트라이드 등을 사용할 수 있다. The lower mold 110 has a path including a molten glass material input part, a molding part, a blowout part, and a preheating part, and is provided to be movable while forming a cycle. The movement path of the lower mold 110 is formed in the form of a circular transfer path and moves along the initial starting point to form a cycle of reaching the initial starting point again. For example, when the lower mold 110 starts from a preheating unit where the preheating is performed at a predetermined temperature by a pin heater or the like, the molten glass material is introduced into the lower mold 110 through the metering supply device 160. After passing through the molten glass material input portion, the upper mold 130 is moved to the lower position where the molten glass material is molded by the compression by the upper mold 130 and the lower mold 110, the molten glass material is molded In order to transfer the formed glass optical element to the slow cooling furnace, it has a circular conveyance (movement) path passing through the extraction part which takes out the glass optical element from the lower mold 110, and the first starting point reaches the preheating part again. The material of the lower mold 110 may be cemented carbide, graphite, silicon carbide (SiC), stainless steel, boron nitride and the like.
상기 상부금형(130)은 하부금형(110)의 위 측면에 위치한다. 상부 금형(130)은 도 2에 도시된 바와 같이 2개 이상이 구비될 수도 있다. 상기 상부금형(130)은 상하로 이동 가능하게 구비되며, 용융된 유리소재가 투입된 하부금형(110)이 이동하여 상부금형(130) 하부에 위치되었을 때 하부로 하강하여 하부금형(110)을 덮어 용융 유리소재를 프레스할 수 있게 된다. 상기 상부금형(130)의 상하 이동은 공압 실린더 등을 이용할 수 있다. 상기 상부금형(130)의 소재로는 초경합금, 그라파이트, 실리콘 카바이드(SiC), 스테인레스 스틸, 보론 나이트라이드 등을 사용할 수 있다. The upper mold 130 is located on the upper side of the lower mold (110). The upper mold 130 may be provided with two or more as shown in FIG. The upper mold 130 is provided to be movable up and down, and when the lower mold 110 into which the molten glass material is injected moves and is positioned below the upper mold 130, the upper mold 130 is lowered to cover the lower mold 110. The molten glass material can be pressed. The vertical movement of the upper mold 130 may use a pneumatic cylinder or the like. Cemented carbide, graphite, silicon carbide (SiC), stainless steel, boron nitride, etc. may be used as the material of the upper mold 130.
상기 가열챔버(140)는 용융 유리소재가 하부금형(110)으로 투입될 때 최적의 성형온도를 유지하거나 제어함은 물론 상부금형(130)에 의한 성형 후 열이 급속도로 식으면서 발생될 수 있는 열적 스트레인(thermal strain)을 방지하기 위해 구비된다. 가열챔버(140)는 하부금형(110)에 용융 유리소재가 투입되는 영역(A)과, 상부금형(130)과 하부금형(110)에 의해 압착 성형이 이루어지는 영역(B)을 둘러싸는 공간을 제공하면서 일정 온도로 유지한다. 또한, 가열챔버(140)는 하부금형(110)이 예열되는 영역(D)을 일부 둘러싸는 공간을 제공할 수도 있다. 가열챔버(140)의 가열시스템은 전기, 가스, 중유 등을 이용한 가열방식이 될 수 있으며, 고주파 유도가열 및 할로겐 램프 등을 이용한 가열방식 또한 포함될 수 있다. 이때 가열챔버(140) 내의 온도는 유리소재의 어닐링 온도(annealing temperature)에 따라 다르게 적용될 수 있으며, 일반적으로 400℃∼800℃ 정도의 온도 범위를 갖는다. 이 온도범위에서 유리소재는 103∼1010포이즈(poise) 정도의 점도를 갖는다. 가열챔버(140)는 상기에서 설명하였던 하부금형(110)과 상부금형(130)을 둘러싸는 형태로 제작되며, 가열챔버(140) 안에서 용융 유리소재 투입(A 영역에서 이루어짐), 상부금형(130)에 의한 성형(B 영역에서 이루어짐) 공정이 진행되며, 상부금형(130)과 하부금형(110)으로부터 성형된 유리광학소자의 취출 공정(일반적으로 C 영역에서 이루어지나 성형이 완료된 후 B 영역에서 이루어질 수도 있음)이 이루어질 수도 있다. 가열챔버(140)의 상단부분은 용융 유리소재 투입부와 성형된 유리광학소자의 서냉로 이송부가 따로 마련되어 있을 수 있다. 또한 상기 가열챔버(140)는 냉각시스템을 포함할 수 있으며, 상기 냉각시스템은 수냉식, 가스냉각식일 수도 있으며, 공냉식, 유냉식일 수도 있다. The heating chamber 140 maintains or controls the optimum molding temperature when the molten glass material is introduced into the lower mold 110, as well as may be generated while the heat is rapidly cooled after molding by the upper mold 130. It is provided to prevent thermal strain. The heating chamber 140 has a space surrounding the region A into which the molten glass material is injected into the lower mold 110 and the region B through which the compression molding is performed by the upper mold 130 and the lower mold 110. Maintain constant temperature while providing. In addition, the heating chamber 140 may provide a space that partially surrounds the region D in which the lower mold 110 is preheated. The heating system of the heating chamber 140 may be a heating method using electricity, gas, heavy oil, and the like, and may also include a heating method using high frequency induction heating and a halogen lamp. At this time, the temperature in the heating chamber 140 may be applied differently depending on the annealing temperature (annealing temperature) of the glass material, and generally has a temperature range of about 400 ℃ to 800 ℃. In this temperature range, the glass material has a viscosity of about 10 3 to 10 10 poise. The heating chamber 140 is formed in a shape surrounding the lower mold 110 and the upper mold 130 described above, the molten glass material in the heating chamber 140 (made in the area A), the upper mold 130 The molding process is performed in the region B, and the extraction process of the glass optical elements formed from the upper mold 130 and the lower mold 110 is generally performed in the region C, but in the region B after the molding is completed. May be made). The upper portion of the heating chamber 140 may be provided separately from the molten glass material input portion and the slow cooling furnace transfer portion of the molded glass optical element. In addition, the heating chamber 140 may include a cooling system, and the cooling system may be water-cooled, gas-cooled, or air-cooled or oil-cooled.
상부금형(130)과 하부금형(110)에 의해 용융 유리소재가 성형되어 형성된 유리광학소자는 로봇(robot) 등의 취출수단을 이용하여 취출되어 서냉로로 이송된다. 상기 취출수단은 흡착 능력을 가진 로봇과 같은 취출 및 이송 장치일 수 있으며, 상기 취출수단에 의한 유리광학소자의 서냉로 이송은 자동화 방식으로 진행될 수 있다. 상기 취출수단은 유리광학소자를 직접 흡착하여 이송할 수 있게 구비되며, 취출수단은 유리광학소자의 크기와 모양에 따라 선택적으로 구성될 수 있다.The glass optical element formed by molding the molten glass material by the upper mold 130 and the lower mold 110 is taken out by a extraction means such as a robot and transferred to a slow cooling furnace. The take-out means may be a take-out and transfer device such as a robot with adsorption capacity, and the slow cooling furnace transfer of the glass optical element by the take-out means may be performed in an automated manner. The extraction means may be provided to directly adsorb and transport the glass optical element, and the extraction means may be selectively configured according to the size and shape of the glass optical element.
상기 서냉로는 챔버 형태로 구성되며, 성형 후 열이 빨리 식으면서 발생될 수 있는 수축과 광학적 특성, 외관 형태 변형 등을 막기 위하여 유리광학소자의 소재 특성에 따라 열을 제어할 수 있게 구비된다. 일반적으로 유리소재는 열전도성이 나쁘기 때문에 냉각됨에 따라 표면과 내부 사이에 큰 온도 차가 생겨 내부는 인장응력을 받게 되어 스트레인(strain)이 광학적 성질에 결정적인 나쁜 요인으로 작용되기 때문에 서냉로에서 서냉시킨다. 상기 서냉로는 성형된 유리광학소자의 단계적이고 균일한 서냉의 기능을 담당한다. 성형되어 형성된 유리광학소자가 급격하게 냉각될 경우에는 유리광학소자의 어느 한쪽 면에 투과율, 굴절율 및 외관이 불량해 질 수 있고 심지어 균열 등이 발생할 수도 있다. 서냉로는 유리광학소자의 성형 완료 점도인 1010∼1013 포이즈(poise)으로 광학적 성능에 영향을 미치지 않는 범위 내에서 천천히 서냉될 수 있도록 2단계 이상의 복수 단계, 예컨대 1단계 1013∼1014 포이즈 , 2단계 1014∼1015 포이즈, 3단계 1015∼1016 포이즈 등의 복수 단계로 서냉이 진행되게 구비되는 것이 바람직하다. 유리소재의 특성에 따라 각각 다른 온도 단계를 설정할 수 있으며, 정밀 서냉을 위해 다른 온도 단계를 추가할 수도 있다. The slow cooling furnace is configured in the form of a chamber, and is configured to control heat according to the material properties of the glass optical device in order to prevent shrinkage, optical properties, and appearance deformation that may occur while heat is rapidly cooled after molding. In general, glass materials have a poor thermal conductivity, and as a result of cooling, a large temperature difference is generated between the surface and the interior, and the interior is subjected to a tensile stress, so that the strain acts as a detrimental factor for the optical properties. The slow cooling furnace is responsible for the step and uniform slow cooling of the molded glass optical device. When the formed glass optical element is rapidly cooled, the transmittance, refractive index, and appearance are poor on either side of the glass optical element. Can be cracked or even cracked. Slow cooling furnace 10, the viscosity of the completed molding of the glass optical device10To 1013Two or more stages, such as stage 1, 10, to allow slow slow cooling within a range that does not affect optical performance by poise.13To 1014Poise, step 2 1014To 1015Poise, step 3 1015To 1016It is preferable that slow cooling progresses in multiple steps, such as poise. Different temperature stages can be set depending on the characteristics of the glass material, and other temperature stages can be added for precise slow cooling.
이하에서 본 발명의 바람직한 실시예에 따른 유리광학소자의 제조방법을 더욱 구체적으로 설명한다. Hereinafter, a method of manufacturing a glass optical device according to a preferred embodiment of the present invention will be described in more detail.
먼저, 유리용융부(150)를 이용하여 유리소재를 적절하고 균일한 온도로 용융시킨다. 유리소재는 유리용융부(150)의 용융로에 투입되고, 가열부에 의해 가열되어 유리소재가 용융이 이루어지게 된다. 상기 가열부의 가열방식은 전기, 가스, 중유, 고주파 유도가열, 할로겐 램프를 이용한 가열방식이 사용될 수 있다. 상기 가열부에 이해 가열되는 용융로의 온도는 1000℃∼2000℃의 범위를 가지는 것이 바람직하며, 가열부의 가열에 의한 용융 유리소재의 점도는 1∼10 포이즈(poise) 정도를 갖는 것이 바람직하다. 가열부에 의해 가열되는 온도는 용융 유리소재의 종류 및 특성에 따라 적절한 온도로 제어될 수 있다. First, the glass material is melted at an appropriate and uniform temperature by using the glass melting part 150. The glass material is put into the melting furnace of the glass melting part 150 and is heated by the heating part so that the glass material is melted. The heating method of the heating unit may be a heating method using electricity, gas, heavy oil, high frequency induction heating, halogen lamp. It is preferable that the temperature of the melting furnace heated by the said heating part has a range of 1000 degreeC-2000 degreeC, and the viscosity of the molten glass material by heating of a heating part is 1-10. It is desirable to have a poise degree. The temperature heated by the heating unit may be controlled to an appropriate temperature according to the type and characteristics of the molten glass material.
금형이송장치(120)를 이용하여 가열챔버(140) 내에서 하부금형(110)을 정량공급장치(160)의 하부로 이송시킨다. 하부금형(110)은 정량공급장치(160)의 하부로 이송되기 전에 예열부에서 핀 히터(pin heater) 등을 이용하여 예열(D 영역에서 이루어짐)될 수 있다. 하부금형(110)의 예열이 이루어짐에 따라 하부금형(110)의 표면과 용융 유리소재 간의 온도 차이가 작아지게 되고 따라서 온도 차에 의해 발생되는 내부 응력과 그에 따른 열적 스트레스를 최소화할 수 있는 장점이 있다. 금형이송장치(120)에 의해 하부금형(110)의 위치가 정밀하게 제어된다. 가열챔버(140)에 의해 하부금형(110)의 온도는 최적의 성형온도로 유지되며, 용융 유리소재가 하부금형(110)이 투입되게 되더라도 가열챔버(140)에서 성형 온도로 유지되고 있기 때문에 용융 유리소재가 일정한 성형 온도로 유지될 수 있어 열적 스트레인(thermal strain)의 발생을 억제할 수 있다. 가열챔버(140)의 가열방식은 전기, 가스, 중유, 고주파 유도가열, 할로겐 램프를 이용한 가열방식이 사용될 수 있다. 가열챔버(140) 내의 온도는 유리소재의 어닐링 온도(annealing temperature)에 따라 다르게 적용될 수 있으며, 일반적으로 400℃∼800℃ 정도의 온도 범위를 갖는 것이 바람직하며, 상기 온도 범위에서 용융 유리소재의 점도는 103 ∼ 1010 포이즈(poise)의 범위를 갖는다. The lower mold 110 is transferred to the lower portion of the metering feeder 160 in the heating chamber 140 using the mold transfer device 120. The lower mold 110 may be preheated (done in the D region) by using a pin heater or the like in the preheater before being transferred to the lower portion of the metering device 160. As the preheating of the lower mold 110 is performed, the temperature difference between the surface of the lower mold 110 and the molten glass material becomes smaller, and thus, an advantage of minimizing the internal stress caused by the temperature difference and the resulting thermal stress is obtained. have. The position of the lower mold 110 is precisely controlled by the mold transfer device 120. The temperature of the lower mold 110 is maintained at the optimum molding temperature by the heating chamber 140, and the molten glass material is melted because it is maintained at the molding temperature in the heating chamber 140 even if the lower mold 110 is introduced. The glass material can be maintained at a constant molding temperature to suppress the occurrence of thermal strain. The heating method of the heating chamber 140 may be a heating method using electricity, gas, heavy oil, high frequency induction heating, halogen lamp. The temperature in the heating chamber 140 may be differently applied according to the annealing temperature of the glass material, and generally has a temperature range of about 400 ° C. to 800 ° C., and the viscosity of the molten glass material in the temperature range. Has a range of 10 3 to 10 10 poise.
용융된 유리소재를 정량공급장치(160)를 이용하여 원하는 중량과 모양으로 제어하여 하부금형(110)에 용융 유리소재를 투입한다. 정량공급장치(160)를 통해 기포 유입을 방지하면서 스트로크(stroke) 제어를 통해 용융 유리소재의 토출을 조절하고 토출되는 용융 유리소재를 적절한 타이밍(timing)으로 절단하여 원하는 중량 및 형상으로 절단하여 용융 유리소재가 하부금형(110)에 투입되도록 한다. 절단부(166)를 통과한 용융 유리소재의 점도는 103 ∼ 105 포이즈(poise)의 범위를 갖는다. The molten glass material is injected into the lower mold 110 by controlling the molten glass material to a desired weight and shape using the metering supply device 160. Control the discharge of the molten glass material through stroke control while preventing the inflow of bubbles through the metering supply device 160, and cut the molten glass material discharged at an appropriate timing to cut to the desired weight and shape to melt The glass material is to be injected into the lower mold (110). The viscosity of the molten glass material passing through the cut portion 166 is in the range of 10 3 to 10 5 poise (poise).
금형이송장치(120)를 이용하여 가열챔버(140) 내에서 하부금형(110)을 상부금형(130)의 하부로 이송시킨다. 금형이송장치(120)에 의해 하부금형(110)의 위치가 정밀하게 제어된다. 상기 가열챔버(140)에 의해 하부금형(110)의 온도는 최적의 성형온도로 유지되며, 가열챔버(140)에서 성형 온도로 유지되고 있기 때문에 용융 유리소재는 일정한 성형 온도로 유지될 수 있어 열적 스트레인(thermal strain)의 발생을 억제할 수 있다. 가열챔버(140) 내의 온도는 유리소재의 어닐링 온도(annealing temperature)에 따라 다르게 적용될 수 있으며, 일반적으로 400℃∼800℃ 정도의 온도 범위를 갖는 것이 바람직하며, 상기 온도 범위에서 용융 유리소재는 103 ∼ 1010 포이즈(poise) 정도의 점도를 갖는다. The lower mold 110 is transferred to the lower portion of the upper mold 130 in the heating chamber 140 using the mold transfer device 120. The position of the lower mold 110 is precisely controlled by the mold transfer device 120. The temperature of the lower mold 110 is maintained at the optimum molding temperature by the heating chamber 140, and the molten glass material can be maintained at a constant molding temperature because it is maintained at the molding temperature in the heating chamber 140 It is possible to suppress the occurrence of strain (thermal strain). The temperature in the heating chamber 140 may be differently applied according to the annealing temperature of the glass material, and generally has a temperature range of about 400 ° C. to 800 ° C., wherein the molten glass material is 10 It has a viscosity of about 3-10 10 poise.
상부금형(130)을 하부금형(110)의 상부로 하강시켜 용융 유리소재를 압착 성형한다. 상기 상부금형(130)으로 압착 성형하는 단계는 가열챔버(140) 안에 구성된 하부금형(110)에 용융 유리소재가 투입되고 하부금형(110)이 바로 옆 상측에 위치한 상부금형(130) 밑으로 이동되어 상부금형(130)으로 프레스하는 형태로 진행된다. 상기 상부금형(130)은 하부금형(110) 위 측면에 위치하고 있으며, 하부금형(110)이 상부금형(130) 밑으로 이동되면 공압 실린더에 의해 하부로 하강하여 상부금형(130)이 하부금형(110)에 위치한 용융 유리소재를 가압하여 성형하게 된다. 성형 시 용융 유리소재의 점도는 108 ∼ 1010 포이즈(poise) 정도인 것이 바람직하며, 상부금형(130)의 가압 힘은 100kg/㎠ ∼ 500kg/㎠의 범위를 가지는 것이 바람직하다. The upper mold 130 is lowered to the upper portion of the lower mold 110 to press-mold the molten glass material. In the pressing molding step, the molten glass material is injected into the lower mold 110 formed in the heating chamber 140 and the lower mold 110 moves under the upper mold 130 located next to the upper mold 130. It proceeds in the form of pressing the upper mold 130. The upper mold 130 is located on the side of the lower mold 110, and when the lower mold 110 is moved below the upper mold 130, the upper mold 130 is lowered by the pneumatic cylinder to lower the upper mold 130 ( The molten glass material located at 110 is pressed to form. It is preferable that the viscosity of the molten glass material during molding is about 10 8 to 10 10 poise, and the pressing force of the upper mold 130 preferably has a range of 100 kg / cm 2 to 500 kg / cm 2.
상부금형(130)과 하부금형(110)에서 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송시킨다. 이에 대하여 더욱 구체적으로 설명한다. The glass optical elements formed and molded in the upper mold 130 and the lower mold 110 are taken out and transferred to the slow cooling furnace. This will be described in more detail.
상기 하부금형(110)과 상기 상부금형(130)에 의하여 용융 유리소재의 압착이 이루어지면 상부금형(130)은 공압 실린더 등을 이용하여 상부로 이동되어 용융 유리소재가 성형되어 형성된 유리광학소자의 상부가 개방되게 된다. When the molten glass material is pressed by the lower mold 110 and the upper mold 130, the upper mold 130 is moved upwards using a pneumatic cylinder to form a molten glass material to form a glass optical element. The top will be open.
상부금형(130)이 상부로 이동되면, 금형이송장치(120)에 의해 하부금형(110)은 취출부(C 영역)로 이동되게 된다. 상기 하부금형(110)이 취출부(C 영역)로 이동되면, 로봇(robot) 등의 취출수단을 이용하여 하부금형(110)으로부터 유리광학소자를 탈착하고 서냉로로 이송시킨다. 다른 예로서는 하부금형(110)이 취출부로 이동되지 않고 로봇(robot) 등의 취출수단을 이용하여 하부금형(110)으로부터 유리광학소자를 탈착하고 서냉로로 이송시킬 수도 있다. When the upper mold 130 is moved to the top, the lower mold 110 is moved to the take-out portion (C region) by the mold transfer device 120. When the lower mold 110 is moved to the extraction portion (region C), the glass optical element is detached from the lower mold 110 and transferred to the slow cooling furnace by using extraction means such as a robot. As another example, the lower mold 110 may be moved to the slow cooling furnace by removing the glass optical element from the lower mold 110 using a takeout means such as a robot without moving to the takeout portion.
유리광학소자의 서냉로 이송은 상부금형(130)과 하부금형(110)에 의한 성형에 의해 원하는 형태의 유리광학소자를 얻은 후 하부금형(110)이 원형의 이송로를 따라 취출부로 이동되면 이루어진다. 취출수단에 의한 유리광학소자의 서냉로 이송은 자동화 방식으로 진행될 수 있다. 유리광학소자의 이송은 흡착 능력을 가진 로봇과 같은 취출수단에 의해 유리광학소자를 직접 흡착하여 이송하는 방법 등이 있을 수 있으며, 유리광학소자 크기와 모양에 따라 선택적으로 구성할 수 있다.The slow cooling furnace transfer of the glass optical element is made by obtaining the glass optical element of a desired shape by molding by the upper mold 130 and the lower mold 110, and then moving the lower mold 110 to the extraction unit along the circular transfer path. . The slow cooling furnace transfer of the glass optical element by the takeout means can be carried out in an automated manner. The transfer of the glass optical device may include a method of directly absorbing and transporting the glass optical device by a extraction unit such as a robot having adsorption ability, and may be selectively configured according to the size and shape of the glass optical device.
취출수단에 의해 이송된 유리광학소자는 서냉로 투입구를 따라 서냉로로 이동된다. 이때 챔버 형태로 구성된 서냉로는 성형 후 열이 빨리 식으면서 발생될 수 있는 수축과 광학적 특성, 외관 형태 변형 등을 막기 위하여 유리광학소자의 소재 특성에 따라 열을 제어할 수 있게 구성된다. 일반적으로 유리소재는 열전도성이 나쁘기 때문에 냉각됨에 따라 표면과 내부 사이에 큰 온도 차가 생겨 내부는 인장응력을 받게 되어 스트레인(strain)이 광학적 성질에 결정적인 나쁜 요인으로 작용되기 때문에 서냉로에서 서냉시키는 것이 바람직하다. 성형 후 서냉부로 이송되기 전 유리광학소자의 광학적 성능의 변화를 최소화 하기 위해 일정 온도를 유지하게 하는 가열챔버(140)는 필요한 구성요소 중 하나이며, 서냉로는 성형된 유리광학소자의 단계적이고 균일한 서냉의 기능을 담당한다. 성형되어 형성된 유리광학소자가 급격하게 냉각될 경우에는 유리광학소자의 어느 한쪽 면에 투과율, 굴절율 및 외관이 불량해 질 수 있고 심지어 균열 등이 발생할 수도 있다. 서냉로는 유리광학소자의 성형 완료 점도인 1010∼1013 포이즈(poise)으로 광학적 성능에 영향을 미치지 않는 범위 내에서 천천히 서냉될 수 있도록 2단계 이상의 복수 단계, 예컨대 1단계 1013∼1014 포이즈 , 2단계 1014∼1015 포이즈, 3단계 1015∼1016 포이즈 등의 복수 단계로 서냉이 진행되게 하는 것이 바람직하다. 유리소재의 특성에 따라 각각 다른 온도 단계를 설정할 수 있으며, 정밀 서냉을 위해 다른 온도 단계를 추가할 수도 있다. The glass optical element transferred by the takeout means is moved to the slow cooling furnace along the slow cooling furnace inlet. In this case, the slow cooling furnace configured in the form of a chamber is configured to control heat according to the material characteristics of the glass optical device in order to prevent shrinkage, optical characteristics, and appearance deformation that may be generated while the heat cools quickly after molding. In general, glass materials have a poor thermal conductivity, and as a result of cooling, a large temperature difference is generated between the surface and the interior, so that the interior is subjected to tensile stress, so that the strain acts as a decisive factor in the optical properties. desirable. The heating chamber 140, which maintains a constant temperature in order to minimize the change in the optical performance of the glass optical device after being transferred to the slow cooling part after molding, is one of the necessary components, and the slow cooling furnace is a stepwise uniformity of the molded glass optical device. In charge of the slow cooling. When the formed glass optical element is rapidly cooled, the transmittance, refractive index, and appearance are poor on either side of the glass optical element. Can be cracked or even cracked. Slow cooling furnace 10, the viscosity of the completed molding of the glass optical device10To 1013Two or more stages, such as stage 1, 10, to allow slow slow cooling within a range that does not affect optical performance by poise.13To 1014Poise, step 2 1014To 1015Poise, step 3 1015To 1016It is preferable to make slow cooling advance in several steps, such as poise. Different temperature stages can be set depending on the characteristics of the glass material, and other temperature stages can be added for precise slow cooling.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment, A various deformation | transformation by a person of ordinary skill in the art within the scope of the technical idea of this invention is carried out. This is possible.
본 발명은, 성능과 크기에 상관없이 유리소재를 이용한 광학렌즈, 디스플레이 조명, 광통신, 광 융합기술 분야 등의 다양한 광학소자 산업에 폭넓게 적용될 수 있는 유리광학소자를 제조할 수가 있다.The present invention can produce a glass optical device that can be widely applied to various optical device industries such as optical lenses, display lighting, optical communication, light fusion technology, etc. using glass materials regardless of performance and size.

Claims (12)

  1. 유리용융부를 이용하여 유리소재를 용융시키는 단계; Melting a glass material using a glass melting part;
    일정 온도로 유지되는 가열챔버 내에서 하부금형을 금형이송장치를 이용하여 정량공급장치의 하부로 이송시키는 단계; Transferring the lower mold to the lower portion of the metering feeder using a mold transfer device in a heating chamber maintained at a constant temperature;
    용융된 유리소재를 정량공급장치를 이용하여 원하는 중량과 모양으로 제어하면서 하부금형에 용융 유리소재를 투입하는 단계; Injecting the molten glass material into the lower mold while controlling the molten glass material to the desired weight and shape using a metering supply device;
    금형이송장치를 이용하여 가열챔버 내에서 하부금형을 상부금형의 하부로 이송시키는 단계; Transferring the lower mold to the lower portion of the upper mold in the heating chamber by using a mold transfer device;
    가열챔버 내에서 상부금형을 하부금형의 상부로 하강시켜 용융 유리소재를 압착 성형하는 단계;Press molding the molten glass material by lowering the upper mold to the upper portion of the lower mold in the heating chamber;
    상부금형과 하부금형에서 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송시키는 단계; 및Taking out the glass optical elements formed and molded in the upper mold and the lower mold and transferring them to the slow cooling furnace; And
    상기 유리광학소자를 서냉시키는 단계를 포함하는 유리광학소자의 제조방법.A method of manufacturing a glass optical device comprising the step of slowly cooling the glass optical device.
  2. 제1항에 있어서, 상기 하부금형이 정량공급장치의 하부로 이송되기 전에, According to claim 1, Before the lower mold is transferred to the lower portion of the metering device,
    하부금형의 표면과 용융 유리소재 간의 온도 차에 의해 발생되는 내부 응력과 열적 스트레스를 최소화하기 위하여 상기 하부금형이 예열부에서 예열되는 단계를 더 포함하는 유리광학소자의 제조방법.And preheating the lower mold in the preheater to minimize internal stress and thermal stress caused by the temperature difference between the surface of the lower mold and the molten glass material.
  3. 제1항에 있어서, 상기 유리광학소자를 취출하여 서냉로로 이송시키는 단계는,The method of claim 1, wherein the extracting and transferring the glass optical device to a slow cooling furnace comprises:
    상기 상부금형을 상부로 이동시켜 상기 유리광학소자의 상부가 개방되는 단계; Moving the upper mold upward to open the upper portion of the glass optical device;
    상기 금형이송장치를 이용하여 상기 하부금형은 취출부로 이동시키는 단계; Moving the lower mold to a take-out part by using the mold transfer device;
    취출수단을 이용하여 하부금형으로부터 상기 유리광학소자를 탈착하는 단계; 및Detaching the glass optical element from the lower mold by using extraction means; And
    상기 취출수단을 이용하여 상기 유리광학소자를 서냉로로 이송시키는 단계를 포함하는 유리광학소자의 제조방법.And transferring the glass optical element to a slow cooling furnace by using the takeout means.
  4. 제1항에 있어서, 상기 유리광학소자를 취출하여 서냉로로 이송시키는 단계는,The method of claim 1, wherein the extracting and transferring the glass optical device to a slow cooling furnace comprises:
    상기 상부금형을 상부로 이동시켜 상기 유리광학소자의 상부가 개방되는 단계; Moving the upper mold upward to open the upper portion of the glass optical device;
    취출수단을 이용하여 하부금형으로부터 상기 유리광학소자를 탈착하는 단계; 및Detaching the glass optical element from the lower mold by using extraction means; And
    상기 취출수단을 이용하여 상기 유리광학소자를 서냉로로 이송시키는 단계를 포함하는 유리광학소자의 제조방법.And transferring the glass optical element to a slow cooling furnace by using the takeout means.
  5. 제1항에 있어서, 상기 용융 유리소재가 103 ∼ 1010 포이즈(poise) 범위의 점도를 갖게 상기 가열챔버 내의 온도는 400℃∼800℃의 온도 범위로 일정하게 유지되는 것을 특징으로 하는 유리광학소자의 제조방법.According to claim 1, wherein the molten glass material has a viscosity in the range of 10 3 ~ 10 10 poise (poise), the temperature in the heating chamber is maintained in a constant temperature range of 400 ℃ to 800 ℃ glass optical Method of manufacturing the device.
  6. 제1항에 있어서, 상기 상부금형은 용융 유리소재가 투입되는 위치의 하부금형 옆 상측에 위치되고, 상기 하부금형이 하부로 이동되면 하부로 하강하여 하부금형에 투입된 용융 유리소재를 가압하여 성형하고, 상부금형의 가압 힘은 100kg/㎠ ∼ 500kg/㎠의 범위를 갖는 것을 특징으로 하는 유리광학소자의 제조방법.According to claim 1, wherein the upper mold is located on the upper side next to the lower mold of the position where the molten glass material is injected, and when the lower mold is moved to the lower side is lowered to press and mold the molten glass material injected into the lower mold and , The pressing force of the upper mold is a method of manufacturing a glass optical element, characterized in that it has a range of 100kg / ㎠ to 500kg / ㎠.
  7. 사이클을 이루는 이동 경로를 따라 이동 가능하게 구비되는 하부금형; A lower mold provided to be movable along a movement path constituting a cycle;
    사이클을 이루는 이동 경로를 따라 상기 하부금형을 이동시키기 위한 금형이송장치;A mold transfer device for moving the lower mold along a movement path constituting a cycle;
    상하로 이동 가능하게 구비되며, 하부금형이 하부로 이송되면 하강하여 용융 유리소재를 압착 성형하기 위한 상부금형; 및An upper mold provided to be movable up and down, and lowered when the lower mold is transferred downward, the upper mold for compression molding the molten glass material; And
    상기 하부금형에 용융 유리소재가 투입되는 영역과, 상기 상부금형과 상기 하부금형에 의해 압착 성형이 이루어지는 영역을 둘러싸는 공간을 제공하면서 일정 온도로 유지하기 위한 가열챔버를 포함하는 유리광학소자 제조장치.Apparatus for manufacturing a glass optical device comprising a heating chamber for maintaining at a constant temperature while providing a space surrounding the region in which the molten glass material is injected into the lower mold and the region where the pressing mold is formed by the upper mold and the lower mold .
  8. 제7항에 있어서, The method of claim 7, wherein
    유리소재를 용융시키기 위한 유리용융부; 및Glass melting part for melting a glass material; And
    상기 유리용융부에 연결되어 있고 용융된 유리소재를 원하는 중량과 모양으로 제어하면서 하부금형에 용융 유리소재를 투입하기 위한 정량공급장치를 더 포함하는 유리광학소자 제조장치.And a quantitative supply device connected to the glass melting part and inputting the molten glass material to the lower mold while controlling the molten glass material to a desired weight and shape.
  9. 제7항에 있어서, The method of claim 7, wherein
    상기 상부금형과 상기 하부금형에 의해 압착 성형되어 형성된 유리광학소자를 취출하여 서냉로로 이송하기 위한 취출수단; 및Extraction means for taking out the glass optical element formed by compression molding by the upper mold and the lower mold and transferring the glass optical element to a slow cooling furnace; And
    상기 취출수단에 의해 이송된 유리광학소자를 서냉시키기 위한 서냉로를 더 포함하는 유리광학소자 제조장치.And a slow cooling furnace for slowly cooling the glass optical element transferred by the extraction means.
  10. 제7항에 있어서, 상기 하부금형은,The method of claim 7, wherein the lower mold,
    예열이 이루어지는 예열부, 정량공급장치를 통해 용융 유리소재가 하부금형에 투입되는 용융 유리소재 투입부, 상부금형이 위치한 하부로 이동되어 상부금형과 하부금형에 의한 압착에 의해 용융 유리소재가 성형되는 성형부, 및 용융 유리소재가 성형되어 형성된 유리광학소자를 서냉로로 이송시키기 위해 하부금형으로부터 유리광학소자를 취출하는 취출부를 사이클로 하는 이동 경로를 갖는 것을 특징으로 하는 유리광학소자 제조장치.The molten glass material is injected into the lower mold where the molten glass material is injected into the lower mold through the preheating part and the fixed quantity feeding device, which is preheated, and the molten glass material is molded by pressing the upper mold and the lower mold. An apparatus for manufacturing a glass optical element, comprising: a molding unit, and a movement path for circulating the glass optical element taken out from the lower mold to transfer the glass optical element formed by molding the molten glass material to the slow cooling furnace.
  11. 제7항에 있어서, 상기 가열챔버는 상기 용융 유리소재가 103 ∼ 1010 포이즈(poise) 범위의 점도를 갖게 400℃∼800℃의 온도 범위로 일정하게 유지될 수 있게 구비되는 것을 특징으로 하는 유리광학소자 제조장치.The method of claim 7, wherein the heating chamber is characterized in that the molten glass material is provided to be maintained constant in the temperature range of 400 ℃ to 800 ℃ having a viscosity of 10 3 ~ 10 10 poise (poise) range Glass optical device manufacturing apparatus.
  12. 제7항에 있어서, 상기 상부금형은 용융 유리소재가 투입되는 위치의 하부금형 옆 상측에 위치되고, 상기 하부금형이 하부로 이동되면 하부로 하강하여 하부금형에 투입된 용융 유리소재를 가압하여 성형하고, 압착 성형이 이루어지면 상부로 이동되며, 상부금형에 의해 가압되는 힘은 100kg/㎠ ∼ 500kg/㎠의 범위를 갖는 것을 특징으로 하는 유리광학소자 제조장치.The method of claim 7, wherein the upper mold is located on the upper side next to the lower mold of the position where the molten glass material is injected, and when the lower mold is moved to the lower side is lowered to press the molten glass material injected into the lower mold and molded , When the compression molding is made, the upper portion is moved to the upper side, the force pressed by the upper mold is a glass optical device manufacturing apparatus characterized in that it has a range of 100kg / ㎠ ~ 500kg / ㎠.
PCT/KR2010/003292 2010-04-02 2010-05-25 Apparatus for manufacturing a glass optical device, and method for manufacturing a glass optical device WO2011122733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0030613 2010-04-02
KR20100030613A KR101160092B1 (en) 2010-04-02 2010-04-02 Apparatus for manufacturing glass optical element and manufacturing method of glass optical element

Publications (1)

Publication Number Publication Date
WO2011122733A1 true WO2011122733A1 (en) 2011-10-06

Family

ID=44712406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003292 WO2011122733A1 (en) 2010-04-02 2010-05-25 Apparatus for manufacturing a glass optical device, and method for manufacturing a glass optical device

Country Status (2)

Country Link
KR (1) KR101160092B1 (en)
WO (1) WO2011122733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253052A (en) * 2020-04-09 2020-06-09 宜宾钢猫科技有限公司 Automatic glass lens hot-press molding system and molding method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101597521B1 (en) * 2014-03-28 2016-02-26 엠피닉스주식회사 Manufacturing device and method for micro-lens array in glass optical elements
WO2019240370A1 (en) * 2018-06-14 2019-12-19 주식회사 케이오씨솔루션 Method for automatically injecting monomer for aryl-based optical material into mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164737A (en) * 1987-12-18 1989-06-28 Nippon Sheet Glass Co Ltd Method for feeding molten glass
JPH06298536A (en) * 1993-04-09 1994-10-25 Olympus Optical Co Ltd Method for forming glass optical element and apparatus therefor
JP2001058837A (en) * 1999-08-18 2001-03-06 Matsushita Electric Ind Co Ltd Method for molding optical element and device for molding optical element
JP2001270724A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Optical lens and metal mold for forming the same
KR100811059B1 (en) * 2000-06-15 2008-03-06 글래스텍 인코포레이티드 System and method for forming glass sheet
KR100866844B1 (en) * 2008-04-29 2008-11-04 김한곤 Heat treat apparatus for tempering a thin glass
KR20080100629A (en) * 2007-05-14 2008-11-19 삼성테크윈 주식회사 Apparatus and method of handling die for forming lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007695B1 (en) * 1987-03-24 1995-07-14 씨. 터찬 매뉴엘 Combined hole making and threading tool
JPH0753586B2 (en) * 1992-02-01 1995-06-07 キヤノン株式会社 Optical element manufacturing method and its apparatus
JP3164404B2 (en) * 1992-02-21 2001-05-08 オリンパス光学工業株式会社 Molding apparatus and molding method for glass optical element
KR100839731B1 (en) * 2005-01-19 2008-06-19 호야 가부시키가이샤 Mold press molding mold and method for producing optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164737A (en) * 1987-12-18 1989-06-28 Nippon Sheet Glass Co Ltd Method for feeding molten glass
JPH06298536A (en) * 1993-04-09 1994-10-25 Olympus Optical Co Ltd Method for forming glass optical element and apparatus therefor
JP2001058837A (en) * 1999-08-18 2001-03-06 Matsushita Electric Ind Co Ltd Method for molding optical element and device for molding optical element
JP2001270724A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Optical lens and metal mold for forming the same
KR100811059B1 (en) * 2000-06-15 2008-03-06 글래스텍 인코포레이티드 System and method for forming glass sheet
KR20080100629A (en) * 2007-05-14 2008-11-19 삼성테크윈 주식회사 Apparatus and method of handling die for forming lens
KR100866844B1 (en) * 2008-04-29 2008-11-04 김한곤 Heat treat apparatus for tempering a thin glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253052A (en) * 2020-04-09 2020-06-09 宜宾钢猫科技有限公司 Automatic glass lens hot-press molding system and molding method
CN111253052B (en) * 2020-04-09 2023-10-31 宜宾钢猫科技有限公司 Automatic glass lens hot press molding system and molding method

Also Published As

Publication number Publication date
KR20110111184A (en) 2011-10-10
KR101160092B1 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
JP4466955B2 (en) Optical glass, glass gob for press molding, and optical element
US4629489A (en) Method of manufacturing pressed lenses
JP4560474B2 (en) Method and apparatus for casting glass blocks
US6615711B2 (en) Press-forming machine for glass
CN107311444B (en) Extrusion device and preparation method of optical fiber preform
WO2011122733A1 (en) Apparatus for manufacturing a glass optical device, and method for manufacturing a glass optical device
JP2002068757A (en) Method of producing glass molded product, apparatus of producing the same, and method of producing glass product
KR101205673B1 (en) Devices for manufacturing glass preforms, methods for manufacturing glass preforms, and method for manufacturing optical elements
US6141991A (en) Press molding apparatus for glass optical elements and molding method for glass optical elements
JP6739131B2 (en) Mold for molding optical component made of glass and method for manufacturing optical component made of glass using the mold
WO2018164286A1 (en) Method and device for forming curved plate glass
KR101199529B1 (en) Apparatus for ejecting molten glass and method for ejecting molten glass
JP3608768B2 (en) Glass optical element press molding apparatus and glass optical element molding method
CN102745883A (en) Device and method for melting and drawing quartz glass bars by actively pressurizing intermediate frequency furnace
JP2014094849A (en) Method and apparatus for producing glass molding
JP3860450B2 (en) Optical element molding method
JP4427031B2 (en) Glass lump heating apparatus, glass molded product manufacturing apparatus, glass molded product, and optical element manufacturing method
JP2011136882A (en) Molding device for optical element
KR102076983B1 (en) Method of manufacturing optical dummy lens
JPH0769650A (en) Production of optical element
US4298371A (en) Process and apparatus for making hollow glassware
JPH02196039A (en) Method for molding glass optical device
JP3897746B2 (en) Press molded body suction device, suction method, and optical element manufacturing method using the same
JPH03265528A (en) Method for molding optical element
JP3862416B2 (en) Optical element molding method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849055

Country of ref document: EP

Kind code of ref document: A1