WO2011122272A1 - Hygroscopic fibre, and manufacturing method for same - Google Patents

Hygroscopic fibre, and manufacturing method for same Download PDF

Info

Publication number
WO2011122272A1
WO2011122272A1 PCT/JP2011/055454 JP2011055454W WO2011122272A1 WO 2011122272 A1 WO2011122272 A1 WO 2011122272A1 JP 2011055454 W JP2011055454 W JP 2011055454W WO 2011122272 A1 WO2011122272 A1 WO 2011122272A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyamide
hygroscopic
resin
fibre
Prior art date
Application number
PCT/JP2011/055454
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤憲司
高木健太郎
栗林隆宏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020127025362A priority Critical patent/KR101550960B1/en
Priority to CN201180016429.4A priority patent/CN102834556B/en
Priority to EP20110762512 priority patent/EP2554721B1/en
Priority to US13/636,371 priority patent/US20130280513A1/en
Priority to JP2011522312A priority patent/JP5741434B2/en
Publication of WO2011122272A1 publication Critical patent/WO2011122272A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B9/00Undergarments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric

Definitions

  • the present invention relates to a highly hygroscopic fiber made of polyamide 56 resin.
  • Synthetic fibers made of thermoplastic resins such as polyamide and polyester are widely used in clothing and industrial applications because they are excellent in strength, chemical resistance, heat resistance and the like.
  • polyamide fibers are widely used for applications such as innerwear and sportswear by taking advantage of their unique softness, high tensile strength, coloring properties during dyeing, and high heat resistance.
  • Patent Document 1 proposes a method of applying a hygroscopic agent to the fiber surface in the post-processing stage after the formation of polyamide fibers.
  • Patent Document 2 proposes a method for producing fibers using a polyamide resin obtained by copolymerizing polyoxyalkylene glycol, which is a hydrophilic component.
  • Patent Document 3 discloses that the fiber structure has a core-sheath structure in which a highly hygroscopic thermoplastic resin is used as a core and a thermoplastic resin having excellent mechanical properties is used as a sheath. A method for achieving both mechanical characteristics has been proposed.
  • Patent Document 1 proposes a method for improving moisture absorption performance by blending and spinning poly (vinyl pyrrolidone) as a hydrophilic polymer in polyamide. JP 9-188917 A JP-A-5-209316 JP-A-3-213519 JP 60-246818
  • the composite fiber of Patent Document 3 has a drawback that the production apparatus becomes complicated and thus has a high cost. Also, due to the difference in water absorption ability of the polymer used for the core part and the sheath part, during the hot water treatment such as scouring and dyeing Since the hygroscopic resin in the core part absorbs water and swells greatly, the fiber surface is cracked and the core polymer is eluted.
  • Patent Document 1 Although the method of Patent Document 1 is excellent as a hygroscopic fiber, since polyamide pyrrolidone is added based on polyamide 6 as a polyamide, for example, in recent years, a tight-fit T-shirt or the like is worn as a fashion trend. With an increasing number of women, and with an increasing demand for mold bras that are hard to crack on the outer, heat resistance to mold processing was not sufficient. Further, when polyvinyl pyrrolidone is added based on polyamide 66 having a high melting point, there is a problem that the spinning temperature of polyamide 66 is high and polyvinyl pyrrolidone is thermally deteriorated and cannot be stably spun.
  • the object of the present invention is as follows. This is achieved by a hygroscopic fiber made of polyamide 56 resin and having a ⁇ MR of 3.0% or more.
  • Another object of the present invention is to cool and solidify the polyamide 56 fiber discharged from the die with cooling air, attach a spinning oil agent, stretch the film, and wind it up.
  • the manufacturing method is achieved by a method for manufacturing a hygroscopic fiber that satisfies the following conditions (1) to (2).
  • the die discharge linear velocity is 14 m / min or more and 30 m / min or less.
  • the product of the take-off speed and the draw ratio is 3900 or more and 4500 or less.
  • the object of the present invention is further achieved by a fabric using the hygroscopic fiber. Is done.
  • the object of the present invention is further achieved by a fiber structure including the above fabric.
  • the hygroscopic fiber of the present invention preferably has a birefringence of 30 ⁇ 10 ⁇ 3 or more and 40 ⁇ 10 ⁇ 3 or less.
  • the fabric of the present invention is a fabric using the above-mentioned hygroscopic fiber, and preferably includes a portion formed by molding.
  • the fiber structure of the present invention is preferably an inner.
  • a high value-added hygroscopic synthetic fiber having a high moisture absorption rate can be obtained without impairing the properties of the polyamide such as strength, chemical resistance and heat resistance.
  • the polyamide 56 fiber of the present invention is a fiber made of a polyamide 56 resin whose main constituent units are 1,5-diaminopentane units and adipic acid units.
  • the polyamide 56 fiber of the present invention contains 1,5-diaminopentane units utilizing biomass because of excellent environmental adaptability.
  • 50% or more of the 1,5-diaminopentane units constituting the polyamide 56 are made of 1,5-diaminopentane obtained by using biomass. More preferably, it is 75% or more, and most preferably 100%.
  • the polyamide 56 in the present invention it is preferable to use a polymer having a 98% sulfuric acid relative viscosity of 2.4 or more and 2.6 or less in order to effectively express the effect of the present invention.
  • the 98% sulfuric acid relative viscosity is in this preferred range, it is easy to obtain sufficient strength when it is made into a fiber.
  • the extrusion pressure of the molten polymer at the time of spinning and the rate of increase over time are moderate, and it is not necessary to overload the production facility and shorten the exchange period of the die, so that high productivity is maintained.
  • the 98% sulfuric acid relative viscosity means a value obtained by dissolving 25 g of fiber in 25 ml of 98% sulfuric acid and measuring at 25 ° C. using an Ostwald viscometer.
  • the polyamide 56 in the present invention may be copolymerized or mixed with the second and third components in addition to the main component within the range not departing from the object of the present invention.
  • the copolymer component may include a structural unit derived from an aliphatic carboxylic acid, an alicyclic dicarboxylic acid, or an aromatic dicarboxylic acid.
  • aliphatic diamines such as ethylenediamine and cyclohexanediamine
  • alicyclic diamines such as bis- (4-aminocyclohexyl) methane
  • aromatic diamines such as xylylenediamine, 6-aminocaproic acid, 11-aminoundecanoic acid
  • Structural units derived from amino acids such as 12-aminododecanoic acid and paraaminomethylbenzoic acid
  • lactams such as ⁇ -caprolactam and ⁇ -laurolactam
  • the polyamide 56 in the present invention includes various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents, antistatic agents and the like.
  • the total additive content may be 0.001 to 10% by weight or copolymerized or mixed as necessary.
  • the cross-sectional shape of the single fiber of the polyamide 56 fiber of the present invention is not limited to a round cross-section, and various cross-sectional shapes such as flat, Y-type, T-type, hollow-type, paddy-type, and well-type can be adopted.
  • cross-sections such as Y-type, T-type, and well-type are preferable so that a gap is formed between adjacent filaments when a fabric is formed, and water absorption due to capillary action can be expressed.
  • ⁇ MR is an index for obtaining comfort by releasing moisture in the clothes to the outside air when the clothes are worn, and is 30 ° C. ⁇ 90% RH when performing light to medium work or light to medium exercise. It is a difference in moisture absorption between the temperature in the garment represented and the outside air temperature humidity represented by 20 ° C. ⁇ 65% RH.
  • this ⁇ MR is used as a parameter as a measure of moisture absorption performance evaluation. The larger the ⁇ MR, the higher the moisture absorption / release capacity, and the better the comfort when worn.
  • polyamide fibers such as polyamide 6 and polyamide 66 have ⁇ MR of about 1.5 to 2.0.
  • the polyamide fiber of the present invention has a high moisture absorption / release property with a ⁇ MR of 3.0% or more. If ⁇ MR is less than 3.0%, the moisture absorption and desorption of the same level as that of ordinary polyamide 6 or polyamide 66 only remains, and there is a problem that comfort at the time of wearing is not high. Although there is no limit on the upper limit, even if it is made too large, a great difference in sensation does not occur, and ⁇ MR of about 20% is sufficient.
  • the moisture absorbing / releasing ability of the polyamide fiber largely depends on the crystal structure in the fiber.
  • the reversible moisture absorption and desorption ability greatly depends on the ratio of the amorphous part in the fiber. Accordingly, in order to improve the ⁇ MR of the polyamide fiber, it is important to increase the ratio of the amorphous portion within a range not impairing the spinning operability and the yarn quality.
  • the birefringence of a crystalline synthetic fiber is large for a fiber in which the molecular chain is advanced, and is small for a fiber in which the orientation is not advanced.
  • the molecular chain orientation is an important parameter because it greatly affects the water absorption rate of the fiber as described below. That is, the moisture absorption of the polyamide fiber is divided into two cases, when the water is coordinated and bonded to the amide group of the polyamide, and when the polyamide molecular chain in the fiber is taken into the amorphous part where it exists in a random state. In some cases, however, the ratio of the amorphous portion in the fiber greatly affects the ⁇ MR value.
  • Polyamide fibers have a large proportion of crystal parts, a small proportion of amorphous parts that can retain moisture, and when there are many crystal parts, the moisture on the fiber surface reaches the vicinity of the amide groups in the polyamide fibers. Can not do it.
  • the orientation of the molecular chain can be expressed by birefringence, and when the birefringence increases, the moisture absorption rate tends to increase.
  • the moisture absorption rate is too large, the spinning oil and the moisture in the air are excessively absorbed, resulting in the result.
  • the yarn swells and cannot be stably spun, and the dispersion of the fiber structure increases and the quality deteriorates.
  • birefringence becomes small, the orientational crystallization of the molecular chain in the fiber proceeds and the moisture absorption rate tends to decrease.
  • the birefringence is preferably 30 ⁇ 10 ⁇ 3 or more and 40 ⁇ 10 ⁇ 3 or less, and within this range, the spinning operability and yarn quality of the polyamide 56 fiber are not impaired.
  • a polyamide 56 fiber having a high moisture absorption / release property can be obtained.
  • the polyamide fiber of the present invention can be produced by the following method.
  • FIG. 1 is a schematic view showing an example of a synthetic fiber production process according to the present invention.
  • the melted polyamide is measured and transported by a gear pump, discharged from the spinneret 2, cooled by blowing air with a cooling device 3 such as a chimney to cool the yarn to room temperature, and supplied with an oil supply device 4. Then, the particles are converged together, entangled by the first fluid entanglement nozzle device 5, passed through the take-up roller 6 and the drawing roller 7, and then drawn according to the ratio of the peripheral speeds of the take-up roller 6 and the drawing roller 7. Further, the yarn is heat set by the drawing roller 7 and wound by a winder (winding device) 8.
  • the die discharge linear velocity is set to 14 m / min or more and 30 m / min or less.
  • the die discharge linear velocity is a value obtained by dividing the discharge volume per unit time of the polymer in the die hole for spinning the yarn by the die hole area, and the degree of orientation of the filamentous polymer discharged from the die hole It is a parameter that influences. If the die discharge linear velocity is low, the ratio of the die discharge linear velocity to the take-off roller 6 is increased when the take-up roller 6 takes the wire, and an excessive drawing tension is applied to the filament being drawn, resulting in a single yarn breakage and stability. It cannot be prevented. On the other hand, if the die discharge linear velocity is too high, the fiber orientation after taking up by the take-up roller 6 and then drawing by the drawing roller 7 is excessively advanced, resulting in a fiber having a low moisture absorption rate.
  • the spinning conditions are such that the product of the take-up speed (m / min) of the yarn taken up by the take-up roller 6 and the draw ratio which is the value of the peripheral speed ratio of the take-up roller 6 and the draw roller 7 is 3900 or more and 4500. Is set.
  • This numerical value represents the total amount of stretching of the polymer discharged from the die from the die discharge linear speed to the circumferential speed of the take-up roller 6, and further from the circumferential speed of the take-up roller 6 to the circumferential speed of the drawing roller 7. If this value is too small, the degree of orientation of the fiber is low and the moisture absorption rate becomes too high, and the spinning oil and moisture in the air are excessively absorbed. As a result, the yarn swells and stable spinning cannot be performed. On the other hand, if this value is too large, the orientation of the fiber proceeds too much, resulting in a fiber having a low moisture absorption rate.
  • the spinning oil applied by the oil supply device 4 is a non-hydrous oil.
  • a non-hydrous oil agent is applied, there is no possibility that moisture is absorbed by the polyamide 56 during the oil agent application, so that so-called polyamide swelling does not occur, and therefore there is no fiber length variation during yarn production, and stable winding. Is possible.
  • the polyamide fiber of the present invention preferably has a tensile strength of 3.5 cN / dtex or more.
  • a tensile strength of the fiber By setting the tensile strength of the fiber to 3.5 cN / dtex or more, the practical strength of the cloth for clothing such as inner, which is the main use of the polyamide 56 cloth, can be realized. More preferably, it is 4.0 cN / dtex or more.
  • the polyamide fiber of the present invention preferably has an elongation of 35% or more.
  • process passability in high-order processes such as weaving, knitting, and false twisting is improved. More preferably, it is 40 to 65%.
  • the fineness of the polyamide fiber of the present invention is preferably 100 dtex or less, more preferably 60 dtex or less from the viewpoint of thickness when processed into a fabric.
  • the single yarn fineness is preferably 4.0 dtex or less, more preferably 2.0 dtex or less from the viewpoint of softness when processed into a fabric.
  • the structure of the hygroscopic fiber obtained as described above is not limited to that described above, and may be either a filament or a staple, and is selected depending on the application.
  • a fabric form it can select according to the objectives, such as a textile fabric, a knitted fabric, and a nonwoven fabric, and clothing is also included. It is processed after weaving and weaving by a normal method, and can be sewn to make various clothing products such as innerwear, pantyhose and tights.
  • the fabric of this invention has the heat resistance and water absorption which were difficult to be compatible with the conventional polyamide fiber, it is preferable that it is a fabric containing the part shape
  • the fiber structure of the present invention includes an inner molded to form a concave portion such as a brassiere cup, shorts, girdle waist or hip portion, a convex portion, or a constricted curved surface, or such a molding process.
  • a concave portion such as a brassiere cup, shorts, girdle waist or hip portion, a convex portion, or a constricted curved surface, or such a molding process.
  • Use as an inner part having a portion is preferable.
  • Mold processing is a process in which a fabric such as a woven fabric, a knitted fabric or a non-woven fabric is sandwiched in a mold (mold), and heat treatment is applied to round the mold.
  • the mold surface temperature is usually 160 to 230 ° C., preferably 170 to 220 ° C., more preferably 190 to 200 ° C.
  • the treatment time is preferably 0.5 to 3 minutes.
  • MR 1 [(W 65 ⁇ W 0 ) / W 0 ] ⁇ 100% (1)
  • MR 2 [(W 90 ⁇ W 0 ) / W 0 ] ⁇ 100% (2)
  • ⁇ MR MR 2 -MR 1 (3)
  • F. The total fineness and single fiber fineness are rotated 10 times with a measuring machine of 1 m / circumference, and 5 loop-like skeins of 10 turns are prepared and used as a sample for weight measurement.
  • a 10-turn loop skein is prepared, and five loop skeins are formed so that the ends of the skeins are not untied and used as a sample for sample length measurement.
  • a total of 10 samples were allowed to stand for 48 hours in an environment of 25 ° C. and RH 55% under no load to adjust the humidity. Thereafter, under the same environment, the weight of the loop-shaped skein for weight measurement was measured to obtain an average value A (g).
  • the skein length of the loop-shaped skein for measuring the sample length was measured in the same environment.
  • a loop skein for measuring the sample length was applied to the hook, and a load equivalent to 0.05 cN / dtex was applied to the loop skein to measure the skein length.
  • the sample length was 20 times the skein length, and an average value B (m) of five sample lengths was determined. Then, after dividing A by B, the total fineness was determined by multiplying by 10,000. The single fiber fineness was obtained by dividing the total fineness by the number of filaments. G.
  • Mold workability A hemispherical hot iron ball with a diameter of 10 cm, heated to a surface temperature of 200 ° C., with a stretchable fabric fixed in a relaxed state without sagging between two 2 cm thick fixtures hollowed to a diameter of 15 cm Is pressed into the fabric and pressed so that the depth is 10 cm, and the hot iron ball is removed immediately after 60 seconds.
  • the appearance before and after processing of the shaped hump surface shape is evaluated according to the following criteria.
  • Spinning stability was evaluated based on the number of spun yarn breaks when two packages per winder were wound for one hour under the spinning conditions described below.
  • Production Example 1 (Production of polyamide 56 resin) An aqueous solution prepared by dissolving 12.3 kg of 1,5-diaminopentane in 30.0 kg of ion-exchanged water is immersed in an ice bath and stirred. In the vicinity of the neutralization point, the mixture was heated in a water bath at 40 ° C. to bring the internal temperature to 33 ° C., and 50 weight of equimolar salt of 1,5-diaminopentane and adipic acid having a pH of 8.32. A 60.0 kg% aqueous solution was prepared.
  • the obtained polyamide 56 resin had a sulfuric acid relative viscosity of 2.54 and an amino terminal group amount of 2.77 ⁇ 10 ⁇ 5 mol / g.
  • Tm measured by a differential scanning calorimeter was 254 ° C.
  • Production Example 2 (Production of polyamide 66 resin) An aqueous solution prepared by dissolving 30.0 kg of hexamethylene diammonium adipate (manufactured by Rhodia) in 30.0 kg of ion exchange water, 140.4 g of adipic acid (manufactured by Kirk Co., Ltd.), and titanium dioxide to a concentration of 20% 28.5 g of the slurry dispersed in ion-exchanged water was placed in a batch type polymerization can having an internal volume of 80 L equipped with a stirrer having a double helical ribbon blade and a heating medium jacket.
  • polyamide 66 resin had a sulfuric acid relative viscosity of 2.52 and an amino end group content of 2.88 ⁇ 10 ⁇ 5 mol / g. Tm measured by a differential scanning calorimeter was 262 ° C.
  • Production Example 3 (Production of polyamide 6 resin) ⁇ caprolactam containing 1 wt% of water was continuously supplied in an amount of 30 kg / hr to a first polymerization reactor having a volume of 0.2 m 3 equipped with a thermometer, the heating temperature was set to 270 ° C., and polymerization was performed. went.
  • a polymerization intermediate corresponding to the supplied amount was discharged and supplied to a second polymerization reactor having a volume of 0.08 m 3 equipped with a condenser and a thermometer.
  • the heating temperature of the second polymerization reactor was set to 250 ° C., continuous polymerization was performed under normal pressure, and discharge of the polycapramide as a polymerization reaction product was started. From the point of time when ⁇ -caprolactam 1.5 times the capacity of the first polymerization reactor was supplied, pelletization was performed to obtain a polycapramide-based yarn-making material.
  • the resulting polycapramide-based yarn-making material was treated with hot water at 95 ° C. for 16 hours to remove low molecular weight components.
  • the obtained polyamide 6 resin had a sulfuric acid relative viscosity of 2.60 and an amino end group content of 5.10 ⁇ 10 ⁇ 5 mol / g. Tm measured with a differential scanning calorimeter was 230 ° C.
  • melt spinning, drawing, and heat treatment were continuously performed to obtain polyamide 56 fibers.
  • the polyamide 56 resin obtained in Production Example 1 was conditioned to a moisture content of 0.11% and charged into a spinning machine. When melted at 290 ° C. and led to the spinneret 2 through the polymer pipe, the polymer was measured and discharged by the gear pump 1 and led to the spinneret 2 set at 290 ° C. Spinning was performed from the spinneret 2 having 24 holes of 0.5 mm round holes.
  • the rotation speed of the gear pump 1 was selected so that the total fineness of the obtained polyamide 56 fiber was 78 dtex, and the discharge amount was 31.2 g / min. Then, after the yarn is cooled and solidified by the yarn cooling device 3 and the non-hydrous oil agent is supplied by the oil supply device 4, entanglement is given by the first fluid entanglement nozzle device 5, and the peripheral speed of the take-up roller 6 that is the first roll. was wound at 2,066 m / min, the peripheral speed of the stretching roller 7 as the second roll was 4,123 m / min, and the winding speed was 4,000 m / min to obtain a cheese package.
  • Example 2 Except that the discharge rate of the gear pump 1 is 34.1 g / min, the first roll peripheral speed is 4,250 m / min, the second roll peripheral speed is 4,463 m / min, and the winding speed is 4,400 m / min. In the same manner as in Example 1, 78 dtex 24 filament polyamide 56 fiber was obtained. Table 1 shows the physical properties of the obtained fiber.
  • the spinneret is a spinneret having a discharge hole diameter of 0.20 mm and a hole length of 0.4 mm and 68 holes, and the discharge rate of the gear pump 1 is 30.42 g / min, the first roll peripheral speed is 3,600 m / min, and the second roll A 78 dtex 68 filament polyamide 56 fiber was obtained in the same manner as in Example 1 except that the peripheral speed was 3,960 m / min and the winding speed was 3,900 m / min. Table 1 shows the physical properties of the obtained fiber.
  • Example 4 Melt spinning was performed in the same manner as in Example 1 except that the spinneret was a spinneret having a round hole of ⁇ 0.40 and a hole length of 0.8 mm, but the spinning yarn was broken frequently and stable spinning could not be performed.
  • Example 5 A polyamide 66 fiber was obtained in the same manner as in Example 1 except that the polyamide 66 resin produced in Production Example 2 was used instead of the polyamide 56 resin. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and mold processing evaluation was performed. The evaluation results are shown in Table 1.
  • gear pump 2 spinneret 3: yarn cooling device 4: oil supply device 5: first fluid entanglement nozzle device 6: take-up roller 7: stretching roller 8: winder
  • a high value-added hygroscopic synthetic fiber having a high moisture absorption rate can be obtained without impairing the properties of the polyamide such as strength, chemical resistance and heat resistance.
  • the hygroscopic synthetic fiber of the present invention is suitable for apparel use, especially for inner wear, sportswear and the like.

Abstract

Disclosed is a hygroscopic fibre which is a fibre comprising polyamide 56 resin, and has a ΔMR of at least 3.0%. Further disclosed is a method for manufacturing a polyamide 56 resin fibre by a direct spinning-drawing method in which: a polyamide 56 resin discharged through a spinneret is cooled and solidified by cooling air; a spinning oil is deposited thereon and the fibre is stretched; and the fibre is taken up. The disclosed manufacturing method satisfies the following conditions: (1) The spinneret discharge line rate is between 14m/min and 30m/min inclusive; (2) The product of the haul-off speed and the stretch ratio is between 3900 and 4500 inclusive. Thus provided are a high added value hygroscopic fibre which has high moisture absorptivity without losing the strength, chemical resistant, and heat resistant characteristics of polyamides.

Description

吸湿性繊維およびその製造方法Hygroscopic fiber and method for producing the same
 本発明は、ポリアミド56樹脂からなる高吸湿性繊維に関するものである。 The present invention relates to a highly hygroscopic fiber made of polyamide 56 resin.
 ポリアミドやポリエステルなどの熱可塑性樹脂からなる合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途など幅広く用いられている。 Synthetic fibers made of thermoplastic resins such as polyamide and polyester are widely used in clothing and industrial applications because they are excellent in strength, chemical resistance, heat resistance and the like.
 特にポリアミド繊維はその独等の柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性を活かし、インナー、スポーツウェアなどの用途に広く使用されている。 In particular, polyamide fibers are widely used for applications such as innerwear and sportswear by taking advantage of their unique softness, high tensile strength, coloring properties during dyeing, and high heat resistance.
 特許文献1には、ポリアミドの繊維形成後の後加工段階で、繊維表面に吸湿剤を付与する方法が提案されている。 Patent Document 1 proposes a method of applying a hygroscopic agent to the fiber surface in the post-processing stage after the formation of polyamide fibers.
 また、ポリアミド樹脂自体を親水化させることで繊維に吸湿性を付与する方法も試みられている。例えば特許文献2には、親水性成分であるポリオキシアルキレングリコールなどを共重合させたポリアミド樹脂を用いて繊維を製造する方法が提案されている。 Also, a method of imparting hygroscopicity to the fiber by making the polyamide resin itself hydrophilic has been tried. For example, Patent Document 2 proposes a method for producing fibers using a polyamide resin obtained by copolymerizing polyoxyalkylene glycol, which is a hydrophilic component.
 また、特許文献3には、繊維の構造を、高吸湿性の熱可塑性樹脂を芯部に、力学特性に優れた熱可塑性樹脂を鞘部とする芯鞘構造とすることで、吸湿性能と、力学特性を両立させる方法が提案されている。 Patent Document 3 discloses that the fiber structure has a core-sheath structure in which a highly hygroscopic thermoplastic resin is used as a core and a thermoplastic resin having excellent mechanical properties is used as a sheath. A method for achieving both mechanical characteristics has been proposed.
 また、これら繊維形成性の熱可塑性樹脂の化学的改質以外に物理的改質、すなわち、溶出可能な成分を混合し、繊維形成後に溶出成分を抽出してフィブリルやボイドを形成させ、吸湿表面積を増大させて吸湿率の増加と吸湿速度の増大を狙う方法が提案されている。たとえば、特許文献4には、アルコール可溶ポリアミドに相溶性のある繊維形成性の熱可塑性樹脂とアルコール可溶ポリアミドのブレンド複合物を溶融紡糸し、そこからアルコール可溶ポリアミドの一部を溶出することで、天然繊維に近い吸湿性繊維を得る方法が提案されている。 In addition to chemical modification of these fiber-forming thermoplastic resins, physical modification, that is, mixing eluable components, extracting elution components after fiber formation to form fibrils and voids, moisture absorption surface area A method for increasing the moisture absorption rate and increasing the moisture absorption rate by increasing the ratio has been proposed. For example, in Patent Document 4, a blend composite of a fiber-forming thermoplastic resin compatible with an alcohol-soluble polyamide and an alcohol-soluble polyamide is melt-spun and a part of the alcohol-soluble polyamide is eluted therefrom. Thus, a method for obtaining hygroscopic fibers close to natural fibers has been proposed.
 ポリアミド繊維に親水性化合物を添加する方法が一般には最も多く検討されてきた。例えば、特許文献1には、親水性ポリマーとしてポリビニルピロリドンをポリアミドにブレンドして紡糸することで吸湿性能を向上させる方法が提案されている。
特開平9-188917号公報 特開平5-209316号公報 特開平3-213519号公報 特開昭60-246818号公報
In general, the method of adding a hydrophilic compound to a polyamide fiber has been most studied. For example, Patent Document 1 proposes a method for improving moisture absorption performance by blending and spinning poly (vinyl pyrrolidone) as a hydrophilic polymer in polyamide.
JP 9-188917 A JP-A-5-209316 JP-A-3-213519 JP 60-246818
 従来のポリアミド繊維は天然繊維と比較して吸湿性能が低いため、肌からの発汗によるムレやべたつきなどを生じ、快適性の面で天然繊維よりも劣ることが問題となっている。 Since conventional polyamide fibers have lower moisture absorption performance than natural fibers, they cause stuffiness and stickiness due to sweating from the skin, and are inferior to natural fibers in terms of comfort.
 そこでポリアミドの繊維形成後の後加工段階で、繊維表面に吸湿剤を付与する方法が提案されている。 Therefore, a method of applying a hygroscopic agent to the fiber surface in a post-processing stage after the formation of polyamide fibers has been proposed.
 しかしながら洗濯に対する耐久性が低下し、また、高吸湿性を得るために多量の吸湿剤を付与すると、吸湿のために繊維表面にぬめりが生じ、不快感を与えるという欠点があった。 However, the durability against washing is lowered, and when a large amount of a hygroscopic agent is applied to obtain high hygroscopicity, there is a drawback in that the fiber surface becomes slimy due to moisture absorption and gives discomfort.
 特許文献2の方法によると、十分な吸湿性能を達成するためには共重合割合を高める必要がある一方で、糸条の強度、伸度等の力学特性が著しく損なわれるため、吸湿性能と力学特性を同時に満足させる繊維は得られていない。 According to the method of Patent Document 2, while it is necessary to increase the copolymerization ratio in order to achieve sufficient moisture absorption performance, the mechanical properties such as the strength and elongation of the yarn are significantly impaired. No fiber that satisfies the properties at the same time has been obtained.
 特許文献3の複合繊維は、製造装置が複雑になるためにコストが高くなる欠点があり、また、芯部と鞘部に用いるポリマーの吸水能の違いから、精練や染色などの熱水処理時に芯部の吸湿性樹脂が水を吸収して大きく膨潤するため、繊維表面にひび割れを生じさせ、芯部のポリマーが溶出してしまう等の欠点があった。 The composite fiber of Patent Document 3 has a drawback that the production apparatus becomes complicated and thus has a high cost. Also, due to the difference in water absorption ability of the polymer used for the core part and the sheath part, during the hot water treatment such as scouring and dyeing Since the hygroscopic resin in the core part absorbs water and swells greatly, the fiber surface is cracked and the core polymer is eluted.
 特許文献4のような方法では、溶出成分が少ないと十分な吸湿性能が得られず、逆に溶出成分が多いと繊維の強度など物理的特性が不十分となり、着用時に布帛の白化、フィブリル化等が発生するなどの欠点が現れ、吸湿性能と物理的特性の両方を満足させることは困難であった。 In the method as disclosed in Patent Document 4, sufficient moisture absorption performance cannot be obtained if the amount of the eluted component is small. Conversely, if the amount of the eluted component is large, the physical properties such as fiber strength are insufficient, and the fabric is whitened and fibrillated when worn. It has been difficult to satisfy both the moisture absorption performance and the physical characteristics.
 特許文献1の方法は吸湿性の繊維として優れるものであるが、ポリアミドとしてはポリアミド6をベースにポリビニルピロリドンを添加しているため、例えば近年、ファッションのトレンドとしてタイトフィットのTシャツなどを着用する女性が増えており、それとともに、アウターにひびきにくいモールドブラジャーの需要が増加している中、モールド加工に対する耐熱性が十分ではなかった。また、融点の高いポリアミド66をベースにポリビニルピロリドンを添加した場合、ポリアミド66の紡糸温度が高く、ポリビニルピロリドンが熱劣化し、安定して紡糸できないという問題がある。 Although the method of Patent Document 1 is excellent as a hygroscopic fiber, since polyamide pyrrolidone is added based on polyamide 6 as a polyamide, for example, in recent years, a tight-fit T-shirt or the like is worn as a fashion trend. With an increasing number of women, and with an increasing demand for mold bras that are hard to crack on the outer, heat resistance to mold processing was not sufficient. Further, when polyvinyl pyrrolidone is added based on polyamide 66 having a high melting point, there is a problem that the spinning temperature of polyamide 66 is high and polyvinyl pyrrolidone is thermally deteriorated and cannot be stably spun.
 上記のようにポリアミド繊維の特性を損なうことなく、天然繊維にも劣らない吸湿性能を有する原糸が求められている。 As described above, there is a demand for a raw yarn having moisture absorption performance that is not inferior to that of natural fiber without impairing the properties of the polyamide fiber.
 本発明は、前記従来技術の問題点を克服し、強度、耐薬品性、耐熱性といったポリアミドの特性を損なうことなく、高い吸湿率を有する付加価値の高い吸湿性合成繊維を提供することを課題とする。 It is an object of the present invention to overcome the problems of the prior art and to provide a high value-added hygroscopic synthetic fiber having a high moisture absorption rate without impairing the properties of polyamide such as strength, chemical resistance and heat resistance. And
 前記した本発明の目的は、
ポリアミド56樹脂からなる繊維であって、ΔMRが3.0%以上である吸湿性繊維により達成される。
The object of the present invention is as follows.
This is achieved by a hygroscopic fiber made of polyamide 56 resin and having a ΔMR of 3.0% or more.
 また、本発明の目的は、口金から吐出されたポリアミド56繊維を冷却風にて冷却固化させた後、紡糸用油剤を付着させ、延伸した後、巻き取る、直接紡糸延伸法によるポリアミド56繊維の製造方法であって、次の(1)~(2)の条件を満たす吸湿性繊維の製造方法により達成される。
(1)口金吐出線速度が14m/min以上30m/min以下
(2)引取速度と延伸倍率の積が3900以上4500以下
 本発明の目的は、さらに、上記吸湿性繊維を用いてなる布帛により達成される。
Another object of the present invention is to cool and solidify the polyamide 56 fiber discharged from the die with cooling air, attach a spinning oil agent, stretch the film, and wind it up. The manufacturing method is achieved by a method for manufacturing a hygroscopic fiber that satisfies the following conditions (1) to (2).
(1) The die discharge linear velocity is 14 m / min or more and 30 m / min or less. (2) The product of the take-off speed and the draw ratio is 3900 or more and 4500 or less. The object of the present invention is further achieved by a fabric using the hygroscopic fiber. Is done.
 本発明の目的は、さらに、上記布帛を含む繊維構造体により達成される。 The object of the present invention is further achieved by a fiber structure including the above fabric.
 本発明の吸湿性繊維は繊維の複屈折が30×10-3以上40×10-3以下であることが好ましい。本発明の布帛は上記吸湿性繊維を用いてなる布帛であって、モールド加工を行って成型された部分を含むことが好ましい。 The hygroscopic fiber of the present invention preferably has a birefringence of 30 × 10 −3 or more and 40 × 10 −3 or less. The fabric of the present invention is a fabric using the above-mentioned hygroscopic fiber, and preferably includes a portion formed by molding.
 本発明の繊維構造体は上記繊維構造体がインナーであることが好ましい。 In the fiber structure of the present invention, the fiber structure is preferably an inner.
 本発明により強度、耐薬品性、耐熱性といったポリアミドの特性を損なうことなく、高い吸湿率を有する付加価値の高い吸湿性合成繊維を得ることができる。 According to the present invention, a high value-added hygroscopic synthetic fiber having a high moisture absorption rate can be obtained without impairing the properties of the polyamide such as strength, chemical resistance and heat resistance.
本発明に係る合成繊維の製造工程の一例を示す概略図である。It is the schematic which shows an example of the manufacturing process of the synthetic fiber which concerns on this invention.
 本発明のポリアミド56繊維は、1,5-ジアミノペンタン単位とアジピン酸単位とを主たる構成単位とするポリアミド56樹脂からなる繊維である。 The polyamide 56 fiber of the present invention is a fiber made of a polyamide 56 resin whose main constituent units are 1,5-diaminopentane units and adipic acid units.
 本発明のポリアミド56繊維は、バイオマス利用の1,5-ジアミノペンタン単位を含んでなることが、環境適応性に優れるため好ましい。より環境適応性に優れる点で、ポリアミド56を構成する1,5-ジアミノペンタン単位の50%以上がバイオマス利用で得られた1,5-ジアミノペンタンからなることが好ましい。より好ましくは75%以上であり、最も好ましくは100%である。 It is preferable that the polyamide 56 fiber of the present invention contains 1,5-diaminopentane units utilizing biomass because of excellent environmental adaptability. In view of more excellent environmental adaptability, it is preferable that 50% or more of the 1,5-diaminopentane units constituting the polyamide 56 are made of 1,5-diaminopentane obtained by using biomass. More preferably, it is 75% or more, and most preferably 100%.
 本発明におけるポリアミド56は本発明の効果を有効に発現するためには、98%硫酸相対粘度が2.4以上2.6以下のポリマーを使用することが好ましい。98%硫酸相対粘度がこの好ましい範囲であると、繊維としたときに十分な強度を得ることが容易となり、一方、繊維としたときの結晶化度が適度で十分な吸湿性を得ることができるばかりでなく、紡糸時の溶融ポリマーの押し出し圧およびその経時上昇速度が適度で生産設備への過剰な負荷や口金の交換周期短縮などは不要で、高生産性が保たれる。 For the polyamide 56 in the present invention, it is preferable to use a polymer having a 98% sulfuric acid relative viscosity of 2.4 or more and 2.6 or less in order to effectively express the effect of the present invention. When the 98% sulfuric acid relative viscosity is in this preferred range, it is easy to obtain sufficient strength when it is made into a fiber. In addition, the extrusion pressure of the molten polymer at the time of spinning and the rate of increase over time are moderate, and it is not necessary to overload the production facility and shorten the exchange period of the die, so that high productivity is maintained.
 ここで、98%硫酸相対粘度とは、繊維25gを98%硫酸25mlに溶解し、オストワルド粘度計を用いて25℃で測定した値をいう。 Here, the 98% sulfuric acid relative viscosity means a value obtained by dissolving 25 g of fiber in 25 ml of 98% sulfuric acid and measuring at 25 ° C. using an Ostwald viscometer.
 本発明におけるポリアミド56には本発明の目的を逸脱しない範囲で、主成分の他に第2,第3成分を共重合または混合してもよい。共重合成分としては、例えば、脂肪族カルボン酸、脂環式ジカルボン酸、芳香族ジカルボン酸(から誘導される構造単位を含むことができる。 The polyamide 56 in the present invention may be copolymerized or mixed with the second and third components in addition to the main component within the range not departing from the object of the present invention. Examples of the copolymer component may include a structural unit derived from an aliphatic carboxylic acid, an alicyclic dicarboxylic acid, or an aromatic dicarboxylic acid.
 またエチレンジアミン、シクロヘキサンジアミンなどの脂肪族ジアミン、ビス-(4-アミノシクロヘキシル)メタンのような脂環式ジアミン、キシリレンジアミンのような芳香族ジアミン、また6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-カプロラクタム、ω-ラウロラクタムなどのラクタムから誘導される構造単位を含むことができる。 In addition, aliphatic diamines such as ethylenediamine and cyclohexanediamine, alicyclic diamines such as bis- (4-aminocyclohexyl) methane, aromatic diamines such as xylylenediamine, 6-aminocaproic acid, 11-aminoundecanoic acid, Structural units derived from amino acids such as 12-aminododecanoic acid and paraaminomethylbenzoic acid, and lactams such as ε-caprolactam and ω-laurolactam can be included.
 また、本発明におけるポリアミド56には各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤などを、総添加物含有量が0.001~10重量%の間で必要に応じて共重合または混合していてもよい。 The polyamide 56 in the present invention includes various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents, antistatic agents and the like. The total additive content may be 0.001 to 10% by weight or copolymerized or mixed as necessary.
 また、本発明のポリアミド56繊維の単繊維の断面形状は、丸断面だけでなく、扁平、Y型、T型、中空型、田型、井型など多種多様な断面形状を採用することができるが、布帛にしたときに隣り合ったフィラメント間に隙間を生じ、毛管現象による吸水性を発現できるようにY型、T型、井型等の断面が好ましい。 In addition, the cross-sectional shape of the single fiber of the polyamide 56 fiber of the present invention is not limited to a round cross-section, and various cross-sectional shapes such as flat, Y-type, T-type, hollow-type, paddy-type, and well-type can be adopted. However, cross-sections such as Y-type, T-type, and well-type are preferable so that a gap is formed between adjacent filaments when a fabric is formed, and water absorption due to capillary action can be expressed.
 着用時の快適性が良好であるために、吸湿特性を示す吸放湿パラメーターΔMRは高い方がよい。ここでΔMRは衣服着用時の衣服内の湿気を外気に放出することにより快適性を得るための指標であり、軽~中作業あるいは軽~中運動を行った際の30℃×90%RHに代表される衣服内温度と、20℃×65%RHに代表される外気温湿度との吸湿率の差である。本発明では、吸湿性能評価の尺度としてこのΔMRをパラメーターとして用いている。ΔMRは大きければ大きいほど吸放湿能力が高く、着用時の快適性が良好であることに対応する。一般にポリアミド6、ポリアミド66等のポリアミド繊維はΔMRが1.5~2.0程度である。それに対し、本発明のポリアミド繊維においては、ΔMRが3.0%以上と高い吸放湿性を有するものである。ΔMRが3.0%未満であると通常のポリアミド6またはポリアミド66と同等レベルの吸放湿性にとどまるのみであり、着用時の快適性は高くないとの問題がある。上限についての制限はないが、あまり大きくしても、体感上大きな差は生じなくなるので、ΔMRが20%程度あれば十分である。 Since the comfort when worn is good, it is better that the moisture absorption / release parameter ΔMR indicating the moisture absorption characteristic is high. Here, ΔMR is an index for obtaining comfort by releasing moisture in the clothes to the outside air when the clothes are worn, and is 30 ° C. × 90% RH when performing light to medium work or light to medium exercise. It is a difference in moisture absorption between the temperature in the garment represented and the outside air temperature humidity represented by 20 ° C. × 65% RH. In the present invention, this ΔMR is used as a parameter as a measure of moisture absorption performance evaluation. The larger the ΔMR, the higher the moisture absorption / release capacity, and the better the comfort when worn. In general, polyamide fibers such as polyamide 6 and polyamide 66 have ΔMR of about 1.5 to 2.0. On the other hand, the polyamide fiber of the present invention has a high moisture absorption / release property with a ΔMR of 3.0% or more. If ΔMR is less than 3.0%, the moisture absorption and desorption of the same level as that of ordinary polyamide 6 or polyamide 66 only remains, and there is a problem that comfort at the time of wearing is not high. Although there is no limit on the upper limit, even if it is made too large, a great difference in sensation does not occur, and ΔMR of about 20% is sufficient.
 上記ポリアミド繊維の吸放湿能力は繊維中の結晶構造に大きく依存する。ポリアミド繊維の吸湿は、水分がポリアミドのアミド基に配位して結合する場合と、繊維中のポリアミド分子鎖がランダムな状態で存在している非晶部に取り込まれる場合の二通りの場合があるが、特にΔMRのように可逆的な吸放湿能力は繊維中の非晶部分の割合に大きく依存する。従って、ポリアミド繊維のΔMRを向上させるためには紡糸操業性や糸の品質を損なわない範囲で、非晶部分の割合を高めることが重要である。 The moisture absorbing / releasing ability of the polyamide fiber largely depends on the crystal structure in the fiber. There are two cases of moisture absorption of the polyamide fiber: when moisture is coordinated and bonded to the amide group of the polyamide, and when the polyamide molecular chain in the fiber is taken into the amorphous part where it exists in a random state. However, in particular, the reversible moisture absorption and desorption ability, such as ΔMR, greatly depends on the ratio of the amorphous part in the fiber. Accordingly, in order to improve the ΔMR of the polyamide fiber, it is important to increase the ratio of the amorphous portion within a range not impairing the spinning operability and the yarn quality.
 一般に結晶性の合成繊維の複屈折は、分子鎖の配向が進んだ繊維では大きく、配向が進んでいない繊維では小さい値となる。分子鎖の配向は以下に記述するように、繊維の吸水率に大きな影響を及ぼすため重要なパラメーターである。すなわち、ポリアミド繊維の吸湿は、水分がポリアミドのアミド基に配位して結合する場合と、繊維中のポリアミド分子鎖がランダムな状態で存在している非晶部に取り込まれる場合の二通りの場合があるが、特に繊維中の非晶部分の割合がΔMR値に大きく影響する。 In general, the birefringence of a crystalline synthetic fiber is large for a fiber in which the molecular chain is advanced, and is small for a fiber in which the orientation is not advanced. The molecular chain orientation is an important parameter because it greatly affects the water absorption rate of the fiber as described below. That is, the moisture absorption of the polyamide fiber is divided into two cases, when the water is coordinated and bonded to the amide group of the polyamide, and when the polyamide molecular chain in the fiber is taken into the amorphous part where it exists in a random state. In some cases, however, the ratio of the amorphous portion in the fiber greatly affects the ΔMR value.
 ポリアミド繊維は結晶部分の割合が大きく、水分を保持することができる非晶部の割合が少なく、また、結晶部が多い場合には、繊維表面の水分がポリアミド繊維内のアミド基の近傍まで到達することができない。 Polyamide fibers have a large proportion of crystal parts, a small proportion of amorphous parts that can retain moisture, and when there are many crystal parts, the moisture on the fiber surface reaches the vicinity of the amide groups in the polyamide fibers. Can not do it.
 上記分子鎖の配向は複屈折で表すことができ、複屈折が大きくなると吸湿率は大きくなる傾向にあり、吸湿率が大きすぎると紡糸油剤や空気中の水分を過剰に吸収してしまい、結果として糸条が膨潤し、安定紡糸できず、また繊維構造のばらつきが大きくなり品位が悪化する。また、複屈折が小さくなると、繊維中の分子鎖の配向結晶化が進み吸湿率が低下する傾向にある。 The orientation of the molecular chain can be expressed by birefringence, and when the birefringence increases, the moisture absorption rate tends to increase. When the moisture absorption rate is too large, the spinning oil and the moisture in the air are excessively absorbed, resulting in the result. As a result, the yarn swells and cannot be stably spun, and the dispersion of the fiber structure increases and the quality deteriorates. Moreover, when birefringence becomes small, the orientational crystallization of the molecular chain in the fiber proceeds and the moisture absorption rate tends to decrease.
 本発明のポリアミド繊維においては、複屈折を30×10-3以上40×10-3以下とすることが好ましく、かかる範囲とすることでポリアミド56繊維の紡糸操業性や糸の品質を損なうことなく、高い吸放湿性を有するポリアミド56繊維が得られるのである。 In the polyamide fiber of the present invention, the birefringence is preferably 30 × 10 −3 or more and 40 × 10 −3 or less, and within this range, the spinning operability and yarn quality of the polyamide 56 fiber are not impaired. Thus, a polyamide 56 fiber having a high moisture absorption / release property can be obtained.
 本発明のポリアミド繊維においては、ΔMRを上記範囲とすることで、着用時の快適性が良好な衣料を得ることが可能となった。 In the polyamide fiber of the present invention, by making ΔMR within the above range, it becomes possible to obtain a garment having good comfort when worn.
 上記本発明のポリアミド繊維は、以下の方法により製造することができる。 The polyamide fiber of the present invention can be produced by the following method.
 本発明のポリアミド繊維の延伸方法の一例を、図1にしたがって具体的に説明する。図1は本発明に係る合成繊維の製造工程の一例を示す概略図である。 An example of the method for stretching the polyamide fiber of the present invention will be specifically described with reference to FIG. FIG. 1 is a schematic view showing an example of a synthetic fiber production process according to the present invention.
 溶融されたポリアミドをギヤポンプにて計量・輸送し、紡糸口金2から吐出し、チムニー等の糸条冷却装置3によって冷却風を吹き当てることにより糸条を室温まで冷却し、給油装置4で給油するとともに集束し、第1流体交絡ノズル装置5で交絡し、引き取りローラー6、延伸ローラー7を通過し、その際引き取りローラー6と延伸ローラー7の周速度の比に従って延伸する。さらに、糸条を延伸ローラー7により熱セットし、ワインダー(巻取装置)8で巻き取る。 The melted polyamide is measured and transported by a gear pump, discharged from the spinneret 2, cooled by blowing air with a cooling device 3 such as a chimney to cool the yarn to room temperature, and supplied with an oil supply device 4. Then, the particles are converged together, entangled by the first fluid entanglement nozzle device 5, passed through the take-up roller 6 and the drawing roller 7, and then drawn according to the ratio of the peripheral speeds of the take-up roller 6 and the drawing roller 7. Further, the yarn is heat set by the drawing roller 7 and wound by a winder (winding device) 8.
 本発明のポリアミド繊維の製造方法では、口金吐出線速度を14m/min以上30m/min以下とするものである。ここで、口金吐出線速度とは、糸条を紡出する口金孔におけるポリマーの単位時間あたりの吐出体積を口金孔面積で除した値であり、口金孔から吐出された糸状ポリマーの配向の度合いを左右するパラメーターである。この口金吐出線速度が小さいと、引き取りローラー6によって引き取る際、口金吐出線速度と引き取りローラー6の速度比が大きくなり、引き取り中のフィラメントに過大な延伸張力がかかるため単糸切れを生じ、安定防止できない。また、口金吐出線速度が大きすぎると、引き取りローラー6で引き取り、続き延伸ローラー7で延伸した後の繊維の配向が進みすぎ、吸湿率が小さい繊維となってしまう。 In the polyamide fiber manufacturing method of the present invention, the die discharge linear velocity is set to 14 m / min or more and 30 m / min or less. Here, the die discharge linear velocity is a value obtained by dividing the discharge volume per unit time of the polymer in the die hole for spinning the yarn by the die hole area, and the degree of orientation of the filamentous polymer discharged from the die hole It is a parameter that influences. If the die discharge linear velocity is low, the ratio of the die discharge linear velocity to the take-off roller 6 is increased when the take-up roller 6 takes the wire, and an excessive drawing tension is applied to the filament being drawn, resulting in a single yarn breakage and stability. It cannot be prevented. On the other hand, if the die discharge linear velocity is too high, the fiber orientation after taking up by the take-up roller 6 and then drawing by the drawing roller 7 is excessively advanced, resulting in a fiber having a low moisture absorption rate.
 また、引き取りローラー6によって引き取られる糸条の引取速度(m/min)と、引き取りローラー6と延伸ローラー7の周速度比の値である延伸倍率との積が3900以上4500となるように紡糸条件を設定するものである。この数値は口金より吐出されたポリマーが、口金吐出線速度から引き取りローラー6の周速度まで、さらに引き取りローラー6の周速度から延伸ローラー7の周速度まで延伸される総延伸量を表しており、この値が小さ過ぎると繊維の配向度が低く、吸湿率が大きすぎる繊維となり紡糸油剤や空気中の水分を過剰に吸収してしまい、結果として糸条が膨潤し、安定紡糸できない。またこの値が大きすぎると繊維の配向が進みすぎ、吸湿率が小さい繊維となってしまう。 The spinning conditions are such that the product of the take-up speed (m / min) of the yarn taken up by the take-up roller 6 and the draw ratio which is the value of the peripheral speed ratio of the take-up roller 6 and the draw roller 7 is 3900 or more and 4500. Is set. This numerical value represents the total amount of stretching of the polymer discharged from the die from the die discharge linear speed to the circumferential speed of the take-up roller 6, and further from the circumferential speed of the take-up roller 6 to the circumferential speed of the drawing roller 7. If this value is too small, the degree of orientation of the fiber is low and the moisture absorption rate becomes too high, and the spinning oil and moisture in the air are excessively absorbed. As a result, the yarn swells and stable spinning cannot be performed. On the other hand, if this value is too large, the orientation of the fiber proceeds too much, resulting in a fiber having a low moisture absorption rate.
 また給油装置4によって付与される紡糸油剤は非含水系油剤であることが好ましい。非含水系油剤を付与した場合、油剤付与中に水分がポリアミド56に吸収されるおそれはないので、いわゆるポリアミドの膨潤は発生せず、したがって、製糸中の繊維長さ変動もなく、安定巻き取りが可能となる。 Further, it is preferable that the spinning oil applied by the oil supply device 4 is a non-hydrous oil. When a non-hydrous oil agent is applied, there is no possibility that moisture is absorbed by the polyamide 56 during the oil agent application, so that so-called polyamide swelling does not occur, and therefore there is no fiber length variation during yarn production, and stable winding. Is possible.
 本発明のポリアミド繊維は、引張強度が3.5cN/dtex以上であることが好ましい。繊維の引張強度を3.5cN/dtex以上とすることにより、ポリアミド56布帛の主な用途であるインナー等の衣料用布帛の実用強度を実現できる。さらに好ましくは4.0cN/dtex以上である。 The polyamide fiber of the present invention preferably has a tensile strength of 3.5 cN / dtex or more. By setting the tensile strength of the fiber to 3.5 cN / dtex or more, the practical strength of the cloth for clothing such as inner, which is the main use of the polyamide 56 cloth, can be realized. More preferably, it is 4.0 cN / dtex or more.
 本発明のポリアミド繊維は、伸度が35%以上であることが好ましい。繊維の伸度を35%以上とすることにより、製織、製編、仮撚りといった高次工程での工程通過性が良好となる。更に好ましくは40~65%である。 The polyamide fiber of the present invention preferably has an elongation of 35% or more. By setting the elongation of the fiber to 35% or more, process passability in high-order processes such as weaving, knitting, and false twisting is improved. More preferably, it is 40 to 65%.
 本発明のポリアミド繊維の繊度としては、布帛に加工したときの厚みの点から総繊度100dtex以下であることが好ましく、より好ましくは60dtex以下である。単糸繊度としては布帛に加工したときの柔らかさの点から4.0dtex以下であることが好ましく、より好ましくは2.0dtex以下である。 The fineness of the polyamide fiber of the present invention is preferably 100 dtex or less, more preferably 60 dtex or less from the viewpoint of thickness when processed into a fabric. The single yarn fineness is preferably 4.0 dtex or less, more preferably 2.0 dtex or less from the viewpoint of softness when processed into a fabric.
 以上のようにして得られる吸湿性繊維の構造体としては前述したものに限らず、フィラメント、ステープルのどちらでも良く、用途によって選択される。布帛形態としては、織物、編物、不織布など目的に応じて選択でき、衣料も含まれる。通常の方法で製編織後加工され、縫製されてインナーウェアやパンスト、タイツなどの各種衣料用製品とすることができる。なかでも、本発明の布帛は、従来のポリアミド繊維では両立の難しかった耐熱性と吸水性を兼ね備えることから、モールド加工を行って成型された部分を含む布帛であることが好ましい。具体的には、本発明の繊維構造体は、ブラジャーのカップ、ショーツ、ガードルのウェストあるいはヒップ部分等の凹部、凸部あるいはくびれ等の曲面を形成すべくモールド加工したインナーもしくはそのようなモールド加工部を有するインナーとしての用途が好適である。 The structure of the hygroscopic fiber obtained as described above is not limited to that described above, and may be either a filament or a staple, and is selected depending on the application. As a fabric form, it can select according to the objectives, such as a textile fabric, a knitted fabric, and a nonwoven fabric, and clothing is also included. It is processed after weaving and weaving by a normal method, and can be sewn to make various clothing products such as innerwear, pantyhose and tights. Especially, since the fabric of this invention has the heat resistance and water absorption which were difficult to be compatible with the conventional polyamide fiber, it is preferable that it is a fabric containing the part shape | molded by mold processing. Specifically, the fiber structure of the present invention includes an inner molded to form a concave portion such as a brassiere cup, shorts, girdle waist or hip portion, a convex portion, or a constricted curved surface, or such a molding process. Use as an inner part having a portion is preferable.
 モールド加工は、モールド(金型)に織布、編布あるいは不織布等の布帛をはさみこみ、熱処理を加えて丸みをつける加工である。熱処理の条件としてはモールドの表面温度として通常、160~230℃であり、170~220℃が好ましく、190~200℃がより好ましい。処理時間としては0.5~3分が好ましい。 Mold processing is a process in which a fabric such as a woven fabric, a knitted fabric or a non-woven fabric is sandwiched in a mold (mold), and heat treatment is applied to round the mold. As the conditions for the heat treatment, the mold surface temperature is usually 160 to 230 ° C., preferably 170 to 220 ° C., more preferably 190 to 200 ° C. The treatment time is preferably 0.5 to 3 minutes.
 本発明を実施例で詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
[測定方法]
A.硫酸相対粘度
 試料0.25gを濃度98wt%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98wt%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
B.アミノ末端基濃度
 試料1gを50mLのフェノール/エタノール混合溶液(フェノール/エタノール=80/20)に、30℃で振とう溶解させて溶液とし、この溶液を0.02Nの塩酸で中和滴定し要した0.02N塩酸量を求めた。また、上記フェノール/エタノール混合溶媒(上記と同量)のみを0.02N塩酸で中和滴定し要した0.02N塩酸の量を求める。そしてその差から試料1gあたりのアミノ末端基量を求めた。
C.融点(Tm)
 パーキンエルマー社製示差走査型熱量計DSC-7型を用い、試料10mgを昇温速度15℃/分にて測定して得た示差熱量曲線において吸熱側に極値を示すピークを融解ピークと判断し、極値を与える温度を融点Tm(℃)とした。なお複数の極値が存在する場合は高温側の極値を融点とした。
D.吸湿性(ΔMR)
 サンプルを秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、次の式にしたがい計算を行う。
The present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.
[Measuring method]
A. Sulfuric acid relative viscosity 0.25 g of a sample was dissolved in 100 g of sulfuric acid having a concentration of 98 wt% so as to be 1 g, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow time (T2) of only sulfuric acid having a concentration of 98 wt% was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as sulfuric acid relative viscosity.
B. Amino terminal group concentration 1 g of a sample was dissolved in 50 mL of a phenol / ethanol mixed solution (phenol / ethanol = 80/20) by shaking at 30 ° C. to obtain a solution, and this solution was neutralized and titrated with 0.02 N hydrochloric acid. The amount of 0.02N hydrochloric acid was determined. Further, only the phenol / ethanol mixed solvent (the same amount as above) was neutralized and titrated with 0.02N hydrochloric acid to determine the amount of 0.02N hydrochloric acid required. And the amino terminal group amount per 1g of samples was calculated | required from the difference.
C. Melting point (Tm)
Using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer, Inc., a peak showing an extreme value on the endothermic side in a differential calorific curve obtained by measuring 10 mg of a sample at a heating rate of 15 ° C./min is judged as a melting peak. The temperature that gives the extreme value was the melting point Tm (° C.). When a plurality of extreme values exist, the extreme value on the high temperature side was taken as the melting point.
D. Hygroscopicity (ΔMR)
The sample is weighed in a weighing bottle of about 1 to 2 g, kept at 110 ° C. for 2 hours, dried and weighed (W 0 ), and then the target substance is kept at 20 ° C. and relative humidity 65% for 24 hours and then weighed. (W 65 ). Then, this 30 ° C., to measure the weight after maintaining 24 hours in a relative humidity of 90% (W 90). The calculation is performed according to the following formula.
   MR=[(W65-W)/W]×100% ・・・・・ (1)
   MR=[(W90-W)/W]×100% ・・・・・ (2)
   ΔMR=MR-MR ・・・・・・・・・・・・  ・ (3)
E.複屈折
 日本光学工業(株)製P0H型偏光顕微鏡を用い、光源として白色光を用いて、繊維から取り出した2本の単繊維のレタデーションと直径を測定し、複屈折率を測定して平均して求めた。
F.総繊度、単繊維繊度
 1m/周の検尺機で10回転させて、10ターンのループ状かせを5個作成し、重量測定用の試料とする。また同様にして10ターンのループ状かせを作成し、該かせの糸端同士を結んでほどけないようにしたループ状かせを5個作成し、試料長測定用の試料とする。まず計10個の試料を25℃RH55%の環境下、無荷重の状態で48時間放置して調湿した。その後同環境下にて、重量測定用のループ状かせの重量を測定して平均値A(g)を求めた。次に同様に同環境下にて試料長測定用ループ状かせのかせ長を測定した。試料長測定用のループ状かせをフックにかけ、ループ状かせに0.05cN/dtex相当の荷重をかけてかせ長を測定した。荷重を決定する際には試料の見掛繊度(=A(g)×10,000/10)を用いた。かせ長の20倍が試料長となり、5個の試料長の平均値B(m)を求めた。そしてAをBで除した後、10,000倍することにより総繊度を求めた。単繊維繊度は上記総繊度をフィラメント数で除して求めた。
G.モールド加工性
 直径15cmにくりぬいた厚さ2cmの固定具2枚の間にたるみ無く、リラックスさせた状態で伸縮性布帛を固定し、表面温度200℃に加熱した直径10cmの半球状の熱鉄球を布帛に押し込み、深さが10cmとなるように押し当て60秒後直ちに熱鉄球を抜き取る。整形されたこぶ状部表面形態について、加工前後での外観を以下基準で評価する。
MR 1 = [(W 65 −W 0 ) / W 0 ] × 100% (1)
MR 2 = [(W 90 −W 0 ) / W 0 ] × 100% (2)
ΔMR = MR 2 -MR 1 (3)
E. Birefringence Using a P0H polarizing microscope manufactured by Nippon Optical Industry Co., Ltd., using white light as a light source, measuring the retardation and diameter of two single fibers taken out from the fiber, measuring the birefringence and averaging Asked.
F. The total fineness and single fiber fineness are rotated 10 times with a measuring machine of 1 m / circumference, and 5 loop-like skeins of 10 turns are prepared and used as a sample for weight measurement. Similarly, a 10-turn loop skein is prepared, and five loop skeins are formed so that the ends of the skeins are not untied and used as a sample for sample length measurement. First, a total of 10 samples were allowed to stand for 48 hours in an environment of 25 ° C. and RH 55% under no load to adjust the humidity. Thereafter, under the same environment, the weight of the loop-shaped skein for weight measurement was measured to obtain an average value A (g). Next, the skein length of the loop-shaped skein for measuring the sample length was measured in the same environment. A loop skein for measuring the sample length was applied to the hook, and a load equivalent to 0.05 cN / dtex was applied to the loop skein to measure the skein length. When determining the load, the apparent fineness of the sample (= A (g) × 10,000 / 10) was used. The sample length was 20 times the skein length, and an average value B (m) of five sample lengths was determined. Then, after dividing A by B, the total fineness was determined by multiplying by 10,000. The single fiber fineness was obtained by dividing the total fineness by the number of filaments.
G. Mold workability A hemispherical hot iron ball with a diameter of 10 cm, heated to a surface temperature of 200 ° C., with a stretchable fabric fixed in a relaxed state without sagging between two 2 cm thick fixtures hollowed to a diameter of 15 cm Is pressed into the fabric and pressed so that the depth is 10 cm, and the hot iron ball is removed immediately after 60 seconds. The appearance before and after processing of the shaped hump surface shape is evaluated according to the following criteria.
 良:ほとんど変化がない。 Good: Almost no change.
 不可:表面が荒れており商品として不適
H.吸水性ストレッチ編地の着用評価
 実施例1および比較例1、比較例5、比較例7の糸を用いてそれぞれ編地を編成し、体にフィットするように縫製したTシャツのサンプルを作製し、25℃×65%RHの室内で5名の被験者がこれらのTシャツを着用した状態で時速12Kmのジョギング運動を5分間行った後、被験者の自己申告で発汗時のべとつき感を次の評価基準に基づいて比較評価した。
Impossible: Unsuitable as a product due to rough surface. Evaluation of Wear of Water-Absorbent Stretch Knitted Fabrics A knitted fabric was knitted using the yarns of Example 1, Comparative Example 1, Comparative Example 5, and Comparative Example 7, respectively, and T-shirt samples sewn to fit the body were prepared. After 5 minutes of jogging exercises at 12 km / h for 5 minutes in a room of 25 ° C x 65% RH with these T-shirts on, the subjects evaluated the following feeling of stickiness when sweating A comparative evaluation was made based on the criteria.
 優:べとつき感なく肌触りも快適
 良:べとつき感なし
 可:べとつき感があるが、我慢できる
 不可:べとつき感があり不快。
Excellent: Comfortable without feeling of stickiness Good: No feeling of stickiness Possible: Although there is a feeling of stickiness but can be tolerated Impossible: Uncomfortable with a feeling of stickiness.
 また、着用時の布帛の柔らかさに関する着心地についても5名の被験者が自己申告で次の評価基準に基づいて比較評価した。 In addition, five subjects compared and evaluated the comfort of the fabric when worn by self-reporting based on the following evaluation criteria.
 良:柔らかく、着心地がよい
 不可:肌触りが固く、ごわごわしている
I.紡糸安定性
 後述する紡糸条件にて1ワインダーあたり2パッケージずつ、1時間巻き取りを実施したときの紡糸糸切れの回数で紡糸安定性を評価した。
Good: Soft and comfortable to wear Impossible: Hard to touch and stiff. Spinning stability Spinning stability was evaluated based on the number of spun yarn breaks when two packages per winder were wound for one hour under the spinning conditions described below.
  良:1回以内
  不可:2回以上。
製造例1(ポリアミド56樹脂の製造)
 1,5-ジアミノペンタン12.3kgをイオン交換水30.0kg中に溶解した水溶液を、氷浴に浸して撹拌しているところに、17.7kgのアジピン酸((株)カーク製)を少量ずつ添加していき、中和点近傍では40℃のウオーターバスで加温して内温を33℃とし、pHが8.32の1,5-ジアミノペンタンとアジピン酸の等モル塩の50重量%水溶液60.0kgを調製した。この水溶液と1,5-ジアミノペンタン86.4g、および二酸化チタンを20%濃度になるようイオン交換水に分散させたスラリー28.2gを、ダブルヘリカルリボン翼をもった撹拌機と熱媒ジャケットを装備した内容積80Lのバッチ式重合缶に入れた。重合缶内を充分に窒素置換した後、撹拌しながら260℃で加温を開始した。缶内圧力が0.2MPa(ゲージ圧)に到達した時点から濃縮を開始し、重合缶内圧を一定に保つように放圧弁の開度を調整した。留出水量が24.7kgになったら放圧弁を閉止し、加熱温度を285℃に変更した。缶内圧力が1.7MPa(ゲージ圧)に到達した後、缶内圧力を維持した。内温が255℃に到達した時点から50分かけて徐々に大気圧まで放圧し、その後窒素ガスを5L/分流通させて15分間缶内をブローした。その後缶内に0.4MPa(ゲージ圧)の窒素圧をかけ、水浴中に吐出したポリマーをストランドカッターでペレタイズした。得られたポリアミド56樹脂の硫酸相対粘度は2.54であり、アミノ末端基量は2.77×10-5mol/gであった。示差走査熱量計で測定したTmは254℃であった。
製造例2(ポリアミド66樹脂の製造)
 ヘキサメチレンジアンモニウムアジペート(Rhodia社製)30.0kgをイオン交換水30.0kg中に溶解した水溶液と、アジピン酸((株)カーク製)140.4g、および二酸化チタンを20%濃度になるようイオン交換水に分散させたスラリー28.5gを、ダブルヘリカルリボン翼をもった撹拌機と熱媒ジャケットを装備した内容積80Lのバッチ式重合缶に入れた。重合缶内を充分に窒素置換した後、撹拌しながら260℃で加温を開始した。缶内圧力が0.2MPa(ゲージ圧)に到達した時点から濃縮を開始し、重合缶内圧を一定に保つように放圧弁の開度を調整した。留出水量が24.7kgになったら放圧弁を閉止し、加熱温度を295℃に変更した。缶内圧力が1.7MPa(ゲージ圧)に到達した後、缶内圧力を維持した。内温が255℃に到達した時点から50分かけて徐々に大気圧まで放圧し、その後窒素ガスを5L/分流通させて10分間缶内をブローした。その後缶内に0.4MPa(ゲージ圧)の窒素圧をかけ、水浴中に吐出したポリマーをストランドカッターでペレタイズした。得られたポリアミド66樹脂の硫酸相対粘度は2.52であり、アミノ末端基量は2.88×10-5mol/gであった。示差走査熱量計で測定したTmは262℃であった。
製造例3(ポリアミド6樹脂の製造)
 水分を1wt%含むεカプロラクタムを30kg/hrの量で連続的に、温度計を備えた体積0.2mの第1の重合反応器に供給し、加熱温度を270℃に設定し、重合を行った。第1の重合反応器下部から、供給量に対応する重合中間体を排出し、凝縮器と温度計を備えた体積0.08mである第2の重合反応器へ供給した。第2の重合反応器の加熱温度を250℃に設定し、常圧下で連続重合を行い、重合反応生成物であるポリカプラミドの排出を開始した。第1の重合反応器の容量の1.5倍のε-カプロラクタムを供給した時点より、ペレタイズ化し、ポリカプラミド系製糸材料を得た。
Good: Within 1 time Impossible: 2 times or more.
Production Example 1 (Production of polyamide 56 resin)
An aqueous solution prepared by dissolving 12.3 kg of 1,5-diaminopentane in 30.0 kg of ion-exchanged water is immersed in an ice bath and stirred. In the vicinity of the neutralization point, the mixture was heated in a water bath at 40 ° C. to bring the internal temperature to 33 ° C., and 50 weight of equimolar salt of 1,5-diaminopentane and adipic acid having a pH of 8.32. A 60.0 kg% aqueous solution was prepared. Using this aqueous solution, 86.4 g of 1,5-diaminopentane, and 28.2 g of slurry in which titanium dioxide was dispersed in ion-exchanged water to a concentration of 20%, a stirrer having a double helical ribbon blade and a heating medium jacket were installed. The sample was placed in an equipped batch polymerization can with an internal volume of 80 L. After sufficiently substituting the inside of the polymerization can with nitrogen, heating was started at 260 ° C. with stirring. Concentration was started when the can internal pressure reached 0.2 MPa (gauge pressure), and the opening of the pressure relief valve was adjusted so as to keep the polymerization can internal pressure constant. When the amount of distilled water reached 24.7 kg, the pressure release valve was closed and the heating temperature was changed to 285 ° C. After the can internal pressure reached 1.7 MPa (gauge pressure), the can internal pressure was maintained. The pressure was gradually released to atmospheric pressure over 50 minutes from the time when the internal temperature reached 255 ° C., and then the inside of the can was blown for 15 minutes by flowing nitrogen gas at 5 L / min. Thereafter, nitrogen pressure of 0.4 MPa (gauge pressure) was applied into the can, and the polymer discharged into the water bath was pelletized with a strand cutter. The obtained polyamide 56 resin had a sulfuric acid relative viscosity of 2.54 and an amino terminal group amount of 2.77 × 10 −5 mol / g. Tm measured by a differential scanning calorimeter was 254 ° C.
Production Example 2 (Production of polyamide 66 resin)
An aqueous solution prepared by dissolving 30.0 kg of hexamethylene diammonium adipate (manufactured by Rhodia) in 30.0 kg of ion exchange water, 140.4 g of adipic acid (manufactured by Kirk Co., Ltd.), and titanium dioxide to a concentration of 20% 28.5 g of the slurry dispersed in ion-exchanged water was placed in a batch type polymerization can having an internal volume of 80 L equipped with a stirrer having a double helical ribbon blade and a heating medium jacket. After sufficiently substituting the inside of the polymerization can with nitrogen, heating was started at 260 ° C. with stirring. Concentration was started when the can internal pressure reached 0.2 MPa (gauge pressure), and the opening of the pressure relief valve was adjusted so as to keep the polymerization can internal pressure constant. When the amount of distilled water reached 24.7 kg, the pressure release valve was closed and the heating temperature was changed to 295 ° C. After the can internal pressure reached 1.7 MPa (gauge pressure), the can internal pressure was maintained. From the time when the internal temperature reached 255 ° C., the pressure was gradually released to atmospheric pressure over 50 minutes, and then the inside of the can was blown for 10 minutes by flowing nitrogen gas at 5 L / min. Thereafter, nitrogen pressure of 0.4 MPa (gauge pressure) was applied into the can, and the polymer discharged into the water bath was pelletized with a strand cutter. The obtained polyamide 66 resin had a sulfuric acid relative viscosity of 2.52 and an amino end group content of 2.88 × 10 −5 mol / g. Tm measured by a differential scanning calorimeter was 262 ° C.
Production Example 3 (Production of polyamide 6 resin)
Ε caprolactam containing 1 wt% of water was continuously supplied in an amount of 30 kg / hr to a first polymerization reactor having a volume of 0.2 m 3 equipped with a thermometer, the heating temperature was set to 270 ° C., and polymerization was performed. went. From the lower part of the first polymerization reactor, a polymerization intermediate corresponding to the supplied amount was discharged and supplied to a second polymerization reactor having a volume of 0.08 m 3 equipped with a condenser and a thermometer. The heating temperature of the second polymerization reactor was set to 250 ° C., continuous polymerization was performed under normal pressure, and discharge of the polycapramide as a polymerization reaction product was started. From the point of time when ε-caprolactam 1.5 times the capacity of the first polymerization reactor was supplied, pelletization was performed to obtain a polycapramide-based yarn-making material.
 得られたポリカプラミド系製糸材料は、95℃の熱水により16時間処理し、低分子量成分を除去した。得られたポリアミド6樹脂の硫酸相対粘度は2.60であり、アミノ末端基量は5.10×10-5mol/gであった。示差走査熱量計で測定したTmは230℃であった。
[実施例1]
 図1に示す、直接紡糸延伸装置を用い、溶融紡糸、延伸、熱処理を連続的に施しポリアミド56繊維を得た。
The resulting polycapramide-based yarn-making material was treated with hot water at 95 ° C. for 16 hours to remove low molecular weight components. The obtained polyamide 6 resin had a sulfuric acid relative viscosity of 2.60 and an amino end group content of 5.10 × 10 −5 mol / g. Tm measured with a differential scanning calorimeter was 230 ° C.
[Example 1]
Using the direct spinning and drawing apparatus shown in FIG. 1, melt spinning, drawing, and heat treatment were continuously performed to obtain polyamide 56 fibers.
 まず、製造例1で得たポリアミド56樹脂を水分率0.11%となるように調湿し、紡糸機に投入した。そして290℃にて溶融し、ポリマー配管を通して、紡糸口金2に導くに際し、ギヤポンプ1にてポリマーを計量、排出し、290℃に設定された紡糸口金2に導き、吐出孔径0.25mm、孔長0.5mmの丸孔を24ホール有する、紡糸口金2から紡出した。 First, the polyamide 56 resin obtained in Production Example 1 was conditioned to a moisture content of 0.11% and charged into a spinning machine. When melted at 290 ° C. and led to the spinneret 2 through the polymer pipe, the polymer was measured and discharged by the gear pump 1 and led to the spinneret 2 set at 290 ° C. Spinning was performed from the spinneret 2 having 24 holes of 0.5 mm round holes.
 この時、得られるポリアミド56繊維の総繊度が78dtexとなるようにギヤポンプ1の回転数を選定し31.2g/minの吐出量とした。そして糸条冷却装置3で糸条を冷却固化し、給油装置4により非含水油剤を給油したのち、第1流体交絡ノズル装置5で交絡を付与し、第1ロールである引き取りローラー6の周速度を2,066m/min、第2ロールである延伸ローラー7の周速度を4,123m/min、巻き取り速度を4,000m/min、で巻き取り、チーズパッケージを得た。以上のようにして紡糸、延伸、熱処理を1段階で施した78dtex24filamentのポリアミド56繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[実施例2]
 ギヤポンプ1の吐出量を34.1g/min、第1ロール周速度を4,250m/min、第2ロール周速度を4,463m/min、巻き取り速度を4,400m/minとしたこと以外は実施例1と同様の方法で78dtex24filamentのポリアミド56繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[実施例3]
 紡糸口金を吐出孔径0.20mm、孔長0.4mmの丸孔68ホール有する紡糸口金としギヤポンプ1の吐出量を30.42g/min、第1ロール周速度を3,600m/min、第2ロール周速度を3,960m/min、巻き取り速度を3,900m/minとしたこと以外は実施例1と同様の方法で78dtex68filamentのポリアミド56繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[比較例1]
 ギヤポンプ1の吐出量を30.9g/min、紡糸口金をφ0.30、孔長0.6mmの丸孔13ホールとし、第1ロール周速度を1,500m/min、第2ロール周速度を4,440m/min、巻き取り速度を4,050m/minとしたこと以外は実施例1と同様の方法で78dtex13filamentのポリアミド56繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[比較例2]
 ギヤポンプ1の吐出量を35.1g/min第1ロール周速度を4,400m/min、第2ロール周速度を4,600m/min、巻き取り速度を4,550m/minとしたこと以外は実施例1と同様の方法で78dtex24filamentのポリアミド56繊維を得た。得られた繊維の物性を表1に示す。
[比較例3]
 ギヤポンプ1の吐出量を28.9g/min、第1ロール周速度を2,000m/min、第2ロール周速度を3,730m/min、巻き取り速度を3,700m/minとしたこと以外は実施例1と同様の方法で溶融紡糸したが、紡糸糸切れが多発し、安定紡糸できなかった。
At this time, the rotation speed of the gear pump 1 was selected so that the total fineness of the obtained polyamide 56 fiber was 78 dtex, and the discharge amount was 31.2 g / min. Then, after the yarn is cooled and solidified by the yarn cooling device 3 and the non-hydrous oil agent is supplied by the oil supply device 4, entanglement is given by the first fluid entanglement nozzle device 5, and the peripheral speed of the take-up roller 6 that is the first roll. Was wound at 2,066 m / min, the peripheral speed of the stretching roller 7 as the second roll was 4,123 m / min, and the winding speed was 4,000 m / min to obtain a cheese package. As described above, a polyamide 56 fiber of 78 dtex 24 filament subjected to spinning, stretching, and heat treatment in one stage was obtained. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and a mold processing evaluation was performed. The evaluation results are shown in Table 1.
[Example 2]
Except that the discharge rate of the gear pump 1 is 34.1 g / min, the first roll peripheral speed is 4,250 m / min, the second roll peripheral speed is 4,463 m / min, and the winding speed is 4,400 m / min. In the same manner as in Example 1, 78 dtex 24 filament polyamide 56 fiber was obtained. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and a mold processing evaluation was performed. The evaluation results are shown in Table 1.
[Example 3]
The spinneret is a spinneret having a discharge hole diameter of 0.20 mm and a hole length of 0.4 mm and 68 holes, and the discharge rate of the gear pump 1 is 30.42 g / min, the first roll peripheral speed is 3,600 m / min, and the second roll A 78 dtex 68 filament polyamide 56 fiber was obtained in the same manner as in Example 1 except that the peripheral speed was 3,960 m / min and the winding speed was 3,900 m / min. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and a mold processing evaluation was performed. The evaluation results are shown in Table 1.
[Comparative Example 1]
The discharge amount of the gear pump 1 is 30.9 g / min, the spinneret is φ0.30, the hole length is 0.6 mm, the hole is 13 holes, the first roll peripheral speed is 1,500 m / min, and the second roll peripheral speed is 4 , 440 m / min and a winding speed of 4,050 m / min were used, and 78 dtex 13 filament polyamide 56 fiber was obtained in the same manner as in Example 1. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and a mold processing evaluation was performed. The evaluation results are shown in Table 1.
[Comparative Example 2]
Except that the discharge rate of the gear pump 1 is 35.1 g / min, the first roll peripheral speed is 4,400 m / min, the second roll peripheral speed is 4,600 m / min, and the winding speed is 4,550 m / min. In the same manner as in Example 1, 78 dtex 24 filament polyamide 56 fiber was obtained. Table 1 shows the physical properties of the obtained fiber.
[Comparative Example 3]
Except that the discharge rate of the gear pump 1 is 28.9 g / min, the first roll peripheral speed is 2,000 m / min, the second roll peripheral speed is 3,730 m / min, and the winding speed is 3,700 m / min. Although melt spinning was performed in the same manner as in Example 1, spun yarn breakage occurred frequently and stable spinning could not be performed.
 [比較例4]
 紡糸口金をφ0.40、孔長0.8mmの丸孔24ホール有する紡糸口金としたこと以外は実施例1と同様の方法で溶融紡糸したが、紡糸糸切れが多発し、安定紡糸できなかった。
[比較例5]
 ポリアミド56樹脂の代わりに製造例2で製造したポリアミド66樹脂を用いたこと以外は実施例1と同様の方法でポリアミド66繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[比較例6]
 ポリアミド56樹脂の代わりに製造例2で製造したポリアミド66樹脂にポリビニルピロリドンを5重量%ブレンドした混合樹脂を用いたこと以外は実施例1と同様の方法で溶融紡糸したが、紡糸糸切れが多発し、安定紡糸できなかった。
[比較例7]
 ポリアミド56樹脂の代わりに製造例3で製造したポリアミド6樹脂にポリビニルピロリドンを5重量%ブレンドした混合樹脂を用い、溶融温度、口金温度を260℃としたこと以外は実施例1と同様の方法でポリアミド6繊維を得た。得られた繊維の物性を表1に示す。また得られた繊維よりトリコット編地を編成し、モールド加工評価を実施した。評価結果を表1に示す。
[Comparative Example 4]
Melt spinning was performed in the same manner as in Example 1 except that the spinneret was a spinneret having a round hole of φ0.40 and a hole length of 0.8 mm, but the spinning yarn was broken frequently and stable spinning could not be performed. .
[Comparative Example 5]
A polyamide 66 fiber was obtained in the same manner as in Example 1 except that the polyamide 66 resin produced in Production Example 2 was used instead of the polyamide 56 resin. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and mold processing evaluation was performed. The evaluation results are shown in Table 1.
[Comparative Example 6]
Although melt spinning was performed in the same manner as in Example 1 except that a mixed resin obtained by blending 5% by weight of polyvinyl pyrrolidone with the polyamide 66 resin produced in Production Example 2 was used instead of the polyamide 56 resin, spun yarn breakage occurred frequently. However, stable spinning was not possible.
[Comparative Example 7]
A mixed resin obtained by blending 5% by weight of polyvinyl pyrrolidone with the polyamide 6 resin produced in Production Example 3 instead of the polyamide 56 resin was used in the same manner as in Example 1 except that the melting temperature and the die temperature were set to 260 ° C. Polyamide 6 fibers were obtained. Table 1 shows the physical properties of the obtained fiber. Further, a tricot knitted fabric was knitted from the obtained fibers, and mold processing evaluation was performed. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1:ギヤポンプ
2:紡糸口金
3:糸条冷却装置
4:給油装置
5:第1流体交絡ノズル装置
6:引き取りローラー
7:延伸ローラー
8:ワインダー
1: gear pump 2: spinneret 3: yarn cooling device 4: oil supply device 5: first fluid entanglement nozzle device 6: take-up roller 7: stretching roller 8: winder
 本発明により強度、耐薬品性、耐熱性といったポリアミドの特性を損なうことなく、高い吸湿率を有する付加価値の高い吸湿性合成繊維を得ることができる。 According to the present invention, a high value-added hygroscopic synthetic fiber having a high moisture absorption rate can be obtained without impairing the properties of the polyamide such as strength, chemical resistance and heat resistance.
 したがって、本発明の吸湿性合成繊維は、衣料用途、特にインナー、スポーツウェアなどの用途に適している。 Therefore, the hygroscopic synthetic fiber of the present invention is suitable for apparel use, especially for inner wear, sportswear and the like.

Claims (7)

  1. ポリアミド56樹脂からなる繊維であって、ΔMRが3.0%以上である吸湿性繊維。 A hygroscopic fiber comprising a polyamide 56 resin and having a ΔMR of 3.0% or more.
  2. 繊維の複屈折が30×10-3以上40×10-3以下である請求項1に記載の吸湿性繊維。 2. The hygroscopic fiber according to claim 1, wherein the birefringence of the fiber is 30 × 10 −3 or more and 40 × 10 −3 or less.
  3. 口金から吐出されたポリアミド56繊維を冷却風にて冷却固化させた後、紡糸用油剤を付着させ、延伸した後、巻き取る、直接紡糸延伸法によるポリアミド56繊維の製造方法であって、次の(1)~(2)の条件を満たす吸湿性繊維の製造方法。
    (1)口金吐出線速度が14m/min以上30m/min以下
    (2)引取速度と延伸倍率の積が3900以上4500以下
    A method for producing a polyamide 56 fiber by a direct spinning drawing method in which a polyamide 56 fiber discharged from a die is cooled and solidified with cooling air, and then a spinning oil is attached, drawn, and wound up. A method for producing a hygroscopic fiber that satisfies the conditions (1) to (2).
    (1) The die discharge linear velocity is 14 m / min or more and 30 m / min or less. (2) The product of the take-up speed and the draw ratio is 3900 or more and 4500 or less.
  4. 請求項1、2いずれかに記載の吸湿性繊維を用いてなる布帛。 A fabric comprising the hygroscopic fiber according to claim 1.
  5. 請求項1、2いずれかに記載の吸湿性繊維を用いてなる布帛であって、モールド加工を行って成型された部分を含む布帛。 A fabric comprising the hygroscopic fiber according to claim 1, wherein the fabric includes a portion formed by molding.
  6. 請求項4、5いずれかに記載の布帛を含む繊維構造体。 A fiber structure comprising the fabric according to claim 4.
  7. 繊維構造体がインナーである請求項6に記載の繊維構造体。 The fiber structure according to claim 6, wherein the fiber structure is an inner.
PCT/JP2011/055454 2010-03-31 2011-03-09 Hygroscopic fibre, and manufacturing method for same WO2011122272A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127025362A KR101550960B1 (en) 2010-03-31 2011-03-09 Hygroscopic fibre, and manufacturing method for same
CN201180016429.4A CN102834556B (en) 2010-03-31 2011-03-09 Moisture-absorbing fibre and manufacture method thereof
EP20110762512 EP2554721B1 (en) 2010-03-31 2011-03-09 Hygroscopic fibre, and manufacturing method for same
US13/636,371 US20130280513A1 (en) 2010-03-31 2011-03-09 Hygroscopic fiber, and manufacturing method for same
JP2011522312A JP5741434B2 (en) 2010-03-31 2011-03-09 Hygroscopic fiber and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-080643 2010-03-31
JP2010080643 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122272A1 true WO2011122272A1 (en) 2011-10-06

Family

ID=44711997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055454 WO2011122272A1 (en) 2010-03-31 2011-03-09 Hygroscopic fibre, and manufacturing method for same

Country Status (6)

Country Link
US (1) US20130280513A1 (en)
EP (1) EP2554721B1 (en)
JP (1) JP5741434B2 (en)
KR (1) KR101550960B1 (en)
CN (1) CN102834556B (en)
WO (1) WO2011122272A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117978A (en) * 2014-12-19 2016-06-30 展頌股▲ふん▼有限公司 Dull polyamide 56 fiber and method for producing the same
JP2018527479A (en) * 2015-09-14 2018-09-20 ローディア ポリアミダ エ エスペシアリダデス エス.アー. Polyamide fiber having improved comfort management, method thereof, and article made therefrom
JP2019513911A (en) * 2016-04-04 2019-05-30 ローディア ポリアミダ エ エスペシアリダデス エス.アー. Biodegradable polyamide fibers, process for obtaining such fibers, and polyamide articles made therefrom
CN110055602A (en) * 2019-05-22 2019-07-26 江苏太极实业新材料有限公司 56 high-tenacity industrial yarn of polyamide and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884217B (en) * 2013-10-28 2019-06-21 上海凯赛生物技术研发中心有限公司 Nylon fiber and preparation method thereof
KR102465144B1 (en) * 2015-05-22 2022-11-10 도레이 카부시키가이샤 Hygroscopic core-sheath composite yarn and its manufacturing method
CN104894665A (en) * 2015-06-19 2015-09-09 南通安恒化纤有限公司 Tyron short fiber and preparation method thereof
CN108505133B (en) * 2017-02-24 2022-02-08 上海凯赛生物技术股份有限公司 Polyamide 5X fiber and preparation method thereof
US10784785B2 (en) * 2017-12-21 2020-09-22 Texas Instruments Incorporated Monitoring SMPS power switch voltage via switch drain source capacitance
US20210040650A1 (en) * 2018-01-25 2021-02-11 Toray Industries, Inc. Polyamide multifilament and knitted lace manufactured using same
CN112501702B (en) * 2020-11-27 2022-09-06 军事科学院系统工程研究院军需工程技术研究所 Functional polyamide 56 filament and preparation method thereof
CN112626626B (en) * 2020-12-02 2022-07-15 军事科学院系统工程研究院军需工程技术研究所 One-step continuous forming and flexible deformation preparation process and equipment for polyamide 56 filaments

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246818A (en) 1984-05-21 1985-12-06 Teijin Ltd Conjugated synthetic yarn
JPH03213519A (en) 1990-01-16 1991-09-18 Kuraray Co Ltd Conjugate fiber
JPH05209316A (en) 1992-01-30 1993-08-20 Toray Ind Inc Core-sheath type conjugate fiber having excellent hygroscopic property
JPH09188917A (en) 1995-11-06 1997-07-22 Toray Ind Inc Highly hygroscopic polyamide fiber and its production
JPH11172505A (en) * 1997-12-10 1999-06-29 Triumph International Japan Ltd Mold-processed cloth having two-layer structure and its production
JP2006144163A (en) * 2004-11-18 2006-06-08 Mitsubishi Chemicals Corp Polyamide filament
JP2009179899A (en) * 2008-01-30 2009-08-13 Toray Ind Inc Crimped yarn composed of polyamide 56, and carpet comprising the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121150B2 (en) * 1992-06-18 2000-12-25 旭化成工業株式会社 Polyamide fiber for ink ribbon
TW371679B (en) * 1996-02-21 1999-10-11 Toray Industries Method for producing coarse and fine polyesteramide staple
TW507028B (en) * 1999-02-12 2002-10-21 Asahi Chemical Ind A moisture-absorbable synthetic fiber with an improved moisture-release property
US6899836B2 (en) * 2002-05-24 2005-05-31 Invista North America S.A R.L. Process of making polyamide filaments
JP4265158B2 (en) * 2002-07-03 2009-05-20 東レ株式会社 Method for producing polyamide fiber product
JP2004270109A (en) * 2003-03-12 2004-09-30 Toray Ind Inc Fibrous product using super porous synthetic fiber
JP2006132041A (en) * 2004-11-08 2006-05-25 Toyobo Co Ltd Stocking
JP2006233380A (en) * 2005-02-25 2006-09-07 Toray Ind Inc Polyamide multifilament yarn, method for producing the same and knitted product for inner
JP2006265787A (en) * 2005-03-25 2006-10-05 Toray Ind Inc Moisture-absorbing fiber
CN100497768C (en) * 2005-09-16 2009-06-10 华南理工大学 Moisture-absorption modifier, and its preparing method and use in polyamide fiber
JP4831027B2 (en) * 2007-09-12 2011-12-07 東レ株式会社 Fiber, rubber reinforced cord, and reinforced rubber
CN102046859B (en) * 2008-03-26 2013-09-25 东丽株式会社 Polyamide 56 filament, and fiber structure and air-bag base cloth each comprising the same
JP5549244B2 (en) * 2010-01-29 2014-07-16 東レ株式会社 Hygroscopic polyamide 56 short fiber
JP5454191B2 (en) * 2010-02-09 2014-03-26 東レ株式会社 Crimped yarn and fiber structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246818A (en) 1984-05-21 1985-12-06 Teijin Ltd Conjugated synthetic yarn
JPH03213519A (en) 1990-01-16 1991-09-18 Kuraray Co Ltd Conjugate fiber
JPH05209316A (en) 1992-01-30 1993-08-20 Toray Ind Inc Core-sheath type conjugate fiber having excellent hygroscopic property
JPH09188917A (en) 1995-11-06 1997-07-22 Toray Ind Inc Highly hygroscopic polyamide fiber and its production
JPH11172505A (en) * 1997-12-10 1999-06-29 Triumph International Japan Ltd Mold-processed cloth having two-layer structure and its production
JP2006144163A (en) * 2004-11-18 2006-06-08 Mitsubishi Chemicals Corp Polyamide filament
JP2009179899A (en) * 2008-01-30 2009-08-13 Toray Ind Inc Crimped yarn composed of polyamide 56, and carpet comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2554721A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016117978A (en) * 2014-12-19 2016-06-30 展頌股▲ふん▼有限公司 Dull polyamide 56 fiber and method for producing the same
JP2018527479A (en) * 2015-09-14 2018-09-20 ローディア ポリアミダ エ エスペシアリダデス エス.アー. Polyamide fiber having improved comfort management, method thereof, and article made therefrom
JP2019513911A (en) * 2016-04-04 2019-05-30 ローディア ポリアミダ エ エスペシアリダデス エス.アー. Biodegradable polyamide fibers, process for obtaining such fibers, and polyamide articles made therefrom
CN110055602A (en) * 2019-05-22 2019-07-26 江苏太极实业新材料有限公司 56 high-tenacity industrial yarn of polyamide and preparation method thereof
CN110055602B (en) * 2019-05-22 2021-05-04 江苏太极实业新材料有限公司 Polyamide 56 high-tenacity industrial yarn and preparation method thereof

Also Published As

Publication number Publication date
EP2554721A1 (en) 2013-02-06
JP5741434B2 (en) 2015-07-01
EP2554721B1 (en) 2015-01-21
JPWO2011122272A1 (en) 2013-07-08
EP2554721A4 (en) 2013-12-25
US20130280513A1 (en) 2013-10-24
KR20130040793A (en) 2013-04-24
KR101550960B1 (en) 2015-09-07
CN102834556A (en) 2012-12-19
CN102834556B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5741434B2 (en) Hygroscopic fiber and method for producing the same
JP6127969B2 (en) Polyamide fiber and method for producing the same
JP6687035B2 (en) Polyamide multifilament and lace knitting and stockings using the same
WO2016098717A1 (en) Moisture absorbent core sheath composite yarn
JP6090546B1 (en) Hygroscopic core-sheath composite yarn and method for producing the same
JP2016204784A (en) Polyamide core-sheath composite fiber excellent in hygroscopicity and contact cool feeling and fabric using the same
KR102575877B1 (en) Core-sheath composite cross-sectional fiber with excellent hygroscopicity and wrinkle resistance
CN108350607A (en) Can high-temperature dyeing Fypro
JP6600969B2 (en) Core-sheath composite cross-section fiber with excellent moisture absorption / release performance
JP6690160B2 (en) Anti-static polyamide core-sheath composite fiber with excellent durability
JP2006124851A (en) Highly hygroscopic polyamide combined filament yarn with different shrinkage percentage and method for producing the same
JP2016117979A (en) Hygroscopic sheath-core conjugated yarn excellent in washing durability
JP2006111991A (en) Highly hygroscopic polyamide fiber having excellent heat resistance and method for producing the same
JP2006111989A (en) Highly hygroscopic polyamide fiber having excellent dyeability and method for producing the same
JP2016132828A (en) Hygroscopic core-sheath conjugated yarn
JP2006111992A (en) Highly hygroscopic polyamide fiber and method for producing the same
JP2009263831A (en) Fiber with sea-island-type conjugate cross section

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016429.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011522312

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762512

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011762512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127025362

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201005138

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13636371

Country of ref document: US