WO2011122180A1 - Polyurethane resin-forming composition and hydroinflating water-sealing material for steel sheet pile - Google Patents
Polyurethane resin-forming composition and hydroinflating water-sealing material for steel sheet pile Download PDFInfo
- Publication number
- WO2011122180A1 WO2011122180A1 PCT/JP2011/054028 JP2011054028W WO2011122180A1 WO 2011122180 A1 WO2011122180 A1 WO 2011122180A1 JP 2011054028 W JP2011054028 W JP 2011054028W WO 2011122180 A1 WO2011122180 A1 WO 2011122180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polyurethane resin
- forming composition
- water
- organic polyisocyanate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4804—Two or more polyethers of different physical or chemical nature
- C08G18/4808—Mixtures of two or more polyetherdiols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4833—Polyethers containing oxyethylene units
- C08G18/4837—Polyethers containing oxyethylene units and other oxyalkylene units
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K3/1006—Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
- C09K3/1021—Polyurethanes or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2190/00—Compositions for sealing or packing joints
Definitions
- the present invention relates to a polyurethane resin-forming composition and a water-swellable water-stopping material for steel sheet piles. More specifically, the present invention relates to a water-swellable water-swelling material for steel sheet piles having good curability, water-swelling property, water-stopping property, heat resistance and easy handling properties, and a polyurethane resin-forming composition used therefor.
- Moisture-cure water-swelling water-stopping materials that are used in a single solution or with the addition of a catalyst are widely used as jointing materials for civil engineering and construction, caulking materials, and steel sheet piles for water-stopping purposes. It is used.
- the water-stopping material disclosed in Patent Document 1 has a problem in that the resin deteriorates due to frictional heat generated during the driving operation of the steel sheet pile and the water-stopping property is lowered.
- a water-swellable water-stopping material that is used by blending two liquids of a main component containing a polyisocyanate group and a curing agent containing an active hydrogen group for the purpose of improving durability.
- the water-swellable water-stopping material disclosed in Patent Document 3 has a problem that heat resistance is insufficient.
- an object of the present invention is to provide a water-swellable water-stopping material that is rich in heat resistance and has sufficient durability against frictional heat, and a polyurethane resin-forming composition used therefor.
- the present invention includes the following (I) to (X).
- (I) A polyurethane resin-forming composition for obtaining a polyurethane resin, Organic polyisocyanate composition for water-stopping material (A) having an isocyanate group content of 0.5 to 15% by mass and containing an aromatic isocyanate group-terminated prepolymer (a1) and an aliphatic organic polyisocyanate (a2) )When, An amine-based polyol (B) having a nominal average functional group number of 3 to 6, The ratio of the isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is 2: 1 to 8: 1.
- the aromatic isocyanate group-terminated prepolymer (a1) is a reaction product of an aromatic polyisocyanate (a11) and a polyether polyol (a12),
- the polyether polyol (a12) is a polyether polyol (a12-1) having a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of And a polyether polyol (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass
- the aliphatic organic polyisocyanate (a2) is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), an activity having 2 to 3 functional groups and a molecular weight of 300 or less.
- One or more compounds selected from the group consisting of a reaction product (a23) of a hydrogen group-containing compound and an aliphatic diisocyanate And, The ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) is 8: A polyurethane resin-forming composition having a ratio of 1 to 1: 4. (II) The polyurethane resin-forming composition as described in (I) above, wherein the aliphatic organic polyisocyanate (a2) has an isocyanate group content of 5 to 50% by mass.
- (III) The polyurethane resin-forming composition as described in (I) or (II) above, wherein the isocyanate group content in the aliphatic organic polyisocyanate (a2) is 5 to 40% by mass.
- IV) The polyurethane resin-forming composition according to any one of (I) to (III), wherein the amine polyol (B) has a hydroxyl value of 250 to 1,200.
- V) The polyurethane resin-forming composition according to any one of (I) to (IV), wherein the polyether polyol (a12) has a number average molecular weight of 200 to 8,000.
- the aromatic isocyanate group-terminated prepolymer (a1) used in the present invention has one or two or more types of aromatic polyisocyanate (a11) and polyoxyalkylene chain having an oxyethylene group content of 50 to 100% by mass.
- aromatic polyisocyanate (a11) known aromatic polyisocyanates can be used.
- known 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate (hereinafter, tolylene diisocyanate is abbreviated as TDI)
- TDI tolylene diisocyanate
- xylene-1,4-diisocyanate xylene-1,3- Diisocyanate
- 4,4'-diphenylmethane diisocyanate 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate
- polymethylene polyphenylene polyisocyanate hereinafter abbreviated as polymeric MDI
- 2-nitro Diphenyl-4,4′-diisocyanate 2,2′-diphenylpropane-4,4′-diisocyanate
- 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-difelmethane diisocyanate, 2,4'-difelmethane diisocyanate and mixtures thereof have a high reaction rate, And it is preferable for the reason that physical properties are good.
- the polyether polyol (a12) is a polyether polyol having a polyoxyalkylene chain in which the ratio of oxyethylene groups in the polyoxyalkylene chain is 50 to 100% by mass.
- this polyether polyol (a12) it is possible to obtain an isocyanate group-terminated prepolymer having excellent hydrophilicity.
- the ratio of the polyoxyethylene group is less than 50% by mass, there is a problem in that a water-stopping material having sufficient water expandability cannot be obtained.
- the polyether polyol (a12) is preferably represented by the general formula R [— (OR 1 ) n OH] p (where R is a polyhydric alcohol residue, (OR 1 ) n is an oxyethylene group and a carbon number of 3 to A polyoxyalkylene chain comprising 4 alkylene groups (wherein the proportion of oxyethylene groups occupies 50 to 100% by mass of the mass of the polyoxyalkylene chains), and n is a number indicating the degree of polymerization of the oxyalkylene groups.
- R is a polyhydric alcohol residue
- (OR 1 ) n is an oxyethylene group and a carbon number of 3 to A polyoxyalkylene chain comprising 4 alkylene groups (wherein the proportion of oxyethylene groups occupies 50 to 100% by mass of the mass of the polyoxyalkylene chains), and n is a number indicating the degree of polymerization of the oxyalkylene groups.
- polyhydric alcohol examples include dihydric alcohols (ethylene glycol, propylene alcohol, etc.), trihydric alcohols (glycerin, trimethylolpropane, etc.), tetrahydric alcohols (erythritol, pentaerythritol, etc.), pentahydric alcohols (Arhat, xylit, etc. Etc.) and hexavalent alcohol (Sorbit, Mannich etc.).
- the polyether polyol (a12) has a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of 3
- a polyether resin (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, which makes it easy to balance the viscosity and the crosslink density. Is preferable from the viewpoint that can be obtained.
- the nominal average functional group number refers to the number of functional groups per molecule of an initiator such as a polyhydric alcohol used when obtaining a polyether polyol (the number of active hydrogen atoms per molecule of the initiator). .
- the proportion of the polyether polyol (a12-1) and the polyether polyol (a12-2) used is not particularly limited, but the mass ratio (a12-1: a12-2) is The ratio is preferably 2: 1 to 40: 1. If the ratio of the polyether polyol (a12-2) is less than the lower limit, the crosslink density of the water-stopping material is lowered and the strength tends to be lowered. If the ratio of the polyether polyol (a12-2) exceeds the upper limit, the viscosity of the isocyanate group-terminated prepolymer tends to be high, and workability tends to deteriorate.
- the aromatic isocyanate group-terminated prepolymer (a1) used in the present invention comprises the polyether polyol (a12) and the aromatic polyisocyanate (a11) as active hydrogen groups derived from the polyether polyol (a12). Is obtained by reacting the aromatic polyisocyanate (a11) -derived isocyanate group (NCO group) in an excessive amount.
- the ratio of the isocyanate group to the active hydrogen group is preferably 1.1: 1 to 3: 1.
- a known method can be appropriately employed.
- a mixture of the aromatic polyisocyanate (a11) and the polyether polyol (a12) can be used at 1 to 48 at 40 to 100 ° C. The method of stirring for a time is mentioned.
- the isocyanate group (NCO group) content in the aromatic isocyanate group-terminated prepolymer (a1) is preferably 0.5 to 15% by mass, and more preferably 1.0 to 5% by mass.
- the isocyanate group content is less than 0.5% by mass, the molecular weight becomes too large, so there is a problem that the viscosity of the isocyanate group-terminated prepolymer becomes high, and when it exceeds 15% by mass, when reacting with moisture in the air, Since the amount of carbon dioxide generated is too large, there is a problem that air bubbles increase in the water stop material obtained after curing.
- the aliphatic organic polyisocyanate (a2) used in the present invention is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), a functional group number of 2 to 3, and a molecular weight of 300.
- Examples of the isocyanurate group-containing organic polyisocyanate (a21) include tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate and other aliphatic diisocyanates; Hydrogenated tolylene diisocyanate; Hydrogenated xylene diisocyanate; Hydrogenated diphenylmethane diisocyanate; Tetramethylxylene diisocyanate; Starting from aliphatic diisocyanates such as norbornene diisocyanate, an isocyanuration catalyst is added according to a known synthesis method.
- HDI hexamethylene diisocyanate
- HDI hexamethylene diisocyanate
- 3-methyl-1,5-pentane diisocyanate lysine diisocyanate and other aliphatic diisocyanates
- the polymerization method for example, first, a mixture of the aliphatic diisocyanate and the isocyanurate-forming catalyst is stirred at 40 to 150 ° C. for 1 to 10 hours, and then the isocyanurate-forming catalyst is deactivated. Depending on the method, a method of distilling off the unreacted aliphatic diisocyanate may be mentioned.
- the isocyanurate-forming catalyst include organometallic compounds such as potassium acetate, quaternary ammonium salts and the like. The addition amount of such an isocyanurate-forming catalyst is preferably 0.0001 to 0.1 parts by mass with respect to 100 parts by mass of the aliphatic diisocyanate.
- the allophanate group-containing organic polyisocyanate (a22) includes the aliphatic diisocyanate and methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, cyclohexanol, 2-ethylhexanol, tridecanol.
- an active hydrogen group-containing compound having 1 to 3 functional groups (number of active hydrogen groups) such as glycerin and a molecular weight of 300 or less as a raw material
- an allophanatization catalyst is added and reacted according to a known synthesis method.
- the molecular weight of the active hydrogen group-containing compound is preferably 32 to 300.
- the allophanatization catalyst is added to a mixture in which the mass ratio of the aliphatic diisocyanate and the active hydrogen group-containing compound is 95: 5 to 60:40, and 90 to 150
- the method include stirring at 1 ° C. for 1 to 10 hours, then deactivating the allophanatization catalyst, and removing the unreacted aliphatic diisocyanate by distillation if necessary.
- the allophanatization catalyst include organometallic compounds such as tin octylate, and the addition amount of the allophanate catalyst is 0 with respect to 100 parts by mass of the mixture of the aliphatic diisocyanate and the active hydrogen group-containing compound. It is preferably 0.0001 to 0.1 parts by mass.
- the reaction product (a23) of the active hydrogen group-containing compound and the aliphatic diisocyanate is the same aliphatic diisocyanate as described above, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, diethylene glycol, dipropylene glycol, trimethylolpropane, glycerin, etc. have 2 to 3 functional groups and a molecular weight. It is obtained by reacting with an active hydrogen group-containing compound that is 300 or less.
- the molecular weight of the active hydrogen group-containing compound is preferably 62 to 300.
- the reaction method for example, first, the aliphatic diisocyanate and the active hydrogen group-containing compound are mixed at a mass ratio of 90:10 to 60:40 and stirred at 40 to 100 ° C. for 1 to 10 hours. Then, a method of distilling off the unreacted aliphatic diisocyanate as necessary is exemplified.
- Examples of the aliphatic organic polyisocyanate (a2) include the isocyanurate group-containing organic polyisocyanate (a21), the allophanate group-containing organic polyisocyanate (a22), the number of functional groups of 2 to 3, and a molecular weight of 300.
- the reaction product (a23) of the following active hydrogen group-containing compound and aliphatic diisocyanate these may be used alone or in combination of two or more at any ratio. At the same time, two or more of these may be synthesized and used.
- the isocyanate group (NCO group) content in the aliphatic organic polyisocyanate (a2) is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
- the isocyanate group content is less than 5% by mass, the molecular weight becomes too large and the blending amount with respect to the aromatic isocyanate group-terminated prepolymer (a1) increases, so that the magnification when the water-stopping material expands with water is increased.
- the gap between the steel sheet piles may not be filled, and if it exceeds 40% by mass, the molecule of the organic polyisocyanate becomes small, so that it tends to volatilize and there is a problem that the odor is tight.
- the ratio of the aromatic isocyanate group-terminated prepolymer (a1) to the aliphatic organic polyisocyanate (a2) is the ratio of isocyanate groups (isocyanate group of a1).
- the number of isocyanate groups in a2) is from 8: 1 to 1: 4, and preferably from 6: 1 to 1: 1.
- the amount of the aromatic isocyanate group-terminated prepolymer (a1) is larger than the above range, the strength, heat resistance, and consequently water-stop properties of the water-stopping material are likely to be adversely affected.
- the amount of the aliphatic organic polyisocyanate (a2) is larger than the above range, the magnification when the water-stopping material expands with water becomes low, so that there is a possibility that the gap between the steel sheet piles cannot be filled.
- organic polyisocyanate composition (A) used in the present invention other known stabilizers such as phosphate esters (trade name JP-508, manufactured by Johoku Chemical Industry Co., Ltd.), antifoaming agents (trade name BYK-A535, (Bikchemy Co., Ltd.) and additives such as plasticizers can be further contained.
- phosphate esters trade name JP-508, manufactured by Johoku Chemical Industry Co., Ltd.
- antifoaming agents trade name BYK-A535, (Bikchemy Co., Ltd.
- additives such as plasticizers
- amine-based polyol (B) used in the present invention a polyamine polyol obtained by adding an alkylene oxide to a compound having an amino group as an initiator can be used.
- the compound having an amino group used for the initiator include aliphatic amines such as ammonia, ethylenediamine, hexamethylenediamine, isophoronediamine, and diethylenetriamine; aromatic amines such as tolylenediamine and diphenylaminomethane.
- amine polyols having a highly basic aliphatic amine as an initiator are preferred in that the curing time can be shortened.
- the number of functional groups of the amine polyol (B) is preferably 3-6. If the number of functional groups is less than 3, the strength, heat resistance, and eventually water-stopping properties of the water-stopping material are likely to be adversely affected. When the number of functional groups is larger than 6, the viscosity becomes high and handling is difficult.
- the hydroxyl value of the amine polyol (B) is preferably 250 to 1,200.
- the hydroxyl value is less than 250, the blending amount increases, and further, the distance between the cross-linking points increases, so that the strength, heat resistance, and consequently water-stopping property of the water-stopping material are easily adversely affected.
- the hydroxyl value is greater than 1,200, the molecular weight is small, and therefore, it tends to volatilize and problems with odor are likely to occur.
- the ratio between the organic polyisocyanate composition (A) and the amine-based polyol (B) is such that the isocyanate group derived from the aromatic isocyanate group-terminated prepolymer (a1) and the amine-based polyol (B). It is desirable that the ratio (number of isocyanate groups: number of hydroxyl groups) to hydroxyl groups derived from is 2: 1 to 8: 1. If there are more hydroxyl groups than the above upper limit, the urethane bond, which has a lower cohesive force than the urea bond produced when reacting with moisture in the air, will increase, and this will have an adverse effect on the strength, heat resistance, and thus water stoppage of the waterstop material. Cheap. When the number of hydroxyl groups is less than the lower limit, crosslinking by the amine-based polyol (B) is reduced, and thus the strength, heat resistance, and consequently water-stop properties of the water-stopping material are likely to be adversely affected.
- the plasticizer (C) used in the present invention may be any known plasticizer, for example, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, di-2-ethylhexyl phthalate, phthalic acid Diisononyl, diisodecyl phthalate, butyl benzyl phthalate, diethyl adipate, dibutyl adipate, dihexyl adipate, diethylhexyl adipate, diisononyl adipate, diisodecyl adipate, bis (butyldiglycol) adipate, diethyl sebacate, sebacin Dibutyl acid, dihexyl sebacate, di-2-ethylhexyl sebacate, dimethyl maleate, diethyl maleate, dibutyl maleate, dihexyl maleate, di-2-ethylhe
- 1-phenyl-1-xylylethane 1-phenyl-1-ethylphenylethane, and diisodecyl phthalate are preferable because a water-stopping material having good hydrolysis resistance can be obtained.
- the proportion of the plasticizer (C) is not particularly limited, but preferably the mass of the plasticizer (C) is the above. It is good to set it as the quantity which does not exceed the total mass of an aromatic isocyanate group terminal prepolymer (a1) and the said aliphatic organic polyisocyanate (a2). If the ratio of the plasticizer (C) is too large, the magnification when the water-stopping material expands with water becomes low, and therefore there is a possibility that the gap between the steel sheet piles cannot be filled.
- any ordinary catalyst that promotes the urethanization reaction can be used.
- Carboxylic acid salts carboxylic acid metal salts such as potassium acetate, potassium octylate and tin octylate; and organometallic compounds such as dibutyltin laurate.
- the polyurethane resin-forming composition of the present invention preferably contains the catalyst (D) from the viewpoint of shortening the curing time.
- the amount used is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the organic polyisocyanate composition (A). is there. If the amount is less than the above range, the curing time tends not to be shortened. If the amount of the catalyst (C) used is more than the above range, the curing time after blending is shortened, which may cause problems in workability. There is.
- the water-swellable water-stopping material of the present invention can be obtained by curing the polyurethane resin-forming composition of the present invention, and is preferably used as a water-stopping material for steel sheet piles.
- a known method can be appropriately employed. Examples thereof include a method in which the polyurethane resin-forming composition of the present invention is allowed to stand at 0 to 40 ° C. for 1 to 96 hours.
- C-2770 HDI allophanate (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 19.4% by mass)
- C-HL Adduct body of HDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 12.8% by mass)
- MR-200 Polymeric MDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 30.7% by mass)
- Curing agents “H1” to “H14” were obtained by using the compounds described in the raw materials of the following curing agents and mixing and stirring the components in the combinations and blending ratios shown in Table 2 until they were uniform at room temperature.
- the curing agent was mixed with the main agent in the amounts shown in Table 3, and placed on a plastic tray having a length of 19 cm, a width of 10 cm, and a depth of 2 cm installed on a horizontal table. After pouring to a thickness of 2 mm, the cured film-like water-stopping material obtained every 4 hours by leaving at 25 ° C. is immersed in ion-exchanged water at 25 ° C. for 24 hours, and JIS No. 2 according to JIS K6251. It was punched with a dumbbell, and the tensile strength was measured at 300 mm / min using this as a test piece. The results are shown in Table 3. The time at which a tensile strength equivalent to that obtained by curing for 48 hours was taken as the curing time.
- the ratio of the tensile strength (N) after water swelling after heating abuse to the tensile strength (N) after water swelling after room temperature curing was calculated as the heating abuse maintenance rate.
- the results are shown in Table 3. Heat abuse maintenance rate: 80% or more is acceptable.
- the waterstop material of the present invention obtained by adding the aliphatic organic polyisocyanate (a2) to the aromatic isocyanate group-terminated prepolymer (a1), there is a difference in the reaction rate of the isocyanate group.
- the isocyanate group of the fast-reacting aromatic isocyanate-terminated prepolymer (a1) reacts with moisture taken in from the air to become an amino-terminated terminal, and then the slow-reacting aliphatic organic polyisocyanate (a2) isocyanate Because of the stepwise cross-linking effect that the group reacts with the amino group terminal to form a urea bond, as shown in Table 3, high post-water swelling tensile strength can be obtained even after heat abuse.
- the water-stopping material to which the aliphatic organic polyisocyanate (a2) is not added has no difference in the reaction rate of the isocyanate group, the reaction between the isocyanate group and moisture is performed simultaneously.
- the cross-linking effect of further reacting an amino group, which is a reaction product of water and an isocyanate group, with an unreacted isocyanate group is reduced, so that the tensile strength after water swelling after heat abuse is lowered.
- the thing with little addition amount of the said aliphatic organic polyisocyanate (a2) similarly falls the tensile strength after water swelling.
- the amount of the aliphatic organic polyisocyanate (a2) added is too large, the content of the isocyanate group-terminated prepolymer and the content of the oxyethylene group are relatively decreased, so that the volume swelling ratio is decreased.
- the addition of aromatic polyisocyanate in place of the aliphatic organic polyisocyanate (a2) provides a certain degree of tensile strength after water swelling after curing at room temperature. Since the group urea bond is more likely to occur, the decrease in tensile strength after water swelling after heat abuse is significant.
- the urethane bond is more excellent in hydrolysis resistance than the urea bond, and thus further excellent heat resistance. Properties are obtained, and there is almost no decrease in tensile strength after water swelling after heat abuse.
- the ratio of isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is more than 2: 1.
- the ratio of the isocyanate group derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl group derived from the amine-based polyol (B) (number of isocyanate groups: number of hydroxyl groups) is less than 8: 1 Since the crosslinking effect by addition of the amine-based polyol (B) cannot be obtained, the heat abuse maintenance rate is low, and the decrease in tensile strength after water swelling after heat abuse is remarkable.
- the present invention it is possible to provide a water-swellable water-stopping material that is rich in heat resistance and has sufficient durability against frictional heat, and a polyurethane resin-forming composition used therefor. Further, by providing a polyurethane resin-forming composition of the present invention with a catalyst, a polyurethane resin-forming composition having a suitable formability of curing in a short time while ensuring a sufficient working time is provided. Can do. Accordingly, the polyurethane resin-forming composition of the present invention and the water-swellable water-stopping material obtained thereby are preferably used as joint materials for civil engineering and building applications for the purpose of water-stopping, caulking materials, water-stopping materials for steel sheet piles, and the like. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Sealing Material Composition (AREA)
Abstract
Disclosed is a polyurethane resin-forming composition containing: an aromatic isocyanate-terminated pre-polymer (a1); one or more aliphatic organic polyisocyanate compounds (a2) chosen from a specified group; and an organic polyisocyanate composition for waterproofing (A) with an isocynanate group content and ratio number within a set range and an amine polyol (B) with a nominal average functionality of 3-6, wherein the ratio of isocyanate group to hydroxyl group thereof is within a specified range. Here, the pre-polymer (A1) is a reaction product of an aromatic polyisocyanate (a11) and a polyether polyol (a12), and the polyether polyol (a12) comprises a polyethyl polyol (a12-1) with a nominal average functionality of 2 and oxyethylene group content within a specified range, and a polyethyl polyol (a12-2) with a nominal average functionality of 3 and oxyethylene group content within a specified range.
Description
本発明は、ポリウレタン樹脂形成性組成物及び鋼矢板用水膨張性止水材に関する。さらに詳しくは、良好な硬化性、水膨張性、止水性、耐熱性と容易な取扱性を兼ね備えた鋼矢板用水膨張性止水材及びそれに用いるポリウレタン樹脂形成性組成物に関する。
The present invention relates to a polyurethane resin-forming composition and a water-swellable water-stopping material for steel sheet piles. More specifically, the present invention relates to a water-swellable water-swelling material for steel sheet piles having good curability, water-swelling property, water-stopping property, heat resistance and easy handling properties, and a polyurethane resin-forming composition used therefor.
1液で、もしくは触媒を添加して使用する湿気硬化型の水膨張性止水材は、止水を目的とした土木建築用途の目地材、コーキング材、鋼矢板用の止水材等に広く用いられている。
Moisture-cure water-swelling water-stopping materials that are used in a single solution or with the addition of a catalyst are widely used as jointing materials for civil engineering and construction, caulking materials, and steel sheet piles for water-stopping purposes. It is used.
しかしながら、特許文献1に開示された止水材では、鋼矢板の打ち込み作業中に発生する摩擦熱で樹脂が劣化し、止水性が低下するという問題点がある。
However, the water-stopping material disclosed in Patent Document 1 has a problem in that the resin deteriorates due to frictional heat generated during the driving operation of the steel sheet pile and the water-stopping property is lowered.
また、耐久性を上げる目的としてポリイソシアネート基を含有する主剤及び活性水素基を含有する硬化剤の2液を配合して使用する水膨張性止水材を開示したものがある。
In addition, there is a disclosure of a water-swellable water-stopping material that is used by blending two liquids of a main component containing a polyisocyanate group and a curing agent containing an active hydrogen group for the purpose of improving durability.
しかしながら、特許文献2において開示されているような2液型の止水材においては、芳香族系イソシアネートと芳香族アミン硬化剤との組み合わせにするとポットライフが非常に短くなり実用性に乏しくなるため、用いることができるイソシアネートとしては脂肪族イソシアネートに限定されている。また、脂肪族イソシアネートは芳香族イソシアネートに比較して反応が遅いため、合成時間が長くなり製造を効率的に行うことができないという問題点がある。
However, in a two-component water-stopping material as disclosed in Patent Document 2, if a combination of an aromatic isocyanate and an aromatic amine curing agent is used, the pot life becomes very short and the practicality becomes poor. The isocyanates that can be used are limited to aliphatic isocyanates. In addition, since aliphatic isocyanates have a slower reaction than aromatic isocyanates, there is a problem that the synthesis time becomes long and the production cannot be performed efficiently.
さらに、特許文献3に開示されている水膨張性の止水材においては、耐熱性が不十分であるという問題点がある。
Furthermore, the water-swellable water-stopping material disclosed in Patent Document 3 has a problem that heat resistance is insufficient.
従って、本発明の目的は、耐熱性に富み、摩擦熱に対する耐久性が十分ある水膨張性止水材及びそれに用いるポリウレタン樹脂形成性組成物を提供することにある。
Therefore, an object of the present invention is to provide a water-swellable water-stopping material that is rich in heat resistance and has sufficient durability against frictional heat, and a polyurethane resin-forming composition used therefor.
本発明者らは、上記従来の水膨張性止水材における問題を解決すべく、鋭意検討した結果、本発明に到達した。
すなわち本発明は、以下の(I)から(X)である。
(I) ポリウレタン樹脂を得るためのポリウレタン樹脂形成性組成物であって、
イソシアネート基含有量が0.5~15質量%であり、芳香族系イソシアネート基末端プレポリマー(a1)及び脂肪族系有機ポリイソシアネート(a2)を含有する止水材用有機ポリイソシアネート組成物(A)と、
公称平均官能基数が3~6であるアミン系ポリオール(B)とを、
前記芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が2:1~8:1となるように含有しており、
前記芳香族系イソシアネート基末端プレポリマー(a1)が、芳香族ポリイソシアネート(a11)とポリエーテルポリオール(a12)との反応生成物であり、
前記ポリエーテルポリオール(a12)が、公称平均官能基数が2でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-1)と、公称平均官能基数が3でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-2)とからなり、
前記脂肪族系有機ポリイソシアネート(a2)が、イソシアヌレート基含有有機ポリイソシアネート(a21)、アロファネート基含有有機ポリイソシアネート(a22)、及び、官能基数が2~3であり分子量が300以下である活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)からなる群から選択される一以上の化合物であり、
かつ、
前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が8:1~1:4であるポリウレタン樹脂形成性組成物。
(II) 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~50質量%である前記(I)に記載のポリウレタン樹脂形成性組成物。
(III) 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~40質量%である前記(I)又は(II)に記載のポリウレタン樹脂形成性組成物。
(IV) 前記アミン系ポリオール(B)の水酸基価が250~1,200である前記(I)から(III)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(V) 前記ポリエーテルポリオール(a12)の数平均分子量が200~8,000である前記(I)から(IV)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VI) 前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が6:1~1:1である前記(I)から(V)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VII) 前記止水材用有機ポリイソシアネート組成物(A)が可塑剤(C)をさらに含有する前記(I)から(VI)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VIII) 触媒(D)をさらに含有する前記(I)から(VII)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(IX) 可塑剤(C)をさらに含有する前記(XIII)に記載のポリウレタン樹脂形成性組成物。
(X) 前記(I)から(IX)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物を用いた鋼矢板用水膨張性止水材。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the problems in the conventional water-swellable water-stopping material.
That is, the present invention includes the following (I) to (X).
(I) A polyurethane resin-forming composition for obtaining a polyurethane resin,
Organic polyisocyanate composition for water-stopping material (A) having an isocyanate group content of 0.5 to 15% by mass and containing an aromatic isocyanate group-terminated prepolymer (a1) and an aliphatic organic polyisocyanate (a2) )When,
An amine-based polyol (B) having a nominal average functional group number of 3 to 6,
The ratio of the isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is 2: 1 to 8: 1. Is contained so that
The aromatic isocyanate group-terminated prepolymer (a1) is a reaction product of an aromatic polyisocyanate (a11) and a polyether polyol (a12),
The polyether polyol (a12) is a polyether polyol (a12-1) having a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of And a polyether polyol (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass,
The aliphatic organic polyisocyanate (a2) is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), an activity having 2 to 3 functional groups and a molecular weight of 300 or less. One or more compounds selected from the group consisting of a reaction product (a23) of a hydrogen group-containing compound and an aliphatic diisocyanate,
And,
The ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) is 8: A polyurethane resin-forming composition having a ratio of 1 to 1: 4.
(II) The polyurethane resin-forming composition as described in (I) above, wherein the aliphatic organic polyisocyanate (a2) has an isocyanate group content of 5 to 50% by mass.
(III) The polyurethane resin-forming composition as described in (I) or (II) above, wherein the isocyanate group content in the aliphatic organic polyisocyanate (a2) is 5 to 40% by mass.
(IV) The polyurethane resin-forming composition according to any one of (I) to (III), wherein the amine polyol (B) has a hydroxyl value of 250 to 1,200.
(V) The polyurethane resin-forming composition according to any one of (I) to (IV), wherein the polyether polyol (a12) has a number average molecular weight of 200 to 8,000.
(VI) Ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) The polyurethane resin-forming composition according to any one of (I) to (V), wherein is 6: 1 to 1: 1.
(VII) The polyurethane resin-forming composition according to any one of (I) to (VI), wherein the organic polyisocyanate composition (A) for water-stopping material further contains a plasticizer (C). .
(VIII) The polyurethane resin-forming composition according to any one of (I) to (VII), further containing a catalyst (D).
(IX) The polyurethane resin-forming composition according to (XIII), further including a plasticizer (C).
(X) A water-swellable water-stopping material for steel sheet piles using the polyurethane resin-forming composition according to any one of (I) to (IX).
すなわち本発明は、以下の(I)から(X)である。
(I) ポリウレタン樹脂を得るためのポリウレタン樹脂形成性組成物であって、
イソシアネート基含有量が0.5~15質量%であり、芳香族系イソシアネート基末端プレポリマー(a1)及び脂肪族系有機ポリイソシアネート(a2)を含有する止水材用有機ポリイソシアネート組成物(A)と、
公称平均官能基数が3~6であるアミン系ポリオール(B)とを、
前記芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が2:1~8:1となるように含有しており、
前記芳香族系イソシアネート基末端プレポリマー(a1)が、芳香族ポリイソシアネート(a11)とポリエーテルポリオール(a12)との反応生成物であり、
前記ポリエーテルポリオール(a12)が、公称平均官能基数が2でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-1)と、公称平均官能基数が3でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-2)とからなり、
前記脂肪族系有機ポリイソシアネート(a2)が、イソシアヌレート基含有有機ポリイソシアネート(a21)、アロファネート基含有有機ポリイソシアネート(a22)、及び、官能基数が2~3であり分子量が300以下である活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)からなる群から選択される一以上の化合物であり、
かつ、
前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が8:1~1:4であるポリウレタン樹脂形成性組成物。
(II) 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~50質量%である前記(I)に記載のポリウレタン樹脂形成性組成物。
(III) 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~40質量%である前記(I)又は(II)に記載のポリウレタン樹脂形成性組成物。
(IV) 前記アミン系ポリオール(B)の水酸基価が250~1,200である前記(I)から(III)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(V) 前記ポリエーテルポリオール(a12)の数平均分子量が200~8,000である前記(I)から(IV)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VI) 前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が6:1~1:1である前記(I)から(V)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VII) 前記止水材用有機ポリイソシアネート組成物(A)が可塑剤(C)をさらに含有する前記(I)から(VI)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(VIII) 触媒(D)をさらに含有する前記(I)から(VII)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物。
(IX) 可塑剤(C)をさらに含有する前記(XIII)に記載のポリウレタン樹脂形成性組成物。
(X) 前記(I)から(IX)のうちのいずれか1つに記載のポリウレタン樹脂形成性組成物を用いた鋼矢板用水膨張性止水材。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the problems in the conventional water-swellable water-stopping material.
That is, the present invention includes the following (I) to (X).
(I) A polyurethane resin-forming composition for obtaining a polyurethane resin,
Organic polyisocyanate composition for water-stopping material (A) having an isocyanate group content of 0.5 to 15% by mass and containing an aromatic isocyanate group-terminated prepolymer (a1) and an aliphatic organic polyisocyanate (a2) )When,
An amine-based polyol (B) having a nominal average functional group number of 3 to 6,
The ratio of the isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is 2: 1 to 8: 1. Is contained so that
The aromatic isocyanate group-terminated prepolymer (a1) is a reaction product of an aromatic polyisocyanate (a11) and a polyether polyol (a12),
The polyether polyol (a12) is a polyether polyol (a12-1) having a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of And a polyether polyol (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass,
The aliphatic organic polyisocyanate (a2) is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), an activity having 2 to 3 functional groups and a molecular weight of 300 or less. One or more compounds selected from the group consisting of a reaction product (a23) of a hydrogen group-containing compound and an aliphatic diisocyanate,
And,
The ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) is 8: A polyurethane resin-forming composition having a ratio of 1 to 1: 4.
(II) The polyurethane resin-forming composition as described in (I) above, wherein the aliphatic organic polyisocyanate (a2) has an isocyanate group content of 5 to 50% by mass.
(III) The polyurethane resin-forming composition as described in (I) or (II) above, wherein the isocyanate group content in the aliphatic organic polyisocyanate (a2) is 5 to 40% by mass.
(IV) The polyurethane resin-forming composition according to any one of (I) to (III), wherein the amine polyol (B) has a hydroxyl value of 250 to 1,200.
(V) The polyurethane resin-forming composition according to any one of (I) to (IV), wherein the polyether polyol (a12) has a number average molecular weight of 200 to 8,000.
(VI) Ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) The polyurethane resin-forming composition according to any one of (I) to (V), wherein is 6: 1 to 1: 1.
(VII) The polyurethane resin-forming composition according to any one of (I) to (VI), wherein the organic polyisocyanate composition (A) for water-stopping material further contains a plasticizer (C). .
(VIII) The polyurethane resin-forming composition according to any one of (I) to (VII), further containing a catalyst (D).
(IX) The polyurethane resin-forming composition according to (XIII), further including a plasticizer (C).
(X) A water-swellable water-stopping material for steel sheet piles using the polyurethane resin-forming composition according to any one of (I) to (IX).
本発明により、耐熱性に富み、摩擦熱に対する耐久性が十分ある水膨張性止水材及びそれに用いるポリウレタン樹脂形成性組成物を提供することが可能となる。
According to the present invention, it is possible to provide a water-swellable water-stopping material which is rich in heat resistance and has sufficient durability against frictional heat, and a polyurethane resin-forming composition used therefor.
本発明に使用する芳香族系イソシアネート基末端プレポリマー(a1)は、芳香族ポリイソシアネート(a11)とポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%である一種又は二種以上のポリエーテルポリオール(a12)とを反応させることにより得られる、イソシアネート基含有量が0.5~15質量%の末端イソシアネート基含有ウレタンプレポリマーである。
The aromatic isocyanate group-terminated prepolymer (a1) used in the present invention has one or two or more types of aromatic polyisocyanate (a11) and polyoxyalkylene chain having an oxyethylene group content of 50 to 100% by mass. A terminal isocyanate group-containing urethane prepolymer having an isocyanate group content of 0.5 to 15% by mass, which is obtained by reacting with a polyether polyol (a12).
前記芳香族ポリイソシアネート(a11)としては、公知の芳香族ポリイソシアネートが使用できる。具体的には、例えば、公知の2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート(以下、トリレンジイソシアネートをTDIと略記)、キシレン-1,4-ジイソシアネート、キシレン-1,3-ジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート(以下ポリメリックMDIと略記)、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、ナフチレン-1,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート等の芳香族ジイソシアネート、及び、これらの芳香族ジイソシアネートの重合体やポリメリック体、更にこれらの二種以上の混合物が挙げられる。これらの中でも、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェルメタンジイソシアネート、2,4’-ジフェルメタンジイソシアネート及びそれらの混合物が、反応速度が速く、かつ物性が良好といった理由で好ましい。
As the aromatic polyisocyanate (a11), known aromatic polyisocyanates can be used. Specifically, for example, known 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate (hereinafter, tolylene diisocyanate is abbreviated as TDI), xylene-1,4-diisocyanate, xylene-1,3- Diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 4,4'-diphenyl ether diisocyanate, polymethylene polyphenylene polyisocyanate (hereinafter abbreviated as polymeric MDI), 2-nitro Diphenyl-4,4′-diisocyanate, 2,2′-diphenylpropane-4,4′-diisocyanate, 3,3′-dimethyldiphenylmethane-4,4′-diisocyanate, 4,4′-diphenylpro Aromatic diisocyanates such as diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, naphthylene-1,4-diisocyanate, naphthylene-1,5-diisocyanate, 3,3′-dimethoxydiphenyl-4,4′-diisocyanate, and , Polymers of these aromatic diisocyanates, polymeric materials, and mixtures of two or more of these. Among these, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-difelmethane diisocyanate, 2,4'-difelmethane diisocyanate and mixtures thereof have a high reaction rate, And it is preferable for the reason that physical properties are good.
前記ポリエーテルポリオール(a12)は、ポリオキシアルキレン鎖中のオキシエチレン基の割合が50~100質量%となるポリオキシアルキレン鎖を有するポリエーテルポリオールである。このポリエーテルポリオール(a12)を用いることにより、親水性の優れたイソシアネート基末端プレポリマーを得ることが可能となる。前記ポリオキシエチレン基の割合が50質量%未満だと十分な水膨張性を有する止水材が得られないといった問題がある。前記ポリエーテルポリオール(a12)として好ましいのは、一般式R[-(OR1)nOH]p(ここにRは多価アルコール残基、(OR1)nはオキシエチレン基と炭素数3~4のアルキレン基とからなるポリオキシアルキレン鎖(但し、オキシエチレン基の割合はポリオキシアルキレン鎖の質量の50~100質量%を占める)、nはオキシアルキレン基の重合度を示す数でポリエーテルポリオールの数平均分子量が200~8、000となるに相当する数を示し、pは2~8の数を示す)で示されるポリエーテルポリオールの一種又は二種以上の混合物が挙げられる。
The polyether polyol (a12) is a polyether polyol having a polyoxyalkylene chain in which the ratio of oxyethylene groups in the polyoxyalkylene chain is 50 to 100% by mass. By using this polyether polyol (a12), it is possible to obtain an isocyanate group-terminated prepolymer having excellent hydrophilicity. When the ratio of the polyoxyethylene group is less than 50% by mass, there is a problem in that a water-stopping material having sufficient water expandability cannot be obtained. The polyether polyol (a12) is preferably represented by the general formula R [— (OR 1 ) n OH] p (where R is a polyhydric alcohol residue, (OR 1 ) n is an oxyethylene group and a carbon number of 3 to A polyoxyalkylene chain comprising 4 alkylene groups (wherein the proportion of oxyethylene groups occupies 50 to 100% by mass of the mass of the polyoxyalkylene chains), and n is a number indicating the degree of polymerization of the oxyalkylene groups. And a mixture of two or more kinds of polyether polyols represented by the formula (1), wherein the number average molecular weight of the polyol is a number corresponding to 200 to 8,000, and p is a number of 2 to 8.
前記多価アルコールとしては、例えば二価アルコール(エチレングリコール、プロピレンアルコール等)、三価アルコール(グリセリン、トリメチロールプロパン等)、四価アルコール(エリスリトール、ペンタエリスリトール等)、五価アルコール(アラブット、キシリット等)、六価アルコール(ソルビット、マンニッヒ等)等がある。
Examples of the polyhydric alcohol include dihydric alcohols (ethylene glycol, propylene alcohol, etc.), trihydric alcohols (glycerin, trimethylolpropane, etc.), tetrahydric alcohols (erythritol, pentaerythritol, etc.), pentahydric alcohols (Arhat, xylit, etc. Etc.) and hexavalent alcohol (Sorbit, Mannich etc.).
前記ポリエーテルポリオール(a12)は公称平均官能基数が2でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-1)と、公称平均官能基数が3でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-2)とからなることが、粘度と架橋密度とのバランスをとりやすいポリウレタン樹脂形成性組成物が得られるという観点から好ましい。
The polyether polyol (a12) has a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of 3 And a polyether resin (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, which makes it easy to balance the viscosity and the crosslink density. Is preferable from the viewpoint that can be obtained.
本発明において、前記公称平均官能基数とは、ポリエーテルポリオールを得る際に用いられる多価アルコール等の開始剤の1分子当たりの官能基数(開始剤1分子当たりの活性水素原子の数)をいう。
In the present invention, the nominal average functional group number refers to the number of functional groups per molecule of an initiator such as a polyhydric alcohol used when obtaining a polyether polyol (the number of active hydrogen atoms per molecule of the initiator). .
前記ポリエーテルポリオール(a12)において、前記ポリエーテルポリオール(a12-1)と前記ポリエーテルポリオール(a12-2)との使用割合は特に限定されないが、質量比(a12-1:a12-2)が2:1~40:1であることが良い。前記ポリエーテルポリオール(a12-2)の割合が前記下限未満であれば止水材の架橋密度が低下するため強度が低下しやすい。前記ポリエーテルポリオール(a12-2)の割合が前記上限を越えるとイソシアネート基末端プレポリマーの粘度が高くなり作業性が悪くなりやすい。
In the polyether polyol (a12), the proportion of the polyether polyol (a12-1) and the polyether polyol (a12-2) used is not particularly limited, but the mass ratio (a12-1: a12-2) is The ratio is preferably 2: 1 to 40: 1. If the ratio of the polyether polyol (a12-2) is less than the lower limit, the crosslink density of the water-stopping material is lowered and the strength tends to be lowered. If the ratio of the polyether polyol (a12-2) exceeds the upper limit, the viscosity of the isocyanate group-terminated prepolymer tends to be high, and workability tends to deteriorate.
本発明に使用する芳香族系イソシアネート基末端プレポリマー(a1)は、前記ポリエーテルポリオール(a12)と、前記芳香族ポリイソシアネート(a11)とを、前記ポリエーテルポリオール(a12)由来の活性水素基に対して前記芳香族ポリイソシアネート(a11)由来のイソシアネート基(NCO基)が過剰の量となるように反応させることにより得られる。前記イソシアネート基と前記活性水素基との比(イソシアネート基の数:活性水素基の数)としては、1.1:1~3:1であることが好ましい。また、このような反応方法としては公知の方法を適宜採用することができ、例えば、前記芳香族ポリイソシアネート(a11)と前記ポリエーテルポリオール(a12)との混合物を40~100℃で1~48時間攪拌する方法が挙げられる。
The aromatic isocyanate group-terminated prepolymer (a1) used in the present invention comprises the polyether polyol (a12) and the aromatic polyisocyanate (a11) as active hydrogen groups derived from the polyether polyol (a12). Is obtained by reacting the aromatic polyisocyanate (a11) -derived isocyanate group (NCO group) in an excessive amount. The ratio of the isocyanate group to the active hydrogen group (number of isocyanate groups: number of active hydrogen groups) is preferably 1.1: 1 to 3: 1. Further, as such a reaction method, a known method can be appropriately employed. For example, a mixture of the aromatic polyisocyanate (a11) and the polyether polyol (a12) can be used at 1 to 48 at 40 to 100 ° C. The method of stirring for a time is mentioned.
前記芳香族系イソシアネート基末端プレポリマー(a1)におけるイソシアネート基(NCO基)含有量としては、0.5~15質量%が好ましく、1.0~5質量%が更に好ましい。前記イソシアネート基含有量が0.5質量%未満だと分子量が大きくなりすぎるためイソシアネート基末端プレポリマーの粘度が高くなるといった問題があり、15質量%を超えると空気中の水分と反応した際、発生する炭酸ガス量が多くなりすぎるため、硬化後に得られる止水材中に気泡が多くなるといった問題がある。
The isocyanate group (NCO group) content in the aromatic isocyanate group-terminated prepolymer (a1) is preferably 0.5 to 15% by mass, and more preferably 1.0 to 5% by mass. When the isocyanate group content is less than 0.5% by mass, the molecular weight becomes too large, so there is a problem that the viscosity of the isocyanate group-terminated prepolymer becomes high, and when it exceeds 15% by mass, when reacting with moisture in the air, Since the amount of carbon dioxide generated is too large, there is a problem that air bubbles increase in the water stop material obtained after curing.
本発明に用いられる脂肪族系有機ポリイソシアネート(a2)は、イソシアヌレート基含有有機ポリイソシアネート(a21)、アロファネート基含有有機ポリイソシアネート(a22)、及び、官能基数が2~3であり分子量が300以下である活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)からなる群から選択される一以上の化合物である。
The aliphatic organic polyisocyanate (a2) used in the present invention is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), a functional group number of 2 to 3, and a molecular weight of 300. One or more compounds selected from the group consisting of a reaction product (a23) of an active hydrogen group-containing compound and an aliphatic diisocyanate, which are the following.
前記イソシアヌレート基含有有機ポリイソシアネート(a21)としては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、HDIと略記)、3-メチル-1,5-ペンタンジイソシアネート、リジンジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート;水素添加トリレンジイソシアネート;水素添加キシレンジイソシアネート;水素添加ジフェニルメタンジイソシアネート;テトラメチルキシレンジイソシアネート;ノルボルネンジイソシアネート等の脂肪族系ジイソシアネートを原料として、公知の合成方法に準じて、イソシアヌレート化触媒を添加して前記脂肪族系ジイソシアネートのイソシアネート基を重合させることにより得られる。前記重合方法としては、例えば、先ず、前記脂肪族系ジイソシアネートと前記イソシアヌレート化触媒との混合物を40~150℃で1~10時間攪拌し、次いで、前記イソシアヌレート化触媒を失活せしめ、必要に応じて未反応の前記脂肪族系ジイソシアネートを蒸留して除去する方法が挙げられる。前記イソシアヌレート化触媒としては、酢酸カリウム等の有機金属化合物、第4級アンモニウム塩等が挙げられる。このようなイソシアヌレート化触媒の添加量としては、前記脂肪族系ジイソシアネート100質量部に対して0.0001~0.1質量部であることが好ましい。
Examples of the isocyanurate group-containing organic polyisocyanate (a21) include tetramethylene diisocyanate, hexamethylene diisocyanate (hereinafter abbreviated as HDI), 3-methyl-1,5-pentane diisocyanate, lysine diisocyanate and other aliphatic diisocyanates; Hydrogenated tolylene diisocyanate; Hydrogenated xylene diisocyanate; Hydrogenated diphenylmethane diisocyanate; Tetramethylxylene diisocyanate; Starting from aliphatic diisocyanates such as norbornene diisocyanate, an isocyanuration catalyst is added according to a known synthesis method. It is obtained by polymerizing the isocyanate group of the aliphatic diisocyanate. As the polymerization method, for example, first, a mixture of the aliphatic diisocyanate and the isocyanurate-forming catalyst is stirred at 40 to 150 ° C. for 1 to 10 hours, and then the isocyanurate-forming catalyst is deactivated. Depending on the method, a method of distilling off the unreacted aliphatic diisocyanate may be mentioned. Examples of the isocyanurate-forming catalyst include organometallic compounds such as potassium acetate, quaternary ammonium salts and the like. The addition amount of such an isocyanurate-forming catalyst is preferably 0.0001 to 0.1 parts by mass with respect to 100 parts by mass of the aliphatic diisocyanate.
また、前記アロファネート基含有有機ポリイソシアネート(a22)は、前記脂肪族系ジイソシアネートと、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、シクロヘキサノール、2-エチルヘキサノール、トリデカノール、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、トリメチロールプロパン、グリセリン等の官能基数(活性水素基数)が1~3であり分子量が300以下である活性水素基含有化合物とを原料として、公知の合成方法に準じて、アロファネート化触媒を添加して反応させることにより得られる。前記活性水素基含有化合物の分子量としては、32~300であることが好ましい。また、前記合成方法としては、例えば、前記脂肪族系ジイソシアネートと前記活性水素基含有化合物との質量比が95:5~60:40である混合物に前記アロファネート化触媒を添加して、90~150℃で1~10時間攪拌し、次いで、前記アロファネート化触媒を失活せしめ、必要に応じて未反応の前記脂肪族系ジイソシアネートを蒸留して除去する方法が挙げられる。前記アロファネート化触媒としてはオクチル酸スズ等の有機金属化合物が挙げられ、前記アロファネート化触媒の添加量としては、前記脂肪族系ジイソシアネートと前記活性水素基含有化合物との混合物100質量部に対して0.0001~0.1質量部であることが好ましい。
The allophanate group-containing organic polyisocyanate (a22) includes the aliphatic diisocyanate and methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, cyclohexanol, 2-ethylhexanol, tridecanol. Ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, diethylene glycol, dipropylene glycol, trimethylolpropane, Using an active hydrogen group-containing compound having 1 to 3 functional groups (number of active hydrogen groups) such as glycerin and a molecular weight of 300 or less as a raw material, an allophanatization catalyst is added and reacted according to a known synthesis method. By Obtained. The molecular weight of the active hydrogen group-containing compound is preferably 32 to 300. As the synthesis method, for example, the allophanatization catalyst is added to a mixture in which the mass ratio of the aliphatic diisocyanate and the active hydrogen group-containing compound is 95: 5 to 60:40, and 90 to 150 Examples of the method include stirring at 1 ° C. for 1 to 10 hours, then deactivating the allophanatization catalyst, and removing the unreacted aliphatic diisocyanate by distillation if necessary. Examples of the allophanatization catalyst include organometallic compounds such as tin octylate, and the addition amount of the allophanate catalyst is 0 with respect to 100 parts by mass of the mixture of the aliphatic diisocyanate and the active hydrogen group-containing compound. It is preferably 0.0001 to 0.1 parts by mass.
また、前記活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)は、前述と同様の脂肪族系ジイソシアネートと、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、トリメチロールプロパン、グリセリン等の官能基数(活性水素基数)が2~3であり分子量が300以下である活性水素基含有化合物とを反応させることにより得られる。前記活性水素基含有化合物の分子量としては、62~300であることが好ましい。また、前記反応方法としては、例えば、先ず、前記脂肪族系ジイソシアネートと前記活性水素基含有化合物とを90:10~60:40の質量比で混合し、40~100℃で1~10時間攪拌し、次いで、必要に応じて未反応の前記脂肪族系ジイソシアネートを蒸留して除去する方法が挙げられる。
The reaction product (a23) of the active hydrogen group-containing compound and the aliphatic diisocyanate is the same aliphatic diisocyanate as described above, ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, diethylene glycol, dipropylene glycol, trimethylolpropane, glycerin, etc. have 2 to 3 functional groups and a molecular weight. It is obtained by reacting with an active hydrogen group-containing compound that is 300 or less. The molecular weight of the active hydrogen group-containing compound is preferably 62 to 300. As the reaction method, for example, first, the aliphatic diisocyanate and the active hydrogen group-containing compound are mixed at a mass ratio of 90:10 to 60:40 and stirred at 40 to 100 ° C. for 1 to 10 hours. Then, a method of distilling off the unreacted aliphatic diisocyanate as necessary is exemplified.
前記脂肪族系有機ポリイソシアネート(a2)としては、前記イソシアヌレート基含有有機ポリイソシアネート(a21)、前記アロファネート基含有有機ポリイソシアネート(a22)、及び、前記官能基数が2~3であり分子量が300以下である活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)をそれぞれ合成した後、これらをそれぞれ単独で用いても二種以上を任意の割合で配合して用いても良く、同時にこれらのうちの二種以上を合成して用いても良い。
Examples of the aliphatic organic polyisocyanate (a2) include the isocyanurate group-containing organic polyisocyanate (a21), the allophanate group-containing organic polyisocyanate (a22), the number of functional groups of 2 to 3, and a molecular weight of 300. After synthesizing the reaction product (a23) of the following active hydrogen group-containing compound and aliphatic diisocyanate, these may be used alone or in combination of two or more at any ratio. At the same time, two or more of these may be synthesized and used.
前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基(NCO基)含有量は、5~50質量%が好ましく、10~40質量%が更に好ましい。前記イソシアネート基含有量が5質量%未満だと分子量が大きくなりすぎて前記芳香族系イソシアネート基末端プレポリマー(a1)に対する配合量が多くなるため、止水材が水で膨張した際の倍率が低くなり、鋼矢板の間隙を埋めることが出来なくなるおそれがあるといった問題があり、40質量%を超えると有機ポリイソシアネートの分子が小さくなるため揮発しやすくなり臭気がきついといった問題がある。
The isocyanate group (NCO group) content in the aliphatic organic polyisocyanate (a2) is preferably 5 to 50% by mass, more preferably 10 to 40% by mass. When the isocyanate group content is less than 5% by mass, the molecular weight becomes too large and the blending amount with respect to the aromatic isocyanate group-terminated prepolymer (a1) increases, so that the magnification when the water-stopping material expands with water is increased. There is a problem that the gap between the steel sheet piles may not be filled, and if it exceeds 40% by mass, the molecule of the organic polyisocyanate becomes small, so that it tends to volatilize and there is a problem that the odor is tight.
本発明に係る有機ポリイソシアネート組成物(A)において前記芳香族系イソシアネート基末端プレポリマー(a1)と前記脂肪族系有機ポリイソシアネート(a2)との割合は、イソシアネート基の比(a1のイソシアネート基の数:a2のイソシアネート基の数)が8:1~1:4であり、好ましくは、6:1~1:1となる範囲である。前記範囲より前記芳香族系イソシアネート基末端プレポリマー(a1)が多い場合は、止水材の強度、耐熱性、ひいては止水性に悪影響がでやすい。前記範囲より前記脂肪族系有機ポリイソシアネート(a2)が多い場合は、止水材が水で膨張した際の倍率が低くなるため、鋼矢板の間隙を埋めることが出来なくなるおそれがある。
In the organic polyisocyanate composition (A) according to the present invention, the ratio of the aromatic isocyanate group-terminated prepolymer (a1) to the aliphatic organic polyisocyanate (a2) is the ratio of isocyanate groups (isocyanate group of a1). The number of isocyanate groups in a2) is from 8: 1 to 1: 4, and preferably from 6: 1 to 1: 1. When the amount of the aromatic isocyanate group-terminated prepolymer (a1) is larger than the above range, the strength, heat resistance, and consequently water-stop properties of the water-stopping material are likely to be adversely affected. When the amount of the aliphatic organic polyisocyanate (a2) is larger than the above range, the magnification when the water-stopping material expands with water becomes low, so that there is a possibility that the gap between the steel sheet piles cannot be filled.
本発明に用いられる有機ポリイソシアネート組成物(A)においては、その他リン酸エステル(商品名JP-508、城北化学工業社製)等の公知の安定剤、消泡剤(商品名BYK-A535、ビックケミー社製)、可塑剤等のような添加剤等をさらに含有することができる。安定剤を用いることで貯蔵安定性が長くなり、消泡剤を用いることで硬化後の止水材中の気泡が少なくなるため、止水材の強度が向上する効果がある。
In the organic polyisocyanate composition (A) used in the present invention, other known stabilizers such as phosphate esters (trade name JP-508, manufactured by Johoku Chemical Industry Co., Ltd.), antifoaming agents (trade name BYK-A535, (Bikchemy Co., Ltd.) and additives such as plasticizers can be further contained. By using a stabilizer, the storage stability becomes longer, and by using an antifoaming agent, bubbles in the water-stopping material after curing are reduced, so that the strength of the water-stopping material is improved.
本発明に用いられるアミン系ポリオール(B)としては、アミノ基を有する化合物を開始剤としてそこにアルキレンオキサイドを付加したポリアミンポリオールが使用できる。前記開始剤に用いられるアミノ基を有する化合物としては、アンモニア、エチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジエチレントリアミン等の脂肪族アミン;トリレンジアミン、ジフェニルアミノメタン等の芳香族アミンを挙げることができる。これらのポリアミンポリオールの中でも塩基性の強い脂肪族アミンを開始剤としたアミンポリオールが硬化時間を短縮することができる点で好ましい。
As the amine-based polyol (B) used in the present invention, a polyamine polyol obtained by adding an alkylene oxide to a compound having an amino group as an initiator can be used. Examples of the compound having an amino group used for the initiator include aliphatic amines such as ammonia, ethylenediamine, hexamethylenediamine, isophoronediamine, and diethylenetriamine; aromatic amines such as tolylenediamine and diphenylaminomethane. Among these polyamine polyols, amine polyols having a highly basic aliphatic amine as an initiator are preferred in that the curing time can be shortened.
前記アミン系ポリオール(B)の官能基数としては3~6が好ましい。官能基数が3未満であると止水材の強度、耐熱性、ひいては止水性に悪影響がでやすい。官能基数が6より大きいと、粘度が高くなり、取り扱いに難点がある。
The number of functional groups of the amine polyol (B) is preferably 3-6. If the number of functional groups is less than 3, the strength, heat resistance, and eventually water-stopping properties of the water-stopping material are likely to be adversely affected. When the number of functional groups is larger than 6, the viscosity becomes high and handling is difficult.
前記アミン系ポリオール(B)の水酸基価としては250~1,200であることが好ましい。水酸基価が250未満であると、配合量が増加し、更には架橋点間距離が伸びる事から止水材の強度、耐熱性、ひいては止水性に悪影響がでやすい。水酸基価が1,200より大きいと分子量が小さくなるため、揮発しやすくなり臭気に問題が発生しやすい。
The hydroxyl value of the amine polyol (B) is preferably 250 to 1,200. When the hydroxyl value is less than 250, the blending amount increases, and further, the distance between the cross-linking points increases, so that the strength, heat resistance, and consequently water-stopping property of the water-stopping material are easily adversely affected. When the hydroxyl value is greater than 1,200, the molecular weight is small, and therefore, it tends to volatilize and problems with odor are likely to occur.
本発明において前記有機ポリイソシアネート組成物(A)と前記アミン系ポリオール(B)との割合は、前記芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が2:1~8:1であることが望ましい。前記上限より水酸基が多い場合は、空気中の湿気と反応した場合に生成するウレア結合よりも凝集力が弱いウレタン結合が多くなるため止水材の強度、耐熱性、ひいては止水性に悪影響がでやすい。前記下限より水酸基が少ない場合は前記アミン系ポリオール(B)による架橋が少なくなるため止水材の強度、耐熱性、ひいては止水性に悪影響がでやすい。
In the present invention, the ratio between the organic polyisocyanate composition (A) and the amine-based polyol (B) is such that the isocyanate group derived from the aromatic isocyanate group-terminated prepolymer (a1) and the amine-based polyol (B). It is desirable that the ratio (number of isocyanate groups: number of hydroxyl groups) to hydroxyl groups derived from is 2: 1 to 8: 1. If there are more hydroxyl groups than the above upper limit, the urethane bond, which has a lower cohesive force than the urea bond produced when reacting with moisture in the air, will increase, and this will have an adverse effect on the strength, heat resistance, and thus water stoppage of the waterstop material. Cheap. When the number of hydroxyl groups is less than the lower limit, crosslinking by the amine-based polyol (B) is reduced, and thus the strength, heat resistance, and consequently water-stop properties of the water-stopping material are likely to be adversely affected.
本発明で用いられる可塑剤(C)としては、公知の可塑剤であればよく、例えば、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジ-2-エチルヘキシル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ブチルベンジル、アジピン酸ジエチル、アジピン酸ジブチル、アジピン酸ジヘキシル、アジピン酸ジエチルヘキシル、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ビス(ブチルジグリコール)、セバシン酸ジエチル、セバシン酸ジブチル、セバシン酸ジヘキシル、セバシン酸ジ-2-エチルヘキシル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル、マレイン酸ジヘキシル、マレイン酸ジ-2-エチルヘキシル、マレイン酸ジイソノニル、マレイン酸ジイソデシル等のエステル化合物;リン酸トリブチル、リン酸トリ-2-エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル等のリン酸エステル化合物;1-フェニル-1-キシリルエタン、1-フェニル-1-エチルフェニルエタン等の芳香族炭化水素化合物といったものがあり、これらの中の一種又は二種以上を組み合わせて使用することが可能である。これらの中でも、耐加水分解性が良好な止水材が得られるといった理由で、1-フェニル-1-キシリルエタン、1-フェニル-1-エチルフェニルエタン、フタル酸ジイソデシルが好ましい。
The plasticizer (C) used in the present invention may be any known plasticizer, for example, dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, di-2-ethylhexyl phthalate, phthalic acid Diisononyl, diisodecyl phthalate, butyl benzyl phthalate, diethyl adipate, dibutyl adipate, dihexyl adipate, diethylhexyl adipate, diisononyl adipate, diisodecyl adipate, bis (butyldiglycol) adipate, diethyl sebacate, sebacin Dibutyl acid, dihexyl sebacate, di-2-ethylhexyl sebacate, dimethyl maleate, diethyl maleate, dibutyl maleate, dihexyl maleate, di-2-ethylhexyl maleate, diisononyl maleate, male Ester compounds such as diisodecyl phosphate; phosphate compounds such as tributyl phosphate, tri-2-ethylhexyl phosphate, triphenyl phosphate, tricresyl phosphate; 1-phenyl-1-xylylethane, 1-phenyl-1-ethyl There are aromatic hydrocarbon compounds such as phenylethane, and one or a combination of two or more of these can be used. Among these, 1-phenyl-1-xylylethane, 1-phenyl-1-ethylphenylethane, and diisodecyl phthalate are preferable because a water-stopping material having good hydrolysis resistance can be obtained.
本発明に係る有機ポリイソシアネート組成物(A)及び本発明のポリウレタン樹脂形成性組成物において、前記可塑剤(C)の割合は特に限定されないが、好ましくは前記可塑剤(C)の質量が前記芳香族系イソシアネート基末端プレポリマー(a1)と前記脂肪族系有機ポリイソシアネート(a2)との合計質量を超えない量とすることが良い。可塑剤(C)の割合が多くなりすぎると止水材において水で膨張した際の倍率が低くなるため、鋼矢板の間隙を埋めることが出来なくなるおそれがある。
In the organic polyisocyanate composition (A) according to the present invention and the polyurethane resin-forming composition according to the present invention, the proportion of the plasticizer (C) is not particularly limited, but preferably the mass of the plasticizer (C) is the above. It is good to set it as the quantity which does not exceed the total mass of an aromatic isocyanate group terminal prepolymer (a1) and the said aliphatic organic polyisocyanate (a2). If the ratio of the plasticizer (C) is too large, the magnification when the water-stopping material expands with water becomes low, and therefore there is a possibility that the gap between the steel sheet piles cannot be filled.
本発明で用いられる触媒(D)としては、ウレタン化反応を促進する通常の触媒であれば全て使用でき、例えば、トリエチレンジアミン、ビス(N,Nジメチルアミノ-2-エチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン等の3級アミン及びそのカルボン酸塩;1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール等の芳香族アミン及びそのカルボン酸塩;酢酸カリウム、オクチル酸カリウム、オクチル酸錫等のカルボン酸金属塩;ラウリン酸ジブチル錫等の有機金属化合物が挙げられる。
As the catalyst (D) used in the present invention, any ordinary catalyst that promotes the urethanization reaction can be used. For example, triethylenediamine, bis (N, Ndimethylamino-2-ethyl) ether, N, N , N ′, N′-tetramethylhexamethylenediamine and the like, and carboxylates thereof; aromatic amines such as 1-methylimidazole, 1,2-dimethylimidazole and 1-isobutyl-2-methylimidazole and the like Carboxylic acid salts; carboxylic acid metal salts such as potassium acetate, potassium octylate and tin octylate; and organometallic compounds such as dibutyltin laurate.
本発明のポリウレタン樹脂形成性組成物においては、硬化時間を短縮できるという観点から、前記触媒(D)を含有することが好ましい。前記触媒(D)を含有する場合、その使用量は前記有機ポリイソシアネート組成物(A)100質量部に対して好ましくは0.01~5質量部、更に好ましくは0.02~2質量部である。前記範囲より少ない場合は硬化時間を短縮することができない傾向にあり、前記触媒(C)の使用量が前記範囲より多い場合は配合後の硬化時間が短くなるため、作業性に不具合が生じるおそれがある。
The polyurethane resin-forming composition of the present invention preferably contains the catalyst (D) from the viewpoint of shortening the curing time. When the catalyst (D) is contained, the amount used is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 2 parts by mass with respect to 100 parts by mass of the organic polyisocyanate composition (A). is there. If the amount is less than the above range, the curing time tends not to be shortened. If the amount of the catalyst (C) used is more than the above range, the curing time after blending is shortened, which may cause problems in workability. There is.
本発明の水膨張性止水材は前記本発明のポリウレタン樹脂形成性組成物を硬化させることにより得ることができ、鋼矢板用の止水材として用いることが好ましい。前記硬化方法としては公知の方法を適宜採用することができ、例えば、前記本発明のポリウレタン樹脂形成性組成物を0~40℃で1~96時間放置する方法が挙げられる。
The water-swellable water-stopping material of the present invention can be obtained by curing the polyurethane resin-forming composition of the present invention, and is preferably used as a water-stopping material for steel sheet piles. As the curing method, a known method can be appropriately employed. Examples thereof include a method in which the polyurethane resin-forming composition of the present invention is allowed to stand at 0 to 40 ° C. for 1 to 96 hours.
[合成例1:イソシアネート基末端プレポリマーP1]
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器にTDI(日本ポリウレタン工業社製、商品名「T-80」、NCO基含有量48.2質量%)を65.8g、可塑剤として芳香族炭化水素化合物(新日本石油社製、商品名「日石ハイゾールSAS-296」)を229g仕込んだ。次いで、前記反応器に、下記ポリオールA 564g及び下記ポリオールB 141gを室温で攪拌しながら仕込み、80℃~90℃にて攪拌しながら、15時間反応させて、イソシアネート基(NCO基)含量1.5質量%、25℃での粘度2、700mPa・sのイソシアネート基末端プレポリマー「P1」を得た。 [Synthesis Example 1: Isocyanate group-terminated prepolymer P1]
A reactor equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe, and a thermometer was purged with nitrogen, and then TDI (trade name “T-80”, manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 48.2 mass) was added to this reactor. %) And 229 g of an aromatic hydrocarbon compound (manufactured by Nippon Oil Corporation, trade name “Nisseki Hysol SAS-296”) as a plasticizer. Next, 564 g of the following polyol A and 141 g of the following polyol B were charged into the reactor while stirring at room temperature and reacted at 80 ° C. to 90 ° C. for 15 hours to obtain an isocyanate group (NCO group) content of 1. An isocyanate group-terminated prepolymer “P1” having a viscosity of 2,700 mPa · s at 5% by mass and 25 ° C. was obtained.
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器にTDI(日本ポリウレタン工業社製、商品名「T-80」、NCO基含有量48.2質量%)を65.8g、可塑剤として芳香族炭化水素化合物(新日本石油社製、商品名「日石ハイゾールSAS-296」)を229g仕込んだ。次いで、前記反応器に、下記ポリオールA 564g及び下記ポリオールB 141gを室温で攪拌しながら仕込み、80℃~90℃にて攪拌しながら、15時間反応させて、イソシアネート基(NCO基)含量1.5質量%、25℃での粘度2、700mPa・sのイソシアネート基末端プレポリマー「P1」を得た。 [Synthesis Example 1: Isocyanate group-terminated prepolymer P1]
A reactor equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe, and a thermometer was purged with nitrogen, and then TDI (trade name “T-80”, manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 48.2 mass) was added to this reactor. %) And 229 g of an aromatic hydrocarbon compound (manufactured by Nippon Oil Corporation, trade name “Nisseki Hysol SAS-296”) as a plasticizer. Next, 564 g of the following polyol A and 141 g of the following polyol B were charged into the reactor while stirring at room temperature and reacted at 80 ° C. to 90 ° C. for 15 hours to obtain an isocyanate group (NCO group) content of 1. An isocyanate group-terminated prepolymer “P1” having a viscosity of 2,700 mPa · s at 5% by mass and 25 ° C. was obtained.
[合成例2:イソシアネート基末端プレポリマーP2]
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器にTDI(日本ポリウレタン工業社製、商品名「T-80」)を60.0g、可塑剤として芳香族炭化水素化合物(新日本石油社製、商品名「日石ハイゾールSAS-296」)を229g仕込んだ。次いで、前記反応器に、下記ポリオールA 646g及び下記ポリオールB 65gを室温で攪拌しながら仕込み、80℃~90℃にて攪拌しながら、15時間反応させて、イソシアネート基(NCO基)含量1.5質量%、25℃での粘度2、500mPa・sのイソシアネート基末端プレポリマー「P2」を得た。 [Synthesis Example 2: Isocyanate group-terminated prepolymer P2]
A reactor equipped with a stirrer, a cooling tube, a nitrogen introduction tube, and a thermometer was purged with nitrogen, and then 60.0 g of TDI (trade name “T-80”, manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the reactor as a plasticizer. 229 g of an aromatic hydrocarbon compound (manufactured by Nippon Oil Corporation, trade name “Nisseki Hysol SAS-296”) was charged. Next, 646 g of the following polyol A and 65 g of the following polyol B were charged into the reactor while stirring at room temperature and reacted at 80 ° C. to 90 ° C. for 15 hours to obtain an isocyanate group (NCO group) content of 1. An isocyanate group-terminated prepolymer “P2” having a viscosity of 2,500 mPa · s at 5% by mass and 25 ° C. was obtained.
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器にTDI(日本ポリウレタン工業社製、商品名「T-80」)を60.0g、可塑剤として芳香族炭化水素化合物(新日本石油社製、商品名「日石ハイゾールSAS-296」)を229g仕込んだ。次いで、前記反応器に、下記ポリオールA 646g及び下記ポリオールB 65gを室温で攪拌しながら仕込み、80℃~90℃にて攪拌しながら、15時間反応させて、イソシアネート基(NCO基)含量1.5質量%、25℃での粘度2、500mPa・sのイソシアネート基末端プレポリマー「P2」を得た。 [Synthesis Example 2: Isocyanate group-terminated prepolymer P2]
A reactor equipped with a stirrer, a cooling tube, a nitrogen introduction tube, and a thermometer was purged with nitrogen, and then 60.0 g of TDI (trade name “T-80”, manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to the reactor as a plasticizer. 229 g of an aromatic hydrocarbon compound (manufactured by Nippon Oil Corporation, trade name “Nisseki Hysol SAS-296”) was charged. Next, 646 g of the following polyol A and 65 g of the following polyol B were charged into the reactor while stirring at room temperature and reacted at 80 ° C. to 90 ° C. for 15 hours to obtain an isocyanate group (NCO group) content of 1. An isocyanate group-terminated prepolymer “P2” having a viscosity of 2,500 mPa · s at 5% by mass and 25 ° C. was obtained.
<使用原料1>
ポリオールA:東邦化学工業製PB-5064、エチレンオキサイド(EO)/プロピレンオキサイド(PO)付加物、EO/PO(質量比)=70/30、水酸基価=22、開始剤1分子当たりの官能基数=2
ポリオールB:東邦化学工業製GRB-2543、エチレンオキサイド(EO)/プロピレンオキサイド(PO)付加物、EO/PO(質量比)=50/50、水酸基価=72、開始剤1分子当たりの官能基数=3。 <Raw material 1>
Polyol A: PB-5064 manufactured by Toho Chemical Industries, ethylene oxide (EO) / propylene oxide (PO) adduct, EO / PO (mass ratio) = 70/30, hydroxyl value = 22, number of functional groups per molecule of initiator = 2
Polyol B: GRB-2543 manufactured by Toho Chemical Industry, ethylene oxide (EO) / propylene oxide (PO) adduct, EO / PO (mass ratio) = 50/50, hydroxyl value = 72, number of functional groups per molecule of initiator = 3.
ポリオールA:東邦化学工業製PB-5064、エチレンオキサイド(EO)/プロピレンオキサイド(PO)付加物、EO/PO(質量比)=70/30、水酸基価=22、開始剤1分子当たりの官能基数=2
ポリオールB:東邦化学工業製GRB-2543、エチレンオキサイド(EO)/プロピレンオキサイド(PO)付加物、EO/PO(質量比)=50/50、水酸基価=72、開始剤1分子当たりの官能基数=3。 <Raw material 1>
Polyol A: PB-5064 manufactured by Toho Chemical Industries, ethylene oxide (EO) / propylene oxide (PO) adduct, EO / PO (mass ratio) = 70/30, hydroxyl value = 22, number of functional groups per molecule of initiator = 2
Polyol B: GRB-2543 manufactured by Toho Chemical Industry, ethylene oxide (EO) / propylene oxide (PO) adduct, EO / PO (mass ratio) = 50/50, hydroxyl value = 72, number of functional groups per molecule of initiator = 3.
[ポリイソシアネート組成物の配合例]
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器に合成例1で得られた「P1」を500gとHDIの三量化物(日本ポリウレタン工業社製、商品名「コロネートHX」、NCO基含有量21.3質量%)を17.9g(NCO基のモル比でP1/コロネートHX=2/1)仕込み、室温で2時間攪拌して主剤(ポリイソシアネート組成物)「S1」を得た。
また、イソシアネート基末端プレポリマー(プレポリマー)として合成例1及び2で得られた「P1」及び「P2」を用い、有機ポリイソシアネート(有機イソシアネート)として前記HDIの三量化物及び下記使用原料2に記載の化合物を用い、それぞれ表1に記載の組み合わせと配合比で各成分を室温において均一になるまで混合攪拌して主剤「S2」~「S13」を得た。なお、イソシアネート基末端プレポリマー「P1」をそのまま主剤「S14」とし、イソシアネート基末端プレポリマー「P2」をそのまま主剤「S15」とした。 [Polyisocyanate composition formulation example]
A reactor equipped with a stirrer, a cooling pipe, a nitrogen introducing pipe, and a thermometer was purged with nitrogen, and then 500 g of P1 obtained in Synthesis Example 1 and an HDI trimerization product (manufactured by Nippon Polyurethane Industry Co., Ltd.) , 17.9 g (P1 / Coronate HX = 2/1 in terms of the molar ratio of NCO groups) of 17.9 g (trade name “Coronate HX”, NCO group content 21.3 mass%), stirred at room temperature for 2 hours, and the main agent (poly Isocyanate composition) “S1” was obtained.
Further, using “P1” and “P2” obtained in Synthesis Examples 1 and 2 as the isocyanate group-terminated prepolymer (prepolymer), the above-mentioned trimerized HDI as the organic polyisocyanate (organic isocyanate) and the following raw material 2 Using the compounds described in Table 1, the components were mixed and stirred in the combinations and blending ratios shown in Table 1 until they were uniform at room temperature to obtain the main agents “S2” to “S13”. The isocyanate group-terminated prepolymer “P1” was directly used as the main agent “S14”, and the isocyanate group-terminated prepolymer “P2” was used as the main agent “S15”.
攪拌機、冷却管、窒素導入管、温度計を備えた反応器を窒素置換した後、この反応器に合成例1で得られた「P1」を500gとHDIの三量化物(日本ポリウレタン工業社製、商品名「コロネートHX」、NCO基含有量21.3質量%)を17.9g(NCO基のモル比でP1/コロネートHX=2/1)仕込み、室温で2時間攪拌して主剤(ポリイソシアネート組成物)「S1」を得た。
また、イソシアネート基末端プレポリマー(プレポリマー)として合成例1及び2で得られた「P1」及び「P2」を用い、有機ポリイソシアネート(有機イソシアネート)として前記HDIの三量化物及び下記使用原料2に記載の化合物を用い、それぞれ表1に記載の組み合わせと配合比で各成分を室温において均一になるまで混合攪拌して主剤「S2」~「S13」を得た。なお、イソシアネート基末端プレポリマー「P1」をそのまま主剤「S14」とし、イソシアネート基末端プレポリマー「P2」をそのまま主剤「S15」とした。 [Polyisocyanate composition formulation example]
A reactor equipped with a stirrer, a cooling pipe, a nitrogen introducing pipe, and a thermometer was purged with nitrogen, and then 500 g of P1 obtained in Synthesis Example 1 and an HDI trimerization product (manufactured by Nippon Polyurethane Industry Co., Ltd.) , 17.9 g (P1 / Coronate HX = 2/1 in terms of the molar ratio of NCO groups) of 17.9 g (trade name “Coronate HX”, NCO group content 21.3 mass%), stirred at room temperature for 2 hours, and the main agent (poly Isocyanate composition) “S1” was obtained.
Further, using “P1” and “P2” obtained in Synthesis Examples 1 and 2 as the isocyanate group-terminated prepolymer (prepolymer), the above-mentioned trimerized HDI as the organic polyisocyanate (organic isocyanate) and the following raw material 2 Using the compounds described in Table 1, the components were mixed and stirred in the combinations and blending ratios shown in Table 1 until they were uniform at room temperature to obtain the main agents “S2” to “S13”. The isocyanate group-terminated prepolymer “P1” was directly used as the main agent “S14”, and the isocyanate group-terminated prepolymer “P2” was used as the main agent “S15”.
<使用原料2>
C-2770:HDIのアロファネート体(日本ポリウレタン工業社製、NCO基含有量19.4質量%)
C-HL:HDIのアダクト体(日本ポリウレタン工業社製、NCO基含有量12.8質量%)
MR-200:ポリメリックMDI(日本ポリウレタン工業社製、NCO基含有量30.7質量%)
[硬化剤の調製例]
下記硬化剤の原料に記載の化合物を用い、それぞれ表2に記載の組み合わせと配合比で各成分を室温において均一になるまで混合攪拌して硬化剤「H1」~「H14」を得た。 <Raw material 2>
C-2770: HDI allophanate (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 19.4% by mass)
C-HL: Adduct body of HDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 12.8% by mass)
MR-200: Polymeric MDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 30.7% by mass)
[Preparation example of curing agent]
Curing agents “H1” to “H14” were obtained by using the compounds described in the raw materials of the following curing agents and mixing and stirring the components in the combinations and blending ratios shown in Table 2 until they were uniform at room temperature.
C-2770:HDIのアロファネート体(日本ポリウレタン工業社製、NCO基含有量19.4質量%)
C-HL:HDIのアダクト体(日本ポリウレタン工業社製、NCO基含有量12.8質量%)
MR-200:ポリメリックMDI(日本ポリウレタン工業社製、NCO基含有量30.7質量%)
[硬化剤の調製例]
下記硬化剤の原料に記載の化合物を用い、それぞれ表2に記載の組み合わせと配合比で各成分を室温において均一になるまで混合攪拌して硬化剤「H1」~「H14」を得た。 <Raw material 2>
C-2770: HDI allophanate (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 19.4% by mass)
C-HL: Adduct body of HDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 12.8% by mass)
MR-200: Polymeric MDI (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 30.7% by mass)
[Preparation example of curing agent]
Curing agents “H1” to “H14” were obtained by using the compounds described in the raw materials of the following curing agents and mixing and stirring the components in the combinations and blending ratios shown in Table 2 until they were uniform at room temperature.
<硬化剤の原料>
トリエタノールアミン:f=3、東京化成製
ニューポールNP-300:三洋化成工業製 エチレンジアミンのPO付加物、f=4、OHv=760
ニューポールNP-400:三洋化成工業製 ジエチレントリアミンのPO付加物、f=5、OHv=693
EDP-1100:アデカ製 エチレンジアミンのPO付加物、f=4、OHv=220
N-メチルジエタノールアミン:f=2、東京化成製
サンニクッスHS-209:三洋化成工業製 シュークローズ系 PO付加物、f=5、OHv=450
エタキュア100:アルベマール社製 ジエチルトルエンジアミン、f=2、アミン価 630
カオーライザーNo.300:花王社製 イミダゾール系触媒
DIDP:フタル酸ジイソデシル、大八化学社製
<実施例1~16、比較例1~11、参考例1>
主剤「S1」~「S15」と硬化剤「H1」~「H14」とを表3に記載の組み合わせ及び配合比でそれぞれ混合した後、水平な台上に設置された長さ19cm、幅10cm、深さ2cmのプラスチックトレイに厚さ2mmになるように流し込み、25℃で48時間放置して硬化フィルム状の止水材「R1」~「R15」、「R26」(実施例1~16)、「R16」~「R25」、「R27」(比較例1~11)及び「R28」(参考例1)を得た。 <Raw material>
Triethanolamine: f = 3, Tokyo Chemical Newpole NP-300: Sanyo Chemical Industries ethylenediamine PO adduct, f = 4, OHv = 760
Newpol NP-400: PO adduct of diethylenetriamine manufactured by Sanyo Chemical Industries, f = 5, OHv = 693
EDP-1100: PO Adduct of ethylenediamine manufactured by ADEKA, f = 4, OHv = 220
N-methyldiethanolamine: f = 2, Sansei HS-209 manufactured by Tokyo Chemical Industry, shoe-closed PO adduct, Sanyo Chemical Industries, f = 5, OHv = 450
Ecure 100: Albemarle diethyltoluenediamine, f = 2, amine value 630
Kao Riser No. 300: imidazole catalyst DIDP manufactured by Kao Corporation: diisodecyl phthalate, manufactured by Daihachi Chemical Co., Ltd.
After mixing the main agents “S1” to “S15” and the curing agents “H1” to “H14” respectively in the combinations and blending ratios shown in Table 3, the length 19 cm and the width 10 cm installed on a horizontal table, Poured into a 2 cm deep plastic tray to a thickness of 2 mm and allowed to stand at 25 ° C. for 48 hours for cured film-like water-stopping materials “R1” to “R15”, “R26” (Examples 1 to 16), “R16” to “R25”, “R27” (Comparative Examples 1 to 11) and “R28” (Reference Example 1) were obtained.
トリエタノールアミン:f=3、東京化成製
ニューポールNP-300:三洋化成工業製 エチレンジアミンのPO付加物、f=4、OHv=760
ニューポールNP-400:三洋化成工業製 ジエチレントリアミンのPO付加物、f=5、OHv=693
EDP-1100:アデカ製 エチレンジアミンのPO付加物、f=4、OHv=220
N-メチルジエタノールアミン:f=2、東京化成製
サンニクッスHS-209:三洋化成工業製 シュークローズ系 PO付加物、f=5、OHv=450
エタキュア100:アルベマール社製 ジエチルトルエンジアミン、f=2、アミン価 630
カオーライザーNo.300:花王社製 イミダゾール系触媒
DIDP:フタル酸ジイソデシル、大八化学社製
<実施例1~16、比較例1~11、参考例1>
主剤「S1」~「S15」と硬化剤「H1」~「H14」とを表3に記載の組み合わせ及び配合比でそれぞれ混合した後、水平な台上に設置された長さ19cm、幅10cm、深さ2cmのプラスチックトレイに厚さ2mmになるように流し込み、25℃で48時間放置して硬化フィルム状の止水材「R1」~「R15」、「R26」(実施例1~16)、「R16」~「R25」、「R27」(比較例1~11)及び「R28」(参考例1)を得た。 <Raw material>
Triethanolamine: f = 3, Tokyo Chemical Newpole NP-300: Sanyo Chemical Industries ethylenediamine PO adduct, f = 4, OHv = 760
Newpol NP-400: PO adduct of diethylenetriamine manufactured by Sanyo Chemical Industries, f = 5, OHv = 693
EDP-1100: PO Adduct of ethylenediamine manufactured by ADEKA, f = 4, OHv = 220
N-methyldiethanolamine: f = 2, Sansei HS-209 manufactured by Tokyo Chemical Industry, shoe-closed PO adduct, Sanyo Chemical Industries, f = 5, OHv = 450
Ecure 100: Albemarle diethyltoluenediamine, f = 2, amine value 630
Kao Riser No. 300: imidazole catalyst DIDP manufactured by Kao Corporation: diisodecyl phthalate, manufactured by Daihachi Chemical Co., Ltd.
After mixing the main agents “S1” to “S15” and the curing agents “H1” to “H14” respectively in the combinations and blending ratios shown in Table 3, the length 19 cm and the width 10 cm installed on a horizontal table, Poured into a 2 cm deep plastic tray to a thickness of 2 mm and allowed to stand at 25 ° C. for 48 hours for cured film-like water-stopping materials “R1” to “R15”, “R26” (Examples 1 to 16), “R16” to “R25”, “R27” (Comparative Examples 1 to 11) and “R28” (Reference Example 1) were obtained.
[水膨潤後引張強度(室温養生)試験方法]
実施例、比較例及び参考例で得られた止水材をそれぞれイオン交換水に25℃で24時間浸漬した後、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/minで引張強度を測定した。結果を表3に示す。
水膨潤後引張強度;3N以上を合格とする。 [Test method for tensile strength after water swelling (curing at room temperature)]
The water-stopping materials obtained in Examples, Comparative Examples and Reference Examples were each immersed in ion-exchanged water at 25 ° C. for 24 hours, then punched with a JIS No. 2 dumbbell according to JIS K6251 and pulled at 300 mm / min as a test piece The strength was measured. The results are shown in Table 3.
Tensile strength after water swelling: 3N or more is acceptable.
実施例、比較例及び参考例で得られた止水材をそれぞれイオン交換水に25℃で24時間浸漬した後、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/minで引張強度を測定した。結果を表3に示す。
水膨潤後引張強度;3N以上を合格とする。 [Test method for tensile strength after water swelling (curing at room temperature)]
The water-stopping materials obtained in Examples, Comparative Examples and Reference Examples were each immersed in ion-exchanged water at 25 ° C. for 24 hours, then punched with a JIS No. 2 dumbbell according to JIS K6251 and pulled at 300 mm / min as a test piece The strength was measured. The results are shown in Table 3.
Tensile strength after water swelling: 3N or more is acceptable.
[硬化時間測定方法]
実施例、比較例及び参考例において、それぞれ主剤に対して硬化剤を表3に記載の量で混合し、水平な台上に設置された長さ19cm、幅10cm、深さ2cmのプラスチックトレイに厚さ2mmになるように流し込んだ後、25℃で放置して4時間毎に得られた硬化フィルム状の止水材をイオン交換水に25℃で24時間浸漬し、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/minで引張強度を測定した。結果を表3に示す。
48時間硬化させたものと同等の引張強度になる時間を硬化時間とした。 [Curing time measurement method]
In the examples, comparative examples, and reference examples, the curing agent was mixed with the main agent in the amounts shown in Table 3, and placed on a plastic tray having a length of 19 cm, a width of 10 cm, and a depth of 2 cm installed on a horizontal table. After pouring to a thickness of 2 mm, the cured film-like water-stopping material obtained every 4 hours by leaving at 25 ° C. is immersed in ion-exchanged water at 25 ° C. for 24 hours, and JIS No. 2 according to JIS K6251. It was punched with a dumbbell, and the tensile strength was measured at 300 mm / min using this as a test piece. The results are shown in Table 3.
The time at which a tensile strength equivalent to that obtained by curing for 48 hours was taken as the curing time.
実施例、比較例及び参考例において、それぞれ主剤に対して硬化剤を表3に記載の量で混合し、水平な台上に設置された長さ19cm、幅10cm、深さ2cmのプラスチックトレイに厚さ2mmになるように流し込んだ後、25℃で放置して4時間毎に得られた硬化フィルム状の止水材をイオン交換水に25℃で24時間浸漬し、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/minで引張強度を測定した。結果を表3に示す。
48時間硬化させたものと同等の引張強度になる時間を硬化時間とした。 [Curing time measurement method]
In the examples, comparative examples, and reference examples, the curing agent was mixed with the main agent in the amounts shown in Table 3, and placed on a plastic tray having a length of 19 cm, a width of 10 cm, and a depth of 2 cm installed on a horizontal table. After pouring to a thickness of 2 mm, the cured film-like water-stopping material obtained every 4 hours by leaving at 25 ° C. is immersed in ion-exchanged water at 25 ° C. for 24 hours, and JIS No. 2 according to JIS K6251. It was punched with a dumbbell, and the tensile strength was measured at 300 mm / min using this as a test piece. The results are shown in Table 3.
The time at which a tensile strength equivalent to that obtained by curing for 48 hours was taken as the curing time.
[水膨潤後引張強度(加熱虐待後)試験方法]
実施例、比較例及び参考例で得られた止水材をそれぞれ180℃に加熱した乾燥機中に20分間入れて加熱した。次にイオン交換水に25℃で24時間浸漬した後、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/分で引張強度を測定した。結果を表3に示す。
水膨潤後引張強度;3N以上を合格とする。 [Tensile strength after water swelling (after heat abuse) test method]
The water-stopping materials obtained in the examples, comparative examples and reference examples were each heated in a dryer heated to 180 ° C. for 20 minutes. Next, after being immersed in ion-exchanged water at 25 ° C. for 24 hours, it was punched with a JIS No. 2 dumbbell according to JIS K6251, and the tensile strength was measured at 300 mm / min using this as a test piece. The results are shown in Table 3.
Tensile strength after water swelling: 3N or more is acceptable.
実施例、比較例及び参考例で得られた止水材をそれぞれ180℃に加熱した乾燥機中に20分間入れて加熱した。次にイオン交換水に25℃で24時間浸漬した後、JISK6251に準じてJIS2号ダンベルで打ち抜き、これを試験片として300mm/分で引張強度を測定した。結果を表3に示す。
水膨潤後引張強度;3N以上を合格とする。 [Tensile strength after water swelling (after heat abuse) test method]
The water-stopping materials obtained in the examples, comparative examples and reference examples were each heated in a dryer heated to 180 ° C. for 20 minutes. Next, after being immersed in ion-exchanged water at 25 ° C. for 24 hours, it was punched with a JIS No. 2 dumbbell according to JIS K6251, and the tensile strength was measured at 300 mm / min using this as a test piece. The results are shown in Table 3.
Tensile strength after water swelling: 3N or more is acceptable.
また、室温養生後の水膨潤後引張強度(N)に対する加熱虐待後の水膨潤後引張強度(N)の割合を加熱虐待維持率として算出した。結果を表3に示す。
加熱虐待維持率;80%以上を合格とする。 Moreover, the ratio of the tensile strength (N) after water swelling after heating abuse to the tensile strength (N) after water swelling after room temperature curing was calculated as the heating abuse maintenance rate. The results are shown in Table 3.
Heat abuse maintenance rate: 80% or more is acceptable.
加熱虐待維持率;80%以上を合格とする。 Moreover, the ratio of the tensile strength (N) after water swelling after heating abuse to the tensile strength (N) after water swelling after room temperature curing was calculated as the heating abuse maintenance rate. The results are shown in Table 3.
Heat abuse maintenance rate: 80% or more is acceptable.
[体積膨潤倍率測定方法]
実施例、比較例及び参考例で得られた止水材をそれぞれ1辺70mmの正方形に切り取った。次にイオン交換水に25℃で24時間浸漬した後、縦・横・厚みを測定し、浸漬前の体積からの倍率を算出した。結果を表3に示す。
体積膨潤倍率;3倍以上を合格とする。 [Method for measuring volume swelling ratio]
The waterstop materials obtained in Examples, Comparative Examples, and Reference Examples were cut into squares each having a side of 70 mm. Next, after immersing in ion exchange water at 25 ° C. for 24 hours, the length, width, and thickness were measured, and the magnification from the volume before immersion was calculated. The results are shown in Table 3.
Volume swelling ratio: 3 times or more is accepted.
実施例、比較例及び参考例で得られた止水材をそれぞれ1辺70mmの正方形に切り取った。次にイオン交換水に25℃で24時間浸漬した後、縦・横・厚みを測定し、浸漬前の体積からの倍率を算出した。結果を表3に示す。
体積膨潤倍率;3倍以上を合格とする。 [Method for measuring volume swelling ratio]
The waterstop materials obtained in Examples, Comparative Examples, and Reference Examples were cut into squares each having a side of 70 mm. Next, after immersing in ion exchange water at 25 ° C. for 24 hours, the length, width, and thickness were measured, and the magnification from the volume before immersion was calculated. The results are shown in Table 3.
Volume swelling ratio: 3 times or more is accepted.
[ポットライフ]
実施例、比較例及び参考例において、それぞれ表3に記載の配合比で主剤及び硬化剤を配合してプラスチックトレイに流し込んだ後、25℃で3時間放置した後の粘度(表面の硬化膜は取り除く)を測定した。
粘度;50Pa・s at 25℃以下を合格とする。結果を表3に示す。 [Pot life]
In the Examples, Comparative Examples and Reference Examples, the main agent and the curing agent were blended in the blending ratios shown in Table 3 and poured into a plastic tray, and then the viscosity after standing at 25 ° C. for 3 hours (the cured film on the surface was Measured).
Viscosity: 50 Pa · s at 25 ° C. or less is acceptable. The results are shown in Table 3.
実施例、比較例及び参考例において、それぞれ表3に記載の配合比で主剤及び硬化剤を配合してプラスチックトレイに流し込んだ後、25℃で3時間放置した後の粘度(表面の硬化膜は取り除く)を測定した。
粘度;50Pa・s at 25℃以下を合格とする。結果を表3に示す。 [Pot life]
In the Examples, Comparative Examples and Reference Examples, the main agent and the curing agent were blended in the blending ratios shown in Table 3 and poured into a plastic tray, and then the viscosity after standing at 25 ° C. for 3 hours (the cured film on the surface was Measured).
Viscosity: 50 Pa · s at 25 ° C. or less is acceptable. The results are shown in Table 3.
脂肪族系有機ポリイソシアネート(a2)を芳香族系イソシアネート基末端プレポリマー(a1)に添加して得られた本発明の止水材においてはイソシアネート基の反応速度に差があるために、先ず、反応が速い芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基が空気中から取り込んだ水分と反応してアミノ基末端になり、次いで、反応が遅い脂肪族系有機ポリイソシアネート(a2)のイソシアネート基が前記アミノ基末端と反応してウレア結合を形成するという段階的な架橋効果のため、表3に示したように、加熱虐待後においても高い水膨潤後引張強度が得られる。他方、前記脂肪族系有機ポリイソシアネート(a2)を添加しない止水材は、イソシアネート基の反応速度に差がないため、イソシアネート基と水分との反応が一斉に行われる。この結果、水とイソシアネート基との反応物であるアミノ基と未反応のイソシアネート基とがさらに反応する架橋効果が少なくなるため、加熱虐待後の水膨潤後引張強度が低下する。また、前記脂肪族系有機ポリイソシアネート(a2)の添加量が少ないものも同様に水膨潤後引張強度が低下する。さらに、前記脂肪族系有機ポリイソシアネート(a2)の添加量が多すぎるものは相対的にイソシアネート基末端プレポリマーの含有量、しいてはオキシエチレン基含有量が減少するため体積膨潤倍率が低下する。また、前記脂肪族系有機ポリイソシアネート(a2)の代わりに芳香族ポリイソシアネートを添加したものは、室温養生後では水膨潤後引張強度がある程度得られるものの、加熱虐待によるウレア結合の加水分解は芳香族系ウレア結合のほうが起こり易いため、加熱虐待後の水膨潤後引張強度の低下が著しい。
In the waterstop material of the present invention obtained by adding the aliphatic organic polyisocyanate (a2) to the aromatic isocyanate group-terminated prepolymer (a1), there is a difference in the reaction rate of the isocyanate group. The isocyanate group of the fast-reacting aromatic isocyanate-terminated prepolymer (a1) reacts with moisture taken in from the air to become an amino-terminated terminal, and then the slow-reacting aliphatic organic polyisocyanate (a2) isocyanate Because of the stepwise cross-linking effect that the group reacts with the amino group terminal to form a urea bond, as shown in Table 3, high post-water swelling tensile strength can be obtained even after heat abuse. On the other hand, since the water-stopping material to which the aliphatic organic polyisocyanate (a2) is not added has no difference in the reaction rate of the isocyanate group, the reaction between the isocyanate group and moisture is performed simultaneously. As a result, the cross-linking effect of further reacting an amino group, which is a reaction product of water and an isocyanate group, with an unreacted isocyanate group is reduced, so that the tensile strength after water swelling after heat abuse is lowered. Moreover, the thing with little addition amount of the said aliphatic organic polyisocyanate (a2) similarly falls the tensile strength after water swelling. Furthermore, when the amount of the aliphatic organic polyisocyanate (a2) added is too large, the content of the isocyanate group-terminated prepolymer and the content of the oxyethylene group are relatively decreased, so that the volume swelling ratio is decreased. . The addition of aromatic polyisocyanate in place of the aliphatic organic polyisocyanate (a2) provides a certain degree of tensile strength after water swelling after curing at room temperature. Since the group urea bond is more likely to occur, the decrease in tensile strength after water swelling after heat abuse is significant.
さらに、表3に示したように、アミン系ポリオール(B)を用いて架橋した本発明の止水材においては、ウレア結合よりもウレタン結合のほうが耐加水分解性に優れるため、さらに優れた耐熱性が得られ、加熱虐待後の水膨潤後引張強度の低下はほとんどない。前記芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が2:1より水酸基が多い場合は、ウレタン結合が多くなる分、相対的にウレア結合が少なくなって凝集力が低下し、水膨潤後引張強度が低下する。さらに前記アミン系ポリオール(B)の触媒効果によりポットライフが短くなる。芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が8:1より水酸基が少ない場合は前記アミン系ポリオール(B)の添加による架橋効果が得られないため、加熱虐待維持率が低く、加熱虐待後の水膨潤後引張強度の低下が著しい。
Furthermore, as shown in Table 3, in the water-stopping material of the present invention cross-linked using the amine-based polyol (B), the urethane bond is more excellent in hydrolysis resistance than the urea bond, and thus further excellent heat resistance. Properties are obtained, and there is almost no decrease in tensile strength after water swelling after heat abuse. The ratio of isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is more than 2: 1. In this case, as the number of urethane bonds increases, the number of urea bonds decreases, the cohesive strength decreases, and the tensile strength after water swelling decreases. Furthermore, the pot life is shortened by the catalytic effect of the amine-based polyol (B). When the ratio of the isocyanate group derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl group derived from the amine-based polyol (B) (number of isocyanate groups: number of hydroxyl groups) is less than 8: 1 Since the crosslinking effect by addition of the amine-based polyol (B) cannot be obtained, the heat abuse maintenance rate is low, and the decrease in tensile strength after water swelling after heat abuse is remarkable.
以上説明したように、本発明によれば、耐熱性に富み、摩擦熱に対する耐久性が十分ある水膨張性止水材及びそれに用いるポリウレタン樹脂形成性組成物を提供することが可能となる。また、本発明のポリウレタン樹脂形成性組成物にさらに触媒を含有せしめることにより、十分な作業時間を確保しつつ短時間で硬化するという好適な形成性を有するポリウレタン樹脂形成性組成物を提供することができる。従って、本発明のポリウレタン樹脂形成性組成物及びそれにより得られる水膨張性止水材は、止水を目的とした土木建築用途の目地材、コーキング材、鋼矢板用の止水材等に好ましく用いることができる。
As described above, according to the present invention, it is possible to provide a water-swellable water-stopping material that is rich in heat resistance and has sufficient durability against frictional heat, and a polyurethane resin-forming composition used therefor. Further, by providing a polyurethane resin-forming composition of the present invention with a catalyst, a polyurethane resin-forming composition having a suitable formability of curing in a short time while ensuring a sufficient working time is provided. Can do. Accordingly, the polyurethane resin-forming composition of the present invention and the water-swellable water-stopping material obtained thereby are preferably used as joint materials for civil engineering and building applications for the purpose of water-stopping, caulking materials, water-stopping materials for steel sheet piles, and the like. Can be used.
Claims (10)
- ポリウレタン樹脂を得るためのポリウレタン樹脂形成性組成物であって、
イソシアネート基含有量が0.5~15質量%であり、芳香族系イソシアネート基末端プレポリマー(a1)及び脂肪族系有機ポリイソシアネート(a2)を含有する止水材用有機ポリイソシアネート組成物(A)と、
公称平均官能基数が3~6であるアミン系ポリオール(B)とを、
前記芳香族系イソシアネート基末端プレポリマー(a1)に由来するイソシアネート基と前記アミン系ポリオール(B)に由来する水酸基との比(イソシアネート基の数:水酸基の数)が2:1~8:1となるように含有しており、
前記芳香族系イソシアネート基末端プレポリマー(a1)が、芳香族ポリイソシアネート(a11)とポリエーテルポリオール(a12)との反応生成物であり、
前記ポリエーテルポリオール(a12)が、公称平均官能基数が2でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-1)と、公称平均官能基数が3でありポリオキシアルキレン鎖におけるオキシエチレン基含有量が50~100質量%であるポリエーテルポリオール(a12-2)とからなり、
前記脂肪族系有機ポリイソシアネート(a2)が、イソシアヌレート基含有有機ポリイソシアネート(a21)、アロファネート基含有有機ポリイソシアネート(a22)、及び、官能基数が2~3であり分子量が300以下である活性水素基含有化合物と脂肪族系ジイソシアネートとの反応生成物(a23)からなる群から選択される一以上の化合物であり、
かつ、
前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が8:1~1:4であるポリウレタン樹脂形成性組成物。 A polyurethane resin-forming composition for obtaining a polyurethane resin,
Organic polyisocyanate composition for water-stopping material (A) having an isocyanate group content of 0.5 to 15% by mass and containing an aromatic isocyanate group-terminated prepolymer (a1) and an aliphatic organic polyisocyanate (a2) )When,
An amine-based polyol (B) having a nominal average functional group number of 3 to 6,
The ratio of the isocyanate groups derived from the aromatic isocyanate group-terminated prepolymer (a1) to the hydroxyl groups derived from the amine polyol (B) (number of isocyanate groups: number of hydroxyl groups) is 2: 1 to 8: 1. Is contained so that
The aromatic isocyanate group-terminated prepolymer (a1) is a reaction product of an aromatic polyisocyanate (a11) and a polyether polyol (a12),
The polyether polyol (a12) is a polyether polyol (a12-1) having a nominal average functional group number of 2 and an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass, and a nominal average functional group number of And a polyether polyol (a12-2) having an oxyethylene group content in the polyoxyalkylene chain of 50 to 100% by mass,
The aliphatic organic polyisocyanate (a2) is an isocyanurate group-containing organic polyisocyanate (a21), an allophanate group-containing organic polyisocyanate (a22), an activity having 2 to 3 functional groups and a molecular weight of 300 or less. One or more compounds selected from the group consisting of a reaction product (a23) of a hydrogen group-containing compound and an aliphatic diisocyanate,
And,
The ratio of the isocyanate group of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate group of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) is 8: A polyurethane resin-forming composition having a ratio of 1 to 1: 4. - 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~50質量%である請求項1に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to claim 1, wherein the aliphatic organic polyisocyanate (a2) has an isocyanate group content of 5 to 50% by mass.
- 前記脂肪族系有機ポリイソシアネート(a2)におけるイソシアネート基含有量が5~40質量%である請求項1又は2に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to claim 1 or 2, wherein the aliphatic organic polyisocyanate (a2) has an isocyanate group content of 5 to 40% by mass.
- 前記アミン系ポリオール(B)の水酸基価が250~1,200である請求項1から3のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to any one of claims 1 to 3, wherein the amine polyol (B) has a hydroxyl value of 250 to 1,200.
- 前記ポリエーテルポリオール(a12)の数平均分子量が200~8,000である請求項1から4のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to any one of claims 1 to 4, wherein the polyether polyol (a12) has a number average molecular weight of 200 to 8,000.
- 前記芳香族系イソシアネート基末端プレポリマー(a1)のイソシアネート基と前記脂肪族系有機ポリイソシアネート(a2)のイソシアネート基との比(a1のイソシアネート基の数:a2のイソシアネート基の数)が6:1~1:1である請求項1から5のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物。 The ratio of the isocyanate groups of the aromatic isocyanate group-terminated prepolymer (a1) to the isocyanate groups of the aliphatic organic polyisocyanate (a2) (number of isocyanate groups in a1: number of isocyanate groups in a2) is 6: The polyurethane resin-forming composition according to any one of claims 1 to 5, wherein the composition is 1: 1 to 1: 1.
- 前記止水材用有機ポリイソシアネート組成物(A)が可塑剤(C)をさらに含有する請求項1から6のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to any one of claims 1 to 6, wherein the organic polyisocyanate composition (A) for water-stopping material further contains a plasticizer (C).
- 触媒(D)をさらに含有する請求項1から7のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to any one of claims 1 to 7, further comprising a catalyst (D).
- 可塑剤(C)をさらに含有する請求項8に記載のポリウレタン樹脂形成性組成物。 The polyurethane resin-forming composition according to claim 8, further comprising a plasticizer (C).
- 請求項1から9のうちのいずれか1項に記載のポリウレタン樹脂形成性組成物を用いた鋼矢板用水膨張性止水材。 A water-expandable waterstop material for steel sheet piles using the polyurethane resin-forming composition according to any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012508147A JP5447655B2 (en) | 2010-03-31 | 2011-02-23 | Polyurethane resin-forming composition and water-swelling waterproofing material for steel sheet piles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010080147 | 2010-03-31 | ||
JP2010-080147 | 2010-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011122180A1 true WO2011122180A1 (en) | 2011-10-06 |
Family
ID=44711912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054028 WO2011122180A1 (en) | 2010-03-31 | 2011-02-23 | Polyurethane resin-forming composition and hydroinflating water-sealing material for steel sheet pile |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5447655B2 (en) |
TW (1) | TW201139480A (en) |
WO (1) | WO2011122180A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102492288A (en) * | 2011-11-30 | 2012-06-13 | 上海东大化学有限公司 | Enhanced plugging material for steel sheet piling cofferdam and its preparation and application method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7060997B2 (en) | 2018-04-02 | 2022-04-27 | 株式会社日立ハイテク | Temperature control device and genetic test device |
JP7264509B2 (en) | 2019-01-18 | 2023-04-25 | 日本化学塗料株式会社 | Water-swelling water-stopping material hardening, water-stopping steel sheet pile, water-stopping steel sheet pile manufacturing method, and water-stopping construction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794056A (en) * | 1980-12-02 | 1982-06-11 | Dainippon Ink & Chem Inc | Moisture-curing waterproof coating material |
JPH05209165A (en) * | 1992-01-30 | 1993-08-20 | Sunstar Eng Inc | Urethane based sealant |
JPH06157708A (en) * | 1992-07-28 | 1994-06-07 | Nippon Polyurethane Ind Co Ltd | Composition for polyurethane-based elastomer |
JPH08151424A (en) * | 1994-11-29 | 1996-06-11 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition and adhesive, sealing agent and binder containing same |
JPH08169930A (en) * | 1994-10-19 | 1996-07-02 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition, and adhesive, sealant, and binder produced therefrom |
JP2000038567A (en) * | 1998-07-22 | 2000-02-08 | Nippon Polyurethane Ind Co Ltd | Thermally curable urethane sealing material |
-
2011
- 2011-02-23 WO PCT/JP2011/054028 patent/WO2011122180A1/en active Application Filing
- 2011-02-23 JP JP2012508147A patent/JP5447655B2/en not_active Expired - Fee Related
- 2011-03-29 TW TW100110778A patent/TW201139480A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794056A (en) * | 1980-12-02 | 1982-06-11 | Dainippon Ink & Chem Inc | Moisture-curing waterproof coating material |
JPH05209165A (en) * | 1992-01-30 | 1993-08-20 | Sunstar Eng Inc | Urethane based sealant |
JPH06157708A (en) * | 1992-07-28 | 1994-06-07 | Nippon Polyurethane Ind Co Ltd | Composition for polyurethane-based elastomer |
JPH08169930A (en) * | 1994-10-19 | 1996-07-02 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition, and adhesive, sealant, and binder produced therefrom |
JPH08151424A (en) * | 1994-11-29 | 1996-06-11 | Nippon Polyurethane Ind Co Ltd | Polyurethane resin composition and adhesive, sealing agent and binder containing same |
JP2000038567A (en) * | 1998-07-22 | 2000-02-08 | Nippon Polyurethane Ind Co Ltd | Thermally curable urethane sealing material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102492288A (en) * | 2011-11-30 | 2012-06-13 | 上海东大化学有限公司 | Enhanced plugging material for steel sheet piling cofferdam and its preparation and application method |
Also Published As
Publication number | Publication date |
---|---|
JP5447655B2 (en) | 2014-03-19 |
TW201139480A (en) | 2011-11-16 |
JPWO2011122180A1 (en) | 2013-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4286234B2 (en) | Urethane resin adhesive composition | |
US10308754B2 (en) | Composition | |
KR101514107B1 (en) | Urethane Prepolymer | |
EP0350890B1 (en) | Polyurethanes made from blends of polypropyleneoxide polyol and organic-silicone block copolymer based polyol intermediates | |
JP5561658B2 (en) | Polyurethane resin-forming composition and steel sheet pile waterproofing material | |
US20220403165A1 (en) | A one-component type polyurethane prepolymer composition | |
WO2008041347A1 (en) | Polyisocyanate composition and method for producing hard polyurethane foam by using the composition | |
JP5877131B2 (en) | Polyurethane resin-forming composition and polyurethane resin | |
JP2007523983A (en) | Polyurethane foam free of tin and transition metals | |
JP5447655B2 (en) | Polyurethane resin-forming composition and water-swelling waterproofing material for steel sheet piles | |
JP4736438B2 (en) | Two-component room temperature curable liquid urethane composition | |
JP4767076B2 (en) | Curable composition | |
KR100192201B1 (en) | Moisture curing one component polyurethane composition and preparation method thereof | |
JP5447650B2 (en) | Organic polyisocyanate composition, water-stopping material-forming composition, and water-swellable water-stopping material | |
JP2012251053A (en) | Urethane resin adhesive composition | |
JP6786147B2 (en) | Sealing material made of polyurethane foam with high heat resistance and high water resistance | |
KR20180016516A (en) | Adhesive composition and method for producing the same | |
JP6135669B2 (en) | Coating agent, and coating film and film using the same | |
JP4823491B2 (en) | Moisture curable urethane adhesive composition | |
JP2010174053A (en) | Polyether polyol | |
KR100444390B1 (en) | Moisture Curable Polyurethane Compositions | |
KR100733839B1 (en) | Composition For Fixing Road Bed Ballasts | |
JP3780691B2 (en) | Two-component curable urethane composition and sealing material | |
JPH05345876A (en) | Urethane-based hard floor convering conposition | |
JPH09278859A (en) | Two-pack waterproofing material composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11762420 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012508147 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11762420 Country of ref document: EP Kind code of ref document: A1 |