WO2011122605A1 - Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold - Google Patents

Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold Download PDF

Info

Publication number
WO2011122605A1
WO2011122605A1 PCT/JP2011/057762 JP2011057762W WO2011122605A1 WO 2011122605 A1 WO2011122605 A1 WO 2011122605A1 JP 2011057762 W JP2011057762 W JP 2011057762W WO 2011122605 A1 WO2011122605 A1 WO 2011122605A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
release layer
layer
release
pattern
Prior art date
Application number
PCT/JP2011/057762
Other languages
French (fr)
Japanese (ja)
Inventor
宏太 鈴木
英雄 小林
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010187569A external-priority patent/JP5606826B2/en
Priority claimed from JP2011069290A external-priority patent/JP5798349B2/en
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020127028204A priority Critical patent/KR20130071426A/en
Priority to US13/638,493 priority patent/US20130084352A1/en
Publication of WO2011122605A1 publication Critical patent/WO2011122605A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a mold with a release layer for imprint, a method for producing a mold with a release layer for imprint, and a method for producing a copy mold.
  • the density of this magnetic medium is increasing, and the magnetic influence between adjacent recording tracks or recording bits cannot be ignored. For this reason, the conventional method has a limit in increasing the density.
  • patterned media In recent years, magnetic media called patterned media have been proposed. With patterned media, adjacent recording tracks or recording bits are magnetically separated by a card band made of grooves or non-magnetic material, reducing magnetic interference and improving signal quality, achieving higher recording density It is something to try.
  • a master mold also called a master
  • a copy mold also called a working replica
  • an imprint technique for producing a patterned medium by transferring a pattern (also referred to as a pattern) to a transfer substrate (here, a magnetic medium).
  • the imprint technique is a technique in which a pattern formed on a master mold is transferred once or a plurality of times to a transfer object, and is replicated on a final transfer object (product) for mass production.
  • the master mold itself provided with a fine pattern is not used. Instead, the master mold (primary mold) pattern is transferred to another transferred substrate, and a secondary mold is formed and copied, or the secondary mold pattern is further transferred to another transferred substrate.
  • a tertiary mold that has been transferred to a pattern and copied to form a pattern, or a copy mold that has been copied to a higher order is used. Even if these copy molds are deformed, broken, or contaminated, if the master mold is safe, a copy mold can be produced from the master mold again.
  • a plurality of imprint apparatuses are arranged and operated in parallel. Therefore, it is necessary to prepare and prepare a plurality of copy molds on which a predetermined identical fine pattern is formed for the plurality of imprint apparatuses.
  • a master mold or a copy mold to be an original mold, hereinafter referred to simply as a mold
  • a pattern is formed is placed on a transferred substrate. It is necessary to transfer the pattern by pressing against the pattern forming material (resist layer or simply referred to as resist), and then release the mold from the resist layer, that is, the substrate to be transferred. Furthermore, it is necessary to repeat the above steps continuously to produce a large number of copy molds (working replicas).
  • a release agent compound is applied to the mold surface in advance to form a release layer, and then release properties are applied. It is known to perform pattern transfer.
  • the mold By providing the mold with a release layer, it is possible to improve the release property between the release layer and the resist layer while having sufficient adhesion between the mold and the release layer.
  • the release from the resist layer, that is, the transfer substrate can be performed smoothly and at a low release pressure. As a result, it is possible to reduce the damage to the mold, the damage (defect) of the transferred pattern, or the damage to the mold and the imprint apparatus due to the mold release failure or failure.
  • Patent Document 2 describes a technique using a surface modifier composed of an organic silicone compound having a linear perfluoropolyether structure.
  • Patent Document 3 describes a silicone-based release agent compound having an organopolysiloxane structure as a basic structure. Specifically, polysiloxane containing unmodified or modified silicone oil and trimethylsiloxysilicic acid. And silicone acrylic resins.
  • JP 2008-310944 A Special table 2008-537557 JP 2010-006870 A
  • perfluoropolyether compounds and silicone compounds are generally used as release agent compounds for nanoimprinting.
  • release agent compounds generally, only one terminal group of the molecular chain of the release agent compound is a functional group for chemically bonding to the mold surface on which the release layer is to be provided.
  • a modified silane group is often used as this functional group, and these undergo dehydration condensation due to silanol bonds on the mold surface.
  • the molecular chain of the release agent compound is adsorbed on the mold surface.
  • the portion where the modified silane group is not provided that is, the portion of perfluoroether group or silicone reduces the surface free energy on the surface of the release layer contacting the pattern forming material. .
  • the mold can be released from the pattern forming material, that is, the transferred substrate, smoothly and with a low release pressure.
  • the modified silane group at the end of the molecular chain is in close contact with the substrate and has a strong adhesion.
  • a mold layer can be formed.
  • the modified silane group at the end of the release agent compound is highly reactive and easily reacts with water in the atmosphere other than the mold surface.
  • agglomeration due to the release agent compound itself may occur.
  • the release agent compound agglomerates, the agglomerated portions become protrusions or raised defects having a considerable physical height and width as compared to the surrounding non-aggregated portions.
  • it is difficult to smoothly and repeatedly release the mold and the pattern forming material, that is, the substrate to be transferred, that is, stably transfer the pattern. There is a risk of affecting the quality of the final transferred object (final product).
  • the modified silane group at the end of the molecular chain is adsorbed or bonded to the mold. Further, as shown in FIG. 11 (a), the modified silane group is provided only at one end of the molecular chain, and therefore, from the modified silane group to the other end of the molecular chain, that is, the entire molecular chain is a release layer. This is considered to be oriented in the thickness direction.
  • the thickness of the release layer depends on the total length of the molecular chain, and when the pattern on the mold having the same size as the total length of the molecular chain is transferred and formed, the dimension of the pattern transferred to the resist layer And it can be expected to adversely affect the accuracy of the shape. Specifically, as shown in FIG. 11 (b), when the size of the predetermined pattern and the length of the molecular chain of the release agent compound are about the same, the separation having a thickness about the size of the pattern. In the mold layer, there is a possibility that a predetermined pattern size and shape to be transferred to the resist layer may be greatly changed, and the pattern transfer accuracy may be deteriorated.
  • the perfluoroether group and the silicone portion reduce the surface free energy of the release layer that is in direct contact with the resist layer.
  • the mold and the resist layer that is, the transfer substrate, can be released smoothly and with a low release pressure. Therefore, in order to obtain a good release capability, it is considered preferable to reduce the surface free energy of the release layer surface in contact with the pattern forming material as much as possible.
  • FIG. 10B according to the comparative example to be performed).
  • the predetermined pattern size and shape are not accurately transferred in the portion, which results in a transfer defect. As a result, the quality of the final transfer target (product) may be affected.
  • An object of the present invention has been made in consideration of the above-mentioned circumstances, and satisfactorily fills the pattern forming material into the pattern recesses on the mold while providing sufficiently high releasability.
  • An object of the present invention is to provide a mold with a release layer for imprinting that realizes high pattern transfer, and a method for manufacturing the same. Moreover, it is providing the manufacturing method of a copy mold using the said mold with the mold release agent for imprints.
  • a release layer in the mold with a release layer, is provided in a mold for transferring a predetermined concavo-convex pattern to a pattern forming material by an imprint method.
  • the main chain of the release agent compound (molecule) contains a fluorocarbon, and the release agent compound has at least two adsorption functional groups adsorbed or bonded to the mold.
  • the mold with a release layer is characterized in that the bond energy between the adsorption functional group and the mold is larger than the bond energy between the adsorption functional groups in the molecular chain of the release agent compound.
  • the adsorption functional group is a functional group capable of hydrogen bonding to the mold.
  • the adsorptive functional group is a hydroxyl group, a carboxyl group, an ester group, or any combination thereof. It is characterized by.
  • the adsorptive functional groups are provided at both ends of the molecular chain of the release agent compound constituting the release layer. It is characterized by that.
  • the molecular chain of the release agent compound constituting the release layer has no side chain.
  • the fluorocarbon includes (C m F 2m O) n [m is an integer and 1 ⁇ m ⁇ 7, n is the (C m F 2m O) to integers molecular weight of n is 500 or more and 6000 or less] are included one or a plurality of types, characterized by.
  • the release layer has a heat treatment temperature for the release layer and a surface free energy of the release layer.
  • the relationship includes a region where the value of the surface free energy is constant even when the heat treatment temperature is changed, and a region where the value of the surface free energy increases or decreases with the level of the heat treatment temperature, and the mold release after the heat treatment
  • the layer is characterized by having a region where the value of the surface free energy increases as the heat treatment temperature decreases.
  • the mold is made of a quartz substrate provided with a concavo-convex pattern corresponding to a predetermined pattern. To do.
  • the ninth aspect of the present invention provides In a mold with a release layer in which a release layer is provided in a mold for transferring a predetermined concavo-convex pattern to a pattern forming material by an imprint method, the main chain in the molecular chain of the release agent compound constituting the release layer (C m F 2m O) n [m is an integer and 1 ⁇ m ⁇ 7, and n is an integer such that the molecular weight of (C m F 2m O) n is 500 or more and 6000 or less].
  • the release agent compound has at least two hydroxyl groups as an adsorption functional group for the mold, the hydroxyl groups are provided at both ends of the release agent compound, and the release layer
  • the surface free energy value is substantially constant even when the heat treatment temperature is changed.
  • a region in which the value of the surface free energy increases or decreases with the level of the heat treatment temperature, and the release layer after the heat treatment has a region in which the value of the surface free energy increases with a decrease in the heat treatment temperature. It is the mold with a release layer characterized.
  • a tenth aspect of the present invention is a method for manufacturing a mold with a release layer according to the first aspect, wherein a release agent compound is applied to the mold, and then the release layer is heated by heat treatment. It is a method for producing a mold with a release layer, characterized by having a step of optimizing the surface energy of the release layer by changing the surface free energy.
  • An eleventh aspect of the present invention is characterized in that, in the invention described in the tenth aspect, the method includes a step of performing a heat treatment at 25 ° C. or more and 250 ° C. or less.
  • the method includes a step of rinsing the release layer after the heat treatment.
  • a thirteenth aspect of the present invention is a method for producing a copy mold from the mold with a release layer according to the first aspect, the step of providing a release layer on the mold, and the production of the copy mold.
  • the pattern forming material on the mold is satisfactorily filled with a satisfactory mold release property, with a lower mold release pressure, without hindrance, and the pattern is formed stably and continuously with high accuracy. Can be transferred.
  • FIG. 1 It is a cross-sectional schematic diagram for demonstrating the process of manufacturing a copy mold using the mold with a release layer of FIG. It is a conceptual diagram for demonstrating the mode of the molecular chain at the time of heat-processing the mold with a release layer which concerns on this embodiment. It is a figure which shows the result of having measured the surface roughness using the atomic force microscope about the mold with a release layer obtained by the Example and the comparative example.
  • (A) And (b) is an Example
  • (c) And (d) is a bird's-eye view which shows the surface roughness of the mold with a release layer in a comparative example.
  • (A) is an Example
  • (b) is a photograph according to a comparative example.
  • (a) is a conceptual diagram for explaining how the pattern size is changed by providing a release layer
  • (b) is a mold in the case where a silane group exists only at one end of a molecular chain. It is a conceptual diagram for demonstrating the mode of adsorption
  • the present inventors have studied various release layers that have imprint resistance but can suppress the occurrence of defects due to self-aggregation.
  • the modified silane group of the conventional silicone release agent contributes to the adhesiveness (that is, adsorption or bonding) between the mold and the release layer, and at the same time, self-aggregation. We paid attention to that it contributed to
  • the inventors of the present invention have the following relationship between the modified silane group (that is, the functional group adsorbed to the mold) and the binding energy between the mold and the adsorbed functional group during self-aggregation. Pay attention. As a result, if the bond that causes the adsorption of the mold and the adsorption functional group is more stable than the bond between the adsorption functional groups at the time of self-aggregation, mold release becomes a problem during imprinting. It has been found that self-aggregation of the agent compound can be suppressed.
  • the present inventors paid attention to the fact that the conventional modified silane group as shown in FIG. 11B is provided only at one end of the release agent compound that forms the release layer for imprint. . And by having a plurality of the above-mentioned adsorptive functional groups, as shown in FIG. 1, the dimensional accuracy of the transfer pattern can be improved so that the thickness of the release layer is not controlled by the total length of the molecular chain of the release layer. I found.
  • the present inventors formed a good pattern on the resist layer, contrary to the conventional release agent compound that the surface free energy of the release layer on the mold should be reduced as much as possible. In order to achieve this, it has been found that it is necessary to perform optimization mainly to increase the surface free energy appropriately.
  • the surface free energy of the release layer is intentionally changed by intentionally changing the surface free energy of the release layer in the part that is in direct contact with the resist layer by raising or lowering the temperature of the heat treatment after application of the release agent compound. It was found that the resist could be satisfactorily filled into the recesses of the concavo-convex pattern on the mold through the release layer for imprinting (see FIG. 10 (a) according to an example described later)).
  • FIG. 2 is a schematic sectional view.
  • FIG. 3 is a schematic sectional view.
  • the mold includes a master mold for imprinting, a primary copy mold transferred from the master mold, and a secondary copy mold, a secondary copy mold, a tertiary copy mold, and the like.
  • a mold 30 is prepared, which is an original pattern of the uneven pattern transferred to the copy mold 20.
  • the mold 30 may be made of any material as long as it can be used as an imprint mold, but has a light-transmitting property with respect to exposure light used in the optical nanoimprint method (for example, exposure light is ultraviolet light). In this case, it is preferable to use quartz or the like, since the irradiation of the later-described exposure can be performed from the back surface of the mold 30 (that is, the side where the pattern is not formed). If the substrate 1 for copy mold manufacture has translucency, exposure can also be performed from the substrate side for copy mold manufacture (that is, the back surface side where pattern transfer is not formed).
  • the mold 30 may be made of a material that is opaque to the exposure light (for example, a silicon wafer when the exposure light is ultraviolet light).
  • the mold release layer 31 is not provided directly on the substrate, but the mold release layer 31 is provided on the layer of the other functional material with respect to the mold 30 provided with a layer made of another functional material on the substrate. It may be provided.
  • a substrate made of quartz also referred to as a quartz substrate
  • unevenness corresponding to a predetermined uneven pattern is formed is used for the mold 30 will be described.
  • the predetermined concavo-convex pattern provided on the quartz substrate may be on the micron order, but in the present embodiment, it is targeted on the nano order (for example, a groove pattern having a width of about 10 nm).
  • the mold release layer 31 is formed by apply
  • the resist layer 4 provided on the copy mold manufacturing substrate 1 shown in FIG. 3 to be described later and the mold 30 (directly the release layer 31) are brought into contact with each other.
  • the mold 30 can be easily separated (released) from the resist layer 4 with a smooth and low release pressure.
  • damage to the mold 30, damage to the transferred pattern (defect) due to defective release or failure, or damage to the mold and the imprint apparatus can be reduced.
  • the release layer 31 will be described in detail.
  • the compound constituting the release layer is referred to as “release agent compound” or simply “compound”.
  • the structure of the release agent compound in the present invention will be described in detail.
  • the release agent compound constituting the release layer 31 according to this embodiment includes a main chain portion that contributes to release and an adsorption functional group for adsorbing or binding to the mold 30.
  • the main chain in the molecular chain of the release agent compound contains a fluorocarbon.
  • the surface free energy of the release layer 31 that is in direct contact with the resist layer 4 provided on the substrate 1 for producing a copy mold is reduced by fluorine in the fluorocarbon. As a result, release can be performed smoothly and with a low release pressure.
  • the fluorocarbon preferably includes one kind or more kinds (C m F 2m O) n .
  • the whole molecular chain becomes a random coil shape, and the flexibility of the molecular chain can be improved.
  • the thickness of the release layer depends on the total length of the molecular chain due to the orientation of the molecular chain in the mold thickness direction.
  • the flexibility of the molecular chain is improved, and the degree of orientation of the molecular chain in the thickness direction of the release layer 31 is relaxed. As a result, the thickness of the release layer 31 is reduced as compared with the conventional case.
  • m is preferably an integer and 1 ⁇ m ⁇ 7. If m is 1 or more, the flexibility is exhibited moderately, the distance between the molecular chains after adsorbing to the mold 30 can be appropriately close, and the molecular chains composed of moderately dense fluorocarbons, The surface free energy of the release layer 31 can be sufficiently reduced. If m is 7 or less, the rigidity is moderately exhibited, so that the layer thickness can be prevented from depending on the total length of the molecular chain. In order to balance such adhesion and rigidity of molecular chains, it is particularly preferable that m is 3 or 4.
  • n is preferably an integer such that the molecular weight of (C m F 2m O) n is 500 or more and 6000 or less. (C m F 2m O) If the molecular weight of n is 500 or more, the functional chains of the releasing agent compound are not easily aggregated due to the short molecular chain of the release agent compound. Further, the intermolecular force in the direction in which the molecular chains after adsorbing or bonding to the surface of the mold 30 are brought close to each other can be maintained, and the surface free energy of the release layer 31 is obtained by the molecular chains composed of moderately dense fluorocarbons. Can be sufficiently reduced. In addition, when the molecular weight is 6000 or less, the effect of reducing the layer thickness of the release layer 31 is not offset by the molecular chain being too long. As a specific value of n, 6 or 7 is preferable.
  • (C m F 2m O) n may be a random copolymer in a plurality of types or a block copolymer.
  • An example is a random copolymer of (CF 2 O) and (C 2 F 4 O).
  • the release agent compound constituting the release layer 31 has at least two adsorption functional groups for the mold 30.
  • the release layer 31 is required to release the resist layer 4 provided on the copy mold substrate and the mold smoothly and with a low release pressure.
  • the mold release layer 31 can maintain the imprint durability when repeating physical contact and mold release with the resist layer 4, that is, the surface free energy value of the mold release layer and the thickness of the mold release layer. Desired.
  • the release layer 31 needs to have sufficient adhesion to the mold 30.
  • the release layer 31 is peeled off from the mold during imprinting and transferred to the surface of the resist layer 4, and the above-described imprint durability is deteriorated. In addition, a transfer defect may occur, which may affect the pattern accuracy and quality of the copy mold.
  • two or more adsorption functional groups can be used for one molecular chain in the release agent compound even if the mold 30 and one adsorption functional group cannot be firmly adsorbed. If a group is provided, adsorption points for the mold 30 can be provided at two or more locations of one molecular chain, and as a result, adhesion between the mold 30 and the release layer 31 can be enhanced.
  • the adsorptive functional groups are portions close to both ends of the molecular chain of the release agent compound constituting the release layer 31 (FIG. 1 ( b)), more preferably provided at both ends (FIG. 1 (a)). If the adsorptive functional group is at both ends of the molecular chain or at a portion close to both ends, the molecular chain of the release agent compound can be prevented from being oriented substantially linearly in the thickness direction of the release layer, As a result, the thickness of the release layer can be greatly reduced as compared with the conventional case. In addition, the adhesiveness between the mold 30 and the release layer 31 can be improved by firmly bonding to the mold 30 at two distant locations in the molecular chain.
  • the adsorptive functional groups are present in portions close to both ends in the molecular chain of the release agent compound constituting the release layer 31. That is, when the adsorptive functional group is adsorbed on the mold 30, it is presumed that the main chain becomes a random coil shape as described above. However, as shown in FIG. 1C, an interaction such as van der Waals force acts between the main chain and the mold 30, and a physical force in the direction toward the mold 30 is applied to the main chain. Inferred to work.
  • the adsorption functional group is provided in the portion close to both ends of the molecular chain as described above, as shown in FIG. 1 (d), the adsorption functional group is further added to the central portion of the molecular chain rather than that portion. It is preferable to have. By doing so, the adsorption point or bonding point on the mold surface in the molecular chain of the release agent compound can be increased, and as a result, the thickness of the release layer can be further reduced.
  • the release agent compound has a total of the adsorbing functional groups. And preferably 3 or 4.
  • the release agent compound includes a release agent compound in which the binding energy that causes the adsorption between the adsorptive functional group and the mold is greater than the binding energy of the adsorptive functional groups in the molecular chain of the release agent compound. Select. As described above, in the imprint method, self-aggregation of the release agent compound is one of the factors that deteriorate the accuracy or quality of the transfer pattern.
  • the adsorbing functional group is preferably a hydroxyl group, a carboxyl group, an ester group, or any combination thereof. This is because the functional group is less likely to cause self-aggregation than the modified silane group. Even if the adhesion (bonding force) of one adsorbing functional group to the mold 30 is lower than that of the modified silane group, as described above, in this embodiment, two adsorbing functional groups are added to one molecular chain. More than one are provided, and sufficient adhesion to the mold 30 can be ensured. In view of the binding energy, that is, improvement of adhesion and suppression of self-aggregation, the adsorptive functional group is preferably a hydroxyl group.
  • the said adsorption functional group adsorb
  • the said adsorption functional group consists of a hydroxyl group, a carboxyl group, an ester group, or any combination of these, it exists on the mold 30 It is considered that the water and the adsorbing functional group undergo dehydration condensation to form a strong bond.
  • the mold 30 is a quartz substrate, oxygen on the surface of the quartz substrate and the adsorption functional group cause hydrogen bonding, and as a result, the adhesion between the mold 30 and the release layer 31 is further improved.
  • the mold release layer comprised with this mold release agent compound may contain the well-known substance which can be added to a mold release agent other than the above compounds.
  • a release agent compound as described above is applied onto the mold 30 in order to form and provide the release layer 31 on the mold 30.
  • this coating method include a dipping method, a spin coating method, an ink jet method, and a spray method.
  • the immersion time is preferably 5 minutes or longer. Within this time range, the mold release agent compound can be sufficiently uniformly applied to the mold 30. A sufficient time can be secured for the adsorptive functional group to adsorb to the mold 30.
  • the pulling speed after immersion is preferably 80 to 200 mm / min. If the speed is less than or equal to the upper limit, the uniformity during the application of the release agent compound is not impaired by the fluctuation of the liquid level. Moreover, if the speed is equal to or higher than the lower limit, it is possible to suppress a situation in which the amount of the drawn liquid is reduced due to the meniscus force.
  • the mold 30 is heat-treated at 25 ° C. to 250 ° C. This is because the release layer 31 is densified by removing the solvent contained in the release agent compound (solution) and the adhesion between the mold 30 and the release layer 31 is improved. Within this temperature range, the release layer can be densified and adhesion can be improved without thermal decomposition of the release agent compound. Furthermore, by performing the heat treatment in the above temperature range, it is possible to easily adsorb or bond two or more adsorption functional groups to the mold 30 as shown in FIG.
  • the adhesiveness between the mold 30 and the mold release layer 31 can further be improved, and it can prevent that the thickness of a mold release layer depends on the full length of the molecular chain of a mold release agent compound.
  • Specific examples of the heat treatment means include a clean oven and a hot plate.
  • the adsorptive functional group of the present embodiment is a hydroxyl group
  • the heat treatment temperature There is a region where the value of the surface free energy is constant even if the value of the surface temperature changes, and a region where the value of the surface free energy increases as the heat treatment temperature changes (specifically, as the heat treatment temperature decreases). included.
  • the surface free energy of the release layer that is in direct contact with the resist layer is lowered, there may be a problem that the resist 4 is not satisfactorily filled in the recesses of the uneven pattern on the mold.
  • the surface free energy of the release layer 31 is set to the composition of the resist 4 so that the fine concavo-convex pattern on the mold 30 is easily and reliably filled with the heat treatment. Can be optimized according to
  • a release layer whose surface free energy changes substantially by heat treatment or the like can satisfactorily and reliably fill a fine uneven pattern on the mold 30 regardless of the composition of the resist 4. be able to. Furthermore, there is a possibility that even the filling speed of the resist 4 into the pattern on the mold 30 can be adjusted.
  • the release layer 31 after the heat treatment has a desired surface free energy in a region where the value of the surface free energy increases as the heat treatment temperature decreases.
  • the surface free energy that has decreased too much can be increased appropriately by lowering the heat treatment temperature from 170 ° C. Then, according to the composition of the resist 4 to be used, the resist 4 is reliably, satisfactorily and quickly filled into the fine concavo-convex pattern on the mold 30 through the release layer 31 without impairing the release property. can do.
  • the solvent of the release agent compound (solution) remaining in the release layer can be removed, the release layer 31 is further densified, and the mold 30 and the release layer 31 It is possible to improve the adhesion. Moreover, if it is this temperature range, the film thickness of a mold release layer can be maintained, without generating the thermal decomposition of a mold release agent compound, ie, a favorable mold release property can be maintained.
  • Rinse treatment After performing the heat treatment as described above, a rinse treatment is performed on the mold 30 on which the release layer 31 is formed. This rinsing process is performed to wash away and remove the excess release agent compound that has not been adsorbed or bonded to the surface of the mold 30.
  • the release agent compound that is not sufficiently adsorbed or bonded to the mold 30 is also washed away from the mold 30.
  • the release agent compound can be adsorbed or bonded to the surface of the mold 30 as much as possible.
  • the heat treatment or depending on the temperature
  • the above is the step of forming the release layer 31 on the mold 30.
  • a process for producing a copy mold by the optical imprint method using the mold 30 with the release layer 31 will be described with reference to FIG.
  • the substrate 1 for the copy mold 20 is prepared.
  • the substrate 1 may be any material that can be used as the copy mold 20, and examples thereof include quartz, sapphire, and a silicon wafer.
  • a quartz substrate having translucency with respect to the exposure light used in the optical nanoimprint method may be used.
  • the shape of the substrate it may be a disc shape (wafer shape), or may be a rectangle, a polygon, or a semicircle.
  • a quartz wafer having the same shape as the mold 30 will be described as the substrate 1 in order to manufacture the copy mold 20.
  • the substrate 1 that has been appropriately polished and cleaned is introduced into a sputtering apparatus.
  • a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas to form the conductive layer 2 made of tantalum-hafnium alloy, and the hard mask layer 7 is formed on the substrate 1.
  • a lower layer (conductive layer 2) was formed.
  • the material of the conductive layer 2 may be one used as a known conductive layer.
  • a film composition containing Ta as a main component can be mentioned.
  • TaHf, TaZr, TaHfZr, etc. are suitable.
  • the conductive layer 2 made of tantalum-hafnium (TaHf) will be described.
  • a chromium (Cr) target is continuously sputtered with a mixed gas of argon and nitrogen to form chromium nitride.
  • Layer 3 was formed and formed as an upper layer (antioxidation layer 3 for conductive layer) in hard mask layer 7.
  • the material of the antioxidant layer 3 is preferably chromium nitride (CrN) from the viewpoint that it is not necessary to use oxygen in sputtering at the time of film formation, but any other composition can be used as the antioxidant layer. .
  • CrN chromium nitride
  • molybdenum, chromium oxide (CrO), SiC, amorphous carbon, or Al may be used.
  • the antioxidant layer 3 made of chromium nitride (CrN) will be described.
  • a hard mask layer 7 having the tantalum-hafnium alloy layer 2 as a lower layer and the chromium nitride layer 3 as an upper layer is formed on the substrate 1.
  • the “hard mask layer” in the present embodiment is not limited to the above combination, and includes a single layer or a plurality of layers, and a protrusion corresponding to a desired concavo-convex pattern formed in a copy mold is the substrate.
  • the substrate As long as it can protect the portion to be formed on the substrate 1 (transfer substrate) and can serve as an etching mask for groove processing (recess formation) on the substrate 1, the material, material, composition It doesn't matter.
  • the antioxidant layer 3 in the hard mask layer 7 may also serve as the conductive layer 2. In that case, a conductive layer such as TaHf can be omitted.
  • substrate 1 is called copy mold production blanks in this embodiment.
  • the copy mold manufacturing blanks are appropriately washed and subjected to a dehydration baking process, and then, as shown in FIG. 3C, a resist 4 for optical nanoimprinting is applied and formed on the hard mask layer 7. Thereafter, heat treatment may be appropriately performed as necessary.
  • the resist 4 for photo-nanoimprint include a photo-curable resin, particularly an ultraviolet curable resin.
  • the resist 4 can be applied to the imprinting method used and is suitable for an etching process to be performed later, that is, has sufficient etching selectivity with respect to the hard mask layer. Does not matter.
  • the thickness of the resist layer 4 at this time is equal to or greater than the thickness at which the resist 4 remains until various etchings are completed at a portion to be a mask (that is, a portion to be a convex (projection) portion on the copy mold). It is preferable that
  • an adhesion auxiliary layer may be provided on the hard mask layer 7 in advance before the resist layer 4 is provided. By providing the adhesion auxiliary layer, it is possible to prevent the resist layer 4 from being peeled off during the imprint process or the etching process and the pattern from being lost.
  • a mold 30 on which a fine uneven pattern and a release layer 31 are formed is placed on the resist layer 4, and then the resist 4 is placed on the mold 30. Let stand until the uneven pattern is completely filled. At this time, if the resist layer 4 is substantially liquid, the mold 30 may be placed on the resist layer 4 and allowed to stand, and it is not necessary to press strongly. When the resist layer 4 is substantially solid, the mold 30 is pressed relatively strongly against the resist layer 4 until the resist layer 4 is completely filled in the fine uneven pattern of the mold 30. Put.
  • the resist layer 4 is cured by exposure using an ultraviolet light irradiation device while keeping the mold 30 and the resist layer 4 (that is, the quartz wafer for producing a copy mold) in close contact with each other.
  • the irradiation with ultraviolet light is usually performed from the back surface of the mold 30 (that is, the side where the pattern is not formed).
  • the substrate 1 side is irradiated. You may go.
  • grooves or the like for alignment marks may be provided on both or one side of the mold 30 and the substrate to be transferred.
  • the resist 4 filled in the fine uneven pattern of the mold 30 is cured, and a fine uneven pattern is formed in the resist layer 4.
  • the mold 30 and the resist 4 are separated. As shown in FIG. 3E, the fine concavo-convex pattern which has been released and transferred to the resist 4 is exposed.
  • the remaining resist layer on the chromium nitride layer 3 and in the concave portions of the fine concavo-convex pattern formed on the resist layer 4 is formed by oxygen, argon, fluorine-based gas. These are removed by ashing using plasma of the mixed gas. In this way, as shown in FIG. 3F, a resist pattern corresponding to a desired fine uneven pattern is formed. A groove is formed on the substrate 1 in the concave portion of the fine concavo-convex pattern transferred and formed on the resist layer 4.
  • the substrate 1 having the resist pattern formed on the surface is introduced into a dry etching apparatus. Then, first etching with a gas containing a chlorine-based gas is performed in an atmosphere substantially free of oxygen gas. At this time, it is preferable to perform etching with the reducing gas together with the reducing gas from the viewpoint of preventing oxidation of the conductive layer 2.
  • under an atmosphere that does not substantially contain oxygen gas means “under an atmosphere in which the amount of inflow is such that anisotropic etching can be performed even if oxygen gas flows in during etching”.
  • it is an atmosphere in which the inflow amount of oxygen gas is 5% or less of the entire inflow gas.
  • a fine pattern is formed on the hard mask layer 7 by performing a second etching using a fluorine-based gas in the same dry etching apparatus.
  • the substrate 1 made of quartz is etched using the hard mask layer 7 as a mask, and grooves corresponding to a fine pattern are formed on the substrate 1 as shown in FIG. Before and after that, the resist layer is removed with an alkali solution or an acid solution.
  • fluorine-based gas used here examples include C x F y (for example, CF 4 , C 2 F 6 , C 3 F 8 ), CHF 3 , a mixed gas thereof, or a rare gas (He, Ar) as an additive gas thereto. , Xe, etc.).
  • the groove processing corresponding to the fine pattern is applied to the substrate 1 made of quartz, and the hard mask layer 7 having the fine pattern remains on the portion other than the groove of the substrate 1 made of quartz. To do. Thus, the mold 10 before removal of the remaining hard mask layer 7 is obtained.
  • the hard mask layer 7 remaining on the mold 10 before removal of the remaining hard mask layer is subsequently dry-etched by the same method as the first etching for the mold 10 before removal of the remaining hard mask layer thus manufactured.
  • the removal process is performed, and thereby an imprint mold 20 in which a fine concavo-convex pattern is formed on the surface of the substrate 1 made of quartz is manufactured (FIG. 3I).
  • etchings may be wet etching, and other etchings may be dry etching, or all etchings may be wet etching or dry etching. Any combination of wet etching and dry etching may be used as long as a desired fine uneven pattern can be formed.
  • etching is performed.
  • additional etching may be added between or before and after the first and second etchings depending on the constituent material of the copy mold manufacturing blanks.
  • Mold regeneration In order to newly manufacture a copy mold, a regeneration process is performed on the mold 30 after imprinting. Specifically, the mold 30 is washed with sulfuric acid / hydrogen peroxide to remove the release layer 31. Thereafter, washing or drying is performed as appropriate. Then, a release layer 31 is newly provided on the mold 30 by applying a release agent again.
  • an SiC substrate resistant to chlorine gas used for dry etching for the hard mask layer 7 may be mentioned.
  • a silicon wafer can also be used. That is, an SiO 2 layer is first provided on the silicon wafer 1. By providing the hard mask layer 7 on the SiO 2 layer, even if the hard mask layer 7 is removed with chlorine gas, the SiO 2 layer protects the silicon wafer 1 from chlorine gas. Then, the SiO 2 layer is removed with buffered hydrofluoric acid, that is, a mixed acid composed of ammonium fluoride and hydrofluoric acid.
  • a silicon wafer can also be used to produce a thermal imprint mold. Further, those having a SiO 2 layer as a working layer on the silicon wafer can be used as a substrate. At this time, since a groove is provided in the SiO 2 layer which is a processed layer, it is preferable to make the SiO 2 layer thicker than when the silicon wafer 1 is used. In the present embodiment, description will be made using a disk-shaped SiC substrate.
  • the conductive layer 2 and the chromium nitride layer 3 made of TaHf are formed on the substrate 1.
  • a resist for thermal imprinting is applied to the hard mask layer 7 in the blanks, and a resist layer 4 is formed to produce blanks with resist used for manufacturing the copy mold 20 in the present embodiment.
  • the resist for thermal imprinting a thermoplastic resin that hardens when cooled can be used, but any resin suitable for an etching process to be performed later may be used.
  • this resin is soft enough to form a fine pattern to be transferred when a mold as an original mold is pressed under heating. This is because when the mold is pressed onto the resist, the resist is easily deformed according to the fine pattern of the mold 30 and the release layer 31, and the fine pattern can be transferred with high accuracy.
  • the fine pattern of the mold 30 is transferred to the resist layer 4.
  • the residual film layer of the resist on the hard mask layer 7 is removed by ashing, and then the copy mold 20 for the imprint master mold is completed by the process described in the first embodiment.
  • the surface energy of the portion in contact with the resist layer provided on the copy mold manufacturing substrate can be reduced by fluorine in the fluorocarbon constituting the release layer.
  • the mold and the transfer substrate can be released smoothly and with a low release pressure.
  • the mold by using a plurality of adsorption functional groups for the mold, it can be adsorbed or bonded to the mold at two locations of one molecular chain, and as a result, the adhesion between the mold and the release layer can be improved. it can.
  • the binding energy that is the basis for the adsorption or binding between the adsorptive functional group and the mold is greater than the binding energy between the adsorptive functional groups in the molecular chain of the release agent compound.
  • self-aggregation by the release agent compound can be suppressed, and adhesion between the mold and the release layer can be improved.
  • a mold release agent compound whose surface free energy value is appropriately changed by changing the heat treatment temperature of the release layer can be satisfactorily filled with a resist without impairing the release property. Transfer pattern defects due to poor filling can be reduced. Therefore, the pattern can be transferred with high accuracy in the imprint process, and as a result, the accuracy and quality of the transfer target (for example, copy mold) are improved, and the quality of the final product obtained thereby is also improved.
  • the copy mold itself made of quartz produced by using the optical imprint method in this way can be used for any of thermal imprint, room temperature imprint, and optical imprint.
  • the present embodiment can be suitably applied to patterned media manufactured using optical nanoimprint technology.
  • a mold 30 made of a quartz substrate provided with a periodic structure having a depth of 30 nm, a recess (groove) of 15 nm, a protrusion (projection) of 35 nm, and a pitch of 50 nm was used.
  • the mold 30, VERTREL XF-UP (VERTREL is a registered trademark: manufactured by Mitsui-Dupont Fluorochemicals Co.)
  • the following compound was diluted to 0.5 wt% with ((C 3 F 6 O) n molecular weight: 500 or more and 6000 5) for 5 minutes. Thereafter, the mold 30 was pulled up from the solution of the release agent compound at a speed of 120 mm / min. Thus, the release agent compound was applied by the dip method.
  • quartz wafer 1 a wafer-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm, hereinafter referred to as quartz wafer 1) was used as the substrate 1 for producing the copy mold 20 in this example (FIG. 3A).
  • a chromium target was sputtered with a mixed gas of argon and nitrogen to form a chromium nitride layer 3 with a thickness of 2.5 nm (FIG. 3B).
  • a hard mask layer 7 composed of the conductive layer 2 and the chromium nitride layer 3 was formed on the quartz wafer 1.
  • an adhesion aid was spin-coated by spin coating on the hard mask layer 7 formed on the quartz wafer 1.
  • the rotation speed was set to 3000 rpm and the quartz wafer 1 was rotated for 60 seconds.
  • the quartz wafer 1 was heat-treated on a hot plate at 160 ° C. for 60 seconds.
  • an ultraviolet photocurable resist 4 for photo-nanoimprinting (PAK-01 manufactured by Toyo Gosei Co., Ltd.) was applied to a thickness of 45 nm by the same spin coating method to form a resist layer 4 (FIG. 3C).
  • the mold 30 is placed on the quartz wafer 1 on which the ultraviolet light curable resist layer 4 is formed by coating, and left still for 30 seconds. Then, after the filling of the resist 4 into the uneven pattern on the mold 30 was completed, the resist 4 was cured by ultraviolet exposure for 20 seconds (FIG. 3D). Thereafter, the mold 30 and the quartz wafer 1 were pulled apart to release the mold. Thus, the fine concavo-convex pattern on the mold 30 was transferred to the resist layer 4 (FIG. 3E).
  • the remaining film layer of the resist layer 4 on which the concavo-convex pattern is transferred and formed on the hard mask layer 7 is removed by ashing using plasma of oxygen or argon gas, so as to correspond to the concave portion of the desired fine concavo-convex pattern.
  • the hard mask layer 7 to be exposed was exposed (FIG. 3F).
  • the quartz wafer 1 on which the hard mask layer 7 having the resist pattern from which the residual film layer has been removed is introduced into a dry etching apparatus, and dry etching is performed while simultaneously introducing Cl 2 gas and Ar gas. It was. Then, a hard mask layer 7 having a fine pattern was formed (FIG. 3G).
  • a copy mold 20 according to the present example that is, a copy mold made of the quartz wafer 1 corresponding to the fine concavo-convex pattern on the mold 30 (irregularities were reversed) ( FIG. 3 (i)).
  • ⁇ Comparative example> In order to compare with the above-described examples, in the comparative example, a compound having a modified silane group (product name: OPTOOL (registered trademark) manufactured by Daikin) is used as the mold release agent compound, and the mold release agent is used in the mold 30. After coating, heat treatment was performed at 25 ° C. to 190 ° C. Except this, a mold with a release layer and a copy mold were produced in the same manner as in the example.
  • OPTOOL registered trademark
  • FIGS. 5A and 5B are measurement results showing the surface of the mold with a release layer in Examples, and FIG. 5A is a measurement result showing the surface of the mold with a release layer before imprinting.
  • FIGS. 5C and 5D are measurement results showing the surface of the mold with a release layer in the comparative example, and FIG. 5C is a measurement result showing the surface of the mold with the release layer before imprinting.
  • D is a measurement result showing the surface of the mold with a release layer after imprinting once.
  • the surface free energy cannot be substantially changed even if the heat treatment is changed, and the surface of the release layer 31 depends on the composition of the resist 4.
  • the free energy optimization process could not be performed.
  • the resist layer 4 made of an ultraviolet photocurable resin on the quartz wafer 1 on which the hard mask layer is formed is brought into contact with the mold with a release layer obtained in the examples and comparative examples by the optical imprint apparatus. I let you. The photograph at that time is shown in FIG. 10A (example) and FIG. 10B (comparative example).
  • this mold with a mold release layer is a sample heat-processed at 170 degreeC, after apply
  • the resist 4 could be reliably filled over the entire surface of the mold 30 without filling defects.

Abstract

Provided is a mold having a release layer, in which the release layer is disposed in the mold which transfers a specific uneven pattern onto a molding material to be patterned by means of the imprinting method, wherein the main chain of the molecular chains of a compound contained in the release layer contains fluorocarbons, the molecular chains of the compound have at least two adsorption functional groups that are adsorbed or bonded to the mold, the bonding energy in the adsorption functional groups that becomes the source of adsorption or bonding of the adsorption functional groups to the mold is greater than the bonding energy between one adsorption functional group and another adsorption functional group in the molecular chains of the compound, and the surface free energy of the release layer is optimized by means of heating.

Description

インプリント用離型層付きモールド及びインプリント用離型層付きモールドの製造方法、コピーモールドの製造方法Mold with release layer for imprint, method for manufacturing mold with release layer for imprint, method for manufacturing copy mold
  本発明はインプリント用離型層付きモールド及びインプリント用離型層付きモールドの製造方法、並びに、コピーモールドの製造方法に関する。 The present invention relates to a mold with a release layer for imprint, a method for producing a mold with a release layer for imprint, and a method for producing a copy mold.
  従来、ハードディスク等で用いられる磁気メディアにおいては、磁性粒子を微細化し、磁気ヘッド幅を極小化し、情報が記録されるデータトラック間を狭めて高密度化を図るという手法が用いられてきた。 2. Description of the Related Art Conventionally, in magnetic media used in hard disks and the like, a method has been used in which magnetic particles are miniaturized, the magnetic head width is minimized, and data tracks on which information is recorded are narrowed to increase the density.
  その一方で、この磁気メディアは高密度化がますます進み、隣接記録トラック間あるいは記録ビット間の磁気的影響が無視できなくなっている。そのため、従来手法だと高密度化に限界がきている。 On the other hand, the density of this magnetic medium is increasing, and the magnetic influence between adjacent recording tracks or recording bits cannot be ignored. For this reason, the conventional method has a limit in increasing the density.
  近年、パターンドメディアと呼ばれる磁気メディアが提案されている。このパターンドメディアとは、隣接する記録トラックまたは記録ビットを溝または非磁性体からなるカードバンドで磁気的に分離し、磁気的干渉を低減して信号品質を改善し、より高い記録密度を達成しようとするものである。 In recent years, magnetic media called patterned media have been proposed. With patterned media, adjacent recording tracks or recording bits are magnetically separated by a card band made of grooves or non-magnetic material, reducing magnetic interference and improving signal quality, achieving higher recording density It is something to try.
  このパターンドメディアを量産する技術として、マスターモールド(原盤ともいう)、又は、このマスターモールドを元のモールドとして一回又は複数回転写して複製したコピーモールド(ワーキングレプリカともいう)が有する微細な凹凸パターン(パターンともいう)を被転写基板(ここでは、磁気メディア)に転写することによりパターンドメディアを作製する、インプリント技術(又は、ナノインプリント技術という)が知られている。インプリント技術は、マスターモールドに形成されたパターンを、被転写体に一回または複数回転写し、最終的な被転写体(生産物)に複製して量産する技術である。 As a technique for mass-producing this patterned media, the fine unevenness of a master mold (also called a master) or a copy mold (also called a working replica) that is duplicated by transferring the master mold one or more times as the original mold There is known an imprint technique (or nanoimprint technique) for producing a patterned medium by transferring a pattern (also referred to as a pattern) to a transfer substrate (here, a magnetic medium). The imprint technique is a technique in which a pattern formed on a master mold is transferred once or a plurality of times to a transfer object, and is replicated on a final transfer object (product) for mass production.
 ここで、マスターモールドを用意する手法としては様々な技術が知られている。その中でも、所定のパターンを有するように基板そのものをエッチング加工し、この基板そのものをモールドとする技術が知られている(例えば、特許文献1参照)。 Here, various techniques are known for preparing a master mold. Among them, a technique is known in which the substrate itself is etched so as to have a predetermined pattern, and this substrate itself is used as a mold (see, for example, Patent Document 1).
  ここで挙げたインプリント用モールドにおいては、一般に、微細パターンが設けられたマスターモールドそのものは用いられない。その代わりに、このマスターモールド(1次のモールド)のパターンを別の被転写基板に転写しパターン形成して複製した2次のモールドや、この2次のモールドのパターンを更に別の被転写基板に転写しパターン形成して複製した3次のモールド、あるいはより高次に複製したコピーモールドが用いられる。
  これらのコピーモールドが変形・破損し、あるいは汚染されたとしても、マスターモールドが無事ならば、再びマスターモールドからコピーモールドを作製することができる。
In the imprint mold mentioned here, generally, the master mold itself provided with a fine pattern is not used. Instead, the master mold (primary mold) pattern is transferred to another transferred substrate, and a secondary mold is formed and copied, or the secondary mold pattern is further transferred to another transferred substrate. A tertiary mold that has been transferred to a pattern and copied to form a pattern, or a copy mold that has been copied to a higher order is used.
Even if these copy molds are deformed, broken, or contaminated, if the master mold is safe, a copy mold can be produced from the master mold again.
  また、例えば上述のパターンドメディアを実際に大量に生産するには、複数のインプリント装置を並列に配備して稼働させる。従って、これら複数のインプリント装置のために、所定同一の微細パターンが形成されたコピーモールドを複数枚作製して用意する必要がある。そして、この複数枚のコピーモールドを作製するには、上述のように、パターンが形成されたマスターモールド(又は元型となるコピーモールド、以降、これらのモールドは単にモールドという)を被転写基板上の被パターン形成材料(レジスト層、または単にレジスト、ともいう)に押し付けてパターン転写し、その後、レジスト層、即ち被転写基板からモールドを離型する必要がある。さらには、上記の工程を連続して繰り返し、複数大量のコピーモールド(ワーキングレプリカ)を作製する必要がある。 For example, in order to actually produce the above-mentioned patterned media in large quantities, a plurality of imprint apparatuses are arranged and operated in parallel. Therefore, it is necessary to prepare and prepare a plurality of copy molds on which a predetermined identical fine pattern is formed for the plurality of imprint apparatuses. In order to produce a plurality of copy molds, as described above, a master mold (or a copy mold to be an original mold, hereinafter referred to simply as a mold) on which a pattern is formed is placed on a transferred substrate. It is necessary to transfer the pattern by pressing against the pattern forming material (resist layer or simply referred to as resist), and then release the mold from the resist layer, that is, the substrate to be transferred. Furthermore, it is necessary to repeat the above steps continuously to produce a large number of copy molds (working replicas).
  ここで、レジスト層から、即ち被転写基板から、モールドを円滑に離型するために、モールド表面に、予め離型剤化合物を塗布して離型層を形成し、離型性を施してからパターンの転写を行うことが知られている。 Here, in order to release the mold smoothly from the resist layer, that is, from the substrate to be transferred, a release agent compound is applied to the mold surface in advance to form a release layer, and then release properties are applied. It is known to perform pattern transfer.
 モールドに離型層を設けることにより、モールドと離型層との間では十分な密着性を有しつつ、離型層とレジスト層との間では離型性を向上させることができ、モールドとレジスト層との、即ち被転写基板との、離型を円滑かつ低い離型圧で行うことができる。その結果、離型不良あるいは障害に起因するモールドの損傷、転写されたパターンの損傷(欠陥)、あるいはまた、モールド及びインプリント装置への損傷を低減することができる。 By providing the mold with a release layer, it is possible to improve the release property between the release layer and the resist layer while having sufficient adhesion between the mold and the release layer. The release from the resist layer, that is, the transfer substrate can be performed smoothly and at a low release pressure. As a result, it is possible to reduce the damage to the mold, the damage (defect) of the transferred pattern, or the damage to the mold and the imprint apparatus due to the mold release failure or failure.
  離型剤化合物としては、例えば特許文献2には、直鎖パーフルオロポリエーテル構造を有する有機シリコーン化合物からなる表面改質剤を用いる技術が記載されている。 As a release agent compound, for example, Patent Document 2 describes a technique using a surface modifier composed of an organic silicone compound having a linear perfluoropolyether structure.
  また、特許文献3には、オルガノポリシロキサン構造を基本構造とするシリコーン系離型剤化合物について記載されており、具体的には、未変性又は変性シリコーンオイル、トリメチルシロキシケイ酸を含有するポリシロキサン、シリコーン系アクリル樹脂等が挙げられている。 Patent Document 3 describes a silicone-based release agent compound having an organopolysiloxane structure as a basic structure. Specifically, polysiloxane containing unmodified or modified silicone oil and trimethylsiloxysilicic acid. And silicone acrylic resins.
特開2008-310944号公報JP 2008-310944 A 特表2008-537557号公報Special table 2008-537557 特開2010-006870号公報JP 2010-006870 A
  特許文献2及び3に記載されているように、ナノインプリント用離型剤化合物としてパーフルオロポリエーテル化合物やシリコーン系化合物が一般的に使用されている。 As described in Patent Documents 2 and 3, perfluoropolyether compounds and silicone compounds are generally used as release agent compounds for nanoimprinting.
 これらの離型剤化合物では、一般に、離型剤化合物の分子鎖の一方の末端基のみが、離型層を設けるべきモールド表面と化学結合させるための官能基となっている。また、この官能基には変性シラン基が用いられることが多く、これらはモールド表面においてシラノール結合により脱水縮合を起こす。そして、この離型剤化合物の分子鎖はモールド表面へ吸着する。 In these release agent compounds, generally, only one terminal group of the molecular chain of the release agent compound is a functional group for chemically bonding to the mold surface on which the release layer is to be provided. In addition, a modified silane group is often used as this functional group, and these undergo dehydration condensation due to silanol bonds on the mold surface. The molecular chain of the release agent compound is adsorbed on the mold surface.
  一方、離型剤化合物では、変性シラン基が設けられていない部分、即ち、パーフルオロエーテル基やシリコーンの部分が、被パターン形成材料と接触する離型層表面の表面自由エネルギーを低下させている。その結果、モールドと被パターン形成材料との、即ち被転写基板との、離型を円滑かつ低い離型圧で行える。 On the other hand, in the release agent compound, the portion where the modified silane group is not provided, that is, the portion of perfluoroether group or silicone reduces the surface free energy on the surface of the release layer contacting the pattern forming material. . As a result, the mold can be released from the pattern forming material, that is, the transferred substrate, smoothly and with a low release pressure.
 ここで、特許文献2および3のような一方の末端に変性シラン基が設けられている離型剤化合物では、分子鎖の末端の変性シラン基が基板と密着し、強固な密着性を有する離型層を形成することができる。 Here, in a release agent compound in which a modified silane group is provided at one end as in Patent Documents 2 and 3, the modified silane group at the end of the molecular chain is in close contact with the substrate and has a strong adhesion. A mold layer can be formed.
 しかしその反面、離型剤化合物の末端の変性シラン基は反応性が高く、モールド表面以外の雰囲気中の水と反応しやすい。その結果、離型剤化合物自体による凝集が起こる恐れがある。このような離型剤化合物の凝集が起こると、周囲の非凝集部に対比して、凝集部分は相当の物理的高さと幅をもつ突起あるいは隆起状の欠陥となる。その結果、インプリントを行う際に、モールドと被パターン形成材料との、即ち被転写基板との、離型を円滑かつ繰り返して行うこと、即ち安定してパターンを転写することが困難となり、ひいては最終的な被転写体(最終生産物)の品質に影響を与える恐れがある。 However, on the other hand, the modified silane group at the end of the release agent compound is highly reactive and easily reacts with water in the atmosphere other than the mold surface. As a result, agglomeration due to the release agent compound itself may occur. When such release agent compound agglomerates, the agglomerated portions become protrusions or raised defects having a considerable physical height and width as compared to the surrounding non-aggregated portions. As a result, when performing imprinting, it is difficult to smoothly and repeatedly release the mold and the pattern forming material, that is, the substrate to be transferred, that is, stably transfer the pattern. There is a risk of affecting the quality of the final transferred object (final product).
  上述のとおり、例えば特許文献2および3のような、一方の末端に変性シラン基が設けられている離型剤化合物では、分子鎖の末端の変性シラン基がモールドに吸着または結合している。また、図11(a)に示すように変性シラン基が分子鎖の一方の末端にしか設けられていないため、変性シラン基から分子鎖のもう一方の末端まで、すなわち分子鎖全体が離型層の厚さ方向に配向していると考えられる。そうなると、離型層の厚さは分子鎖の全長に依存し、分子鎖の全長と同等程度の大きさのモールド上のパターンを転写して形成するときに、レジスト層に転写されるパターンの寸法及び形状の精度に悪影響を与えることが予想できる。具体的には、図11(b)に示すように、所定のパターンの大きさと離型剤化合物の分子鎖の長さが同程度である場合、パターンの大きさと同程度の厚さを有する離型層では、レジスト層に転写されるべき所定のパターン寸法及び形状が大きく変化してしまう可能性があり、パターンの転写精度が劣化する恐れがある。 As described above, in a release agent compound in which a modified silane group is provided at one end as in Patent Documents 2 and 3, for example, the modified silane group at the end of the molecular chain is adsorbed or bonded to the mold. Further, as shown in FIG. 11 (a), the modified silane group is provided only at one end of the molecular chain, and therefore, from the modified silane group to the other end of the molecular chain, that is, the entire molecular chain is a release layer. This is considered to be oriented in the thickness direction. In that case, the thickness of the release layer depends on the total length of the molecular chain, and when the pattern on the mold having the same size as the total length of the molecular chain is transferred and formed, the dimension of the pattern transferred to the resist layer And it can be expected to adversely affect the accuracy of the shape. Specifically, as shown in FIG. 11 (b), when the size of the predetermined pattern and the length of the molecular chain of the release agent compound are about the same, the separation having a thickness about the size of the pattern. In the mold layer, there is a possibility that a predetermined pattern size and shape to be transferred to the resist layer may be greatly changed, and the pattern transfer accuracy may be deteriorated.
 さらにまた、離型剤化合物では、上述のように、パーフルオロエーテル基やシリコーンの部分が、レジスト層と直に接触する離型層の表面自由エネルギーを低下させている。その結果、モールドとレジスト層との、即ち被転写基板との、離型を円滑かつ低い離型圧で行える。そのため、良好な離型能力を得るためには、被パターン形成材料と接触する離型層表面の表面自由エネルギーをできる限り低下させることが好ましいと考えられている。 Furthermore, in the release agent compound, as described above, the perfluoroether group and the silicone portion reduce the surface free energy of the release layer that is in direct contact with the resist layer. As a result, the mold and the resist layer, that is, the transfer substrate, can be released smoothly and with a low release pressure. Therefore, in order to obtain a good release capability, it is considered preferable to reduce the surface free energy of the release layer surface in contact with the pattern forming material as much as possible.
  ところが、被パターン形成材料と直に接触する離型層の表面自由エネルギーを低下させた場合、今度はモールド上の凹凸パターンの特に凹部にレジストが良好に充填されないという問題が生じる場合がある(後述する比較例に係る図10(b)参照)。 However, if the surface free energy of the release layer that is in direct contact with the material to be patterned is reduced, there may be a problem that the resist is not satisfactorily filled in the recesses of the uneven pattern on the mold. FIG. 10B according to the comparative example to be performed).
  被パターン形成材料がモールドの微細な凹凸パターンの凹部に良好に充填されなければ、当該部分においては所定のパターン寸法及び形状が正確に転写されず、ひいては転写欠陥となる。またその結果、最終的な被転写体(生産物)の品質に影響を与える恐れがある。 If the pattern forming material is not satisfactorily filled into the concave portions of the fine concavo-convex pattern of the mold, the predetermined pattern size and shape are not accurately transferred in the portion, which results in a transfer defect. As a result, the quality of the final transfer target (product) may be affected.
  本発明の目的は、上述の事情を考慮してなされたものであり、十分に高い離型性を備えながらも、モールド上のパターン凹部への被パターン形成材料の充填を良好に行い、精度の高いパターン転写を実現するインプリント用離型層付きモールド、及びその製造方法を提供することにある。また、当該インプリント用離型剤付きモールドを用いた、コピーモールドの製造方法を提供することにある。 The object of the present invention has been made in consideration of the above-mentioned circumstances, and satisfactorily fills the pattern forming material into the pattern recesses on the mold while providing sufficiently high releasability. An object of the present invention is to provide a mold with a release layer for imprinting that realizes high pattern transfer, and a method for manufacturing the same. Moreover, it is providing the manufacturing method of a copy mold using the said mold with the mold release agent for imprints.
  本発明の第1の態様は、インプリント法により所定の凹凸パターンを被パターン形成材料に転写するためのモールドに離型層が設けられた離型層付きモールドにおいて、前記離型層を構成する離型剤化合物(分子)の主鎖にはフルオロカーボンが含まれ、前記離型剤化合物はモールドに対して吸着または結合している吸着官能基を少なくとも2個以上有し、前記吸着官能基において、前記吸着官能基と前記モールドとの結合エネルギーが前記離型剤化合物の分子鎖における吸着官能基同士の結合エネルギーよりも大きいこと、を特徴とする離型層付きモールドである。
 本発明の第2の態様は、前記第1の態様に記載の発明において、前記吸着官能基は前記モールドに対して水素結合可能な官能基であること、を特徴とする。
 本発明の第3の態様は、 第1又は第2の態様に記載の発明において、前記吸着官能基はヒドロキシル基、カルボキシル基、エステル基、または、これらのうちのいずれかの組み合わせであること、を特徴とする。
 本発明の第4の態様は、第1ないし第3の態様のいずれかに記載の発明において、前記吸着官能基が、前記離型層を構成する離型剤化合物の分子鎖の両末端に設けられていること、を特徴とする。
 本発明の第5の態様は、第1ないし第4の態様のいずれかに記載の発明において、前記離型層を構成する離型剤化合物の分子鎖は側鎖を有さないこと、を特徴とする。
 本発明の第6の態様は、第1ないし第5の態様のいずれかに記載の発明において、前記フルオロカーボンには(C2mO)[mは整数かつ1≦m≦7であり、nは、前記(C2mO)の分子量が500以上かつ6000以下となる整数]が1種類または複数種類含まれること、を特徴とする。
  本発明の第7の態様は、第1ないし第6の態様のいずれかに記載の発明において、前記離型層は、前記離型層に対する加熱処理温度と前記離型層の表面自由エネルギーとの関係において、加熱処理温度を変化させても表面自由エネルギーの値が一定である領域と、加熱処理温度の高低と共に表面自由エネルギーの値が増減する領域とが含まれ、かつ加熱処理後の離型層は、加熱処理温度低下と共に表面自由エネルギーの値が増加する領域を有すること、を特徴とする。
 本発明の第8の態様は、第1ないし第7の態様のいずれかに記載の発明において、前記モールドは、所定のパターンに対応する凹凸パターンが設けられた石英基板からなること、を特徴とする。
 本発明の第9の態様は、
インプリント法により所定の凹凸パターンを被パターン形成材料に転写するためのモールドに離型層が設けられる離型層付きモールドにおいて、前記離型層を構成する離型剤化合物の分子鎖における主鎖には(C2mO)[mは整数かつ1≦m≦7であり、nは、前記(C2mO)の分子量が500以上かつ6000以下となる整数]が1種類または複数種類含まれ、前記離型剤化合物はモールドに対する吸着官能基としてヒドロキシル基を少なくとも2個以上有し、前記離型剤化合物の両末端に前記ヒドロキシル基が設けられており、前記離型層は、前記離型層に対する加熱処理温度と前記離型層の表面自由エネルギーとの関係において、加熱処理温度を変化させても表面自由エネルギーの値がほぼ一定である領域と、加熱処理温度の高低と共に表面自由エネルギーの値が増減する領域とが含まれ、かつ、加熱処理後の離型層は加熱処理温度の低下と共に表面自由エネルギーの値が増加する領域を有すること、を特徴とする離型層付きモールドである。
 本発明の第10の態様は、第1の態様に記載の離型層付きモールドの製造方法であって、前記モールドに対して離型剤化合物を塗布した後、加熱処理によって前記離型層の表面自由エネルギーを変化させることにより、前記離型層の表面エネルギーの最適化を行う工程を有すること、を特徴とする離型層付きモールドの製造方法である。
 本発明の第11の態様は、第10の態様に記載の発明において、25℃以上250℃以下にて加熱処理を行う工程を有すること、を特徴とする。
 本発明の第12の態様は、第10又は第11に記載の態様に記載の発明において、前記加熱処理後に離型層に対してリンス処理を行う工程を有することを特徴とする。
 本発明の第13の態様は、第1の態様に記載の離型層付きモールドからコピーモールドを製造する方法であって、前記モールドに対して離型層を設ける工程と、前記コピーモールド製造用の基板に対してハードマスク層を形成する工程と、前記ハードマスク層に対してレジスト層を形成する工程と、前記モールドが有するパターンを前記レジスト層に転写する工程と、前記モールドが有するパターンが転写された前記レジスト層をマスクとして前記ハードマスク層に対してエッチングする工程と、前記レジスト層をマスクとしてエッチングされた前記ハードマスク層をマスクとして、前記コピーモールド製造用の基板をエッチングする工程とを有すること、を特徴とするコピーモールドの製造方法である。
According to a first aspect of the present invention, in the mold with a release layer, a release layer is provided in a mold for transferring a predetermined concavo-convex pattern to a pattern forming material by an imprint method. The main chain of the release agent compound (molecule) contains a fluorocarbon, and the release agent compound has at least two adsorption functional groups adsorbed or bonded to the mold. In the adsorption functional group, The mold with a release layer is characterized in that the bond energy between the adsorption functional group and the mold is larger than the bond energy between the adsorption functional groups in the molecular chain of the release agent compound.
According to a second aspect of the present invention, in the invention according to the first aspect, the adsorption functional group is a functional group capable of hydrogen bonding to the mold.
According to a third aspect of the present invention, in the invention according to the first or second aspect, the adsorptive functional group is a hydroxyl group, a carboxyl group, an ester group, or any combination thereof. It is characterized by.
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the adsorptive functional groups are provided at both ends of the molecular chain of the release agent compound constituting the release layer. It is characterized by that.
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the molecular chain of the release agent compound constituting the release layer has no side chain. And
According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the fluorocarbon includes (C m F 2m O) n [m is an integer and 1 ≦ m ≦ 7, n is the (C m F 2m O) to integers molecular weight of n is 500 or more and 6000 or less] are included one or a plurality of types, characterized by.
According to a seventh aspect of the present invention, in the invention according to any one of the first to sixth aspects, the release layer has a heat treatment temperature for the release layer and a surface free energy of the release layer. The relationship includes a region where the value of the surface free energy is constant even when the heat treatment temperature is changed, and a region where the value of the surface free energy increases or decreases with the level of the heat treatment temperature, and the mold release after the heat treatment The layer is characterized by having a region where the value of the surface free energy increases as the heat treatment temperature decreases.
According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects, the mold is made of a quartz substrate provided with a concavo-convex pattern corresponding to a predetermined pattern. To do.
The ninth aspect of the present invention provides
In a mold with a release layer in which a release layer is provided in a mold for transferring a predetermined concavo-convex pattern to a pattern forming material by an imprint method, the main chain in the molecular chain of the release agent compound constituting the release layer (C m F 2m O) n [m is an integer and 1 ≦ m ≦ 7, and n is an integer such that the molecular weight of (C m F 2m O) n is 500 or more and 6000 or less]. Or a plurality of types, wherein the release agent compound has at least two hydroxyl groups as an adsorption functional group for the mold, the hydroxyl groups are provided at both ends of the release agent compound, and the release layer In the relationship between the heat treatment temperature for the release layer and the surface free energy of the release layer, the surface free energy value is substantially constant even when the heat treatment temperature is changed. A region in which the value of the surface free energy increases or decreases with the level of the heat treatment temperature, and the release layer after the heat treatment has a region in which the value of the surface free energy increases with a decrease in the heat treatment temperature. It is the mold with a release layer characterized.
A tenth aspect of the present invention is a method for manufacturing a mold with a release layer according to the first aspect, wherein a release agent compound is applied to the mold, and then the release layer is heated by heat treatment. It is a method for producing a mold with a release layer, characterized by having a step of optimizing the surface energy of the release layer by changing the surface free energy.
An eleventh aspect of the present invention is characterized in that, in the invention described in the tenth aspect, the method includes a step of performing a heat treatment at 25 ° C. or more and 250 ° C. or less.
According to a twelfth aspect of the present invention, in the invention according to the tenth or eleventh aspect, the method includes a step of rinsing the release layer after the heat treatment.
A thirteenth aspect of the present invention is a method for producing a copy mold from the mold with a release layer according to the first aspect, the step of providing a release layer on the mold, and the production of the copy mold A step of forming a hard mask layer on the substrate, a step of forming a resist layer on the hard mask layer, a step of transferring a pattern of the mold to the resist layer, and a pattern of the mold. Etching the hard mask layer using the transferred resist layer as a mask, etching the substrate for manufacturing the copy mold using the hard mask layer etched using the resist layer as a mask, and It is a manufacturing method of the copy mold characterized by having.
  本発明によれば、充分な離型性を有し、より低い離型圧で、モールド上のパターンへの被パターン形成材料の充填を障害なく良好に行い、精度良く安定かつ連続してパターンを転写させることができる。 According to the present invention, the pattern forming material on the mold is satisfactorily filled with a satisfactory mold release property, with a lower mold release pressure, without hindrance, and the pattern is formed stably and continuously with high accuracy. Can be transferred.
本実施形態に係る離型剤化合物の分子鎖における吸着官能基がモールド表面と吸着あるいは結合している様子を説明するための概念図である。(a)は水酸基が分子鎖の末端にある場合、(b)は水酸基が分子鎖の末端以外にある場合、(c)は主鎖に対してファンデルワールス力が働いている様子、(d)は水酸基が3つある場合、(e)は水酸基が4つある場合の様子を示す。It is a conceptual diagram for demonstrating a mode that the adsorption | suction functional group in the molecular chain of the mold release agent compound concerning this embodiment adsorb | sucks or couple | bonds with the mold surface. (A) is when the hydroxyl group is at the end of the molecular chain, (b) is when the hydroxyl group is other than at the end of the molecular chain, (c) is a state in which van der Waals force is acting on the main chain, (d ) Shows the situation when there are 3 hydroxyl groups, and (e) shows the situation when there are 4 hydroxyl groups. 本実施形態に係る離型層付きモールドを説明するための断面概略図である。It is a section schematic diagram for explaining a mold with a release layer concerning this embodiment. 図2の離型層付きモールドを用いてコピーモールドを製造する工程を説明するための断面概略図である。It is a cross-sectional schematic diagram for demonstrating the process of manufacturing a copy mold using the mold with a release layer of FIG. 本実施形態に係る離型層付きモールドを加熱処理した際の分子鎖の様子を説明するための概念図である。It is a conceptual diagram for demonstrating the mode of the molecular chain at the time of heat-processing the mold with a release layer which concerns on this embodiment. 実施例および比較例により得られた離型層付きモールドについて、原子間力顕微鏡を用いて表面粗さを計測した結果を示す図である。(a)及び(b)は実施例、(c)及び(d)は比較例における離型層付きモールドの表面粗さを示す鳥瞰図である。It is a figure which shows the result of having measured the surface roughness using the atomic force microscope about the mold with a release layer obtained by the Example and the comparative example. (A) And (b) is an Example, (c) And (d) is a bird's-eye view which shows the surface roughness of the mold with a release layer in a comparative example. 実施例および比較例により得られた離型層付きモールドについて、離型層の厚さとインプリント回数を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the thickness of the mold release layer, and the imprint frequency about the mold with a mold release layer obtained by the Example and the comparative example. 実施例および比較例により得られた離型層付きモールドについて、離型層の表面自由エネルギーとインプリント回数との関係を調べた結果を示すグラフである。It is a graph which shows the result of having investigated the relationship between the surface free energy of a mold release layer, and the number of imprints about the mold with a mold release layer obtained by the Example and the comparative example. 実施例及び比較例により得られたインプリント用離型層付きモールドについて、インプリント用離型層の厚さを示すグラフである。It is a graph which shows the thickness of the mold release layer for imprints about the mold with the mold release layer for imprints obtained by the Example and the comparative example. 実施例及び比較例における加熱処理温度と表面自由エネルギーとの関係を示すグラフである。(a)は実施例、(b)は比較例に係るグラフである。It is a graph which shows the relationship between the heat processing temperature and surface free energy in an Example and a comparative example. (A) is an Example and (b) is a graph which concerns on a comparative example. 本実施形態に係るインプリント用離型層付きモールドを、被転写基板上のレジスト層に押し当てた際に、レジストがモールド上のパターンに充填された様子を示した写真である。(a)は実施例、(b)は比較例に係る写真である。It is the photograph which showed a mode that the resist was filled in the pattern on a mold, when the mold with the mold release layer for imprint which concerns on this embodiment was pressed against the resist layer on a to-be-transferred substrate. (A) is an Example, (b) is a photograph according to a comparative example. 比較例において、(a)は離型層を設けることによりパターンサイズが変わる様子を説明するための概念図であり、(b)はシラン基が分子鎖の一方の末端にしか存在しない場合におけるモールドと離型層との吸着あるいは結合の様子を説明するための概念図である。In a comparative example, (a) is a conceptual diagram for explaining how the pattern size is changed by providing a release layer, and (b) is a mold in the case where a silane group exists only at one end of a molecular chain. It is a conceptual diagram for demonstrating the mode of adsorption | suction or coupling | bonding with a mold release layer.
  本発明者らは、インプリント耐性を有しながらも、自己凝集による欠陥の発生を抑制することができる離型層について種々検討した。この検討の際、本発明者らは、従来から使用されていたシリコーン系離型剤の変性シラン基が、モールドと離型層との密着性(即ち吸着あるいは結合)に寄与すると同時に、自己凝集の一因となっていることに着目した。 The present inventors have studied various release layers that have imprint resistance but can suppress the occurrence of defects due to self-aggregation. In this study, the present inventors found that the modified silane group of the conventional silicone release agent contributes to the adhesiveness (that is, adsorption or bonding) between the mold and the release layer, and at the same time, self-aggregation. We paid attention to that it contributed to
  そして本発明者らは、この変性シラン基(すなわちモールドに対する吸着官能基)とモールドとの吸着あるいは結合の元となる結合エネルギーと、自己凝集の際の吸着官能基同士の結合エネルギーとの関係に着目した。その結果、自己凝集の際の吸着官能基同士の結合よりも、モールドと吸着官能基との吸着の元となる結合の方が安定していれば、インプリントの際に問題となる、離型剤化合物の自己凝集を抑制できることを見出した。 The inventors of the present invention have the following relationship between the modified silane group (that is, the functional group adsorbed to the mold) and the binding energy between the mold and the adsorbed functional group during self-aggregation. Pay attention. As a result, if the bond that causes the adsorption of the mold and the adsorption functional group is more stable than the bond between the adsorption functional groups at the time of self-aggregation, mold release becomes a problem during imprinting. It has been found that self-aggregation of the agent compound can be suppressed.
  さらに本発明者らは、図11(b)に示すような従来の変性シラン基は、インプリント用離型層を形成する離型剤化合物の一方の末端のみに設けられていることに着目した。そして、前記吸着官能基を複数有することにより、図1に示すように、離型層の厚みを離型層の分子鎖の全長に支配されないようにして、転写パターンの寸法精度を向上させ得ることを見出した。 Furthermore, the present inventors paid attention to the fact that the conventional modified silane group as shown in FIG. 11B is provided only at one end of the release agent compound that forms the release layer for imprint. . And by having a plurality of the above-mentioned adsorptive functional groups, as shown in FIG. 1, the dimensional accuracy of the transfer pattern can be improved so that the thickness of the release layer is not controlled by the total length of the molecular chain of the release layer. I found.
 さらにまた、本発明者らは、モールド上の離型層の表面自由エネルギーを可能な限り低下させれば良いという従来の離型剤化合物に対する考えとは逆に、良好なパターンをレジスト層に形成するためには、表面自由エネルギーを適度に上昇させることを主とした最適化を行う必要があることに気づいた。 Furthermore, the present inventors formed a good pattern on the resist layer, contrary to the conventional release agent compound that the surface free energy of the release layer on the mold should be reduced as much as possible. In order to achieve this, it has been found that it is necessary to perform optimization mainly to increase the surface free energy appropriately.
  具体的には、離型剤化合物塗布後の加熱処理の温度を上下して、レジスト層と直に接触する部分における離型層の表面自由エネルギーを意図的に変化させて、最適な表面自由エネルギーへと調整すると、インプリント用離型層を介して、モールド上の凹凸パターンの凹部にレジストを障害なく良好に充填できることを見出した(後述する実施例に係る図10(a)参照)。 Specifically, the surface free energy of the release layer is intentionally changed by intentionally changing the surface free energy of the release layer in the part that is in direct contact with the resist layer by raising or lowering the temperature of the heat treatment after application of the release agent compound. It was found that the resist could be satisfactorily filled into the recesses of the concavo-convex pattern on the mold through the release layer for imprinting (see FIG. 10 (a) according to an example described later)).
<実施の形態1>
  以下、本発明の実施形態について説明する。
順序としては、まず、モールドに離型層を設ける工程について、断面概略図である図2を用いて説明する。その後、光ナノインプリント技術により、原盤であるマスターモールドからコピーモールド20を製造する工程について、断面概略図である図3を用いて説明する。
<Embodiment 1>
Hereinafter, embodiments of the present invention will be described.
As an order, first, the process of providing the release layer on the mold will be described with reference to FIG. 2 which is a schematic sectional view. Then, the process of manufacturing the copy mold 20 from the master mold which is the master disk by the optical nanoimprint technique will be described with reference to FIG. 3 which is a schematic sectional view.
  ここで、上記コピーモールドを用いてパターン転写を行う場合は、コピーモールドに離型層を当然設けてよい。本実施形態においてモールドとは、インプリント用のマスターモールドや、当該マスターモールドから転写複製される1次のコピーモールド、2次及び3次等々の高次のコピーモールドを含む。 Here, when pattern transfer is performed using the above-described copy mold, a release layer may naturally be provided in the copy mold. In this embodiment, the mold includes a master mold for imprinting, a primary copy mold transferred from the master mold, and a secondary copy mold, a secondary copy mold, a tertiary copy mold, and the like.
(モールドの準備)
  まず、図2に示すように、コピーモールド20に転写される凹凸パターンの元型となるモールド30を用意する。
 このモールド30は、インプリント用モールドとして使用できるものならばどのような材質であってもよいが、光ナノインプリント法に用いられる露光光に対して透光性を有するもの(例えば、露光光が紫外線の場合は、石英等)であれば、モールド30の裏面(即ち、パターン形成されていない側)から後述する露光の照射を行うことができるため、好ましい。コピーモールド製造用の基板1が透光性を有するならば、コピーモールド製造用の基板側(即ち、パターン転写形成しない裏面側)から露光を行うこともできる。その場合、モールド30の材質としては、前記露光光に対して不透明なもの(例えば、露光光が紫外線の場合はシリコンウエハ)であっても使用することができる。
 また、基板に直接離型層31を設けるのではなく、基板上に別の機能性物質からなる層を設けたモールド30に対し、その別の機能性物質の層の上に離型層31を設けても構わない。
 本実施形態においては、所定の凹凸パターンに対応する凹凸が形成された石英からなる基板(石英基板ともいう)をモールド30に用いた場合について説明する。
(Preparation of mold)
First, as shown in FIG. 2, a mold 30 is prepared, which is an original pattern of the uneven pattern transferred to the copy mold 20.
The mold 30 may be made of any material as long as it can be used as an imprint mold, but has a light-transmitting property with respect to exposure light used in the optical nanoimprint method (for example, exposure light is ultraviolet light). In this case, it is preferable to use quartz or the like, since the irradiation of the later-described exposure can be performed from the back surface of the mold 30 (that is, the side where the pattern is not formed). If the substrate 1 for copy mold manufacture has translucency, exposure can also be performed from the substrate side for copy mold manufacture (that is, the back surface side where pattern transfer is not formed). In this case, the mold 30 may be made of a material that is opaque to the exposure light (for example, a silicon wafer when the exposure light is ultraviolet light).
In addition, the mold release layer 31 is not provided directly on the substrate, but the mold release layer 31 is provided on the layer of the other functional material with respect to the mold 30 provided with a layer made of another functional material on the substrate. It may be provided.
In the present embodiment, a case where a substrate made of quartz (also referred to as a quartz substrate) on which unevenness corresponding to a predetermined uneven pattern is formed is used for the mold 30 will be described.
  なお、この石英基板上に設けられる所定の凹凸パターンは、ミクロンオーダーであってもよいが、本実施形態ではナノオーダー(例えば幅10nm程度の溝パターン)を対象とする。 Note that the predetermined concavo-convex pattern provided on the quartz substrate may be on the micron order, but in the present embodiment, it is targeted on the nano order (for example, a groove pattern having a width of about 10 nm).
  また、モールド30に設けられた所定の凹凸パターンがインプリント法により転写されると、コピーモールドにはこの所定の凹凸パターンとは逆の凹凸パターンが形成される。そのため、コピーモールドの凹凸パターンを最終的に得たいパターンとするならば、モールド30にはその凹凸パターンとは凹凸が逆のパターンを形成する。また、1次のコピーモールドに凹凸パターンを転写した後、この1次のコピーモールドの凹凸パターンを、もう一度転写して2次のコピーモールドを作製することによって、モールド30と凹凸が同一のパターンを得てもよい。 In addition, when a predetermined uneven pattern provided on the mold 30 is transferred by the imprint method, an uneven pattern opposite to the predetermined uneven pattern is formed on the copy mold. Therefore, if the concave / convex pattern of the copy mold is a pattern to be finally obtained, a pattern having concave and convex portions opposite to the concave / convex pattern is formed on the mold 30. In addition, after transferring the concave / convex pattern to the primary copy mold, the concave / convex pattern of the primary copy mold is transferred once again to produce a secondary copy mold. May be obtained.
(モールドへの離型層の設置)
  そして本実施形態においては、図2に示すように、このモールド30の少なくとも所定の凹凸パターンが形成された部分に離型剤化合物を塗布することにより離型層31を形成する。
 この離型層31を設けることにより、後述する図3に示すコピーモールド作製用の基板1上に設けられたレジスト層4とモールド30(直接には離型層31)とを接触させて、モールドの凹凸パターンにレジスト4を充填させて、その後、露光により前記レジスト4を硬化させた後、レジスト層4からモールド30を円滑かつ低い離型圧で容易に引き離す(離型する)ことができる。
 その結果、離型不良あるいは障害に起因するモールド30の損傷、転写されたパターンの損傷(欠陥)、あるいはまた、モールド及びインプリント装置への損傷を低減することができる。
(Installation of release layer on mold)
And in this embodiment, as shown in FIG. 2, the mold release layer 31 is formed by apply | coating the mold release agent compound to the part in which at least the predetermined uneven | corrugated pattern of this mold 30 was formed.
By providing the release layer 31, the resist layer 4 provided on the copy mold manufacturing substrate 1 shown in FIG. 3 to be described later and the mold 30 (directly the release layer 31) are brought into contact with each other. After filling the concavo-convex pattern with the resist 4 and then curing the resist 4 by exposure, the mold 30 can be easily separated (released) from the resist layer 4 with a smooth and low release pressure.
As a result, damage to the mold 30, damage to the transferred pattern (defect) due to defective release or failure, or damage to the mold and the imprint apparatus can be reduced.
 以下、この離型層31について詳述する。
(離型剤化合物の構造の概要)
本実施形態において、離型層を構成する化合物を「離型剤化合物」あるいは単に「化合物」という。以下、本発明における離型剤化合物の構造について詳述する。
 まず、本実施形態に係る離型層31を構成する離型剤化合物は、離型に寄与する主鎖部分と、モールド30に吸着あるいは結合するための吸着官能基と、を含む。
Hereinafter, the release layer 31 will be described in detail.
(Outline of structure of release agent compound)
In the present embodiment, the compound constituting the release layer is referred to as “release agent compound” or simply “compound”. Hereinafter, the structure of the release agent compound in the present invention will be described in detail.
First, the release agent compound constituting the release layer 31 according to this embodiment includes a main chain portion that contributes to release and an adsorption functional group for adsorbing or binding to the mold 30.
(離型剤化合物の主鎖部分)
  この離型剤化合物の分子鎖における主鎖にはフルオロカーボンが含まれている。フルオロカーボンにおけるフッ素により、即ち、コピーモールド作製用の基板1上に設けられたレジスト層4と直接接触する離型層31の表面自由エネルギーは低下する。その結果、円滑かつ低い離型圧で離型を行うことができる。
(Main chain part of release agent compound)
The main chain in the molecular chain of the release agent compound contains a fluorocarbon. The surface free energy of the release layer 31 that is in direct contact with the resist layer 4 provided on the substrate 1 for producing a copy mold is reduced by fluorine in the fluorocarbon. As a result, release can be performed smoothly and with a low release pressure.
  なお、前記フルオロカーボンには(C2mO)が一種類または複数種類含まれるのが好ましい。このように離型剤化合物の主鎖にパーフルオロエーテル基を含ませることにより、図1に示すように、分子鎖全体がランダムコイル状となり、分子鎖の屈曲性を向上させることができる。従来一般に用いられていたエーテル基を含まない離型剤化合物では、分子鎖がモールドの厚み方向に配向することに起因して離型層の厚さが分子鎖全長に依存するのに対し、本発明で用いた離型剤化合物では、分子鎖の屈曲性が向上し、離型層31の厚み方向への分子鎖の配向度合いが緩和される。その結果、離型層31の厚さを従来よりも減少させることになる。 Incidentally, the fluorocarbon preferably includes one kind or more kinds (C m F 2m O) n . Thus, by including a perfluoroether group in the main chain of the release agent compound, as shown in FIG. 1, the whole molecular chain becomes a random coil shape, and the flexibility of the molecular chain can be improved. In a release agent compound that does not contain an ether group that has been generally used, the thickness of the release layer depends on the total length of the molecular chain due to the orientation of the molecular chain in the mold thickness direction. In the release agent compound used in the invention, the flexibility of the molecular chain is improved, and the degree of orientation of the molecular chain in the thickness direction of the release layer 31 is relaxed. As a result, the thickness of the release layer 31 is reduced as compared with the conventional case.
  なお、前記mの値は整数かつ1≦m≦7であるのが好ましい。
  mが1以上であれば、適度に屈曲性が発揮されるため、モールド30と吸着した後の分子鎖同士の間隔を適度に近接させることができ、適度に密集したフルオロカーボンからなる分子鎖により、離型層31の表面自由エネルギーを十分に低下させることができる。
  mが7以下であれば、適度に剛直性が発揮されるため、分子鎖全長に層厚が依存するのを防ぐことができる。このような分子鎖の密着性及び剛直性のバランスを取るためには、mが3または4であるのが特に好ましい。
The value of m is preferably an integer and 1 ≦ m ≦ 7.
If m is 1 or more, the flexibility is exhibited moderately, the distance between the molecular chains after adsorbing to the mold 30 can be appropriately close, and the molecular chains composed of moderately dense fluorocarbons, The surface free energy of the release layer 31 can be sufficiently reduced.
If m is 7 or less, the rigidity is moderately exhibited, so that the layer thickness can be prevented from depending on the total length of the molecular chain. In order to balance such adhesion and rigidity of molecular chains, it is particularly preferable that m is 3 or 4.
  また、前記nの値は、前記(C2mO)の分子量が500以上かつ6000以下、となる整数であるのが好ましい。
  (C2mO)の分子量が500以上であれば、離型剤化合物の分子鎖が短いことによって吸着官能基同士が自己凝集しやすくなることもなくなる。さらに、モールド30の表面に吸着あるいは結合した後の分子鎖同士を近接させる方向の分子間力を維持することができ、適度に密集したフルオロカーボンからなる分子鎖により、離型層31の表面自由エネルギーを十分に低下させることができる。
  また、分子量が6000以下であれば、分子鎖が長すぎることで離型層31の層厚減少効果が相殺されてしまうこともなくなる。
  具体的なnの値としては、6または7が好ましい。
The value of n is preferably an integer such that the molecular weight of (C m F 2m O) n is 500 or more and 6000 or less.
(C m F 2m O) If the molecular weight of n is 500 or more, the functional chains of the releasing agent compound are not easily aggregated due to the short molecular chain of the release agent compound. Further, the intermolecular force in the direction in which the molecular chains after adsorbing or bonding to the surface of the mold 30 are brought close to each other can be maintained, and the surface free energy of the release layer 31 is obtained by the molecular chains composed of moderately dense fluorocarbons. Can be sufficiently reduced.
In addition, when the molecular weight is 6000 or less, the effect of reducing the layer thickness of the release layer 31 is not offset by the molecular chain being too long.
As a specific value of n, 6 or 7 is preferable.
  また、(C2mO)は、複数種類におけるランダムコポリマーであっても、ブロックコポリマーであってもよい。一例を挙げるとするならば、(CFO)及び(CO)のランダムコポリマーが挙げられる。 In addition, (C m F 2m O) n may be a random copolymer in a plurality of types or a block copolymer. An example is a random copolymer of (CF 2 O) and (C 2 F 4 O).
(離型剤化合物の吸着官能基)
  また、離型層31を構成する離型剤化合物は、モールド30に対する吸着官能基を少なくとも2個以上有している。
 先にも述べたように、離型層31には、コピーモールド作製用の基板上に設けられたレジスト層4とモールドとの離型を円滑かつ低い離型圧で行えることが求められる。同時に、離型層31はレジスト層4との間で物理的な接触と離型を繰り返す際のインプリント耐久力、すなわち、離型層の表面自由エネルギー値と離型層の厚さの維持が求められる。具体的には、モールド30に対して、離型層31が十分な密着性を有している必要がある。仮に十分な密着性を有していない場合、インプリントの最中に離型層31がモールドから剥離してレジスト層4の表面に移着してしまい、上述のインプリント耐久性は劣化し、また、転写欠陥を生じるに至って、コピーモールドのパターン精度と品質に影響を与える恐れがある。
 本実施形態においては、モールドに対する吸着官能基を複数とすることにより、モールド30と吸着官能基1個では強固に吸着できなくとも、離型剤化合物における1つの分子鎖に2つ以上の吸着官能基を設けていれば、1つの分子鎖の2箇所以上でモールド30に対する吸着点を設けることができ、その結果、モールド30と離型層31との密着性を高めることができる。
(Adsorption functional group of release agent compound)
The release agent compound constituting the release layer 31 has at least two adsorption functional groups for the mold 30.
As described above, the release layer 31 is required to release the resist layer 4 provided on the copy mold substrate and the mold smoothly and with a low release pressure. At the same time, the mold release layer 31 can maintain the imprint durability when repeating physical contact and mold release with the resist layer 4, that is, the surface free energy value of the mold release layer and the thickness of the mold release layer. Desired. Specifically, the release layer 31 needs to have sufficient adhesion to the mold 30. If the adhesive layer does not have sufficient adhesion, the release layer 31 is peeled off from the mold during imprinting and transferred to the surface of the resist layer 4, and the above-described imprint durability is deteriorated. In addition, a transfer defect may occur, which may affect the pattern accuracy and quality of the copy mold.
In this embodiment, by providing a plurality of adsorption functional groups for the mold, two or more adsorption functional groups can be used for one molecular chain in the release agent compound even if the mold 30 and one adsorption functional group cannot be firmly adsorbed. If a group is provided, adsorption points for the mold 30 can be provided at two or more locations of one molecular chain, and as a result, adhesion between the mold 30 and the release layer 31 can be enhanced.
 なお、モールド30と離型層31との密着性を高めるためには、前記吸着官能基が、前記離型層31を構成する離型剤化合物の分子鎖の両末端に近い部分(図1(b))、さらに好ましくは両末端に設けられているのが好ましい(図1(a))。前記吸着官能基が分子鎖の両末端または両末端に近い部分にあれば、離型剤化合物の分子鎖が離型層の厚さ方向に略直線上に配向するのを抑制することができ、ひいては離型層の厚さを従来よりも大幅に減少させることができる。しかも、分子鎖内の離れた2箇所でモールド30と強固に結合させることにより、モールド30と離型層31との間の密着性を向上させることができる。 In order to improve the adhesion between the mold 30 and the release layer 31, the adsorptive functional groups are portions close to both ends of the molecular chain of the release agent compound constituting the release layer 31 (FIG. 1 ( b)), more preferably provided at both ends (FIG. 1 (a)). If the adsorptive functional group is at both ends of the molecular chain or at a portion close to both ends, the molecular chain of the release agent compound can be prevented from being oriented substantially linearly in the thickness direction of the release layer, As a result, the thickness of the release layer can be greatly reduced as compared with the conventional case. In addition, the adhesiveness between the mold 30 and the release layer 31 can be improved by firmly bonding to the mold 30 at two distant locations in the molecular chain.
 前記離型層31を構成する離型剤化合物の分子鎖における両末端に近い部分に前記吸着官能基が存在する場合、以下の効果も期待できる。すなわち、前記吸着官能基がモールド30に吸着すると、先にも述べたように主鎖はランダムコイル状になると推測される。しかしながら、図1(c)に示すように、この主鎖とモールド30との間にファンデルワールス力のような相互作用が働き、モールド30に向かう方向の物理的な力が主鎖に対して働くものと推察される。 The following effects can also be expected when the adsorptive functional groups are present in portions close to both ends in the molecular chain of the release agent compound constituting the release layer 31. That is, when the adsorptive functional group is adsorbed on the mold 30, it is presumed that the main chain becomes a random coil shape as described above. However, as shown in FIG. 1C, an interaction such as van der Waals force acts between the main chain and the mold 30, and a physical force in the direction toward the mold 30 is applied to the main chain. Inferred to work.
  さらに、上述のように分子鎖の両末端に近い部分に前記吸着官能基が設けられている場合、図1(d)に示すように、その部分よりも分子鎖中央部分にさらに吸着官能基を有するのが好ましい。こうすることで、離型剤化合物の分子鎖におけるモールド表面への吸着点あるいは結合点を増加させることができ、その結果、離型層の厚さをさらに低下させることが可能となる。特に、密着性の向上、離型性の向上、及び、自己凝集の抑制、これらのバランスから、図1(d)、(e)に示すように、離型剤化合物は前記吸着官能基を合計で3または4個有するのが好ましい。 Furthermore, when the adsorption functional group is provided in the portion close to both ends of the molecular chain as described above, as shown in FIG. 1 (d), the adsorption functional group is further added to the central portion of the molecular chain rather than that portion. It is preferable to have. By doing so, the adsorption point or bonding point on the mold surface in the molecular chain of the release agent compound can be increased, and as a result, the thickness of the release layer can be further reduced. In particular, from the balance between improved adhesion, improved releasability, and suppression of self-aggregation, as shown in FIGS. 1 (d) and 1 (e), the release agent compound has a total of the adsorbing functional groups. And preferably 3 or 4.
(吸着官能基の結合エネルギー)
  本発明では、離型剤化合物には、前記吸着官能基とモールドとの吸着の元となる結合エネルギーが前記離型剤化合物の分子鎖における吸着官能基同士の結合エネルギーよりも大きい離型剤化合物を選択する。先にも述べたように、インプリント法においては、離型剤化合物の自己凝集が、転写パターンの精度あるいは品質を低下させる要因の一つとなる。しかしながら、このような結合エネルギーの関係を有する化合物を離型剤化合物に使用することにより、吸着官能基が仮に自己凝集を起こしたとしても、モールド30の表面(当該表面に自然に存在する物質(例えば水)を含む、以降総称して表面という)と吸着官能基との結合エネルギーの方が高いが故に自己凝集が解除される。そして最終的には、モールド30の表面と吸着官能基とが吸着あるいは結合することになる。その結果、離型剤化合物の自己凝集とそれに伴う欠陥の発生を抑制することにより、転写パターンの精度の低下あるいは品質の低下を抑えることができる。
(Binding energy of adsorption functional group)
In the present invention, the release agent compound includes a release agent compound in which the binding energy that causes the adsorption between the adsorptive functional group and the mold is greater than the binding energy of the adsorptive functional groups in the molecular chain of the release agent compound. Select. As described above, in the imprint method, self-aggregation of the release agent compound is one of the factors that deteriorate the accuracy or quality of the transfer pattern. However, by using a compound having such a binding energy relationship as a release agent compound, even if the adsorptive functional group causes self-aggregation, the surface of the mold 30 (substance naturally present on the surface ( Self-aggregation is released because the binding energy between the adsorbing functional group and the adsorbing functional group is higher. Finally, the surface of the mold 30 and the adsorption functional group are adsorbed or bonded. As a result, by suppressing the self-aggregation of the release agent compound and the occurrence of defects accompanying therewith, it is possible to suppress a decrease in accuracy or quality of the transfer pattern.
  また、前記吸着官能基は、ヒドロキシル基、カルボキシル基、エステル基、またはこれらのうちのいずれかの組み合わせであるのが好ましい。変性シラン基よりも自己凝集を起こしにくい官能基だからである。仮に、一つの吸着官能基におけるモールド30との密着性(結合力)が変性シラン基に比べて低くとも、先に述べたように本実施形態においては、1つの分子鎖に吸着官能基を2個以上設けており、モールド30に対して十分な密着性を確保することができる。結合エネルギーの観点、すなわち密着性の向上及び自己凝集の抑制を考慮すると、吸着官能基はヒドロキシル基であるのが好ましい。 The adsorbing functional group is preferably a hydroxyl group, a carboxyl group, an ester group, or any combination thereof. This is because the functional group is less likely to cause self-aggregation than the modified silane group. Even if the adhesion (bonding force) of one adsorbing functional group to the mold 30 is lower than that of the modified silane group, as described above, in this embodiment, two adsorbing functional groups are added to one molecular chain. More than one are provided, and sufficient adhesion to the mold 30 can be ensured. In view of the binding energy, that is, improvement of adhesion and suppression of self-aggregation, the adsorptive functional group is preferably a hydroxyl group.
  なお、モールド30に前記吸着官能基が吸着あるいは結合すると説明したが、前記吸着官能基がヒドロキシル基、カルボキシル基、エステル基、またはこれらのうちのいずれかの組み合わせからなる場合、モールド30上に存在する水と吸着官能基とが脱水縮合を起こして強固な結合が形成されていると考えられる。また、モールド30が石英基板である場合、石英基板表面の酸素と吸着官能基とが水素結合を起こし、その結果、モールド30と離型層31との密着性はさらに向上する。   In addition, although it demonstrated that the said adsorption functional group adsorb | sucks or couple | bonds with the mold 30, when the said adsorption functional group consists of a hydroxyl group, a carboxyl group, an ester group, or any combination of these, it exists on the mold 30 It is considered that the water and the adsorbing functional group undergo dehydration condensation to form a strong bond. When the mold 30 is a quartz substrate, oxygen on the surface of the quartz substrate and the adsorption functional group cause hydrogen bonding, and as a result, the adhesion between the mold 30 and the release layer 31 is further improved.
(添加剤)
  なお、この離型剤化合物で構成される離型層は、上記のような化合物以外にも、離型剤に添加可能な公知の物質を含んでいてもよい。
(Additive)
In addition, the mold release layer comprised with this mold release agent compound may contain the well-known substance which can be added to a mold release agent other than the above compounds.
(モールドへの離型剤の塗布)
  次に、モールド30に離型層31を形成して設けるべく、上記のような離型剤化合物をモールド30上に塗布する。この塗布方法については、一例を挙げるとするならば、ディップ法、スピンコート法、インクジェット法、スプレー法などが挙げられる。
(Application of release agent to mold)
Next, a release agent compound as described above is applied onto the mold 30 in order to form and provide the release layer 31 on the mold 30. Examples of this coating method include a dipping method, a spin coating method, an ink jet method, and a spray method.
  ディップ法を用いる場合、浸漬時間を5分以上とするのが好ましい。この時間範囲ならば、モールド30に離型剤化合物を十分均一に塗布することができる。吸着官能基がモールド30に吸着するのに十分な時間を確保することができる。
  また、浸漬した後の引き上げ速度は80~200mm/分で行うのが好ましい。上限以下の速度ならば、液面の揺れで離型剤化合物の塗布の際の均一性が損なわれることはない。また、下限以上の速度ならば、メニスカス力のせいで引き上げ液量が低下するという事態を抑制することができる。
When using the dip method, the immersion time is preferably 5 minutes or longer. Within this time range, the mold release agent compound can be sufficiently uniformly applied to the mold 30. A sufficient time can be secured for the adsorptive functional group to adsorb to the mold 30.
Further, the pulling speed after immersion is preferably 80 to 200 mm / min. If the speed is less than or equal to the upper limit, the uniformity during the application of the release agent compound is not impaired by the fluctuation of the liquid level. Moreover, if the speed is equal to or higher than the lower limit, it is possible to suppress a situation in which the amount of the drawn liquid is reduced due to the meniscus force.
(離型剤化合物塗布後の加熱処理)
  たとえば上述のように離型剤化合物をモールド30に塗布した後、このモールド30に対し25℃~250℃で加熱処理を行う。離型剤化合物(溶液)に含まれる溶媒を除去することにより、離型層31を緻密化し、また、モールド30と離型層31との密着性を向上させるためである。この温度範囲ならば、離型剤化合物の熱分解が発生することなしに、離型層の緻密化と密着性向上を図れる。さらに、上記の温度範囲で加熱処理を行うことにより、図4に示すように、2個以上ある吸着官能基をモールド30と吸着あるいは結合させやすくすることができる。そして、モールド30と離型層31との間の密着性をさらに向上させることができ、また、離型剤化合物の分子鎖の全長に離型層の厚さが依存することを防止できる。
  具体的な加熱処理手段としては、一例を挙げるとすれば、クリーンオーブンやホットプレートなどが挙げられる。
(Heat treatment after application of release agent compound)
For example, after applying the release agent compound to the mold 30 as described above, the mold 30 is heat-treated at 25 ° C. to 250 ° C. This is because the release layer 31 is densified by removing the solvent contained in the release agent compound (solution) and the adhesion between the mold 30 and the release layer 31 is improved. Within this temperature range, the release layer can be densified and adhesion can be improved without thermal decomposition of the release agent compound. Furthermore, by performing the heat treatment in the above temperature range, it is possible to easily adsorb or bond two or more adsorption functional groups to the mold 30 as shown in FIG. And the adhesiveness between the mold 30 and the mold release layer 31 can further be improved, and it can prevent that the thickness of a mold release layer depends on the full length of the molecular chain of a mold release agent compound.
Specific examples of the heat treatment means include a clean oven and a hot plate.
(加熱処理による表面自由エネルギーの最適化)
 本実施形態の吸着官能基をヒドロキシル基とした場合、本実施形態における離型剤化合物に対する加熱処理温度と離型層の表面自由エネルギーとの関係(図9(a))においては、加熱処理温度が変化しても表面自由エネルギーの値が一定である領域と、加熱処理温度が変化すると共に(具体的には、加熱処理温度が低下すると共に)に表面自由エネルギーの値が増加する領域とが含まれる。レジスト層と直に接触する離型層の表面自由エネルギーを低下させた場合、モールド上の凹凸パターンの凹部にレジスト4が良好かつ確実に充填されないという問題が生じる場合がある。一方、本実施形態においては、加熱処理を行うことによって、モールド30上の微細な凹凸パターンにレジスト4が容易かつ確実に充填されるように、離型層31の表面自由エネルギーをレジスト4の組成に応じて最適化することができる。
(Optimization of surface free energy by heat treatment)
When the adsorptive functional group of the present embodiment is a hydroxyl group, in the relationship between the heat treatment temperature for the release agent compound and the surface free energy of the release layer in the present embodiment (FIG. 9A), the heat treatment temperature There is a region where the value of the surface free energy is constant even if the value of the surface temperature changes, and a region where the value of the surface free energy increases as the heat treatment temperature changes (specifically, as the heat treatment temperature decreases). included. When the surface free energy of the release layer that is in direct contact with the resist layer is lowered, there may be a problem that the resist 4 is not satisfactorily filled in the recesses of the uneven pattern on the mold. On the other hand, in the present embodiment, the surface free energy of the release layer 31 is set to the composition of the resist 4 so that the fine concavo-convex pattern on the mold 30 is easily and reliably filled with the heat treatment. Can be optimized according to
 つまり、加熱処理等によって表面自由エネルギーが実質的に変化する離型層ならば、レジスト4の組成がいかようであっても、モールド30上の微細な凹凸パターンに良好かつ確実に充填可能とすることができる。さらには、モールド30上のパターンへのレジスト4の充填速度すら調整できる可能性がある。 In other words, a release layer whose surface free energy changes substantially by heat treatment or the like can satisfactorily and reliably fill a fine uneven pattern on the mold 30 regardless of the composition of the resist 4. be able to. Furthermore, there is a possibility that even the filling speed of the resist 4 into the pattern on the mold 30 can be adjusted.
  このように、表面自由エネルギーを加熱処理によって適度に増大させる場合は、加熱処理後の離型層31が、加熱処理温度の低下と共に表面自由エネルギーの値が増加する領域において、所望の表面自由エネルギーが得られるように、加熱処理温度を調整し最適化して設定するのが好ましい。具体的には、離型剤化合物を塗布したモールド30に対し、25℃以上170℃以下にて加熱処理を行うのが好ましい。 As described above, when the surface free energy is appropriately increased by the heat treatment, the release layer 31 after the heat treatment has a desired surface free energy in a region where the value of the surface free energy increases as the heat treatment temperature decreases. Is preferably set by adjusting and optimizing the heat treatment temperature. Specifically, it is preferable to perform heat treatment at 25 ° C. or more and 170 ° C. or less with respect to the mold 30 coated with the release agent compound.
  この温度範囲ならば、加熱処理温度を170℃から低下させることによって、下がりすぎた表面自由エネルギーを適度に上昇させることができる。そして、使用するレジスト4の組成に応じて、離型層31を介して、離型性を損なうことなく、モールド30上の微細な凹凸パターンに対して、レジスト4を確実、良好かつ迅速に充填することができる。 な ら ば Within this temperature range, the surface free energy that has decreased too much can be increased appropriately by lowering the heat treatment temperature from 170 ° C. Then, according to the composition of the resist 4 to be used, the resist 4 is reliably, satisfactorily and quickly filled into the fine concavo-convex pattern on the mold 30 through the release layer 31 without impairing the release property. can do.
  それに加え、この温度範囲ならば、離型層に残存する離型剤化合物(溶液)の溶媒を除去することが可能であり、離型層31をより緻密化し、モールド30と離型層31との密着性を向上させることができる。またこの温度範囲ならば、離型剤化合物の熱分解を発生させずに離型層の膜厚を維持でき、即ち、良好な離型性を維持できる。 In addition, within this temperature range, the solvent of the release agent compound (solution) remaining in the release layer can be removed, the release layer 31 is further densified, and the mold 30 and the release layer 31 It is possible to improve the adhesion. Moreover, if it is this temperature range, the film thickness of a mold release layer can be maintained, without generating the thermal decomposition of a mold release agent compound, ie, a favorable mold release property can be maintained.
(リンス処理)
  上述のような加熱処理を行った後、離型層31が形成されたモールド30に対してリンス処理を行う。このリンス処理は、モールド30の表面に吸着あるいは結合しなかった余剰な離型剤化合物洗い流して除去するために行う。
(Rinse treatment)
After performing the heat treatment as described above, a rinse treatment is performed on the mold 30 on which the release layer 31 is formed. This rinsing process is performed to wash away and remove the excess release agent compound that has not been adsorbed or bonded to the surface of the mold 30.
  本実施形態においては、上述のような加熱処理を行った後にリンス処理を行うことに意味がある。なぜなら、上述の加熱処理を行わずにリンス処理を行うと、モールド30への吸着あるいは結合が十分でない離型剤化合物もモールド30上から洗い流されてしまう。しかしながら、上述の加熱処理の後ならば、離型剤化合物はモールド30の表面に可能な限り吸着あるいは結合することができている。言い換えれば、加熱処理により(あるいはその温度に依存して)、離型剤化合物のモールドへの吸着あるいは結合は促進される。そのため、加熱処理後にリンス処理を行うことで、モールド30に対して吸着あるいは結合していない余剰な離型剤化合物のみを洗い流すことができる。その結果、余剰な離型剤化合物に起因する表面エネルギーの増加を抑制することができ、離型性を低下させず、かつ、離型層の厚さを増加させずに済む。また、インプリント回数に従った離型層厚の減少、表面自由エネルギーの変動等を抑え、離型層31のインプリント耐性を安定させる。リンス液としては、加熱処理された離型層31を溶解しないものであればよい。 In the present embodiment, it is meaningful to perform the rinsing process after performing the heat treatment as described above. This is because if the rinse treatment is performed without performing the above-described heat treatment, the release agent compound that is not sufficiently adsorbed or bonded to the mold 30 is also washed away from the mold 30. However, after the above heat treatment, the release agent compound can be adsorbed or bonded to the surface of the mold 30 as much as possible. In other words, the heat treatment (or depending on the temperature) promotes the adsorption or binding of the release agent compound to the mold. Therefore, by performing the rinse treatment after the heat treatment, it is possible to wash away only the excess release agent compound that is not adsorbed or bonded to the mold 30. As a result, it is possible to suppress an increase in surface energy due to an excessive release agent compound, and it is not necessary to reduce the release property and to increase the thickness of the release layer. Further, the reduction of the release layer thickness according to the number of imprints, the fluctuation of the surface free energy, and the like are suppressed, and the imprint resistance of the release layer 31 is stabilized. Any rinse liquid may be used as long as it does not dissolve the heat-released release layer 31.
 以上がモールド30に離型層31を形成する工程である。
 以下、この離型層31付きモールド30を用いて、光インプリント法によりコピーモールドを作製する工程について、図3を用いて述べる。
The above is the step of forming the release layer 31 on the mold 30.
Hereinafter, a process for producing a copy mold by the optical imprint method using the mold 30 with the release layer 31 will be described with reference to FIG.
(コピーモールド製造用基板の準備)
  まず図3(a)に示すように、コピーモールド20のための基板1を用意する。
  この基板1は、コピーモールド20として用いることができる材料ならば何れでも良いが、例えば石英、サファイア、シリコンウエハ等が挙げられる。なお、コピーモールドの用途が光ナノインプリント法であるならば、光ナノインプリント法に用いられる露光光に対して透光性を有する石英基板などが挙げられる。
(Preparation of copy mold manufacturing substrate)
First, as shown in FIG. 3A, the substrate 1 for the copy mold 20 is prepared.
The substrate 1 may be any material that can be used as the copy mold 20, and examples thereof include quartz, sapphire, and a silicon wafer. In addition, if the use of the copy mold is the optical nanoimprint method, a quartz substrate having translucency with respect to the exposure light used in the optical nanoimprint method may be used.
  また、基板1の形状についてであるが、円盤形状(ウエハ形状)であっても、また、矩形、多角形、半円形状であってもよい。
  本実施形態においては、コピーモールド20の作製のため、モールド30と同一形状である石英ウエハを基板1として説明する。
Further, as for the shape of the substrate 1, it may be a disc shape (wafer shape), or may be a rectangle, a polygon, or a semicircle.
In the present embodiment, a quartz wafer having the same shape as the mold 30 will be described as the substrate 1 in order to manufacture the copy mold 20.
(ハードマスク層の形成)
  次に、図3(b)に示すように、適宜研磨し洗浄した前記基板1をスパッタリング装置に導入する。そして本実施形態においては、タンタル(Ta)とハフニウム(Hf)の合金からなるターゲットをアルゴンガスでスパッタリングし、タンタル-ハフニウム合金からなる導電層2を成膜し、基板1上にハードマスク層7の内の下層(導電層2)を形成した。
(Formation of hard mask layer)
Next, as shown in FIG. 3B, the substrate 1 that has been appropriately polished and cleaned is introduced into a sputtering apparatus. In this embodiment, a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas to form the conductive layer 2 made of tantalum-hafnium alloy, and the hard mask layer 7 is formed on the substrate 1. A lower layer (conductive layer 2) was formed.
  なお、導電層2の材料としては、公知の導電層として用いられるものであってもよい。一例を挙げれば、Taを主成分とする膜組成が挙げられる。この場合、TaHf、TaZr、TaHfZrなどが好適である。本実施形態においては、タンタル-ハフニウム(TaHf)からなる導電層2について説明する。 Note that the material of the conductive layer 2 may be one used as a known conductive layer. As an example, a film composition containing Ta as a main component can be mentioned. In this case, TaHf, TaZr, TaHfZr, etc. are suitable. In the present embodiment, the conductive layer 2 made of tantalum-hafnium (TaHf) will be described.
  次に、本実施形態においては、前記導電性層2に対する酸化の防止の観点から、大気暴露は行わず、連続して、クロム(Cr)ターゲットをアルゴンと窒素の混合ガスでスパッタリングして窒化クロム層3を成膜し、ハードマスク層7の内の上層(導電層用酸化防止層3)として形成した。 Next, in the present embodiment, from the viewpoint of preventing oxidation of the conductive layer 2, exposure to the atmosphere is not performed, and a chromium (Cr) target is continuously sputtered with a mixed gas of argon and nitrogen to form chromium nitride. Layer 3 was formed and formed as an upper layer (antioxidation layer 3 for conductive layer) in hard mask layer 7.
  なお、酸化防止層3の材料としては、成膜の際のスパッタリングにおいて酸素を用いなくて済む点からも窒化クロム(CrN)が好ましいが、それ以外でも酸化防止層として使用できる組成であればよい。例えばモリブデン、酸化クロム(CrO)、SiC、アモルファスカーボン、Alを用いてもよい。本実施形態においては、窒化クロム(CrN)からなる酸化防止層3について説明する。 The material of the antioxidant layer 3 is preferably chromium nitride (CrN) from the viewpoint that it is not necessary to use oxygen in sputtering at the time of film formation, but any other composition can be used as the antioxidant layer. . For example, molybdenum, chromium oxide (CrO), SiC, amorphous carbon, or Al may be used. In the present embodiment, the antioxidant layer 3 made of chromium nitride (CrN) will be described.
  こうして図3(b)に示すように、タンタル-ハフニウム合金層2を下層とし、窒化クロム層3を上層としたハードマスク層7を、基板1上に形成する。 Thus, as shown in FIG. 3B, a hard mask layer 7 having the tantalum-hafnium alloy layer 2 as a lower layer and the chromium nitride layer 3 as an upper layer is formed on the substrate 1.
  なお、本実施形態における「ハードマスク層」は、上記組み合わせに限定されるものではなく、単一または複数の層からなり、コピーモールドに形成される所望の凹凸パターンに対応する突起部が前記基板1(被転写基板)に形成される予定の部分を保護することができ、前記基板1上への溝加工(凹部形成)のためのエッチングマスクとなる得るものであれば、材料、材質、組成を問わない。また、ハードマスク層7における酸化防止層3は、導電層2を兼ねても良い。その場合はTaHfのような導電層は省略可能である。
 ここで、基板1上にハードマスク層7を設けたものを、本実施形態においては、コピーモールド作製用ブランクスという。
Note that the “hard mask layer” in the present embodiment is not limited to the above combination, and includes a single layer or a plurality of layers, and a protrusion corresponding to a desired concavo-convex pattern formed in a copy mold is the substrate. As long as it can protect the portion to be formed on the substrate 1 (transfer substrate) and can serve as an etching mask for groove processing (recess formation) on the substrate 1, the material, material, composition It doesn't matter. Further, the antioxidant layer 3 in the hard mask layer 7 may also serve as the conductive layer 2. In that case, a conductive layer such as TaHf can be omitted.
Here, what provided the hard mask layer 7 on the board | substrate 1 is called copy mold production blanks in this embodiment.
(レジスト層の形成)
  前記コピーモールド作製用ブランクスに対して、適宜洗浄し、脱水ベーク処理を行った後、図3(c)に示すように、前記ハードマスク層7に光ナノインプリント用のレジスト4を塗布形成する。またその後、必要に応じて、適宜加熱処理を行ってもよい。光ナノインプリント用のレジスト4としては、光硬化性樹脂とりわけ紫外線硬化性樹脂が挙げられる。当該レジスト4は、用いられるインプリント法に適用可能であり、後で行われるエッチング工程に適する、即ち、ハードマスク層に対して十分なエッチング選択性をもつものであれば、材料、材質、組成は問わない。
(Formation of resist layer)
The copy mold manufacturing blanks are appropriately washed and subjected to a dehydration baking process, and then, as shown in FIG. 3C, a resist 4 for optical nanoimprinting is applied and formed on the hard mask layer 7. Thereafter, heat treatment may be appropriately performed as necessary. Examples of the resist 4 for photo-nanoimprint include a photo-curable resin, particularly an ultraviolet curable resin. The resist 4 can be applied to the imprinting method used and is suitable for an etching process to be performed later, that is, has sufficient etching selectivity with respect to the hard mask layer. Does not matter.
  また、この時のレジスト層4の厚さは、マスクとなる部位(即ち、コピーモールド上で凸(突起)部となるべき箇所)において、各種エッチングが完了するまでレジスト4が残存する厚さ以上であることが好ましい。 Further, the thickness of the resist layer 4 at this time is equal to or greater than the thickness at which the resist 4 remains until various etchings are completed at a portion to be a mask (that is, a portion to be a convex (projection) portion on the copy mold). It is preferable that
  なお、レジスト層4を設ける前に、ハードマスク層7上に予め密着補助層を設けてもよい。密着補助層を設けることにより、インプリント工程やエッチング工程の最中にレジスト層4が剥離してパターンが欠損することを防止できる。 Note that an adhesion auxiliary layer may be provided on the hard mask layer 7 in advance before the resist layer 4 is provided. By providing the adhesion auxiliary layer, it is possible to prevent the resist layer 4 from being peeled off during the imprint process or the etching process and the pattern from being lost.
(ナノインプリント法によるパターン転写)
 次に、図3(d)に示すように、このレジスト層4の上に、微細な凹凸パターン及び離型層31が形成されたモールド30を載置し、その後、レジスト4がモールド30上の凹凸パターンに完全に充填されるまで静置する。
 この時、レジスト層4が略液状であるならば、モールド30をレジスト層4上に載置して静置するだけでよく、強く押圧する必要はない。また、レジスト層4が略個体状の場合は、モールド30をレジスト層4に対して比較的強く押圧して、モールド30の微細な凹凸パターンにレジスト層4が完全に充填されるまでの間静置する。
(Pattern transfer by nanoimprint method)
Next, as shown in FIG. 3D, a mold 30 on which a fine uneven pattern and a release layer 31 are formed is placed on the resist layer 4, and then the resist 4 is placed on the mold 30. Let stand until the uneven pattern is completely filled.
At this time, if the resist layer 4 is substantially liquid, the mold 30 may be placed on the resist layer 4 and allowed to stand, and it is not necessary to press strongly. When the resist layer 4 is substantially solid, the mold 30 is pressed relatively strongly against the resist layer 4 until the resist layer 4 is completely filled in the fine uneven pattern of the mold 30. Put.
  その後、モールド30とレジスト層4(即ち、コピーモールド作製用石英ウエハ)とを密着させた状態を維持したままで、紫外光照射装置を用いて、露光して、前記レジスト層4を硬化させる。このとき紫外光の照射はモールド30の裏面(即ち、パターン形成されていない側)から行うのが通常であるが、基板1が露光光に対して透光性である場合は、基板1側から行ってもよい。 After that, the resist layer 4 is cured by exposure using an ultraviolet light irradiation device while keeping the mold 30 and the resist layer 4 (that is, the quartz wafer for producing a copy mold) in close contact with each other. At this time, the irradiation with ultraviolet light is usually performed from the back surface of the mold 30 (that is, the side where the pattern is not formed). However, when the substrate 1 is translucent to the exposure light, the substrate 1 side is irradiated. You may go.
  なおこの際、モールド30と基板1との間の位置ずれによる転写不良を防止するため、アライメントマーク用の溝等をモールド30と被転写基板上の双方あるいは片方に設けてもよい。 At this time, in order to prevent a transfer failure due to a positional shift between the mold 30 and the substrate 1, grooves or the like for alignment marks may be provided on both or one side of the mold 30 and the substrate to be transferred.
 上記露光により、モールド30の微細な凹凸パターンに充填されたレジスト4は硬化され、レジスト層4に微細な凹凸パターンが形成される。 By the exposure, the resist 4 filled in the fine uneven pattern of the mold 30 is cured, and a fine uneven pattern is formed in the resist layer 4.
 上記露光後、モールド30とレジスト4は引き離される。図3(e)に示すように離型されて、レジスト4に転写され形成された微細な凹凸パターンは露出する。 After the exposure, the mold 30 and the resist 4 are separated. As shown in FIG. 3E, the fine concavo-convex pattern which has been released and transferred to the resist 4 is exposed.
(レジスト層における残膜層の除去)
  レジスト層4に微細パターンを転写形成後、窒化クロム層3上にあって、レジスト層4に形成された微細な凹凸パターンの凹部に存在するレジストの残膜層を、酸素、アルゴン、フッ素系ガス、これらの混合ガスのプラズマを用いたアッシングにより除去する。こうして、図3(f)に示すように、所望の微細な凹凸パターンに対応するレジストパターンは形成される。なお、レジスト層4に転写形成された微細な凹凸パターンの凹部において、基板1上に溝が形成されることになる。
(Removal of residual film layer in resist layer)
After the fine pattern is transferred and formed on the resist layer 4, the remaining resist layer on the chromium nitride layer 3 and in the concave portions of the fine concavo-convex pattern formed on the resist layer 4 is formed by oxygen, argon, fluorine-based gas. These are removed by ashing using plasma of the mixed gas. In this way, as shown in FIG. 3F, a resist pattern corresponding to a desired fine uneven pattern is formed. A groove is formed on the substrate 1 in the concave portion of the fine concavo-convex pattern transferred and formed on the resist layer 4.
(第1のエッチング)
  次に、表面に上記レジストパターンが形成された基板1を、ドライエッチング装置に導入する。そして、酸素ガスを実質的に含まない雰囲気下で塩素系ガスを含むガスによる第1のエッチングを行う。このとき、還元性ガスと共に上記のガスによるエッチングを行うと、導電層2の酸化防止という観点からも好ましい。
(First etching)
Next, the substrate 1 having the resist pattern formed on the surface is introduced into a dry etching apparatus. Then, first etching with a gas containing a chlorine-based gas is performed in an atmosphere substantially free of oxygen gas. At this time, it is preferable to perform etching with the reducing gas together with the reducing gas from the viewpoint of preventing oxidation of the conductive layer 2.
  なお、「実質的に酸素ガスを含まない雰囲気下」とは「エッチングの際に酸素ガスが流入したとしても、異方性エッチングを行うことができる程度の流入量である雰囲気下」であることを指すものであり、好ましくは酸素ガスの流入量を流入ガス全体の5%以下とした雰囲気である。 Note that “under an atmosphere that does not substantially contain oxygen gas” means “under an atmosphere in which the amount of inflow is such that anisotropic etching can be performed even if oxygen gas flows in during etching”. Preferably, it is an atmosphere in which the inflow amount of oxygen gas is 5% or less of the entire inflow gas.
  このエッチング処理により、図3(g)に示すように、前記レジストパターンを元パターンとして微細パターンが形成されたハードマスク層7を得る。なお、この時のエッチング終点は、反射光学式等の終点検出器等を用いて判別する。 エ ッ チ ン グ By this etching process, as shown in FIG. 3G, a hard mask layer 7 in which a fine pattern is formed using the resist pattern as an original pattern is obtained. Note that the etching end point at this time is determined using an end point detector such as a reflection optical type.
(第2のエッチング)
  続いて、第1のエッチングで用いられたガスをエッチングチャンバーから排気した後、同じドライエッチング装置内で、フッ素系ガスを用いた第2のエッチングを、上記ハードマスク層7に微細パターンが形成された基板1に対して行う。この際、前記ハードマスク層7をマスクとして石英からなる基板1をエッチング加工し、図3(h)に示すように、微細パターンに対応した溝を基板1に施す。その前後において、アルカリ溶液や酸溶液にてレジスト層を除去する。
(Second etching)
Subsequently, after the gas used in the first etching is exhausted from the etching chamber, a fine pattern is formed on the hard mask layer 7 by performing a second etching using a fluorine-based gas in the same dry etching apparatus. To the substrate 1. At this time, the substrate 1 made of quartz is etched using the hard mask layer 7 as a mask, and grooves corresponding to a fine pattern are formed on the substrate 1 as shown in FIG. Before and after that, the resist layer is removed with an alkali solution or an acid solution.
  ここで用いられるフッ素系ガスとしては、C(例えば、CF、C、C)、CHF3、これらの混合ガス又はこれらに添加ガスとして希ガス(He、Ar、Xeなど)を含むもの等が挙げられる。 Examples of the fluorine-based gas used here include C x F y (for example, CF 4 , C 2 F 6 , C 3 F 8 ), CHF 3 , a mixed gas thereof, or a rare gas (He, Ar) as an additive gas thereto. , Xe, etc.).
  こうして図3(h)に示すように、微細パターンに対応する溝加工が石英からなる基板1に施され、微細パターンを有するハードマスク層7が石英からなる基板1の溝以外の部分上に残存する。こうして残存ハードマスク層7除去前モールド10となる。 Thus, as shown in FIG. 3 (h), the groove processing corresponding to the fine pattern is applied to the substrate 1 made of quartz, and the hard mask layer 7 having the fine pattern remains on the portion other than the groove of the substrate 1 made of quartz. To do. Thus, the mold 10 before removal of the remaining hard mask layer 7 is obtained.
  (ハードマスク層の除去)
  このように作製された残存ハードマスク層除去前モールド10に対し、第1のエッチングと同様の手法で、引き続いて残存ハードマスク層除去前モールド10上に残存するハードマスク層7をドライエッチングにて除去する工程が行われ、それにより石英からなる基板1の表面に微細な凹凸パターンが形成されたインプリントモールド20が作製される(図3(i))。 
(Removal of hard mask layer)
The hard mask layer 7 remaining on the mold 10 before removal of the remaining hard mask layer is subsequently dry-etched by the same method as the first etching for the mold 10 before removal of the remaining hard mask layer thus manufactured. The removal process is performed, and thereby an imprint mold 20 in which a fine concavo-convex pattern is formed on the surface of the substrate 1 made of quartz is manufactured (FIG. 3I).
  なお、いずれかのエッチングのみをウェットエッチングとし、他のエッチングにおいてはドライエッチングを行ってもよいし、全てのエッチングにおいてウェットエッチングまたはドライエッチングを行ってもよい。所望の微細な凹凸パターンが形成できるならば、ウェットエッチングとドライエッチングの組み合わせはいずれでもよい。 Note that only one of the etchings may be wet etching, and other etchings may be dry etching, or all etchings may be wet etching or dry etching. Any combination of wet etching and dry etching may be used as long as a desired fine uneven pattern can be formed.
  なお、本実施形態においては、上記のエッチングを行ったが、コピーモールド作製用ブランクスの構成物質に応じて、別途エッチングを第1~第2のエッチングの間あるいは前後に追加しても良い。 In the present embodiment, the above-described etching is performed. However, additional etching may be added between or before and after the first and second etchings depending on the constituent material of the copy mold manufacturing blanks.
(コピーモールドの完成)
  以上の上記の工程を経て、必要があれば基板1の洗浄等を行う。このようにして、図3(i)に示すようなコピーモールド20を完成させる。
(Completion of copy mold)
Through the above-described steps, the substrate 1 is cleaned if necessary. In this way, the copy mold 20 as shown in FIG.
(モールドの再生)
  新たにコピーモールドを作製するために、インプリントを行った後のモールド30に対して、再生処理を行う。具体的には、硫酸過水などでモールド30を洗浄して離型層31を除去する。その後、適宜洗浄や乾燥等を行う。そして、再び離型剤を塗布することにより新たに離型層31をモールド30上に設ける。
(Mold regeneration)
In order to newly manufacture a copy mold, a regeneration process is performed on the mold 30 after imprinting. Specifically, the mold 30 is washed with sulfuric acid / hydrogen peroxide to remove the release layer 31. Thereafter, washing or drying is performed as appropriate. Then, a release layer 31 is newly provided on the mold 30 by applying a release agent again.
<実施の形態2>
 先に述べた実施の形態1においては、光インプリント用マスターモールドに対するコピーモールド20について述べた。
  その一方、本実施形態においては、熱インプリント用マスターモールドに対するコピーモールド20について説明する。なお、以下の説明において特筆しない部分については、実施の形態1と同様である。
<Embodiment 2>
In the first embodiment described above, the copy mold 20 for the optical imprint master mold has been described.
On the other hand, in this embodiment, the copy mold 20 for the thermal imprint master mold will be described. In the following description, parts not particularly mentioned are the same as those in the first embodiment.
  まず、熱インプリント用マスターモールドに対するコピーモールド20製造に用いられる基板についてであるが、ハードマスク層7に対するドライエッチングに用いられる塩素ガスに耐性があるSiC基板が挙げられる。 First, regarding the substrate used for manufacturing the copy mold 20 for the master mold for thermal imprinting, an SiC substrate resistant to chlorine gas used for dry etching for the hard mask layer 7 may be mentioned.
  なお、熱インプリントを行う場合の基板1について、塩素系ガスに対して耐性を有する基板であるSiC基板以外にも、以下のような工夫を施すことにより塩素系ガスへの耐性が比較的弱いシリコンウエハを使用することもできる。すなわち、シリコンウエハ1上にまずはSiO層を設ける。このSiO層の上にハードマスク層7を設けることにより、ハードマスク層7が塩素ガスで除去されたとしても、SiO層がシリコンウエハ1を塩素ガスから保護することになる。そして、バッファードフッ酸すなわちフッ化アンモニウム及びフッ酸からなる混酸により、SiO層を除去する。こうすることにより、熱インプリント用モールドを作製するために、シリコンウエハを使用することもできる。また、シリコンウエハ上に加工層としてSiO層を設けたものを基板として使用することもできる。このときには加工層であるSiO層に溝を設けることになるため、シリコンウエハ1を用いる場合に比べてSiO層を厚くすることが好ましい。
  本実施形態においては、円盤形状のSiC基板を用いて説明する。
In addition, about the board | substrate 1 in the case of performing a thermal imprint, in addition to the SiC substrate which is a board | substrate which has tolerance with respect to chlorine-type gas, the tolerance to chlorine-type gas is comparatively weak by giving the following ideas. A silicon wafer can also be used. That is, an SiO 2 layer is first provided on the silicon wafer 1. By providing the hard mask layer 7 on the SiO 2 layer, even if the hard mask layer 7 is removed with chlorine gas, the SiO 2 layer protects the silicon wafer 1 from chlorine gas. Then, the SiO 2 layer is removed with buffered hydrofluoric acid, that is, a mixed acid composed of ammonium fluoride and hydrofluoric acid. By doing so, a silicon wafer can also be used to produce a thermal imprint mold. Further, those having a SiO 2 layer as a working layer on the silicon wafer can be used as a substrate. At this time, since a groove is provided in the SiO 2 layer which is a processed layer, it is preferable to make the SiO 2 layer thicker than when the silicon wafer 1 is used.
In the present embodiment, description will be made using a disk-shaped SiC substrate.
  本実施形態においては、TaHfからなる導電層2及び窒化クロム層3を基板1上に成膜する。
  次に、前記ブランクスにおけるハードマスク層7に対して熱インプリント用のレジストを塗布し、レジスト層4を形成して本実施形態におけるコピーモールド20の製造に用いられるレジスト付きブランクスを作製する。熱インプリント用のレジストとしては冷却すると硬化する熱可塑性樹脂が挙げられるが、この樹脂の内、後で行われるエッチング工程に適するものであればよい。なお、この樹脂は、加熱下において、元型となるモールドを押圧したときに転写すべき微細パターンが形成される程度の軟らかさを有することが好ましい。モールドをレジスト上に押圧したとき、モールド30の微細パターン及び離型層31に合わせてレジストが容易に変形し、微細パターンを精度良く転写することができるためである。
In the present embodiment, the conductive layer 2 and the chromium nitride layer 3 made of TaHf are formed on the substrate 1.
Next, a resist for thermal imprinting is applied to the hard mask layer 7 in the blanks, and a resist layer 4 is formed to produce blanks with resist used for manufacturing the copy mold 20 in the present embodiment. As the resist for thermal imprinting, a thermoplastic resin that hardens when cooled can be used, but any resin suitable for an etching process to be performed later may be used. In addition, it is preferable that this resin is soft enough to form a fine pattern to be transferred when a mold as an original mold is pressed under heating. This is because when the mold is pressed onto the resist, the resist is easily deformed according to the fine pattern of the mold 30 and the release layer 31, and the fine pattern can be transferred with high accuracy.
  その後、基板1、即ちレジスト層4を冷却することで、前記レジスト層4に対してモールド30の微細パターンは転写される。 After that, by cooling the substrate 1, that is, the resist layer 4, the fine pattern of the mold 30 is transferred to the resist layer 4.
  微細パターン転写後、ハードマスク層7上にあるレジストの残膜層をアッシングにより除去した後、実施の形態1に記載された工程により、インプリント用マスターモールドに対するコピーモールド20を完成させる。 After the fine pattern is transferred, the residual film layer of the resist on the hard mask layer 7 is removed by ashing, and then the copy mold 20 for the imprint master mold is completed by the process described in the first embodiment.
  以上、本発明に係る実施の形態を挙げたが、上記の開示内容は、本発明の例示的な実施形態を示すものである。本発明の範囲は、上記の例示的な実施形態に限定されるものではない。本明細書中に明示的に記載されている又は示唆されているか否かに関わらず、当業者であれば、本明細書の開示内容に基づいて本発明の実施形態に種々の改変を加えて実施し得る。 As mentioned above, although embodiment which concerns on this invention was mentioned, the above-mentioned disclosure content shows exemplary embodiment of this invention. The scope of the present invention is not limited to the exemplary embodiments described above. Whether or not explicitly described or suggested herein, those skilled in the art will make various modifications to the embodiments of the present invention based on the disclosure of the present specification. Can be implemented.
(本実施形態の効果)
  以上のような本実施形態においては、以下の効果を得ることができる。
  まず、離型層を構成するフルオロカーボンにおけるフッ素により、コピーモールド作製用基板上に設けられたレジスト層と接触する部分の表面エネルギーを低下させることができる。その結果、円滑かつ低い離型圧でモールドと被転写基板との離型を行うことができる。
(Effect of this embodiment)
In the present embodiment as described above, the following effects can be obtained.
First, the surface energy of the portion in contact with the resist layer provided on the copy mold manufacturing substrate can be reduced by fluorine in the fluorocarbon constituting the release layer. As a result, the mold and the transfer substrate can be released smoothly and with a low release pressure.
  さらに、モールドに対する吸着官能基を複数とすることにより、1つの分子鎖の2箇所でモールドに対して吸着または結合することができ、その結果、モールドと離型層との密着性を高めることができる。 Furthermore, by using a plurality of adsorption functional groups for the mold, it can be adsorbed or bonded to the mold at two locations of one molecular chain, and as a result, the adhesion between the mold and the release layer can be improved. it can.
  それに加えて、前記吸着官能基において、前記吸着官能基とモールドとの吸着あるいは結合の元となる結合エネルギーが、前記離型剤化合物の分子鎖における吸着官能基同士の結合エネルギーよりも大きいことにより、離型剤化合物による自己凝集を抑制でき、しかもモールドと離型層との密着性を高めることができる。 In addition, in the adsorptive functional group, the binding energy that is the basis for the adsorption or binding between the adsorptive functional group and the mold is greater than the binding energy between the adsorptive functional groups in the molecular chain of the release agent compound. In addition, self-aggregation by the release agent compound can be suppressed, and adhesion between the mold and the release layer can be improved.
 また、離型層の加熱処理温度を変動させることによって表面自由エネルギーの値が適度に変動する離型剤化合物により、離型性を損なうことなく、かつ、モールドにレジストを良好かつ確実に充填することができ、充填不良による転写パターン欠陥を低減できる。よって、インプリント工程において、精度良くパターンを転写することができ、ひいては被転写対象(例えば、コピーモールド)の精度及び品質が向上し、それにより得られる最終製品の品質も向上する。 In addition, a mold release agent compound whose surface free energy value is appropriately changed by changing the heat treatment temperature of the release layer can be satisfactorily filled with a resist without impairing the release property. Transfer pattern defects due to poor filling can be reduced. Therefore, the pattern can be transferred with high accuracy in the imprint process, and as a result, the accuracy and quality of the transfer target (for example, copy mold) are improved, and the quality of the final product obtained thereby is also improved.
  このように光インプリント法を用いて作製した石英からなるコピーモールドそのものは、熱インプリント、室温インプリント、光インプリントのいずれにも用いることができる。特に、光ナノインプリント技術を用いて作製されるパターンドメディアに本実施形態を好適に応用することができる。 コ ピ ー The copy mold itself made of quartz produced by using the optical imprint method in this way can be used for any of thermal imprint, room temperature imprint, and optical imprint. In particular, the present embodiment can be suitably applied to patterned media manufactured using optical nanoimprint technology.
  次に実施例を示し、本発明について具体的に説明する。もちろんこの発明は、以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to examples. Of course, the present invention is not limited to the following examples.
<実施例>
 本実施例においては、深さ30nm、凹部(溝部)15nm、かつ、凸部(突起部)35nm、ピッチ50nmの周期構造が設けられている石英基板からなるモールド30を用いた。
 このモールド30を、VERTREL XF-UP(VERTRELは登録商標: 三井・デュポンフロロケミカル株式会社製)で0.5wt%に希釈した下記化合物((CO)の分子量:500以上かつ6000以下)を含む離型剤化合物に5分間浸漬した。
Figure JPOXMLDOC01-appb-C000001

  その後、120mm/分の速度でモールド30を前記離型剤化合物の溶液から引き上げた。このようにディップ法により離型剤化合物の塗布を行った。
<Example>
In this example, a mold 30 made of a quartz substrate provided with a periodic structure having a depth of 30 nm, a recess (groove) of 15 nm, a protrusion (projection) of 35 nm, and a pitch of 50 nm was used.
The mold 30, VERTREL XF-UP (VERTREL is a registered trademark: manufactured by Mitsui-Dupont Fluorochemicals Co.) The following compound was diluted to 0.5 wt% with ((C 3 F 6 O) n molecular weight: 500 or more and 6000 5) for 5 minutes.
Figure JPOXMLDOC01-appb-C000001

Thereafter, the mold 30 was pulled up from the solution of the release agent compound at a speed of 120 mm / min. Thus, the release agent compound was applied by the dip method.
  なおこの際、複数の試料を作製し、各々の試料に対して、引き上げ後に25℃~205℃の温度にて加熱処理を行った。その後、モールド30に対してリンス処理を行った。この際にも、リンス液には前記VERTREL XF-UPを用い、10分間浸漬してリンス処理を行った。
 このようにして、本実施例に係るインプリント用離型層付きモールドを得た。
At this time, a plurality of samples were prepared, and each sample was heated at a temperature of 25 ° C. to 205 ° C. after being pulled up. Thereafter, the mold 30 was rinsed. Also in this case, the VERTREL XF-UP was used as a rinsing solution, which was immersed for 10 minutes for rinsing.
In this manner, a mold with a release layer for imprinting according to this example was obtained.
 その後、本実施例におけるコピーモールド20作製用の基板1としてウエハ形状の合成石英基板(外径150mm、厚み0.7mm、以降石英ウエハ1という)を用いた(図3(a))。 Thereafter, a wafer-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm, hereinafter referred to as quartz wafer 1) was used as the substrate 1 for producing the copy mold 20 in this example (FIG. 3A).
  次に、この石英ウエハ1をスパッタリング装置に導入した。そして、タンタル(Ta)とハフニウム(Hf)(Ta:Hf=80:20原子比)からなるターゲットをアルゴンガスでスパッタリングし、上記石英ウエハ1上に7nmの厚みのタンタル-ハフニウム合金からなる導電層2を成膜形成した。 Next, the quartz wafer 1 was introduced into a sputtering apparatus. Then, a target made of tantalum (Ta) and hafnium (Hf) (Ta: Hf = 80: 20 atomic ratio) is sputtered with argon gas, and a conductive layer made of a tantalum-hafnium alloy having a thickness of 7 nm is formed on the quartz wafer 1. 2 was formed into a film.
  次に、クロムターゲットをアルゴンと窒素の混合ガスでスパッタリングし、窒化クロム層3を2.5nmの厚みで成膜した(図3(b))。こうして、導電層2及び窒化クロム層3からなるハードマスク層7が石英ウエハ1上に形成された。 Next, a chromium target was sputtered with a mixed gas of argon and nitrogen to form a chromium nitride layer 3 with a thickness of 2.5 nm (FIG. 3B). Thus, a hard mask layer 7 composed of the conductive layer 2 and the chromium nitride layer 3 was formed on the quartz wafer 1.
 次に、石英ウエハ1上に形成された上記ハードマスク層7上に、スピンコート法により密着補助剤を回転塗布した。密着補助剤を滴下した後、回転数を3000rmpとし、60秒間、石英ウエハ1を回転させた。密着補助剤を塗布した後、160℃で60秒間、ホットプレートにて、石英ウエハ1の加熱処理を行った。 Next, an adhesion aid was spin-coated by spin coating on the hard mask layer 7 formed on the quartz wafer 1. After dropping the adhesion aid, the rotation speed was set to 3000 rpm and the quartz wafer 1 was rotated for 60 seconds. After applying the adhesion aid, the quartz wafer 1 was heat-treated on a hot plate at 160 ° C. for 60 seconds.
  次に、同じくスピンコート法により光ナノインプリント用の紫外線光硬化性レジスト4(東洋合成社製PAK-01)を45nmの厚みに塗布し、レジスト層4を形成した(図3(c))。 Next, an ultraviolet photocurable resist 4 for photo-nanoimprinting (PAK-01 manufactured by Toyo Gosei Co., Ltd.) was applied to a thickness of 45 nm by the same spin coating method to form a resist layer 4 (FIG. 3C).
 次に、ナノインプリント装置(Molecular Imprints、Inc.製  Imprio-1100TR)を用い、紫外線光硬化性のレジスト層4を塗布形成した前記石英ウエハ1上に、前記モールド30を載置し、30秒間静置してモールド30上の凹凸パターンへのレジスト4の充填を完了させた後、20秒間の紫外線露光によりレジスト4を硬化させた(図3(d))。その後、モールド30と石英ウエハ1を引き離し、離型を行った。こうして、モールド30上の微細な凹凸パターンは、レジスト層4に転写された(図3(e))。 Next, using a nanoimprint apparatus (Molecular Imprints, Inc. Imprio-1100TR), the mold 30 is placed on the quartz wafer 1 on which the ultraviolet light curable resist layer 4 is formed by coating, and left still for 30 seconds. Then, after the filling of the resist 4 into the uneven pattern on the mold 30 was completed, the resist 4 was cured by ultraviolet exposure for 20 seconds (FIG. 3D). Thereafter, the mold 30 and the quartz wafer 1 were pulled apart to release the mold. Thus, the fine concavo-convex pattern on the mold 30 was transferred to the resist layer 4 (FIG. 3E).
 次に、ハードマスク層7上にある凹凸パターンが転写形成されたレジスト層4の残膜層を、酸素、アルゴンガスのプラズマを用いたアッシングにより除去し、所望の微細な凹凸パターンの凹部に対応するハードマスク層7露出させた(図3(f))。 Next, the remaining film layer of the resist layer 4 on which the concavo-convex pattern is transferred and formed on the hard mask layer 7 is removed by ashing using plasma of oxygen or argon gas, so as to correspond to the concave portion of the desired fine concavo-convex pattern. The hard mask layer 7 to be exposed was exposed (FIG. 3F).
  次に、上記残膜層が除去されたレジストパターンを有するハードマスク層7が形成された石英ウエハ1をドライエッチング装置に導入し、ClガスとArガスとを同時に導入しながらドライエッチングを行った。そして、微細パターンを有するハードマスク層7を形成した(図3(g))。 Next, the quartz wafer 1 on which the hard mask layer 7 having the resist pattern from which the residual film layer has been removed is introduced into a dry etching apparatus, and dry etching is performed while simultaneously introducing Cl 2 gas and Ar gas. It was. Then, a hard mask layer 7 having a fine pattern was formed (FIG. 3G).
  続いて、ハードマスク層7に対するドライエッチングで用いられたガスを真空排気した後、同じドライエッチング装置内で、フッ素系ガスを用いたドライエッチング(CHF:Ar=1:9(流量比))を、石英ウエハ1に対して行った。この際、前記レジストパターンを元パターンとして微細パターンが形成されたハードマスク層7をマスクとして石英ウエハ1をエッチング加工し、微細な凹凸パターンに対応した溝加工(凹凸はモールド30とは逆となっている)を石英ウエハ1に施した。 Subsequently, after evacuating the gas used for dry etching on the hard mask layer 7, dry etching using a fluorine-based gas (CHF 3 : Ar = 1: 9 (flow rate ratio)) in the same dry etching apparatus. Was performed on the quartz wafer 1. At this time, the quartz wafer 1 is etched using the hard mask layer 7 on which the fine pattern is formed using the resist pattern as an original pattern as a mask, and grooves corresponding to the fine uneven pattern (the unevenness is opposite to that of the mold 30). Is applied to the quartz wafer 1.
  そして、濃硫酸と過酸化水素水からなる硫酸過水(濃硫酸:過酸化水素水=2:1体積比)を用いてレジスト層4を除去し、本実施例におけるコピーモールド20の製造のための残存ハードマスク層除去前モールド10を得た(図3(h))。 Then, the resist layer 4 is removed by using sulfuric acid / hydrogen peroxide (concentrated sulfuric acid: hydrogen peroxide solution = 2: 1 volume ratio) composed of concentrated sulfuric acid and hydrogen peroxide solution, to manufacture the copy mold 20 in this embodiment. The mold 10 before removal of the remaining hard mask layer was obtained (FIG. 3H).
  その後、残存ハードマスク層除去前モールド10を、先のハードマスク層7へのエッチングに用いたドライエッチング装置に導入した。そして、基板上のハードマスク層7を除去した。最後に適宜洗浄を加え、こうして、本実施例におけるコピーモールド20、即ちモールド30上の微細な凹凸パターンに対応した凹凸(凹凸は逆となっている)石英ウエハ1からなるコピーモールドを作製した(図3(i))。 After that, the mold 10 before removing the remaining hard mask layer was introduced into the dry etching apparatus used for etching the hard mask layer 7 previously. Then, the hard mask layer 7 on the substrate was removed. Finally, washing was appropriately performed, and thus a copy mold 20 according to the present example, that is, a copy mold made of the quartz wafer 1 corresponding to the fine concavo-convex pattern on the mold 30 (irregularities were reversed) ( FIG. 3 (i)).
<比較例>
  上述の実施例と比較するために、比較例においては、離型剤化合物として、変性シラン基を有する化合物(製品名:OPTOOL(登録商標)  ダイキン製)を用い、当該離型剤をモールド30に塗布した後に、25℃~190℃にて加熱処理を行った。これ以外については、実施例と同様にして離型層付きモールド及びコピーモールドを作製した。
<Comparative example>
In order to compare with the above-described examples, in the comparative example, a compound having a modified silane group (product name: OPTOOL (registered trademark) manufactured by Daikin) is used as the mold release agent compound, and the mold release agent is used in the mold 30. After coating, heat treatment was performed at 25 ° C. to 190 ° C. Except this, a mold with a release layer and a copy mold were produced in the same manner as in the example.
<評価>
(1.離型層付きモールドの表面粗さ)
  実施例および比較例により得られた離型層付きモールドについて、原子間力顕微鏡を用いて表面粗さを計測した。その結果を図5に示す。図5(a)、(b)は実施例における離型層付きモールドの表面を示す測定結果であり、(a)はインプリントを行う前の離型層付きモールドの表面を示す測定結果であり、(b)はインプリントを1回行った後の離型層付きモールドの表面を示す測定結果である。また、図5(c)、(d)は比較例における離型層付きモールドの表面を示す測定結果であり、(c)はインプリントを行う前の離型層付きモールドの表面を示す測定結果であり、(d)はインプリントを1回行った後の離型層付きモールドの表面を示す測定結果である。
<Evaluation>
(1. Surface roughness of mold with release layer)
About the mold with a release layer obtained by the Example and the comparative example, the surface roughness was measured using the atomic force microscope. The result is shown in FIG. FIGS. 5A and 5B are measurement results showing the surface of the mold with a release layer in Examples, and FIG. 5A is a measurement result showing the surface of the mold with a release layer before imprinting. (B) is a measurement result which shows the surface of the mold with a release layer after imprinting once. FIGS. 5C and 5D are measurement results showing the surface of the mold with a release layer in the comparative example, and FIG. 5C is a measurement result showing the surface of the mold with the release layer before imprinting. (D) is a measurement result showing the surface of the mold with a release layer after imprinting once.
  実施例においては、図5(a)、(b)より、インプリント前に加えてインプリント後においても自己凝集による欠陥は発見されなかった。
  その一方、比較例においては図5(c)、(d)より、自己凝集による欠陥が複数発生していた。しかも、インプリント後には欠陥が多く発生していた。
In the examples, from FIG. 5A and FIG. 5B, no defects due to self-aggregation were found not only before imprinting but also after imprinting.
On the other hand, in the comparative example, a plurality of defects due to self-aggregation occurred from FIGS. 5 (c) and 5 (d). Moreover, many defects occurred after imprinting.
(2.インプリント耐久性)
  また、実施例及び比較例に係る離型層付きモールドにおけるインプリント耐久力についても調べた。その結果を示す図6(インプリント回数に対する離型層の厚さの変化)を見ると、実施例においては離型層の厚さが維持されていた。その一方、比較例においては、インプリント回数を増すと離型層の厚さが減少していた。また、図7(離型層の表面自由エネルギー)をみると、実施例はインプリントを複数回行っても表面自由エネルギーは低いままに維持されていた。
(2. Imprint durability)
Moreover, it investigated also about the imprint durability in the mold with a release layer which concerns on an Example and a comparative example. Looking at FIG. 6 showing the result (change in the thickness of the release layer with respect to the number of imprints), the thickness of the release layer was maintained in the examples. On the other hand, in the comparative example, when the number of imprints was increased, the thickness of the release layer was reduced. Moreover, when FIG. 7 (surface free energy of a mold release layer) was seen, even if the Example performed imprint several times, the surface free energy was maintained with low.
(3.離型層の厚さ)
  また、実施例及び比較例に係る離型層付きモールドにおける離型層の厚さについても調べた。その結果を示す図8を見ると、実施例(130℃、150℃、190℃、205℃)の方が比較例(110℃)よりも薄い離型層を得ることができた。
(3. Release layer thickness)
Moreover, it investigated also about the thickness of the mold release layer in the mold with a mold release layer which concerns on an Example and a comparative example. When FIG. 8 which shows the result was seen, the mold release layer thinner than the comparative example (110 degreeC) of the Example (130 degreeC, 150 degreeC, 190 degreeC, 205 degreeC) was able to be obtained.
(4.加熱処理による表面自由エネルギーの最適化)
  更に、加熱処理温度と表面自由エネルギーとの関係を求めた。その結果を、図9(a)(実施例)及び図9(b)(比較例)に示す。
(4. Optimization of surface free energy by heat treatment)
Furthermore, the relationship between heat processing temperature and surface free energy was calculated | required. The results are shown in FIG. 9A (Example) and FIG. 9B (Comparative example).
  実施例においては、図9(a)より、加熱処理温度が170℃を超えた場合、表面自由エネルギーは実質的に変化しなかった。しかしながら、170℃以下の場合、加熱処理温度を変化させることで、表面自由エネルギーを変化させることができた。レジスト4の組成に応じて、表面自由エネルギーを調整し最適化することで、離型層31を介してモールド30にレジスト4を充填不良なく確実に充填させるのに役立てることができることがわかった。 In the examples, from FIG. 9A, when the heat treatment temperature exceeded 170 ° C., the surface free energy did not substantially change. However, in the case of 170 ° C. or lower, the surface free energy could be changed by changing the heat treatment temperature. It has been found that adjusting and optimizing the surface free energy according to the composition of the resist 4 can be used to reliably fill the mold 30 with the resist 4 through the release layer 31 without filling defects.
  その一方、比較例においては、図9(b)より、加熱処理を変化させても表面自由エネルギーを実質的に変化させることができず、レジスト4の組成に応じて、離型層31の表面自由エネルギーの最適化処理を行うことができなかった。 On the other hand, in the comparative example, as shown in FIG. 9B, the surface free energy cannot be substantially changed even if the heat treatment is changed, and the surface of the release layer 31 depends on the composition of the resist 4. The free energy optimization process could not be performed.
(5.良好な充填)
  実施例及び比較例により得られた離型層付きモールドに対して、前記光インプリント装置により、前記ハードマスク層が形成された石英ウエハ1上の紫外線光硬化性樹脂からなるレジスト層4を接触させた。その際の写真を、図10(a)(実施例)、及び、図10(b)(比較例)に示す。
  なお、この離型層付きモールドは、離型剤化合物をモールドに塗布した後に170℃で加熱処理した試料である。
(5. Good filling)
The resist layer 4 made of an ultraviolet photocurable resin on the quartz wafer 1 on which the hard mask layer is formed is brought into contact with the mold with a release layer obtained in the examples and comparative examples by the optical imprint apparatus. I let you. The photograph at that time is shown in FIG. 10A (example) and FIG. 10B (comparative example).
In addition, this mold with a mold release layer is a sample heat-processed at 170 degreeC, after apply | coating the mold release agent compound to a mold.
  実施例においては、図10(a)からも明らかなように、モールド30全面にわたり前記レジスト4を充填不良なく確実に充填させることができた。 As can be seen from FIG. 10A, in the example, the resist 4 could be reliably filled over the entire surface of the mold 30 without filling defects.
  一方、比較例においては、図10(b)からも明らかなように、モールド30の左右側中央から下部にかけて充填不良が発生していた。  On the other hand, in the comparative example, as is apparent from FIG. 10B, a filling defect occurred from the center of the left and right sides of the mold 30 to the lower part.
1      基板
2      導電層
3      窒化クロム層
4      レジスト層
7      ハードマスク層
10    残存ハードマスク層除去前モールド
20    コピーモールド
30    モールド
31    インプリント用離型層
 
DESCRIPTION OF SYMBOLS 1 Substrate 2 Conductive layer 3 Chromium nitride layer 4 Resist layer 7 Hard mask layer 10 Residual hard mask layer mold 20 Removal mold 30 Mold 31 Release layer for imprint

Claims (13)

  1.  インプリント法により所定の凹凸パターンを被パターン形成材料に転写するためのモールドに離型層が設けられた離型層付きモールドにおいて、
     前記離型層を構成する離型剤化合物(分子)の主鎖にはフルオロカーボンが含まれ、前記離型剤化合物はモールドに対して吸着または結合している吸着官能基を少なくとも2個以上有し、前記吸着官能基において、前記吸着官能基と前記モールドとの結合エネルギーが前記離型剤化合物の分子鎖における吸着官能基同士の結合エネルギーよりも大きいこと、
     を特徴とする離型層付きモールド。
    In a mold with a release layer in which a release layer is provided in a mold for transferring a predetermined uneven pattern to a pattern forming material by an imprint method,
    The main chain of the release agent compound (molecule) constituting the release layer contains a fluorocarbon, and the release agent compound has at least two adsorption functional groups adsorbed or bonded to the mold. In the adsorption functional group, the bond energy between the adsorption functional group and the mold is larger than the bond energy between the adsorption functional groups in the molecular chain of the release agent compound,
    A mold with a release layer.
  2.  前記吸着官能基は前記モールドに対して水素結合可能な官能基であること、
     を特徴とする請求項1に記載の離型層付きモールド。
    The adsorptive functional group is a functional group capable of hydrogen bonding to the mold;
    The mold with a release layer according to claim 1.
  3.  前記吸着官能基はヒドロキシル基、カルボキシル基、エステル基、または、これらのうちのいずれかの組み合わせであること、
     を特徴とする請求項1または2に記載の離型層付きモールド。
    The adsorptive functional group is a hydroxyl group, a carboxyl group, an ester group, or any combination thereof;
    The mold with a release layer according to claim 1 or 2.
  4.  前記吸着官能基が、前記離型層を構成する離型剤化合物の分子鎖の両末端に設けられていること、
     を特徴とする請求項1ないし3のいずれかに記載の離型層付きモールド。
    The adsorptive functional groups are provided at both ends of the molecular chain of the release agent compound constituting the release layer;
    The mold with a release layer according to any one of claims 1 to 3.
  5.  前記離型層を構成する離型剤化合物の分子鎖は側鎖を有さないこと、
     を特徴とする請求項1ないし4のいずれかに記載の離型層付きモールド。
    The molecular chain of the release agent compound constituting the release layer has no side chain,
    The mold with a release layer according to any one of claims 1 to 4.
  6.  前記フルオロカーボンには(C2mO)[mは整数かつ1≦m≦7であり、nは、前記(C2mO)の分子量が500以上かつ6000以下となる整数]が1種類または複数種類含まれること、
     を特徴とする請求項1ないし5のいずれかに記載の離型層付きモールド。
    The fluorocarbon has (C m F 2m O) n [m is an integer and 1 ≦ m ≦ 7, and n is an integer such that the molecular weight of the (C m F 2m O) n is 500 or more and 6000 or less]. Contain one or more types,
    The mold with a release layer according to any one of claims 1 to 5.
  7.   前記離型層は、前記離型層に対する加熱処理温度と前記離型層の表面自由エネルギーとの関係において、加熱処理温度を変化させても表面自由エネルギーの値が一定である領域と、加熱処理温度の高低と共に表面自由エネルギーの値が増減する領域とが含まれ、かつ加熱処理後の離型層は、加熱処理温度低下と共に表面自由エネルギーの値が増加する領域を有すること、
     を特徴とする請求項1ないし6のいずれかに記載の離型層付きモールド。
    In the relationship between the heat treatment temperature for the release layer and the surface free energy of the release layer, the release layer has a region where the value of the surface free energy is constant even when the heat treatment temperature is changed, and the heat treatment A region in which the value of the surface free energy increases or decreases with high and low temperatures, and the release layer after the heat treatment has a region in which the value of the surface free energy increases with a decrease in the heat treatment temperature,
    The mold with a release layer according to any one of claims 1 to 6.
  8.  前記モールドは、所定のパターンに対応する凹凸パターンが設けられた石英基板からなること、
     を特徴とする請求項1ないし7のいずれかに記載の離型層付きモールド。
    The mold is made of a quartz substrate provided with a concavo-convex pattern corresponding to a predetermined pattern;
    The mold with a release layer according to any one of claims 1 to 7.
  9.  インプリント法により所定の凹凸パターンを被パターン形成材料に転写するためのモールドに離型層が設けられる離型層付きモールドにおいて、
     前記離型層を構成する離型剤化合物の分子鎖における主鎖には(C2mO)[mは整数かつ1≦m≦7であり、nは、前記(C2mO)の分子量が500以上かつ6000以下となる整数]が1種類または複数種類含まれ、
     前記離型剤化合物はモールドに対する吸着官能基としてヒドロキシル基を少なくとも2個以上有し、前記離型剤化合物の両末端に前記ヒドロキシル基が設けられており、
     前記離型層は、前記離型層に対する加熱処理温度と前記離型層の表面自由エネルギーとの関係において、加熱処理温度を変化させても表面自由エネルギーの値がほぼ一定である領域と、加熱処理温度の高低と共に表面自由エネルギーの値が増減する領域とが含まれ、かつ、加熱処理後の離型層は加熱処理温度の低下と共に表面自由エネルギーの値が増加する領域を有すること、
     を特徴とする離型層付きモールド。
    In a mold with a release layer in which a release layer is provided in a mold for transferring a predetermined uneven pattern to a pattern forming material by an imprint method,
    The main chain in the molecular chain of the release agent compound constituting the release layer is (C m F 2m O) n [m is an integer and 1 ≦ m ≦ 7, and n is the above (C m F 2m O ) N is an integer in which the molecular weight is 500 or more and 6000 or less].
    The release agent compound has at least two hydroxyl groups as adsorption functional groups for the mold, and the hydroxyl groups are provided at both ends of the release agent compound.
    In the relationship between the heat treatment temperature for the release layer and the surface free energy of the release layer, the release layer has a region in which the value of the surface free energy is substantially constant even when the heat treatment temperature is changed, A region in which the value of the surface free energy increases or decreases with the level of the treatment temperature, and the release layer after the heat treatment has a region in which the value of the surface free energy increases with a decrease in the heat treatment temperature,
    A mold with a release layer.
  10.  請求項1に記載の離型層付きモールドの製造方法であって、
     前記モールドに対して離型剤化合物を塗布した後、加熱処理によって前記離型層の表面自由エネルギーを変化させることにより、前記離型層の表面エネルギーの最適化を行う工程を有すること、
     を特徴とする離型層付きモールドの製造方法。
    A method for producing a mold with a release layer according to claim 1,
    After applying a release agent compound to the mold, the surface free energy of the release layer is changed by heat treatment to optimize the surface energy of the release layer,
    The manufacturing method of the mold with a release layer characterized by these.
  11.  前記加熱処理は25℃以上250℃以下にて行うこと、
     を特徴とする請求項10に記載の離型層付きモールドの製造方法。
    The heat treatment is performed at 25 ° C. or more and 250 ° C. or less,
    The method for producing a mold with a release layer according to claim 10.
  12.  前記加熱処理後に離型層に対してリンス処理を行う工程を有すること、
     を特徴とする請求項10又は11に記載の離型層付きモールドの製造方法。
    Having a step of rinsing the release layer after the heat treatment,
    The manufacturing method of the mold with a release layer of Claim 10 or 11 characterized by these.
  13.  請求項1に記載の離型層付きモールドからコピーモールドを製造する方法であって、
     前記モールドに対して離型層を設ける工程と、
     コピーモールド製造用の基板に対してハードマスク層を形成する工程と、
     前記ハードマスク層に対してレジスト層を形成する工程と、
     前記モールドが有するパターンを前記レジスト層に転写する工程と、
     前記モールドが有するパターンが転写された前記レジスト層をマスクとして前記ハードマスク層に対してエッチングする工程と、
     前記レジスト層をマスクとしてエッチングされた前記ハードマスク層をマスクとして、前記コピーモールド製造用の基板をエッチングする工程と、
     を有することを特徴とするコピーモールドの製造方法。
    A method for producing a copy mold from the mold with a release layer according to claim 1,
    Providing a release layer for the mold;
    Forming a hard mask layer on a substrate for producing a copy mold; and
    Forming a resist layer on the hard mask layer;
    Transferring the pattern of the mold to the resist layer;
    Etching the hard mask layer using the resist layer to which the pattern of the mold is transferred as a mask;
    Etching the substrate for manufacturing the copy mold using the hard mask layer etched using the resist layer as a mask;
    A method for producing a copy mold, comprising:
PCT/JP2011/057762 2010-03-30 2011-03-29 Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold WO2011122605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127028204A KR20130071426A (en) 2010-03-30 2011-03-29 Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold
US13/638,493 US20130084352A1 (en) 2010-03-30 2011-03-29 Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-079288 2010-03-30
JP2010079288 2010-03-30
JP2010187569A JP5606826B2 (en) 2010-08-24 2010-08-24 Release layer for imprint, mold with release layer for imprint, and method for producing mold with release layer for imprint
JP2010-187569 2010-08-24
JP2011-069290 2011-03-28
JP2011069290A JP5798349B2 (en) 2010-03-30 2011-03-28 Mold with release layer, method for producing the same, and method for producing the mold

Publications (1)

Publication Number Publication Date
WO2011122605A1 true WO2011122605A1 (en) 2011-10-06

Family

ID=44712300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057762 WO2011122605A1 (en) 2010-03-30 2011-03-29 Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold

Country Status (1)

Country Link
WO (1) WO2011122605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132993A1 (en) * 2012-03-07 2013-09-12 株式会社 アルバック Method for manufacturing element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283354A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Mold for imprint processing and method for manufacturing the same
JP2008178984A (en) * 2007-01-23 2008-08-07 Hitachi Ltd Nano-imprinting stamper, its manufacturing method and surface treatment agent of nano-imprinting stamper
WO2008096594A1 (en) * 2007-02-07 2008-08-14 Asahi Glass Company, Limited Imprint mold and method for production thereof
JP2008238502A (en) * 2007-03-27 2008-10-09 Asahi Glass Co Ltd Manufacturing method of mold for imprinting
WO2009041551A1 (en) * 2007-09-27 2009-04-02 Hoya Corporation Mask blank, and method for production of imprint mold
JP2009149097A (en) * 2009-02-04 2009-07-09 Toshiba Corp Stamper for imprint working, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283354A (en) * 2001-03-27 2002-10-03 Daikin Ind Ltd Mold for imprint processing and method for manufacturing the same
JP2008178984A (en) * 2007-01-23 2008-08-07 Hitachi Ltd Nano-imprinting stamper, its manufacturing method and surface treatment agent of nano-imprinting stamper
WO2008096594A1 (en) * 2007-02-07 2008-08-14 Asahi Glass Company, Limited Imprint mold and method for production thereof
JP2008238502A (en) * 2007-03-27 2008-10-09 Asahi Glass Co Ltd Manufacturing method of mold for imprinting
WO2009041551A1 (en) * 2007-09-27 2009-04-02 Hoya Corporation Mask blank, and method for production of imprint mold
JP2009149097A (en) * 2009-02-04 2009-07-09 Toshiba Corp Stamper for imprint working, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132993A1 (en) * 2012-03-07 2013-09-12 株式会社 アルバック Method for manufacturing element
JP5456946B1 (en) * 2012-03-07 2014-04-02 株式会社アルバック Device manufacturing method
US8921135B2 (en) 2012-03-07 2014-12-30 Ulvac, Inc. Method for manufacturing device
DE112013000281B4 (en) * 2012-03-07 2016-06-09 Marubun Corporation Method for producing a device

Similar Documents

Publication Publication Date Title
US8616873B2 (en) Micro-conformal templates for nanoimprint lithography
JP2007266384A (en) Mold for imprinting and manufacturing method thereof
WO2011155602A1 (en) Substrate with adhesion promoting layer, method for producing mold, and method for producing master mold
JP4853706B2 (en) Imprint mold and manufacturing method thereof
KR20130071426A (en) Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold
JP2010184485A (en) Mold for imprint, method for manufacturing mold for imprint, and method for reproducing mold for imprint
JP5330527B2 (en) Structure
WO2012137324A1 (en) Mask blanks for mold fabrication and mold fabrication method
JP6127517B2 (en) Manufacturing method of imprint mold
JP5606826B2 (en) Release layer for imprint, mold with release layer for imprint, and method for producing mold with release layer for imprint
JP2011211083A (en) Mask blanks, pattern forming method, and manufacturing method of mold
JP5798349B2 (en) Mold with release layer, method for producing the same, and method for producing the mold
WO2011122605A1 (en) Mold having release layer for imprinting, method for producing mold having release layer for imprinting, and method for producing copy mold
JP4802799B2 (en) Imprint method, resist pattern, and manufacturing method thereof
JPWO2007029810A1 (en) Manufacturing method of three-dimensional mold, manufacturing method of fine processed product, manufacturing method of fine pattern molded product, three-dimensional mold, fine processed product, fine patterned molded product, and optical element
JP5599213B2 (en) Mold manufacturing method
JP2012236371A (en) Release method in imprint
JP5053140B2 (en) Imprint mold structure, imprint method using the imprint mold structure, magnetic recording medium, and manufacturing method thereof
JP5788577B2 (en) Copy mold manufacturing method
KR101121017B1 (en) Positive tone bi-layer imprint lithography method and compositions therefor
JP2010234575A (en) Imprinting mold structure, method for manufacturing imprinting mold structure, imprinting method, and method for manufacturing magnetic recording medium
US20090246711A1 (en) Method for manufacturing magnetic recording medium
JP2009208447A (en) Mold structure for imprint, imprint method, magnetic recording medium and method for manufacturing the same
KR100665038B1 (en) Structure and manufacturing method of anti-adhesive hybrid mask and nano imprinting method thereby
JP5326192B2 (en) Imprint mold and imprint mold manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028204

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638493

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11762829

Country of ref document: EP

Kind code of ref document: A1