WO2011122443A1 - Illumination device - Google Patents
Illumination device Download PDFInfo
- Publication number
- WO2011122443A1 WO2011122443A1 PCT/JP2011/057195 JP2011057195W WO2011122443A1 WO 2011122443 A1 WO2011122443 A1 WO 2011122443A1 JP 2011057195 W JP2011057195 W JP 2011057195W WO 2011122443 A1 WO2011122443 A1 WO 2011122443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage battery
- discharge
- power
- illumination
- storage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S8/00—Lighting devices intended for fixed installation
- F21S8/08—Lighting devices intended for fixed installation with a standard
- F21S8/085—Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
- F21S8/086—Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device attached sideways of the standard, e.g. for roads and highways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S9/00—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
- F21S9/02—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
- F21S9/026—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by using wind power, e.g. using wind turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S9/00—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
- F21S9/02—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
- F21S9/03—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
- F21S9/035—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit being integrated within the support for the lighting unit, e.g. within or on a pole
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S9/00—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
- F21S9/04—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a generator
- F21S9/043—Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a generator driven by wind power, e.g. by wind turbines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/04—Signs, boards or panels, illuminated from behind the insignia
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F13/00—Illuminated signs; Luminous advertising
- G09F13/20—Illuminated signs; Luminous advertising with luminescent surfaces or parts
- G09F13/22—Illuminated signs; Luminous advertising with luminescent surfaces or parts electroluminescent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/003—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
- F21V23/004—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
- F21V23/006—Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate being distinct from the light source holder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/04—Arrangement of electric circuit elements in or on lighting devices the elements being switches
- F21V23/0442—Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V23/00—Arrangement of electric circuit elements in or on lighting devices
- F21V23/04—Arrangement of electric circuit elements in or on lighting devices the elements being switches
- F21V23/0442—Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors
- F21V23/0464—Arrangement of electric circuit elements in or on lighting devices the elements being switches activated by means of a sensor, e.g. motion or photodetectors the sensor sensing the level of ambient illumination, e.g. dawn or dusk sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/103—Outdoor lighting of streets or roads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/72—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting
Definitions
- the present invention relates to a lighting device using renewable energy (natural energy) such as solar power generation and wind power generation, and relates to a lighting device combining a renewable energy power generation device, a storage battery, and a light source.
- renewable energy natural energy
- the amount of electricity stored in the storage battery is unstable.
- the amount of electricity stored may be insufficient when it rains.
- Patent Document 1 when the amount of stored electricity is insufficient, the load is reduced, the amount of power consumption is reduced, and the sign is turned off (see, for example, Patent Document 1).
- the device described in Patent Document 1 only suppresses the power consumption, and it is inevitable that the light is turned off when the rain continues.
- the present invention provides an illumination device that suppresses turning off even at the time of a power failure, etc., in an illumination device that includes at least a power generator using renewable energy, a storage battery, and a light source.
- the present invention includes a power generation device using renewable energy, a storage battery charged with power from the power generation device, an illumination unit that emits light with power supplied from the storage battery, and a control unit that controls charging / discharging of the storage battery,
- the control unit includes a first discharge control for stopping discharge in a state in which at least a part of the storage amount of the storage battery is left during normal operation, and the storage unit when learning the storage capacity of the storage battery. It has the function to perform 2nd discharge control which discharges to the discharge minimum of a storage battery.
- the power generation device may be configured by a solar cell device that can generate a power generation amount that is twice or more the power consumption amount of the illumination unit.
- control unit may be configured to learn the battery capacity by discharging the storage battery to the discharge lower limit and then charging the battery to the charge upper limit.
- control unit can be configured to perform the second discharge control of the storage battery by causing the illumination unit to emit light in the daytime.
- the illumination unit may include a plurality of light sources, and the control unit may be configured to perform second discharge control by supplying power to at least some of the plurality of light sources.
- the controller may be configured to perform second discharge control by supplying power to a light source with high power consumption among the plurality of light sources.
- this invention is further equipped with the side apparatus operated by the said storage battery other than the said illumination part,
- the said control part carries out 2nd discharge by driving at least any one of the said illumination part and the said side apparatus. It can be configured to perform control.
- the present invention it is possible to supply electric power even in the event of a power failure by stopping the discharge with the remaining amount of power stored in the storage battery (first discharge control). Moreover, since it can suppress that the discharge depth of a storage battery becomes excessive by stopping discharge in this way, the lifetime improvement of a storage battery can be anticipated.
- control device discharges the storage battery to the discharge lower limit (second discharge control), and then learns the battery capacity by charging the storage battery to the charge upper limit, thereby accurately calculating the remaining amount of power storage. can do.
- FIG. 1 is a schematic perspective view of an illuminating sign device as an example of an illuminating device according to a first embodiment of the present invention
- FIG. 2 is a schematic configuration diagram showing an overall configuration of the illuminating sign device
- FIG. 3 is a block diagram showing a configuration of the illumination type sign device.
- the support 5 is composed of, for example, a support column having a substantially quadrangular prism shape, and is erected with one end side buried in the soil. The other end of the support 5 is attached with a solar cell device 1 as a power generation means for renewable energy.
- one or more solar cell modules are connected in series or in parallel and output predetermined power.
- the solar cell module includes a plurality of solar cells, and these solar cells are electrically connected and configured to output predetermined power.
- various solar cells such as crystalline solar cells using single crystal silicon or polycrystalline silicon, thin film solar cells using amorphous silicon or microcrystalline silicon, and other compound solar cells may be used. it can.
- a storage battery 2 that is charged by power generated by the solar battery device 1 and a control device 3 are arranged inside the support 5.
- the support 5 is not limited to a support column, and a wall surface of a building or the like is used.
- the lighting sign 4 is attached to the wall surface, and the solar cell device 1 may be installed on the roof or wall surface of the building.
- the installation location of the storage battery 2 and the control apparatus 3 can also be selected suitably.
- the control device 3 controls charging of the power generated by the solar cell device 1 to the storage battery 2 and discharging from the storage battery 2 to the illumination unit 40. That is, the control device 3 supplies the power from the storage battery 2 to the lighting unit 40 to light it, and stops the discharge in a state where the storage battery 2 leaves at least a part of the amount of storage, that is, a state where predetermined power is left.
- the illumination unit 40 is controlled to be extinguished (first discharge control).
- control device 3 is connected to a commercial power source (power system) as a backup power source 6 via an AC / DC converter 61, and when the power in the storage battery 2 is insufficient, the control device 3 illuminates the power from the backup power source 6. Control to supply.
- a commercial power source power system
- AC / DC converter 61 AC / DC converter
- renewable energy is used as much as possible, and the backup power source 6 that is a commercial power source is designed to be used as little as possible.
- the illumination sign 4 is, for example, one that consumes about 200 W per hour with a plurality of LEDs 41 continuously lit.
- the illuminated sign 4 is turned off after a specified time to reduce the burden on the surrounding environment and residents, and the lighting time is from sunset (18:00) to 23:00.
- the power consumption per day of the illumination device 40 of the illumination type sign 4 is 1 kWh.
- the storage battery 2 can be a lithium ion battery or a nickel metal hydride battery.
- the depth of discharge at which the control device 3 stops discharging is 50%, which is 1 ⁇ 2 of the storage capacity.
- the discharge depth of the storage battery 2 reaches 50% and the discharge is stopped.
- power can be supplied from the storage battery 2 even in the event of a power failure by stopping the discharge in a state in which the storage battery 2 has a predetermined remaining power storage capacity. Moreover, since the discharge depth can be suppressed from being excessive by stopping the discharge in this manner, the storage battery 2 is also effective in extending the life.
- the predetermined remaining power level is 50%, which is 1/2 of the full charge, but may be changed depending on the power consumption, the storage capacity of the installed storage battery, and the like.
- the storage capacity required at the time of a power failure may be small, so that it may be 30% (3/10), for example.
- 70% (7/10) may be used, for example.
- the control device 3 has a function capable of accurately calculating the remaining power storage amount.
- control device 3 is connected to an illumination unit 40 including a plurality of LEDs 41 of the illumination sign 4.
- AC power supplied from the backup power source (power system) 6 is converted into DC power by the AC / DC converter 61 and supplied to the switch circuit 35.
- the switch circuit 35 has a function of turning on / off the power to the illumination unit 40 and a function of switching the power from the storage battery 2 and the power from the backup power source 6.
- the control circuit 30 monitors the output voltage of the AC / DC converter 61 or the input voltage to the AC / DC converter 61, thereby determining the power system power failure, the temperature, humidity and / or Alternatively, it has a function of predicting weather based on atmospheric pressure.
- a timer 30a is provided inside the control circuit 30 and outputs date and time information in the apparatus.
- the control circuit 30 has a ratio of n / m (n and m are integers, n ⁇ m) of less than 100% with respect to the capacity when the storage battery 2 is fully charged (hereinafter referred to as full charge capacity). Until the voltage drops to. For example, the discharge is performed until it decreases to a predetermined ratio between 50% (1/2) and 80% (4/5). And the control circuit 30 controls the charging / discharging circuit 31 so that discharge will be stopped, if the electrical storage residual amount of the storage battery 2 falls to a predetermined ratio.
- a calculation method of the remaining amount of storage for example, there are a calculation based on a storage battery voltage, a method for monitoring a charge / discharge amount, and the like.
- the storage battery voltage changes depending on the ambient temperature or the deterioration degree of the storage battery, and thus accurate determination is difficult.
- a lithium ion battery or a nickel metal hydride battery it is difficult to accurately detect the remaining amount because the voltage change is small except near the fully charged state or the fully discharged state.
- a detection resistor such as a shunt resistor or a power detection element connected to the power line is provided in the measurement circuit 33, and measurement is performed using these elements. Accumulate and calculate the charge / discharge amount.
- the control circuit 30 monitors the remaining amount of electricity stored.
- the remaining amount of power storage may be counted by the amount of power by integration with a voltage or the like.
- step S12 determines in step S12 that the remaining battery charge Q of the storage battery 2 is 50% or less
- the process proceeds to step S14.
- step S14 the control circuit 30 controls the charging / discharging circuit 31, stops the discharge from the storage battery 2, and then proceeds to step S15.
- step S18 the control circuit 30 determines whether or not the remaining battery charge Q of the storage battery 2 is 100%. When the remaining power Q of the storage battery 2 is not 100%, the process proceeds to step S19. On the other hand, when the remaining amount Q of storage is 100%, there is no need to charge the storage battery 2, so the process proceeds to step S21, the charging is stopped, and the process returns to step S11.
- the remaining amount of electricity stored in the storage battery 2 is the integrated value of the charging current to the storage battery based on the lower limit of the dischargeable capacity of the storage battery 2 (lower discharge limit) or the upper limit of the chargeable capacity of the storage battery 2 (upper charge limit). It is carried out by subtracting the integrated value of the discharge current from the storage battery from the battery. For this reason, integration errors are accumulated, and errors such as self-discharge are added to increase the errors over time. Further, the capacity of the battery is reduced by repeated charging and discharging.
- the control circuit 30 stores information such as the battery state (remaining power storage amount, etc.) and the charge / discharge performance in the memory 34. Furthermore, the timing at which capacity learning is necessary is determined from the charge / discharge performance of the storage battery 2 and the like. If the control circuit 30 determines that the capacity learning is necessary, the control circuit 30 controls the charge / discharge circuit 31 on the basis of information on the remaining amount of electricity stored from the storage battery 2.
- the charging / discharging circuit 31 stops charging the storage battery 2 in accordance with an instruction from the control circuit 30, and the charging / discharging circuit 31 supplies the power of the storage battery 2 to the lighting unit 40 to perform forced discharge (second discharge control). ). In the process in which the remaining amount of electricity stored in the storage battery 2 reaches the upper limit of charge from the lower limit of discharge, the control circuit 30 learns and corrects the value of the remaining capacity of the battery and the value of the chargeable capacity (maximum capacity).
- step S102 the control circuit 30 instructs the charge / discharge circuit 31 to prohibit the charging of the storage battery 2 and shifts to forced discharge.
- forced discharge the power supply from the solar cell device 1 is cut off, and the storage battery 2 supplies power to the illumination unit 40.
- the electric power is also discharged to the other discharge load.
- the voltage of the storage battery 2 drops with time.
- the storage battery 2 discharges the total current with the other load and reaches the next step.
- step S106 the control circuit 30 instructs the charge / discharge circuit 31 to charge the storage battery 2.
- step S107 the control circuit 30 determines from the output from the measurement circuit 33 that the remaining amount Q of storage has reached 100% in step S107 (detected by the storage battery voltage)
- step S108 the control circuit 30 The storage battery voltage is corrected as the remaining power of 100% (correction of the upper limit of charging), and the control circuit 30 instructs the charging / discharging circuit 31 to stop charging.
- control circuit 30 enters the normal charge or discharge mode, and measures the remaining amount of power storage by current integration based on the corrected maximum capacity.
- the second method is to respond by setting consecutive daytime charging prohibition days. Since the amount of electric power stored by 1 kWh per night decreases, the lower limit of discharge can be reached by providing a daytime charge prohibition day for a maximum of 5 consecutive days. If necessary, the charging function may be turned on, for example, on the scheduled date for reaching the lower discharge limit, so that the lower discharge limit can be reached in the vicinity of the turn-off time.
- the fourth method is to use the illumination sign 4 as a combined type of LED and fluorescent tube.
- a fluorescent tube with a large discharge load as the illumination for signage during capacity learning, the power consumption is increased and the time to reach the discharge lower limit is shortened.
- the first method is to charge using the backup power source 6. In this case, it is not always necessary to set the charging upper limit, and the charging amount may reach the charging upper limit by daytime charging the next day.
- the schedule is managed according to a specific date when the sign may be turned off, for example, by managing the operation date of the capacity learning function. You may employ
- the control circuit 30 may obtain weather information data from the communication device 37 and control the discharge to the discharge lower limit on the day before it is expected that the clear sky will continue.
- the second embodiment shown in FIG. 6 is an up front illuminated sign 4.
- This illuminated sign 4 is obtained by providing a bullet-type LED 41 a on the front surface of the panel 42. Since the bullet-type LED 41a travels straight, high visibility can be obtained even from a distant place.
- the panel 42 is bordered by a bullet-type LED 41a to illuminate the sign.
- the illumination type sign 4 is also turned on / off and the capacity learning is performed by the control circuit 3 under the same control as in the first embodiment.
- FIG. 7 is a schematic configuration diagram showing the overall configuration of an illumination sign device according to a third embodiment of the present invention.
- the third embodiment shown in FIG. 7 is a backlight type illuminated sign 4.
- the illumination type sign 4 is provided with a bullet-type LED 41a on the wall surface side so that the wall surface or the like is illuminated with the bullet-type LED 41a.
- the sign is raised by reflecting the bullet-type LED 41a on a wall plate or the like and illuminating the edge of the panel 42.
- the illumination sign 4 is also turned on / off and capacity learning by the control circuit 3 under the same control as in the first embodiment.
- FIG. 8 is a schematic block diagram which shows the whole structure of the illumination type signature apparatus concerning 4th Embodiment of this invention.
- a fourth embodiment shown in FIG. 8 is an illumination sign 4 having an internal illumination method and a backlight method.
- This illumination type sign 4 is provided with a V-cut LED 41 inside and a bullet-type LED 41a on the wall surface side.
- the illumination type sign 4 switches between the internal illumination type and the backlight type as necessary. Further, when discharging to the lower limit of discharge, the LED 41 and the LED 41a are used to emit light to shorten the discharge time.
- FIG. 9 is a block diagram which shows the structure of the illumination type sign apparatus as an example of the illuminating device concerning the 5th Embodiment of this invention.
- the fifth embodiment is configured such that electric power is supplied from the storage battery 2 to another discharge load 50 different from the illumination unit 40 via the switch circuit 35.
- the discharge load 50 the watering system described above or the like is used. Using this discharge load 50, the time to reach the discharge lower limit can be shortened.
- FIG. 10 is a block diagram which shows the structure of the illumination type sign apparatus as an example of the illuminating device concerning 6th Embodiment of this invention.
- the storage battery 2 includes two storage battery units 20a and 20b. These storage battery units 20 a and 20 b are connected to the charge / discharge circuit 30 via the selector 21. And it has the structure which eliminated the backup power supply 6 of the power supply system by providing the two storage battery parts 20a and 20b. Electric power is supplied from either one of the storage battery units 20a (or 20b) to the illumination unit 40 via the charge / discharge circuit 31, and the generated power of the solar cell device 1 is supplied from the charge / discharge circuit 31 to be charged. At this time, the other storage battery unit is configured to be usable as a backup power source.
- These storage battery units 20a and 20b are, for example, a lithium ion battery or a nickel hydride battery having a capacity of 4.5 kWh, and are configured to stop discharging when the remaining amount of storage becomes 1/3.
- the storage battery unit that has not been used for capacity learning and has been used for conventional backup is switched to be used for power supplied to the lighting unit 40.
- the storage battery unit can be prevented from being deteriorated by using the storage battery unit alternately with the capacity learning as a boundary.
- the storage battery unit used for power supply stops discharging due to an error in the remaining amount of stored electricity, it can be switched on continuously without switching off the sign by switching to the storage battery unit for backup. In addition, even if the remaining amount of power to stop discharging is reduced to 1/3, it can be immediately switched to a backup storage battery.
- FIG. 11 is a schematic block diagram which shows the whole structure of the illumination type signature apparatus concerning 4th Embodiment of this invention.
- the solar cell device 1 is taken as an example of power generation means using renewable energy.
- 7th Embodiment uses the solar cell apparatus 1 and the wind power generator 1a together as an apparatus which generate
- the electric power generated using the solar cell device 1 and the wind power generator 1a is charged in the storage battery device 2.
- the illumination sign 4 is also turned on / off and capacity learning by the control circuit 3 under the same control as described above. Further, depending on the installation location or the like, it is possible to provide only the wind power generator 1a without including the solar battery device 1.
- FIG. 12 is a typical perspective view which shows the street lamp as an example of the illuminating device concerning 8th Embodiment of this invention.
- the present invention is applied to a street lamp 40a having an LED inside instead of the illumination sign 4. This street light is not turned on with time, but on / off is controlled by the output of the sunshine sensor.
- Other configurations are the same as those of the above-described embodiments.
- the storage battery 2 charged with the electric power generated with the solar cell apparatus 1 and the control apparatus 3 are arrange
- the control device 3 controls the charging of the power generated by the solar cell device 1 to the storage battery 2 and the discharge from the storage battery 2.
- the street light 40a is supplied with power from the storage battery 2 and is lit.
- the control device 3 controls the storage battery 2 to stop discharging in a state where predetermined power is left. And it has the same discharge, charge control, and capacity learning function as the above-described embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Disclosed is an illumination device provided with a power generator in which power is generated by renewable energy, a storage battery, and a light source, wherein the light is less likely to turn off even during a power outage. Specifically, disclosed is an illumination device provided with a solar cell device (1), a storage battery (2) which is charged by means of the power supplied from the solar cell device (1), an illuminating unit (40) which emits light by means of the power supplied from the storage battery (2), and a control device (3) which controls the charge and discharge of the storage battery (2), wherein the control device (3) is provided with a function for performing a first discharge control in which, during a normal operation, the discharge of the storage battery (2) is stopped while at least a portion of the storage capacity of the storage battery (2) remains, and a second discharge control in which the storage battery (2) is discharged to the discharge lower limit thereof when studying the storage capacity of the storage battery.
Description
この発明は、太陽光発電、風力発電などの再生可能エネルギー(自然エネルギー)を利用した照明装置に係り、再生可能エネルギー発電装置、蓄電池、光源を組み合わせた照明装置に関するものである。
The present invention relates to a lighting device using renewable energy (natural energy) such as solar power generation and wind power generation, and relates to a lighting device combining a renewable energy power generation device, a storage battery, and a light source.
環境問題などを背景にして、街路灯などの照明やパブリックサインやコーポレートサインなどの発光型屋外掲示物の電源として、再生可能エネルギーを利用する要求が高くなっている。例えば、太陽電池で発電した電力を蓄電池に蓄電し、夜間に電源として使用するシステムが検討されている。
Due to environmental issues, there is a growing demand to use renewable energy as a power source for lighting such as street lights and light-emitting outdoor bulletins such as public signs and corporate signs. For example, a system in which power generated by a solar battery is stored in a storage battery and used as a power source at night has been studied.
一方で、コーポレートサインやパブリックサインなどでは、その特性上、途中で消灯することは好ましくなく、安定した電力供給が必要である。
On the other hand, it is not preferable to turn off the lights for corporate signs and public signs due to their characteristics, and a stable power supply is required.
しかし、再生可能エネルギーを利用した電源では、蓄電池の蓄電量が不安定であり、例えば太陽電池を用いると、雨天が続いた場合などでは蓄電量が不足する場合がある。
However, with a power source using renewable energy, the amount of electricity stored in the storage battery is unstable. For example, when a solar cell is used, the amount of electricity stored may be insufficient when it rains.
そこで、蓄電量が不足した場合には負荷量を減らし、消費電力量を抑えて、サインの消灯を抑制することが提案されている(例えば、特許文献1参照)。しかしながら、特許文献1に記載のものは、消費電力量を抑制するだけであり、雨天がさらに続いた場合には消灯することは避けられない。
Therefore, it has been proposed that when the amount of stored electricity is insufficient, the load is reduced, the amount of power consumption is reduced, and the sign is turned off (see, for example, Patent Document 1). However, the device described in Patent Document 1 only suppresses the power consumption, and it is inevitable that the light is turned off when the rain continues.
また、商用電源をバックアップ電源として備え、蓄電量が不足した場合には、商用電源から電力を供給することでサインの消灯を防ぐ方法も提案されている(例えば、特許文献2参照)。
Also, a method has been proposed in which a commercial power source is provided as a backup power source, and when the storage amount is insufficient, the sign is turned off by supplying power from the commercial power source (see, for example, Patent Document 2).
しかし、この特許文献2の場合でも、蓄電量が不足して商用電源に切り替えたとしても、商用電源が停電した場合にはサインの消灯は免れない。
However, even in the case of Patent Document 2, even if the amount of power storage is insufficient and switching to a commercial power source, if the commercial power source fails, the sign cannot be turned off.
この発明では、少なくとも再生可能エネルギーによる発電装置と蓄電池と光源とを具備した照明装置において、停電時などにも消灯を抑制する照明装置を提供するものである。
The present invention provides an illumination device that suppresses turning off even at the time of a power failure, etc., in an illumination device that includes at least a power generator using renewable energy, a storage battery, and a light source.
この発明は、再生可能エネルギーによる発電装置と、前記発電装置からの電力により充電される蓄電池と、前記蓄電池から供給される電力で発光する照明部と、前記蓄電池の充放電を制御する制御部と、を備え、前記制御部は、通常動作の際に前記蓄電池の蓄電量の少なくとも一部を残した状態で放電を停止する第1の放電制御と、前記蓄電池の蓄電容量を学習する際に前記蓄電池の放電下限まで放電する第2の放電制御とを行う機能を有する。
The present invention includes a power generation device using renewable energy, a storage battery charged with power from the power generation device, an illumination unit that emits light with power supplied from the storage battery, and a control unit that controls charging / discharging of the storage battery, The control unit includes a first discharge control for stopping discharge in a state in which at least a part of the storage amount of the storage battery is left during normal operation, and the storage unit when learning the storage capacity of the storage battery. It has the function to perform 2nd discharge control which discharges to the discharge minimum of a storage battery.
また、前記発電装置は、前記照明部の消費電力量の2倍以上の発電量が得られる太陽電池装置で構成すればよい。
In addition, the power generation device may be configured by a solar cell device that can generate a power generation amount that is twice or more the power consumption amount of the illumination unit.
また、前記制御部は、前記蓄電池を放電下限まで放電させた後、充電上限まで充電させることにより電池容量の学習を行うように構成すればよい。
Further, the control unit may be configured to learn the battery capacity by discharging the storage battery to the discharge lower limit and then charging the battery to the charge upper limit.
また、前記制御部は、昼間に前記照明部を発光させて前記蓄電池の第2の放電制御を行うように構成できる。
Further, the control unit can be configured to perform the second discharge control of the storage battery by causing the illumination unit to emit light in the daytime.
また、前記照明部は、複数の光源を備え、前記制御部は、前記複数の光源の少なくとも一部の光源に電力を供給して第2の放電制御を行うように構成できる。また、前記制御部は、前記複数の光源のうち消費電力の多い光源に電力を供給して第2の放電制御を行うように構成できる。
The illumination unit may include a plurality of light sources, and the control unit may be configured to perform second discharge control by supplying power to at least some of the plurality of light sources. The controller may be configured to perform second discharge control by supplying power to a light source with high power consumption among the plurality of light sources.
また、この発明は、前記照明部以外の、前記蓄電池により運転される併設機器をさらに備え、前記制御部は、前記照明部と前記併設機器の少なくともいずれか一方を運転することにより第2の放電制御を行うように構成することができる。
Moreover, this invention is further equipped with the side apparatus operated by the said storage battery other than the said illumination part, The said control part carries out 2nd discharge by driving at least any one of the said illumination part and the said side apparatus. It can be configured to perform control.
この発明は、蓄電池の蓄電残量が残った状態で放電を停止させる(第1の放電制御)ことで、停電時にも電力の供給が可能になる。また、このように放電を停止させることで、蓄電池の放電深度が過剰になることが抑制できるので、蓄電池の長寿命化が期待できる。
In the present invention, it is possible to supply electric power even in the event of a power failure by stopping the discharge with the remaining amount of power stored in the storage battery (first discharge control). Moreover, since it can suppress that the discharge depth of a storage battery becomes excessive by stopping discharge in this way, the lifetime improvement of a storage battery can be anticipated.
また、この発明では、制御装置が前記蓄電池を放電下限まで放電させ(第2の放電制御)、その後、充電上限まで充電させることにより電池容量の学習を行うことで、蓄電残量を正確に算出することができる。
In this invention, the control device discharges the storage battery to the discharge lower limit (second discharge control), and then learns the battery capacity by charging the storage battery to the charge upper limit, thereby accurately calculating the remaining amount of power storage. can do.
この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。
Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description.
図1は、この発明の第1の実施形態にかかる照明装置の一例としての照明式サイン装置の模式的斜視図であり、図2は、同照明式サイン装置の全体構成を示す概略構成図、図3は、同照明式サイン装置の構成を示すブロック図である。
FIG. 1 is a schematic perspective view of an illuminating sign device as an example of an illuminating device according to a first embodiment of the present invention, and FIG. 2 is a schematic configuration diagram showing an overall configuration of the illuminating sign device. FIG. 3 is a block diagram showing a configuration of the illumination type sign device.
図1及び図2に示すように、この第1の実施形態にかかる照明式サイン装置は、支持体5の取付部50に、照明部40を備えた照明式サイン4が、取付部材51を用いて取り付けられる。照明部40は、例えば、複数の発光ダイオード(LED)41で構成され、これらLED41に電力を供給して発光させる。照明部40の前面には、透光性のある乳白色のアクリル板42が設けられ、アクリル板42によりLED41が覆われ、コーポレートサインなどのサインを照らす内照式のLEDサインを構成している。このLED41は、例えば、VカットLEDが用いられ、光を拡散し、近距離且つ斜めからもサインがはっきり見えるようになっている。なお、アクリル板42は透光性のある乳白色の物の他、色付のアクリル板など、種々のアクリル板を用いることができる。
As shown in FIG. 1 and FIG. 2, in the illumination type sign device according to the first embodiment, the illumination type sign 4 provided with the illumination unit 40 on the attachment unit 50 of the support 5 uses an attachment member 51. Attached. The illumination unit 40 includes, for example, a plurality of light emitting diodes (LEDs) 41, and supplies power to the LEDs 41 to emit light. A translucent milky white acrylic plate 42 is provided on the front surface of the illumination unit 40, and the LED 41 is covered with the acrylic plate 42 to constitute an internally illuminated LED sign that illuminates a sign such as a corporate sign. As this LED 41, for example, a V-cut LED is used, which diffuses light so that a sign can be clearly seen from a short distance and obliquely. As the acrylic plate 42, various acrylic plates such as a colored acrylic plate can be used in addition to a translucent milky white product.
支持体5は、例えば、略四角柱状の外形を有する支柱で構成され、一端の側を土中に埋設して立てられている。支持体5の他端には、再生可能エネルギーの発電手段としての太陽電池装置1が取り付けられている。
The support 5 is composed of, for example, a support column having a substantially quadrangular prism shape, and is erected with one end side buried in the soil. The other end of the support 5 is attached with a solar cell device 1 as a power generation means for renewable energy.
太陽電池装置1は、1以上の太陽電池モジュールが直列又は並列に接続され所定の電力を出力する。また、太陽電池モジュールは、複数の太陽電池を備え、これら太陽電池が電気的に接続され、所定の電力を出力するように構成される。
In the solar cell device 1, one or more solar cell modules are connected in series or in parallel and output predetermined power. The solar cell module includes a plurality of solar cells, and these solar cells are electrically connected and configured to output predetermined power.
太陽電池としては、単結晶シリコンや多結晶シリコンを用いた結晶系太陽電池、非晶質シリコンや微結晶シリコンを用いた薄膜太陽電池や、その他化合物太陽電池等の種々の太陽電池を用いることができる。
As solar cells, various solar cells such as crystalline solar cells using single crystal silicon or polycrystalline silicon, thin film solar cells using amorphous silicon or microcrystalline silicon, and other compound solar cells may be used. it can.
支持体5の内部には、太陽電池装置1で発電した電力により充電される蓄電池2と、制御装置3とが配置されている。
Inside the support 5, a storage battery 2 that is charged by power generated by the solar battery device 1 and a control device 3 are arranged.
なお、支持体5は、支柱に限らず、建物の壁面などが用いられ、壁面に照明式サイン4が取り付けられ、建物の屋上や壁面等に太陽電池装置1が設置される場合もある。また、蓄電池2や制御装置3の設置場所も適宜選択することができる。
In addition, the support 5 is not limited to a support column, and a wall surface of a building or the like is used. The lighting sign 4 is attached to the wall surface, and the solar cell device 1 may be installed on the roof or wall surface of the building. Moreover, the installation location of the storage battery 2 and the control apparatus 3 can also be selected suitably.
制御装置3は、太陽電池装置1で発電した電力を蓄電池2へ充電することと、蓄電池2から照明部40へ放電することを制御する。すなわち、制御装置3は、照明部40に、蓄電池2からの電力を供給して点灯させ、蓄電池2が蓄電量の少なくとも一部を残した状態、すなわち所定の電力を残した状態で放電を停止させて照明部40を消灯させるように制御(第1の放電制御)する。
The control device 3 controls charging of the power generated by the solar cell device 1 to the storage battery 2 and discharging from the storage battery 2 to the illumination unit 40. That is, the control device 3 supplies the power from the storage battery 2 to the lighting unit 40 to light it, and stops the discharge in a state where the storage battery 2 leaves at least a part of the amount of storage, that is, a state where predetermined power is left. The illumination unit 40 is controlled to be extinguished (first discharge control).
さらに、制御装置3は、バックアップ電源6としての商用電源(電力系統)とAC/DCコンバータ61を介して接続され、蓄電池2における電力が不足したときにバックアップ電源6からの電力を照明式サイン4に供給するように制御する。
Further, the control device 3 is connected to a commercial power source (power system) as a backup power source 6 via an AC / DC converter 61, and when the power in the storage battery 2 is insufficient, the control device 3 illuminates the power from the backup power source 6. Control to supply.
なお、この実施形態では、極力再生可能エネルギーを使い、商用電源であるバックアップ電源6は非常用として極力使わない設計としている。
In this embodiment, renewable energy is used as much as possible, and the backup power source 6 that is a commercial power source is designed to be used as little as possible.
上記照明式サイン4は、例えば、複数のLED41を連続して点灯する状態で1時間当たり約200Wの電力を消費するものを用いる。照明式サイン4は、周辺環境、住民への負担軽減のために、規定の時間以降はオフさせるようにし、日没(18時)~23時を点灯時間とする。この場合、上記の照明式サイン4の照明装置40の1日当りの消費電力量は1kWhとなる。
The illumination sign 4 is, for example, one that consumes about 200 W per hour with a plurality of LEDs 41 continuously lit. The illuminated sign 4 is turned off after a specified time to reduce the burden on the surrounding environment and residents, and the lighting time is from sunset (18:00) to 23:00. In this case, the power consumption per day of the illumination device 40 of the illumination type sign 4 is 1 kWh.
蓄電池2は、リチウムイオン電池やニッケル水素電池を用いることができる。そして、制御装置3が放電を停止する放電深度は、蓄電容量の1/2である50%とする。この実施形態において、無日照の日が連続して2日(夜間は3日)経過した時に、蓄電池2の放電深度が50%に達して放電を停止させるようにする。この場合は、蓄電池2に蓄電された電力量は3kWh減少するので、蓄電可能な電力量が6kWhの蓄電容量を備える蓄電池を用いることが好ましい。
The storage battery 2 can be a lithium ion battery or a nickel metal hydride battery. The depth of discharge at which the control device 3 stops discharging is 50%, which is ½ of the storage capacity. In this embodiment, when two days (three days at night) have elapsed on the day without sunshine, the discharge depth of the storage battery 2 reaches 50% and the discharge is stopped. In this case, since the amount of power stored in the storage battery 2 decreases by 3 kWh, it is preferable to use a storage battery having a storage capacity of 6 kWh.
この実施形態では、蓄電池2に、所定の蓄電残量がある状態で放電を停止させることで、停電時にも蓄電池2からの電力の供給が可能である。また、このように放電を停止させることで、放電深度が過剰になることが抑制できるので、蓄電池2の長寿命化にも効果がある。
In this embodiment, power can be supplied from the storage battery 2 even in the event of a power failure by stopping the discharge in a state in which the storage battery 2 has a predetermined remaining power storage capacity. Moreover, since the discharge depth can be suppressed from being excessive by stopping the discharge in this manner, the storage battery 2 is also effective in extending the life.
この実施形態では、所定の蓄電残量を満充電時の1/2である50%としたが、消費電力、設置した蓄電池の蓄電容量などによって変化させても良い。例えば、蓄電容量に対して消費電力量が小さいシステムにおいては、停電時に必要な蓄電容量が小さくてすむために、例えば、30%(3/10)としても良い。停電時などの緊急用途を重視する場合は、例えば、70%(7/10)としても良い。但し、この場合は、消費電力量が蓄電容量の30%以内となるように設計することが好ましい。
In this embodiment, the predetermined remaining power level is 50%, which is 1/2 of the full charge, but may be changed depending on the power consumption, the storage capacity of the installed storage battery, and the like. For example, in a system in which the amount of power consumption is small relative to the storage capacity, the storage capacity required at the time of a power failure may be small, so that it may be 30% (3/10), for example. In the case of emphasizing emergency use such as a power failure, 70% (7/10) may be used, for example. However, in this case, it is preferable to design so that the power consumption is within 30% of the storage capacity.
太陽電池装置1は、平均日照量が下回った日でも消費電力を賄う発電量を確保するために、消費電力量の2倍以上の発電量を備える太陽電池を用いる。この実施形態では、1日平均して定格発電容量の3.5時間程度の発電量が得られるものとして、照明式サイン4の1日当たりの消費電力量1kWhから逆算(1kWh×2倍/3.5h≒0.6)し、600Wの発電容量を備える太陽電池を用いることが好ましい。
The solar cell device 1 uses a solar cell having a power generation amount more than twice the power consumption amount in order to secure a power generation amount that covers the power consumption even on the day when the average amount of sunshine falls below. In this embodiment, assuming that a power generation amount of about 3.5 hours of the rated power generation capacity can be obtained on average per day, a back calculation (1 kWh × 2/3. 5h≈0.6) and a solar cell having a power generation capacity of 600 W is preferably used.
一方で、蓄電池2を所定の蓄電残量(例えば、満充電時の容量の50%)を残した状態で放電を停止するように制御するためには、蓄電残量を正確に算出する必要がある。算出した蓄電残量と実残量とが異なっている場合には、停電時などにおける十分な電力供給が困難になる。そこで、この発明では、制御装置3が蓄電残量を正確に算出可能な機能を具備する。
On the other hand, in order to control the storage battery 2 so as to stop discharging in a state where a predetermined remaining amount of stored electricity (for example, 50% of the capacity at full charge) remains, it is necessary to accurately calculate the remaining amount of stored electricity. is there. When the calculated remaining power storage amount and the actual remaining amount are different, it is difficult to supply sufficient power during a power failure. Therefore, in the present invention, the control device 3 has a function capable of accurately calculating the remaining power storage amount.
制御装置3の構成を図3に従いさらに説明する。照明式サイン4の複数のLED41を備えた照明部40に制御装置3が接続される。
The configuration of the control device 3 will be further described with reference to FIG. The control device 3 is connected to an illumination unit 40 including a plurality of LEDs 41 of the illumination sign 4.
制御装置3は、図3に示すように、マイクロコンピュータを主構成要素とする制御回路30と、蓄電池2の充放電を制御する充放電回路31と、充放電回路31から供給される直流電流を昇圧又は降圧して所定の電圧にするDC/DCコンバータ32と、蓄電池2の端子電圧並びに放電電流と充電電流とを計測する測定回路33と、このシステムを制御するプログラム、種々の閾値や蓄電池2の蓄電残量、劣化度合いなどの情報等を記憶するメモリ34と、照明部40へ電力を供給するスイッチ回路35と、照度、湿度、温度や気圧等を検出するセンサ部36と、天候の予測情報等を提供するサーバ等からインターネット等を介して当該予測情報を取得するための通信装置37と、各種条件等のデータを入力する入力装置38と、を備える。
As shown in FIG. 3, the control device 3 includes a control circuit 30 having a microcomputer as a main component, a charge / discharge circuit 31 that controls charge / discharge of the storage battery 2, and a direct current supplied from the charge / discharge circuit 31. A DC / DC converter 32 that steps up or down to a predetermined voltage, a measurement circuit 33 that measures a terminal voltage of the storage battery 2 and a discharge current and a charge current, a program for controlling this system, various threshold values and the storage battery 2 A memory 34 that stores information such as the remaining amount of electricity stored, the degree of deterioration, etc., a switch circuit 35 that supplies power to the illumination unit 40, a sensor unit 36 that detects illuminance, humidity, temperature, atmospheric pressure, etc., and weather prediction A communication device 37 for obtaining the prediction information from a server or the like providing information or the like via the Internet or the like, and an input device 38 for inputting data such as various conditions.
また、バックアップ電源(電力系統)6から供給される交流電力はAC/DCコンバータ61で直流電力に変換され、スイッチ回路35に供給される。
Further, AC power supplied from the backup power source (power system) 6 is converted into DC power by the AC / DC converter 61 and supplied to the switch circuit 35.
上記スイッチ回路35は、照明部40への電力のオン・オフの機能と蓄電池2からの電力とバックアップ電源6からの電力を切り換える機能とを有する。
The switch circuit 35 has a function of turning on / off the power to the illumination unit 40 and a function of switching the power from the storage battery 2 and the power from the backup power source 6.
上記制御回路30は、AC/DCコンバータ61の出力電圧或いはAC/DCコンバータ61への入力電圧を監視することで電力系統の停電を判別する機能や、センサ部36の検出する温度、湿度及び/又は気圧に基づいて天候を予測する機能も有している。また、制御回路30の内部にはタイマー30aが備えられ、装置における日時情報等を出力する。
The control circuit 30 monitors the output voltage of the AC / DC converter 61 or the input voltage to the AC / DC converter 61, thereby determining the power system power failure, the temperature, humidity and / or Alternatively, it has a function of predicting weather based on atmospheric pressure. In addition, a timer 30a is provided inside the control circuit 30 and outputs date and time information in the apparatus.
制御回路30は、蓄電池2の蓄電残量が満充電時の容量(以下、満充電容量という。)に対して、100%未満のn/m(n、mは整数、n<m)の割合に低下するまで放電を行わせる。例えば、50%(1/2)~80%(4/5)の間の所定の割合に低下するまで放電を行わせる。そして、制御回路30は、蓄電池2の蓄電残量が所定割合まで低下したら放電を停止させるように充放電回路31を制御する。
The control circuit 30 has a ratio of n / m (n and m are integers, n <m) of less than 100% with respect to the capacity when the storage battery 2 is fully charged (hereinafter referred to as full charge capacity). Until the voltage drops to. For example, the discharge is performed until it decreases to a predetermined ratio between 50% (1/2) and 80% (4/5). And the control circuit 30 controls the charging / discharging circuit 31 so that discharge will be stopped, if the electrical storage residual amount of the storage battery 2 falls to a predetermined ratio.
なお、電力系統が停電したときや蓄電池2を放電下限まで放電させる必要が生じたとき等には、蓄電池2の蓄電残量が所定割合以下に低下しても制御回路30は充放電回路31に放電を継続するように制御する。
In addition, when the power system fails, or when it becomes necessary to discharge the storage battery 2 to the lower limit of discharge, the control circuit 30 changes to the charge / discharge circuit 31 even if the remaining power storage capacity of the storage battery 2 falls below a predetermined ratio. Control to continue discharging.
ここで、蓄電残量の算出方法として、例えば、蓄電池電圧による算出、充放電量を監視する方法などがある。しかし、前者の蓄電池電圧を用いた手法では、周辺温度や蓄電池の劣化度によって蓄電池電圧が変化するために正確な判断が困難である。特に、リチウムイオン電池やニッケル水素電池では、満充電状態・完全放電状態の付近以外での電圧変化が小さいために正確な残量検出が困難となる。
Here, as a calculation method of the remaining amount of storage, for example, there are a calculation based on a storage battery voltage, a method for monitoring a charge / discharge amount, and the like. However, in the former method using the storage battery voltage, the storage battery voltage changes depending on the ambient temperature or the deterioration degree of the storage battery, and thus accurate determination is difficult. In particular, in a lithium ion battery or a nickel metal hydride battery, it is difficult to accurately detect the remaining amount because the voltage change is small except near the fully charged state or the fully discharged state.
そこで、蓄電残量の監視方法としては、測定回路33内に電力線と接続される検出抵抗(シャント抵抗など)や電力検出素子を設け、これら素子を用いて測定し、制御回路30で電流量の積算を行い充放電量の計算を行う。ここで、充放電量の算出に関し、その時の電流レートと温度、使用した電池の特性に合わせて実際の充放電量を補正できることがより好ましい。これにより、制御回路30は、蓄電残量の監視を行う。なお、ここで、蓄電残量の算出として電流量の場合を述べているが、電圧との積算などにより蓄電残量として電力量でカウントしても良い。
Therefore, as a method for monitoring the remaining amount of electricity stored, a detection resistor (such as a shunt resistor) or a power detection element connected to the power line is provided in the measurement circuit 33, and measurement is performed using these elements. Accumulate and calculate the charge / discharge amount. Here, regarding the calculation of the charge / discharge amount, it is more preferable that the actual charge / discharge amount can be corrected in accordance with the current rate and temperature at that time and the characteristics of the battery used. Thereby, the control circuit 30 monitors the remaining amount of electricity stored. Here, although the case of the current amount is described as the calculation of the remaining amount of power storage, the remaining amount of power storage may be counted by the amount of power by integration with a voltage or the like.
充放電を監視していても長期的に運転を継続すると、算出した蓄電残量と実残量との間に誤差が生じる課題がある。この誤差解消のために、この発明では、容量学習機能を備えたシステムを構成する。容量学習の方法としては、例えば、放電下限まで放電させた後、充電上限まで充電させることで蓄電池容量の再認識をさせる方法を採ればよい(以下、この機能を「容量学習機能」という。)。
∙ If operation is continued for a long time even if charging / discharging is monitored, there is a problem that an error occurs between the calculated remaining power storage amount and the actual remaining amount. In order to eliminate this error, the present invention constitutes a system having a capacity learning function. As a method of capacity learning, for example, a method of re-recognizing the storage battery capacity by discharging to the lower limit of discharge and then charging to the upper limit of charge may be adopted (hereinafter, this function is referred to as “capacity learning function”). .
この第1の実施形態の動作につき、図4及び図5を参照して説明する。図4は、第1の実施の形態における通常動作の詳細を示すフロー図である。この第1の実施形態では、制御回路30は、制御動作の閾値として、50%の蓄電池2の蓄電残量を設定している。
The operation of the first embodiment will be described with reference to FIG. 4 and FIG. FIG. 4 is a flowchart showing the details of the normal operation in the first embodiment. In this 1st Embodiment, the control circuit 30 has set the electrical storage residual amount of the storage battery 2 of 50% as a threshold value of control operation | movement.
ステップS11において、制御回路30は、センサ部36の出力並びに制御回路30内のタイマー30aを用いて点灯時間内か否か判断する。すなわち、日没から23時の間であるか否かを判断する。点灯時間内と判断するとステップS12に進み、制御回路30は、蓄電池2の蓄電残量Qが50%を越えているか否か判断する。そして、蓄電残量Qが50%を越えていると、ステップS13に進み、制御回路30は、充放電回路31に蓄電池2からの電力の放電を指示し、蓄電池2から放電された電力が、充放電回路31からスイッチ回路35を経て照明部40に供給され、照明式サイン4が点灯する。そして、ステップS11に戻り、前述の動作を繰り返す。尚、この点灯時間は、照明式サイン4の設置する場所、用途等により種々決定され、上記点灯時間は一例に過ぎない。
In step S11, the control circuit 30 determines whether it is within the lighting time by using the output of the sensor unit 36 and the timer 30a in the control circuit 30. That is, it is determined whether it is between 23:00 from sunset. If it is determined that it is within the lighting time, the process proceeds to step S12, and the control circuit 30 determines whether or not the remaining charge Q of the storage battery 2 exceeds 50%. Then, if the remaining power Q exceeds 50%, the process proceeds to step S13, the control circuit 30 instructs the charge / discharge circuit 31 to discharge the power from the storage battery 2, and the power discharged from the storage battery 2 is The charge / discharge circuit 31 supplies the illumination unit 40 via the switch circuit 35, and the illumination type sign 4 is turned on. And it returns to step S11 and repeats the above-mentioned operation | movement. In addition, this lighting time is variously determined by the place where the illumination type sign 4 is installed, the use, etc., and the lighting time is only an example.
ステップS12にて制御回路30が、蓄電池2の蓄電残量Qが50%以下であると判断すると、ステップS14に進む。ステップS14にて、制御回路30は、充放電回路31を制御し、蓄電池2からの放電を停止し、続いて、ステップS15に進む。
When the control circuit 30 determines in step S12 that the remaining battery charge Q of the storage battery 2 is 50% or less, the process proceeds to step S14. In step S14, the control circuit 30 controls the charging / discharging circuit 31, stops the discharge from the storage battery 2, and then proceeds to step S15.
ステップS15において、制御回路30は点灯時間内か否か判断する。点灯時間内であれば、ステップS16に進み、バックアップ電源6からAC/DCコンバータ61、スイッチ回路35を経て照明部40に電力を供給し、照明式サイン4の点灯を継続させる。
In step S15, the control circuit 30 determines whether it is within the lighting time. If within lighting time, it will progress to step S16, will supply electric power to the illumination part 40 from the backup power supply 6 via the AC / DC converter 61 and the switch circuit 35, and lighting of the illumination type sign 4 will be continued.
一方、ステップS15において、制御回路30が点灯時間ではないと判断すると、バックアップ電源6からの電力の供給は停止し、ステップS11に戻る。
On the other hand, when the control circuit 30 determines that it is not the lighting time in step S15, the supply of power from the backup power source 6 is stopped, and the process returns to step S11.
また、ステップS11において、制御回路30が点灯時間内ではないと判断すると、ステップS22に進む。ステップS22において、制御回路30は、太陽電池装置1からの発電出力があるか否か判断する。太陽電池装置1からの発電出力があると判断されると、ステップS18に進み、発電出力が無いと判断されると、ステップS11に戻る。
If it is determined in step S11 that the control circuit 30 is not within the lighting time, the process proceeds to step S22. In step S <b> 22, the control circuit 30 determines whether there is a power generation output from the solar cell device 1. If it is determined that there is a power generation output from the solar cell device 1, the process proceeds to step S18, and if it is determined that there is no power generation output, the process returns to step S11.
ステップS18では、制御回路30は、蓄電池2の蓄電残量Qが100%であるか否か判断する。蓄電池2の蓄電残量Qが100%でない場合には、ステップS19に進む。一方、蓄電残量Qが100%の場合には、蓄電池2への充電の必要がないので、ステップS21に進み、充電を停止してステップS11に戻る。
In step S18, the control circuit 30 determines whether or not the remaining battery charge Q of the storage battery 2 is 100%. When the remaining power Q of the storage battery 2 is not 100%, the process proceeds to step S19. On the other hand, when the remaining amount Q of storage is 100%, there is no need to charge the storage battery 2, so the process proceeds to step S21, the charging is stopped, and the process returns to step S11.
ステップS18において、制御回路30は、蓄電池2の蓄電残量Qが100%未満である判断すると、ステップS19に進む。そして、ステップS19において、制御回路30は、太陽電池装置1からの発電出力を充放電回路31に供給して、充放電回路31から蓄電池2への充電が行われる。そして、ステップS20に進む。ステップS20においては、制御回路30は、蓄電池2の蓄電残量Qが100%になったか否か判断し、100%に達しない場合には、ステップS19に戻り、蓄電池2への充電を繰り返す。
In step S18, when the control circuit 30 determines that the remaining charge Q of the storage battery 2 is less than 100%, the process proceeds to step S19. And in step S19, the control circuit 30 supplies the electric power generation output from the solar cell apparatus 1 to the charging / discharging circuit 31, and charging to the storage battery 2 from the charging / discharging circuit 31 is performed. Then, the process proceeds to step S20. In step S20, the control circuit 30 determines whether or not the remaining battery charge Q of the storage battery 2 has reached 100%. If it does not reach 100%, the control circuit 30 returns to step S19 and repeats charging of the storage battery 2.
一方、ステップS20において、制御回路30は、蓄電池2の蓄電残量Qが100%に達したと判断すると、ステップS21で充電を停止し、ステップS11に戻る。
On the other hand, when the control circuit 30 determines in step S20 that the remaining charge Q of the storage battery 2 has reached 100%, the control circuit 30 stops charging in step S21 and returns to step S11.
このようにして、太陽電池装置1、蓄電池2、バックアップ電源6及び照明式サイン4のそれぞれの動作が制御される。
In this way, the operations of the solar cell device 1, the storage battery 2, the backup power source 6, and the illumination sign 4 are controlled.
次に、この発明の容量学習機能の動作につき図5を参照して説明する。図5は、この発明の第1の実施形態における容量学習時の蓄電池の充放電状態の動作を示すフロー図である。
Next, the operation of the capacity learning function of the present invention will be described with reference to FIG. FIG. 5 is a flowchart showing the operation in the charge / discharge state of the storage battery during capacity learning in the first embodiment of the present invention.
一般に蓄電池2の蓄電残量は、蓄電池2の放電可能容量の下限(放電下限)、もしくは蓄電池2の充電可能容量の上限(充電上限)、の値を基準として、蓄電池への充電電流の積分値から蓄電池からの放電電流の積分値を差し引く方法で実施される。このため、積分誤差が集積し、さらに自己放電などの影響が加わり誤差が経時的に増大する。また、電池は充放電の反復によって容量が減少する。
In general, the remaining amount of electricity stored in the storage battery 2 is the integrated value of the charging current to the storage battery based on the lower limit of the dischargeable capacity of the storage battery 2 (lower discharge limit) or the upper limit of the chargeable capacity of the storage battery 2 (upper charge limit). It is carried out by subtracting the integrated value of the discharge current from the storage battery from the battery. For this reason, integration errors are accumulated, and errors such as self-discharge are added to increase the errors over time. Further, the capacity of the battery is reduced by repeated charging and discharging.
そこで、この誤差を修正する作業と容量を再確認する作業を定期的に実施する必要がある。この作業は、蓄電池2を容量下限の値に達するまで放電した後、蓄電池2を容量上限の値に達するまで充電する。放電下限と充電上限の具体的な値としては、例えば、放電下限の値として電池容量全体の略0%に近い、約5%とし、充電上限の値として電池容量全体の略100%とすることができる。
Therefore, it is necessary to periodically perform work to correct this error and recheck the capacity. In this operation, after the storage battery 2 is discharged until reaching the lower limit value of the capacity, the storage battery 2 is charged until reaching the upper limit value of the capacity. As specific values of the lower limit of discharge and the upper limit of charge, for example, the value of the lower limit of discharge is approximately 5%, which is close to approximately 0% of the entire battery capacity, and the value of the upper limit of charge is approximately 100% of the entire battery capacity. Can do.
なお、充電池単体が備える容量の0~100%で充放電するのではなく、その値よりも多少余裕を持たせた値を、この制御回路における0%~100%の値として定めて充放電させることにより、電池寿命への影響を少なくすることが好ましい。
The charge / discharge is not performed at 0 to 100% of the capacity of the rechargeable battery alone, but a value with a margin more than that value is determined as the value of 0% to 100% in this control circuit. It is preferable to reduce the influence on the battery life.
制御回路30は、電池状態(蓄電残量など)と充放電の実績などの情報をメモリ34に格納する。さらに、蓄電池2の充放電の実績等から容量学習の必要なタイミングを判断する。制御回路30は、容量学習が必要なタイミングと判断すると、蓄電池2からの蓄電残量の情報に基づいて充放電回路31を制御する。充放電回路31は、制御回路30の指示に従って、蓄電池2への充電を停止させると共に、充放電回路31は蓄電池2の電力を照明部40に供給し強制放電を実施する(第2の放電制御)。蓄電池2の蓄電残量が放電下限から充電上限に至る過程で、制御回路30は、電池の残存容量の値と充電可能な容量(最大容量)の値を学習し修正する。
The control circuit 30 stores information such as the battery state (remaining power storage amount, etc.) and the charge / discharge performance in the memory 34. Furthermore, the timing at which capacity learning is necessary is determined from the charge / discharge performance of the storage battery 2 and the like. If the control circuit 30 determines that the capacity learning is necessary, the control circuit 30 controls the charge / discharge circuit 31 on the basis of information on the remaining amount of electricity stored from the storage battery 2. The charging / discharging circuit 31 stops charging the storage battery 2 in accordance with an instruction from the control circuit 30, and the charging / discharging circuit 31 supplies the power of the storage battery 2 to the lighting unit 40 to perform forced discharge (second discharge control). ). In the process in which the remaining amount of electricity stored in the storage battery 2 reaches the upper limit of charge from the lower limit of discharge, the control circuit 30 learns and corrects the value of the remaining capacity of the battery and the value of the chargeable capacity (maximum capacity).
容量学習機能の動作は、まず、ステップS101において、制御回路30はメモリ34にアクセスして容量学習の必要性をチェックする。容量学習の必要性を認識し、容量学習が作動すると、ステップS102に進む。容量学習を作動しない場合には動作を終了する。
In the operation of the capacity learning function, first, in step S101, the control circuit 30 accesses the memory 34 and checks the necessity of capacity learning. If capacity learning is recognized and capacity learning is activated, the process proceeds to step S102. When the capacity learning is not activated, the operation is terminated.
ステップS102で、制御回路30は、充放電回路31に指示して蓄電池2への充電を禁止し、強制放電に移行する。強制放電中は、太陽電池装置1からの給電は遮断され、蓄電池2は照明部40に電力を供給する。そして、他の放電負荷がある場合には他の放電負荷にも電力を放出する。この結果、蓄電池2の電圧は時間経過とともに降下する。蓄電池2は、照明部40と他の負荷がある場合には他の負荷とのトータルの電流を放電し、次のステップに至る。
In step S102, the control circuit 30 instructs the charge / discharge circuit 31 to prohibit the charging of the storage battery 2 and shifts to forced discharge. During forced discharge, the power supply from the solar cell device 1 is cut off, and the storage battery 2 supplies power to the illumination unit 40. When there is another discharge load, the electric power is also discharged to the other discharge load. As a result, the voltage of the storage battery 2 drops with time. When there is an illumination unit 40 and another load, the storage battery 2 discharges the total current with the other load and reaches the next step.
ステップS103で、制御回路30は、測定回路33からの出力により蓄電残量Qが5%に達したと判断すると(蓄電池電圧で検知)、ステップ104で、制御回路30は充放電回路31に指示して強制放電を停止し、ステップS105で、制御回路30は、このときの蓄電池電圧を蓄電残量Q=5%として修正する(放電下限値修正)。
When the control circuit 30 determines in step S103 that the remaining charge Q has reached 5% based on the output from the measurement circuit 33 (detected by the storage battery voltage), the control circuit 30 instructs the charge / discharge circuit 31 in step 104. Then, the forced discharge is stopped, and in step S105, the control circuit 30 corrects the storage battery voltage at this time as the remaining battery charge Q = 5% (discharge lower limit correction).
次に、ステップS106で、制御回路30は充放電回路31に指示して蓄電池2への充電を行う。充電が進行し、ステップS107で蓄電残量Qが100%に達したと測定回路33からの出力により制御回路30が判断すると(蓄電池電圧で検知)、ステップS108で、制御回路30は、このときの蓄電池電圧を蓄電残量100%として修正し(充電上限値修正)、制御回路30は充放電回路31に指示して充電を停止する。
Next, in step S106, the control circuit 30 instructs the charge / discharge circuit 31 to charge the storage battery 2. When charging progresses and the control circuit 30 determines from the output from the measurement circuit 33 that the remaining amount Q of storage has reached 100% in step S107 (detected by the storage battery voltage), in step S108, the control circuit 30 The storage battery voltage is corrected as the remaining power of 100% (correction of the upper limit of charging), and the control circuit 30 instructs the charging / discharging circuit 31 to stop charging.
制御回路30は、以上の放電下限修正(略5%)と充電上限修正(略100%)の差である略95%に相当する電流積分値から、蓄電池2の最大容量(100%)を演算で求め、メモリ34に収納して容量学習は終了する。
The control circuit 30 calculates the maximum capacity (100%) of the storage battery 2 from the current integrated value corresponding to approximately 95%, which is the difference between the above-described lower discharge limit correction (approximately 5%) and the upper charge limit modification (approximately 100%). Is obtained and stored in the memory 34, and the capacity learning ends.
以降は、制御回路30は通常の充電または放電モードになり、修正された最大容量を基準として電流積分により蓄電残量の計測を行う。
Thereafter, the control circuit 30 enters the normal charge or discharge mode, and measures the remaining amount of power storage by current integration based on the corrected maximum capacity.
上記したように、容量学習機能は、満充電と設定された蓄電残量(例えば、設定電圧)に達した時点で電池容量を更新するのが望ましく、完全放電の場合も同様である。しかしながら、満充電=100%、完全放電=0%とは必ずしも限らず、上記の如く、完全放電に対しては、残容量の約5%を放電下限として更新しても良い。このように、蓄電残量の補正を行うことで蓄電残量の正確な判断を可能としている。
As described above, it is desirable for the capacity learning function to update the battery capacity at the time when the charged remaining capacity (for example, the set voltage) set to full charge is reached, and the same applies to the case of complete discharge. However, full charge = 100% and complete discharge = 0% are not necessarily limited. As described above, about 5% of the remaining capacity may be updated with the discharge lower limit for complete discharge. In this manner, the remaining power storage amount can be accurately determined by correcting the remaining power storage amount.
上述した構成により、サインの消灯を制御すると共に、バックアップ電源の使用量も抑制することが可能となる。しかし、上述したように、長期安定運転のためには容量学習を行うことが好ましい。
With the configuration described above, it is possible to control the turn-off of the sign and to reduce the amount of backup power used. However, as described above, it is preferable to perform capacity learning for long-term stable operation.
以下、容量学習を実現する手法についての例を挙げる。日常運転状態において、充電上限まで充電することは比較的容易に達成できるために、先に放電下限まで放電させるための例を示す。なお、容量学習時は、所定の電力量以下での放電停止機能はオフにする。
Hereafter, examples of methods for realizing capacity learning will be given. Since charging to the upper limit of charging in a daily operation state can be achieved relatively easily, an example for discharging to the lower limit of discharge first will be shown. During the capacity learning, the discharge stop function for a predetermined amount of power or less is turned off.
まず、1番目の方法は、昼間から照明式サイン4を点灯し放電下限までの放電を行う。サイン点灯がオフとなる時間に合わせて放電下限に到達できるように、昼間時間帯から照明式サイン4をオンにする。尚、昼間時間帯の蓄電池2への充電はオフにする。照明式サイン4の照度は比較的小さいために昼間点灯による周辺環境への負担は少ないが、特に、昼間時間帯の放電を太陽電池電圧が所定の値を超えた場合(晴天と判断できる太陽電池電圧のスレショルドレベルを設定し、所定時間スレショルドレベルを上回った場合に点灯、逆に所定時間スレショルドレベルを下回った場合は消灯)に行うようにすると、十分な日射量がある時間でのサイン点灯となり、周辺環境への負担はより少なくなる。
First, the first method is to turn on the illuminated sign 4 from daytime and discharge to the lower discharge limit. The illuminated sign 4 is turned on from the daytime period so that the discharge lower limit can be reached in accordance with the time when the sign lighting is turned off. Note that the charging of the storage battery 2 during the daytime period is turned off. Since the illumination sign 4 has a relatively small illuminance, the burden on the surrounding environment due to daytime lighting is small. In particular, when the solar cell voltage exceeds a predetermined value for the discharge in the daytime period (a solar cell that can be judged to be sunny) If you set the voltage threshold level and turn on when the threshold level exceeds the threshold level for a predetermined time, and turn off when the threshold level falls below the predetermined time, the sign will be lit when there is sufficient solar radiation. , The burden on the surrounding environment will be less.
具体的には、日照不足日が続き、前日のサイン点灯時の蓄電された電力量が4kWhとなった日に容量学習機能をオンにする。夜間の点灯により、当日朝には蓄電された電力量は3kWhまで低下する。ここで、点灯時間を8時とすると23時までには15時間×200W=3kWhの消費電力量となり、放電下限に到達できる。
Specifically, the capacity learning function is turned on on the day when the shortage of sunshine continues and the amount of stored electricity when the sign on the previous day is lit is 4 kWh. Due to the lighting at night, the amount of power stored in the morning of the day drops to 3 kWh. Here, if the lighting time is 8:00, the power consumption amount is 15 hours × 200 W = 3 kWh by 23:00, and the discharge lower limit can be reached.
なお、実際には誤差があり、点灯オフ時刻丁度に放電下限に到達しない可能性があるが、早期に放電下限に到達した後にはバックアップ電源6を用いる、また、放電下限に未達時には翌朝に放電を継続するなどとする。
Although there is an error in actuality, there is a possibility that the lower limit of discharge is not reached just at the lighting off time. However, the backup power source 6 is used after the lower limit of discharge is reached early, and in the next morning when the lower limit of discharge is not reached. Suppose that the discharge is continued.
2番目の方法は、連続した昼間充電禁止日を設けて対応する。1晩に1kWhずつ蓄電された電力量は低下するために、昼間充電禁止日を最長でも5日間連続で設けることで放電下限に到達できる。なお、必要に応じて放電下限到達予定日などに充電機能をオンにして、点灯オフ時刻付近に放電下限に到達できるように調整しても良い。
¡The second method is to respond by setting consecutive daytime charging prohibition days. Since the amount of electric power stored by 1 kWh per night decreases, the lower limit of discharge can be reached by providing a daytime charge prohibition day for a maximum of 5 consecutive days. If necessary, the charging function may be turned on, for example, on the scheduled date for reaching the lower discharge limit, so that the lower discharge limit can be reached in the vicinity of the turn-off time.
3番目の方法は、常時運転ではない、蓄電電力により動作する機器を併設して対応する。例えば、散水システムを併設し、太陽電池装置1の洗浄用に用いる。この結果、太陽電池装置1のクリーニングを行いながら放電下限に到達が可能となる。さらに、周辺に系統連系した太陽電池装置がある場合には、クリーニングだけでなく、発電時の太陽電池モジュール温度を下げる意味で昼間散水を行っても良い。
③ The third method is to support a device that is not always in operation and operates with stored power. For example, a watering system is provided together and used for cleaning the solar cell device 1. As a result, the discharge lower limit can be reached while cleaning the solar cell device 1. Furthermore, when there is a grid-connected solar cell device in the vicinity, not only cleaning but also daytime watering may be performed in order to lower the temperature of the solar cell module during power generation.
4番目の方法は、照明式サイン4をLEDと蛍光管などの併用型とする。容量学習時に放電負荷の大きな蛍光管などをサイン用の照明として用いることで消費電力量を増やして放電下限到達までの時間を短縮する。
The fourth method is to use the illumination sign 4 as a combined type of LED and fluorescent tube. By using a fluorescent tube with a large discharge load as the illumination for signage during capacity learning, the power consumption is increased and the time to reach the discharge lower limit is shortened.
5番目の方法は、照明式サイン4を内照式とバックライト式の併用式とし、容量学習時にはバックライトLEDも点灯し、放電負荷を大きくすると共に、サインの表現に変化を供給する方式として対応する。
In the fifth method, the illumination type sign 4 is a combination of an internal illumination type and a backlight type, and the backlight LED is also turned on at the time of capacity learning, increasing the discharge load and supplying a change to the expression of the sign. Correspond.
6番目の方法は、災害時に終夜放電を行い対応する。通常は定時オフであるが、災害時には周辺からの目印として終夜運転とする。この際に容量学習を兼ねても良い。
The sixth method responds by discharging overnight during a disaster. It is usually off at regular times, but in the event of a disaster, it will be operated overnight as a landmark from the surroundings. At this time, capacity learning may also be used.
7番目の方法は、制御回路30が蓄電池2の蓄電残量が少なくなってきたことを感知して、上述した方法などを用いて放電下限に到達させる。これにより、容量学習に係る時間を抑制することができる。その他、消費電力を上げるためにLEDの照度を上げることを併用しても良い。
In the seventh method, the control circuit 30 senses that the remaining amount of electricity stored in the storage battery 2 has decreased, and uses the method described above to reach the lower discharge limit. Thereby, the time concerning capacity learning can be suppressed. In addition, increasing the illuminance of the LED may be used in combination to increase power consumption.
次に、放電下限まで放電した後の充電上限まで充電させる対応が重要になる。上記実施形態の例では、期待される発電量から換算すると夜間の消費電力が無い状態であっても充電上限到達までには3日程度の期間を有する。そこで、以下のような手法を併設することが望ましい。
Next, it is important to take charge up to the upper limit of charge after discharging to the lower limit of discharge. In the example of the above-described embodiment, when converted from the expected power generation amount, even if there is no nighttime power consumption, a period of about 3 days is required until the charging upper limit is reached. Therefore, it is desirable to add the following method.
1番目の方法は、バックアップ電源6を用いて充電する。なお、この場合は必ずしも充電上限にする必要はなく、翌日昼間の充電で充電上限に到達する充電量までとすればよい。
The first method is to charge using the backup power source 6. In this case, it is not always necessary to set the charging upper limit, and the charging amount may reach the charging upper limit by daytime charging the next day.
2番目の方法は、LED照度を下げるまたはサインの一部のみの点灯として対応する。夜間の消費電力を抑制することで、充電上限到達までに必要な日数の短縮を図る。
The second method corresponds to lowering the LED illuminance or lighting only a part of the sign. By reducing power consumption at night, the number of days required to reach the upper limit of charging will be shortened.
なお、容量学習機能の作動日をスケジュール管理するなどにより、サインが消灯しても構わない特定の日に合わせて実施する。併設した蓄電池使用機器の動作予定日に合わせて実施するなどの方法を採用しても良い。その他、秋、春の比較的日射量や気温の変動が少ない時に放電下限まで放電させるようにする。また、通信装置37より気象情報データを制御回路30が入手し、連続して晴天が続くと予想される前日に放電下限まで放電させるように制御してもよい。
It should be noted that the schedule is managed according to a specific date when the sign may be turned off, for example, by managing the operation date of the capacity learning function. You may employ | adopt methods, such as implementing according to the scheduled operation day of the storage battery use apparatus installed side by side. In addition, when the amount of solar radiation and temperature fluctuations are relatively small in autumn and spring, the discharge is made to the lower limit of discharge. Alternatively, the control circuit 30 may obtain weather information data from the communication device 37 and control the discharge to the discharge lower limit on the day before it is expected that the clear sky will continue.
次に、この発明の第2の実施形態にかかる照明装置の一例としての照明式サイン装置を図6に従い説明する。図6は、この発明の第2の実施形態にかかる照明式サイン装置の全体構成を示す概略構成図である。
Next, an illuminating sign device as an example of an illuminating device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is a schematic configuration diagram showing the overall configuration of an illumination sign device according to the second embodiment of the present invention.
図6に示す第2の実施形態は、アップフロント方式の照明式サイン4である。この照明式サイン4は、パネル42の前面に砲弾型LED41aを設けたものである。砲弾型LED41aは、光が直進するので、遠い場所からでも高い視認性が得られる。このアップフロント方式は、砲弾型LED41aでパネル42を縁取りしてサインを照らすものである。この照明式サイン4も制御回路3により、第1の実施形態と同様の制御により、点灯、消灯、容量学習が行われる。
The second embodiment shown in FIG. 6 is an up front illuminated sign 4. This illuminated sign 4 is obtained by providing a bullet-type LED 41 a on the front surface of the panel 42. Since the bullet-type LED 41a travels straight, high visibility can be obtained even from a distant place. In this upfront method, the panel 42 is bordered by a bullet-type LED 41a to illuminate the sign. The illumination type sign 4 is also turned on / off and the capacity learning is performed by the control circuit 3 under the same control as in the first embodiment.
次に、この発明の第3の実施形態にかかる照明装置の一例としての照明式サイン装置を図7に従い説明する。図7は、この発明の第3の実施形態にかかる照明式サイン装置の全体構成を示す概略構成図である。
Next, an illumination sign device as an example of an illumination device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic configuration diagram showing the overall configuration of an illumination sign device according to a third embodiment of the present invention.
図7に示す第3の実施形態は、バックライト方式の照明式サイン4である。この照明式サイン4は、壁面等を砲弾型LED41aで照らすように、壁面側に砲弾型LED41aを設けたものである。このバックライト方式は、砲弾型LED41aを壁面の板等に反射させてパネル42の縁を照らすことで、サインを浮かび上がらすものである。この照明式サイン4も制御回路3により、第1の実施形態と同様の制御により、点灯、消灯、容量学習が行われる。
The third embodiment shown in FIG. 7 is a backlight type illuminated sign 4. The illumination type sign 4 is provided with a bullet-type LED 41a on the wall surface side so that the wall surface or the like is illuminated with the bullet-type LED 41a. In this backlight method, the sign is raised by reflecting the bullet-type LED 41a on a wall plate or the like and illuminating the edge of the panel 42. The illumination sign 4 is also turned on / off and capacity learning by the control circuit 3 under the same control as in the first embodiment.
次に、この発明の第4の実施形態にかかる照明装置の一例としての照明式サイン装置を図8に従い説明する。図8は、この発明の第4の実施形態にかかる照明式サイン装置の全体構成を示す概略構成図である。
Next, an illuminating sign device as an example of an illuminating device according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 8: is a schematic block diagram which shows the whole structure of the illumination type signature apparatus concerning 4th Embodiment of this invention.
図8に示す第4の実施形態は、内照方式とバックライト方式とを備える照明式サイン4である。この照明式サイン4は、内部にはVカットのLED41が設けられ、壁面側に砲弾型LED41aを設けたものである。この照明式サイン4は、内照式とバックライト方式を必要に応じて切り換える。また、放電下限まで放電させる際には、LED41とLED41aの2種類のLEDを発光させ、放電時間を短縮する場合などに用いられる。
A fourth embodiment shown in FIG. 8 is an illumination sign 4 having an internal illumination method and a backlight method. This illumination type sign 4 is provided with a V-cut LED 41 inside and a bullet-type LED 41a on the wall surface side. The illumination type sign 4 switches between the internal illumination type and the backlight type as necessary. Further, when discharging to the lower limit of discharge, the LED 41 and the LED 41a are used to emit light to shorten the discharge time.
次に、この発明の第5の実施形態にかかる照明装置の一例としての照明式サイン装置を図9に従い説明する。図9は、この発明の第5の実施形態にかかる照明装置の一例としての照明式サイン装置の構成を示すブロック図である。
Next, an illumination sign device as an example of an illumination device according to a fifth embodiment of the present invention will be described with reference to FIG. FIG. 9: is a block diagram which shows the structure of the illumination type sign apparatus as an example of the illuminating device concerning the 5th Embodiment of this invention.
この第5の実施形態は、スイッチ回路35を介して照明部40とは異なる他の放電負荷50に蓄電池2から電力が供給されるように構成されている。この放電負荷50は、前述した散水システム等が用いられる。この放電負荷50を用いて放電下限到達までの時間を短縮することができる。
The fifth embodiment is configured such that electric power is supplied from the storage battery 2 to another discharge load 50 different from the illumination unit 40 via the switch circuit 35. As the discharge load 50, the watering system described above or the like is used. Using this discharge load 50, the time to reach the discharge lower limit can be shortened.
次に、この発明の第6の実施形態にかかる照明装置の一例としての照明式サイン装置を図10に従い説明する。図10は、この発明の第6の実施形態にかかる照明装置の一例としての照明式サイン装置の構成を示すブロック図である。
Next, an illuminating sign device as an example of an illuminating device according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 10: is a block diagram which shows the structure of the illumination type sign apparatus as an example of the illuminating device concerning 6th Embodiment of this invention.
この第6の実施形態は、蓄電池2が2つの蓄電池部20a、20bで構成されている。これら蓄電池部20a、20bがセレクタ21を介して充放電回路30と接続される。そして、2つの蓄電池部20a、20bを備えることで、電源系統のバックアップ電源6を無くした構成となっている。どちらか一方の蓄電池部20a(または20b)から電力が充放電回路31を介して照明部40に供給され、また、充放電回路31から太陽電池装置1の発電電力が供給されて充電する。この時、他の一方の蓄電池部はバックアップ電源として使用可能に構成されている。
In the sixth embodiment, the storage battery 2 includes two storage battery units 20a and 20b. These storage battery units 20 a and 20 b are connected to the charge / discharge circuit 30 via the selector 21. And it has the structure which eliminated the backup power supply 6 of the power supply system by providing the two storage battery parts 20a and 20b. Electric power is supplied from either one of the storage battery units 20a (or 20b) to the illumination unit 40 via the charge / discharge circuit 31, and the generated power of the solar cell device 1 is supplied from the charge / discharge circuit 31 to be charged. At this time, the other storage battery unit is configured to be usable as a backup power source.
これら蓄電池部20a、20bは、例えば、4.5kWhの容量のリチウムイオン電池やニッケル水素電池であり、蓄電残量が1/3になると放電を停止するように構成している。
These storage battery units 20a and 20b are, for example, a lithium ion battery or a nickel hydride battery having a capacity of 4.5 kWh, and are configured to stop discharging when the remaining amount of storage becomes 1/3.
容量学習機能でどちらか一方の蓄電池部20a(または20b)を放電下限まで放電させるときに、電源が必要な場合には他の蓄電池部に蓄電された電力を用いる。そして、放電下限まで放電させた後、前述したように、蓄電池部を充電上限まで充電することにより容量学習が行われる。
When one of the storage battery units 20a (or 20b) is discharged to the discharge lower limit by the capacity learning function, the power stored in the other storage battery unit is used when a power source is necessary. And after making it discharge to a discharge minimum, as mentioned above, capacity learning is performed by charging a storage battery part to a charge upper limit.
この容量学習が終了後は、容量学習を行っていない、従来バックアップ用として用いていた蓄電池部を照明部40に供給する電力用として用いるように切り換える。このように、容量学習を境として交互に蓄電池部を用いるように構成することで、蓄電池部の劣化が抑制できる。
After this capacity learning is completed, the storage battery unit that has not been used for capacity learning and has been used for conventional backup is switched to be used for power supplied to the lighting unit 40. As described above, the storage battery unit can be prevented from being deteriorated by using the storage battery unit alternately with the capacity learning as a boundary.
また、電源用として使用している蓄電池部が蓄電残量の誤差により、放電が停止した場合には、バックアップ用の蓄電池部に切り換えることで、サインを消灯させることなく継続点灯が行える。また、放電停止する蓄電残量を1/3と減らしてもバックアップ用の蓄電池に直ちに切り換えることができる。
Also, when the storage battery unit used for power supply stops discharging due to an error in the remaining amount of stored electricity, it can be switched on continuously without switching off the sign by switching to the storage battery unit for backup. In addition, even if the remaining amount of power to stop discharging is reduced to 1/3, it can be immediately switched to a backup storage battery.
次に、この発明の第7の実施形態にかかる照明装置の一例としての照明式サイン装置を図11に従い説明する。図11は、この発明の第4の実施形態にかかる照明式サイン装置の全体構成を示す概略構成図である。
Next, an illuminating sign device as an example of an illuminating device according to a seventh embodiment of the present invention will be described with reference to FIG. FIG. 11: is a schematic block diagram which shows the whole structure of the illumination type signature apparatus concerning 4th Embodiment of this invention.
上記した実施形態では、再生可能エネルギーによる発電手段として太陽電池装置1を例に挙げている。これに対して、第7の実施形態は、再生可能エネルギーで発電する装置として、太陽電池装置1と風力発電装置1aとを併用したものである。このように、太陽電池装置1と風力発電装置1aとを用いて発電した電力を、蓄電池装置2に充電する。太陽電池装置1と風力発電装置1aとの双方の利点を用いたシステムを構築することもできる。この照明式サイン4も制御回路3により、前述したと同様の制御により、点灯、消灯、容量学習が行われる。また、設置場所などによっては、太陽電池装置1を備えずに、風力発電装置1aだけの装置にすることも可能である。
In the above-described embodiment, the solar cell device 1 is taken as an example of power generation means using renewable energy. On the other hand, 7th Embodiment uses the solar cell apparatus 1 and the wind power generator 1a together as an apparatus which generate | occur | produces with renewable energy. Thus, the electric power generated using the solar cell device 1 and the wind power generator 1a is charged in the storage battery device 2. It is also possible to construct a system using the advantages of both the solar cell device 1 and the wind power generator 1a. The illumination sign 4 is also turned on / off and capacity learning by the control circuit 3 under the same control as described above. Further, depending on the installation location or the like, it is possible to provide only the wind power generator 1a without including the solar battery device 1.
次に、この発明の第8の実施形態にかかる照明装置の一例としての街路灯を図12に従い説明する。図12は、この発明の第8の実施形態にかかる照明装置の一例としての街路灯を示す模式的斜視図である。この第8の実施形態は、照明式サイン4に変えてLEDを内部に備えた街路灯40aにこの発明を用いたものである。この街路灯は、時間で点灯するのではなく、日照センサの出力により点灯/消灯が制御される。その他の構成は前述した各実施形態と同様である。そして、支持体5の内部には、太陽電池装置1で発電した電力により充電される蓄電池2と、制御装置3とが配置されている。
Next, a street lamp as an example of a lighting apparatus according to the eighth embodiment of the present invention will be described with reference to FIG. FIG. 12: is a typical perspective view which shows the street lamp as an example of the illuminating device concerning 8th Embodiment of this invention. In the eighth embodiment, the present invention is applied to a street lamp 40a having an LED inside instead of the illumination sign 4. This street light is not turned on with time, but on / off is controlled by the output of the sunshine sensor. Other configurations are the same as those of the above-described embodiments. And in the support body 5, the storage battery 2 charged with the electric power generated with the solar cell apparatus 1 and the control apparatus 3 are arrange | positioned.
制御装置3は、太陽電池装置1で発電した電力を蓄電池2へ充電する制御と蓄電池2からの放電を制御する。街路灯40aには、蓄電池2からの電力が供給され点灯する。この制御装置3は、この実施形態においては、蓄電池2が所定の電力を残した状態で放電を停止するように制御する。そして、前述した各実施形態と同様の放電、充電制御並びに容量学習機能を備えている。
The control device 3 controls the charging of the power generated by the solar cell device 1 to the storage battery 2 and the discharge from the storage battery 2. The street light 40a is supplied with power from the storage battery 2 and is lit. In this embodiment, the control device 3 controls the storage battery 2 to stop discharging in a state where predetermined power is left. And it has the same discharge, charge control, and capacity learning function as the above-described embodiments.
さらに、年間を通じてバックアップ電源への依存性を減らす目的で以下の構成を有することが望ましい。例えば、蓄電残量に応じて、消費電力を変化させる。
Furthermore, it is desirable to have the following configuration for the purpose of reducing dependency on backup power supply throughout the year. For example, the power consumption is changed according to the remaining amount of power storage.
蓄電残量が少ないときに照度或いは照明数を少なくするように制御する。さらに、コーポレートサインなどでは輪郭部のみでも視認性が保たれるため、枠部分のみの照明をオンにするように制御しても良い。
¡Control to reduce the illuminance or the number of lights when the remaining power is low. Further, in the case of a corporate sign or the like, the visibility can be maintained only by the outline portion, so that the lighting of only the frame portion may be controlled.
雨天時には、サインによるアピール効果が低下するので、雨量センサなどを用い、天候に応じて消費電力を変化させる。このため、少なくとも点灯時間帯が雨天の場合には消費電力が少なくなるように制御する。
In case of rain, the appeal effect of the sign is reduced, so use a rain sensor to change the power consumption according to the weather. For this reason, control is performed so that the power consumption is reduced at least when the lighting time zone is rainy.
また、点灯時間帯が雨天の場合には、当日或いは翌日の発電量が少ない可能性が高く、この場合にはさらに効果的である。
In addition, when the lighting time zone is rainy, there is a high possibility that the power generation amount on the current day or the next day is small, and in this case, it is more effective.
バックアップ電源利用時は、サイン照度を低減させる。枯渇性エネルギーからの電源電力の消費電力を低減すると共に、バックアップ電源の利用が一目で確認できるようになり、管理者の負担を軽減できる。
サ イ ン Reduce sign illuminance when using backup power. In addition to reducing power consumption from depleted energy, the use of backup power can be checked at a glance, reducing the burden on the administrator.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.
1 太陽電池
2 蓄電池
3 制御装置
4 照明式サイン
6 バックアップ電源
30 制御回路
31 充放電回路
32 DC/DCコンバータ
33 測定回路
34 メモリ
35 スイッチ回路
36 センサ部
37 通信装置
38 入力装置
40 照明部
41 LED DESCRIPTION OFSYMBOLS 1 Solar cell 2 Storage battery 3 Control apparatus 4 Illuminated sign 6 Backup power supply 30 Control circuit 31 Charging / discharging circuit 32 DC / DC converter 33 Measurement circuit 34 Memory 35 Switch circuit 36 Sensor part 37 Communication apparatus 38 Input apparatus 40 Illumination part 41 LED
2 蓄電池
3 制御装置
4 照明式サイン
6 バックアップ電源
30 制御回路
31 充放電回路
32 DC/DCコンバータ
33 測定回路
34 メモリ
35 スイッチ回路
36 センサ部
37 通信装置
38 入力装置
40 照明部
41 LED DESCRIPTION OF
Claims (7)
- 再生可能エネルギーによる発電装置と、
前記発電装置からの電力により充電される蓄電池と、
前記蓄電池から供給される電力で発光する照明部と、
前記蓄電池の充放電を制御する制御部と、を備え、
前記制御部は、通常動作の際に前記蓄電池の蓄電量の少なくとも一部を残した状態で放電を停止させる第1の放電制御と、前記蓄電池の蓄電容量を学習する際に前記蓄電池の放電下限まで放電させる第2の放電制御とを行う照明装置。 A generator with renewable energy,
A storage battery that is charged with electric power from the power generation device;
An illuminator that emits light from the power supplied from the storage battery;
A control unit for controlling charging and discharging of the storage battery,
The control unit is configured to stop discharge in a state in which at least a part of the storage amount of the storage battery remains during normal operation, and a discharge lower limit of the storage battery when learning the storage capacity of the storage battery. A lighting device that performs second discharge control for discharging to a maximum. - 前記発電装置は、前記照明部の消費電力量の2倍以上の発電量が得られる太陽電池装置である、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the power generation device is a solar cell device capable of obtaining a power generation amount more than twice the power consumption amount of the illumination unit.
- 前記制御部は、前記蓄電池を放電下限まで放電させた後、充電上限まで充電させることにより蓄電容量の学習を行う、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the controller learns the storage capacity by discharging the storage battery to a discharge lower limit and then charging the battery to a charge upper limit.
- 前記制御部は、昼間に前記照明部を発光させて前記蓄電池の第2の放電制御を行う、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the control unit performs second discharge control of the storage battery by causing the lighting unit to emit light in the daytime.
- 前記照明部は、複数の光源を備え、前記制御部は、前記複数の光源の少なくとも一部の光源に電力を供給して第2の放電制御を行う、請求項1に記載の照明装置。 The illumination device according to claim 1, wherein the illumination unit includes a plurality of light sources, and the control unit performs second discharge control by supplying power to at least some of the plurality of light sources.
- 前記制御部は、前記複数の光源のうち消費電力の多い光源に電力を供給して第2の放電制御を行う、請求項5に記載の照明装置。 The lighting device according to claim 5, wherein the control unit performs second discharge control by supplying power to a light source with high power consumption among the plurality of light sources.
- 前記照明部以外の、前記蓄電池により運転される併設機器をさらに備え、
前記制御部は、前記照明部と前記併設機器の少なくともいずれか一方を運転することにより第2の放電制御を行う、請求項1に記載の照明装置。 In addition to the illumination unit, the apparatus further includes an annexed device operated by the storage battery,
The lighting device according to claim 1, wherein the control unit performs second discharge control by operating at least one of the lighting unit and the side device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010077643 | 2010-03-30 | ||
JP2010-077643 | 2010-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011122443A1 true WO2011122443A1 (en) | 2011-10-06 |
Family
ID=44712152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057195 WO2011122443A1 (en) | 2010-03-30 | 2011-03-24 | Illumination device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011122443A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668917A (en) * | 2020-05-28 | 2020-09-15 | 浙江靓典环境科技有限公司 | Shimmer intelligent charging and discharging control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05159885A (en) * | 1991-04-30 | 1993-06-25 | Mitsubishi Plastics Ind Ltd | Lighting system by solar battery |
JP2001176677A (en) * | 1999-12-15 | 2001-06-29 | Sanyo Hightech:Kk | Lighting device |
JP2006339077A (en) * | 2005-06-03 | 2006-12-14 | Sharp Corp | Illuminating device |
JP2008271759A (en) * | 2007-04-25 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Calibration method for secondary battery |
JP2009128961A (en) * | 2007-11-20 | 2009-06-11 | Jet Neko Kk | Device used for both illumination and alarm |
-
2011
- 2011-03-24 WO PCT/JP2011/057195 patent/WO2011122443A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05159885A (en) * | 1991-04-30 | 1993-06-25 | Mitsubishi Plastics Ind Ltd | Lighting system by solar battery |
JP2001176677A (en) * | 1999-12-15 | 2001-06-29 | Sanyo Hightech:Kk | Lighting device |
JP2006339077A (en) * | 2005-06-03 | 2006-12-14 | Sharp Corp | Illuminating device |
JP2008271759A (en) * | 2007-04-25 | 2008-11-06 | Matsushita Electric Ind Co Ltd | Calibration method for secondary battery |
JP2009128961A (en) * | 2007-11-20 | 2009-06-11 | Jet Neko Kk | Device used for both illumination and alarm |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111668917A (en) * | 2020-05-28 | 2020-09-15 | 浙江靓典环境科技有限公司 | Shimmer intelligent charging and discharging control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4987582B2 (en) | Lighting device | |
JP5858408B2 (en) | Energy management control for solar powered lighting devices | |
US7965049B2 (en) | Electric energy control circuit for solar power illumination system | |
JP2016127617A (en) | Photovoltaic power generation system | |
JP2006339077A (en) | Illuminating device | |
ES2870621T3 (en) | Method of dynamically controlling a piece of electrical equipment | |
JP4569895B1 (en) | Traffic signal, traffic signal power supply method, traffic signal system, and traffic signal system power supply method | |
US7839115B2 (en) | Power switching apparatus for natural energy power supply | |
KR20120058794A (en) | Optimal Landscape Light System and Method | |
WO2011122443A1 (en) | Illumination device | |
WO2011122476A1 (en) | Illumination device | |
KR100852505B1 (en) | Power supplier for street lamp | |
KR20160086588A (en) | Solar street light controlled by smart phone | |
JP2013020341A (en) | Traffic signal controller | |
JP2011034939A (en) | Illumination device for nighttime | |
KR101012673B1 (en) | Auto control device for solar power generation | |
KR102413407B1 (en) | Battery power control system supplied to LED lighting | |
US20130106293A1 (en) | Auto Switch Dual Power Lights | |
JP2006337885A (en) | Led type sign equipped with power generation means | |
JP3030191B2 (en) | Self-luminous sign | |
KR200328264Y1 (en) | An intelligent photovoltaic street lamp control unit which actively copes with a change in weather | |
KR102191801B1 (en) | Control method of solar street light lamp | |
JP2006288039A (en) | Exterior lighting system | |
KR100609481B1 (en) | a street lamp control system | |
KR200468384Y1 (en) | New and Recycling Energy Street Lamp of Smart Type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11762674 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11762674 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |