WO2011122029A1 - Thermal treatment device and thermal treatment method - Google Patents

Thermal treatment device and thermal treatment method Download PDF

Info

Publication number
WO2011122029A1
WO2011122029A1 PCT/JP2011/001928 JP2011001928W WO2011122029A1 WO 2011122029 A1 WO2011122029 A1 WO 2011122029A1 JP 2011001928 W JP2011001928 W JP 2011001928W WO 2011122029 A1 WO2011122029 A1 WO 2011122029A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
support member
processed
protrusion
treatment apparatus
Prior art date
Application number
PCT/JP2011/001928
Other languages
French (fr)
Japanese (ja)
Inventor
西田光志
神徳千幸
長嶋靖
Original Assignee
シャープ株式会社
光洋サーモシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, 光洋サーモシステム株式会社 filed Critical シャープ株式会社
Publication of WO2011122029A1 publication Critical patent/WO2011122029A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system

Definitions

  • the present invention relates to a heat treatment apparatus and a heat treatment method for heat-treating an object to be processed such as a glass substrate used for a flat display panel or the like.
  • a glass substrate used in a flat display panel such as a liquid crystal display panel or a plasma display panel is appropriately subjected to a heat treatment such as an annealing treatment, a coating treatment, or a baking of a polyimide film depending on the application.
  • a heat treatment such as an annealing treatment, a coating treatment, or a baking of a polyimide film depending on the application.
  • it is known to heat-treat a glass substrate by radiant heat of a heater see, for example, Patent Document 1).
  • Patent Document 1 a heating source for heating a plate-like object to be processed (glass substrate) is arranged in a heating chamber, and the internal temperature distribution of the object to be processed is made uniform in this heating source.
  • a heat treatment apparatus provided with a thin film heater in which a pattern for heating an object to be processed is provided, and first and second glass plates that sandwich the thin film heater 3 while covering the pattern.
  • the entire surface of the thin film heater is covered with a glass plate.
  • the glass plate removes all of the incident infrared rays. It is not transparent. Therefore, the heat treatment apparatus of Patent Document 1 has a problem that infrared rays emitted from the heater cannot be used effectively when the object to be processed is heat-treated by radiant heat.
  • the area of the display panel was relatively small, it was not a problem. However, since the area of the display panel tends to increase in recent years, the above problem has been increased.
  • the present inventor has conducted earnest research on supporting a workpiece such as a glass substrate on a heater by a plurality of quartz tubes arranged in parallel with each other. By so doing, the portion that is not supported by the quartz tube is exposed without being covered by the quartz tube, so that the utilization efficiency of infrared rays emitted from the heater can be increased.
  • the object to be processed such as the glass substrate is different in the amount of incident infrared rays in the region supported by the quartz tube and the region not supported by the quartz tube. A slight difference is inevitable.
  • the quartz tube itself has a heat capacity, the quartz tube is heated by radiant heat from the heater if it is installed in a high-temperature furnace for a long time.
  • the quartz tube is heated by radiant heat from the heater if it is installed in a high-temperature furnace for a long time.
  • the quartz tube having a relatively low temperature is placed on the quartz tube having a relatively high temperature, the glass substrate is rapidly heated in a region supported by the quartz tube. As a whole, there is a risk of unevenness in the heat treatment.
  • an object of the present invention is a heat treatment apparatus having a plurality of support members that support an object to be processed in a state of being opposed to a heating source that emits infrared rays.
  • An object of the present invention is to make the heat treatment for the object to be processed as uniform as possible.
  • a plurality of protrusions for supporting the object to be processed are provided on the support member that overlaps only a part of the object to be processed.
  • the present invention provides a processing chamber, a heating source provided inside the processing chamber for emitting infrared rays, and provided inside the processing chamber so that an object to be processed faces the heating source. And a support member that supports the heat treatment apparatus configured to heat treat the object to be treated by radiant heat generated by infrared rays emitted from the heating source.
  • the support member is disposed so as to overlap only a part of the object to be processed, and a plurality of protrusions for supporting the object to be processed are provided on the surface of the support member on the object to be processed side. It is characterized by being.
  • the object to be processed when the object to be processed is heat-treated, the object to be processed is carried into the processing chamber and supported by the support member. Since the support member is provided with a plurality of protrusions on the surface of the object to be processed, the lower surface of the object to be processed is supported by the plurality of protrusions. Then, when infrared rays are emitted from the heating source, the workpiece is heat-treated by the radiant heat.
  • the support member is arranged so as to overlap only a part of the object to be processed, the region not supported by the support member on the lower surface of the object to be processed is exposed without being covered by the support member. Yes. Therefore, it is possible to increase the utilization efficiency of the infrared rays emitted from the heating source by directly entering the infrared rays emitted from the heating source.
  • the contact area between the object to be processed and the support member is reduced, and the heat capacity of the support member has an effect on the object to be processed. Can be reduced. That is, even if the support member is at a high temperature in the processing chamber, since the contact area between the support member and the object to be processed is small, the heating of the object to be processed by the high temperature support member is suppressed. It becomes possible to make the heat treatment uniform.
  • the contact area between the support member and the object to be processed is reduced while increasing the utilization efficiency of infrared rays emitted from the heating source so that the support member overlaps only a part of the object to be processed.
  • the heat treatment for the processed product can be made uniform.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of the heat treatment apparatus of the first embodiment.
  • FIG. 2 is a side view showing the appearance of the support member provided with the protrusions in the first embodiment.
  • FIG. 3 is a perspective view showing a part of the appearance of the support member provided with the protrusions in the first embodiment.
  • FIG. 4 is an enlarged cross-sectional view showing a protrusion in the first embodiment.
  • FIG. 5 is a side view showing a holding portion that holds the end portion of the support member according to the first embodiment.
  • FIG. 6 is a graph showing a temperature change of the glass substrate according to the example.
  • FIG. 7 is a graph showing a temperature change of the glass substrate according to the comparative example.
  • FIG. 8 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment.
  • FIG. 9 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment.
  • FIG. 10 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment.
  • FIG. 11 is a perspective view showing a part of the appearance of the support member provided with the protrusions in the third embodiment.
  • Embodiment 1 of the Invention 1 to 5 show Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a heat treatment apparatus 1 according to the first embodiment.
  • FIG. 2 is a side view showing the appearance of the support member 20 provided with the protrusions 22.
  • FIG. 3 is a perspective view showing a part of the appearance of the support member 20 provided with the protrusions 22.
  • FIG. 4 is an enlarged sectional view showing the protrusion 22.
  • FIG. 5 is a side view showing the holding portion 25 that holds the end portion of the support member 20.
  • the heat treatment apparatus 1 of the present embodiment includes a process chamber 10 that can be sealed, a heater 12 as a heating source provided in the process chamber 10, and a process chamber 10 that is also provided in the process chamber 10. And a support member 20 that supports a glass substrate 13 as an object to be processed. And the heat processing apparatus 1 is comprised so that the glass substrate 13 may be heat-processed by the radiant heat by the infrared rays radiated
  • the object to be treated means not only a thin film (for example, a resin film or a semiconductor film) provided on the surface of a support such as the glass substrate 13 but also the whole including the glass substrate 13. To do.
  • the object to be processed is also simply referred to as a glass substrate for explanation.
  • the heat processing apparatus 1 of this embodiment is comprised so that the polyimide film (not shown) apply
  • the glass substrate 13 constitutes a liquid crystal display panel, and the baked polyimide film becomes an alignment film that regulates the alignment of liquid crystal molecules in the liquid crystal display panel.
  • the processing chamber 10 is formed as a sealed space by a heat insulating container 15 in which the glass substrate 13 is accommodated and a heat insulating door 16 that opens and closes the heat insulating container 15. Further, a gas inlet (not shown) and a gas outlet (not shown) can be connected to the processing chamber 10. For example, N 2 gas is introduced into the processing chamber 10 from the gas inlet, and the glass substrate 13 is heat-treated in an N 2 gas atmosphere.
  • the heater 12 is provided, for example, in the entire lower part of the heat insulating container 15 inside the processing chamber 10 and is connected to a power source (not shown). Then, when energized from the power source, infrared rays 11 are emitted as shown in FIG.
  • a plurality of support members 20 are provided inside the processing chamber 10. As shown in FIGS. 1 to 3, the support members 20 are each constituted by a cylindrical quartz tube and arranged in parallel to each other. For example, six support members 20 are provided at a pitch of about 600 mm. Each support member 20 has a length of, for example, about 3300 mm. The diameter of the support member 20 is about 20 mm, for example, and the thickness of the tube is about several mm.
  • Each support member 20 is held at both ends by Y-shaped holding portions 25 as shown in FIG.
  • the end portion of the support member 20 is placed on the bifurcated portion of the holding portion 25.
  • the support member 20 supports the glass substrate 13 so as to face the heater 12.
  • the support member 20 is disposed so as to overlap only part of the glass substrate 13.
  • a plurality of protrusions 22 that support the glass substrate 13 are provided on the surface of the support member 20 on the glass substrate 13 side. That is, the support member 20 includes a support body 21 made of a quartz tube, and a plurality of protrusions 22 projecting from the support body 21 at a predetermined interval.
  • the distance between the protrusions 22 is, for example, about 100 mm, and the protrusion height of the protrusions 22 from the surface of the support body 21 is, for example, about 5 mm.
  • each protrusion 22 is made of, for example, quartz, and is formed in a columnar shape and a tip thereof is formed in a curved surface as shown in an enlarged manner in FIG.
  • Each projection 22 is quartz welded to the support body 21 while being inserted into a through-hole formed in the support body 21. Thereby, a welded portion 23 made of quartz is formed at the base end of the protruding portion 22 over the entire circumference.
  • the glass substrate 13 When the glass substrate 13 is heat-treated by the heat treatment apparatus 1, first, a polyimide film is applied to one surface of the large glass substrate 13 over the entire surface. Thereafter, the glass substrate 13 coated with the polyimide film is transported into the heat insulating container 15 and placed on the support member 20. Thus, the glass substrate 13 is supported by the support member 20 so as to face the heater 12 inside the heat insulating container 15. At this time, the polyimide film is applied to the upper surface of the glass substrate 13, and the lower surface of the glass substrate 13 is point-supported by the plurality of protrusions 22 of the support member 20.
  • the heat insulation door 16 is closed and the processing chamber 10 is sealed. Subsequently, power is supplied from a power source (not shown) to the heater 12, and infrared rays 11 are emitted from the heater 12. As a result, the glass substrate 13 supported by the support member 20 is heat-treated, and the polyimide film of the glass substrate 13 is baked by the radiant heat of the heater 12. Thereafter, the glass substrate 13 on which the polyimide film has been baked is carried out from the opened heat insulating container 15.
  • the support member 20 is arranged so as to overlap only a part of the glass substrate 13, an area that is not supported by the support member 20 on the lower surface of the glass substrate 13 is defined in the support member 20. It can be exposed without being covered. Therefore, the infrared rays 11 emitted from the heater 12 can be directly incident on the glass substrate 13 and the polyimide film, so that the utilization efficiency of the infrared rays 11 emitted from the heater 12 can be increased.
  • the contact area between the glass substrate 13 and the support member 20 can be reduced, and the heat capacity of the support member 20 can be reduced.
  • the influence on the glass substrate 13 can be reduced.
  • the contact area between the support member 20 and the glass substrate 13 can be reduced. Therefore, as a result of suppressing the heating of the glass substrate 13 and the polyimide film by the high temperature support member 20, the heat treatment for the glass substrate 13 can be made uniform.
  • the film quality of the alignment film (polyimide film) in the liquid crystal display panel can be made uniform, the display quality can be improved.
  • the tip of the projection 22 is formed into a curved surface, damage to the glass substrate 13 due to the tip of the projection 22 can be suppressed.
  • the thermal conductivity of the N 2 atmosphere in the processing chamber 10 is made to be approximately the same while increasing the transmittance of the infrared ray 11 in the support member 20. Can do.
  • the graph of FIG. 7 shows the glass substrate region A supported by the support member and the glass substrate region B not supported by the support member for the comparative example in which the support member made of the quartz tube does not have a protrusion.
  • the temperature change of the said glass substrate in is shown.
  • the graph of FIG. 6 shows that in the embodiment in which the support member 20 has the protrusion 22, the glass substrate region A supported by the support member and the glass substrate region B not supported by the support member.
  • the temperature change of the said glass substrate is shown. As shown in FIG. 6, it was found that there is no significant difference in the temperature increase mode in each of the glass substrate regions A and B.
  • Embodiment 2 of the Invention >> 8 to 10 show Embodiment 2 of the present invention.
  • FIGS. 8 to 10 are cross-sectional views showing an enlarged part of the protrusions in the second embodiment.
  • the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the protrusion 22 in the first embodiment is changed.
  • the protrusion 22 is made of quartz, for example, and is formed so as to enclose bubbles as shown in FIG.
  • the thermal conductivity of the protrusion 22 is set to the atmosphere in the processing chamber 10. You can get closer. Therefore, the heat treatment can be made more uniform in the region of the glass substrate 13 that is in contact with the protrusion 22 and the other region that is not in contact with the protrusion 22.
  • the protrusion 22 may have a fine uneven shape on the surface in contact with the atmosphere in the processing chamber 10. That is, a large number of convex portions 32 and concave portions 33 are formed on the surface of the protruding portion 22.
  • the protrusion 22 has a plurality of solid layers 35 formed of a solid and a gas layer 36 provided between the plurality of solid layers 35 and in which a gas is disposed.
  • the solid layer 35 is formed of a solid such as quartz.
  • the gas layer 36 is filled with a gas such as an atmosphere in the processing chamber 10 or air.
  • the thermal conductivity of the protrusion 22 can be brought close to the atmosphere in the processing chamber 10 by the gas layer 36 in which the gas for heat insulation is enclosed. Therefore, the same effect as the example of FIG. 8 can be obtained.
  • FIG. 11 shows Embodiment 3 of the present invention.
  • FIG. 11 is a perspective view showing a part of the appearance of the support member 20 provided with the protrusions 22 in the third embodiment.
  • the support member 20 is configured by the cylindrical support portion main body 21 and the protruding portion 22 welded thereto.
  • the support portion main body 21 and the protruding portion 22 are provided. It is formed integrally.
  • the support member 20 in the present embodiment has an uneven ridgeline, and the protrusion 22 is constituted by a convex portion of the ridgeline.
  • the support member 20 has, for example, a substantially triangular prism shape, and one of three ridge lines extending in the longitudinal direction (in other words, a ridge line constituting the apex portion of the triangular prism) extends along the ridge line. It is formed in an uneven shape. In this way, the convex portions are formed at equal intervals, so that the convex portions become the protrusions 22.
  • the support member 20 and its protrusion 22 are made of quartz as in the first embodiment.
  • the glass substrate 13 can be supported inside the processing chamber 10 as in the first embodiment.
  • maintenance part 25 it is preferable to set it as the structure which has a planar support surface so that the triangular prism-shaped support member 20 can be hold
  • the projection part 22 is comprised by the convex part of the ridgeline in the support member 20 in this way, the support member 20 which has the projection part 22 as a result of being able to form the some projection part 22 in the support member 20 integrally. Can be easily formed.
  • the plurality of support members 20 having the protrusions 22 are provided.
  • the support members 20 may be connected to each other.
  • the substantially triangular prism-shaped support member 20 has been described as an example.
  • the present invention is not limited to this, and the support member 20 may be formed in other polygonal column shapes.
  • the heating source in the present invention is not limited to the heater 12, and other heating sources that emit infrared rays can be applied.
  • the object to be processed in the present invention is not limited to the glass substrate 13 and other objects to be processed may be applied. Moreover, it is good also as a structure which combined each said embodiment suitably.
  • the present invention is useful for a heat treatment apparatus and a heat treatment method for heat-treating an object to be processed such as a glass substrate used for a flat display panel or the like.
  • Heat treatment equipment 10 treatment room 11 Infrared 12 Heater (heating source) 13 Glass substrate (object to be processed) 15 Insulated container 16 Insulated door 20 Support member 21 Support body 22 Protrusions 31 Bubbles 35 Solid layer 36 Gas layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Abstract

Disclosed is a thermal treatment device comprising: a treatment chamber; a heating source which is arranged in the treatment chamber and can emit an infrared ray; and a support member which is arranged in the treatment chamber and can support a material of interest so that the material faces the heating source. The material is thermally treated by a radiant heat generated by the action of the infrared ray emitted from the heating source. The support member is so arranged as to be overlaid only on a part of the material, and the material-side surface of the support member has multiple protrusions on which the material is to be supported.

Description

熱処理装置及び熱処理方法Heat treatment apparatus and heat treatment method
 本発明は、例えばフラットディスプレイパネル等に用いられるガラス基板等の被処理物を熱処理する熱処理装置及び熱処理方法に関するものである。 The present invention relates to a heat treatment apparatus and a heat treatment method for heat-treating an object to be processed such as a glass substrate used for a flat display panel or the like.
 例えば、液晶表示パネルやプラズマディスプレイパネル等のフラットディスプレイパネルに使用されるガラス基板には、その用途に応じて、アニール処理や被膜処理、若しくはポリイミド膜の焼成等の熱処理が適宜施されている。従来より、このような熱処理を行うために、ヒータの輻射熱によってガラス基板を熱処理することが知られている(例えば特許文献1等参照)。 For example, a glass substrate used in a flat display panel such as a liquid crystal display panel or a plasma display panel is appropriately subjected to a heat treatment such as an annealing treatment, a coating treatment, or a baking of a polyimide film depending on the application. Conventionally, in order to perform such heat treatment, it is known to heat-treat a glass substrate by radiant heat of a heater (see, for example, Patent Document 1).
 特許文献1には、加熱室内に板状の被処理物(ガラス基板)を加熱する加熱源を配置すると共に、この加熱源に、被処理物の内部温度分布が均一化されるように、当該被処理物を加熱するパターンが作成された薄膜ヒータと、パターンを覆った状態で当該薄膜ヒータ3を狭持する第1及び第2ガラス板とを設けた熱処理装置が開示されている。 In Patent Document 1, a heating source for heating a plate-like object to be processed (glass substrate) is arranged in a heating chamber, and the internal temperature distribution of the object to be processed is made uniform in this heating source. There is disclosed a heat treatment apparatus provided with a thin film heater in which a pattern for heating an object to be processed is provided, and first and second glass plates that sandwich the thin film heater 3 while covering the pattern.
特開2003-194478号公報JP 2003-194478 A
 ここで、上記特許文献1の熱処理装置では、薄膜ヒータの全面がガラス板によって覆われているが、ヒータから放射された赤外線がガラス板に入射した場合、そのガラス板は入射した赤外線の全てを透過させるわけではない。したがって、特許文献1の熱処理装置には、被処理物を輻射熱によって熱処理する際に、ヒータから放射される赤外線を有効に利用しきれない問題がある。従来は、表示パネルの面積が比較的小さかったのであまり問題にならなかったが、近年、表示パネルの面積が増大される傾向にあるため、上記問題が大きくなってきた。 Here, in the heat treatment apparatus of Patent Document 1 described above, the entire surface of the thin film heater is covered with a glass plate. However, when infrared rays emitted from the heater are incident on the glass plate, the glass plate removes all of the incident infrared rays. It is not transparent. Therefore, the heat treatment apparatus of Patent Document 1 has a problem that infrared rays emitted from the heater cannot be used effectively when the object to be processed is heat-treated by radiant heat. Conventionally, since the area of the display panel was relatively small, it was not a problem. However, since the area of the display panel tends to increase in recent years, the above problem has been increased.
 そこで、本発明者は、例えば、互いに平行に配置した複数本の石英管によって、ガラス基板等の被処理物をヒータ上で支持することについて鋭意研究を重ねている。こうすれば、石英管によって支持されていない部分が当該石英管に覆われずに露出するため、ヒータから放射される赤外線の利用効率を高めることができる。 Therefore, the present inventor has conducted earnest research on supporting a workpiece such as a glass substrate on a heater by a plurality of quartz tubes arranged in parallel with each other. By so doing, the portion that is not supported by the quartz tube is exposed without being covered by the quartz tube, so that the utilization efficiency of infrared rays emitted from the heater can be increased.
 しかしながら、上記ガラス基板等の被処理物は、石英管によって支持されている領域と、当該石英管によって支持されていない領域とにおいて、それぞれ赤外線の入射量が異なるため、各領域において熱処理の度合いに僅かながら差が生じることが避けられない。また、石英管自体も熱容量を有しているため、当該石英管は、高温の炉内に長時間設置されていると、ヒータによる輻射熱によって加熱される。その結果、比較的高温になっている石英管に、比較的低温の上記ガラス基板等の被処理物を載置すると、上記ガラス基板は石英管に支持されている領域において急激に加熱されるため、全体として熱処理にムラが生じる虞もある。 However, the object to be processed such as the glass substrate is different in the amount of incident infrared rays in the region supported by the quartz tube and the region not supported by the quartz tube. A slight difference is inevitable. Further, since the quartz tube itself has a heat capacity, the quartz tube is heated by radiant heat from the heater if it is installed in a high-temperature furnace for a long time. As a result, when an object to be processed such as the glass substrate having a relatively low temperature is placed on the quartz tube having a relatively high temperature, the glass substrate is rapidly heated in a region supported by the quartz tube. As a whole, there is a risk of unevenness in the heat treatment.
 本発明は、斯かる諸点に鑑みてなされたものであり、その目的とするところは、赤外線を放射する加熱源に対し、被処理物を対向した状態で支持する支持部材を複数有する熱処理装置について、その被処理物に対する熱処理を可及的に均一化し得るようにすることにある。 The present invention has been made in view of these points, and an object of the present invention is a heat treatment apparatus having a plurality of support members that support an object to be processed in a state of being opposed to a heating source that emits infrared rays. An object of the present invention is to make the heat treatment for the object to be processed as uniform as possible.
 上記の目的を達成するために、この発明では、被処理物の一部にのみ重なる支持部材に、その被処理物を支持する突起部を複数設けるようにした。 In order to achieve the above object, in the present invention, a plurality of protrusions for supporting the object to be processed are provided on the support member that overlaps only a part of the object to be processed.
 具体的に、本発明は、処理室と、上記処理室の内部に設けられて赤外線を放射する加熱源と、上記処理室の内部に設けられ、被処理物を上記加熱源に対向するように支持する支持部材とを備え、上記加熱源から放射された赤外線による輻射熱により、上記被処理物を熱処理するように構成された熱処理装置を対象としている。そして、上記支持部材は、上記被処理物の一部にのみ重なるように配置され、上記支持部材における上記被処理物側の表面には、該被処理物を支持する突起部が複数設けられていることを特徴とする。 Specifically, the present invention provides a processing chamber, a heating source provided inside the processing chamber for emitting infrared rays, and provided inside the processing chamber so that an object to be processed faces the heating source. And a support member that supports the heat treatment apparatus configured to heat treat the object to be treated by radiant heat generated by infrared rays emitted from the heating source. The support member is disposed so as to overlap only a part of the object to be processed, and a plurality of protrusions for supporting the object to be processed are provided on the surface of the support member on the object to be processed side. It is characterized by being.
   -作用-
 次に、本発明の作用について説明する。
-Action-
Next, the operation of the present invention will be described.
 本発明では、被処理物を熱処理する場合、その被処理物を処理室の内部へ搬入して支持部材により支持させる。支持部材には、被処理物側の表面に突起部が複数設けられているので、これら複数の突起部によって被処理物の下面が支持される。そうして、加熱源から赤外線を放射すると、その輻射熱によって被処理物は熱処理される。 In the present invention, when the object to be processed is heat-treated, the object to be processed is carried into the processing chamber and supported by the support member. Since the support member is provided with a plurality of protrusions on the surface of the object to be processed, the lower surface of the object to be processed is supported by the plurality of protrusions. Then, when infrared rays are emitted from the heating source, the workpiece is heat-treated by the radiant heat.
 このとき、支持部材が被処理物の一部にのみ重なるように配置されているので、被処理物の下面における支持部材によって支持されていない領域は、当該支持部材に覆われずに露出している。よって、加熱源から放射される赤外線を直接に入射させて、当該加熱源から放射される赤外線の利用効率を高めることが可能になる。 At this time, since the support member is arranged so as to overlap only a part of the object to be processed, the region not supported by the support member on the lower surface of the object to be processed is exposed without being covered by the support member. Yes. Therefore, it is possible to increase the utilization efficiency of the infrared rays emitted from the heating source by directly entering the infrared rays emitted from the heating source.
 さらに、被処理物を上記支持部材に設けた複数の突起部によって支持するようにしたので、被処理物と支持部材との接触面積を小さくして、支持部材が有する熱容量の被処理物に対する影響を低減することが可能になる。すなわち、支持部材が処理室内で高温になっていたとしても、支持部材と被処理物との接触面積が小さいので、高温の支持部材による被処理物の加熱が抑制される結果、被処理物に対する熱処理を均一化することが可能になる。 Furthermore, since the object to be processed is supported by the plurality of protrusions provided on the support member, the contact area between the object to be processed and the support member is reduced, and the heat capacity of the support member has an effect on the object to be processed. Can be reduced. That is, even if the support member is at a high temperature in the processing chamber, since the contact area between the support member and the object to be processed is small, the heating of the object to be processed by the high temperature support member is suppressed. It becomes possible to make the heat treatment uniform.
 本発明によれば、支持部材が被処理物の一部にのみ重なるようにして加熱源から放射される赤外線の利用効率を高めつつ、支持部材と被処理物との接触面積を低減して被処理物に対する熱処理を均一化することができる。 According to the present invention, the contact area between the support member and the object to be processed is reduced while increasing the utilization efficiency of infrared rays emitted from the heating source so that the support member overlaps only a part of the object to be processed. The heat treatment for the processed product can be made uniform.
図1は、本実施形態1の熱処理装置の概略構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a schematic configuration of the heat treatment apparatus of the first embodiment. 図2は、本実施形態1における突起部が設けられた支持部材の外観を示す側面図である。FIG. 2 is a side view showing the appearance of the support member provided with the protrusions in the first embodiment. 図3は、本実施形態1における突起部が設けられた支持部材の外観の一部を示す斜視図である。FIG. 3 is a perspective view showing a part of the appearance of the support member provided with the protrusions in the first embodiment. 図4は、本実施形態1における突起部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing a protrusion in the first embodiment. 図5は、本実施形態1における支持部材の端部を保持する保持部を示す側面図である。FIG. 5 is a side view showing a holding portion that holds the end portion of the support member according to the first embodiment. 図6は、実施例によるガラス基板の温度変化を示すグラフである。FIG. 6 is a graph showing a temperature change of the glass substrate according to the example. 図7は、比較例によるガラス基板の温度変化を示すグラフである。FIG. 7 is a graph showing a temperature change of the glass substrate according to the comparative example. 図8は、本実施形態2における突起部の一部を拡大して示す断面図である。FIG. 8 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment. 図9は、本実施形態2における突起部の一部を拡大して示す断面図である。FIG. 9 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment. 図10は、本実施形態2における突起部の一部を拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view showing a part of the protrusion in the second embodiment. 図11は、本実施形態3における突起部が設けられた支持部材の外観の一部を示す斜視図である。FIG. 11 is a perspective view showing a part of the appearance of the support member provided with the protrusions in the third embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment.
 《発明の実施形態1》
 図1~図5は、本発明の実施形態1を示している。
Embodiment 1 of the Invention
1 to 5 show Embodiment 1 of the present invention.
 図1は、本実施形態1の熱処理装置1の概略構成を模式的に示す断面図である。図2は、突起部22が設けられた支持部材20の外観を示す側面図である。図3は、突起部22が設けられた支持部材20の外観の一部を示す斜視図である。図4は、突起部22を拡大して示す断面図である。図5は、支持部材20の端部を保持する保持部25を示す側面図である。 FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a heat treatment apparatus 1 according to the first embodiment. FIG. 2 is a side view showing the appearance of the support member 20 provided with the protrusions 22. FIG. 3 is a perspective view showing a part of the appearance of the support member 20 provided with the protrusions 22. FIG. 4 is an enlarged sectional view showing the protrusion 22. FIG. 5 is a side view showing the holding portion 25 that holds the end portion of the support member 20.
 本実施形態の熱処理装置1は、図1に示すように、密閉可能な処理室10と、この処理室10の内部に設けられた加熱源としてのヒータ12と、同じく処理室10の内部に設けられ、被処理物としてのガラス基板13を支持する支持部材20とを備えている。そして、熱処理装置1は、上記ヒータ12から放射された赤外線による輻射熱により、ガラス基板13を熱処理するように構成されている。 As shown in FIG. 1, the heat treatment apparatus 1 of the present embodiment includes a process chamber 10 that can be sealed, a heater 12 as a heating source provided in the process chamber 10, and a process chamber 10 that is also provided in the process chamber 10. And a support member 20 that supports a glass substrate 13 as an object to be processed. And the heat processing apparatus 1 is comprised so that the glass substrate 13 may be heat-processed by the radiant heat by the infrared rays radiated | emitted from the said heater 12. FIG.
 ここで、被処理物とは、ガラス基板13等の支持体の表面に設けられた薄膜(例えば樹脂膜や半導体膜等)等だけでなく、そのガラス基板13をも含む全体を意味するものとする。本明細書では、被処理物を、説明上、単にガラス基板とも称する。 Here, the object to be treated means not only a thin film (for example, a resin film or a semiconductor film) provided on the surface of a support such as the glass substrate 13 but also the whole including the glass substrate 13. To do. In the present specification, the object to be processed is also simply referred to as a glass substrate for explanation.
 そして、本実施形態の熱処理装置1は、例えば、ガラス基板13の略表面全体に塗布されたポリイミド膜(不図示)を熱処理して焼成するように構成されている。このガラス基板13は液晶表示パネルを構成し、焼成されたポリイミド膜は、液晶表示パネルにおける液晶分子の配向を規制する配向膜となる。 And the heat processing apparatus 1 of this embodiment is comprised so that the polyimide film (not shown) apply | coated to the substantially whole surface of the glass substrate 13 may be heat-processed and baked, for example. The glass substrate 13 constitutes a liquid crystal display panel, and the baked polyimide film becomes an alignment film that regulates the alignment of liquid crystal molecules in the liquid crystal display panel.
 処理室10は、図1に示すように、ガラス基板13が収容される断熱容器15と、断熱容器15を開閉する断熱扉16とによって密閉された空間として形成される。また、この処理室10には、ガス導入口(不図示)及びガス排出口(不図示)が接続可能になっている。そして、例えばNガスを上記ガス導入口から処理室10の内部に導入して、Nガス雰囲気でガラス基板13を熱処理するように構成されている。 As shown in FIG. 1, the processing chamber 10 is formed as a sealed space by a heat insulating container 15 in which the glass substrate 13 is accommodated and a heat insulating door 16 that opens and closes the heat insulating container 15. Further, a gas inlet (not shown) and a gas outlet (not shown) can be connected to the processing chamber 10. For example, N 2 gas is introduced into the processing chamber 10 from the gas inlet, and the glass substrate 13 is heat-treated in an N 2 gas atmosphere.
 ヒータ12は、例えば、処理室10の内部における断熱容器15の下部全体に設けられ、図示しない電源に接続されている。そうして、電源から通電されることにより、図1に示すように、赤外線11を放射するようになっている。 The heater 12 is provided, for example, in the entire lower part of the heat insulating container 15 inside the processing chamber 10 and is connected to a power source (not shown). Then, when energized from the power source, infrared rays 11 are emitted as shown in FIG.
 支持部材20は、処理室10の内部に複数設けられている。各支持部材20は、図1~図3に示すように、それぞれ円筒状の石英管によって構成されると共に、互いに平行に配置されている。各支持部材20は、例えば、約600mmのピッチで6本設けられている。各支持部材20の長さは、例えば約3300mmである。また、支持部材20の直径は例えば約20mmであり、管の厚みが数mm程度になっている。 A plurality of support members 20 are provided inside the processing chamber 10. As shown in FIGS. 1 to 3, the support members 20 are each constituted by a cylindrical quartz tube and arranged in parallel to each other. For example, six support members 20 are provided at a pitch of about 600 mm. Each support member 20 has a length of, for example, about 3300 mm. The diameter of the support member 20 is about 20 mm, for example, and the thickness of the tube is about several mm.
 各支持部材20は、その両端部において、図5に示すように、Y字状の保持部25によって保持されている。支持部材20の端部は、保持部25の二股部分に載置される。そうして、支持部材20は、図1に示すように、ガラス基板13を上記ヒータ12に対向するように支持するようになっている。こうして、支持部材20は、ガラス基板13の一部にのみ重なるように配置されている。 Each support member 20 is held at both ends by Y-shaped holding portions 25 as shown in FIG. The end portion of the support member 20 is placed on the bifurcated portion of the holding portion 25. As shown in FIG. 1, the support member 20 supports the glass substrate 13 so as to face the heater 12. Thus, the support member 20 is disposed so as to overlap only part of the glass substrate 13.
 そして、支持部材20におけるガラス基板13側の表面には、ガラス基板13を支持する突起部22が複数設けられている。すなわち、支持部材20は、石英管からなる支持部本体21と、この支持部本体21に所定間隔で突設された複数の突起部22とを有している。各突起部22同士の間隔は例えば約100mmであり、突起部22の支持部本体21表面からの突出高さは、例えば約5mm程度である。 A plurality of protrusions 22 that support the glass substrate 13 are provided on the surface of the support member 20 on the glass substrate 13 side. That is, the support member 20 includes a support body 21 made of a quartz tube, and a plurality of protrusions 22 projecting from the support body 21 at a predetermined interval. The distance between the protrusions 22 is, for example, about 100 mm, and the protrusion height of the protrusions 22 from the surface of the support body 21 is, for example, about 5 mm.
 また、各突起部22は、それぞれ例えば石英によって構成され、図4に拡大して示すように、円柱状に形成されると共にその先端が曲面に形成されている。 Further, each protrusion 22 is made of, for example, quartz, and is formed in a columnar shape and a tip thereof is formed in a curved surface as shown in an enlarged manner in FIG.
 各突起部22は、支持部本体21に貫通形成された貫通孔に差し込まれた状態で、支持部本体21に石英溶接されている。そのことにより、突起部22の基端には、その全周に亘って石英からなる溶接部23が形成されている。 Each projection 22 is quartz welded to the support body 21 while being inserted into a through-hole formed in the support body 21. Thereby, a welded portion 23 made of quartz is formed at the base end of the protruding portion 22 over the entire circumference.
 上記熱処理装置1によってガラス基板13に熱処理を行う場合には、まず、大判のガラス基板13の一方の表面に、ポリイミド膜をその全面に亘って塗布する。その後、ポリイミド膜が塗布されたガラス基板13を、断熱容器15の内部に搬送し、支持部材20の上に載置する。こうして、断熱容器15の内部において、ガラス基板13をヒータ12に対向するように支持部材20に支持させる。このとき、ガラス基板13の上面には上記ポリイミド膜が塗布されており、ガラス基板13の下面が、支持部材20の複数の突起部22によって点支持されている。 When the glass substrate 13 is heat-treated by the heat treatment apparatus 1, first, a polyimide film is applied to one surface of the large glass substrate 13 over the entire surface. Thereafter, the glass substrate 13 coated with the polyimide film is transported into the heat insulating container 15 and placed on the support member 20. Thus, the glass substrate 13 is supported by the support member 20 so as to face the heater 12 inside the heat insulating container 15. At this time, the polyimide film is applied to the upper surface of the glass substrate 13, and the lower surface of the glass substrate 13 is point-supported by the plurality of protrusions 22 of the support member 20.
 その後、図1に示すように、断熱扉16を閉鎖して処理室10を密封状態とする。続いて、図示しない電源からヒータ12に電力を供給して、当該ヒータ12から赤外線11を放射させる。そのことにより、支持部材20により支持されているガラス基板13を熱処理し、当該ガラス基板13のポリイミド膜は、上記ヒータ12の輻射熱によって焼成される。その後、ポリイミド膜が焼成されたガラス基板13を、開放した断熱容器15から搬出する。 Then, as shown in FIG. 1, the heat insulation door 16 is closed and the processing chamber 10 is sealed. Subsequently, power is supplied from a power source (not shown) to the heater 12, and infrared rays 11 are emitted from the heater 12. As a result, the glass substrate 13 supported by the support member 20 is heat-treated, and the polyimide film of the glass substrate 13 is baked by the radiant heat of the heater 12. Thereafter, the glass substrate 13 on which the polyimide film has been baked is carried out from the opened heat insulating container 15.
  -実施形態1の効果-
 したがって、この実施形態1によると、支持部材20をガラス基板13の一部にのみ重なるように配置したので、ガラス基板13の下面における支持部材20によって支持されていない領域を、当該支持部材20に覆われずに露出させることができる。よって、ヒータ12から放射される赤外線11をガラス基板13及びポリイミド膜に直接に入射させて、ヒータ12から放射される赤外線11の利用効率を高めることができる。
-Effect of Embodiment 1-
Therefore, according to the first embodiment, since the support member 20 is arranged so as to overlap only a part of the glass substrate 13, an area that is not supported by the support member 20 on the lower surface of the glass substrate 13 is defined in the support member 20. It can be exposed without being covered. Therefore, the infrared rays 11 emitted from the heater 12 can be directly incident on the glass substrate 13 and the polyimide film, so that the utilization efficiency of the infrared rays 11 emitted from the heater 12 can be increased.
 さらに、ガラス基板13を支持部材20に設けた複数の突起部22によって支持するようにしたので、ガラス基板13と支持部材20との接触面積を小さくすることができ、支持部材20が有する熱容量のガラス基板13に対する影響を低減することができる。すなわち、断続的に複数のガラス基板13を熱処理する場合など、支持部材20が処理室10内で高温になっていたとしても、支持部材20とガラス基板13との接触面積を小さくすることができるため、高温の支持部材20によるガラス基板13及びポリイミド膜の加熱を抑制できる結果、ガラス基板13に対する熱処理を均一化することができる。その結果、液晶表示パネルにおける配向膜(ポリイミド膜)の膜質を均一化できるため、表示品位の向上を図ることができる。 Furthermore, since the glass substrate 13 is supported by the plurality of protrusions 22 provided on the support member 20, the contact area between the glass substrate 13 and the support member 20 can be reduced, and the heat capacity of the support member 20 can be reduced. The influence on the glass substrate 13 can be reduced. In other words, even when the support member 20 is at a high temperature in the processing chamber 10 such as when intermittently heat-treating the plurality of glass substrates 13, the contact area between the support member 20 and the glass substrate 13 can be reduced. Therefore, as a result of suppressing the heating of the glass substrate 13 and the polyimide film by the high temperature support member 20, the heat treatment for the glass substrate 13 can be made uniform. As a result, since the film quality of the alignment film (polyimide film) in the liquid crystal display panel can be made uniform, the display quality can be improved.
 また、突起部22の先端を曲面に形成したので、突起部22先端によるガラス基板13の損傷を抑制することができる。 Moreover, since the tip of the projection 22 is formed into a curved surface, damage to the glass substrate 13 due to the tip of the projection 22 can be suppressed.
 さらにまた、突起部22を含む支持部材20全体を石英によって構成したので、支持部材20における赤外線11の透過率を高めつつ、処理室10内のN雰囲気の熱伝導率と同程度にすることができる。 Furthermore, since the entire support member 20 including the protrusions 22 is made of quartz, the thermal conductivity of the N 2 atmosphere in the processing chamber 10 is made to be approximately the same while increasing the transmittance of the infrared ray 11 in the support member 20. Can do.
 ここで、図7のグラフは、石英管からなる支持部材が突起部を有しない比較例について、支持部材によって支持されているガラス基板領域Aと、支持部材によって支持されていないガラス基板領域Bとにおける当該ガラス基板の温度変化を示している。 Here, the graph of FIG. 7 shows the glass substrate region A supported by the support member and the glass substrate region B not supported by the support member for the comparative example in which the support member made of the quartz tube does not have a protrusion. The temperature change of the said glass substrate in is shown.
 図7に示すように、支持部材に支持されていないガラス基板領域Bは、比較的短時間でガラス基板の温度が上昇するのに対し、支持部材に支持されているガラス基板領域Aでは、当初は高温の支持部材から熱を受けて早く温度が上昇するが、その後すぐに、温度上昇に時間を要するようになることがわかった。つまり、比較例の場合には、ガラス基板領域A,Bのそれぞれにおいて、温度上昇の態様に大きな差が生じてしまう。 As shown in FIG. 7, in the glass substrate region B not supported by the support member, the temperature of the glass substrate rises in a relatively short time, whereas in the glass substrate region A supported by the support member, It has been found that the temperature rises quickly upon receiving heat from the high temperature support member, but it takes time for the temperature to rise immediately thereafter. That is, in the case of the comparative example, a large difference occurs in the temperature rise mode in each of the glass substrate regions A and B.
 これに対し、図6のグラフは、上記支持部材20は突起部22を有する実施例について、支持部材によって支持されているガラス基板領域Aと、支持部材によって支持されていないガラス基板領域Bとにおける当該ガラス基板の温度変化を示している。図6に示すように、ガラス基板領域A,Bのそれぞれにおいて、温度上昇の態様に大きな差は生じないことがわかった。 On the other hand, the graph of FIG. 6 shows that in the embodiment in which the support member 20 has the protrusion 22, the glass substrate region A supported by the support member and the glass substrate region B not supported by the support member. The temperature change of the said glass substrate is shown. As shown in FIG. 6, it was found that there is no significant difference in the temperature increase mode in each of the glass substrate regions A and B.
 《発明の実施形態2》
 図8~図10は、本発明の実施形態2を示している。
<< Embodiment 2 of the Invention >>
8 to 10 show Embodiment 2 of the present invention.
 図8~図10は、本実施形態2における突起部の一部を拡大して示す断面図である。尚、以後の実施形態では、図1~図7と同じ部分については同じ符号を付して、その詳細な説明を省略する。 8 to 10 are cross-sectional views showing an enlarged part of the protrusions in the second embodiment. In the following embodiments, the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施形態2は、上記実施形態1における突起部22の構成を変更したものである。例えば、突起部22は、例えば石英によって構成され、図8に示すように、気泡を内包するように形成されている。 In the second embodiment, the configuration of the protrusion 22 in the first embodiment is changed. For example, the protrusion 22 is made of quartz, for example, and is formed so as to enclose bubbles as shown in FIG.
 このようにすれば、上記実施形態1と同様の効果が得られることに加え、突起部22の内部に気泡が内包されているため、突起部22の熱伝導率を処理室10内の雰囲気に近付けることができる。したがって、ガラス基板13における突起部22に接触する領域と、突起部22に接触していない他の領域とにおいて、熱処理をさらに均一化することができる。 In this way, in addition to obtaining the same effect as in the first embodiment, since the bubbles are included in the protrusion 22, the thermal conductivity of the protrusion 22 is set to the atmosphere in the processing chamber 10. You can get closer. Therefore, the heat treatment can be made more uniform in the region of the glass substrate 13 that is in contact with the protrusion 22 and the other region that is not in contact with the protrusion 22.
 また、突起部22は、図9に示すように、処理室10内の雰囲気に接触する表面が微細な凹凸形状に形成されていてもよい。すなわち、突起部22の表面には、多数の凸部32と凹部33とが形成されている。 Further, as shown in FIG. 9, the protrusion 22 may have a fine uneven shape on the surface in contact with the atmosphere in the processing chamber 10. That is, a large number of convex portions 32 and concave portions 33 are formed on the surface of the protruding portion 22.
 このようにすれば、突起部22表面の凹部33に処理室10内の雰囲気が滞留するため、突起部22の熱伝導率を処理室10内の雰囲気に近付けることができる。したがって、上記図8の例と同様の効果を得ることができる。 In this way, since the atmosphere in the processing chamber 10 stays in the concave portion 33 on the surface of the protruding portion 22, the thermal conductivity of the protruding portion 22 can be brought close to the atmosphere in the processing chamber 10. Therefore, the same effect as the example of FIG. 8 can be obtained.
 また、突起部22は、図10に示すように、固体により形成される複数の固体層35と、複数の固体層35同士の間に設けられ、気体が配置される気体層36とを有するように構成してもよい。固体層35は、例えば石英等の固体により形成されている。気体層36には、処理室10内の雰囲気や空気等の気体が封入されている。 Further, as shown in FIG. 10, the protrusion 22 has a plurality of solid layers 35 formed of a solid and a gas layer 36 provided between the plurality of solid layers 35 and in which a gas is disposed. You may comprise. The solid layer 35 is formed of a solid such as quartz. The gas layer 36 is filled with a gas such as an atmosphere in the processing chamber 10 or air.
 このようにすれば、断熱のための気体が封入された気体層36によって、突起部22の熱伝導率を処理室10内の雰囲気に近付けることができる。したがって、上記図8の例と同様の効果を得ることができる。 In this way, the thermal conductivity of the protrusion 22 can be brought close to the atmosphere in the processing chamber 10 by the gas layer 36 in which the gas for heat insulation is enclosed. Therefore, the same effect as the example of FIG. 8 can be obtained.
 《発明の実施形態3》
 図11は、本発明の実施形態3を示している。
<< Embodiment 3 of the Invention >>
FIG. 11 shows Embodiment 3 of the present invention.
 図11は、本実施形態3における突起部22が設けられた支持部材20の外観の一部を示す斜視図である。 FIG. 11 is a perspective view showing a part of the appearance of the support member 20 provided with the protrusions 22 in the third embodiment.
 上記実施形態1では、支持部材20を円筒状の支持部本体21と、これに溶接した突起部22とによって構成したのに対し、本実施形態3では、支持部本体21と突起部22とを一体に形成するようにしたものである。 In the first embodiment, the support member 20 is configured by the cylindrical support portion main body 21 and the protruding portion 22 welded thereto. In the third embodiment, the support portion main body 21 and the protruding portion 22 are provided. It is formed integrally.
 図11に示すように、本実施形態における支持部材20は、凹凸状の稜線を有し、突起部22は、上記稜線の凸状部分によって構成されている。 As shown in FIG. 11, the support member 20 in the present embodiment has an uneven ridgeline, and the protrusion 22 is constituted by a convex portion of the ridgeline.
 すなわち、支持部材20は、例えば略三角柱状の形状を有しており、その長手方向に延びる3つの稜線(言い換えれば、三角柱の頂角部を構成する稜線)の1つが、当該稜線に沿って凹凸状に形成されている。そうして、その凸状部分が等間隔に形成されることにより、当該凸状部分が突起部22となっている。支持部材20及びその突起部22は、上記実施形態1と同様に石英によって構成されている。 That is, the support member 20 has, for example, a substantially triangular prism shape, and one of three ridge lines extending in the longitudinal direction (in other words, a ridge line constituting the apex portion of the triangular prism) extends along the ridge line. It is formed in an uneven shape. In this way, the convex portions are formed at equal intervals, so that the convex portions become the protrusions 22. The support member 20 and its protrusion 22 are made of quartz as in the first embodiment.
  -実施形態3の効果-
 したがって、この実施形態3によっても、上記実施形態1と同様に、処理室10の内部において、ガラス基板13を支持することができる。保持部25については、三角柱状の支持部材20を安定して保持できるように、平面状の支持面を有する構成とすることが好ましい。
-Effect of Embodiment 3-
Therefore, also in the third embodiment, the glass substrate 13 can be supported inside the processing chamber 10 as in the first embodiment. About the holding | maintenance part 25, it is preferable to set it as the structure which has a planar support surface so that the triangular prism-shaped support member 20 can be hold | maintained stably.
 そして、このように、支持部材20における稜線の凸状部分によって突起部22が構成されているので、複数の突起部22を支持部材20に一体に形成できる結果、突起部22を有する支持部材20を容易に形成することができる。 And since the projection part 22 is comprised by the convex part of the ridgeline in the support member 20 in this way, the support member 20 which has the projection part 22 as a result of being able to form the some projection part 22 in the support member 20 integrally. Can be easily formed.
 《その他の実施形態》
 上記実施形態1~3では、突起部22を有する複数の支持部材20を設けるようにしたが、各支持部材20が互いに連結された構成とすることも可能である。
<< Other Embodiments >>
In the first to third embodiments, the plurality of support members 20 having the protrusions 22 are provided. However, the support members 20 may be connected to each other.
 また、上記実施形態3では、略三角柱状の支持部材20を例に挙げて説明したが、本発明はこれに限らず、その他の多角形柱状に支持部材20を形成することも可能である。 In the third embodiment, the substantially triangular prism-shaped support member 20 has been described as an example. However, the present invention is not limited to this, and the support member 20 may be formed in other polygonal column shapes.
 また、本発明における加熱源は、ヒータ12に限らず、赤外線を放射する他の加熱源を適用できる。また、本発明における被処理物は、ガラス基板13に限らず、他の処理対象物を適用してもよい。また、上記各実施形態を適宜組み合わせた構成としてもよい。 Also, the heating source in the present invention is not limited to the heater 12, and other heating sources that emit infrared rays can be applied. In addition, the object to be processed in the present invention is not limited to the glass substrate 13 and other objects to be processed may be applied. Moreover, it is good also as a structure which combined each said embodiment suitably.
 以上説明したように、本発明は、例えばフラットディスプレイパネル等に用いられるガラス基板等の被処理物を熱処理する熱処理装置及び熱処理方法について有用である。 As described above, the present invention is useful for a heat treatment apparatus and a heat treatment method for heat-treating an object to be processed such as a glass substrate used for a flat display panel or the like.
      1   熱処理装置 
     10   処理室 
     11   赤外線 
     12   ヒータ(加熱源)
     13   ガラス基板(被処理物) 
     15   断熱容器 
     16   断熱扉 
     20   支持部材 
     21   支持部本体 
     22   突起部
     31   気泡
     35   固体層
     36   気体層   
1 Heat treatment equipment
10 treatment room
11 Infrared
12 Heater (heating source)
13 Glass substrate (object to be processed)
15 Insulated container
16 Insulated door
20 Support member
21 Support body
22 Protrusions 31 Bubbles 35 Solid layer 36 Gas layer

Claims (16)

  1.  処理室と、
     上記処理室の内部に設けられて赤外線を放射する加熱源と、
     上記処理室の内部に設けられ、被処理物を上記加熱源に対向するように支持する支持部材とを備え、
     上記加熱源から放射された赤外線による輻射熱により、上記被処理物を熱処理するように構成され、
     上記支持部材は、上記被処理物の一部にのみ重なるように配置され、
     上記支持部材における上記被処理物側の表面には、該被処理物を支持する突起部が複数設けられている
    ことを特徴とする熱処理装置。
    A processing chamber;
    A heating source provided inside the processing chamber for emitting infrared rays;
    A support member provided inside the processing chamber and supporting an object to be processed so as to face the heating source;
    The object to be processed is heat-treated by radiant heat from infrared rays emitted from the heating source,
    The support member is disposed so as to overlap only a part of the object to be processed,
    A heat treatment apparatus, wherein a plurality of protrusions for supporting the object to be processed are provided on a surface of the support member on the object to be processed side.
  2.  請求項1に記載された熱処理装置において、
     上記支持部材は、石英管により構成されている
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to claim 1,
    The heat treatment apparatus, wherein the support member is made of a quartz tube.
  3.  請求項1又は2に記載された熱処理装置において、
     上記突起部は石英により構成されている
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to claim 1 or 2,
    The heat treatment apparatus characterized in that the projection is made of quartz.
  4.  請求項1乃至3の何れか1つに記載された熱処理装置において、
     上記突起部の先端は、曲面に形成されている
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to any one of claims 1 to 3,
    The heat treatment apparatus characterized in that the tip of the protrusion is formed in a curved surface.
  5.  請求項1乃至4の何れか1つに記載された熱処理装置において、
     上記突起部は、気泡を内包するように形成されている
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to any one of claims 1 to 4,
    The protrusion is formed so as to enclose bubbles.
  6.  請求項1乃至5の何れか1つに記載された熱処理装置において、
     上記突起部は、固体により形成される複数の固体層と、該複数の固体層同士の間に設けられ、気体が配置される気体層とを有している
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to any one of claims 1 to 5,
    The protrusion has a plurality of solid layers formed of solids and a gas layer provided between the plurality of solid layers and in which a gas is disposed.
  7.  請求項1乃至6の何れか1つに記載された熱処理装置において、
     上記突起部は、凹凸形状の表面を有している
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to any one of claims 1 to 6,
    The heat treatment apparatus, wherein the protrusion has an uneven surface.
  8.  請求項1乃至7の何れか1つに記載された熱処理装置において、
     上記支持部材は、凹凸状の稜線を有し、
     上記突起部は、上記稜線の凸状部分によって構成されている
    ことを特徴とする熱処理装置。
    In the heat treatment apparatus according to any one of claims 1 to 7,
    The support member has an uneven ridgeline,
    The heat treatment apparatus, wherein the protrusion is constituted by a convex portion of the ridgeline.
  9.  赤外線を放射する加熱源が設けられた処理室の内部において、被処理物を上記加熱源に対向するように支持部材に支持させる工程と、
     上記支持部材により支持されている被処理物を、上記加熱源から放射された赤外線による輻射熱によって熱処理する工程とを有し、
     上記被処理物を支持部材に支持させる工程では、被処理物の一部にのみ重なるように配置した支持部材の複数の突起部によって、上記被処理物を支持させる
    ことを特徴とする熱処理方法。
    In the inside of the processing chamber provided with a heating source that radiates infrared rays, a step of supporting the object to be processed by the support member so as to face the heating source;
    Heat treating the workpiece supported by the support member by radiant heat from infrared rays emitted from the heating source,
    In the step of supporting the object to be processed on the support member, the object to be processed is supported by a plurality of protrusions of the support member arranged so as to overlap only a part of the object to be processed.
  10.  請求項9に記載された熱処理方法において、
     上記支持部材は、石英管により構成されている
    ことを特徴とする熱処理方法。
    In the heat treatment method according to claim 9,
    The heat treatment method, wherein the support member is made of a quartz tube.
  11.  請求項9又は10に記載された熱処理方法において、
     上記突起部は石英により構成されている
    ことを特徴とする熱処理方法。
    In the heat treatment method according to claim 9 or 10,
    The heat treatment method, wherein the protrusion is made of quartz.
  12.  請求項9乃至11の何れか1つに記載された熱処理方法において、
     上記突起部の先端は、曲面に形成されている
    ことを特徴とする熱処理方法。
    The heat treatment method according to any one of claims 9 to 11,
    A heat treatment method, wherein the tip of the protrusion is formed in a curved surface.
  13.  請求項9乃至12の何れか1つに記載された熱処理方法において、
     上記突起部は、気泡を内包するように形成されている
    ことを特徴とする熱処理方法。
    The heat treatment method according to any one of claims 9 to 12,
    The protrusion is formed so as to enclose air bubbles.
  14.  請求項9乃至13の何れか1つに記載された熱処理方法において、
     上記突起部は、固体により形成される複数の固体層と、該複数の固体層同士の間に設けられ、気体が配置される気体層とを有している
    ことを特徴とする熱処理方法。
    The heat treatment method according to any one of claims 9 to 13,
    The said protrusion part has the several solid layer formed with a solid, and the gas layer in which gas is arrange | positioned between these solid layers and gas is arrange | positioned, The heat processing method characterized by the above-mentioned.
  15.  請求項9乃至14の何れか1つに記載された熱処理方法において、
     上記突起部は、凹凸形状の表面を有している
    ことを特徴とする熱処理方法。
    The heat treatment method according to any one of claims 9 to 14,
    The protrusion has a concavo-convex surface, and the heat treatment method is characterized in that:
  16.  請求項9乃至15の何れか1つに記載された熱処理方法において、
     上記支持部材は、凹凸状の稜線を有し、
     上記突起部は、上記稜線の凸状部分によって構成されている
    ことを特徴とする熱処理方法。
    The heat treatment method according to any one of claims 9 to 15,
    The support member has an uneven ridgeline,
    The heat treatment method, wherein the protrusion is constituted by a convex portion of the ridge line.
PCT/JP2011/001928 2010-03-31 2011-03-30 Thermal treatment device and thermal treatment method WO2011122029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-082860 2010-03-31
JP2010082860 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011122029A1 true WO2011122029A1 (en) 2011-10-06

Family

ID=44711784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001928 WO2011122029A1 (en) 2010-03-31 2011-03-30 Thermal treatment device and thermal treatment method

Country Status (1)

Country Link
WO (1) WO2011122029A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153497U (en) * 1988-04-14 1989-10-23
JP2002267370A (en) * 2001-03-08 2002-09-18 Denkoo:Kk Heating furnace and method for heating substance to be heated
JP2003021468A (en) * 2001-07-10 2003-01-24 Denkoo:Kk Heat treatment furnace
JP2004037044A (en) * 2002-07-08 2004-02-05 Noritake Co Ltd Vacuum heating furnace for flat panel display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153497U (en) * 1988-04-14 1989-10-23
JP2002267370A (en) * 2001-03-08 2002-09-18 Denkoo:Kk Heating furnace and method for heating substance to be heated
JP2003021468A (en) * 2001-07-10 2003-01-24 Denkoo:Kk Heat treatment furnace
JP2004037044A (en) * 2002-07-08 2004-02-05 Noritake Co Ltd Vacuum heating furnace for flat panel display

Similar Documents

Publication Publication Date Title
US10462856B2 (en) High frequency heating apparatus
US9221714B2 (en) Apparatus for chemically toughening glass and method of chemically toughening glass using the same
TWI740129B (en) Organic film forming device
JP7260681B2 (en) Organic film forming device
JP2001210631A (en) Heat-treating apparatus
KR20020059853A (en) Device for fast and uniform heating of a substrate with infrared radiation
JP5436429B2 (en) Heat treatment apparatus and heat treatment method
KR100859975B1 (en) Multi plate vacuum drier
US10254046B2 (en) Magnetic annealing apparatus
CN110828333A (en) Annealing device
EP2637479B1 (en) High frequency heating apparatus
TW201545260A (en) Heater block and substrate heat treatment apparatus using same
WO2011122029A1 (en) Thermal treatment device and thermal treatment method
JPH0718323A (en) Heat treatment device
WO2011161913A1 (en) Heat treatment apparatus and heat treatment method
KR101462460B1 (en) Supporting Device for Divided Window Plates of Chamber for Heat Treatment of Substrates, and Chamber for Heat Treatment of Substrates and Heat Treatment Apparatus of Substrate Having the Same
KR101398970B1 (en) Apparatus of heating and cooling for a large scale glass
KR101428569B1 (en) Improved Chamber for Heat Treatment of Substrates and Heat Treatment Apparatus and Method of Substrate Having the Same
KR100951688B1 (en) Heat Treatment Apparatus
JP2008218995A (en) Susceptor heater assembly of large-area substrate processing system
KR20140006497A (en) Heating structure for heat treatment chamber of substrates and heat treatment chamber of substrates having the same
US20230245868A1 (en) Holding device, and use of the holding device
TWI841497B (en) Heating device and heating plate
KR20230018314A (en) Heat treating device
KR20150122885A (en) Heat treatment apparatus for substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP