WO2011122300A1 - Polyamide resin composition, method for producing said polyamide resin composition and molded article obtained using said polyamide resin composition - Google Patents

Polyamide resin composition, method for producing said polyamide resin composition and molded article obtained using said polyamide resin composition Download PDF

Info

Publication number
WO2011122300A1
WO2011122300A1 PCT/JP2011/055724 JP2011055724W WO2011122300A1 WO 2011122300 A1 WO2011122300 A1 WO 2011122300A1 JP 2011055724 W JP2011055724 W JP 2011055724W WO 2011122300 A1 WO2011122300 A1 WO 2011122300A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
hectorite
parts
mass
Prior art date
Application number
PCT/JP2011/055724
Other languages
French (fr)
Japanese (ja)
Inventor
弘文 迎
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2012508191A priority Critical patent/JP5730284B2/en
Priority to CN201180005831.2A priority patent/CN102712809B/en
Publication of WO2011122300A1 publication Critical patent/WO2011122300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2477/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a polyamide resin composition, a method for producing the polyamide resin composition, and a molded body using the polyamide resin composition.
  • a reinforced polyamide resin has been obtained by blending an inorganic filler.
  • the polyamide resin composition is reinforced by containing a fibrous reinforcing material.
  • the density of the fibrous reinforcing material is larger than that of the polyamide resin. Therefore, in order to improve the tensile strength and the flexural modulus (rigidity), the density increases as the amount of the fibrous reinforcing material used in the polyamide resin composition is increased.
  • a light-weight resin it is unsuitable to use a polyamide resin composition having a high density, and therefore there are cases where the use of the polyamide resin composition having an increased density is limited.
  • a polyamide resin composition having a significantly improved reinforcing efficiency has been developed by dispersing a swellable layered silicate, which is a kind of inorganic filler, at a molecular level in a resin.
  • a swellable layered silicate which is a kind of inorganic filler
  • the rigidity is greatly improved.
  • the reinforcing effect on the tensile strength is not improved so much.
  • JP2009-35593A discloses a polyamide resin composition containing a layered silicate surface-treated with an aliphatic amine such as octadecylamine for the purpose of improving the tensile strength.
  • JP2009-35593A has a problem in that a process for treating the surface of the layered silicate with an aliphatic amine is necessary, which complicates the process and increases costs.
  • JP2009-35593A has a problem that a process for treating the surface of the layered silicate with an aliphatic amine is necessary, which complicates the process and increases costs.
  • the tensile strength is not sufficiently improved.
  • JP2009-35591A includes a polyamide resin composition containing glass fiber, swellable layered silicate, and fine fibrous magnesium silicate for the purpose of improving the tensile strength of the polyamide resin. It is disclosed.
  • JP2009-35591A has a problem that the density of the polyamide resin composition increases due to the use of fine fiber magnesium silicate.
  • the present invention inherently has a polyamide resin by using a hectorite, a fibrous reinforcing material, and a silane coupling agent having a specific size and dispersion state in the resin composition.
  • An object of the present invention is to obtain a low-density polyamide resin composition that is remarkably excellent in flexural modulus in addition to the tensile strength being applied. Furthermore, it aims at obtaining the molded object which uses the manufacturing method of this polyamide resin composition, and this polyamide resin composition.
  • the present inventor uses hectorite, a fibrous reinforcing material, and a silane coupling agent in which the size and dispersion state in the resin composition are in a specific range.
  • the present inventors have found that a polyamide resin composition having a remarkably excellent tensile strength and flexural modulus can be obtained without increasing the density. That is, the gist of the present invention is as follows. (1) A polyamide resin composition containing 100 parts by weight of a polyamide resin, 0.5 to 20 parts by weight of hectorite, 15 to 200 parts by weight of a fibrous reinforcing material, and 0.01 to 3 parts by weight of a silane coupling agent.
  • the hectorite has an average thickness of 1 to 10 nm and an average length of the short side of 25 to 100 nm, and the average length ratio of the long side to the average length of the short side is the average length / short length of the long side.
  • An average length of sides 1.5 to 5, and an average interparticle distance in the polyamide resin composition of hectorite is 10 to 200 nm.
  • a step of obtaining a preparation liquid by stirring at a rotational speed of 100 to 5000 rpm a step of obtaining a resin composition containing a polyamide resin and hectorite by polymerizing the preparation liquid obtained in step (i)
  • Step (3) in step (i) in which the resin composition containing the polyamide resin and hectorite obtained in step (ii) is melted to knead the fibrous reinforcing material and the silane coupling agent is melted to knead the fibrous reinforcing material and the silane coupling agent.
  • the combined use of hectorite, a fibrous reinforcing material, and a silane coupling agent in which the size and dispersion state in the resin composition are in a specific range allows the polyamide resin to be pulled without increasing the density. It is possible to obtain a polyamide resin composition that is remarkably excellent in strength and flexural modulus. Furthermore, the manufacturing method of this polyamide resin composition and the molded object using this polyamide resin composition can be obtained. Such a polyamide resin composition can be suitably used in the material field requiring high mechanical properties, and has a very high industrial utility value.
  • the polyamide resin composition of the present invention contains a polyamide resin, hectorite having a specific size and dispersion state in the resin composition, a fibrous reinforcing material, and a silane coupling agent.
  • the polyamide resin in the present invention is a polymer having an amide bond in the main chain, the main raw material of which is aminocarboxylic acid, lactam , diamine and dicarboxylic acid, or a pair of diamine and dicarboxylic acid salts.
  • the raw material of the polyamide resin include aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; lactams such as ⁇ -caprolactam, ⁇ -undecanolactam and ⁇ -laurolactam; Examples include diamines such as tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, and dodecamethylene diamine; dicarboxylic acids such as adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
  • aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid
  • lactams such as ⁇ -caprolactam, ⁇ -undecanolactam and ⁇ -laurolactam
  • Examples include diamines such as tetramethylene diamine, hexam
  • polyamide resins include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipa.
  • nylon 6/66 Polyundecamide
  • nylon 11 polyundecamide
  • polycaproamide / polyundecamide copolymer nylon 6/11
  • polydodecamide nylon 12
  • polycaproamide / polydodecanamide copolymer nylon 6/12
  • Polyhexamethylene sebamide nylon 610
  • polyhexamethylene dodecamide nylon 612
  • polyundecamethylene adipamide nylon 116
  • mixtures and copolymers thereof Polyhexamethylene sebamide
  • nylon 612 polyhexamethylene dodecamide
  • nylon 116 polyundecamethylene adipamide
  • mixtures and copolymers thereof nylon 6, nylon 66, and nylon 12 are particularly preferable from the viewpoint that the effect of increasing the tensile strength by hectorite can be remarkably enhanced.
  • Hectorite is used for the purpose of remarkably improving the tensile strength and flexural modulus of the polyamide resin.
  • Hectorite has a structure composed of a negatively charged silicate layer mainly composed of silicate and a cation having ion exchange ability interposed between the layers.
  • the composition of hectorite is generally represented by Na 0.66 (Mg 5.34 Li 0.66 ) Si 8 O 20 (OH) 4 .nH 2 O.
  • Hectorite is plate-shaped and has a substantially elliptical shape or a substantially rectangular shape. Therefore, compared with the case where only the fiber reinforcing material is used, the tensile strength and the bending elastic modulus can be effectively improved while sufficiently reducing the amount of use. Therefore, even if the tensile strength and the flexural modulus are sufficiently improved, a polyamide resin composition having a sufficiently reduced density can be obtained. Further, when a swellable layered silicate other than hectorite is used, the tensile strength cannot be improved because the size of the swellable layered silicate in the polyamide resin composition does not fall within the range defined in the present invention.
  • hectorite preferably has a cation exchange capacity of 30 to 100 meq / 100 g or more, and more preferably 55 to 95 meq / 100 g or more.
  • the cation exchange capacity is less than 30 meq / 100 g, the swelling ability is low, and therefore the polyamide resin composition remains substantially in an uncleavable state. Therefore, the size of hectorite does not fall within the range specified in the present invention. In addition, it cannot be dispersed well in the polyamide resin composition. Therefore, it is not possible to obtain a polyamide resin composition having significantly improved tensile strength and flexural modulus.
  • the cation exchange capacity of hectorite is determined in accordance with the bentonite (powder) cation exchange capacity measurement method (JBAS-106-77) according to the standard test method of the Japan Bentonite Industry Association. Specifically, an apparatus in which a leachate container, a leach tube, and a receiver are connected in the vertical direction is used. Then, by immersing the hectorite in 1N aqueous solution of ammonium acetate the pH was adjusted to 7, to replace all of its layers of ion exchange cations NH 4+, obtain NH 4+ type hectorite.
  • the NH 4+ type hectorite is thoroughly washed with water and ethyl alcohol, and then immersed in a 10% by mass aqueous potassium chloride solution to replace NH 4+ in the hectorite with K + . .
  • the cation exchange capacity of hectorite which is a raw material, can be determined by neutralizing titrating NH 4+ leached with the above ion exchange reaction using a 0.1N aqueous sodium hydroxide solution.
  • the size of hectorite in the polyamide resin composition is essential to define the size of hectorite in the polyamide resin composition within a predetermined range.
  • various physical properties of the polyamide resin composition particularly tensile strength and flexural modulus can be greatly improved.
  • the shape of hectorite is plate-like as described above, and is oval or substantially rectangular.
  • distributed in a molded object turns into a long piece direction.
  • the size of the hectorite in the polyamide resin composition is as follows.
  • Hectorite is a swellable layered silicate, that is, has a structure in which a plurality of layer structures are gathered at random and overlapped.
  • the average thickness (that is, the total average thickness of the overlapping portions in the layer structure) needs to be 1 to 10 nm, and preferably 1.5 to 8 nm. That the average thickness of hectorite exceeds 10 nm indicates that cleavage is insufficient. Therefore, the size of hectorite does not fall within the range specified in the present invention.
  • the hectorite cannot be dispersed well in the polyamide resin composition, sufficient rigidity and heat resistance are not exhibited.
  • the thickness is less than 1 nm, there is a problem that various physical properties, in particular, the reinforcing effect of tensile strength and flexural modulus cannot be obtained sufficiently.
  • FIG. 1 is an image of the layer structure of hectorite used in the present invention, taken by a transmission electron microscope (TEM).
  • FIG. 2 is an image of secondary particles in which the layer structure of hectorite used in the present invention is aggregated, which is taken by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the secondary particles of hectorite before being dispersed in the resin composition are those in which the layer structure shown in FIG.
  • the layer structure is regularly stacked to form secondary particles.
  • the shape of the swellable layered silicate other than hectorite is significantly different from the shape of hectorite.
  • the size of the swellable layered silicate in the polyamide resin composition does not fall within the range specified in the present invention.
  • the average length of the short side is required to be 25 to 100 nm, and preferably 30 to 95 nm.
  • the average length of the short side is less than 25 nm, sufficient rigidity and heat resistance are not exhibited.
  • the average length of the short side exceeds 100 nm, rigidity and heat resistance are sufficiently developed, but tensile strength is not sufficiently developed.
  • the size of hectorite in the polyamide resin composition is such that the average length of its long side is 38. It is preferably from ⁇ 500 nm, more preferably from 45 to 400 nm. If the long side average length is less than 38 nm, the tensile strength may not be sufficiently improved. On the other hand, if the average length of the long side exceeds 500 nm, the tensile strength increases, but the toughness may decrease on the other hand.
  • the initial size of hectorite is not particularly limited.
  • the initial size is the size of hectorite before being contained in the polyamide resin composition. That is, it is the size of secondary particles formed by a plurality of hectorite layer units gathering and overlapping, and is different from the size of hectorite contained in the polyamide resin composition.
  • cleavage proceeds from the state of secondary particles to a layer unit consisting of one or several hectorites, and dispersion in the polyamide resin composition proceeds. Therefore, the size of hectorite contained in the polyamide resin composition is different from the initial size.
  • the initial size (secondary particle size) is preferably used with an average particle size of 1 to 50 ⁇ m, and is preferably 5 to 45 ⁇ m. More preferably, the thickness is 10 to 40 ⁇ m.
  • pulverization with a known apparatus such as a jet mill may be mentioned.
  • the particle size of hectorite in the resin composition is in the above specific range.
  • require average thickness and average length is explained in full detail in an Example.
  • the hectorite needs to be well dispersed in the polyamide resin composition for the purpose of improving the tensile strength in the resin flow direction, particularly in a molded product obtained by injection molding.
  • the average inter-particle distance in the resin composition is used as an indicator of good dispersion in the polyamide resin composition. That is, in the present invention, the average interparticle distance needs to be 10 to 200 nm, and more preferably 15 to 180 nm. There exists a problem that toughness falls that the distance between average particles is less than 10 nm. On the other hand, when it exceeds 200 nm, there exists a problem that tensile strength and a bending elastic modulus cannot be expressed with sufficient balance.
  • the interparticle distance refers to a linear distance connecting the centers of adjacent hectorites of the observed hectorite by observing the inside of the resin composition with a transmission electron microscope. The measuring method will be described in detail later in the evaluation method.
  • the hectorite content is required to be 0.5 to 20 parts by mass, preferably 1 to 18 parts by mass with respect to 100 parts by mass of the polyamide resin.
  • the content is less than 0.5 parts by mass, there is a problem that the effect of containing hectorite is not sufficiently exhibited and the tensile strength is lowered.
  • the amount exceeds 20 parts by mass, the dispersibility in the resin composition is lowered, so that the tensile strength is lowered.
  • the operability during melt kneading is lowered.
  • the smaller the hectorite content the higher the dispersion efficiency in the polyamide resin composition, so that cleavage proceeds.
  • the hectorite may be organically treated for the purpose of improving the adhesion with the polyamide resin when blended during melt kneading.
  • Examples of the organic treatment method include a method of inserting an amine or amino acid between layers.
  • a swellable layered silicate other than hectorite may be used in combination with hectorite as long as the effects of the present invention are not impaired.
  • swellable layered silicates other than hectorite include smectites (montmorillonite, beidellite, hectorite, soconite, etc.), vermiculites (vermiculite, etc.), micas (fluorine mica, muscovite, paragonite, phlogopite, lipidoid).
  • the content of the swellable layered silicate other than hectorite is preferably 0.1 to 5 parts by mass, and 0.2 to 3 parts by mass with respect to 100 parts by mass of hectorite, from the viewpoint of not inhibiting the improvement in tensile strength. Is more preferable.
  • a fibrous reinforcing material is used for the purpose of further improving the tensile strength and flexural modulus of the polyamide resin. That is, the combined use of hectorite and fibrous reinforcing material can significantly improve the tensile strength and the flexural modulus.
  • fibrous reinforcing material examples include glass fiber, carbon fiber, whisker and the like.
  • glass fiber is preferable from the viewpoint of the highest effect of improving tensile strength and bending elastic modulus in combination with hectorite.
  • the glass fiber is not particularly limited, and ordinary fibers are used.
  • the cross section of the glass fiber may be a general round shape, a rectangle, or other irregular cross section.
  • the size of glass fiber is not specifically limited.
  • the carbon fiber is not particularly limited, and a normal one is used.
  • the size and cross-sectional shape of the carbon fiber are not particularly limited.
  • the content of the fibrous reinforcing material is required to be 5 to 200 parts by mass with respect to 100 parts by mass of the polyamide resin, and preferably 10 to 180 parts by mass.
  • the content is less than 5 parts by mass, there is a problem that sufficient tensile strength and flexural modulus cannot be obtained.
  • it exceeds 200 mass parts there exists a problem that the operativity at the time of melt-kneading falls.
  • the polyamide resin composition of the present invention must contain a fibrous reinforcing material and a silane coupling agent at the same time.
  • a fibrous reinforcing material and a silane coupling agent in combination, there is an advantage that the adhesion between the polyamide resin and the fibrous reinforcing material is improved, and sufficient tensile strength and bending elastic modulus can be obtained.
  • the silane coupling agent is not contained, the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material is poor, and thus the bending elastic modulus is improved, but the tensile strength is not sufficiently improved.
  • a coupling agent other than the silane coupling agent is used, not only the tensile strength cannot be improved efficiently, but also the effect of improving the flexural modulus is hindered.
  • the content of the silane coupling agent needs to be 0.01 to 3 parts by mass, and more preferably 0.02 to 0.9 parts by mass with respect to 100 parts by mass of the polyamide resin.
  • the content is less than 0.01 parts by mass, the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material becomes insufficient, and sufficient tensile strength cannot be obtained.
  • it exceeds 3 parts by mass not only the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material is saturated, but also the toughness of the polyamide resin is impaired and sufficient mechanical properties cannot be obtained.
  • the silane coupling agent used in the present invention is not particularly limited, and vinyl silane silane coupling agent, acrylic silane coupling agent, epoxy silane coupling agent, amino silane coupling agent, isocyanate silane coupling agent. Etc. Of these, an epoxy-based silane coupling agent is preferable from the viewpoint of easily obtaining a sufficient tensile strength improvement effect.
  • the polyamide resin composition of the present invention has a heat stabilizer, an antioxidant, a pigment, an anti-coloring agent, a weathering agent, a flame retardant, a plasticizer, a crystal nucleating agent, a release agent, etc. May be contained.
  • the heat stabilizer and the antioxidant include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, and mixtures thereof.
  • the method for producing the polyamide resin composition of the present invention will be described below.
  • One of the following two methods can be used for the method for producing the polyamide resin composition of the present invention.
  • the first production method of the polyamide resin composition of the present invention includes the following steps (i) to (iii). Step (i): Mixing hectorite while stirring the monomer constituting the polyamide resin, the compound having an amino group, and the inorganic acid at a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin while stirring.
  • Step (iii): The step of melting the resin composition containing the polyamide resin and hectorite obtained in step (ii) and kneading the fibrous reinforcing material and the silane coupling agent (hereinafter simply referred to as “kneading step”) May be called) That is, the monomer constituting the polyamide resin is set in a molten state, and hectorite is blended in the molten monomer. Thereafter, the polyamide resin composition of the present invention is obtained by polymerizing and melt-kneading the fibrous reinforcing material and the silane coupling agent (hereinafter simply referred to as “kneading step”) is called) That is, the monomer constituting the polyamide resin is set in
  • the preparation step is a step in which the monomer constituting the polyamide resin by stirring is heated and melted together with a compound having an amino group and an inorganic acid to form a solution, and hectorite and water are sequentially added and stirred.
  • the stirring method in the preparation step is not particularly limited as long as the monomer, hectorite, and water constituting the polyamide resin are uniformly mixed, and examples thereof include a melt mixing method while stirring with heating. In that case, the shape and the rotational speed of the stirring blade are not particularly limited.
  • the temperature of the preparation process needs to be a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin.
  • ⁇ -caprolactam is used as the monomer constituting the polyamide resin, it is necessary to melt at a heating temperature of 69 ° C. or higher.
  • a molar salt such as adipic acid / hexamethylenediamine is used, it is necessary to melt at a heating temperature of 202 ° C. or higher.
  • a compound having an amino group reacts with an inorganic acid to form a quaternary amine.
  • the quaternary amine penetrates between the layers of hectorite in the subsequent polymerization step. As a result, the interlayer can be changed from hydrophilic to hydrophobic, and the dispersibility of hectorite can be promoted.
  • Examples of the compound having an amino group include aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, decylamine, stearylamine, dodecylamine, octadecylamine, oleylamine, benzylamine, methyldodecylamine, Examples include benzyltrialkylamines such as methyloctadecylamine, dimethyldodecylamine, dimethyloctadecylamine, benzyltrimethylamine, benzyltriethylamine, benzyltributylamine, benzyldimethyldodecylamine, and benzyldimethyloctadecylamine.
  • the compound having an amino group may have a functional group other than the amino group.
  • An inorganic acid is an acid having a pKa (value at 25 ° C. in water) of 6 or less.
  • Specific examples include phosphoric acid, phosphorous acid, hydrochloric acid, sulfuric acid, and nitric acid. Of these, phosphorous acid is preferred from the viewpoint of easy cleavage of hectorite and low corrosiveness to equipment.
  • the amount of the compound having an amino group is preferably 2 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of hectorite. If the amount of the compound having an amino group is less than 2 parts by mass, the hectorite layer cannot be sufficiently hydrophobized, and the dispersibility of hectorite may be lowered. On the other hand, if it exceeds 20 parts by mass, the compound having an amino group may be attached to the end of the polyamide, and the degree of polymerization of the polyamide resin may not increase.
  • the amount of the inorganic acid used is from the viewpoint of promoting the cleavage of hectorite, and in order to set the (average length of the long side) / (average length of the short side) of the cleaved hectorite to 1.5-10.
  • the amount is preferably 0.3 to 4 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of hectorite. If the amount of acid used is less than 0.3 parts by mass, hectorite may not be sufficiently cleaved. On the other hand, when it exceeds 4 mass parts, operativity may fall in a preparation process.
  • the stirring rotation speed in the adjustment step needs to be 100 to 5000 rpm, and preferably 200 to 4500 rpm.
  • the rotational speed is less than 100 rpm, the uniformity of the adjustment liquid is lowered.
  • it exceeds 5000 rpm it becomes difficult to obtain an appropriate rotational viscosity.
  • the rotational viscosity of the adjustment liquid in the adjustment step is preferably 1 to 400 Pa ⁇ s, more preferably 5 to 350 Pa ⁇ s, and particularly preferably 10 to 300 Pa ⁇ s.
  • the rotational viscosity is less than 1 Pa ⁇ s, the dispersibility of hectorite is lowered, and the effect of improving the tensile strength becomes insufficient.
  • it exceeds 400 Pa ⁇ s the rotational viscosity of the adjustment liquid is too high, and it becomes difficult to dispense the adjustment liquid to the polymerization apparatus.
  • the polymerization step is a step of polymerizing the adjustment liquid to obtain a resin composition containing a polyamide resin and hectorite.
  • Hectorite contains more hydroxyl groups than other swellable layered silicates, so water molecules can easily enter between layers (ie, have high hydrophilicity), and swell easily. In addition, the particle size is small compared to other swellable layered silicates. Therefore, as in the prior art, in the case of using a method for obtaining a polyamide resin composition by stirring the monomer and water constituting the polyamide resin such as caprolactam or aminocarboxylic acid together with hectorite and further subjecting to polymerization. There are the following problems. That is, since the hydrophilicity between the hectorite layers is high, water is rapidly absorbed and the hectorite becomes bulky.
  • the monomer constituting the polyamide resin, the compound having an amino group, and the inorganic acid are subjected to the preparation step, and then hectorite is added to the polymerization step. It is attached. Therefore, the layer of hectorite is substituted with a quaternary amine formed by a reaction between a compound having an amino group and an inorganic acid, and becomes hydrophobic. Therefore, water molecules do not easily enter between the layers of hectorite, and as a result, they do not easily swell.
  • the polyamide resin enters between the layers of hectorite, it is cleaved and uniformly dispersed.
  • the hectorite content must be in the above range.
  • the form of hectorite in the polymerization step is not particularly limited as long as the dispersibility in the monomer constituting the polyamide resin can be improved, but a powder form is preferable because the dispersibility is improved.
  • the polymerization temperature in the polymerization step is preferably 240 to 280 ° C, and more preferably 245 to 275 ° C.
  • the polymerization temperature is lower than 240 ° C., there are problems that it is difficult to increase the degree of polymerization and that the dispersibility of hectorite is lowered.
  • the polymerization temperature exceeds 280 ° C., the polyamide resin may be decomposed and yellowed.
  • the pressure in the polymerization step is preferably 0.3 to 1.5 MPa, more preferably 0.4 to 1.0 MPa. If the pressure is less than 0.3 MPa, hectorite may not be dispersed well. As a result, the tensile strength and the flexural modulus are not sufficiently expressed. On the other hand, when the pressure exceeds 1.5 MPa, improvement in polymerizability and hectorite dispersibility can be expected, but equipment specifications with high pressure resistance must be provided, which may increase the economic burden.
  • the kneading step is a step of melt-kneading the fibrous reinforcing material and the silane coupling agent into the resin composition containing the polyamide resin and hectorite obtained in the polymerization step.
  • kneading can be performed using a twin-screw kneading extruder or the like.
  • the kneading conditions are not particularly limited, but from the viewpoint of plasticizing the resin composition and suppressing deterioration, melt kneading is preferably performed under conditions of a melting temperature of 240 to 290 ° C. and a screw rotation of 150 to 400 rpm.
  • the polyamide resin obtained in the polymerization step can be supplied from the main hopper, and the fibrous reinforcing material can be supplied from the side feeder.
  • the silane coupling agent can be supplied using any means.
  • the supply method includes a method of supplying the polyamide resin and the silane coupling agent from the main hopper while dry blending, a method of supplying the polyamide resin and the silane coupling agent separately from the polyamide resin, or a method of supplying from the side feeder.
  • the content of the fibrous reinforcing material needs to be in the above range. Furthermore, when the polyamide resin composition of the present invention is finally obtained, the content of the silane coupling agent needs to be in the above range.
  • the second manufacturing method of the polyamide resin composition of the present invention includes the following step (iv).
  • Hectorite, fibrous reinforcing material and silane coupling agent may be charged all at once and melt-kneaded.
  • a method of kneading the fibrous reinforcing material and the silane coupling agent after melt-kneading the polyamide resin and hectorite in advance is preferable.
  • a twin-screw kneading extruder or the like can be used, and the melting temperature is preferably 240 to 290 ° C. from the viewpoint of plasticizing the resin composition and suppressing deterioration.
  • the fibrous reinforcing material and the silane coupling agent using a side feeder as downstream as possible on the twin-screw kneading extruder.
  • the following arbitrary methods may be used to disperse hectorite in the polyamide resin. That is, using a method such as a method of dry blending and supplying a polyamide resin and hectorite from the main hopper, a method of supplying a polyamide resin from the main hopper, and a method of supplying hectorite from the side feeder, etc. Light can be dispersed.
  • the hectorite content needs to be in the above range.
  • the form of hectorite in the melting step is not particularly limited as long as the dispersibility in the monomer constituting the polyamide resin can be improved.
  • a powder form is preferable because it facilitates dispersion.
  • the content of the fibrous reinforcing material needs to be in the above range. Furthermore, when the polyamide resin composition of the present invention is finally obtained, the content of the silane coupling agent needs to be in the above range.
  • the second manufacturing method Since the first manufacturing method includes a polyamide resin polymerization step (that is, step (ii)), a large facility is required to obtain a target polyamide resin composition.
  • the second production method can obtain the target polyamide resin composition only by melt kneading, and therefore can obtain the polyamide resin composition with relatively simple equipment.
  • the first production method and the second production method of the present invention may include a step of blending other polymers and additives as necessary, as long as the effects of the present invention are not impaired. Is possible. The blending of these other polymers and additives is performed at an arbitrary stage.
  • the molded body of the present invention can be produced by subjecting the polyamide resin composition obtained in the present invention to a normal molding method.
  • a normal molding method for example, it can be set as a molded object using hot melt molding methods, such as injection molding, extrusion molding, blow molding, and sintering molding.
  • hot melt molding methods such as injection molding, extrusion molding, blow molding, and sintering molding.
  • the molding conditions in this case are not particularly limited, but for example, a resin temperature of 230 to 290 ° C. and a mold temperature of about 80 ° C. are preferable.
  • the polyamide resin composition of the present invention can be dissolved in an organic solvent solution and subjected to a casting method to form a thin film.
  • a molded object it is preferable that it is a molded object which has a form in which hectorite and a fibrous reinforcement are easy to orientate, since the reinforcement effect of a hectorite and a fibrous reinforcement can be obtained more easily.
  • the molded article of the present invention can be used for automobile parts, electrical parts, household goods, etc. by taking advantage of its excellent characteristics.
  • it can be used around automobile transmissions and engines.
  • the base plate used for pedestals such as shift levers and gearboxes around the transmission of an automobile
  • the ultrathin sections were examined for hectorite or swellable layered silicate in the polyamide resin composition using a transmission electron microscope (trade name “JEM-1230 TEM” manufactured by JEOL Ltd.) (acceleration voltage: 100 kv). That is, from the observed electron micrograph, the thickness of hectorite or swellable layered silicate dispersed in the polyamide resin composition was measured, and the average value was calculated. The number of measurements was 100. (4) Average short side length and average long side length of hectorite or swellable layered silicate in the polyamide resin composition From the obtained polyamide resin composition, an ISO test piece was prepared by injection molding.
  • an ultrathin section having a thickness of 70 nm was prepared using a frozen microtome.
  • the ultrathin sections were examined for hectorite or swellable layered silicate in the polyamide resin composition using a transmission electron microscope (trade name “JEM-1230 TEM” manufactured by JEOL Ltd.) (acceleration voltage: 100 kv). That is, from the observed electron micrograph, the short side length and long side length of hectorite or swellable layered silicate dispersed in the polyamide resin composition were measured, and the average value was calculated. The number of measurements was 100.
  • Specific modulus (flexural modulus) / (density) It shows that the bending elastic modulus per unit weight of a polyamide resin composition or a molded object obtained from it is so high that the numerical value of a specific elastic modulus is large. In the present invention, it is preferable that the specific elastic modulus is large. In the present invention, when less than 50 parts by mass of the fibrous reinforcing material is blended, 5.5 GPa or more can be practically used when the fibrous reinforcing material is blended by 50 mass parts or more. It was supposed to be.
  • Example 2 (P-1) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 2 parts by mass were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
  • Example 3 105 parts by mass of (P-1), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-2) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used.
  • Example 4 100.5 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used for the melt-kneading.
  • the temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation.
  • the evaluation results are shown in Table 2.
  • Example 5 110 parts by mass of (P-3), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded.
  • the above twin screw extruder was used for the melt-kneading.
  • the temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation.
  • the evaluation results are shown in Table 2.
  • Example 6 (P-5) 105 parts by mass, (C-1) 200 parts by mass, (D-1) 0.1 parts by mass were melt-kneaded.
  • step (iii) For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation.
  • the evaluation results are shown in Table 2.
  • Example 7 (P-6) 105 parts by mass, (C-1) 50 parts by mass, (D-1) 0.01 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
  • Example 8 (P-7) 105 parts by mass, (C-1) 50 parts by mass, (D-1) 3 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 200 ° C.
  • Example 9 107 parts by mass of (P-12), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iv).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
  • Example 10 107 parts by mass of (P-13), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iv).
  • Example 11 120 parts by mass of (P-4), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
  • Example 12 (P-1) 105 parts by mass, (C-2) 20 parts by mass, and (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
  • Example 13 120 parts by mass of (P-4), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • Comparative Example 1 (P-8) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • Comparative Example 2 (P-9) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used.
  • step (v) For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 285 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3. Comparative Example 5 105 parts by mass of (P-1) and 50 parts by mass of (C-1) were melt-kneaded. For the melt-kneading, the above twin screw extruder was used. This is step (iii). The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • Comparative Example 6 (P-1) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 4 parts by mass were kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • Comparative Example 7 (P-14) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used.
  • the above twin screw extruder was used for the melt-kneading.
  • the temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3. Comparative Example 10 (P-1) 105 parts by mass, (C-1) 210 parts by mass, and (D-1) 0.1 parts by mass were kneaded.
  • step (iii) For the melt-kneading, the above twin screw extruder was used for the melt-kneading. The temperature of melt kneading was 270 ° C. Since the blending of (C-1) was excessive, polyamide resin composition pellets could not be obtained.
  • Comparative Example 11 120 parts by mass of (P-16), 50 parts by mass of (C-1) and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • Comparative Example 12 (P-17) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii).
  • the above twin screw extruder was used. The temperature of melt kneading was 270 ° C.
  • the obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
  • the polyamide resin compositions obtained in Examples 1 to 12 were sufficiently improved in tensile strength and flexural modulus without increasing the density.
  • the polyamide resin composition obtained in Comparative Example 5 was inferior in tensile strength because it did not contain a silane coupling agent.
  • the polyamide resin composition obtained in Comparative Example 6 had an excessive amount of silane coupling agent, so that the toughness of the polyamide resin was impaired and the tensile strength and specific modulus were inferior.
  • the polyamide resin composition obtained in Comparative Example 7 uses a swellable layered silicate other than hectorite, the ratio of the average long side length / average short side length of the swellable layered silicate is too small, It was inferior in tensile strength.
  • the polyamide resin composition obtained in Comparative Example 9 was inferior in tensile strength and flexural modulus because the amount of fibrous reinforcing material was insufficient.
  • the polyamide resin composition obtained in Comparative Example 11 uses a swellable layered silicate other than hectorite, the ratio of the average long side length / average short side length of the swellable layered silicate is too small, It was inferior in tensile strength.
  • the polyamide resin composition obtained in Comparative Example 12 had an excessively low average number of hectorite due to an excessively low rotational speed in step (i), and was inferior in flexural modulus.
  • the polyamide resin composition of the present invention can improve the tensile strength and the flexural modulus without increasing the density. Therefore, it can be suitably used in various material fields and is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyamides (AREA)

Abstract

Disclosed is a polyamide resin composition containing 100 parts by mass of a polyamide resin, 0.5 - 20 parts by mass hectorite, 15 - 200 parts by mass of a fibrous reinforcing material and 0.01 - 3 parts by mass of a silane coupling agent. The polyamide resin composition is characterized by the size of the hectorite being an average thickness of 1 - 10 nm and an average length on the short side of 25 - 100 nm, and the proportion of the average length on the long side and the average length on the short side being average length on long side/average length on short side = 1.5 - 5. The polyamide resin composition is further characterized by the average distance between particles of the hectorite therein being 10 - 200 nm.

Description

ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法および該ポリアミド樹脂組成物を用いてなる成形体Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
 本発明は、ポリアミド樹脂組成物、該ポリアミド樹脂組成物の製造方法および該ポリアミド樹脂組成物を用いてなる成形体に関する。 The present invention relates to a polyamide resin composition, a method for producing the polyamide resin composition, and a molded body using the polyamide resin composition.
 従来から、ポリアミド樹脂の強度と剛性を向上させることを目的として、無機充填材を配合することにより、強化されたポリアミド樹脂を得ることが行なわれている。なかでも、ポリアミド樹脂組成物に強度と剛性を付与させることを目的として、繊維状強化材を含有することにより、ポリアミド樹脂組成物を強化することが行われている。しかしながら、一般的に、前記繊維状強化材の密度はポリアミド樹脂と比較すると大きいものである。そのため、引張強度や曲げ弾性率(剛性)を向上させるために、ポリアミド樹脂組成物の繊維状強化材の使用量を多くするに伴い、密度が増加する。軽量な樹脂が必要とされる分野においては、密度の大きいポリアミド樹脂組成物を用いることは不適であるため、密度が増加したポリアミド樹脂組成物の用途は限定される場合があった。 Conventionally, for the purpose of improving the strength and rigidity of a polyamide resin, a reinforced polyamide resin has been obtained by blending an inorganic filler. Among these, for the purpose of imparting strength and rigidity to the polyamide resin composition, the polyamide resin composition is reinforced by containing a fibrous reinforcing material. However, in general, the density of the fibrous reinforcing material is larger than that of the polyamide resin. Therefore, in order to improve the tensile strength and the flexural modulus (rigidity), the density increases as the amount of the fibrous reinforcing material used in the polyamide resin composition is increased. In a field where a light-weight resin is required, it is unsuitable to use a polyamide resin composition having a high density, and therefore there are cases where the use of the polyamide resin composition having an increased density is limited.
 一方で、無機充填剤の一種である膨潤性層状珪酸塩を樹脂中に分子レベルで分散させることにより、強化効率が大幅に向上されたポリアミド樹脂組成物が開発されている。この場合、膨潤性層状珪酸塩の使用量が少量であっても、剛性が大幅に向上するという利点がある。しかし、膨潤性層状珪酸塩のみを用いた場合は、引張強度に対する補強効果が、それほど大きくは向上しないという問題があった。 On the other hand, a polyamide resin composition having a significantly improved reinforcing efficiency has been developed by dispersing a swellable layered silicate, which is a kind of inorganic filler, at a molecular level in a resin. In this case, even if the amount of the swellable layered silicate used is small, there is an advantage that the rigidity is greatly improved. However, when only the swellable layered silicate is used, there is a problem that the reinforcing effect on the tensile strength is not improved so much.
 このような問題に関して、JP2009-35593Aには、引張強度を向上させることを目的として、オクタデシルアミンなどの脂肪族アミンで表面処理された層状珪酸塩が配合されたポリアミド樹脂組成物が開示されている。しかしながら、JP2009-35593Aにおいては、脂肪族アミンで層状珪酸塩の表面に処理を行なう工程が必要であるため、工程が煩雑となり、コストアップにつながるという問題があった。さらに、引張強度が十分に向上しないという問題があった。 Regarding such problems, JP2009-35593A discloses a polyamide resin composition containing a layered silicate surface-treated with an aliphatic amine such as octadecylamine for the purpose of improving the tensile strength. . However, JP2009-35593A has a problem in that a process for treating the surface of the layered silicate with an aliphatic amine is necessary, which complicates the process and increases costs. Furthermore, there is a problem that the tensile strength is not sufficiently improved.
 JP2009-35593Aと同様に、JP2009-35591Aには、ポリアミド樹脂の引張強度を向上させることを目的として、ガラス繊維、膨潤性層状珪酸塩、および微細繊維状マグネシウムシリケートが含有されたポリアミド樹脂組成物が開示されている。しかしながら、JP2009-35591Aにおいては、微細繊維マグネシウムシリケートを用いることに起因して、ポリアミド樹脂組成物の密度が増加するという問題があった。 Similar to JP2009-35593A, JP2009-35591A includes a polyamide resin composition containing glass fiber, swellable layered silicate, and fine fibrous magnesium silicate for the purpose of improving the tensile strength of the polyamide resin. It is disclosed. However, JP2009-35591A has a problem that the density of the polyamide resin composition increases due to the use of fine fiber magnesium silicate.
 本発明は、上記のような問題に鑑み、樹脂組成物中のサイズと分散状態が特定の範囲であるヘクトライト、繊維状強化材およびシランカップリング剤を併用することにより、ポリアミド樹脂が本来有している引張強度に加え、曲げ弾性率が顕著に優れた低密度なポリアミド樹脂組成物を得ることを目的とする。さらに、該ポリアミド樹脂組成物の製造方法、および該ポリアミド樹脂組成物を用いてなる成形体を得ることを目的とする。 In view of the above problems, the present invention inherently has a polyamide resin by using a hectorite, a fibrous reinforcing material, and a silane coupling agent having a specific size and dispersion state in the resin composition. An object of the present invention is to obtain a low-density polyamide resin composition that is remarkably excellent in flexural modulus in addition to the tensile strength being applied. Furthermore, it aims at obtaining the molded object which uses the manufacturing method of this polyamide resin composition, and this polyamide resin composition.
 本発明者は、このような課題を解決するために鋭意検討の結果、樹脂組成物中のサイズと分散状態が特定の範囲であるヘクトライト、繊維状強化材およびシランカップリング剤を併用することにより、密度を増加させることなく、引張強度、曲げ弾性率に顕著に優れたポリアミド樹脂組成物が得られることを見出し、本発明に到達した。
すなわち、本発明の要旨は以下の通りである。
(1)ポリアミド樹脂100質量部、ヘクトライト0.5~20質量部、繊維状強化材15~200質量部、およびシランカップリング剤0.01~3質量部を含有するポリアミド樹脂組成物であって、前記ヘクトライトのサイズが、平均厚み1~10nmかつ短辺の平均長さ25~100nmであり、長辺の平均長さと短辺の平均長さ比率が、長辺の平均長さ/短辺の平均長さ=1.5~5であり、前記ヘクトライトのポリアミド樹脂組成物中での平均粒子間距離が10~200nmであることを特徴とするポリアミド樹脂組成物。
(2)(1)のポリアミド樹脂組成物を製造するに際し、以下の工程(i)、(ii)および(iii)をこの順に含むことを特徴とするポリアミド樹脂組成物の製造方法。
工程(i):ポリアミド樹脂を構成するモノマー、アミノ基を有する化合物および無機酸を、ポリアミド樹脂を構成するモノマーの融点以上の温度で加熱溶融下、攪拌しながらヘクトライトを配合し、さらに水を加え、回転数100~5000rpmで攪拌し、調製液を得る工程
工程(ii):工程(i)で得られた調製液を重合させ、ポリアミド樹脂とヘクトライトとを含む樹脂組成物を得る工程
工程(iii):工程(ii)で得られたポリアミド樹脂とヘクトライトとを含む樹脂組成物を溶融させて、繊維状強化材とシランカップリング剤を混練させる工程
(3)工程(i)において、B型粘度計で測定した調整液の回転粘度が1~400Pa・sとなるように混合することを特徴とする(2)のポリアミド樹脂組成物の製造方法。
(4)(1)のポリアミド樹脂組成物を製造するに際し、以下の工程(iv)を含むことを特徴とするポリアミド樹脂組成物の製造方法。
工程(iv):ポリアミド樹脂に、ヘクトライト、繊維状強化材およびシランカップリング剤を溶融混練する工程
(5)(1)のポリアミド樹脂組成物を成形して得られる成形体。
As a result of intensive studies to solve such problems, the present inventor uses hectorite, a fibrous reinforcing material, and a silane coupling agent in which the size and dispersion state in the resin composition are in a specific range. Thus, the present inventors have found that a polyamide resin composition having a remarkably excellent tensile strength and flexural modulus can be obtained without increasing the density.
That is, the gist of the present invention is as follows.
(1) A polyamide resin composition containing 100 parts by weight of a polyamide resin, 0.5 to 20 parts by weight of hectorite, 15 to 200 parts by weight of a fibrous reinforcing material, and 0.01 to 3 parts by weight of a silane coupling agent. The hectorite has an average thickness of 1 to 10 nm and an average length of the short side of 25 to 100 nm, and the average length ratio of the long side to the average length of the short side is the average length / short length of the long side. An average length of sides = 1.5 to 5, and an average interparticle distance in the polyamide resin composition of hectorite is 10 to 200 nm.
(2) A method for producing a polyamide resin composition comprising the following steps (i), (ii) and (iii) in this order in producing the polyamide resin composition of (1).
Step (i): Mixing hectorite while stirring the monomer constituting the polyamide resin, the compound having an amino group and the inorganic acid at a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin, and further adding water. In addition, a step of obtaining a preparation liquid by stirring at a rotational speed of 100 to 5000 rpm (ii): a step of obtaining a resin composition containing a polyamide resin and hectorite by polymerizing the preparation liquid obtained in step (i) (Iii): Step (3) in step (i) in which the resin composition containing the polyamide resin and hectorite obtained in step (ii) is melted to knead the fibrous reinforcing material and the silane coupling agent. The method for producing a polyamide resin composition according to (2), wherein mixing is performed so that the rotational viscosity of the adjustment liquid measured with a B-type viscometer is 1 to 400 Pa · s.
(4) A method for producing a polyamide resin composition comprising the following step (iv) when producing the polyamide resin composition of (1).
Step (iv): A molded product obtained by molding the polyamide resin composition in the step (5) (1) in which a polyamide resin is melt-kneaded with hectorite, a fibrous reinforcing material and a silane coupling agent.
 本発明によれば、樹脂組成物中のサイズと分散状態が特定の範囲となるヘクトライト、繊維状強化材およびシランカップリング剤を併用することにより、密度を増加させることなく、ポリアミド樹脂の引張強度、曲げ弾性率が顕著に優れたポリアミド樹脂組成物を得ることが可能となる。さらに、該ポリアミド樹脂組成物の製造方法、および該ポリアミド樹脂組成物を用いてなる成形体を得ることができる。このようなポリアミド樹脂組成物は、高度な機械特性を要求される材料分野で好適に用いることができ、産業上の利用価値は極めて高いものである。 According to the present invention, the combined use of hectorite, a fibrous reinforcing material, and a silane coupling agent in which the size and dispersion state in the resin composition are in a specific range allows the polyamide resin to be pulled without increasing the density. It is possible to obtain a polyamide resin composition that is remarkably excellent in strength and flexural modulus. Furthermore, the manufacturing method of this polyamide resin composition and the molded object using this polyamide resin composition can be obtained. Such a polyamide resin composition can be suitably used in the material field requiring high mechanical properties, and has a very high industrial utility value.
透過型電子顕微鏡(TEM)によって撮影された、本発明に用いられるヘクトライトの層構造の画像である。It is the image of the layer structure of the hectorite used for this invention image | photographed with the transmission electron microscope (TEM). 走査型電子顕微鏡(SEM)によって撮影された、本発明に用いられるヘクトライトの層構造が凝集した二次粒子の画像である。It is the image of the secondary particle which the layer structure of the hectorite used for this invention aggregated image | photographed with the scanning electron microscope (SEM).
 以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
 本発明のポリアミド樹脂組成物は、ポリアミド樹脂、樹脂組成物中のサイズと分散状態が特定の範囲のものであるヘクトライト、繊維状強化材、およびシランカップリング剤を含有するものである。 The polyamide resin composition of the present invention contains a polyamide resin, hectorite having a specific size and dispersion state in the resin composition, a fibrous reinforcing material, and a silane coupling agent.
 本発明におけるポリアミド樹脂とは、アミノカルボン酸、ラクタムジアミンとジカルボン酸、またはジアミンとジカルボン酸の一対の塩を主たる原料とするアミド結合を主鎖内に有する重合体である。ポリアミド樹脂の原料の具体例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸;ε-カプロラクタム、ω-ウンデカノラクタム、ω-ラウロラクタム等のラクタム;テトラメチレンジアミン、ヘキサメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等のジアミン;アジピン酸、スべリン酸、セバシン酸、ドデカン二酸等のジカルボン酸などが挙げられる。 The polyamide resin in the present invention is a polymer having an amide bond in the main chain, the main raw material of which is aminocarboxylic acid, lactam , diamine and dicarboxylic acid, or a pair of diamine and dicarboxylic acid salts. Specific examples of the raw material of the polyamide resin include aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid; lactams such as ε-caprolactam, ω-undecanolactam and ω-laurolactam; Examples include diamines such as tetramethylene diamine, hexamethylene diamine, undecamethylene diamine, and dodecamethylene diamine; dicarboxylic acids such as adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.
 このようなポリアミド樹脂の好ましい例としては、ポリカプロアミド(ナイロン6)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリカプロアミド/ポリヘキサメチレンアジパミドコポリマー(ナイロン6/66)、ポリウンデカミド(ナイロン11)、ポリカプロアミド/ポリウンデカミドコポリマー(ナイロン6/11)、ポリドデカミド(ナイロン12)、ポリカプロアミド/ポリドデカミドコポリマー(ナイロン6/12)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリウンデカメチレンアジパミド(ナイロン116)、およびこれらの混合物や共重合体等が挙げられる。中でも、ヘクトライトによる引張強度を高める効果を顕著に高めることができる観点から、ナイロン6、ナイロン66、ナイロン12が特に好ましい。 Preferred examples of such polyamide resins include polycaproamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), polycaproamide / polyhexamethylene adipa. Mido copolymer (nylon 6/66), polyundecamide (nylon 11), polycaproamide / polyundecamide copolymer (nylon 6/11), polydodecamide (nylon 12), polycaproamide / polydodecanamide copolymer (nylon 6/12) ), Polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene adipamide (nylon 116), and mixtures and copolymers thereof. Among these, nylon 6, nylon 66, and nylon 12 are particularly preferable from the viewpoint that the effect of increasing the tensile strength by hectorite can be remarkably enhanced.
 本発明においては、ヘクトライトは、ポリアミド樹脂の引張強度と曲げ弾性率を顕著に向上させることを目的として用いられる。ヘクトライトは、珪酸塩を主成分とする負に帯電した珪酸塩層とその層間に介在するイオン交換能を有するカチオンとからなる構造を有するものである。ヘクトライトの組成は、一般的には、Na0.66(Mg5.34Li0.66)Si20(OH)・nHOで表される。 In the present invention, hectorite is used for the purpose of remarkably improving the tensile strength and flexural modulus of the polyamide resin. Hectorite has a structure composed of a negatively charged silicate layer mainly composed of silicate and a cation having ion exchange ability interposed between the layers. The composition of hectorite is generally represented by Na 0.66 (Mg 5.34 Li 0.66 ) Si 8 O 20 (OH) 4 .nH 2 O.
 ヘクトライトは、板状であって、かつ略楕円形、または略長方形の形状を有する。そのため、繊維強化材のみを用いた場合と比較すると、その使用量を十分に低減させつつ、引張強度や曲げ弾性率を効果的に向上させることができる。従って、引張強度や曲げ弾性率が十分に向上されていても、密度が十分に低減されたポリアミド樹脂組成物を得ることができる。また、ヘクトライト以外の膨潤性層状珪酸塩を用いると、ポリアミド樹脂組成物における膨潤性層状珪酸塩のサイズが本発明に規定された範囲とならないため、引張強度を向上させることができない。 Hectorite is plate-shaped and has a substantially elliptical shape or a substantially rectangular shape. Therefore, compared with the case where only the fiber reinforcing material is used, the tensile strength and the bending elastic modulus can be effectively improved while sufficiently reducing the amount of use. Therefore, even if the tensile strength and the flexural modulus are sufficiently improved, a polyamide resin composition having a sufficiently reduced density can be obtained. Further, when a swellable layered silicate other than hectorite is used, the tensile strength cannot be improved because the size of the swellable layered silicate in the polyamide resin composition does not fall within the range defined in the present invention.
 本発明においては、ヘクトライトは、陽イオン交換容量が30~100ミリ当量/100g以上であることが好ましく、55~95ミリ当量/100g以上であることがより好ましい。この陽イオン交換容量が30ミリ当量/100g未満のものでは、膨潤能が低いために、ポリアミド樹脂組成物中においては、実質的に未劈開状態のままとなる。そのため、ヘクトライトのサイズが本発明に規定する範囲とならない。加えて、ポリアミド樹脂組成物中において、良好に分散することができない。そのため、引張強度と曲げ弾性率を顕著に向上させたポリアミド樹脂組成物を得ることができない。一方、陽イオン交換容量が100ミリ当量/100gを超えると、劈開が進み過ぎるため、曲げ弾性率は向上するものの脆化する傾向がある。その結果、繊維状強化材を併用した場合の引張強度を顕著に向上させることができない。 In the present invention, hectorite preferably has a cation exchange capacity of 30 to 100 meq / 100 g or more, and more preferably 55 to 95 meq / 100 g or more. When the cation exchange capacity is less than 30 meq / 100 g, the swelling ability is low, and therefore the polyamide resin composition remains substantially in an uncleavable state. Therefore, the size of hectorite does not fall within the range specified in the present invention. In addition, it cannot be dispersed well in the polyamide resin composition. Therefore, it is not possible to obtain a polyamide resin composition having significantly improved tensile strength and flexural modulus. On the other hand, when the cation exchange capacity exceeds 100 milliequivalents / 100 g, since the cleavage proceeds excessively, the flexural modulus is improved, but there is a tendency to become brittle. As a result, the tensile strength when the fibrous reinforcing material is used together cannot be remarkably improved.
 ヘクトライトの陽イオン交換容量は、日本ベントナイト工業会標準試験方法によるベントナイト(粉状)の陽イオン交換容量測定方法(JBAS-106-77)などに従って求められる。具体的には、浸出液容器、浸出管、受器を縦方向に連結した装置を用いる。そして、pHが7に調製された1N酢酸アンモニウム水溶液にヘクトライトを浸漬することにより、その層間のイオン交換性カチオンの全てをNH4+に交換して、NH4+型のヘクトライトを得る。その後、前記したNH4+型のヘクトライトを、水とエチルアルコールを用いて十分に洗浄してから、10質量%の塩化カリウム水溶液中に浸し、ヘクトライト中のNH4+をKへと交換する。引き続いて、前記したイオン交換反応に伴い浸出したNH4+を、0.1N水酸化ナトリウム水溶液を用いて中和滴定することにより、原料であるヘクトライトの陽イオン交換容量を求めることができる。 The cation exchange capacity of hectorite is determined in accordance with the bentonite (powder) cation exchange capacity measurement method (JBAS-106-77) according to the standard test method of the Japan Bentonite Industry Association. Specifically, an apparatus in which a leachate container, a leach tube, and a receiver are connected in the vertical direction is used. Then, by immersing the hectorite in 1N aqueous solution of ammonium acetate the pH was adjusted to 7, to replace all of its layers of ion exchange cations NH 4+, obtain NH 4+ type hectorite. Thereafter, the NH 4+ type hectorite is thoroughly washed with water and ethyl alcohol, and then immersed in a 10% by mass aqueous potassium chloride solution to replace NH 4+ in the hectorite with K + . . Subsequently, the cation exchange capacity of hectorite, which is a raw material, can be determined by neutralizing titrating NH 4+ leached with the above ion exchange reaction using a 0.1N aqueous sodium hydroxide solution.
 本発明の効果を奏するためには、ポリアミド樹脂組成物中のヘクトライトのサイズを所定の範囲に規定することが必須である。ポリアミド樹脂組成物中のヘクトライトのサイズを特定の範囲とすることにより、ポリアミド樹脂組成物の各種物性、特に引張強度と曲げ弾性率を大幅に向上させことができる。 In order to achieve the effect of the present invention, it is essential to define the size of hectorite in the polyamide resin composition within a predetermined range. By setting the size of hectorite in the polyamide resin composition within a specific range, various physical properties of the polyamide resin composition, particularly tensile strength and flexural modulus can be greatly improved.
 本発明において、ヘクトライトの形状は、上述のように、板状であって、かつ楕円形状あるいは略長方形状である。このような形状とすることで、本発明のポリアミド樹脂組成物を成形体としたときに、成形体中に分散するヘクトライトの配向方向が長片方向となる。その結果、長片方向への引張強度を高くすることができるという効果を奏することができる。ヘクトライトの形状が板状であって、かつ楕円形状あるいは略長方形状であることにより、ポリアミド樹脂組成物中でのヘクトライトのサイズが以下のようなものとなる。 In the present invention, the shape of hectorite is plate-like as described above, and is oval or substantially rectangular. By setting it as such a shape, when the polyamide resin composition of this invention is used as a molded object, the orientation direction of the hectorite disperse | distributed in a molded object turns into a long piece direction. As a result, it is possible to increase the tensile strength in the long piece direction. When the shape of the hectorite is plate-like and is oval or substantially rectangular, the size of the hectorite in the polyamide resin composition is as follows.
 ヘクトライトは、膨潤性層状珪酸塩であり、つまり複数の層構造がランダムに集合して重なっている構成を有している。そして、その平均厚み(すなわち、該層構造における重なり部分の合計の平均厚み)が1~10nmであることが必要であり、1.5~8nmであることが好ましい。ヘクトライトの平均厚みが10nmを超えるということは、劈開が不十分であるということを示す。従って、ヘクトライトのサイズが本発明に規定する範囲とならない。加えて、ポリアミド樹脂組成物中において、該ヘクトライトが良好に分散することができないため、十分な剛性、耐熱性が発現しない。一方、1nm未満であると、各種物性、特に引張強度と曲げ弾性率の補強効果が十分に得られないという問題がある。 Hectorite is a swellable layered silicate, that is, has a structure in which a plurality of layer structures are gathered at random and overlapped. The average thickness (that is, the total average thickness of the overlapping portions in the layer structure) needs to be 1 to 10 nm, and preferably 1.5 to 8 nm. That the average thickness of hectorite exceeds 10 nm indicates that cleavage is insufficient. Therefore, the size of hectorite does not fall within the range specified in the present invention. In addition, since the hectorite cannot be dispersed well in the polyamide resin composition, sufficient rigidity and heat resistance are not exhibited. On the other hand, when the thickness is less than 1 nm, there is a problem that various physical properties, in particular, the reinforcing effect of tensile strength and flexural modulus cannot be obtained sufficiently.
 ヘクトライトの形状について、図1および図2を用いて、以下に説明する。図1は、透過型電子顕微鏡(TEM)によって撮影された、本発明に用いられるヘクトライトの層構造の画像である。図2は、走査型電子顕微鏡(SEM)によって撮影された、本発明に用いられるヘクトライトの層構造が凝集した二次粒子の画像である。図2にて示されるように、樹脂組成物中にて分散される前のヘクトライトの二次粒子は、図1で示される層構造がランダムに集合して重なり、凝集されたものである。一方、ヘクトライト以外の膨潤性層状珪酸塩は、層構造が規則的に積み重なって二次粒子を形成する。そのため、ヘクトライト以外の膨潤性層状珪酸塩の形状は、ヘクトライトの形状とは大きく異なる。その結果、ポリアミド樹脂組成物における膨潤性層状珪酸塩のサイズが本発明に規定された範囲とならない。 The shape of hectorite will be described below with reference to FIGS. 1 and 2. FIG. 1 is an image of the layer structure of hectorite used in the present invention, taken by a transmission electron microscope (TEM). FIG. 2 is an image of secondary particles in which the layer structure of hectorite used in the present invention is aggregated, which is taken by a scanning electron microscope (SEM). As shown in FIG. 2, the secondary particles of hectorite before being dispersed in the resin composition are those in which the layer structure shown in FIG. On the other hand, in the swellable layered silicate other than hectorite, the layer structure is regularly stacked to form secondary particles. Therefore, the shape of the swellable layered silicate other than hectorite is significantly different from the shape of hectorite. As a result, the size of the swellable layered silicate in the polyamide resin composition does not fall within the range specified in the present invention.
 ポリアミド樹脂組成物中でのヘクトライトのサイズは、その短辺の平均長さが25~100nmであることが必要であり、30~95nmであることが好ましい。短辺の平均長さが25nm未満であると、十分な剛性、耐熱性が発現しない。一方、短辺の平均長さが100nmを越えると、剛性と耐熱性は十分に発現するが、引張強度が十分に発現しない。 As for the size of hectorite in the polyamide resin composition, the average length of the short side is required to be 25 to 100 nm, and preferably 30 to 95 nm. When the average length of the short side is less than 25 nm, sufficient rigidity and heat resistance are not exhibited. On the other hand, when the average length of the short side exceeds 100 nm, rigidity and heat resistance are sufficiently developed, but tensile strength is not sufficiently developed.
 ポリアミド樹脂組成物中でのヘクトライトのサイズは、その長辺の平均長さが38
~500nmであることが好ましく、45~400nmであることがより好ましい。長辺の平均長さが38nm未満であると、引張強度が十分に向上しない場合がある。一方、長辺の平均長さが500nmを越えると、引張強度が高くなるが、一方で靭性が低下する場合がある。
The size of hectorite in the polyamide resin composition is such that the average length of its long side is 38.
It is preferably from ˜500 nm, more preferably from 45 to 400 nm. If the long side average length is less than 38 nm, the tensile strength may not be sufficiently improved. On the other hand, if the average length of the long side exceeds 500 nm, the tensile strength increases, but the toughness may decrease on the other hand.
 本発明においては、長辺の平均長さと短辺の平均長さの比率が、(長辺の平均長さ)/(短辺の平均長さ)=1.5~5であることが必要であり、1.6~4.5であることがより好ましい。長辺と短辺の長さ比率が上記の範囲を下限に外れると、引張強度が向上しない。一方、長辺と短辺の長さ比率が上記の範囲を上限に外れると、ポリアミド樹脂中での分散性が低下するという問題がある。 In the present invention, it is necessary that the ratio of the average length of the long side to the average length of the short side is (average length of long side) / (average length of short side) = 1.5-5. More preferably 1.6 to 4.5. If the length ratio between the long side and the short side is out of the above range, the tensile strength is not improved. On the other hand, when the length ratio of the long side and the short side is out of the above range, there is a problem that dispersibility in the polyamide resin is lowered.
 本発明においては、ヘクトライトの初期サイズは特に制限されない。ここで初期サイズとは、ポリアミド樹脂組成物に含有される前のヘクトライトのサイズである。つまり、複数のヘクトライトの層単位が集合して重なることで形成される二次粒子のサイズであり、ポリアミド樹脂組成物中に含有されるヘクトライトのサイズとは異なるものである。ヘクトライトをポリアミド樹脂組成物中に含有させると、二次粒子の状態からヘクトライトの一枚ないし数枚からなる層単位まで劈開が進み、ポリアミド樹脂組成物中での分散が進む。したがって、ポリアミド樹脂組成物中に含有されるヘクトライトのサイズは、初期サイズと異なるのである。ポリアミド樹脂組成物中のヘクトライトのサイズを本発明に規定するサイズとするためには、前記初期サイズ(二次粒子サイズ)が平均粒径1~50μmで用いることが好ましく、5~45μmであることがより好ましく、10~40μmであることがさらに好ましい。なお、ヘクトライトの初期サイズを調整するための方法として、ジェットミル等の公知の装置で粉砕することなどが挙げられる。 In the present invention, the initial size of hectorite is not particularly limited. Here, the initial size is the size of hectorite before being contained in the polyamide resin composition. That is, it is the size of secondary particles formed by a plurality of hectorite layer units gathering and overlapping, and is different from the size of hectorite contained in the polyamide resin composition. When hectorite is contained in the polyamide resin composition, cleavage proceeds from the state of secondary particles to a layer unit consisting of one or several hectorites, and dispersion in the polyamide resin composition proceeds. Therefore, the size of hectorite contained in the polyamide resin composition is different from the initial size. In order to set the size of hectorite in the polyamide resin composition to the size prescribed in the present invention, the initial size (secondary particle size) is preferably used with an average particle size of 1 to 50 μm, and is preferably 5 to 45 μm. More preferably, the thickness is 10 to 40 μm. In addition, as a method for adjusting the initial size of hectorite, pulverization with a known apparatus such as a jet mill may be mentioned.
 本発明の効果を奏するためには、樹脂組成物中のヘクトライトの粒子サイズが、上記の特定の範囲であることが必要である。なお、平均厚み、平均長さの求め方は、実施例において詳述する。 In order to achieve the effect of the present invention, it is necessary that the particle size of hectorite in the resin composition is in the above specific range. In addition, how to obtain | require average thickness and average length is explained in full detail in an Example.
 ヘクトライトは、特に、射出成形により得られる成形体において、樹脂流れ方向に対する引張強度の向上を目的として、ポリアミド樹脂組成物中に良好に分散していることが必要である。本発明においては、ポリアミド樹脂組成物中に良好に分散していることの指標として、樹脂組成物中の平均粒子間距離を用いている。すなわち、本発明においては、平均粒子間距離が10~200nmであることが必要であり、15~180nmであることがより好ましい。平均粒子間距離が10nm未満であると、靭性が低下するという問題がある。一方、200nmを超えると、引張強度および曲げ弾性率をバランスよく発現させることができないという問題がある。 The hectorite needs to be well dispersed in the polyamide resin composition for the purpose of improving the tensile strength in the resin flow direction, particularly in a molded product obtained by injection molding. In the present invention, the average inter-particle distance in the resin composition is used as an indicator of good dispersion in the polyamide resin composition. That is, in the present invention, the average interparticle distance needs to be 10 to 200 nm, and more preferably 15 to 180 nm. There exists a problem that toughness falls that the distance between average particles is less than 10 nm. On the other hand, when it exceeds 200 nm, there exists a problem that tensile strength and a bending elastic modulus cannot be expressed with sufficient balance.
 なお、本発明における粒子間距離とは、透過型電子顕微鏡で樹脂組成物の内部を観察し、観察されたヘクトライトの隣り合うヘクトライトの互いの中心間を結ぶ直線距離をいう。その測定方法については後述の評価方法において詳述する。 In the present invention, the interparticle distance refers to a linear distance connecting the centers of adjacent hectorites of the observed hectorite by observing the inside of the resin composition with a transmission electron microscope. The measuring method will be described in detail later in the evaluation method.
 ヘクトライトの含有量は、ポリアミド樹脂100質量部に対して、0.5~20質量部であることが必要であり、1~18質量部であることが好ましい。含有量が0.5質量部未満であると、ヘクトライトを含有させることによる効果が十分に発現せず、引張強度が低下するという問題がある。一方、20質量部を超えると、樹脂組成物中での分散性が低下するため、引張強度が低下する。加えて、溶融混練時などにおける操業性が低下するという問題がある。なお、ポリアミド樹脂100質量部に対するヘクトライトの含有量0.5~20質量部の中でも、ヘクトライトの含有量が少量である方が、ポリアミド樹脂組成物中での分散効率が高まるため劈開が進む傾向がある。 The hectorite content is required to be 0.5 to 20 parts by mass, preferably 1 to 18 parts by mass with respect to 100 parts by mass of the polyamide resin. When the content is less than 0.5 parts by mass, there is a problem that the effect of containing hectorite is not sufficiently exhibited and the tensile strength is lowered. On the other hand, when the amount exceeds 20 parts by mass, the dispersibility in the resin composition is lowered, so that the tensile strength is lowered. In addition, there is a problem that the operability during melt kneading is lowered. Of the hectorite content of 0.5 to 20 parts by mass with respect to 100 parts by mass of the polyamide resin, the smaller the hectorite content, the higher the dispersion efficiency in the polyamide resin composition, so that cleavage proceeds. Tend.
 ヘクトライトは、溶融混練時に配合される場合の、ポリアミド樹脂との接着性向上を目的として、有機処理されていてもよい。有機処理の方法としては、層間にアミンやアミノ酸を挿入させる方法などが挙げられる。 The hectorite may be organically treated for the purpose of improving the adhesion with the polyamide resin when blended during melt kneading. Examples of the organic treatment method include a method of inserting an amine or amino acid between layers.
 また、本発明の効果を損なわない範囲において、ヘクトライト以外の膨潤性層状珪酸塩を、ヘクトライトと併用しても構わない。ヘクトライト以外の膨潤性層状珪酸塩としては、例えば、スメクタイト族(モンモリロナイト、バイデライト、ヘクトライト、ソーコナイト等)、バーミキュライト族(バーミキュライト等)、雲母族(フッ素雲母、白雲母、パラゴナイト、金雲母、レピドライト等)、脆雲母族(マーガライト、クリントナイト、アナンダイト等)、緑泥石族(ドンバサイト、スドーアイト、クッケアイト、クリノクロア、シャモナイト、ニマイト等)などが挙げられる。ヘクトライト以外の膨潤性層状珪酸塩の含有量は、引張強度の向上を阻害しない観点から、ヘクトライト100質量部に対して、0.1~5質量部が好ましく、0.2~3質量部がより好ましい。 In addition, a swellable layered silicate other than hectorite may be used in combination with hectorite as long as the effects of the present invention are not impaired. Examples of swellable layered silicates other than hectorite include smectites (montmorillonite, beidellite, hectorite, soconite, etc.), vermiculites (vermiculite, etc.), micas (fluorine mica, muscovite, paragonite, phlogopite, lipidoid). Etc.), brittle mica family (margarite, clintnite, anandite, etc.), chlorite family (donbasite, sudoite, kukeite, clinochlore, chamonite, nimite, etc.). The content of the swellable layered silicate other than hectorite is preferably 0.1 to 5 parts by mass, and 0.2 to 3 parts by mass with respect to 100 parts by mass of hectorite, from the viewpoint of not inhibiting the improvement in tensile strength. Is more preferable.
 本発明においては、ポリアミド樹脂の引張強度および曲げ弾性率をより向上させることを目的として、繊維状強化材が用いられる。すなわち、ヘクトライトと繊維状強化材とを併用することにより、引張強度および曲げ弾性率を著しく向上させることができる。 In the present invention, a fibrous reinforcing material is used for the purpose of further improving the tensile strength and flexural modulus of the polyamide resin. That is, the combined use of hectorite and fibrous reinforcing material can significantly improve the tensile strength and the flexural modulus.
 繊維状強化材としては、ガラス繊維、炭素繊維、ウィスカーなどが挙げられる。なかでも、ヘクトライトと組合せられて、引張強度や曲げ弾性率を向上させる効果が最も高い観点から、ガラス繊維が好ましい。 Examples of the fibrous reinforcing material include glass fiber, carbon fiber, whisker and the like. Among these, glass fiber is preferable from the viewpoint of the highest effect of improving tensile strength and bending elastic modulus in combination with hectorite.
 ガラス繊維としては、特に限定されず、通常のものが用いられる。ガラス繊維の断面は、一般的な丸形状や、長方形や、それ以外の異形断面であってもよい。また、ガラス繊維のサイズは特に限定されない。 The glass fiber is not particularly limited, and ordinary fibers are used. The cross section of the glass fiber may be a general round shape, a rectangle, or other irregular cross section. Moreover, the size of glass fiber is not specifically limited.
 炭素繊維としては、特に限定されず、通常のものが用いられる。炭素繊維のサイズや断面形状も特に限定されない。 The carbon fiber is not particularly limited, and a normal one is used. The size and cross-sectional shape of the carbon fiber are not particularly limited.
 繊維状強化材の含有量は、ポリアミド樹脂100質量部に対して、5~200質量部であることが必要であり、10~180質量部であることが好ましい。含有量が5質量部未満であると、十分な引張強度や曲げ弾性率が得られないという問題がある。一方、200質量部を超えると、溶融混練時の操業性が低下するという問題がある。 The content of the fibrous reinforcing material is required to be 5 to 200 parts by mass with respect to 100 parts by mass of the polyamide resin, and preferably 10 to 180 parts by mass. When the content is less than 5 parts by mass, there is a problem that sufficient tensile strength and flexural modulus cannot be obtained. On the other hand, when it exceeds 200 mass parts, there exists a problem that the operativity at the time of melt-kneading falls.
 本発明のポリアミド樹脂組成物には、繊維状強化材およびシランカップリング剤が同時に含有されることが必要である。繊維状強化材とシランカップリング剤とを併用することにより、ポリアミド樹脂と繊維状強化材の密着性を向上させ、十分な引張強度および曲げ弾性率が得られるという利点がある。シランカップリング剤が含有されないと、ポリアミド樹脂と繊維状強化材の密着性を向上効果が乏しいため、曲げ弾性率は向上するものの、引張強度は十分に向上しないという問題が発生する。また、シランカップリング剤以外のカップリング剤を用いると、効率よく引張強度を向上させることができないばかりか、曲げ弾性率向上効果を阻害してしまう。 The polyamide resin composition of the present invention must contain a fibrous reinforcing material and a silane coupling agent at the same time. By using the fibrous reinforcing material and the silane coupling agent in combination, there is an advantage that the adhesion between the polyamide resin and the fibrous reinforcing material is improved, and sufficient tensile strength and bending elastic modulus can be obtained. When the silane coupling agent is not contained, the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material is poor, and thus the bending elastic modulus is improved, but the tensile strength is not sufficiently improved. Moreover, when a coupling agent other than the silane coupling agent is used, not only the tensile strength cannot be improved efficiently, but also the effect of improving the flexural modulus is hindered.
 シランカップリング剤の含有量は、ポリアミド樹脂100質量部に対して、0.01~3質量部であることが必要であり、0.02~0.9質量部であることがより好ましい。含有量が0.01質量部未満であると、ポリアミド樹脂と繊維状強化材との密着性向上の効果が不十分となり、十分な引張強度が得られない。一方、3質量部を超えると、ポリアミド樹脂と繊維状強化材との密着性向上の効果が飽和するばかりでなく、ポリアミド樹脂の有する靭性を損ない、十分な機械特性が得られない。 The content of the silane coupling agent needs to be 0.01 to 3 parts by mass, and more preferably 0.02 to 0.9 parts by mass with respect to 100 parts by mass of the polyamide resin. When the content is less than 0.01 parts by mass, the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material becomes insufficient, and sufficient tensile strength cannot be obtained. On the other hand, when it exceeds 3 parts by mass, not only the effect of improving the adhesion between the polyamide resin and the fibrous reinforcing material is saturated, but also the toughness of the polyamide resin is impaired and sufficient mechanical properties cannot be obtained.
 本発明で用いられるシランカップリング剤は特に限定されず、ビニル系シランシランカップリング剤、アクリル系シランカップリング剤、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、イソシアネート系シランカップリング剤などが挙げられる。なかでも、十分な引張強度の向上効果を得やすい観点から、エポキシ系シランカップリング剤が好ましい。 The silane coupling agent used in the present invention is not particularly limited, and vinyl silane silane coupling agent, acrylic silane coupling agent, epoxy silane coupling agent, amino silane coupling agent, isocyanate silane coupling agent. Etc. Of these, an epoxy-based silane coupling agent is preferable from the viewpoint of easily obtaining a sufficient tensile strength improvement effect.
 本発明のポリアミド樹脂組成物には、その特性を大きく損なわない限りにおいて、熱安定剤、酸化防止剤、顔料、着色防止剤、耐候剤、難燃剤、可塑剤、結晶核剤、離型剤等が含有されていてもよい。熱安定剤や酸化防止剤としては、例えばヒンダードフェノール類、リン化合物、ヒンダードアミン類、イオウ化合物、銅化合物、アルカリ金属のハロゲン化物あるいはこれらの混合物が挙げられる。 The polyamide resin composition of the present invention has a heat stabilizer, an antioxidant, a pigment, an anti-coloring agent, a weathering agent, a flame retardant, a plasticizer, a crystal nucleating agent, a release agent, etc. May be contained. Examples of the heat stabilizer and the antioxidant include hindered phenols, phosphorus compounds, hindered amines, sulfur compounds, copper compounds, alkali metal halides, and mixtures thereof.
 本発明のポリアミド樹脂組成物の製造方法について以下に説明する。本発明のポリアミド樹脂組成物の製造方法は、以下の二つの方法のうち、いずれかを用いることができる。 The method for producing the polyamide resin composition of the present invention will be described below. One of the following two methods can be used for the method for producing the polyamide resin composition of the present invention.
 本発明のポリアミド樹脂組成物の第一の製造方法は、以下の工程(i)~(iii)を含むものである。
工程(i):上述のポリアミド樹脂を構成するモノマー、アミノ基を有する化合物および無機酸を、ポリアミド樹脂を構成するモノマーの融点以上の温度で加熱溶融下、攪拌しながらヘクトライトを配合し、さらに水を加え、回転数100~5000rpmで攪拌し調製液を得る工程(以下、単に「調製工程」と称する場合がある)
工程(ii):工程(i)で得られた調製液を重合させ、ポリアミド樹脂とヘクトライトを含む樹脂組成物を得る工程(以下、単に「重合工程」と称する場合がある)
工程(iii):工程(ii)で得られたポリアミド樹脂とヘクトライトを含む樹脂組成物を溶融させて、繊維状強化材とシランカップリング剤を混練させる工程(以下、単に「混練工程」と称する場合がある)
 すなわち、ポリアミド樹脂を構成するモノマーを溶融状態とし、該溶融状態のモノマーにヘクトライトを配合する。その後、重合に付し、繊維状強化材とシランカップリング剤を溶融混練することにより、本発明のポリアミド樹脂組成物が得られる。
The first production method of the polyamide resin composition of the present invention includes the following steps (i) to (iii).
Step (i): Mixing hectorite while stirring the monomer constituting the polyamide resin, the compound having an amino group, and the inorganic acid at a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin while stirring. A step of adding water and stirring at a rotational speed of 100 to 5000 rpm to obtain a preparation liquid (hereinafter sometimes referred to simply as “preparation step”)
Step (ii): A step of polymerizing the preparation liquid obtained in step (i) to obtain a resin composition containing a polyamide resin and hectorite (hereinafter, sometimes simply referred to as “polymerization step”)
Step (iii): The step of melting the resin composition containing the polyamide resin and hectorite obtained in step (ii) and kneading the fibrous reinforcing material and the silane coupling agent (hereinafter simply referred to as “kneading step”) May be called)
That is, the monomer constituting the polyamide resin is set in a molten state, and hectorite is blended in the molten monomer. Thereafter, the polyamide resin composition of the present invention is obtained by polymerizing and melt-kneading the fibrous reinforcing material and the silane coupling agent.
 まず、第一の製造方法における調製工程について、以下に説明する。 First, the preparation process in the first manufacturing method will be described below.
 調製工程は、攪拌によりポリアミド樹脂を構成するモノマーを、アミノ基を有する化合物、無機酸とともに加熱溶融して、溶液状とし、ヘクトライト、水を順に加え攪拌する工程である。調製工程における攪拌方法は、ポリアミド樹脂を構成するモノマー、ヘクトライト、水が均一に混合されるものであれば特に限定されないが、加熱攪拌しながら溶融混合させる方法などが挙げられる。その場合の攪拌翼の形状や回転数などは、特に限定されるものではない。 The preparation step is a step in which the monomer constituting the polyamide resin by stirring is heated and melted together with a compound having an amino group and an inorganic acid to form a solution, and hectorite and water are sequentially added and stirred. The stirring method in the preparation step is not particularly limited as long as the monomer, hectorite, and water constituting the polyamide resin are uniformly mixed, and examples thereof include a melt mixing method while stirring with heating. In that case, the shape and the rotational speed of the stirring blade are not particularly limited.
 調製工程の温度は、ポリアミド樹脂を構成するモノマーの融点以上の温度である必要がある。例えば、ポリアミド樹脂を構成するモノマーとして、ε-カプロラクタムを用いた場合は、加熱温度を69℃以上にして溶融させることが必要である。また、アジピン酸/ヘキサメチレンジアミン等モル塩を用いた場合は、加熱温度を202℃以上にして溶融させることが必要である。 The temperature of the preparation process needs to be a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin. For example, when ε-caprolactam is used as the monomer constituting the polyamide resin, it is necessary to melt at a heating temperature of 69 ° C. or higher. Moreover, when a molar salt such as adipic acid / hexamethylenediamine is used, it is necessary to melt at a heating temperature of 202 ° C. or higher.
 調製工程においては、アミノ基を有する化合物、無機酸を用いる必要がある。アミノ基を有する化合物は、無機酸と反応して4級アミンを形成するものである。4級アミンは、後の重合工程において、ヘクトライトの層間に侵入する。これにより、層間を親水性より疎水性に変化させ、ヘクトライトの分散性を促進させることが可能である。 In the preparation step, it is necessary to use a compound having an amino group and an inorganic acid. A compound having an amino group reacts with an inorganic acid to form a quaternary amine. The quaternary amine penetrates between the layers of hectorite in the subsequent polymerization step. As a result, the interlayer can be changed from hydrophilic to hydrophobic, and the dispersibility of hectorite can be promoted.
 アミノ基を有する化合物としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸などのアミノカルボン酸、デシルアミン、ステアリルアミン、ドデシルアミン、オクタデシルアミン、オレイルアミン、ベンジルアミン、メチルドデシルアミン、メチルオクタデシルアミン、ジメチルドデシルアミン、ジメチルオクタデシルアミン、ベンジルトリメチルアミン、ベンジルトリエチルアミン、ベンジルトリブチルアミン、ベンジルジメチルドデシルアミン、ベンジルジメチルオクタデシルアミンなどのベンジルトリアルキルアミン等が挙げられる。アミノ基を有する化合物は、アミノ基以外の他の官能基を有するものであっても構わない。 Examples of the compound having an amino group include aminocarboxylic acids such as 6-aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, decylamine, stearylamine, dodecylamine, octadecylamine, oleylamine, benzylamine, methyldodecylamine, Examples include benzyltrialkylamines such as methyloctadecylamine, dimethyldodecylamine, dimethyloctadecylamine, benzyltrimethylamine, benzyltriethylamine, benzyltributylamine, benzyldimethyldodecylamine, and benzyldimethyloctadecylamine. The compound having an amino group may have a functional group other than the amino group.
 無機酸は、pKa(25℃、水中での値)が6以下である酸である。具体的には、リン酸、亜リン酸、塩酸、硫酸、硝酸等が挙げられる。なかでも、ヘクトライトの劈開のしやすさと、設備への腐食性が低いという観点から、亜リン酸が好ましい。 An inorganic acid is an acid having a pKa (value at 25 ° C. in water) of 6 or less. Specific examples include phosphoric acid, phosphorous acid, hydrochloric acid, sulfuric acid, and nitric acid. Of these, phosphorous acid is preferred from the viewpoint of easy cleavage of hectorite and low corrosiveness to equipment.
 アミノ基を有する化合物の使用量は、ヘクトライト100質量部に対して、2~20質量部であることが好ましく、3~10質量部であることがより好ましい。アミノ基を有する化合物の使用量が2質量部未満であると、ヘクトライトの層間を十分に疎水化できず、ヘクトライトの分散性が低下する場合がある。一方、20質量部を超えると、アミノ基を有する化合物がポリアミドの末端に付き、ポリアミド樹脂の重合度が上がらない場合がある。 The amount of the compound having an amino group is preferably 2 to 20 parts by mass, more preferably 3 to 10 parts by mass with respect to 100 parts by mass of hectorite. If the amount of the compound having an amino group is less than 2 parts by mass, the hectorite layer cannot be sufficiently hydrophobized, and the dispersibility of hectorite may be lowered. On the other hand, if it exceeds 20 parts by mass, the compound having an amino group may be attached to the end of the polyamide, and the degree of polymerization of the polyamide resin may not increase.
 無機酸の使用量は、ヘクトライトの劈開を促進させる観点から、また劈開したヘクトライトの(長辺の平均長さ)/(短辺の平均長さ)を1.5~10とするために、
ヘクトライト100質量部に対して、0.3~4質量部であることが好ましく、0.5~3質量部であることがより好ましい。酸の使用量が0.3質量部未満であると、ヘクトライトが十分に劈開しない場合がある。一方、4質量部を超えると、調製工程において操業性が低下する場合がある。
The amount of the inorganic acid used is from the viewpoint of promoting the cleavage of hectorite, and in order to set the (average length of the long side) / (average length of the short side) of the cleaved hectorite to 1.5-10. ,
The amount is preferably 0.3 to 4 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of hectorite. If the amount of acid used is less than 0.3 parts by mass, hectorite may not be sufficiently cleaved. On the other hand, when it exceeds 4 mass parts, operativity may fall in a preparation process.
 調整工程における攪拌回転数は、100~5000rpmであることが必要であり、200~4500rpmであることが好ましい。回転数が100rpm未満であると調整液の均一性が低下する。一方、5000rpmを超えると、適正な回転粘度とすることが困難となる。 The stirring rotation speed in the adjustment step needs to be 100 to 5000 rpm, and preferably 200 to 4500 rpm. When the rotational speed is less than 100 rpm, the uniformity of the adjustment liquid is lowered. On the other hand, when it exceeds 5000 rpm, it becomes difficult to obtain an appropriate rotational viscosity.
 調整工程における調整液の回転粘度は、1~400Pa・sであることが好ましく、5~350Pa・sであることがより好ましく、10~300Pa・sであることが特に好ましい。回転粘度が1Pa・s未満であると、ヘクトライトの分散性が低下するため、引張強度の向上効果が不十分となる。一方、400Pa・sを超えると、もはや調整液の回転粘度が高過ぎ、重合装置への調整液の払い出しが困難になる。 The rotational viscosity of the adjustment liquid in the adjustment step is preferably 1 to 400 Pa · s, more preferably 5 to 350 Pa · s, and particularly preferably 10 to 300 Pa · s. When the rotational viscosity is less than 1 Pa · s, the dispersibility of hectorite is lowered, and the effect of improving the tensile strength becomes insufficient. On the other hand, if it exceeds 400 Pa · s, the rotational viscosity of the adjustment liquid is too high, and it becomes difficult to dispense the adjustment liquid to the polymerization apparatus.
 次に、第一の製造方法における重合工程について、以下に説明する。 Next, the polymerization step in the first production method will be described below.
 重合工程は、調整液を重合させ、ポリアミド樹脂とヘクトライトを含む樹脂組成物を得る工程である。 The polymerization step is a step of polymerizing the adjustment liquid to obtain a resin composition containing a polyamide resin and hectorite.
 ヘクトライトは、その他の膨潤性層状珪酸塩と比較すると、水酸基を多く含むため層間に水分子が入り込みやすく(すなわち、親水性が高く)、膨潤しやすい。加えて、その他の膨潤性層状珪酸塩と比較すると、粒径も小さい。そのため、従来技術のように、カプロラクタムやアミノカルボン酸などのポリアミド樹脂を構成するモノマーおよび水を、ヘクトライトとともに攪拌し、さらに重合に付してポリアミド樹脂組成物を得る方法を用いる場合においては、以下のような問題がある。すなわち、ヘクトライト層間の親水性が高いため、急激に水を吸収してヘクトライトが嵩高くなる。そのため、該ポリアミド樹脂組成物の回転粘度が大きくなり、均一な攪拌が困難となる。加えて、得られる樹脂組成物の取扱性が悪化する。従って、ヘクトライトの配合量を増加させることができず、ポリアミド樹脂の引張強度と曲げ弾性率を顕著に向上させることが困難となる。 Hectorite contains more hydroxyl groups than other swellable layered silicates, so water molecules can easily enter between layers (ie, have high hydrophilicity), and swell easily. In addition, the particle size is small compared to other swellable layered silicates. Therefore, as in the prior art, in the case of using a method for obtaining a polyamide resin composition by stirring the monomer and water constituting the polyamide resin such as caprolactam or aminocarboxylic acid together with hectorite and further subjecting to polymerization. There are the following problems. That is, since the hydrophilicity between the hectorite layers is high, water is rapidly absorbed and the hectorite becomes bulky. For this reason, the rotational viscosity of the polyamide resin composition increases, and uniform stirring becomes difficult. In addition, the handleability of the resulting resin composition deteriorates. Therefore, the amount of hectorite added cannot be increased, and it becomes difficult to significantly improve the tensile strength and flexural modulus of the polyamide resin.
 それに対して、本発明の第一の製造方法においては、まず、ポリアミド樹脂を構成するモノマー、アミノ基を有する化合物、無機酸を調製工程に付して、その後ヘクトライトを配合して重合工程に付している。そのため、ヘクトライトの層間がアミノ基を有する化合物と無機酸が反応して形成される4級アミンに置換され、疎水性となる。そのためヘクトライトの層間には、水分子は入り込みにくくなり、その結果として膨潤しにくくなる。加えて、ヘクトライトの層間には、ポリアミド樹脂が入り込むことで、劈開し、均一に分散される。その結果、得られるポリアミドスラリーの粘度増加を抑制することができ、取扱性の低下を防止しつつ、重合工程においてポリアミド樹脂とヘクトライトを含む樹脂組成物の各種物性をバランスよく向上させることができる。 In contrast, in the first production method of the present invention, first, the monomer constituting the polyamide resin, the compound having an amino group, and the inorganic acid are subjected to the preparation step, and then hectorite is added to the polymerization step. It is attached. Therefore, the layer of hectorite is substituted with a quaternary amine formed by a reaction between a compound having an amino group and an inorganic acid, and becomes hydrophobic. Therefore, water molecules do not easily enter between the layers of hectorite, and as a result, they do not easily swell. In addition, when the polyamide resin enters between the layers of hectorite, it is cleaved and uniformly dispersed. As a result, increase in viscosity of the resulting polyamide slurry can be suppressed, and various physical properties of the resin composition containing the polyamide resin and hectorite can be improved in a well-balanced manner in the polymerization step while preventing a decrease in handleability. .
 第一の製造方法においては、最終的に本発明のポリアミド樹脂組成物を得た場合に、ヘクトライトの含有量が上記の範囲となることが必要である。 In the first production method, when the polyamide resin composition of the present invention is finally obtained, the hectorite content must be in the above range.
 重合工程におけるヘクトライトの形態は、ポリアミド樹脂を構成するモノマー中における分散性を向上させることができれば特に制限されるものではないが、粉末状であれば、分散性が向上するため好ましい。 The form of hectorite in the polymerization step is not particularly limited as long as the dispersibility in the monomer constituting the polyamide resin can be improved, but a powder form is preferable because the dispersibility is improved.
 重合工程における重合温度は、240~280℃であることが好ましく、245~275℃であることがより好ましい。重合温度が240℃未満であると、重合度を上げることが困難となったり、ヘクトライトの分散性が低下したりするという問題がある。一方、重合温度が280℃を超えると、ポリアミド樹脂が分解し、黄変する場合がある。 The polymerization temperature in the polymerization step is preferably 240 to 280 ° C, and more preferably 245 to 275 ° C. When the polymerization temperature is lower than 240 ° C., there are problems that it is difficult to increase the degree of polymerization and that the dispersibility of hectorite is lowered. On the other hand, when the polymerization temperature exceeds 280 ° C., the polyamide resin may be decomposed and yellowed.
 重合工程における圧力は、0.3~1.5MPaであることが好ましく、0.4~1.0MPaであることがより好ましい。圧力が0.3MPa未満であると、ヘクトライトが良好に分散しない場合がある。その結果、引張強度、曲げ弾性率が十分に発現しない。一方、圧力が1.5MPaを越えると、重合性、ヘクトライトの分散性の向上が期待できるが、耐圧能力の高い設備仕様としなくてはならず、経済面の負担が高くなる場合がある。 The pressure in the polymerization step is preferably 0.3 to 1.5 MPa, more preferably 0.4 to 1.0 MPa. If the pressure is less than 0.3 MPa, hectorite may not be dispersed well. As a result, the tensile strength and the flexural modulus are not sufficiently expressed. On the other hand, when the pressure exceeds 1.5 MPa, improvement in polymerizability and hectorite dispersibility can be expected, but equipment specifications with high pressure resistance must be provided, which may increase the economic burden.
 次に、第一の製造方法における混練工程について説明する。混練工程は、重合工程で得られたポリアミド樹脂とヘクトライトを含む樹脂組成物に、繊維状強化材とシランカップリング剤を溶融混練する工程である。 Next, the kneading process in the first production method will be described. The kneading step is a step of melt-kneading the fibrous reinforcing material and the silane coupling agent into the resin composition containing the polyamide resin and hectorite obtained in the polymerization step.
 混練工程においては、例えば、二軸混練押出機等を用いて混練をおこなうことができる。混練条件は、特に限定されないが、樹脂組成物の可塑化、劣化の抑制の観点から、溶融温度240~290℃、スクリュー回転150~400rpmの条件下で溶融混練することが好ましい。 In the kneading step, for example, kneading can be performed using a twin-screw kneading extruder or the like. The kneading conditions are not particularly limited, but from the viewpoint of plasticizing the resin composition and suppressing deterioration, melt kneading is preferably performed under conditions of a melting temperature of 240 to 290 ° C. and a screw rotation of 150 to 400 rpm.
 混練工程においては、重合工程で得られたポリアミド樹脂の供給を主ホッパーより行い、繊維状強化材の供給をサイドフィーダーより行うことができる。 In the kneading step, the polyamide resin obtained in the polymerization step can be supplied from the main hopper, and the fibrous reinforcing material can be supplied from the side feeder.
 混練工程において、シランカップリング剤は、任意の手段を用いて供給することができる。その供給方法としては、主ホッパーよりポリアミド樹脂およびシランカップリング剤をドライブレンドしながら供給する方法、または主ホッパーよりポリアミド樹脂とは別に供給する方法、あるいはサイドフィーダーより供給する方法などが挙げられる。 In the kneading step, the silane coupling agent can be supplied using any means. The supply method includes a method of supplying the polyamide resin and the silane coupling agent from the main hopper while dry blending, a method of supplying the polyamide resin and the silane coupling agent separately from the polyamide resin, or a method of supplying from the side feeder.
 第一の製造方法においては、最終的に本発明のポリアミド樹脂組成物を得た場合に、繊維状強化材の含有量が上記の範囲となることが必要である。さらに、最終的に本発明のポリアミド樹脂組成物を得た場合に、シランカップリング剤の含有量が上記の範囲となることが必要である。 In the first production method, when the polyamide resin composition of the present invention is finally obtained, the content of the fibrous reinforcing material needs to be in the above range. Furthermore, when the polyamide resin composition of the present invention is finally obtained, the content of the silane coupling agent needs to be in the above range.
 本発明のポリアミド樹脂組成物の第二の製造方法は、以下の工程(iv)を含むものである。
工程(iv):ポリアミド樹脂に、ヘクトライト、繊維状強化材およびシランカップリング剤を溶融混練して樹脂組成物を得る工程(以下、単に「溶融混練工程」と称する場合がある)
 すなわち、本発明のポリアミド樹脂組成物の第二の製造方法においては、ポリアミド樹脂にヘクトライトを溶融混練し、次いで繊維状強化材およびシランカップリング剤を溶融混練してもよいし、ポリアミド樹脂、ヘクトライト、繊維状強化材およびシランカップリング剤を一括で仕込んで溶融混練してもよい。なお、ポリアミド樹脂中でのヘクトライトの分散を促進するために、予めポリアミド樹脂、ヘクトライトを溶融混練した後に、繊維状強化材、シランカップリング剤を混練する方法が好ましい。
The second manufacturing method of the polyamide resin composition of the present invention includes the following step (iv).
Step (iv): Step of obtaining a resin composition by melting and kneading hectorite, a fibrous reinforcing material, and a silane coupling agent to a polyamide resin (hereinafter, sometimes simply referred to as “melt kneading step”)
That is, in the second production method of the polyamide resin composition of the present invention, hectorite may be melt-kneaded with the polyamide resin, and then the fibrous reinforcing material and the silane coupling agent may be melt-kneaded. Hectorite, fibrous reinforcing material and silane coupling agent may be charged all at once and melt-kneaded. In order to promote the dispersion of hectorite in the polyamide resin, a method of kneading the fibrous reinforcing material and the silane coupling agent after melt-kneading the polyamide resin and hectorite in advance is preferable.
 溶融混練は、二軸混練押出機等を用いることができ、溶融温度は、樹脂組成物の可塑化、劣化の抑制の観点から、240~290℃であることが好ましい。なお、繊維状強化材、シランカップリング剤の配合は、繊維状強化材の折損を抑制するため、なるべく二軸混練押出機の下流側でサイドフィーダーを用いて添加することが好ましい。 For the melt-kneading, a twin-screw kneading extruder or the like can be used, and the melting temperature is preferably 240 to 290 ° C. from the viewpoint of plasticizing the resin composition and suppressing deterioration. In addition, in order to suppress breakage of the fibrous reinforcing material, it is preferable to add the fibrous reinforcing material and the silane coupling agent using a side feeder as downstream as possible on the twin-screw kneading extruder.
 溶融混練工程において、ポリアミド樹脂中にヘクトライトを分散するには、以下の任意の方法が挙げられる。つまり、主ホッパーよりポリアミド樹脂およびヘクトライトをドライブレンドして供給する方法、主ホッパーよりポリアミド樹脂、サイドフィーダーよりヘクトライトを供給する方法などの方法を用い、溶融混練することでポリアミド樹脂中にヘクトライトを分散できる。 In the melt-kneading step, the following arbitrary methods may be used to disperse hectorite in the polyamide resin. That is, using a method such as a method of dry blending and supplying a polyamide resin and hectorite from the main hopper, a method of supplying a polyamide resin from the main hopper, and a method of supplying hectorite from the side feeder, etc. Light can be dispersed.
 第二の製造方法において、最終的に本発明のポリアミド樹脂組成物を得た場合に、ヘクトライトの含有量が、上記の範囲となることが必要である。 In the second production method, when the polyamide resin composition of the present invention is finally obtained, the hectorite content needs to be in the above range.
 溶融工程におけるヘクトライトの形態は、ポリアミド樹脂を構成するモノマー中における分散性を向上させることができれば特に制限されるものではない。粉末状であれば、分散が容易となるため好ましい。 The form of hectorite in the melting step is not particularly limited as long as the dispersibility in the monomer constituting the polyamide resin can be improved. A powder form is preferable because it facilitates dispersion.
 このようにヘクトライトを配合することにより、引張強度の向上効果を十分に得ることができるという効果を奏する。 In this way, by blending hectorite, the effect of sufficiently improving the tensile strength can be obtained.
 第二の製造方法において、最終的に本発明のポリアミド樹脂組成物を得た場合に、繊維状強化材の含有量が上記の範囲となることが必要である。さらに、最終的に本発明のポリアミド樹脂組成物を得た場合に、シランカップリング剤の含有量が上記の範囲となることが必要である。 In the second production method, when the polyamide resin composition of the present invention is finally obtained, the content of the fibrous reinforcing material needs to be in the above range. Furthermore, when the polyamide resin composition of the present invention is finally obtained, the content of the silane coupling agent needs to be in the above range.
 第二の製造方法における利点を、以下に説明する。第一の製造方法は、ポリアミド樹脂の重合工程(つまり、工程(ii))を含むため、目的とするポリアミド樹脂組成物を得るために、大掛かりな設備を必要とする。一方、第二の製造方法は、溶融混練のみで目的とするポリアミド樹脂組成物を得ることができるため、比較的簡便な設備で、ポリアミド樹脂組成物を得ることができる。しかしながら、ヘクトライトの分散性の点、量産性の点において、第一の製造方法を用いることがより好ましい。 The advantages of the second manufacturing method will be described below. Since the first manufacturing method includes a polyamide resin polymerization step (that is, step (ii)), a large facility is required to obtain a target polyamide resin composition. On the other hand, the second production method can obtain the target polyamide resin composition only by melt kneading, and therefore can obtain the polyamide resin composition with relatively simple equipment. However, it is more preferable to use the first production method in terms of hectorite dispersibility and mass productivity.
 本発明の第一の製造方法、第二の製造方法においては、本発明に効果を損なわない範囲において、必要に応じて、他の重合体や添加剤を配合する工程が含まれていることも可能である。なお、これらの他の重合体や添加剤の配合は、任意の段階で行われる。 The first production method and the second production method of the present invention may include a step of blending other polymers and additives as necessary, as long as the effects of the present invention are not impaired. Is possible. The blending of these other polymers and additives is performed at an arbitrary stage.
 本発明で得られたポリアミド樹脂組成物を通常の成形加工方法に付することにより、本発明の成形体を作製することができる。例えば、射出成形、押出成形、吹き込み成形、焼結成形などの熱溶融成形法を用いて、成形体とすることができる。なかでも、本発明のポリアミド樹脂組成物の特性である優れた引張強度、曲げ弾性率を最も効果的に用いることができるという観点から、射出成形により成形体とすることが好ましい。かかる場合の成形条件は、特に限定されないが、例えば、樹脂温度230~290℃、金型温度80℃程度が好ましい。 The molded body of the present invention can be produced by subjecting the polyamide resin composition obtained in the present invention to a normal molding method. For example, it can be set as a molded object using hot melt molding methods, such as injection molding, extrusion molding, blow molding, and sintering molding. Among these, from the viewpoint that the excellent tensile strength and flexural modulus, which are the characteristics of the polyamide resin composition of the present invention, can be most effectively used, it is preferable to form a molded body by injection molding. The molding conditions in this case are not particularly limited, but for example, a resin temperature of 230 to 290 ° C. and a mold temperature of about 80 ° C. are preferable.
 また、本発明のポリアミド樹脂組成物を有機溶媒溶液に溶解させ、流延法に付することにより、薄膜とすることもできる。なお、成形体としては、ヘクトライトおよび繊維状強化材が配向しやすい形態を有する成形体であると、ヘクトライトと繊維状強化材との強化効果がより得られやすいため好ましい。 Further, the polyamide resin composition of the present invention can be dissolved in an organic solvent solution and subjected to a casting method to form a thin film. In addition, as a molded object, it is preferable that it is a molded object which has a form in which hectorite and a fibrous reinforcement are easy to orientate, since the reinforcement effect of a hectorite and a fibrous reinforcement can be obtained more easily.
 本発明の成形体は、その優れた特性を活かして、自動車用部品、電気部品、家庭用品等に用いることができる。特に、自動車のトランスミッション周り、エンジン周りにおいて使用できる。具体的には、自動車のトランスミッション周りとしては、シフトレバー、ギアボックス等の台座に用いるベースプレート、エンジン周りとしては、シリンダーヘッドカバー、エンジンマウント、エアインテークマニホールド、スロットルボディ、エアインテークパイプ、ラジエータタンク、ラジエータサポート、ウォーターポンプレンレット、ウォーターポンプアウトレット、サーモスタットハウジング、クーリングファン、ファンシュラウド、オイルパン、オイルフィルターハウジング、オイルフィルターキャップ、オイルレベルゲージ、タイミングベルトカバー、エンジンカバー等に好適に用いられる。 The molded article of the present invention can be used for automobile parts, electrical parts, household goods, etc. by taking advantage of its excellent characteristics. In particular, it can be used around automobile transmissions and engines. Specifically, the base plate used for pedestals such as shift levers and gearboxes around the transmission of an automobile, and the cylinder head cover, engine mount, air intake manifold, throttle body, air intake pipe, radiator tank, radiator around the engine It is suitably used for support, water pump renlet, water pump outlet, thermostat housing, cooling fan, fan shroud, oil pan, oil filter housing, oil filter cap, oil level gauge, timing belt cover, engine cover and the like.
 以下本発明を実施例によりさらに具体的に説明するが、本発明は、以下の実施例に制限されるものではない。なお、実施例および比較例に用いた原料は次の通りである。
(A)ポリアミド樹脂を構成するモノマー、またはポリアミド樹脂
・(A-1):ε―カプロラクタム(宇部興産社製)
・(A-2):12-アミノドデカン酸(宇部興産社製)
・(A-3):ナイロン6(ユニチカ社製、商品名「A1030BRL」)
・(A-4):ナイロン66(東レ社製、商品名「CM3001」)
(B)ヘクトライト、またはその他の膨潤性層状珪酸塩
・(B-1):ヘクトライト(Elementis Specialities社製、商品名「BentoneHC」)〔組成:Na0.66(Mg5.34Li0.66)Si20(OH)・nHO〕(陽イオン交換量:90ミリ当量/100g)
・(B-2):有機処理ヘクトライト(Elementis Specialities社製、商品名「Bentone27」)(ベンジルメチルアルキルアンモニウムが層間に挿入したヘクトライト。アルキル基の炭素数は16~18である。)〔組成:Na0.66(Mg5.34Li0.66)Si20(OH)・nHO〕(陽イオン交換量:90ミリ当量/100g)
・(B-3):膨潤性フッ素雲母(コープケミカル社製、商品名「ME-100」)(陽イオン交換量:110ミリ当量/100g)
・(B-4):モンモリロナイト(クニピア社製、商品名「クニピアF」)(陽イオン交換量:100ミリ当量/100g)
・(B-5):有機処理モンモリロナイト(ホージュン社製、商品名「エスベンNX」)(ジメチルオクタデシルアンモニウムが層間に挿入したモンモリロナイト)(陽イオン交換量:100ミリ当量/100g)
(C)繊維状強化材
・(C-1):ガラス繊維(径10μm、長さ3mmの円形断面を有するガラス繊維)(PPG社製、商品名「HP3540」)
・(C-2):ポリアクリロニトリル系(PAN系)炭素繊維(東邦テナックス社製、商品名「HTA-C6-NR」)
(D)シランカップリング剤
・(D-1):3-グリシドキシプロピルトリメトキシシラン(信越化学社製、商品名「KBM-403」)
・(D-2):3-アミノプロピルトリメトキシシラン(信越化学社製、商品名「KBM-603」)
 実施例および比較例で用いた評価方法は以下の通りである。
(1)引張強度
 ISO527に従って測定した。本発明においては、180MPa以上であるものを実用に耐えうるものとした。
(2)曲げ弾性率
 ISO178に従って測定した。
(3)ポリアミド樹脂組成物中のヘクトライトまたは膨潤性層状珪酸塩の平均厚み
 得られたポリアミド樹脂組成物から、射出成形により、ISO試験片を作製した。該試験片における成形時の樹脂の流動方向に平行な面から、適当なサイズで一部を取り出し、凍結ミクロトームを用いて厚さ70nmの超薄切片を作製した。該超薄切片を透過型電子顕微鏡(日本電子社製、商品名「JEM-1230 TEM」)(加速電圧:100kv)により、ポリアミド樹脂組成物中のヘクトライトまたは膨潤性層状珪酸塩を調べた。すなわち、観察された電子顕微鏡写真から、ポリアミド樹脂組成物中に分散しているヘクトライトまたは膨潤性層状珪酸塩の厚みを測定し、平均値を算出した。なお、測定個数は100個とした。
(4)ポリアミド樹脂組成物中のヘクトライトまたは膨潤性層状珪酸塩の平均短辺長さ、平均長辺長さ
 得られたポリアミド樹脂組成物から、射出成形により、ISO試験片を作製した。該試験片における成形時の樹脂の流動方向に直角な方向から、適当なサイズで一部を取り出し、凍結ミクロトームを用いて厚さ70nmの超薄切片を作製した。該超薄切片を透過型電子顕微鏡(日本電子社製、商品名「JEM-1230 TEM」)(加速電圧:100kv)により、ポリアミド樹脂組成物中のヘクトライトまたは膨潤性層状珪酸塩を調べた。すなわち、観察された電子顕微鏡写真から、ポリアミド樹脂組成物中に分散しているヘクトライトまたは膨潤性層状珪酸塩の短辺長さ、長辺長さを測定し、平均値を算出した。なお、測定個数は100個とした。
(5)ポリアミド樹脂組成物中のヘクトライトまたは膨潤性層状珪酸塩の平均粒子間距離
 得られたポリアミド樹脂組成物から、射出成形により、ISO試験片を作製した。該試験片における成形時の樹脂の流動方向に平行な方向から、適当なサイズで一部を取り出し、凍結ミクロトームを用いて厚さ70nmの超薄切片を作製した。該超薄切片を透過型電子顕微鏡(日本電子社製、商品名「JEM-1230 TEM」)(加速電圧:100kv)により、ポリアミド樹脂組成物中のヘクトライトまた膨潤性層状珪酸塩の分散状態を調べた。すなわち、観察された電子顕微鏡写真から、ポリアミド樹脂組成物中に分散しているヘクトライトまたは膨潤性層状珪酸塩の粒子間距離を測定し、平均値を算出した。粒子間距離とは、ポリアミド樹脂組成物中に分散しているヘクトライトまたは膨潤性層状珪酸塩の中心から、最も近くにあるヘクトライトまたは膨潤性層状珪酸塩の中心までの直線距離を測定したものである。なお、測定個数は100個とした。
(6)密度
 ISO1183に従って、水中置換法にて、23℃の条件下で測定した。
(7)比弾性率
 上記、(2)で求められた曲げ弾性率、(6)で求められた密度より、比弾性率を算出した。
比弾性率=(曲げ弾性率)/(密度)
 比弾性率の数値が大きいほど、ポリアミド樹脂組成物、またはそれより得られる成形体の単位重量当たりの曲げ弾性率が高いことを示す。本発明においては、比弾性率が大きい方が好ましい。本発明においては、繊維状強化材を50質量部未満配合した場合は、5.5GPa以上、繊維状強化材を50質量部以上配合した場合は、6.5GPa以上であるものが実用に耐えうるものとした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples. In addition, the raw material used for the Example and the comparative example is as follows.
(A) Monomer constituting polyamide resin, or polyamide resin (A-1): ε-caprolactam (manufactured by Ube Industries)
(A-2): 12-aminododecanoic acid (manufactured by Ube Industries)
(A-3): Nylon 6 (product name “A1030BRL” manufactured by Unitika Ltd.)
(A-4): Nylon 66 (trade name “CM3001” manufactured by Toray Industries, Inc.)
(B) Hectorite or other swellable layered silicate (B-1): Hectorite (manufactured by Elementis Specialties, trade name “Bentone HC”) [Composition: Na 0.66 (Mg 5.34 Li 0. 66 ) Si 8 O 20 (OH) 4 · nH 2 O] (cation exchange amount: 90 meq / 100 g)
(B-2): Organically treated hectorite (trade name “Bentone 27” manufactured by Elementis Specialties) (hectorite with benzylmethylalkylammonium inserted between the layers. The carbon number of the alkyl group is 16 to 18). Composition: Na 0.66 (Mg 5.34 Li 0.66 ) Si 8 O 20 (OH) 4 .nH 2 O] (cation exchange amount: 90 meq / 100 g)
(B-3): Swellable fluorinated mica (trade name “ME-100” manufactured by Coop Chemical Co., Ltd.) (cation exchange amount: 110 meq / 100 g)
(B-4): Montmorillonite (Kunipia, trade name “Kunipia F”) (cation exchange amount: 100 meq / 100 g)
(B-5): Organically treated montmorillonite (manufactured by Hojun Co., Ltd., trade name “Esben NX”) (montmorillonite with dimethyloctadecylammonium inserted between the layers) (cation exchange amount: 100 meq / 100 g)
(C) Fibrous reinforcing material (C-1): Glass fiber (glass fiber having a circular cross section having a diameter of 10 μm and a length of 3 mm) (trade name “HP3540” manufactured by PPG)
・ (C-2): Polyacrylonitrile-based (PAN-based) carbon fiber (trade name “HTA-C6-NR” manufactured by Toho Tenax Co., Ltd.)
(D) Silane coupling agent (D-1): 3-glycidoxypropyltrimethoxysilane (trade name “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.)
(D-2): 3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KBM-603”)
Evaluation methods used in Examples and Comparative Examples are as follows.
(1) Tensile strength It measured according to ISO527. In the present invention, a material having a pressure of 180 MPa or more can be practically used.
(2) Flexural modulus Measured according to ISO178.
(3) Average thickness of hectorite or swellable layered silicate in polyamide resin composition From the obtained polyamide resin composition, an ISO test piece was prepared by injection molding. A part of the test piece with a suitable size was taken out from a surface parallel to the flow direction of the resin at the time of molding, and an ultrathin section having a thickness of 70 nm was prepared using a frozen microtome. The ultrathin sections were examined for hectorite or swellable layered silicate in the polyamide resin composition using a transmission electron microscope (trade name “JEM-1230 TEM” manufactured by JEOL Ltd.) (acceleration voltage: 100 kv). That is, from the observed electron micrograph, the thickness of hectorite or swellable layered silicate dispersed in the polyamide resin composition was measured, and the average value was calculated. The number of measurements was 100.
(4) Average short side length and average long side length of hectorite or swellable layered silicate in the polyamide resin composition From the obtained polyamide resin composition, an ISO test piece was prepared by injection molding. From the direction perpendicular to the resin flow direction during molding of the test piece, a part was taken out in an appropriate size, and an ultrathin section having a thickness of 70 nm was prepared using a frozen microtome. The ultrathin sections were examined for hectorite or swellable layered silicate in the polyamide resin composition using a transmission electron microscope (trade name “JEM-1230 TEM” manufactured by JEOL Ltd.) (acceleration voltage: 100 kv). That is, from the observed electron micrograph, the short side length and long side length of hectorite or swellable layered silicate dispersed in the polyamide resin composition were measured, and the average value was calculated. The number of measurements was 100.
(5) Average interparticle distance of hectorite or swellable layered silicate in the polyamide resin composition From the obtained polyamide resin composition, an ISO test piece was prepared by injection molding. From the direction parallel to the flow direction of the resin at the time of molding in the test piece, a part was taken out at an appropriate size, and an ultrathin section having a thickness of 70 nm was prepared using a frozen microtome. The ultrathin sections were analyzed for the state of dispersion of hectorite or swellable layered silicate in the polyamide resin composition using a transmission electron microscope (trade name “JEM-1230 TEM” manufactured by JEOL Ltd.) (acceleration voltage: 100 kv). Examined. That is, from the observed electron micrograph, the distance between particles of hectorite or swellable layered silicate dispersed in the polyamide resin composition was measured, and the average value was calculated. Interparticle distance is the distance measured from the center of hectorite or swellable layered silicate dispersed in the polyamide resin composition to the nearest hectorite or swellable layered silicate center. It is. The number of measurements was 100.
(6) Density According to ISO1183, it measured by the underwater substitution method on 23 degreeC conditions.
(7) Specific elastic modulus The specific elastic modulus was calculated from the bending elastic modulus obtained in (2) above and the density obtained in (6).
Specific modulus = (flexural modulus) / (density)
It shows that the bending elastic modulus per unit weight of a polyamide resin composition or a molded object obtained from it is so high that the numerical value of a specific elastic modulus is large. In the present invention, it is preferable that the specific elastic modulus is large. In the present invention, when less than 50 parts by mass of the fibrous reinforcing material is blended, 5.5 GPa or more can be practically used when the fibrous reinforcing material is blended by 50 mass parts or more. It was supposed to be.
 ポリアミド樹脂と、ヘクトライトまたは膨潤性層状珪酸塩からなる樹脂組成物(P-1)~(P-10)、(P-17)の調製
 表1に示す割合で、ε-カプロラクタムまたは12-アミノドデカン酸、純水、リン酸を配合して、80℃で、30分間加温しながら攪拌した。ここまでは、工程(i)である。次いで、表1に示すように、ヘクトライトまたは膨潤性層状珪酸塩の種類と配合割合をそれぞれ変えて仕込み、表1に示す回転数、回転粘度で調整液を得た。その後、表1に示す圧力で260℃、1時間重合し、次いで260℃、常圧で1時間重合した。ここまでは、工程(ii)である。
Preparation of Resin Compositions (P-1) to (P-10), (P-17) Consisting of Polyamide Resin and Hectorite or Swellable Layered Silicate ε-Caprolactam or 12-Amino in the proportions shown in Table 1 Dodecanoic acid, pure water, and phosphoric acid were mixed and stirred at 80 ° C. for 30 minutes while heating. So far, it is process (i). Next, as shown in Table 1, the kind and the mixing ratio of hectorite or swellable layered silicate were changed and charged, and an adjustment liquid was obtained with the number of revolutions and the rotational viscosity shown in Table 1. Thereafter, polymerization was performed at 260 ° C. for 1 hour at the pressure shown in Table 1, and then polymerization was performed at 260 ° C. and normal pressure for 1 hour. Up to this point, it is step (ii).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ポリアミド樹脂と、ヘクトライトまたは膨潤性層状珪酸塩からなる樹脂組成物(P-11)、(P-12)、(P-13)の調製
 表1に示す割合で、ポリアミド樹脂と層状珪酸塩とを、280℃の溶融温度で溶融混練した。これは、工程(iv)である。
実施例1
 (P-1)105質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、二軸押出機(東芝機械社製、商品名「TEM37BS」)を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
Preparation of resin composition (P-11), (P-12), (P-13) comprising polyamide resin and hectorite or swellable layered silicate Polyamide resin and layered silicate Was kneaded at a melting temperature of 280 ° C. This is step (iv).
Example 1
(P-1) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, a twin screw extruder (manufactured by Toshiba Machine Co., Ltd., trade name “TEM37BS”) was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例2
 (P-1)105質量部、(C-1)50質量部、(D-1)2質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例3
 (P-1)105質量部、(C-1)50質量部、(D-2)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例4
 (P-2)100.5質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例5
 (P-3)110質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例6
 (P-5)105質量部、(C-1)200質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例7
 (P-6)105質量部、(C-1)50質量部、(D-1)0.01質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例8
 (P-7)105質量部、(C-1)50質量部、(D-1)3質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は200℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例9
 (P-12)107質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iv)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例10
 (P-13)107質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iv)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例11
 (P-4)120質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例12
 (P-1)105質量部、(C-2)20質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表2に示す。
実施例13
(P-4)120質量部、(C-1)50質量部、(D-1)0.1質量部を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
Example 2
(P-1) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 2 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 3
105 parts by mass of (P-1), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-2) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 4
(P-2) 100.5 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 5
110 parts by mass of (P-3), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 6
(P-5) 105 parts by mass, (C-1) 200 parts by mass, (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 7
(P-6) 105 parts by mass, (C-1) 50 parts by mass, (D-1) 0.01 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 8
(P-7) 105 parts by mass, (C-1) 50 parts by mass, (D-1) 3 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 200 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 9
107 parts by mass of (P-12), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iv). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 10
107 parts by mass of (P-13), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iv). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 11
120 parts by mass of (P-4), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 12
(P-1) 105 parts by mass, (C-2) 20 parts by mass, and (D-1) 0.1 parts by mass were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 2.
Example 13
120 parts by mass of (P-4), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
比較例1
 (P-8)105質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例2
 (P-9)105質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例3
(P-10)155質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例4
(P-11)107質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(v)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は285℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例5
(P-1)105質量部、(C-1)50質量部を溶融混錬した。溶融混練には、上記の二軸押出機を使用した。これは、工程(iii)である。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例6
(P-1)105質量部、(C-1)50質量部、(D-1)4質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例7
(P-14)105質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例8
(P-15)105質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例9
(P-1)105質量部、(C-1)10質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例10
(P-1)105質量部、(C-1)210質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。(C-1)の配合が過多であったためポリアミド樹脂組成物ペレットを得ることができなかった。
比較例11
(P-16)120質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
比較例12
(P-17)105質量部、(C-1)50質量部、(D-1)0.1質量を溶融混錬した。これは、工程(iii)である。溶融混練には、上記の二軸押出機を使用した。溶融混練の温度は270℃だった。得られたポリアミド樹脂組成物を評価に付した。評価結果を表3に示す。
Comparative Example 1
(P-8) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 2
(P-9) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 3
(P-10) 155 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 4
107 parts by mass of (P-11), 50 parts by mass of (C-1), and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (v). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 285 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 5
105 parts by mass of (P-1) and 50 parts by mass of (C-1) were melt-kneaded. For the melt-kneading, the above twin screw extruder was used. This is step (iii). The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 6
(P-1) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 4 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 7
(P-14) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 8
(P-15) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 9
(P-1) 105 parts by mass, (C-1) 10 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 10
(P-1) 105 parts by mass, (C-1) 210 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. Since the blending of (C-1) was excessive, polyamide resin composition pellets could not be obtained.
Comparative Example 11
120 parts by mass of (P-16), 50 parts by mass of (C-1) and 0.1 parts by mass of (D-1) were melt-kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
Comparative Example 12
(P-17) 105 parts by mass, (C-1) 50 parts by mass, and (D-1) 0.1 parts by mass were kneaded. This is step (iii). For the melt-kneading, the above twin screw extruder was used. The temperature of melt kneading was 270 ° C. The obtained polyamide resin composition was subjected to evaluation. The evaluation results are shown in Table 3.
 実施例1~12で得られたポリアミド樹脂組成物は、密度が増加することなく、引張強度および曲げ弾性率が十分に向上されたものであった。 The polyamide resin compositions obtained in Examples 1 to 12 were sufficiently improved in tensile strength and flexural modulus without increasing the density.
 比較例1および比較例2で得られたポリアミド樹脂組成物は、ヘクトライト以外の膨潤性層状珪酸塩を用いたため、膨潤性層状珪酸塩の短辺の平均長さが過大となり、また、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小となった。そのため、引張強度に劣っていた。 Since the polyamide resin compositions obtained in Comparative Example 1 and Comparative Example 2 used a swellable layered silicate other than hectorite, the average length of the short sides of the swellable layered silicate was excessive, and the swellability was increased. The ratio of the average long side length / average short side length of the layered silicate was too small. Therefore, the tensile strength was inferior.
 比較例3で得られたポリアミド樹脂組成物は、ヘクトライトの含有量が過多であったため、膨潤性層状珪酸塩の平均粒子間距離が過小となり、また、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小となった。そのため、引張強度に劣っていた。 Since the polyamide resin composition obtained in Comparative Example 3 had an excessive hectorite content, the average inter-particle distance of the swellable layered silicate was too small, and the average long side length of the swellable layered silicate was also large. The ratio of length / average short side length was too small. Therefore, the tensile strength was inferior.
 比較例4で得られたポリアミド樹脂組成物は、ヘクトライト以外の膨潤性層状珪酸塩を用いたため、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小となり、また、層状珪酸塩の平均厚みも厚かった。そのため、引張強度に劣っていた。 Since the polyamide resin composition obtained in Comparative Example 4 used a swellable layered silicate other than hectorite, the ratio of the average long side length / average short side length of the swellable layered silicate was too small. The average thickness of the layered silicate was also thick. Therefore, the tensile strength was inferior.
 比較例5で得られたポリアミド樹脂組成物は、シランカップリング剤を配合していないため、引張強度に劣っていた。 The polyamide resin composition obtained in Comparative Example 5 was inferior in tensile strength because it did not contain a silane coupling agent.
 比較例6で得られたポリアミド樹脂組成物は、シランカップリング剤の配合が過多であったため、ポリアミド樹脂の靭性が損なわれ、引張強度および比弾性率に劣っていた。 The polyamide resin composition obtained in Comparative Example 6 had an excessive amount of silane coupling agent, so that the toughness of the polyamide resin was impaired and the tensile strength and specific modulus were inferior.
 比較例7で得られたポリアミド樹脂組成物は、ヘクトライト以外の膨潤性層状珪酸塩を用いたため、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小であり、引張強度に劣っていた。 Since the polyamide resin composition obtained in Comparative Example 7 uses a swellable layered silicate other than hectorite, the ratio of the average long side length / average short side length of the swellable layered silicate is too small, It was inferior in tensile strength.
 比較例8で得られたポリアミド樹脂組成物は、無機酸の配合を行わなかったため、ヘクトライトの平均短辺長さ、平均厚みが過大となり、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小であり、曲げ弾性率に劣っていた。 Since the polyamide resin composition obtained in Comparative Example 8 was not blended with an inorganic acid, the average short side length and average thickness of hectorite were excessive, and the average long side length / average of the swellable layered silicate The ratio of short side length was too small, and the bending elastic modulus was inferior.
 比較例9で得られたポリアミド樹脂組成物は、繊維状強化材の配合が過少であったため、引張強度や曲げ弾性率に劣っていた。 The polyamide resin composition obtained in Comparative Example 9 was inferior in tensile strength and flexural modulus because the amount of fibrous reinforcing material was insufficient.
 比較例11で得られたポリアミド樹脂組成物は、ヘクトライト以外の膨潤性層状珪酸塩を用いたため、膨潤性層状珪酸塩の平均長辺長さ/平均短辺長さの比が過小であり、引張強度に劣っていた。 Since the polyamide resin composition obtained in Comparative Example 11 uses a swellable layered silicate other than hectorite, the ratio of the average long side length / average short side length of the swellable layered silicate is too small, It was inferior in tensile strength.
 比較例12で得られたポリアミド樹脂組成物は、工程(i)における回転数が過小であったため、ヘクトライトの平均厚みが過大となり、曲げ弾性率に劣っていた。 The polyamide resin composition obtained in Comparative Example 12 had an excessively low average number of hectorite due to an excessively low rotational speed in step (i), and was inferior in flexural modulus.
 本発明のポリアミド樹脂組成物は、密度を増加させることなく、引張強度、曲げ弾性率を向上させることができる。そのため、様々な材料分野で好適に用いられることができ、有用である。 The polyamide resin composition of the present invention can improve the tensile strength and the flexural modulus without increasing the density. Therefore, it can be suitably used in various material fields and is useful.

Claims (5)

  1.  ポリアミド樹脂100質量部、ヘクトライト0.5~20質量部、繊維状強化材15~200質量部、およびシランカップリング剤0.01~3質量部を含有するポリアミド樹脂組成物であって、前記ヘクトライトのサイズが、平均厚み1~10nmかつ短辺の平均長さ25~100nmであり、長辺の平均長さと短辺の平均長さ比率が、長辺の平均長さ/短辺の平均長さ=1.5~5であり、前記ヘクトライトのポリアミド樹脂組成物中での平均粒子間距離が10~200nmであることを特徴とするポリアミド樹脂組成物。 A polyamide resin composition comprising 100 parts by weight of a polyamide resin, 0.5 to 20 parts by weight of hectorite, 15 to 200 parts by weight of a fibrous reinforcing material, and 0.01 to 3 parts by weight of a silane coupling agent, The size of the hectorite is 1 to 10 nm in average thickness and 25 to 100 nm in average length on the short side, and the average length ratio of the long side to the average length of the short side is the average length of the long side / average of the short side A polyamide resin composition having a length of 1.5 to 5 and an average interparticle distance of 10 to 200 nm in the polyamide resin composition of the hectorite.
  2.  請求項1記載のポリアミド樹脂組成物を製造するに際し、以下の工程(i)、(ii)および(iii)をこの順に含むことを特徴とするポリアミド樹脂組成物の製造方法。
    工程(i):ポリアミド樹脂を構成するモノマー、アミノ基を有する化合物および無機酸を、ポリアミド樹脂を構成するモノマーの融点以上の温度で加熱溶融下、攪拌しながらヘクトライトを配合し、さらに水を加え、回転数100~5000rpmで攪拌し、調製液を得る工程
    工程(ii):工程(i)で得られた調製液を重合させ、ポリアミド樹脂とヘクトライトとを含む樹脂組成物を得る工程
    工程(iii):工程(ii)で得られたポリアミド樹脂とヘクトライトとを含む樹脂組成物を溶融させて、繊維状強化材とシランカップリング剤を混練させる工程
    A method for producing a polyamide resin composition comprising the steps (i), (ii) and (iii) in this order in producing the polyamide resin composition according to claim 1.
    Step (i): Mixing hectorite while stirring the monomer constituting the polyamide resin, the compound having an amino group and the inorganic acid at a temperature equal to or higher than the melting point of the monomer constituting the polyamide resin, and further adding water. In addition, a step of obtaining a preparation liquid by stirring at a rotational speed of 100 to 5000 rpm (ii): a step of obtaining a resin composition containing a polyamide resin and hectorite by polymerizing the preparation liquid obtained in step (i) (Iii): A step of melting the resin composition containing the polyamide resin and hectorite obtained in step (ii) and kneading the fibrous reinforcing material and the silane coupling agent.
  3.  工程(i)において、B型粘度計で測定した調整液の回転粘度が1~400Pa・sとなるように混合することを特徴とする請求項2に記載のポリアミド樹脂組成物の製造方法。 3. The method for producing a polyamide resin composition according to claim 2, wherein in the step (i), the adjustment liquid measured with a B-type viscometer is mixed so that the rotational viscosity is 1 to 400 Pa · s.
  4.  請求項1に記載のポリアミド樹脂組成物を製造するに際し、以下の工程(iv)を含むことを特徴とするポリアミド樹脂組成物の製造方法。
    工程(iv):ポリアミド樹脂にヘクトライト、繊維状強化材およびシランカップリング剤を溶融混練する工程
    When manufacturing the polyamide resin composition of Claim 1, the following process (iv) is included, The manufacturing method of the polyamide resin composition characterized by the above-mentioned.
    Step (iv): Step of melt-kneading hectorite, fibrous reinforcing material and silane coupling agent to polyamide resin
  5.  請求項1に記載のポリアミド樹脂組成物を成形して得られる成形体。
     
    The molded object obtained by shape | molding the polyamide resin composition of Claim 1.
PCT/JP2011/055724 2010-03-31 2011-03-11 Polyamide resin composition, method for producing said polyamide resin composition and molded article obtained using said polyamide resin composition WO2011122300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012508191A JP5730284B2 (en) 2010-03-31 2011-03-11 Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
CN201180005831.2A CN102712809B (en) 2010-03-31 2011-03-11 Polyamide resin composition, method for producing said polyamide resin composition and molded article obtained using said polyamide resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-080443 2010-03-31
JP2010080443 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122300A1 true WO2011122300A1 (en) 2011-10-06

Family

ID=44712023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055724 WO2011122300A1 (en) 2010-03-31 2011-03-11 Polyamide resin composition, method for producing said polyamide resin composition and molded article obtained using said polyamide resin composition

Country Status (4)

Country Link
JP (1) JP5730284B2 (en)
CN (1) CN102712809B (en)
TW (1) TW201141925A (en)
WO (1) WO2011122300A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041781A (en) * 2014-08-15 2016-03-31 ユニチカ株式会社 Polyamide resin composition and molded article made of the same
US20180155540A1 (en) * 2012-12-18 2018-06-07 Agency For Science, Technology And Research Method of preparing fiber-reinforced polymer composites and fiber-reinforced polymer composites prepared thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207044A (en) * 1993-01-13 1994-07-26 Kuraray Co Ltd Organic polymer composition
JPH11315204A (en) * 1998-03-03 1999-11-16 Unitika Ltd Polyamide composite material
JP2000154315A (en) * 1998-09-18 2000-06-06 Toray Ind Inc Polyamide resin composition for blow molding and molding product of blow molding
JP2003517488A (en) * 1998-02-13 2003-05-27 ソリユテイア・インコーポレイテツド Polymer nanocomposite composition
JP2006160947A (en) * 2004-12-09 2006-06-22 Unitika Ltd Injection molding method for polyamide composite material
JP2009035991A (en) * 2007-08-03 2009-02-19 Misawa Homes Co Ltd Unit building and construction method for unit building

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035593A (en) * 2007-07-31 2009-02-19 Unitika Ltd Glass fiber-reinforced polyamide resin composition
JP5543685B2 (en) * 2007-07-31 2014-07-09 ユニチカ株式会社 Glass fiber reinforced polyamide resin composition
JP5548349B2 (en) * 2008-08-20 2014-07-16 ユニチカ株式会社 Glass fiber reinforced polyamide resin composition
CN101564874B (en) * 2009-05-27 2012-07-04 靳柱山 Method for preparing nanometer heat-insulation composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207044A (en) * 1993-01-13 1994-07-26 Kuraray Co Ltd Organic polymer composition
JP2003517488A (en) * 1998-02-13 2003-05-27 ソリユテイア・インコーポレイテツド Polymer nanocomposite composition
JPH11315204A (en) * 1998-03-03 1999-11-16 Unitika Ltd Polyamide composite material
JP2000154315A (en) * 1998-09-18 2000-06-06 Toray Ind Inc Polyamide resin composition for blow molding and molding product of blow molding
JP2006160947A (en) * 2004-12-09 2006-06-22 Unitika Ltd Injection molding method for polyamide composite material
JP2009035991A (en) * 2007-08-03 2009-02-19 Misawa Homes Co Ltd Unit building and construction method for unit building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180155540A1 (en) * 2012-12-18 2018-06-07 Agency For Science, Technology And Research Method of preparing fiber-reinforced polymer composites and fiber-reinforced polymer composites prepared thereof
JP2016041781A (en) * 2014-08-15 2016-03-31 ユニチカ株式会社 Polyamide resin composition and molded article made of the same

Also Published As

Publication number Publication date
TW201141925A (en) 2011-12-01
JP5730284B2 (en) 2015-06-10
CN102712809A (en) 2012-10-03
JPWO2011122300A1 (en) 2013-07-08
CN102712809B (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5546623B2 (en) Method for producing semi-aromatic polyamide
JP5640746B2 (en) Glass fiber reinforced polyamide resin composition
JP2006002156A (en) Polymer mixture of aromatic polyamide and partial aromatic polyamide, its molded item and its use
WO2012098840A1 (en) Resin composition and molded article including same
JP5911426B2 (en) Polyamide resin composition and molded product obtained therefrom
JP2013053244A (en) Polyamide resin composition, and molding made by molding the same
JP2010001364A (en) Glass fiber reinforced polyamide resin composition
CN112159591B (en) Hollow glass bead modified nylon composite material and preparation method and application thereof
JP2011208105A (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article made of the polyamide resin composition
JP5669491B2 (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
JP2013060534A (en) Polyamide resin composition and molding molded therefrom
JP5730284B2 (en) Polyamide resin composition, method for producing the polyamide resin composition, and molded article using the polyamide resin composition
JP2009035593A (en) Glass fiber-reinforced polyamide resin composition
JP5832296B2 (en) Polyamide resin composition and method for producing polyamide resin composition
JP5503379B2 (en) Fiber reinforced polyamide resin composition
JP2009035592A (en) Glass fiber-reinforced polyamide resin composition
JP5191154B2 (en) Polyamide molded article manufacturing method and engine cover
JP2013049793A (en) Semiaromatic polyamide resin composition pellet, and molded form obtained by molding the same
WO2022095360A1 (en) Self-assembled network polyamide composition and preparation method therefor and application thereof
JP2012072309A (en) Polyamide resin composition and method for producing the same
JP2012067166A (en) Polyamide resin composition molded article and method for producing the same
JP2014139274A (en) Semiaromatic polyamide resin composition
JP2013072019A (en) Polyamide resin composition and manufacturing method of the polyamide resin composition
JP2013043976A (en) Polyamide resin composition and molded product prepared by molding the same
JP2013060580A (en) Conductive polyamide resin composition, and molding thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005831.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508191

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762540

Country of ref document: EP

Kind code of ref document: A1