WO2011122019A1 - Fuel cell system and method for driving same - Google Patents

Fuel cell system and method for driving same Download PDF

Info

Publication number
WO2011122019A1
WO2011122019A1 PCT/JP2011/001902 JP2011001902W WO2011122019A1 WO 2011122019 A1 WO2011122019 A1 WO 2011122019A1 JP 2011001902 W JP2011001902 W JP 2011001902W WO 2011122019 A1 WO2011122019 A1 WO 2011122019A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
anode
fuel
power generation
cathode
Prior art date
Application number
PCT/JP2011/001902
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 孝裕
日下部 弘樹
安本 栄一
鵜木 重幸
菅原 靖
柴田 礎一
酒井 修
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/636,084 priority Critical patent/US20130017458A1/en
Priority to EP11762262.1A priority patent/EP2555298A4/en
Priority to JP2012508092A priority patent/JP5049413B2/en
Priority to KR1020127028278A priority patent/KR20130023223A/en
Publication of WO2011122019A1 publication Critical patent/WO2011122019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system in which deterioration of the fuel cell due to impurities is suppressed and durability is improved, and an operation method thereof.
  • the conventional general fuel cell system includes an anode 22a supplied with fuel gas and an anode 22b supplied with oxidant gas, which are provided facing each other with an electrolyte 21 therebetween.
  • a stack formed by stacking a plurality of fuel cells 23 is provided.
  • the fuel gas and the oxidant gas are supplied to the anode 22a and the cathode 22b through the separators 24a and 24b provided with the respective gas flow paths.
  • a fuel gas supply unit that supplies fuel gas to the anode inlet and an oxidant gas supply unit that supplies oxidant gas to the cathode inlet are connected to the stack configured as described above, and a desired power generation state is achieved by the controller. So that it is controlled.
  • Fuel cell systems are required to have both long-term durability of about 10 years and cost reduction for their spread.
  • this type of fuel cell system is affected by various impurities, the battery voltage is lowered, the power generation efficiency is lowered, and the durability is sometimes lowered.
  • catalyst for example, platinum-based catalyst
  • the impurities include internal impurities generated from members such as resin parts and metal parts constituting the fuel cell system, and external impurities mixed from the outside such as the atmosphere, and these impurities are used for the anode 22a and the cathode 22b. There is a risk that the battery voltage of the fuel cell 23 is lowered by poisoning and reducing the activity of the catalyst.
  • the conventional fuel cell system has a constant current when, for example, the battery voltage of the fuel cell 23 becomes 0.6V or less. While the power generation of the fuel cell 23 is continued in the discharged state, the supply of the fuel gas supplied by the fuel gas supply unit is temporarily stopped, and the CO having adsorbed the electrode potential of the anode 22a to the anode 22a is electrochemically oxidized. And a technique for oxidizing and removing CO adsorbed on the anode 22a is disclosed (for example, refer to the second embodiment of Patent Document 1).
  • the impurities in the anode decrease as the cell voltage decreases.
  • the fuel cell is gradually deteriorated and the durability is lowered.
  • Patent Document 1 discloses a technique of removing impurities such as CO adsorbed on the surface of the fuel electrode during operation by temporarily stopping the supply of fuel to the electrode of the fuel cell. (See paragraph 0035). Specifically, it is described that the fuel supply is stopped when the battery voltage falls below 0.6V under a constant current discharge state, and the fuel supply is restarted when the battery voltage becomes 0.1V. (See, for example, paragraph 0026, paragraph 0030, paragraph 0032, FIGS. 3 and 4).
  • the present invention solves the above-described conventional problems, and an object thereof is to provide a fuel cell system excellent in durability by more reliably removing impurities adsorbed on an anode and suppressing deterioration of the fuel cell. .
  • the present inventors have found a problem that the deterioration of the fuel cell may progress although the voltage decrease is hardly observed because the impurity does not greatly contribute to the voltage decrease of the fuel cell. It was.
  • a fuel cell system includes a fuel cell having an anode and a cathode, a fuel gas supply unit, an oxidant gas supply unit, an anode inert gas supply unit, and a voltage detection. And a controller, and the controller performs a stop operation to stop power generation of the fuel cell, and then stops the supply of the fuel gas that the fuel gas supply unit supplies to the anode, and the anode An inert gas supply unit supplies the inert gas to the anode, and the oxidant gas supply unit supplies the oxidant gas to the cathode, and performs an activity recovery operation, which is detected by the voltage detector. After the battery voltage of the fuel cell drops below the first voltage, the fuel gas supply unit resumes supplying the fuel gas supplied to the anode, and resumes power generation of the fuel cell. It is intended to cormorants control.
  • the electrode potential of the anode is increased.
  • the anode impurities are removed, so that deterioration of the fuel cell can be suppressed.
  • the anode flow path is replaced with an inert gas after the fuel gas supply is stopped, the fuel (hydrogen) concentration in the anode is reduced, and the time until the anode electrode potential is sufficiently increased is shortened. Can do. Therefore, the time for which the electrode potential of the anode is sufficiently increased can be shortened, and impurities in the anode can be sufficiently removed while suppressing deterioration of the anode. In addition, if it takes too much time for the anode electrode potential to rise sufficiently, impurities in the anode can be removed. For example, oxidation of carbon holding the catalyst of the anode, oxidation degradation of the resin, elution due to oxidation of Ru, etc. May occur and the anode may deteriorate.
  • the fuel cell system of the present invention before the impurities affect the deterioration of the fuel cell, it is possible to stop the power generation of the fuel cell and raise the electrode potential of the anode to remove the impurities of the anode, It is possible to obtain a fuel cell system with excellent durability in which deterioration of the fuel cell due to impurities is suppressed.
  • FIG. 1 is a schematic configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.
  • Flow chart showing the operation sequence of the system The flowchart which shows the operation sequence of the fuel cell system in Embodiment 2 of this invention.
  • Characteristic chart showing power generation characteristics and changes in fluorine ion concentration The flowchart which shows the operation sequence of the fuel cell system in Embodiment 4 of this invention.
  • the flowchart which shows the operation sequence of the fuel cell system in Embodiment 5 of this invention.
  • Schematic configuration diagram of a fuel cell system according to Embodiment 9 of the present invention Schematic configuration diagram of a conventional fuel cell system
  • a first invention includes a fuel cell having an anode and a cathode, a fuel gas supply unit for supplying a fuel gas containing at least hydrogen to the anode, and an oxidant gas supply for supplying an oxidant gas containing at least oxygen to the cathode.
  • An anode inert gas supply unit that supplies an inert gas to the anode and replaces at least a part of the fuel gas with the inert gas, and a voltage detector that detects a battery voltage of the fuel cell.
  • a controller for controlling operations of the fuel cell, the fuel gas supply unit, the oxidant gas supply unit, and the anode inert gas supply unit, and the controller stops the power generation of the fuel cell.
  • the fuel gas supply unit stops supplying the fuel gas to the anode, and the anode inert gas supply unit supplies the inert gas to the front.
  • the battery voltage of the fuel cell which is supplied to the anode and the oxidant gas supply unit supplies the oxidant gas to the cathode and performs an activity recovery operation and is detected by the voltage detector, is a first voltage.
  • the fuel gas supply unit performs control so as to resume supply of the fuel gas supplied to the anode and resume power generation of the fuel cell after being lowered to the following.
  • the anode electrode potential is not increased after the cell voltage of the fuel cell has decreased, but an amount of impurities that does not affect the deterioration of the fuel cell accumulates after a predetermined time has elapsed. (Every time the estimated first period elapses ) , the electrode potential of the anode is increased, so that the impurities do not contribute to the voltage drop of the fuel cell, but even if it contributes to the deterioration of the fuel cell, the anode and cathode The impurities can be removed and deterioration of the fuel cell can be suppressed.
  • the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with an inert gas, and supplies the oxidant gas.
  • the unit supplies air to the cathode and cross-leaks oxygen in the air through the electrolyte membrane to indirectly increase the electrode potential of the anode, so there is no need to add a configuration for supplying air to the anode.
  • the battery system can be simplified and the cost can be reduced.
  • the anode fuel gas is replaced with an inert gas and oxygen is supplied from the cathode to the anode through the electrolyte membrane, the anode electrode potential rises and the apparent cell voltage (potential difference with the cathode) is It becomes 1st voltage (for example, about 0.1V) or less.
  • This battery voltage is detected by a voltage detector, and when the first voltage is reached, the supply of fuel gas and oxidant gas is started and the power generation of the fuel cell is resumed, so that more oxygen than necessary is not supplied to the anode. The oxidation of the anode catalyst can be minimized.
  • the controller stops power generation of the fuel cell, stops supply of the oxidant gas supplied to the cathode by the oxidant gas supply unit, and supplies the fuel.
  • a gas supply unit stops the supply of the fuel gas supplied to the anode, and performs a stop operation. Control is performed so that the activation recovery operation is performed after the battery voltage of the fuel cell detected by the voltage detector drops below a second voltage.
  • the electrode potential of the cathode decreases, and the apparent battery voltage (potential difference between the anode and cathode) detected by the voltage detector decreases and is detected by the voltage detector.
  • the battery voltage reaches the second voltage or less at which the activity of the catalyst of the cathode sufficiently recovers, a certain amount of inert gas is supplied to the anode by the anode inert gas supply unit, and again by the oxidant gas supply unit.
  • a certain amount of oxidant gas is supplied to the cathode to raise the electrode potential of the anode and the cathode, keep the catalytic activity of the anode and the cathode high and oxidize and remove impurities, so that a high battery voltage is maintained for a long time.
  • a fuel cell system excellent in power generation efficiency and durability can be obtained.
  • a cooling unit for cooling the fuel cell and a temperature detector for detecting the temperature of the fuel cell are provided, and the controller is configured to control the fuel.
  • the power generation of the battery is stopped, and the stop operation for controlling the cooling unit to cool the fuel cell is performed, and the temperature of the fuel cell detected by the temperature detector is reduced to a first temperature or lower. Thereafter, control is performed to perform the activity recovery operation.
  • the fuel cell is cooled to a low temperature (below the first temperature), so that moisture in the electrode is likely to condense.
  • moisture in the electrode is condensed, impurities attached to the electrode are dissolved in the condensed water, so that it is easy to remove.
  • the water vapor contained in the fuel gas and oxidant gas supplied during power generation and the water vapor generated by the reaction are cooled and condensed, and condensed water is generated at each of the anode and the cathode. Is done.
  • water-soluble impurities dissolve in this condensed water, Stopped condensed water that has absorbed the impurities can be discharged out of the system together with the inert gas or oxidant gas supplied in the next step.
  • the timing of power generation stop and cooling may not be the same.
  • power generation may be stopped, cooling may be performed after a second period (described later), cooling may be performed, and power generation may be stopped after the second period.
  • a cooling unit for cooling the fuel cell, and a temperature detector for detecting the temperature of the fuel cell, wherein the controller is detected by the temperature detector. Controlling the cooling unit so that the temperature of the fuel cell is equal to or lower than the first temperature, and stopping the power generation of the fuel cell after performing the power generation of the fuel cell for a second period. Control is performed so as to perform the activity recovery operation after that.
  • This configuration generates power at a low temperature (below the first temperature), so that moisture generated by power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
  • the temperature of the fuel cell is controlled to be equal to or lower than a predetermined temperature, the anode and the cathode are excessively humidified, and a large amount of condensed water is generated at the anode and the cathode.
  • the contamination of the anode and the cathode is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be further reduced until the power generation stops.
  • a cooling unit for cooling the fuel cell and a temperature detector for detecting a temperature of the fuel cell are provided, and the controller includes the fuel In the start-up operation of the battery, the cooling unit is controlled so that the temperature of the fuel cell is equal to or lower than the second temperature, and the power generation of the fuel cell is controlled to be performed for a third period. .
  • This configuration generates power at a low temperature (below the second temperature), so that water generated by power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
  • the controller stops the supply of the fuel gas supplied to the anode by the fuel gas supply unit, and the anode inert gas supply unit After supplying the inert gas to the anode, the oxidant gas supply unit is controlled to perform an activity recovery operation of supplying the oxidant gas to the cathode.
  • the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with the inert gas, expels the hydrogen that reacts with oxygen, stops the supply of the inert gas, and After that, the oxidant gas supply unit supplies the oxidant gas to the cathode, so that the amount of oxygen that cross-leaks through the electrolyte membrane can be increased, and the electrode potential of the anode can be increased in a shorter time. Since the period during which the anode catalyst is exposed to a high potential can be shortened, the oxidation of the anode catalyst can be further suppressed.
  • the controller performs the stop operation every time the first period elapses, and then performs the activity recovery operation. Control is made so that the power generation of the fuel cell is resumed.
  • the first period controlled by the controller is a time when the power generation time integrated value obtained by integrating the power generation times of the fuel cells has reached a predetermined power generation integration time. It is characterized by.
  • the integrated value of the power generation time such as impurities generated by thermal decomposition of the members constituting the fuel cell during operation of the fuel cell, impurities contained in the fuel gas or oxidant gas supplied from the outside, etc.
  • the anode inert gas supply unit includes a desulfurizer for desulfurizing a raw material gas, and the inert gas is a raw material gas desulfurized by the desulfurizer. It is characterized by being.
  • the configuration of the fuel cell system is compared with the case where a gas cylinder such as nitrogen is used as the inert gas.
  • the cost can be reduced and the installation of the fuel cell system can be improved.
  • the anode inert gas supply unit is configured to supply the inert gas to the anode via the fuel gas supply unit.
  • the fuel cell system can be simplified, the cost can be reduced, and the fuel gas supply unit can be purged with the inert gas. Therefore, deterioration due to oxidation of the catalyst used in the fuel gas supply unit can be suppressed, and the durability of the fuel cell system can be further improved.
  • An eleventh aspect of the invention is an operation of a fuel cell system including a fuel cell having an anode and a cathode, supplying a fuel gas containing at least hydrogen to the anode, and supplying an oxidant gas containing at least oxygen to the cathode to generate electric power.
  • a method of stopping the power generation of the fuel cell and thereafter, stopping the supply of the fuel gas to the anode, supplying the inert gas to the anode, and oxidizing including at least oxygen Supplying an agent gas to the cathode, and after the battery voltage of the fuel cell has dropped below a first voltage, the supply of the fuel gas to the anode is resumed, and the fuel cell A restarting step for restarting power generation.
  • the anode electrode potential is not increased after the battery voltage of the fuel cell is lowered, but when a predetermined amount of time has elapsed (for example, an amount of impurities that does not affect the deterioration of the fuel cell is accumulated). Every time the estimated first period elapses), the electrode potential of the anode is raised so that impurities do not contribute to the voltage drop of the fuel cell, but even if it contributes to the degradation of the fuel cell, the anode and cathode Impurities can be removed and deterioration of the fuel cell can be suppressed.
  • a predetermined amount of time for example, an amount of impurities that does not affect the deterioration of the fuel cell is accumulated.
  • the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with an inert gas, and supplies the oxidant gas.
  • the unit supplies air to the cathode and cross-leaks oxygen in the air through the electrolyte membrane to indirectly increase the electrode potential of the anode, so there is no need to add a configuration for supplying air to the anode.
  • the battery system can be simplified and the cost can be reduced.
  • the anode fuel gas is replaced with an inert gas and oxygen is supplied from the cathode to the anode through the electrolyte membrane, the anode electrode potential rises and the apparent cell voltage (potential difference with the cathode) is It becomes 1st voltage (for example, about 0.1V) or less.
  • This battery voltage is detected by a voltage detector, and when the first voltage is reached, the supply of fuel gas and oxidant gas is started and the power generation of the fuel cell is resumed, so that more oxygen than necessary is not supplied to the anode. The oxidation of the anode catalyst can be minimized.
  • the stopping step stops power generation of the fuel cell, stops supply of the oxidant gas supplied to the cathode, and supplies the fuel gas supplied to the anode.
  • a step of stopping supply, and after the stop step, the activity recovery step is performed after the cell voltage of the fuel cell has dropped to a second voltage or less.
  • the supply of the oxidant gas and the fuel gas to the cathode and the anode is temporarily stopped, and the cathode
  • the oxygen remaining in the catalyst reacts with hydrogen that cross leaks from the anode and is consumed, whereby the catalyst at the cathode electrode interface is reduced and the activity of the catalyst can be recovered.
  • the electrode potential of the cathode decreases, and the apparent battery voltage (potential difference between the anode and cathode) detected by the voltage detector decreases and is detected by the voltage detector.
  • the battery voltage reaches the second voltage or less at which the activity of the catalyst of the cathode sufficiently recovers, a certain amount of inert gas is supplied to the anode by the anode inert gas supply unit, and again by the oxidant gas supply unit.
  • a certain amount of oxidant gas is supplied to the cathode to raise the electrode potential of the anode and the cathode, keep the catalytic activity of the anode and the cathode high and oxidize and remove impurities, so that a high battery voltage is maintained for a long time.
  • a fuel cell system excellent in power generation efficiency and durability can be obtained.
  • the stopping step is a step of stopping power generation of the fuel cell and cooling the fuel cell, wherein the temperature of the fuel cell is the first level.
  • the activity recovery step is performed after the temperature falls below the temperature of the above.
  • the fuel cell is cooled to a low temperature (below the first temperature), so that moisture in the electrode is likely to condense.
  • moisture in the electrode is condensed, impurities attached to the electrode are dissolved in the condensed water, so that it is easy to remove.
  • the water vapor contained in the fuel gas and oxidant gas supplied during power generation and the water vapor generated by the reaction are cooled and condensed, and condensed water is generated at each of the anode and the cathode. Is done.
  • water-soluble impurities dissolve in this condensed water, Stopped condensed water that has absorbed the impurities can be discharged out of the system together with the inert gas or oxidant gas supplied in the next step.
  • the timing of power generation stop and cooling may not be the same.
  • power generation may be stopped, cooling may be performed after the second period, cooling may be performed, and power generation may be stopped after the second period.
  • the fuel cell is cooled so that the temperature of the fuel cell is equal to or lower than the first temperature, and the power generation of the fuel cell is performed for the second period.
  • the power generation of the fuel cell is stopped, the stop step is performed, and then the activity recovery step is performed.
  • the temperature of the fuel cell is controlled to be equal to or lower than a predetermined temperature, the anode and the cathode are excessively humidified, and a large amount of condensed water is generated at the anode and the cathode.
  • the contamination of the anode and the cathode is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be further reduced until the power generation stops.
  • the fuel cell is cooled such that the temperature of the fuel cell is equal to or lower than the second temperature during the start-up operation of the fuel cell.
  • the power generation of the fuel cell is performed for a third period.
  • the activity recovery step stops the supply of the fuel gas supplied to the anode by the fuel gas supply unit, and the anode inert gas supply unit After supplying the inert gas to the anode, the oxidant gas supply unit supplies the oxidant gas to the cathode.
  • the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with the inert gas, expels hydrogen that reacts with oxygen, stops the supply of the inert gas, After reducing the internal pressure, the oxidant gas supply section supplies the oxidant gas to the cathode, so the amount of oxygen that cross-leaks through the electrolyte membrane can be increased, and the electrode potential of the anode is increased in a shorter time. In addition, since the period during which the anode catalyst is exposed to a high potential can be shortened, oxidation of the anode catalyst can be further suppressed.
  • the stop step is performed every time the first period elapses, and then the reactivation step is performed after performing the activity recovery step. It is characterized by.
  • the first period is a time when a power generation time integrated value obtained by integrating the power generation times of the fuel cells reaches a predetermined power generation integration time.
  • the accumulated value of the power generation time such as impurities generated by thermal decomposition of the members constituting the fuel cell during operation of the fuel cell, impurities contained in the fuel gas or oxidant gas supplied from the outside, etc. It is estimated that the amount of impurities that do not affect the deterioration of the fuel cell is accumulated by experimentally obtaining in advance the power generation time at which the relevant impurity starts to affect the deterioration of the fuel cell. Each time the period elapses, the power generation of the fuel cell is stopped, the electrode potentials of the anode and the cathode are raised, and the impurities of the anode and the cathode are oxidized and removed, so that deterioration of the fuel cell can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention.
  • the fuel cell system according to Embodiment 1 of the present invention includes a fuel cell 3 in which an anode 2a and a cathode 2b are formed opposite to each other on an electrolyte 1 side.
  • the electrolyte 1 is composed of, for example, a solid polymer electrolyte made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity.
  • the anode 2a and the cathode 2b are formed on a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon having high oxidation resistance and a polymer electrolyte having hydrogen ion conductivity. It is composed of a laminated gas diffusion layer having air permeability and electronic conductivity.
  • a platinum-ruthenium alloy catalyst that suppresses poisoning by impurities contained in the fuel gas, particularly carbon monoxide, is generally used as the catalyst for the anode 2a.
  • gas diffusion layer carbon paper or carbon cloth subjected to water repellent treatment, carbon non-woven fabric, or the like is used.
  • the anode separator 4a and the cathode separator 4b are arranged so as to face each other with the fuel cell 3 interposed therebetween, and the fuel gas flow for supplying and discharging the fuel gas to the surface of the anode separator 4a on the fuel cell 3 side
  • An oxidant gas passage 41b for supplying and discharging an oxidant gas is formed on the surface of the cathode side separator 4b on the fuel cell 3 side of the passage 41a.
  • a cooling fluid passage 5 for supplying and discharging a cooling fluid for cooling the fuel cell 3 is formed on the surface of the cathode side separator 4b opposite to the fuel cell 3 side.
  • the cooling fluid channel 5 may be formed on the surface of the anode separator 4a opposite to the fuel cell 3 side, or an independent cooling plate on which the cooling fluid channel 5 is formed may be provided separately.
  • the anode side separator 4a and the cathode side separator 4b are mainly formed of a conductive material such as carbon.
  • the anode-side separator 4a and cathode-side separator 4b and the fuel cell 3 are sealed by an anode-side gasket 6a and a cathode-side gasket 6b, respectively, so that the respective fluids do not leak to different fluid flow paths and the outside.
  • a plurality of cells composed of the fuel cell 3 and the separators 4a and 4b configured as described above are stacked, a current collector 7 is disposed at both ends to extract current, an end plate 8 is disposed via an insulator, The stack was formed by fastening.
  • a heat insulating material 9 was disposed around the stack in order to prevent heat dissipation to the outside and increase the exhaust heat recovery efficiency.
  • the fuel gas supply unit 10 desulfurizes the sulfur compound, which is a catalyst poisoning substance, from a raw material gas such as city gas (a hydrocarbon gas mainly containing methane, which is supplied using piping in a city).
  • the apparatus 101 includes a raw material gas supply unit 102 that controls the flow rate of the desulfurized raw material gas, and a hydrogen generation unit 103 that reforms the desulfurized raw material gas to generate hydrogen.
  • the desulfurizer 101 and the raw material gas supply part 102 are called the anode inert gas supply part 13 as needed.
  • the hydrogen generation unit 103 includes at least a reforming unit, a carbon monoxide conversion unit, and a carbon monoxide removal unit.
  • the anode inert gas supply unit 13 can supply the anode 2a with a raw material gas that is less active with respect to the anode 2a, and can replace at least a part of the fuel gas remaining in the anode 2a. Configured. A bypass channel 131 that bypasses the hydrogen generator 103 is connected, and the hydrogen generator 103 and the bypass channel 131 are switched using a valve.
  • the configuration is such that the inert gas is supplied to the anode 2a via the bypass channel 131, but the present invention is not limited to this, and the reforming of the raw material gas is performed while the hydrogen generator 103 is stopped or at a low temperature.
  • an inert gas raw material gas
  • an inert gas may be supplied to the anode 2a through the hydrogen generator 103 (for example, see Embodiment 7 described later).
  • the configuration of the fuel cell system is compared with the case where a gas cylinder such as nitrogen is used as the inert gas.
  • the cost can be reduced and the installation of the fuel cell system can be improved.
  • reaction shown in (Chemical Formula 3) is performed by summing up all reactions occurring in the reforming section.
  • the reformed gas produced in the reforming section contains about 10% carbon monoxide in addition to hydrogen. And carbon monoxide poisons the catalyst contained in the anode 2a in the operating temperature range of the fuel cell 3, and lowers its catalytic activity. Therefore, carbon monoxide generated in the reforming section is converted into carbon dioxide in the carbon monoxide conversion section as shown in the reaction formula (Chemical Formula 2). This reduces the concentration of carbon monoxide to about 5000 ppm.
  • carbon monoxide with a reduced concentration is selectively oxidized with oxygen taken from the atmosphere or the like by the reaction indicated by (Chemical Formula 4) in the carbon monoxide removal section.
  • concentration of carbon monoxide is reduced to about 10 ppm or less which can suppress a decrease in the catalytic activity of the catalyst of the anode 2a.
  • the fuel gas supply unit 10 is not limited to the steam reforming method, but may be a hydrogen generation method such as an autothermal method. If the concentration of carbon monoxide contained in the fuel gas is low, the air bleed means is omitted. be able to.
  • the oxidant gas supply unit 11 includes an oxidant gas flow rate controller 111 that controls the flow rate of the oxidant gas, impurity removal means 112 that removes impurities in the oxidant gas to some extent, and humidification that humidifies the oxidant gas. Consists of means 113.
  • the oxidant gas is a general term for gases containing at least oxygen (or capable of supplying oxygen).
  • the atmosphere air is used.
  • the impurity removing means 112 includes a dust removing filter that removes dust in the atmosphere, a sulfur-based impurity such as sulfur dioxide and hydrogen sulfide, and an acid gas removing filter that removes acid gases in the atmosphere such as nitrogen oxides, It consists of an alkaline gas removal filter that removes alkaline gas such as ammonia in the atmosphere. Each filter can be omitted depending on the installation environment and the contamination resistance of the fuel cell 3.
  • the cooling unit 12 passes through the cooling fluid tank 121 that stores the cooling fluid that cools the stack, the cooling fluid pump 122 that supplies the cooling fluid, and the cooling fluid channel 5, and generates heat and heat generated in the fuel cell 3.
  • the heat exchanger 123 is configured to make hot water by further exchanging heat with the exchanged cooling fluid.
  • a voltage detector 14 was connected to the stack in order to detect the battery voltage of the stack.
  • controller 15 controls the start, power generation, and stop operations of the fuel cell 3, and the fuel gas supply unit 10, the oxidant gas supply unit 11, the anode inert gas supply unit 13, the cooling unit 12, and the like. Can be controlled.
  • the released hydrogen ions move to the cathode 2b through the electrolyte 1 and receive electrons at the interface between the catalyst layer of the cathode 2b and the electrolyte 1. At this time, it reacts with oxygen in the oxidant gas supplied to the cathode 2b to generate water as shown in the reaction formula (Formula 6).
  • the flow of electrons flowing through the load can be used as direct current electric energy. Further, since the series of reactions described above is an exothermic reaction, the heat generated in the fuel cell 3 is recovered by exchanging heat with the cooling fluid supplied from the cooling fluid flow path 5 to recover the heat energy such as hot water. can do.
  • the oxidant gas used for power generation of the fuel cell 3 is usually the atmosphere in the environment in which it is installed, but the atmosphere often contains various impurities, such as volcanoes and combustion.
  • sulfur compounds such as sulfur dioxide contained in exhaust gas, nitrogen oxides abundantly contained in combustion exhaust gas of factories and automobiles, and ammonia which is a malodorous component.
  • anode 2a and the cathode 2b of the fuel cell 3 are subjected to thermal decomposition of impurities remaining inside when the fuel cell is formed, and members (for example, an electrolyte) constituting the fuel cell during the operation of the fuel cell 3. Impurities generated or impurities generated from piping or parts used in the fuel cell system may be mixed.
  • the impurities adsorbed on the anode 2a and the cathode 2b are oxidized when the electrode potential of the anode 2a and the cathode 2b rises to the oxidation-reduction potential at which the respective impurities are oxidized, and the adsorbing power with the anode 2a or the cathode 2b becomes weak. It becomes easy to desorb from the anode 2a or the cathode 2b by being gasified or ionized.
  • the electrode potential at which each impurity is oxidized is determined by the type of impurity, the type of electrode, temperature, pH, and the like, but the inventors of the present invention particularly consider the anode 2a that is held in a state where the electrode potential is low during normal power generation.
  • the impurities adsorbed on the anode 2a can be removed by oxidation by increasing the electrode potential of the anode 2a.
  • impurities such as organic substances having an oxidation peak around 1.0 V can be oxidized and removed.
  • a time for accumulating an amount of impurities that does not affect the deterioration of the fuel cell 3 is experimentally obtained in advance, and the power generation of the fuel cell 3 is stopped every time this first period elapses. Then, it was found that deterioration of the fuel cell 3 can be suppressed by raising the electrode potential of the anode 2a and the cathode 2b during the stop and oxidizing and removing impurities poisoned to the anode 2a and the cathode 2b.
  • Impurities generated from the catalyst accumulate little by little, react with oxygen leaking from the cathode 2b and react with hydrogen peroxide produced on the anode 2a side, causing a chemical reaction, and on the anode 2a side, radicals with extremely strong oxidizing power It is presumed that the seeds are generated, and the resin 1 starts to decompose gradually as the electrolyte 1 containing the resin and the catalyst layer of the anode 2a or the cathode 2b come into contact with the radical species for a long time.
  • the cell voltage of the fuel cell 3 was almost the same as the initial value, and it was found that it was difficult to detect the cell voltage initially even if the fuel cell 3 deteriorated.
  • the catalyst constituting the anode 2a is oxidized and deteriorated by increasing the electrode potential of the anode 2a, it is preferable that the time and number of times to increase the electrode potential of the anode 2a be as small as possible.
  • the power generation time integrated value obtained by integrating the power generation time of the fuel cell 3 is about 1 in the fuel cell system according to Embodiment 1 of the present invention.
  • a sequence that suppresses the deterioration of the fuel cell 3 due to impurities is operated once.
  • the first period may be a regular time that does not depend on the power generation time.
  • the sequence for suppressing the deterioration of the fuel cell 3 due to impurities once in the first period needs to temporarily stop the power generation, but does not necessarily stop the power generation. If there is a timing when the fuel cell system stops before and after the time integrated value reaches a predetermined time, a sequence for suppressing deterioration of the fuel cell 3 due to impurities may be operated in accordance with the timing.
  • the controller 15 stops the power generation of the fuel cell 3 (step 102) when a predetermined time elapses (for example, reaches the first period) (step 101). Then, the fuel gas supplied to the anode 2a is stopped by the fuel gas supply unit 10, and the inert gas (desulfurized source gas) is supplied to the anode 2a by the anode inert gas supply unit 13 (step 103). At this time, a certain amount of inert gas necessary to replace the fuel gas remaining in the anode 2a with an inert gas is supplied to the anode 2a, and oxygen is cross-leaked into the anode 2a to cause the anode 2a to cross-leak. A certain amount of oxidant gas necessary to raise the electrode potential of 2a is supplied (step 104). In addition, it is preferable to increase / decrease the supply flow rate of oxidizing gas with respect to the supply flow rate during electric power generation as needed.
  • the supply amount of the inert gas at this time is an amount necessary to replace the fuel gas remaining in the anode 2a, the supply amount of the oxidant gas is cross leaked oxygen, and the electrode potential of the anode 2a is the impurity potential. It is an amount necessary to increase the electrode potential to be oxidized, and it is preferable to obtain it experimentally in advance.
  • a certain amount of inert gas is supplied to the anode 2a and a certain amount of oxidant gas is supplied to the cathode 2b.
  • the present invention is not limited to this.
  • the amount of inert gas supplied to the anode 2a may be different from the amount of oxidant gas supplied to the cathode 2b.
  • an inert gas may be supplied to the anode 2a for a certain time, and an oxidant gas may be supplied to the cathode 2b for a certain time.
  • Step 105 When a certain amount of inert gas and oxidant gas are supplied, the supply of the inert gas supplied by the anode inert gas supply unit 13 and the oxidant gas supplied by the oxidant gas supply unit 11 is stopped ( Step 105).
  • the electrode potential of the cathode 2b is about 1V
  • the electrode potential of the anode 2a gradually rises from about 0V before the introduction of the inert gas by oxygen leaking from the cathode 2b, and approaches the electrode potential of the cathode 2b.
  • the electrode potential of the anode 2a is about It is determined that it is 0.9 V or more, and that part or all of the impurities such as organic substances having an oxidation peak around 1.0 V adsorbed on the anode 2a can be oxidized (step 106), and the fuel gas supply unit 10 again.
  • the oxidant gas supply unit 11 is operated to supply the fuel gas and the oxidant gas to the anode 2a and the cathode 2b, respectively (step 107), and the power generation of the fuel cell 3 is resumed (step 108).
  • step 104 and step 105 may be omitted and the process may proceed to step 106 after step 103.
  • Step 107 the supply of the inert gas to the anode 2a is stopped, the supply of the fuel gas to the anode 2a is started, and the supply of the oxidant gas to the cathode 2b may be continued.
  • the first voltage is related to the electrode potential necessary to oxidize the impurities adsorbed on the anode 2a, and is preferably experimentally determined in advance according to the impurities to be removed.
  • the electrode potential of the anode 2a is not increased after the cell voltage of the fuel cell 3 is lowered, but the deterioration of the fuel cell 3 is affected. Since the electrode potential of the anode 2a is increased every time the first period estimated to accumulate a small amount of impurities, the impurities do not contribute to the voltage drop of the fuel cell 3. Even when contributing to the degradation, the impurities of the anode 2a and the cathode 2b can be removed, and the degradation of the fuel cell 3 can be suppressed.
  • the anode inert gas supply unit 13 replaces the fuel gas containing hydrogen remaining in the anode 2a with an inert gas
  • the oxidant gas supply unit 11 supplies air to the cathode 2b, crosses the oxygen in the air through the membrane of the electrolyte 1, and indirectly increases the electrode potential of the anode 2a, so that air is supplied to the anode 2a. Therefore, it is not necessary to add a configuration to be realized, and the fuel cell system can be simplified and the cost can be reduced.
  • the electrode potential of the anode 2a rises, and the apparent battery voltage (with respect to the cathode 2b) (Potential difference) is about 0.1 V or less.
  • the battery voltage is detected by the voltage detector 14, and when the voltage becomes about 0.1 V or less, the supply of the fuel gas and the oxidant gas is started and the power generation of the fuel cell 3 is restarted. The oxidation of the catalyst of the anode 2a can be minimized.
  • the controller 15 stops the power generation of the fuel cell 3 every time the first period elapses, and the oxidant gas supply unit 11 supplies the cathode 2b with the oxidation.
  • the supply of the agent gas is stopped, the supply of the fuel gas supplied to the anode 2a is stopped by the fuel gas supply unit 10, and the battery voltage of the fuel cell 3 detected by the voltage detector 14 is lowered to the second voltage or lower.
  • the anode inert gas supply unit 13 supplies an inert gas to the anode 2a, and the oxidant gas supply unit 11 supplies a certain amount of oxidant gas to the cathode 2b. .
  • the constituent elements other than the sequence in which the supply of the fuel gas and the oxidant gas is stopped after the power generation is stopped and the battery voltage is lowered to the second voltage or lower are the same as those in the first embodiment. The description is omitted.
  • FIG. 3 shows a flowchart of the fuel cell system according to Embodiment 2 of the present invention.
  • the controller 15 stops the power generation of the fuel cell 3 (step 202) when the predetermined time has elapsed (for example, reaches the first period) (step 201), and the oxidation of the fuel cell 3 is stopped.
  • the oxidizing gas supplied to the cathode 2b by the agent gas supply unit 11 and the fuel gas supplied to the anode 2a by the fuel gas supply unit 10 are stopped (step 203), and the battery voltage detected by the voltage detector 14 is the second voltage. Wait until the voltage (about 0.2 V) or less (step 204).
  • the anode inert gas supply unit 13 supplies an inert gas (desulfurized raw material gas) to the anode 2a, and the oxidant gas supply unit 11 supplies an oxidant gas to the cathode 2b.
  • Supply (step 205), supply a constant amount necessary to replace the fuel gas remaining in the anode 2a with an inert gas, and cross-leak oxygen into the anode 2a to raise the electrode potential of the anode 2a.
  • a certain amount of oxidant gas necessary to be supplied is supplied (step 206).
  • step 207 Since the operation sequence after step 207 is the same as that of the first embodiment, description thereof is omitted.
  • the oxidizing gas and the The supply of the fuel gas to the cathode 2b and the anode 2a is stopped, and oxygen remaining in the cathode 2b is reacted with hydrogen that cross-leaks from the anode 2a and consumed, so that the interface of the electrode of the cathode 2b
  • the catalyst is reduced and the activity of the catalyst can be restored.
  • the electrode potential of the cathode 2b decreases, and the apparent battery voltage (potential difference between the anode 2a and the cathode 2b) detected by the voltage detector 14 decreases.
  • the battery voltage detected by the detector 14 reaches a second voltage (for example, 0.2 V) at which the activity of the catalyst of the cathode 2b is sufficiently recovered, the inert gas is supplied to the anode inert gas supply unit 13.
  • the second voltage may be lower than the power generation voltage during normal operation, and is preferably 0 V to 0.5 V, for example.
  • the controller 15 stops the power generation of the fuel cell 3 and stops the cooling of the fuel cell 3 cooled by the cooling unit 12 every time the first period elapses. Then, after the battery voltage of the fuel cell 3 detected by the voltage detector 14 falls below the second voltage and the temperature of the fuel cell 3 falls below the first temperature, the anode inert gas supply unit 13
  • the second embodiment is different from the second embodiment in that an inert gas is supplied to the anode 2a and an oxidizing gas is supplied to the cathode 2b by the oxidizing gas supply unit 11 in a certain amount.
  • the constituent elements other than the sequence until the temperature of the fuel cell 3 decreases to the first temperature or lower are the same as those in the second embodiment, and thus the description thereof is omitted.
  • FIG. 4 shows a flowchart of the fuel cell system according to Embodiment 3 of the present invention.
  • the controller 15 stops the power generation of the fuel cell 3 and the fuel cell 3
  • the temperature of the fuel cell 3 is cooled using the cooling fluid (step 302).
  • the oxidant gas supplied to the cathode 2b by the oxidant gas supply unit 11 and the fuel gas supplied to the anode 2a by the fuel gas supply unit 10 are stopped (step 303), and the battery voltage detected by the voltage detector 14 is reduced.
  • the process waits until the temperature is lower than the second voltage (about 0.2 V) and the temperature of the fuel cell 3 is lower than the first temperature (about 50 ° C.) (step 304).
  • the first temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. Is preferably at least 5 ° C. lower than the dew point temperatures of the anode 2a and the cathode 2b.
  • the first temperature is preferably obtained experimentally in advance.
  • step 305 Since the operation sequence after step 305 is the same as that of the second embodiment, description thereof is omitted.
  • the utilization rate of the fuel gas supplied to the anode 2a side was 70%, the dew point was about 55 ° C., the utilization rate of the oxidant gas supplied to the cathode 2b side was 50%, and the dew point was about 65 ° C.
  • the load was controlled so that the current density was 0.2 A / cm 2 with respect to the electrode areas of the anode 2 a and the cathode 2 b so that the current flowed constant.
  • the cooling fluid for cooling the fuel cell 3 has a cooling fluid flow rate of about 60 ° C. near the fuel cell cooling fluid channel inlet manifold and about 70 ° C. near the fuel cell cooling fluid channel outlet manifold. Controlled.
  • the fluorine ion concentration contained in the drain water discharged from the anode 2a and the cathode 2b was measured while performing a power generation test.
  • FIG. 5 shows the measurement result of the fluorine ion concentration representing the voltage behavior from the stop to the start and the deterioration of the fuel cell 3 in which the impurity removal sequence is performed.
  • the power generation of the fuel cell 3 is stopped in step 302, and the battery voltage once rises to the open circuit voltage (about 1V) and then quickly decreases and falls below the second voltage (about 0.2V). It was.
  • the oxygen remaining in the cathode 2b is consumed by reacting with hydrogen leaking from the anode 2a, and the catalyst of the cathode 2b is sufficiently reduced to increase its activity.
  • step 305 the fuel gas remaining in the anode 2a in the anode inert gas supply unit 13 is replaced with the inert gas in step 305, and the oxidant gas is supplied again to the cathode 2b.
  • the battery voltage decreases again because the hydrogen is immediately removed from the anode 2a.
  • the anode 2a is oxidized by oxygen leaking from the cathode 2b, and the electrode potential of the anode 2a gradually rises and approaches the electrode potential of the cathode 2b to which air is supplied.
  • step 309 when fuel gas and oxidant gas are respectively supplied to generate power again, an open circuit voltage is obtained, load is started, and power generation is resumed.
  • the water vapor and reaction contained in the fuel gas and the oxidant gas supplied during power generation when the power generation of the fuel cell 3 is stopped.
  • the water vapor generated in step 1 is cooled and condensed, and condensed water is generated in each of the anode 2a and the cathode 2b.
  • Water-soluble impurities such as impurities remaining inside when the fuel cell 3 is produced, or impurities generated by thermal decomposition of members constituting the fuel cell 3 during operation of the fuel cell 3 are contained in this condensed water. Since it dissolves, the stopped condensed water that has absorbed this impurity can be discharged out of the system together with the inert gas or oxidant gas supplied in step 305.
  • Embodiment 4 In the fuel cell system according to Embodiment 4 of the present invention, the controller 15 supplies a certain amount of inert gas to the anode 2a by the anode inert gas supply unit 13, and then supplies the oxidant gas by the oxidant gas supply unit 11.
  • the difference from Embodiment 3 is that a constant amount is supplied to the cathode 2b.
  • the constituent elements other than the order in which the inert gas and the oxidant gas are supplied are the same as those in the third embodiment, and thus the description thereof is omitted.
  • FIG. 6 shows a flowchart of the fuel cell system according to Embodiment 4 of the present invention.
  • Steps until power generation is stopped and the battery voltage of the fuel cell 3 becomes equal to or lower than the second voltage are the same as those in the third embodiment.
  • the anode inert gas supply unit 13 supplies an inert gas to the anode 2a (step 405), and a certain amount of inert gas replacing the remaining fuel gas.
  • the active gas step 406
  • the inert gas supplied by the anode inert gas supply unit is stopped, and the oxidant gas is supplied to the cathode 2b by the oxidant gas supply unit 11 (step 407).
  • step 408 When a certain amount of oxidant gas is supplied (step 408), the supply of oxidant gas is stopped (step 409), oxygen is cross-leaked from the cathode 2b, and the electrode potential of the anode 2a is raised.
  • step 410 and subsequent steps are the same as those in the third embodiment, description thereof is omitted.
  • the anode inert gas supply unit 13 replaces the fuel gas containing hydrogen remaining on the anode 2a with the inert gas, and reacts with oxygen. Then, the supply of the inert gas is stopped, the internal pressure of the anode 2a is lowered, and then the oxidant gas supply unit 11 supplies air to the cathode 2b.
  • the amount of oxygen leaking can be increased, the electrode potential of the anode 2a can be increased in a shorter time, and the time during which the catalyst of the anode 2a is exposed to a high potential can be shortened. Can be further suppressed.
  • the controller 15 has the cooling unit so that the temperature of the fuel cell 3 becomes equal to or lower than the first temperature before the second period when the first period elapses. 12 is different from Embodiment 3 in that the power generation of the fuel cell is stopped after generating power for the second period.
  • the constituent elements other than the point of lowering the temperature of the fuel cell 3 before stopping the power generation of the sequence for removing the impurities are the same as those in the third embodiment, and thus the description thereof is omitted.
  • FIG. 7 shows a flowchart of the fuel cell system according to Embodiment 5 of the present invention.
  • the controller 15 performs a predetermined time before a predetermined time (for example, before the second period (several tens of minutes to the first period in which an amount of impurities that does not affect the deterioration of the fuel cell 3 is accumulated). (Several tens of hours ago))) (step 501), the cooling fluid pump 122 of the cooling unit 12 is controlled so that the temperature of the fuel cell 3 decreases, and the temperature of the fuel cell 3 is set to the first temperature. Cool to a temperature (about 50 ° C.) or lower (step 502).
  • the first temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and there is sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. It is a temperature to be generated and is preferably at least 5 ° C. lower than the dew point temperature of the anode 2a and the cathode 2b, and is preferably a temperature at which flooding does not occur.
  • the first temperature is preferably obtained experimentally in advance.
  • step 503 After a predetermined time (for example, the second period) elapses while the temperature of the fuel cell 3 is low (step 503), the power generation is stopped (step 504). Since the subsequent steps after power generation is stopped are the same as those in Embodiment 3, the description thereof is omitted.
  • the temperature of the fuel cell 3 is controlled to be equal to or lower than a predetermined temperature before power generation is stopped, and the anode 2a and the cathode 2b are in an excessively humid state.
  • a large amount of condensed water is generated at the anode 2a and the cathode 2b.
  • the contamination of the anode 2a and the cathode 2b is absorbed by the condensed water, and the fuel gas and the oxidant are respectively The amount of contamination can be further reduced by the time gas is discharged out of the system together with the gas and power generation stops.
  • the controller 15 controls the cooling unit 12 so that the temperature of the fuel cell 3 is equal to or lower than the second temperature when the power generation of the fuel cell 3 is resumed.
  • the third embodiment is different from the third embodiment in that power is generated in the third period.
  • FIG. 8 shows a flowchart of the fuel cell system according to Embodiment 6 of the present invention.
  • the steps up to the step of supplying the inert gas and the oxidant gas to the anode 2a and the cathode 2b, respectively, to make the voltage lower than the first voltage are the same as in the third embodiment, and the description is omitted.
  • the controller 15 causes the temperature of the fuel cell 3 to become equal to or lower than the second temperature (room temperature to about 50 ° C.). Control such as quickly turning the cooling fluid pump 122 of the cooling unit 12 is performed (step 609).
  • the second temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and there is sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. It is a temperature to be generated and is preferably at least 5 ° C. lower than the dew point temperature of the anode 2a and the cathode 2b, and is preferably a temperature at which flooding does not occur. The second temperature is preferably obtained experimentally in advance.
  • step 610 fuel gas and oxidant gas are supplied in a state where the temperature of the fuel cell 3 is low (step 610), and power generation is resumed (step 611).
  • step 612 power generation is performed in a state where the temperature of the fuel cell 3 is low, and when a predetermined time (for example, the third period (several minutes to several hours)) has elapsed (step 612), the temperature of the fuel cell 3 is changed to normal The temperature is returned to the same temperature (step 613).
  • a predetermined time for example, the third period (several minutes to several hours)
  • the fuel cell system of the sixth embodiment of the present invention having the above-described configuration, power is generated with the temperature of the fuel cell 3 being low at the time of start-up, the anode 2a and the cathode 2b are in an excessively humid state, and the anode 2a and the cathode 2b A large amount of condensed water is generated, and the contamination of the anode 2a and the cathode 2b is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be reduced.
  • Embodiment 7 In the fuel cell system according to Embodiment 7 of the present invention, the components other than the anode inert gas supply unit 13 supplying the inert gas to the anode 2a via the fuel gas supply unit 10 are the same as those in Embodiment 1. Since it is the same as that of FIG.
  • FIG. 9 shows a schematic configuration diagram of a fuel cell system according to Embodiment 7 of the present invention.
  • the source gas is used as the inert gas, but the present invention is not limited to this.
  • the inert gas is a gas other than the reducing gas supplied to the anode, and may be any gas that has chemical stability and does not chemically react with the anode itself in the environment where the fuel cell system is stopped.
  • the inert gas for example, nitrogen gas, rare gas, or the like can be used in addition to the source gas.
  • the desulfurizer 101, the raw material gas supply unit 102 and the hydrogen generator 103 are used as the fuel gas supply unit 10, and the desulfurizer 101 and the anode inert gas supply unit 13 are used.
  • the raw material gas supply unit 102 is used, the present invention is not limited to this.
  • the fuel gas supply unit 10 may be a hydrogen cylinder that supplies hydrogen
  • the anode inert gas supply unit 13 may be an inert gas cylinder that supplies an inert gas.
  • a raw material gas as the inert gas from the viewpoint of simplifying the configuration of the fuel cell system and reducing the cost.
  • a gas containing a hydrocarbon such as methane, propane, or butane can be used.
  • city gas, natural gas, liquefied propane gas, or the like can be used.
  • the raw material gas contains a sulfur component, it is preferable to use a raw material gas in which the concentration of the sulfur component is reduced using a desulfurizer.
  • the fuel cell system according to the present invention is hardly affected by deterioration due to impurities, and a fuel cell, a fuel cell device, and a stationary fuel using a polymer type solid electrolyte that are required to be improved in durability. It can also be used for applications such as battery cogeneration systems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A controller (15) conducts a termination operation in which the generation of an electric power by a fuel cell (3) is terminated, and subsequently conducts an activity recovery operation in which the supply of a fuel gas to be supplied to an anode (2a) by means of a fuel gas supply unit (10) is terminated, an inert gas is supplied to the anode (2a) by means of an anode inert gas supply unit (13), and an oxidizing agent gas is supplied to the cathode (2b) by means of an oxidizing gas supply unit (11). In this manner, the controller (15) can control so that the fuel gas supply unit (10) can re-start the supply of the fuel gas to the anode (2a) and the fuel cell (3) can re-start the generation of an electric power after the battery voltage of the fuel cell (3) which is detected by a voltage detector (14) is decreased to a first voltage or lower.

Description

燃料電池システム及びその運転方法Fuel cell system and operation method thereof
 本発明は、不純物による燃料電池の劣化を抑制して、耐久性の向上を図った燃料電池システム及びその運転方法に関するものである。 The present invention relates to a fuel cell system in which deterioration of the fuel cell due to impurities is suppressed and durability is improved, and an operation method thereof.
 従来の一般的な燃料電池システムは、図10に示すように、電解質21を挟んで互いに対向して設けられた燃料ガスが供給されるアノード22aと、酸化剤ガスが供給されるカソード22bからなる燃料電池23を複数積層して構成されるスタックを備えている。 As shown in FIG. 10, the conventional general fuel cell system includes an anode 22a supplied with fuel gas and an anode 22b supplied with oxidant gas, which are provided facing each other with an electrolyte 21 therebetween. A stack formed by stacking a plurality of fuel cells 23 is provided.
 燃料ガス及び酸化剤ガスは、それぞれのガス流路が設けられたセパレータ24a及び24bを通じて、それぞれアノード22a及びカソード22bに供給される。 The fuel gas and the oxidant gas are supplied to the anode 22a and the cathode 22b through the separators 24a and 24b provided with the respective gas flow paths.
 上記構成のスタックに、アノード入口に燃料ガスを供給する燃料ガス供給部と、カソード入口に酸化剤ガスを供給する酸化剤ガス供給部が接続されていて、制御器により、所望の発電状態となるように制御されている。 A fuel gas supply unit that supplies fuel gas to the anode inlet and an oxidant gas supply unit that supplies oxidant gas to the cathode inlet are connected to the stack configured as described above, and a desired power generation state is achieved by the controller. So that it is controlled.
 燃料電池システムはその普及のために、10年程度の長期の耐久性及び低コスト化の両立が求められている。一方、従来、この種の燃料電池システムは、様々な不純物に影響を受け、電池電圧が低下し、発電効率が低下し、耐久性が低下する場合があった。不純物に影響を受けた場合に耐久性を向上させる方法として、燃料電池のアノード及びカソードに用いる触媒(例えば、白金系の触媒など)の量を増やすことが考えられるが、低コスト化の観点からは好ましくない。 Fuel cell systems are required to have both long-term durability of about 10 years and cost reduction for their spread. On the other hand, conventionally, this type of fuel cell system is affected by various impurities, the battery voltage is lowered, the power generation efficiency is lowered, and the durability is sometimes lowered. As a method for improving durability when affected by impurities, it is conceivable to increase the amount of catalyst (for example, platinum-based catalyst) used for the anode and cathode of the fuel cell, but from the viewpoint of cost reduction Is not preferred.
 不純物には、燃料電池システムを構成する樹脂部品や金属部品などの部材から発生する内的不純物と、大気などの外部から混入する外的不純物とがあり、これらの不純物がアノード22aやカソード22bを被毒して、触媒の活性を低下させることにより、燃料電池23の電池電圧を低下させる恐れがある。 The impurities include internal impurities generated from members such as resin parts and metal parts constituting the fuel cell system, and external impurities mixed from the outside such as the atmosphere, and these impurities are used for the anode 22a and the cathode 22b. There is a risk that the battery voltage of the fuel cell 23 is lowered by poisoning and reducing the activity of the catalyst.
 従来の燃料電池システムは、特にアノード22aの白金系触媒を被毒させるCOなどの不純物の影響を除去するため、例えば、燃料電池23の電池電圧が0.6V以下となったとき、一定電流の放電状態で燃料電池23の発電を継続したまま、燃料ガス供給部で供給する燃料ガスの供給を一時的に停止し、アノード22aの電極電位をアノード22aに吸着したCOが電気化学的に酸化される0.3V以上に上昇させ、アノード22aに吸着したCOを酸化除去する技術が開示されている(例えば、特許文献1の第2の実施例参照)。 In order to remove the influence of impurities such as CO that poison the platinum-based catalyst of the anode 22a in particular, the conventional fuel cell system has a constant current when, for example, the battery voltage of the fuel cell 23 becomes 0.6V or less. While the power generation of the fuel cell 23 is continued in the discharged state, the supply of the fuel gas supplied by the fuel gas supply unit is temporarily stopped, and the CO having adsorbed the electrode potential of the anode 22a to the anode 22a is electrochemically oxidized. And a technique for oxidizing and removing CO adsorbed on the anode 22a is disclosed (for example, refer to the second embodiment of Patent Document 1).
特許第3536645号公報Japanese Patent No. 3536645
 しかしながら、前記従来の燃料電池システムのように、アノードに不純物が蓄積し、燃料電池の電池電圧が低下してから、アノードの電極電位を上昇させる方法では、電池電圧が低下する程にアノードに不純物が蓄積し、その後触媒活性を回復することを繰り返すため、燃料電池が徐々に劣化し、耐久性が低下するという課題があった。 However, as in the conventional fuel cell system, in the method in which impurities accumulate in the anode and the cell voltage of the fuel cell decreases and then the anode electrode potential is increased, the impurities in the anode decrease as the cell voltage decreases. However, the fuel cell is gradually deteriorated and the durability is lowered.
 例えば、特許文献1には、運転中において、燃料電極の表面に吸着されるCO等の不純物を、燃料電池の電極への燃料供給を一時的に停止することにより酸化除去する技術が開示されている(段落0035参照)。具体的には、一定電流の放電状態の下、電池電圧が0.6Vを割り込んだところで、燃料供給を停止し、電池電圧が0.1Vとなったところで燃料供給を再開することが記載されている(例えば、段落0026、段落0030、段落0032、図3および図4参照)。 For example, Patent Document 1 discloses a technique of removing impurities such as CO adsorbed on the surface of the fuel electrode during operation by temporarily stopping the supply of fuel to the electrode of the fuel cell. (See paragraph 0035). Specifically, it is described that the fuel supply is stopped when the battery voltage falls below 0.6V under a constant current discharge state, and the fuel supply is restarted when the battery voltage becomes 0.1V. (See, for example, paragraph 0026, paragraph 0030, paragraph 0032, FIGS. 3 and 4).
 しかしながら、アノードの電極電位を高くし、不純物を酸化除去する場合に、アノードの劣化を抑制するという観点からは、特許文献1に記載の不純物の除去技術には、未だ改善の余地があると考えられる。 However, from the viewpoint of suppressing anode deterioration when the anode electrode potential is increased and impurities are removed by oxidation, there is still room for improvement in the impurity removal technique described in Patent Document 1. It is done.
 本発明は、上記従来の課題を解決するもので、アノードに吸着した不純物をより確実に除去し、燃料電池の劣化を抑制して耐久性に優れた燃料電池システムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a fuel cell system excellent in durability by more reliably removing impurities adsorbed on an anode and suppressing deterioration of the fuel cell. .
 本発明者らは、鋭意検討を行った結果、不純物が燃料電池の電圧低下には大きく寄与しないため、電圧低下はほとんど見られないが、燃料電池の劣化が進行する場合があるという課題を見出した。 As a result of intensive studies, the present inventors have found a problem that the deterioration of the fuel cell may progress although the voltage decrease is hardly observed because the impurity does not greatly contribute to the voltage decrease of the fuel cell. It was.
 具体的には、燃料電池のアノードに不純物が蓄積し、カソードからクロスリークする酸素と反応してアノード側で過酸化水素が生成すると、化学反応が起こり、アノード側に酸化力の極めて強いラジカル種が生成する。樹脂を含む電解質膜や、触媒層が、このラジカル種に長期間接触すると、樹脂が徐々に分解し、劣化してしまう。しかしながら、この時、燃料電池の電池電圧は必ずしも低下するとは限らない。従来の燃料電池システムでは、電圧低下はほとんど見られない場合には、アノードの不純物を十分に除去することができない。 Specifically, when impurities accumulate in the anode of the fuel cell and react with oxygen that cross-leaks from the cathode to generate hydrogen peroxide on the anode side, a chemical reaction occurs, and a radical species with a very strong oxidizing power on the anode side. Produces. When an electrolyte membrane containing a resin or a catalyst layer is in contact with this radical species for a long time, the resin gradually decomposes and deteriorates. However, at this time, the battery voltage of the fuel cell does not necessarily decrease. In the conventional fuel cell system, when there is almost no voltage drop, the anode impurities cannot be sufficiently removed.
 本発明者らは、特に、燃料電池の低コスト化のためにアノードの白金の量を低減する場合に、上記課題がより顕著となり、燃料電池の耐久性の観点から未だ改善の余地があることを見出した。 In particular, when the amount of platinum in the anode is reduced in order to reduce the cost of the fuel cell, the present inventors become more prominent, and there is still room for improvement from the viewpoint of durability of the fuel cell. I found.
 上記従来の課題を解決するために、本発明の燃料電池システムは、アノード及びカソードを有する燃料電池と、燃料ガス供給部と、酸化剤ガス供給部と、アノード不活性ガス供給部と、電圧検出器と、制御器を備え、前記制御器は、前記燃料電池の発電を停止する停止動作を行い、その後、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給し、かつ、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給する、活性回復動作を行い、前記電圧検出器で検出する前記燃料電池の電池電圧が、第1の電圧以下に低下した後、前記燃料ガス供給部が、前記アノードに供給する前記燃料ガスの供給を再開し、前記燃料電池の発電を再開するよう制御するものである。 In order to solve the above conventional problems, a fuel cell system according to the present invention includes a fuel cell having an anode and a cathode, a fuel gas supply unit, an oxidant gas supply unit, an anode inert gas supply unit, and a voltage detection. And a controller, and the controller performs a stop operation to stop power generation of the fuel cell, and then stops the supply of the fuel gas that the fuel gas supply unit supplies to the anode, and the anode An inert gas supply unit supplies the inert gas to the anode, and the oxidant gas supply unit supplies the oxidant gas to the cathode, and performs an activity recovery operation, which is detected by the voltage detector. After the battery voltage of the fuel cell drops below the first voltage, the fuel gas supply unit resumes supplying the fuel gas supplied to the anode, and resumes power generation of the fuel cell. It is intended to cormorants control.
 これにより、所定の時間が経過したら(例えば、燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に)、アノードの電極電位を上昇させて、アノードの不純物を除去するので、燃料電池の劣化を抑制することができる。 Thus, when a predetermined time has elapsed (for example, every time a first period estimated to accumulate an amount of impurities that does not affect the deterioration of the fuel cell has elapsed), the electrode potential of the anode is increased. Thus, the anode impurities are removed, so that deterioration of the fuel cell can be suppressed.
 また、燃料ガス供給を停止した後、不活性ガスを用いてアノード流路を置換するため、アノードの燃料(水素)濃度を低下させ、アノードの電極電位が十分に上がるまでの時間を短縮することができる。従って、アノードの電極電位が十分に上がる時間を短くすることができ、アノードの劣化を抑制しつつ、アノードの不純物を十分に除去できる。なお、アノードの電極電位が十分に上がるまでに時間がかかり過ぎると、アノードの不純物は除去できるが、例えば、アノードの触媒を胆持するカーボンの酸化、樹脂の酸化劣化、Ruの酸化による溶出等が起こり、アノードが劣化する恐れがある。 In addition, since the anode flow path is replaced with an inert gas after the fuel gas supply is stopped, the fuel (hydrogen) concentration in the anode is reduced, and the time until the anode electrode potential is sufficiently increased is shortened. Can do. Therefore, the time for which the electrode potential of the anode is sufficiently increased can be shortened, and impurities in the anode can be sufficiently removed while suppressing deterioration of the anode. In addition, if it takes too much time for the anode electrode potential to rise sufficiently, impurities in the anode can be removed. For example, oxidation of carbon holding the catalyst of the anode, oxidation degradation of the resin, elution due to oxidation of Ru, etc. May occur and the anode may deteriorate.
 本発明の燃料電池システムによれば、不純物が燃料電池の劣化に影響を与える前に、燃料電池の発電を停止し、アノードの電極電位を上昇させて、アノードの不純物を除去することができ、不純物による燃料電池の劣化を抑制した耐久性に優れた燃料電池システムを得ることができる。 According to the fuel cell system of the present invention, before the impurities affect the deterioration of the fuel cell, it is possible to stop the power generation of the fuel cell and raise the electrode potential of the anode to remove the impurities of the anode, It is possible to obtain a fuel cell system with excellent durability in which deterioration of the fuel cell due to impurities is suppressed.
本発明の実施の形態1における燃料電池システムの概略構成図1 is a schematic configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 同システムの運転シーケンスを示すフローチャートFlow chart showing the operation sequence of the system 本発明の実施の形態2における燃料電池システムの運転シーケンスを示すフローチャートThe flowchart which shows the operation sequence of the fuel cell system in Embodiment 2 of this invention. 本発明の実施の形態3における燃料電池システムの運転シーケンスを示すフローチャートThe flowchart which shows the operation sequence of the fuel cell system in Embodiment 3 of this invention. 同装置の発電特性及びフッ素イオン濃度変化を示す特性図Characteristic chart showing power generation characteristics and changes in fluorine ion concentration 本発明の実施の形態4における燃料電池システムの運転シーケンスを示すフローチャートThe flowchart which shows the operation sequence of the fuel cell system in Embodiment 4 of this invention. 本発明の実施の形態5における燃料電池システムの運転シーケンスを示すフローチャートThe flowchart which shows the operation sequence of the fuel cell system in Embodiment 5 of this invention. 本発明の実施の形態6における燃料電池システムの運転シーケンスを示すフローチャートThe flowchart which shows the operation sequence of the fuel cell system in Embodiment 6 of this invention. 本発明の実施の形態9における燃料電池システムの概略構成図Schematic configuration diagram of a fuel cell system according to Embodiment 9 of the present invention 従来の燃料電池システムの概略構成図Schematic configuration diagram of a conventional fuel cell system
 第1の発明は、アノード及びカソードを有する燃料電池と、少なくとも水素を含む燃料ガスを前記アノードに供給する燃料ガス供給部と、少なくとも酸素を含む酸化剤ガスを前記カソードに供給する酸化剤ガス供給部と、不活性ガスを前記アノードに供給して、前記燃料ガスの少なくとも一部を前記不活性ガスに置換するアノード不活性ガス供給部と、前記燃料電池の電池電圧を検出する電圧検出器と、前記燃料電池、前記燃料ガス供給部、前記酸化剤ガス供給部及び前記アノード不活性ガス供給部の動作を制御する制御器とを備え、前記制御器は、前記燃料電池の発電を停止する停止動作を行い、その後、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給し、かつ、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給する、活性回復動作を行い、前記電圧検出器で検出する前記燃料電池の電池電圧が、第1の電圧以下に低下した後、前記燃料ガス供給部が、前記アノードに供給する前記燃料ガスの供給を再開し、前記燃料電池の発電を再開するよう制御することを特徴とする。 A first invention includes a fuel cell having an anode and a cathode, a fuel gas supply unit for supplying a fuel gas containing at least hydrogen to the anode, and an oxidant gas supply for supplying an oxidant gas containing at least oxygen to the cathode. An anode inert gas supply unit that supplies an inert gas to the anode and replaces at least a part of the fuel gas with the inert gas, and a voltage detector that detects a battery voltage of the fuel cell. A controller for controlling operations of the fuel cell, the fuel gas supply unit, the oxidant gas supply unit, and the anode inert gas supply unit, and the controller stops the power generation of the fuel cell. Then, the fuel gas supply unit stops supplying the fuel gas to the anode, and the anode inert gas supply unit supplies the inert gas to the front. The battery voltage of the fuel cell, which is supplied to the anode and the oxidant gas supply unit supplies the oxidant gas to the cathode and performs an activity recovery operation and is detected by the voltage detector, is a first voltage. The fuel gas supply unit performs control so as to resume supply of the fuel gas supplied to the anode and resume power generation of the fuel cell after being lowered to the following.
 この構成により、燃料電池の電池電圧が低下してからアノードの電極電位を上昇させるのではなく、所定の時間が経過したら(例えば、燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、アノードの電極電位を上昇させるので、不純物が燃料電池の電圧低下には寄与しないが、燃料電池の劣化に寄与する場合でも、アノード及びカソードの不純物を除去し、燃料電池の劣化を抑制することができる。 With this configuration, the anode electrode potential is not increased after the cell voltage of the fuel cell has decreased, but an amount of impurities that does not affect the deterioration of the fuel cell accumulates after a predetermined time has elapsed. (Every time the estimated first period elapses ) , the electrode potential of the anode is increased, so that the impurities do not contribute to the voltage drop of the fuel cell, but even if it contributes to the deterioration of the fuel cell, the anode and cathode The impurities can be removed and deterioration of the fuel cell can be suppressed.
 また、アノードに直接空気を供給するなどしてアノードの電極電位を上げるのではなく、アノード不活性ガス供給部がアノードに残留する水素を含む燃料ガスを不活性ガスに置換し、酸化剤ガス供給部がカソードに空気を供給して、電解質膜を介して空気中の酸素をクロスリークさせてアノードの電極電位を間接的に上げるので、アノードに空気を供給する構成を追加する必要がなく、燃料電池システムの簡素化と低コスト化を図ることができる。 Also, instead of increasing the electrode potential of the anode by supplying air directly to the anode, the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with an inert gas, and supplies the oxidant gas. The unit supplies air to the cathode and cross-leaks oxygen in the air through the electrolyte membrane to indirectly increase the electrode potential of the anode, so there is no need to add a configuration for supplying air to the anode. The battery system can be simplified and the cost can be reduced.
 また、アノードの燃料ガスが不活性ガスに置換され、電解質膜を介してカソードからアノードへ酸素が供給されると、アノードの電極電位は上昇し、見かけ上の電池電圧(カソードとの電位差)は第1の電圧(例えば、約0.1V)以下となる。この電池電圧を電圧検出器で検出し、第1の電圧になったところで燃料ガス及び酸化剤ガスの供給を開始し、燃料電池の発電を再開するので、必要以上の酸素をアノードに供給せず、アノードの触媒の酸化を最小限に抑えることができる。 In addition, when the anode fuel gas is replaced with an inert gas and oxygen is supplied from the cathode to the anode through the electrolyte membrane, the anode electrode potential rises and the apparent cell voltage (potential difference with the cathode) is It becomes 1st voltage (for example, about 0.1V) or less. This battery voltage is detected by a voltage detector, and when the first voltage is reached, the supply of fuel gas and oxidant gas is started and the power generation of the fuel cell is resumed, so that more oxygen than necessary is not supplied to the anode. The oxidation of the anode catalyst can be minimized.
 また、不純物が燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、燃料電池の発電を停止し、アノードだけでなくカソードの電極電位も上昇させるので、アノード及びカソードに被毒した燃料電池の作成時に内部に残留した不純物、あるいは、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物などを酸化除去することができ、不純物による電圧低下を抑制した発電効率及び耐久性に優れた燃料電池システムを得ることができる。 In addition, every time a first period in which it is estimated that an amount of impurities that does not affect the deterioration of the fuel cell accumulates, the power generation of the fuel cell is stopped, and the electrode potential of not only the anode but also the cathode As a result, the impurities remaining inside the fuel cell poisoned to the anode and the cathode, or impurities generated by thermal decomposition of the members constituting the fuel cell during the operation of the fuel cell are oxidized and removed. Thus, a fuel cell system excellent in power generation efficiency and durability in which voltage drop due to impurities is suppressed can be obtained.
 第2の発明は、第1の発明において、前記制御器は、前記燃料電池の発電を停止し、前記酸化剤ガス供給部が前記カソードに供給する前記酸化剤ガスの供給を停止し、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止する、停止動作を行い、
 前記電圧検出器で検出される前記燃料電池の電池電圧が、第2の電圧以下に低下した後、前記活性回復動作を行うよう制御することを特徴とする。
In a second aspect based on the first aspect, the controller stops power generation of the fuel cell, stops supply of the oxidant gas supplied to the cathode by the oxidant gas supply unit, and supplies the fuel. A gas supply unit stops the supply of the fuel gas supplied to the anode, and performs a stop operation.
Control is performed so that the activation recovery operation is performed after the battery voltage of the fuel cell detected by the voltage detector drops below a second voltage.
 この構成により、燃料電池の発電を停止してから、アノード及びカソードの電極電位を上昇させる前に、一旦、酸化剤ガス及び燃料ガスのそれぞれカソード及びアノードへの供給を停止したままの状態とし、カソードに残留した酸素をアノードからクロスリークする水素と反応させ、消費させることにより、カソードの電極の界面の触媒が還元され、触媒の活性を回復させることができる。 With this configuration, after stopping the power generation of the fuel cell, before raising the electrode potential of the anode and the cathode, the supply of the oxidant gas and the fuel gas to the cathode and the anode is temporarily stopped, By reacting and consuming oxygen remaining on the cathode with hydrogen that cross leaks from the anode, the catalyst at the cathode electrode interface is reduced, and the activity of the catalyst can be recovered.
 また、このときカソードの触媒界面の酸素がなくなるため、カソードの電極電位が低下し、電圧検出器で検出する見かけ上の電池電圧(アノードとカソードの電位差)は低下し、電圧検出器で検出する電池電圧が、カソードの触媒の活性が十分に回復する第2の電圧以下に到達してから、アノード不活性ガス供給部で不活性ガスをアノードに一定量供給し、酸化剤ガス供給部で再度、酸化剤ガスをカソードに一定量供給して、アノード及びカソードの電極電位を上昇させ、アノード及びカソードの触媒活性を高く保持して、不純物を酸化除去するので、長期間高い電池電圧を維持することができ、発電効率及び耐久性に優れた燃料電池システムを得ることができる。 At this time, since the oxygen at the catalyst interface of the cathode disappears, the electrode potential of the cathode decreases, and the apparent battery voltage (potential difference between the anode and cathode) detected by the voltage detector decreases and is detected by the voltage detector. After the battery voltage reaches the second voltage or less at which the activity of the catalyst of the cathode sufficiently recovers, a certain amount of inert gas is supplied to the anode by the anode inert gas supply unit, and again by the oxidant gas supply unit. A certain amount of oxidant gas is supplied to the cathode to raise the electrode potential of the anode and the cathode, keep the catalytic activity of the anode and the cathode high and oxidize and remove impurities, so that a high battery voltage is maintained for a long time. Thus, a fuel cell system excellent in power generation efficiency and durability can be obtained.
 第3の発明は、第1の発明又は第2の発明において、前記燃料電池を冷却する冷却部と、前記燃料電池の温度を検出する温度検出器と、を備え、前記制御器は、前記燃料電池の発電を停止し、かつ、前記燃料電池を冷却するよう前記冷却部を制御する前記停止動作を行い、前記温度検出器で検出する前記燃料電池の温度が、第1の温度以下に低下した後、前記活性回復動作を行うよう制御することを特徴とする。 According to a third invention, in the first invention or the second invention, a cooling unit for cooling the fuel cell and a temperature detector for detecting the temperature of the fuel cell are provided, and the controller is configured to control the fuel. The power generation of the battery is stopped, and the stop operation for controlling the cooling unit to cool the fuel cell is performed, and the temperature of the fuel cell detected by the temperature detector is reduced to a first temperature or lower. Thereafter, control is performed to perform the activity recovery operation.
 この構成により、燃料電池を低温(第1の温度以下)に冷却するため、電極中の水分が凝縮しやすくなる。電極中の水分が凝縮すると、電極に付着した不純物が凝縮した水に溶け込むため、除去しやすくなる。 With this configuration, the fuel cell is cooled to a low temperature (below the first temperature), so that moisture in the electrode is likely to condense. When moisture in the electrode is condensed, impurities attached to the electrode are dissolved in the condensed water, so that it is easy to remove.
 また、燃料電池の発電の停止時に、発電中に供給されていた燃料ガス及び酸化剤ガス中に含まれる水蒸気及び反応で生成する水蒸気が冷やされて凝縮し、アノード及びカソードそれぞれに凝縮水が生成される。燃料電池の作成時に内部に残留した不純物、あるいは、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物などの内、水溶性の不純物はこの凝縮水に溶け込むので、この不純物を吸収した停止中の凝縮水を次のステップで供給される不活性ガス、あるいは酸化剤ガスとともに系外へと排出することができる。 In addition, when power generation of the fuel cell is stopped, the water vapor contained in the fuel gas and oxidant gas supplied during power generation and the water vapor generated by the reaction are cooled and condensed, and condensed water is generated at each of the anode and the cathode. Is done. Among the impurities remaining inside when creating the fuel cell, or impurities generated by thermal decomposition of the members constituting the fuel cell during the operation of the fuel cell, water-soluble impurities dissolve in this condensed water, Stopped condensed water that has absorbed the impurities can be discharged out of the system together with the inert gas or oxidant gas supplied in the next step.
 なお、この場合、発電停止と冷却のタイミングは、同時でなくてもよい。例えば、発電を停止し、第2の期間(後述)後に、冷却を行ってもよく、冷却を行い、第2の期間後に、発電を停止してもよい。 In this case, the timing of power generation stop and cooling may not be the same. For example, power generation may be stopped, cooling may be performed after a second period (described later), cooling may be performed, and power generation may be stopped after the second period.
 第4の発明は、第3の発明において、前記燃料電池を冷却する冷却部と、前記燃料電池の温度を検出する温度検出器と、を備え、前記制御器は、前記温度検出器で検出される前記燃料電池の温度が、前記第1の温度以下となるように前記冷却部を制御し、前記燃料電池の発電を第2の期間行った後、前記燃料電池の発電を停止する、前記停止動作を行い、その後、前記活性回復動作を行うよう制御することを特徴とする。 According to a fourth invention, in the third invention, a cooling unit for cooling the fuel cell, and a temperature detector for detecting the temperature of the fuel cell, wherein the controller is detected by the temperature detector. Controlling the cooling unit so that the temperature of the fuel cell is equal to or lower than the first temperature, and stopping the power generation of the fuel cell after performing the power generation of the fuel cell for a second period. Control is performed so as to perform the activity recovery operation after that.
 この構成により、低温(第1の温度以下)で発電するため、発電で生成した水分が電極でより凝縮しやすくなる。そのため、電極で凝縮する水の量がより多くなり、電極に付着した不純物が溶け込みやすくなる。 This configuration generates power at a low temperature (below the first temperature), so that moisture generated by power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
 また、発電を停止する前に、燃料電池の温度が所定の温度以下に制御され、アノード及びカソードが過加湿な状態となり、アノード及びカソードに多量の凝縮水が生成され、この状態で第2の期間発電を継続することにより、アノード及びカソードのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、発電が停止するまでにさらにコンタミ量を低減させることができる。 In addition, before the power generation is stopped, the temperature of the fuel cell is controlled to be equal to or lower than a predetermined temperature, the anode and the cathode are excessively humidified, and a large amount of condensed water is generated at the anode and the cathode. By continuing the power generation for a period, the contamination of the anode and the cathode is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be further reduced until the power generation stops.
 第5の発明は、第1~4のいずれかの発明において、前記燃料電池を冷却する冷却部と、前記燃料電池の温度を検出する温度検出器と、を備え、前記制御器は、前記燃料電池の起動動作の際に、前記燃料電池の温度が、第2の温度以下となるように前記冷却部を制御し、前記燃料電池の発電を第3の期間行うよう制御することを特徴とする。 According to a fifth invention, in any one of the first to fourth inventions, a cooling unit for cooling the fuel cell and a temperature detector for detecting a temperature of the fuel cell are provided, and the controller includes the fuel In the start-up operation of the battery, the cooling unit is controlled so that the temperature of the fuel cell is equal to or lower than the second temperature, and the power generation of the fuel cell is controlled to be performed for a third period. .
 この構成により、低温(第2の温度以下)で発電するため、発電で生成した水が電極でより凝縮しやすくなる。そのため、電極で凝縮する水の量がより多くなり、電極に付着した不純物が溶け込みやすくなる。 This configuration generates power at a low temperature (below the second temperature), so that water generated by power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
 また、起動時に燃料電池の温度が低い状態で発電し、アノード及びカソードが過加湿な状態となり、アノード及びカソードに多量の凝縮水が生成され、アノード及びカソードのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、コンタミ量を低減させることができる。 In addition, power is generated when the temperature of the fuel cell is low at start-up, the anode and cathode become over-humidified, a large amount of condensed water is generated at the anode and cathode, and contamination of the anode and cathode is absorbed by the condensed water. It is discharged out of the system together with the fuel gas and oxidant gas, and the amount of contamination can be reduced.
 第6の発明は、第1ないし5のいずれかの発明において、前記制御器は、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給した後、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給する、活性回復動作を行うよう制御することを特徴とする。 In a sixth aspect based on any one of the first to fifth aspects, the controller stops the supply of the fuel gas supplied to the anode by the fuel gas supply unit, and the anode inert gas supply unit After supplying the inert gas to the anode, the oxidant gas supply unit is controlled to perform an activity recovery operation of supplying the oxidant gas to the cathode.
 この構成により、アノード不活性ガス供給部がアノードに残留する水素を含む燃料ガスを不活性ガスに置換し、酸素と反応してしまう水素を追い出してから、不活性ガスの供給を停止し、アノードの内圧を下げて、その後、酸化剤ガス供給部がカソードに酸化剤ガスを供給するので、電解質膜を介してクロスリークする酸素の量を増やすことができ、より短時間でアノードの電極電位を上昇させ、アノードの触媒が高電位に曝される期間を短くすることができるので、アノードの触媒の酸化をさらに抑制することができる。 With this configuration, the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with the inert gas, expels the hydrogen that reacts with oxygen, stops the supply of the inert gas, and After that, the oxidant gas supply unit supplies the oxidant gas to the cathode, so that the amount of oxygen that cross-leaks through the electrolyte membrane can be increased, and the electrode potential of the anode can be increased in a shorter time. Since the period during which the anode catalyst is exposed to a high potential can be shortened, the oxidation of the anode catalyst can be further suppressed.
 第7の発明は、第1~6のいずれかの発明において、前記制御器は、第1の期間が経過する毎に、前記停止動作を行い、その後、前記活性回復動作を行った後、前記燃料電池の発電を再開するよう制御することを特徴とする。 In a seventh aspect based on any one of the first to sixth aspects, the controller performs the stop operation every time the first period elapses, and then performs the activity recovery operation. Control is made so that the power generation of the fuel cell is resumed.
 第8の発明は、第7の発明において、前記制御器で制御する前記第1の期間は、前記燃料電池の発電時間を積算した発電時間積算値が所定発電積算時間に到達した時間であることを特徴とする。 In an eighth aspect based on the seventh aspect, the first period controlled by the controller is a time when the power generation time integrated value obtained by integrating the power generation times of the fuel cells has reached a predetermined power generation integration time. It is characterized by.
 この構成により、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物や、外部より供給される燃料ガスや酸化剤ガス中に含まれる不純物など、発電時間の積算値に関係のある不純物が燃料電池の劣化に影響を及ぼし始める発電時間を予め実験的に求めておくことで、燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、燃料電池の発電を停止し、アノード及びカソードの電極電位を上昇させ、アノード及びカソードの不純物を酸化除去するので、燃料電池の劣化を抑制することができる。 With this configuration, the integrated value of the power generation time, such as impurities generated by thermal decomposition of the members constituting the fuel cell during operation of the fuel cell, impurities contained in the fuel gas or oxidant gas supplied from the outside, etc. First, it is estimated that an amount of impurities that do not affect the deterioration of the fuel cell is accumulated by experimentally calculating in advance the power generation time at which the impurities related to the fuel cell start to affect the deterioration of the fuel cell. Each time the period elapses, the power generation of the fuel cell is stopped, the electrode potentials of the anode and the cathode are raised, and the impurities of the anode and the cathode are oxidized and removed, so that deterioration of the fuel cell can be suppressed.
 第9の発明は、第1~8のいずれかの発明において、前記アノード不活性ガス供給部は、原料ガスを脱硫する脱硫器を備え、前記不活性ガスは前記脱硫器で脱硫した原料ガスであることを特徴とする。 According to a ninth invention, in any one of the first to eighth inventions, the anode inert gas supply unit includes a desulfurizer for desulfurizing a raw material gas, and the inert gas is a raw material gas desulfurized by the desulfurizer. It is characterized by being.
 この構成により、燃料電池の運転環境において、燃料電池に対して活性の乏しい原料ガスを不活性ガスとして用いるので、窒素などのガスボンベを不活性ガスとして用いる場合と比較して、燃料電池システムの構成が簡素化され、低コスト化を図ることができ、燃料電池システムの設置性を向上することが可能となる。 With this configuration, since the raw material gas having a low activity with respect to the fuel cell is used as the inert gas in the operating environment of the fuel cell, the configuration of the fuel cell system is compared with the case where a gas cylinder such as nitrogen is used as the inert gas. Thus, the cost can be reduced and the installation of the fuel cell system can be improved.
 第10の発明は、第1~9のいずれかの発明において、前記アノード不活性ガス供給部は、前記燃料ガス供給部を介して、前記不活性ガスを前記アノードに供給する構成であることを特徴とする。 According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the anode inert gas supply unit is configured to supply the inert gas to the anode via the fuel gas supply unit. Features.
 この構成により、不活性ガスを直接燃料電池のアノードに供給する構成を追加する必要がないので、燃料電池システムが簡素化され、低コスト化が図れるとともに、燃料ガス供給部も不活性ガスでパージされるので、燃料ガス供給部で用いられる触媒の酸化による劣化を抑制することができ、燃料電池システムの耐久性をより向上させることができる。 With this configuration, it is not necessary to add a configuration for supplying the inert gas directly to the anode of the fuel cell. Therefore, the fuel cell system can be simplified, the cost can be reduced, and the fuel gas supply unit can be purged with the inert gas. Therefore, deterioration due to oxidation of the catalyst used in the fuel gas supply unit can be suppressed, and the durability of the fuel cell system can be further improved.
 第11の発明は、アノード及びカソードを有する燃料電池を備え、少なくとも水素を含む燃料ガスを前記アノードに供給し、少なくとも酸素を含む酸化剤ガスを前記カソードに供給して発電する燃料電池システムの運転方法であって、前記燃料電池の発電を停止する停止ステップと、その後、前記燃料ガスの前記アノードへの供給を停止し、前記不活性ガスを前記アノードに供給し、かつ、少なくとも酸素を含む酸化剤ガスを前記カソードに供給する、活性回復ステップと、前記燃料電池の電池電圧が、第1の電圧以下に低下した後、前記アノードに供給する前記燃料ガスの供給を再開し、前記燃料電池の発電を再開する再開ステップと、を備えることを特徴とする。 An eleventh aspect of the invention is an operation of a fuel cell system including a fuel cell having an anode and a cathode, supplying a fuel gas containing at least hydrogen to the anode, and supplying an oxidant gas containing at least oxygen to the cathode to generate electric power. A method of stopping the power generation of the fuel cell; and thereafter, stopping the supply of the fuel gas to the anode, supplying the inert gas to the anode, and oxidizing including at least oxygen Supplying an agent gas to the cathode, and after the battery voltage of the fuel cell has dropped below a first voltage, the supply of the fuel gas to the anode is resumed, and the fuel cell A restarting step for restarting power generation.
 以上により、燃料電池の電池電圧が低下してからアノードの電極電位を上昇させるのではなく、所定の時間が経過したら(例えば、燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に)、アノードの電極電位を上昇させるので、不純物が燃料電池の電圧低下には寄与しないが、燃料電池の劣化に寄与する場合でも、アノード及びカソードの不純物を除去し、燃料電池の劣化を抑制することができる。 As described above, the anode electrode potential is not increased after the battery voltage of the fuel cell is lowered, but when a predetermined amount of time has elapsed (for example, an amount of impurities that does not affect the deterioration of the fuel cell is accumulated). Every time the estimated first period elapses), the electrode potential of the anode is raised so that impurities do not contribute to the voltage drop of the fuel cell, but even if it contributes to the degradation of the fuel cell, the anode and cathode Impurities can be removed and deterioration of the fuel cell can be suppressed.
 また、アノードに直接空気を供給するなどしてアノードの電極電位を上げるのではなく、アノード不活性ガス供給部がアノードに残留する水素を含む燃料ガスを不活性ガスに置換し、酸化剤ガス供給部がカソードに空気を供給して、電解質膜を介して空気中の酸素をクロスリークさせてアノードの電極電位を間接的に上げるので、アノードに空気を供給する構成を追加する必要がなく、燃料電池システムの簡素化と低コスト化を図ることができる。 Also, instead of increasing the electrode potential of the anode by supplying air directly to the anode, the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with an inert gas, and supplies the oxidant gas. The unit supplies air to the cathode and cross-leaks oxygen in the air through the electrolyte membrane to indirectly increase the electrode potential of the anode, so there is no need to add a configuration for supplying air to the anode. The battery system can be simplified and the cost can be reduced.
 また、アノードの燃料ガスが不活性ガスに置換され、電解質膜を介してカソードからアノードへ酸素が供給されると、アノードの電極電位は上昇し、見かけ上の電池電圧(カソードとの電位差)は第1の電圧(例えば、約0.1V)以下となる。この電池電圧を電圧検出器で検出し、第1の電圧になったところで燃料ガス及び酸化剤ガスの供給を開始し、燃料電池の発電を再開するので、必要以上の酸素をアノードに供給せず、アノードの触媒の酸化を最小限に抑えることができる。 In addition, when the anode fuel gas is replaced with an inert gas and oxygen is supplied from the cathode to the anode through the electrolyte membrane, the anode electrode potential rises and the apparent cell voltage (potential difference with the cathode) is It becomes 1st voltage (for example, about 0.1V) or less. This battery voltage is detected by a voltage detector, and when the first voltage is reached, the supply of fuel gas and oxidant gas is started and the power generation of the fuel cell is resumed, so that more oxygen than necessary is not supplied to the anode. The oxidation of the anode catalyst can be minimized.
 また、不純物が燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、燃料電池の発電を停止し、アノードだけでなくカソードの電極電位も上昇させるので、アノード及びカソードに被毒した燃料電池の作成時に内部に残留した不純物、あるいは、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物などを酸化除去することができ、不純物による電圧低下を抑制した発電効率及び耐久性に優れた燃料電池システムを得ることができる。 In addition, every time a first period in which it is estimated that an amount of impurities that does not affect the deterioration of the fuel cell accumulates, the power generation of the fuel cell is stopped, and the electrode potential of not only the anode but also the cathode As a result, the impurities remaining inside the fuel cell poisoned to the anode and the cathode, or impurities generated by thermal decomposition of the members constituting the fuel cell during the operation of the fuel cell are oxidized and removed. Thus, a fuel cell system excellent in power generation efficiency and durability in which voltage drop due to impurities is suppressed can be obtained.
 第12の発明は、第11の発明において、前記停止ステップは、前記燃料電池の発電を停止し、前記カソードに供給する前記酸化剤ガスの供給を停止し、前記アノードに供給する前記燃料ガスの供給を停止するステップであり、前記停止ステップ後に、前記燃料電池の電池電圧が、第2の電圧以下に低下した後、前記活性回復ステップを行うことを特徴とする。 In a twelfth aspect based on the eleventh aspect, the stopping step stops power generation of the fuel cell, stops supply of the oxidant gas supplied to the cathode, and supplies the fuel gas supplied to the anode. A step of stopping supply, and after the stop step, the activity recovery step is performed after the cell voltage of the fuel cell has dropped to a second voltage or less.
 以上により、燃料電池の発電を停止してから、アノード及びカソードの電極電位を上昇させる前に、一旦、酸化剤ガス及び燃料ガスのそれぞれカソード及びアノードへの供給を停止したままの状態とし、カソードに残留した酸素をアノードからクロスリークする水素と反応させ、消費させることにより、カソードの電極の界面の触媒が還元され、触媒の活性を回復させることができる。 As described above, after stopping the power generation of the fuel cell and before increasing the electrode potential of the anode and the cathode, the supply of the oxidant gas and the fuel gas to the cathode and the anode is temporarily stopped, and the cathode The oxygen remaining in the catalyst reacts with hydrogen that cross leaks from the anode and is consumed, whereby the catalyst at the cathode electrode interface is reduced and the activity of the catalyst can be recovered.
 また、このときカソードの触媒界面の酸素がなくなるため、カソードの電極電位が低下し、電圧検出器で検出する見かけ上の電池電圧(アノードとカソードの電位差)は低下し、電圧検出器で検出する電池電圧が、カソードの触媒の活性が十分に回復する第2の電圧以下に到達してから、アノード不活性ガス供給部で不活性ガスをアノードに一定量供給し、酸化剤ガス供給部で再度、酸化剤ガスをカソードに一定量供給して、アノード及びカソードの電極電位を上昇させ、アノード及びカソードの触媒活性を高く保持して、不純物を酸化除去するので、長期間高い電池電圧を維持することができ、発電効率及び耐久性に優れた燃料電池システムを得ることができる。 At this time, since the oxygen at the catalyst interface of the cathode disappears, the electrode potential of the cathode decreases, and the apparent battery voltage (potential difference between the anode and cathode) detected by the voltage detector decreases and is detected by the voltage detector. After the battery voltage reaches the second voltage or less at which the activity of the catalyst of the cathode sufficiently recovers, a certain amount of inert gas is supplied to the anode by the anode inert gas supply unit, and again by the oxidant gas supply unit. A certain amount of oxidant gas is supplied to the cathode to raise the electrode potential of the anode and the cathode, keep the catalytic activity of the anode and the cathode high and oxidize and remove impurities, so that a high battery voltage is maintained for a long time. Thus, a fuel cell system excellent in power generation efficiency and durability can be obtained.
 第13の発明は、第11または第12の発明において、前記停止ステップは、前記燃料電池の発電を停止し、かつ、前記燃料電池を冷却するステップであり、前記燃料電池の温度が、第1の温度以下に低下した後、前記活性回復ステップを行うことを特徴する。 In a thirteenth aspect based on the eleventh or twelfth aspect, the stopping step is a step of stopping power generation of the fuel cell and cooling the fuel cell, wherein the temperature of the fuel cell is the first level. The activity recovery step is performed after the temperature falls below the temperature of the above.
 この構成により、燃料電池を低温(第1の温度以下)に冷却するため、電極中の水分が凝縮しやすくなる。電極中の水分が凝縮すると、電極に付着した不純物が凝縮した水に溶け込むため、除去しやすくなる。 With this configuration, the fuel cell is cooled to a low temperature (below the first temperature), so that moisture in the electrode is likely to condense. When moisture in the electrode is condensed, impurities attached to the electrode are dissolved in the condensed water, so that it is easy to remove.
 また、燃料電池の発電の停止時に、発電中に供給されていた燃料ガス及び酸化剤ガス中に含まれる水蒸気及び反応で生成する水蒸気が冷やされて凝縮し、アノード及びカソードそれぞれに凝縮水が生成される。燃料電池の作成時に内部に残留した不純物、あるいは、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物などの内、水溶性の不純物はこの凝縮水に溶け込むので、この不純物を吸収した停止中の凝縮水を次のステップで供給される不活性ガス、あるいは酸化剤ガスとともに系外へと排出することができる。 In addition, when power generation of the fuel cell is stopped, the water vapor contained in the fuel gas and oxidant gas supplied during power generation and the water vapor generated by the reaction are cooled and condensed, and condensed water is generated at each of the anode and the cathode. Is done. Among the impurities remaining inside when creating the fuel cell, or impurities generated by thermal decomposition of the members constituting the fuel cell during the operation of the fuel cell, water-soluble impurities dissolve in this condensed water, Stopped condensed water that has absorbed the impurities can be discharged out of the system together with the inert gas or oxidant gas supplied in the next step.
 なお、この場合、発電停止と冷却のタイミングは、同時でなくてもよい。例えば、発電を停止し、第2の期間後に、冷却を行ってもよく、冷却を行い、第2の期間後に、発電を停止してもよい。 In this case, the timing of power generation stop and cooling may not be the same. For example, power generation may be stopped, cooling may be performed after the second period, cooling may be performed, and power generation may be stopped after the second period.
 第14の発明は、第13の発明において、前記燃料電池の温度が、前記第1の温度以下となるように前記燃料電池を冷却し、前記燃料電池の発電を前記第2の期間行った後、前記燃料電池の発電を停止する、前記停止ステップを行い、その後、前記活性回復ステップを行うことを特徴とする。 In a fourteenth aspect based on the thirteenth aspect, the fuel cell is cooled so that the temperature of the fuel cell is equal to or lower than the first temperature, and the power generation of the fuel cell is performed for the second period. The power generation of the fuel cell is stopped, the stop step is performed, and then the activity recovery step is performed.
 以上により、低温(第1の温度以下)で発電するため、発電で生成した水分が電極でより凝縮しやすくなる。そのため、電極で凝縮する水の量がより多くなり、電極に付着した不純物が溶け込みやすくなる。 As described above, since power is generated at a low temperature (below the first temperature), moisture generated by the power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
 また、発電を停止する前に、燃料電池の温度が所定の温度以下に制御され、アノード及びカソードが過加湿な状態となり、アノード及びカソードに多量の凝縮水が生成され、この状態で第2の期間発電を継続することにより、アノード及びカソードのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、発電が停止するまでにさらにコンタミ量を低減させることができる。 In addition, before the power generation is stopped, the temperature of the fuel cell is controlled to be equal to or lower than a predetermined temperature, the anode and the cathode are excessively humidified, and a large amount of condensed water is generated at the anode and the cathode. By continuing the power generation for a period, the contamination of the anode and the cathode is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be further reduced until the power generation stops.
 第15の発明は、第11~14のいずれかの発明において、前記燃料電池の起動動作の際に、前記燃料電池の温度が、第2の温度以下となるように前記燃料電池を冷却し、前記燃料電池の発電を第3の期間行うことを特徴とする。 In a fifteenth aspect of the invention according to any one of the eleventh to fourteenth aspects, the fuel cell is cooled such that the temperature of the fuel cell is equal to or lower than the second temperature during the start-up operation of the fuel cell. The power generation of the fuel cell is performed for a third period.
 以上により、低温(第2の温度以下)で発電するため、発電で生成した水が電極でより凝縮しやすくなる。そのため、電極で凝縮する水の量がより多くなり、電極に付着した不純物が溶け込みやすくなる。 As described above, since power is generated at a low temperature (below the second temperature), water generated by the power generation is more easily condensed at the electrode. Therefore, the amount of water condensed at the electrode is increased, and impurities attached to the electrode are easily dissolved.
 また、起動時に燃料電池の温度が低い状態で発電し、アノード及びカソードが過加湿な状態となり、アノード及びカソードに多量の凝縮水が生成され、アノード及びカソードのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、コンタミ量を低減させることができる。 In addition, power is generated when the temperature of the fuel cell is low at start-up, the anode and cathode become over-humidified, a large amount of condensed water is generated at the anode and cathode, and contamination of the anode and cathode is absorbed by the condensed water. It is discharged out of the system together with the fuel gas and oxidant gas, and the amount of contamination can be reduced.
 第16の発明は、第11~15のいずれかの発明において、前記活性回復ステップは、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給した後、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給するステップであることを特徴とする。 In a sixteenth aspect based on any one of the eleventh to fifteenth aspects, the activity recovery step stops the supply of the fuel gas supplied to the anode by the fuel gas supply unit, and the anode inert gas supply unit After supplying the inert gas to the anode, the oxidant gas supply unit supplies the oxidant gas to the cathode.
 以上により、アノード不活性ガス供給部がアノードに残留する水素を含む燃料ガスを不活性ガスに置換し、酸素と反応してしまう水素を追い出してから、不活性ガスの供給を停止し、アノードの内圧を下げて、その後、酸化剤ガス供給部がカソードに酸化剤ガスを供給するので、電解質膜を介してクロスリークする酸素の量を増やすことができ、より短時間でアノードの電極電位を上昇させ、アノードの触媒が高電位に曝される期間を短くすることができるので、アノードの触媒の酸化をさらに抑制することができる。 As described above, the anode inert gas supply unit replaces the fuel gas containing hydrogen remaining in the anode with the inert gas, expels hydrogen that reacts with oxygen, stops the supply of the inert gas, After reducing the internal pressure, the oxidant gas supply section supplies the oxidant gas to the cathode, so the amount of oxygen that cross-leaks through the electrolyte membrane can be increased, and the electrode potential of the anode is increased in a shorter time. In addition, since the period during which the anode catalyst is exposed to a high potential can be shortened, oxidation of the anode catalyst can be further suppressed.
 第17の発明は、第11~16のいずれかの発明において、第1の期間が経過する毎に、前記停止ステップを行い、その後、前記活性回復ステップを行った後、前記再開ステップを行うことを特徴とする。 In a seventeenth aspect based on any one of the eleventh to sixteenth aspects, the stop step is performed every time the first period elapses, and then the reactivation step is performed after performing the activity recovery step. It is characterized by.
 第18の発明は、第17の発明において、前記第1の期間は、前記燃料電池の発電時間を積算した発電時間積算値が所定発電積算時間に到達した時間であることを特徴とする。 In an eighteenth aspect based on the seventeenth aspect, the first period is a time when a power generation time integrated value obtained by integrating the power generation times of the fuel cells reaches a predetermined power generation integration time.
 以上により、燃料電池の運転中に燃料電池を構成する部材が熱分解などして発生する不純物や、外部より供給される燃料ガスや酸化剤ガス中に含まれる不純物など、発電時間の積算値に関係のある不純物が燃料電池の劣化に影響を及ぼし始める発電時間を予め実験的に求めておくことで、燃料電池の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、燃料電池の発電を停止し、アノード及びカソードの電極電位を上昇させ、アノード及びカソードの不純物を酸化除去するので、燃料電池の劣化を抑制することができる。 As described above, the accumulated value of the power generation time such as impurities generated by thermal decomposition of the members constituting the fuel cell during operation of the fuel cell, impurities contained in the fuel gas or oxidant gas supplied from the outside, etc. It is estimated that the amount of impurities that do not affect the deterioration of the fuel cell is accumulated by experimentally obtaining in advance the power generation time at which the relevant impurity starts to affect the deterioration of the fuel cell. Each time the period elapses, the power generation of the fuel cell is stopped, the electrode potentials of the anode and the cathode are raised, and the impurities of the anode and the cathode are oxidized and removed, so that deterioration of the fuel cell can be suppressed.
 以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same components as those of the above-described embodiments, and detailed description thereof will be omitted. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1における燃料電池システムを示す概略構成図である。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention.
 図1に示すように、本発明の実施の形態1の燃料電池システムは、電解質1の両面にアノード2a及びカソード2bを対向して形成した燃料電池3を備える。 As shown in FIG. 1, the fuel cell system according to Embodiment 1 of the present invention includes a fuel cell 3 in which an anode 2a and a cathode 2b are formed opposite to each other on an electrolyte 1 side.
 ここで、電解質1は、例えば水素イオン伝導性を有するパーフルオロカーボンスルフォン酸ポリマーからなる固体高分子電解質で構成される。 Here, the electrolyte 1 is composed of, for example, a solid polymer electrolyte made of a perfluorocarbon sulfonic acid polymer having hydrogen ion conductivity.
 また、アノード2aとカソード2bは、耐酸化性の高い多孔質カーボンに白金などの貴金属を担持した触媒及び水素イオン伝導性を有する高分子電解質との混合物からなる触媒層と、触媒層の上に積層した通気性及び電子伝導性を有するガス拡散層で構成される。 The anode 2a and the cathode 2b are formed on a catalyst layer made of a mixture of a catalyst in which a noble metal such as platinum is supported on porous carbon having high oxidation resistance and a polymer electrolyte having hydrogen ion conductivity. It is composed of a laminated gas diffusion layer having air permeability and electronic conductivity.
 このとき、アノード2aの触媒として、一般に、燃料ガス中に含まれる不純物、特に一酸化炭素による被毒を抑制する白金-ルテニウムの合金触媒が用いられる。 At this time, a platinum-ruthenium alloy catalyst that suppresses poisoning by impurities contained in the fuel gas, particularly carbon monoxide, is generally used as the catalyst for the anode 2a.
 また、ガス拡散層として、撥水処理を施したカーボンペーパーやカーボンクロス、あるいはカーボン不織布などが用いられる。 Also, as the gas diffusion layer, carbon paper or carbon cloth subjected to water repellent treatment, carbon non-woven fabric, or the like is used.
 そして、燃料電池3を挟むようにして、アノード側セパレータ4a及びカソード側セパレータ4bが互いに対向するように配置され、アノード側セパレータ4aの燃料電池3側の面には燃料ガスを供給、排出する燃料ガス流路41aが、カソード側セパレータ4bの燃料電池3側の面には酸化剤ガスを供給、排出する酸化剤ガス流路41bが形成されている。 The anode separator 4a and the cathode separator 4b are arranged so as to face each other with the fuel cell 3 interposed therebetween, and the fuel gas flow for supplying and discharging the fuel gas to the surface of the anode separator 4a on the fuel cell 3 side An oxidant gas passage 41b for supplying and discharging an oxidant gas is formed on the surface of the cathode side separator 4b on the fuel cell 3 side of the passage 41a.
 さらに、カソード側セパレータ4bの燃料電池3側と反対の面には燃料電池3を冷却する冷却流体を供給、排出する冷却流体流路5が形成されている。なお、冷却流体流路5はアノード側セパレータ4aの燃料電池3側と反対の面に形成してもよく、また、冷却流体流路5が形成された独立した冷却板を別途設けてもよい。 Further, a cooling fluid passage 5 for supplying and discharging a cooling fluid for cooling the fuel cell 3 is formed on the surface of the cathode side separator 4b opposite to the fuel cell 3 side. The cooling fluid channel 5 may be formed on the surface of the anode separator 4a opposite to the fuel cell 3 side, or an independent cooling plate on which the cooling fluid channel 5 is formed may be provided separately.
 ここで、アノード側セパレータ4a及びカソード側セパレータ4bは、主にカーボンなどの導電性を有する材料で形成される。 Here, the anode side separator 4a and the cathode side separator 4b are mainly formed of a conductive material such as carbon.
 そして、アノード側セパレータ4a及びカソード側セパレータ4bと燃料電池3は、それぞれの流体が異なる流体の流路及び外部にリークしないように、それぞれアノード側ガスケット6a及びカソード側ガスケット6bによりシールされている。 The anode-side separator 4a and cathode-side separator 4b and the fuel cell 3 are sealed by an anode-side gasket 6a and a cathode-side gasket 6b, respectively, so that the respective fluids do not leak to different fluid flow paths and the outside.
 そして、上記構成の燃料電池3と各セパレータ4a及び4bからなるセルを複数積層し、両端に電流を取り出すために集電体7を配置して、絶縁体を介して端板8を配置し、締結してスタックを構成した。スタックの周囲には外部への放熱を防止して排熱回収効率を高めるため、断熱材9を配置した。 Then, a plurality of cells composed of the fuel cell 3 and the separators 4a and 4b configured as described above are stacked, a current collector 7 is disposed at both ends to extract current, an end plate 8 is disposed via an insulator, The stack was formed by fastening. A heat insulating material 9 was disposed around the stack in order to prevent heat dissipation to the outside and increase the exhaust heat recovery efficiency.
 そして、アノード2a側に水素を含む燃料ガスを供給する燃料ガス供給部10と、カソード2b側に大気中の酸素を含む酸化剤ガスを供給する酸化剤ガス供給部11と、スタックを冷却し、スタックで発生する熱と熱交換する冷却流体を供給する冷却部12を接続した。 Then, a fuel gas supply unit 10 for supplying a fuel gas containing hydrogen to the anode 2a side, an oxidant gas supply unit 11 for supplying an oxidant gas containing oxygen in the atmosphere to the cathode 2b side, and the stack are cooled, A cooling unit 12 that supplies a cooling fluid that exchanges heat with heat generated in the stack was connected.
 ここで、燃料ガス供給部10は、都市ガス(都市で配管を用いて供給される、メタンを主成分とする炭化水素ガス)などの原料ガスから触媒被毒物質である硫黄化合物を除去する脱硫器101と、脱硫した原料ガスの流量を制御する原料ガス供給部102と、脱硫した原料ガスを改質して水素を生成する水素生成部103で構成される。また、必要に応じて、脱硫器101及び原料ガス供給部102をアノード不活性ガス供給部13と呼ぶ。 Here, the fuel gas supply unit 10 desulfurizes the sulfur compound, which is a catalyst poisoning substance, from a raw material gas such as city gas (a hydrocarbon gas mainly containing methane, which is supplied using piping in a city). The apparatus 101 includes a raw material gas supply unit 102 that controls the flow rate of the desulfurized raw material gas, and a hydrogen generation unit 103 that reforms the desulfurized raw material gas to generate hydrogen. Moreover, the desulfurizer 101 and the raw material gas supply part 102 are called the anode inert gas supply part 13 as needed.
 さらに、水素生成部103は、少なくとも改質部と、一酸化炭素変成部と、一酸化炭素除去部とで構成される。 Furthermore, the hydrogen generation unit 103 includes at least a reforming unit, a carbon monoxide conversion unit, and a carbon monoxide removal unit.
 そして、停止時、アノード不活性ガス供給部13が、アノード2aに対して活性の乏しい原料ガスを不活性ガスとしてアノード2aに供給し、アノード2aに残留する燃料ガスの少なくとも一部を置換できるように構成される。水素生成部103をバイパスするバイパス流路131を接続し、水素生成部103とバイパス流路131とが弁を用いて切り替えられるよう構成されている。 At the time of stoppage, the anode inert gas supply unit 13 can supply the anode 2a with a raw material gas that is less active with respect to the anode 2a, and can replace at least a part of the fuel gas remaining in the anode 2a. Configured. A bypass channel 131 that bypasses the hydrogen generator 103 is connected, and the hydrogen generator 103 and the bypass channel 131 are switched using a valve.
 なお、ここでは、バイパス流路131を介して不活性ガスをアノード2aに供給する構成としたが、これに限定されず、水素生成部103の停止中又は温度が低い状態で原料ガスの改質反応が起こらない場合は、水素生成部103内を通って不活性ガス(原料ガス)をアノード2aに供給する構成としてもよい(例えば、後述の実施の形態7参照)。 Here, the configuration is such that the inert gas is supplied to the anode 2a via the bypass channel 131, but the present invention is not limited to this, and the reforming of the raw material gas is performed while the hydrogen generator 103 is stopped or at a low temperature. When the reaction does not occur, an inert gas (raw material gas) may be supplied to the anode 2a through the hydrogen generator 103 (for example, see Embodiment 7 described later).
 この構成により、燃料電池の運転環境において、燃料電池に対して活性の乏しい原料ガスを不活性ガスとして用いるので、窒素などのガスボンベを不活性ガスとして用いる場合と比較して、燃料電池システムの構成が簡素化され、低コスト化を図ることができ、燃料電池システムの設置性を向上することが可能となる。 With this configuration, since the raw material gas having a low activity with respect to the fuel cell is used as the inert gas in the operating environment of the fuel cell, the configuration of the fuel cell system is compared with the case where a gas cylinder such as nitrogen is used as the inert gas. Thus, the cost can be reduced and the installation of the fuel cell system can be improved.
 次に、燃料ガス供給部10で行う動作について簡単に説明する。例えば原料ガスにメタンを用いた場合、改質部では、水蒸気を伴って(化1)及び(化2)に示した反応が起こり、水素が発生する。 Next, the operation performed by the fuel gas supply unit 10 will be briefly described. For example, when methane is used as the raw material gas, the reaction shown in (Chemical Formula 1) and (Chemical Formula 2) occurs in the reforming unit with water vapor, and hydrogen is generated.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 なお、改質部で起こる全反応をまとめると(化3)に示す反応が行われる。
Figure JPOXMLDOC01-appb-C000002
In addition, the reaction shown in (Chemical Formula 3) is performed by summing up all reactions occurring in the reforming section.
Figure JPOXMLDOC01-appb-C000003
 しかし、改質部で生成した改質ガス中には水素以外に10%程度の一酸化炭素が含まれる。そして、一酸化炭素は、燃料電池3の運転温度域においてアノード2aに含まれる触媒を被毒し、その触媒活性を低下させる。そこで、改質部で発生した一酸化炭素を、一酸化炭素変成部で(化2)の反応式に示すように、一酸化炭素を二酸化炭素に変成する。これにより、一酸化炭素の濃度が約5000ppmにまで減少する。
Figure JPOXMLDOC01-appb-C000003
However, the reformed gas produced in the reforming section contains about 10% carbon monoxide in addition to hydrogen. And carbon monoxide poisons the catalyst contained in the anode 2a in the operating temperature range of the fuel cell 3, and lowers its catalytic activity. Therefore, carbon monoxide generated in the reforming section is converted into carbon dioxide in the carbon monoxide conversion section as shown in the reaction formula (Chemical Formula 2). This reduces the concentration of carbon monoxide to about 5000 ppm.
 さらに、濃度が低減した一酸化炭素を、一酸化炭素除去部で(化4)で示す反応により、大気中などから取り込んだ酸素で選択的に酸化する。これにより、一酸化炭素の濃度は、アノード2aの触媒の触媒活性の低下を抑制できる約10ppm以下までに減少する。 Furthermore, carbon monoxide with a reduced concentration is selectively oxidized with oxygen taken from the atmosphere or the like by the reaction indicated by (Chemical Formula 4) in the carbon monoxide removal section. As a result, the concentration of carbon monoxide is reduced to about 10 ppm or less which can suppress a decrease in the catalytic activity of the catalyst of the anode 2a.
Figure JPOXMLDOC01-appb-C000004
 また、発電中にアノード2aに空気を供給するエアブリード手段を設けて、燃料処理器103で生成した水素ガスに1~2%程度の空気を混合することにより、わずかに残る一酸化炭素の影響をさらに軽減させることができる。
Figure JPOXMLDOC01-appb-C000004
In addition, by providing air bleed means for supplying air to the anode 2a during power generation and mixing about 1 to 2% of air with the hydrogen gas generated by the fuel processor 103, the effect of the slight remaining carbon monoxide. Can be further reduced.
 なお、燃料ガス供給部10は、上記水蒸気改質法に限られず、オートサーマル法などの水素生成方法でもよく、また、燃料ガスに含まれる一酸化炭素濃度が低い場合はエアブリード手段を省略することができる。 The fuel gas supply unit 10 is not limited to the steam reforming method, but may be a hydrogen generation method such as an autothermal method. If the concentration of carbon monoxide contained in the fuel gas is low, the air bleed means is omitted. be able to.
 そして、酸化剤ガス供給部11は、酸化剤ガスの流量を制御する酸化剤ガス流量制御器111と、酸化剤ガス中の不純物をある程度除去する不純物除去手段112と、酸化剤ガスを加湿する加湿手段113で構成される。 The oxidant gas supply unit 11 includes an oxidant gas flow rate controller 111 that controls the flow rate of the oxidant gas, impurity removal means 112 that removes impurities in the oxidant gas to some extent, and humidification that humidifies the oxidant gas. Consists of means 113.
 ここで、酸化剤ガスとは、少なくとも酸素を含む(あるいは酸素を供給することのできる)ガスの総称であり、例えば大気(空気)が利用される。 Here, the oxidant gas is a general term for gases containing at least oxygen (or capable of supplying oxygen). For example, the atmosphere (air) is used.
 さらに、不純物除去手段112は、大気中の塵埃を除去する除塵フィルタと、二酸化硫黄や、硫化水素などの硫黄系不純物や、窒素酸化物など大気中の酸性ガスを除去する酸性ガス除去フィルタと、アンモニアなど大気中のアルカリ性ガスを除去するアルカリ性ガス除去フィルタで構成される。設置される環境や、燃料電池3の耐コンタミ性に応じてそれぞれのフィルタは省略することができる。 Furthermore, the impurity removing means 112 includes a dust removing filter that removes dust in the atmosphere, a sulfur-based impurity such as sulfur dioxide and hydrogen sulfide, and an acid gas removing filter that removes acid gases in the atmosphere such as nitrogen oxides, It consists of an alkaline gas removal filter that removes alkaline gas such as ammonia in the atmosphere. Each filter can be omitted depending on the installation environment and the contamination resistance of the fuel cell 3.
 そして、冷却部12は、スタックを冷却する冷却流体を貯える冷却流体タンク121と、冷却流体を供給する冷却流体ポンプ122と、冷却流体流路5を流通し、燃料電池3で発生した熱と熱交換した冷却流体とさらに熱交換してお湯を作る熱交換器123で構成される。 The cooling unit 12 passes through the cooling fluid tank 121 that stores the cooling fluid that cools the stack, the cooling fluid pump 122 that supplies the cooling fluid, and the cooling fluid channel 5, and generates heat and heat generated in the fuel cell 3. The heat exchanger 123 is configured to make hot water by further exchanging heat with the exchanged cooling fluid.
 そして、スタックの電池電圧を検出するため、電圧検出器14をスタックに接続した。 And a voltage detector 14 was connected to the stack in order to detect the battery voltage of the stack.
 また、制御器15は、燃料電池3の起動、発電、停止の動作を制御するとともに、燃料ガス供給部10、酸化剤ガス供給部11、アノード不活性ガス供給部13、及び、冷却部12などの動作を制御することができる。 In addition, the controller 15 controls the start, power generation, and stop operations of the fuel cell 3, and the fuel gas supply unit 10, the oxidant gas supply unit 11, the anode inert gas supply unit 13, the cooling unit 12, and the like. Can be controlled.
 次に、上記構成の燃料電池システムの発電時の動作について図1を用いて説明する。 Next, the operation of the fuel cell system configured as described above during power generation will be described with reference to FIG.
 まず、図1において、アノード2aに燃料ガス、カソード2bに酸化剤ガスを供給して、制御器15を制御して燃料電池3に負荷を接続すると、燃料ガス中の水素は反応式(化5)で示すようにアノード2aの触媒層と電解質1の界面で電子を放出して水素イオンとなる。 First, in FIG. 1, when the fuel gas is supplied to the anode 2a and the oxidant gas is supplied to the cathode 2b, and the controller 15 is controlled to connect the load to the fuel cell 3, the hydrogen in the fuel gas is expressed by the reaction formula (Formula 5). ), Electrons are released at the interface between the catalyst layer of the anode 2a and the electrolyte 1 to form hydrogen ions.
Figure JPOXMLDOC01-appb-C000005
 そして、放出された水素イオンは、電解質1を通ってカソード2bへと移動し、カソード2bの触媒層と電解質1の界面で電子を受け取る。このとき、カソード2bに供給された酸化剤ガス中の酸素と反応して、反応式(化6)で示すように水を生成する。
Figure JPOXMLDOC01-appb-C000005
The released hydrogen ions move to the cathode 2b through the electrolyte 1 and receive electrons at the interface between the catalyst layer of the cathode 2b and the electrolyte 1. At this time, it reacts with oxygen in the oxidant gas supplied to the cathode 2b to generate water as shown in the reaction formula (Formula 6).
Figure JPOXMLDOC01-appb-C000006
 上記反応をまとめると(化7)に示す反応が行われる。
Figure JPOXMLDOC01-appb-C000006
When the above reactions are combined, the reaction shown in (Chemical Formula 7) is performed.
Figure JPOXMLDOC01-appb-C000007
 そして、負荷を流れる電子の流れを直流の電気エネルギーとして利用できる。また、上記一連の反応は発熱反応であるため、燃料電池3で発生した熱を、冷却流体流路5から供給される冷却流体により熱交換して回収することにより、お湯などの熱エネルギーとして利用することができる。
Figure JPOXMLDOC01-appb-C000007
The flow of electrons flowing through the load can be used as direct current electric energy. Further, since the series of reactions described above is an exothermic reaction, the heat generated in the fuel cell 3 is recovered by exchanging heat with the cooling fluid supplied from the cooling fluid flow path 5 to recover the heat energy such as hot water. can do.
 ところで、燃料電池3の発電に用いる酸化剤ガスには、通常、設置される環境にある大気が用いられるが、大気中には様々な不純物が含まれている場合が多く、例えば、火山や燃焼排ガスなどに含まれている二酸化硫黄などの硫黄化合物、工場や自動車の燃焼排ガスなどに多く含まれている窒素酸化物、あるいは悪臭成分であるアンモニアなどがある。 By the way, the oxidant gas used for power generation of the fuel cell 3 is usually the atmosphere in the environment in which it is installed, but the atmosphere often contains various impurities, such as volcanoes and combustion. There are sulfur compounds such as sulfur dioxide contained in exhaust gas, nitrogen oxides abundantly contained in combustion exhaust gas of factories and automobiles, and ammonia which is a malodorous component.
 また、燃料電池3のアノード2a及びカソード2bには、燃料電池の作成時に内部に残留した不純物、燃料電池3の運転中に燃料電池を構成する部材(例えば、電解質など)が熱分解などして発生する不純物、あるいは燃料電池システムに使われている配管や部品などから発生する不純物などが混入する可能性がある。 Further, the anode 2a and the cathode 2b of the fuel cell 3 are subjected to thermal decomposition of impurities remaining inside when the fuel cell is formed, and members (for example, an electrolyte) constituting the fuel cell during the operation of the fuel cell 3. Impurities generated or impurities generated from piping or parts used in the fuel cell system may be mixed.
 これらの不純物は燃料電池3に悪影響を及ぼし、アノード2aあるいはカソード2bの触媒に吸着して発電に必要な化学反応を阻害して、燃料電池3の出力を低下させることがあるが、アノード2aに不純物が蓄積した場合、アノード2aの分極は元々あまり大きくないので、燃料電池3の電圧低下には表れにくい。 These impurities adversely affect the fuel cell 3 and may be adsorbed on the catalyst of the anode 2a or the cathode 2b to hinder a chemical reaction necessary for power generation, thereby reducing the output of the fuel cell 3. When the impurities are accumulated, the polarization of the anode 2a is not so large from the beginning, and thus hardly appears in the voltage drop of the fuel cell 3.
 一方、燃料電池3のアノード2aに不純物が存在すると、カソード2bからクロスリークする酸素と反応してアノード2a側で生成した過酸化水素と反応し、化学反応が起こり、アノード2a側に酸化力の極めて強いラジカル種が生成する。樹脂を含む電解質1や、アノード2aあるいはカソード2bの触媒層が、このラジカル種に長期間接触すると、樹脂が徐々に分解し、燃料電池3が劣化してしまうが、特に劣化の初期は電池電圧に表れないことがあり、電池電圧が低下し始めたころには、回復できないくらい燃料電池3が劣化してしまっている場合がある。 On the other hand, if impurities exist in the anode 2a of the fuel cell 3, it reacts with oxygen that cross leaks from the cathode 2b and reacts with hydrogen peroxide generated on the anode 2a side, causing a chemical reaction, and oxidizing power is generated on the anode 2a side. Extremely strong radical species are generated. When the electrolyte layer 1 containing the resin and the catalyst layer of the anode 2a or the cathode 2b come into contact with this radical species for a long time, the resin gradually decomposes and the fuel cell 3 deteriorates. When the battery voltage starts to drop, the fuel cell 3 may be deteriorated so that it cannot be recovered.
 ところで、アノード2a及びカソード2bに吸着する不純物は、それぞれの不純物が酸化する酸化還元電位までアノード2a及びカソード2bの電極電位が上がると、酸化され、アノード2aあるいはカソード2bとの吸着力が弱くなり、ガス化したり、イオン化したりして、アノード2aあるいはカソード2bから脱離しやすくなる。 By the way, the impurities adsorbed on the anode 2a and the cathode 2b are oxidized when the electrode potential of the anode 2a and the cathode 2b rises to the oxidation-reduction potential at which the respective impurities are oxidized, and the adsorbing power with the anode 2a or the cathode 2b becomes weak. It becomes easy to desorb from the anode 2a or the cathode 2b by being gasified or ionized.
 それぞれの不純物が酸化する電極電位は、不純物の種類、電極の種類、温度、pHなどにより決まるが、本発明者らは、特に通常の発電中には電極電位が低い状態で保持されるアノード2aを被毒する不純物に着目し、鋭意検討した結果、アノード2aの電極電位を上昇させることにより、アノード2aに吸着した不純物が酸化除去できることを見出した。例えば、アノード2aの電極電位を0.5~1.2Vに上昇させることにより、1.0V前後に酸化ピークを有する有機物などからなる不純物を酸化除去できることを見出した。 The electrode potential at which each impurity is oxidized is determined by the type of impurity, the type of electrode, temperature, pH, and the like, but the inventors of the present invention particularly consider the anode 2a that is held in a state where the electrode potential is low during normal power generation. As a result of diligent investigation focusing on the impurities that poison the substrate, it was found that the impurities adsorbed on the anode 2a can be removed by oxidation by increasing the electrode potential of the anode 2a. For example, it has been found that by raising the electrode potential of the anode 2a to 0.5 to 1.2 V, impurities such as organic substances having an oxidation peak around 1.0 V can be oxidized and removed.
 また、不純物が燃料電池3の劣化に影響を与えない程度の量の不純物が蓄積する時間を予め実験的に求めておき、この第1の期間が経過する毎に、燃料電池3の発電を停止し、停止中にアノード2a及びカソード2bの電極電位を上昇させ、アノード2a及びカソード2bに被毒した不純物を酸化除去すれば、燃料電池3の劣化を抑制できることを見出した。 In addition, a time for accumulating an amount of impurities that does not affect the deterioration of the fuel cell 3 is experimentally obtained in advance, and the power generation of the fuel cell 3 is stopped every time this first period elapses. Then, it was found that deterioration of the fuel cell 3 can be suppressed by raising the electrode potential of the anode 2a and the cathode 2b during the stop and oxidizing and removing impurities poisoned to the anode 2a and the cathode 2b.
 まず、制御器15が不純物を除去する第1の期間の設定値を決定するため、燃料電池システムに使用する燃料電池3と同じ部材、構成の燃料電池3の発電試験を行い、運転中の燃料電池3の劣化を定量化するため、発電中のアノード2a及びカソード2bから排出されるドレイン水中に含まれるフッ素イオンの濃度の分析を行った。 First, in order to determine a set value for the first period during which the controller 15 removes impurities, a power generation test of the fuel cell 3 having the same members and configuration as the fuel cell 3 used in the fuel cell system is performed, and the fuel in operation In order to quantify the deterioration of the battery 3, the concentration of fluorine ions contained in the drain water discharged from the anode 2a and the cathode 2b during power generation was analyzed.
 発電を開始からしばらくフッ素イオンは極微量しか検出されなかったが、運転を開始して、約5,000時間経過した時点よりフッ素イオンの溶出量が少しずつ増加することがわかった。これは、運転中に、燃料電池3の作成時に内部に残留した不純物や、燃料電池3を構成する部材が熱分解などして発生する不純物、あるいは燃料電池システムに使われている配管や部品などから発生する不純物などが少しずつ蓄積し、カソード2bからクロスリークする酸素と反応してアノード2a側で生成した過酸化水素と反応し、化学反応が起こり、アノード2a側に酸化力の極めて強いラジカル種が生成し、樹脂を含む電解質1や、アノード2aあるいはカソード2bの触媒層が、このラジカル種に長期間接触することにより、樹脂が徐々に分解し始めたためであると推定される。 Although only a very small amount of fluorine ions was detected for a while after the start of power generation, it was found that the elution amount of fluorine ions increased little by little after about 5,000 hours from the start of operation. This is because impurities remaining inside the fuel cell 3 during operation, impurities generated by thermal decomposition of members constituting the fuel cell 3, or pipes and parts used in the fuel cell system, etc. Impurities generated from the catalyst accumulate little by little, react with oxygen leaking from the cathode 2b and react with hydrogen peroxide produced on the anode 2a side, causing a chemical reaction, and on the anode 2a side, radicals with extremely strong oxidizing power It is presumed that the seeds are generated, and the resin 1 starts to decompose gradually as the electrolyte 1 containing the resin and the catalyst layer of the anode 2a or the cathode 2b come into contact with the radical species for a long time.
 なお、このとき燃料電池3の電池電圧は初期とほぼ変わらず、燃料電池3が劣化しても初期的に電池電圧で検出することは困難であることが分かった。 Note that at this time, the cell voltage of the fuel cell 3 was almost the same as the initial value, and it was found that it was difficult to detect the cell voltage initially even if the fuel cell 3 deteriorated.
 この不純物により燃料電池3が劣化する時間は、電解質1やアノード2a及びカソード2bに用いられる材料、組成、使用量、あるいは加湿や、燃料電池3の動作温度などの運転条件などに大きく依存するため、実際に使用する燃料電池3、運転条件、燃料電池システムの構成毎に求めておくことが好ましい。 The time during which the fuel cell 3 deteriorates due to this impurity greatly depends on the materials used for the electrolyte 1, the anode 2 a, and the cathode 2 b, the composition, the amount used, or operating conditions such as humidification and the operating temperature of the fuel cell 3. It is preferable to obtain for each configuration of the fuel cell 3 to be actually used, operating conditions, and the fuel cell system.
 一方、アノード2aの電極電位を上げることにより、アノード2aを構成する触媒は酸化劣化されるため、アノード2aの電極電位を上げる時間及び回数はできるだけ少ない方が好ましい。 On the other hand, since the catalyst constituting the anode 2a is oxidized and deteriorated by increasing the electrode potential of the anode 2a, it is preferable that the time and number of times to increase the electrode potential of the anode 2a be as small as possible.
 以上を鑑み、燃料電池3に蓄積する不純物を除去する第1の期間は、本発明の実施の形態1の燃料電池システムにおいては、燃料電池3の発電時間を積算した発電時間積算値が約1,000~約5,000時間に到達した時間とし、この第1の期間に一回不純物による燃料電池3の劣化を抑制するシーケンスを動作させることとした。なお、第1の期間は発電時間によらない定期的な時間としてもよい。 In view of the above, during the first period during which impurities accumulated in the fuel cell 3 are removed, the power generation time integrated value obtained by integrating the power generation time of the fuel cell 3 is about 1 in the fuel cell system according to Embodiment 1 of the present invention. In this first period, a sequence that suppresses the deterioration of the fuel cell 3 due to impurities is operated once. The first period may be a regular time that does not depend on the power generation time.
 また、第1の期間に一回、不純物による燃料電池3の劣化を抑制するシーケンスは、発電を一時的に停止させる必要があるが、必ずしも強制的に停止させる必要はなく、燃料電池3の発電時間積算値が所定の時間に到達する前後で、燃料電池システムが停止するタイミングがあれば、そのタイミングに合わせて不純物による燃料電池3の劣化を抑制するシーケンスを動作させてもよい。 Further, the sequence for suppressing the deterioration of the fuel cell 3 due to impurities once in the first period needs to temporarily stop the power generation, but does not necessarily stop the power generation. If there is a timing when the fuel cell system stops before and after the time integrated value reaches a predetermined time, a sequence for suppressing deterioration of the fuel cell 3 due to impurities may be operated in accordance with the timing.
 以下、不純物による燃料電池の劣化を抑制することのできる燃料電池システムの動作シーケンスについて図2のフローチャートを用いながら説明する。 Hereinafter, an operation sequence of the fuel cell system capable of suppressing deterioration of the fuel cell due to impurities will be described with reference to the flowchart of FIG.
 図2において、制御器15は、燃料電池3の発電時間が、所定の時間が経過(例えば、第1の期間に到達)したら(ステップ101)、燃料電池3の発電を停止し(ステップ102)、燃料ガス供給部10でアノード2aに供給する燃料ガスを停止し、アノード不活性ガス供給部13でアノード2aに不活性ガス(脱硫した原料ガス)を供給する(ステップ103)。このとき、アノード2aには、アノード2aに残留した燃料ガスを不活性ガスに置換するのに必要な一定量の不活性ガスを供給し、カソード2bには、アノード2aに酸素をクロスリークさせアノード2aの電極電位を上昇させるのに必要な一定量の酸化剤ガスを供給する(ステップ104)。なお、酸化剤ガスの供給流量は必要に応じて発電中の供給流量に対して増減することが好ましい。 In FIG. 2, the controller 15 stops the power generation of the fuel cell 3 (step 102) when a predetermined time elapses (for example, reaches the first period) (step 101). Then, the fuel gas supplied to the anode 2a is stopped by the fuel gas supply unit 10, and the inert gas (desulfurized source gas) is supplied to the anode 2a by the anode inert gas supply unit 13 (step 103). At this time, a certain amount of inert gas necessary to replace the fuel gas remaining in the anode 2a with an inert gas is supplied to the anode 2a, and oxygen is cross-leaked into the anode 2a to cause the anode 2a to cross-leak. A certain amount of oxidant gas necessary to raise the electrode potential of 2a is supplied (step 104). In addition, it is preferable to increase / decrease the supply flow rate of oxidizing gas with respect to the supply flow rate during electric power generation as needed.
 また、このときの不活性ガスの供給量はアノード2aに残留する燃料ガスを置換するのに必要な量であり、酸化剤ガスの供給量はクロスリークした酸素でアノード2aの電極電位が不純物の酸化する電極電位まで上がるのに必要な量であり、予め実験的に求めておくことが好ましい。 Further, the supply amount of the inert gas at this time is an amount necessary to replace the fuel gas remaining in the anode 2a, the supply amount of the oxidant gas is cross leaked oxygen, and the electrode potential of the anode 2a is the impurity potential. It is an amount necessary to increase the electrode potential to be oxidized, and it is preferable to obtain it experimentally in advance.
 なお、ここでは、アノード2aに一定量の不活性ガスを供給し、カソード2bに一定量の酸化剤ガスを供給するとしたが、これに限定されない。例えば、アノード2aに供給する不活性ガスの量と、カソード2bに供給する酸化剤ガスの量とは、異なっていてもよい。また、例えば、アノード2aに不活性ガスを一定時間供給し、カソード2bに酸化剤ガスを一定時間供給してもよい。 Note that, here, a certain amount of inert gas is supplied to the anode 2a and a certain amount of oxidant gas is supplied to the cathode 2b. However, the present invention is not limited to this. For example, the amount of inert gas supplied to the anode 2a may be different from the amount of oxidant gas supplied to the cathode 2b. Further, for example, an inert gas may be supplied to the anode 2a for a certain time, and an oxidant gas may be supplied to the cathode 2b for a certain time.
 そして、一定量の不活性ガス及び酸化剤ガスが供給されたら、アノード不活性ガス供給部13で供給する不活性ガス、及び酸化剤ガス供給部11で供給する酸化剤ガスの供給を停止する(ステップ105)。 When a certain amount of inert gas and oxidant gas are supplied, the supply of the inert gas supplied by the anode inert gas supply unit 13 and the oxidant gas supplied by the oxidant gas supply unit 11 is stopped ( Step 105).
 このとき、カソード2bの電極電位は約1Vであり、アノード2aの電極電位は不活性ガス導入前の約0Vから、カソード2bからクロスリークする酸素により徐々に上昇し、カソード2bの電極電位に近づいてくる。そして、電圧検出器14で検出する電池電圧(アノード2aの電極電位とカソード2bの電極電位の電位差)が第1の電圧(約0.1V)以下となったとき、アノード2aの電極電位が約0.9V以上となり、アノード2aに吸着した1.0V前後に酸化ピークを有する有機物などからなる不純物の一部または全部を酸化することができたと判断し(ステップ106)、再び燃料ガス供給部10及び酸化剤ガス供給部11を動作させ、アノード2a及びカソード2bへのそれぞれ燃料ガス及び酸化剤ガスを供給し(ステップ107)、燃料電池3の発電を再開する(ステップ108)。 At this time, the electrode potential of the cathode 2b is about 1V, and the electrode potential of the anode 2a gradually rises from about 0V before the introduction of the inert gas by oxygen leaking from the cathode 2b, and approaches the electrode potential of the cathode 2b. Come. When the battery voltage detected by the voltage detector 14 (potential difference between the electrode potential of the anode 2a and the electrode potential of the cathode 2b) becomes equal to or lower than the first voltage (about 0.1 V), the electrode potential of the anode 2a is about It is determined that it is 0.9 V or more, and that part or all of the impurities such as organic substances having an oxidation peak around 1.0 V adsorbed on the anode 2a can be oxidized (step 106), and the fuel gas supply unit 10 again. The oxidant gas supply unit 11 is operated to supply the fuel gas and the oxidant gas to the anode 2a and the cathode 2b, respectively (step 107), and the power generation of the fuel cell 3 is resumed (step 108).
 なお、ここで、ステップ104及びステップ105を省略して、ステップ103の次にステップ106に進んでもよい。この場合、ステップ107では、アノード2aへの不活性ガスの供給を停止し、アノード2aへの燃料ガスの供給を開始し、カソード2bへの酸化剤ガスの供給を継続すればよい。 Here, step 104 and step 105 may be omitted and the process may proceed to step 106 after step 103. In this case, in Step 107, the supply of the inert gas to the anode 2a is stopped, the supply of the fuel gas to the anode 2a is started, and the supply of the oxidant gas to the cathode 2b may be continued.
 なお、第1の電圧は、アノード2aに吸着した不純物を酸化させるのに必要な電極電位と関係しており、除去したい不純物に応じて予め実験的に決めておくことが好ましい。 The first voltage is related to the electrode potential necessary to oxidize the impurities adsorbed on the anode 2a, and is preferably experimentally determined in advance according to the impurities to be removed.
 上記構成の本発明の実施の形態1の燃料電池システムによれば、燃料電池3の電池電圧が低下してからアノード2aの電極電位を上昇させるのではなく、燃料電池3の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、アノード2aの電極電位を上昇させるので、不純物が燃料電池3の電圧低下には寄与しないが、燃料電池3の劣化に寄与する場合でも、アノード2a及びカソード2bの不純物を除去し、燃料電池3の劣化を抑制することができる。 According to the fuel cell system of the first embodiment of the present invention configured as described above, the electrode potential of the anode 2a is not increased after the cell voltage of the fuel cell 3 is lowered, but the deterioration of the fuel cell 3 is affected. Since the electrode potential of the anode 2a is increased every time the first period estimated to accumulate a small amount of impurities, the impurities do not contribute to the voltage drop of the fuel cell 3. Even when contributing to the degradation, the impurities of the anode 2a and the cathode 2b can be removed, and the degradation of the fuel cell 3 can be suppressed.
 また、アノード2aに直接空気を供給するなどしてアノード2aの電極電位を上げるのではなく、アノード不活性ガス供給部13がアノード2aに残留する水素を含む燃料ガスを不活性ガスに置換し、酸化剤ガス供給部11がカソード2bに空気を供給して、電解質1の膜を介して空気中の酸素をクロスリークさせてアノード2aの電極電位を間接的に上げるので、アノード2aに空気を供給する構成を追加する必要がなく、燃料電池システムの簡素化と低コスト化を図ることができる。 Also, instead of increasing the electrode potential of the anode 2a by supplying air directly to the anode 2a, the anode inert gas supply unit 13 replaces the fuel gas containing hydrogen remaining in the anode 2a with an inert gas, The oxidant gas supply unit 11 supplies air to the cathode 2b, crosses the oxygen in the air through the membrane of the electrolyte 1, and indirectly increases the electrode potential of the anode 2a, so that air is supplied to the anode 2a. Therefore, it is not necessary to add a configuration to be realized, and the fuel cell system can be simplified and the cost can be reduced.
 また、アノード2aの燃料ガスが不活性ガスに置換され、アノード2aにカソード2bからクロスリークする酸素が供給されると、アノード2aの電極電位は上昇し、見かけ上の電池電圧(カソード2bとの電位差)は約0.1V以下となる。この電池電圧を電圧検出器14で検出し、約0.1V以下になったところで燃料ガス及び酸化剤ガスの供給を開始し、燃料電池3の発電を再開するので、必要以上の酸素をアノード2aに供給せず、アノード2aの触媒の酸化を最小限に抑えることができる。 Further, when the fuel gas of the anode 2a is replaced with an inert gas and oxygen leaking from the cathode 2b is supplied to the anode 2a, the electrode potential of the anode 2a rises, and the apparent battery voltage (with respect to the cathode 2b) (Potential difference) is about 0.1 V or less. The battery voltage is detected by the voltage detector 14, and when the voltage becomes about 0.1 V or less, the supply of the fuel gas and the oxidant gas is started and the power generation of the fuel cell 3 is restarted. The oxidation of the catalyst of the anode 2a can be minimized.
 また、不純物が燃料電池3の劣化に影響を与えない程度の量の不純物が蓄積すると推定される第1の期間が経過する毎に、燃料電池3の発電を停止し、アノード2aだけでなくカソード2bの電極電位も上昇させるので、アノード2a及びカソード2bに被毒した燃料電池3の作成時に内部に残留した不純物、あるいは、燃料電池3の運転中に燃料電池3を構成する部材が熱分解などして発生する不純物などを酸化除去することができ、不純物による電圧低下を抑制した発電効率及び耐久性に優れた燃料電池システムを得ることができる。 Further, every time a first period in which the amount of impurities is estimated to accumulate so that the impurities do not affect the deterioration of the fuel cell 3, the power generation of the fuel cell 3 is stopped, and not only the anode 2a but also the cathode Since the electrode potential of 2b is also increased, impurities remaining inside the fuel cell 3 poisoned to the anode 2a and the cathode 2b or members constituting the fuel cell 3 during the operation of the fuel cell 3 are thermally decomposed. Thus, it is possible to oxidize and remove impurities generated, and to obtain a fuel cell system excellent in power generation efficiency and durability in which a voltage drop due to the impurities is suppressed.
 (実施の形態2)
 本発明の実施の形態2の燃料電池システムは、制御器15が、第1の期間が経過する毎に、燃料電池3の発電を停止し、酸化剤ガス供給部11でカソード2bに供給する酸化剤ガスの供給を停止し、燃料ガス供給部10でアノード2aに供給する燃料ガスの供給を停止し、電圧検出器14で検出する燃料電池3の電池電圧が第2の電圧以下に低下した後、アノード不活性ガス供給部13で不活性ガスをアノード2aに、及び酸化剤ガス供給部11で酸化剤ガスをカソード2bにそれぞれ一定量供給するようにした点で、実施の形態1とは異なる。
(Embodiment 2)
In the fuel cell system according to Embodiment 2 of the present invention, the controller 15 stops the power generation of the fuel cell 3 every time the first period elapses, and the oxidant gas supply unit 11 supplies the cathode 2b with the oxidation. After the supply of the agent gas is stopped, the supply of the fuel gas supplied to the anode 2a is stopped by the fuel gas supply unit 10, and the battery voltage of the fuel cell 3 detected by the voltage detector 14 is lowered to the second voltage or lower. The anode inert gas supply unit 13 supplies an inert gas to the anode 2a, and the oxidant gas supply unit 11 supplies a certain amount of oxidant gas to the cathode 2b. .
 なお、この発電停止後に燃料ガス及び酸化剤ガスの供給を停止して、電池電圧が第2の電圧以下に低下するまで待つところのシーケンス以外の構成要素は、実施の形態1と同様であるため、説明を省略する。 The constituent elements other than the sequence in which the supply of the fuel gas and the oxidant gas is stopped after the power generation is stopped and the battery voltage is lowered to the second voltage or lower are the same as those in the first embodiment. The description is omitted.
 図3に本発明の実施の形態2の燃料電池システムのフローチャートを示す。 FIG. 3 shows a flowchart of the fuel cell system according to Embodiment 2 of the present invention.
 まず、制御器15は、燃料電池3の発電時間が、所定の時間が経過(例えば、第1の期間に到達)したら(ステップ201)、燃料電池3の発電を停止し(ステップ202)、酸化剤ガス供給部11でカソード2bに供給する酸化剤ガス、及び燃料ガス供給部10でアノード2aに供給する燃料ガスを停止し(ステップ203)、電圧検出器14で検出する電池電圧が第2の電圧(約0.2V)以下になるまで待つ(ステップ204)。 First, the controller 15 stops the power generation of the fuel cell 3 (step 202) when the predetermined time has elapsed (for example, reaches the first period) (step 201), and the oxidation of the fuel cell 3 is stopped. The oxidizing gas supplied to the cathode 2b by the agent gas supply unit 11 and the fuel gas supplied to the anode 2a by the fuel gas supply unit 10 are stopped (step 203), and the battery voltage detected by the voltage detector 14 is the second voltage. Wait until the voltage (about 0.2 V) or less (step 204).
 そして、電池電圧が第2の電圧以下に到達したら、アノード不活性ガス供給部13でアノード2aに不活性ガス(脱硫した原料ガス)、酸化剤ガス供給部11でカソード2bに酸化剤ガスをそれぞれ供給し(ステップ205)、アノード2aに残留した燃料ガスを不活性ガスに置換するのに必要な一定量を供給し、カソード2bに、アノード2aに酸素をクロスリークさせアノード2aの電極電位を上昇させるのに必要な一定量の酸化剤ガスを供給する(ステップ206)。 When the battery voltage reaches the second voltage or lower, the anode inert gas supply unit 13 supplies an inert gas (desulfurized raw material gas) to the anode 2a, and the oxidant gas supply unit 11 supplies an oxidant gas to the cathode 2b. Supply (step 205), supply a constant amount necessary to replace the fuel gas remaining in the anode 2a with an inert gas, and cross-leak oxygen into the anode 2a to raise the electrode potential of the anode 2a. A certain amount of oxidant gas necessary to be supplied is supplied (step 206).
 ステップ207以降の動作シーケンスは実施の形態1と同様であるので説明を省略する。 Since the operation sequence after step 207 is the same as that of the first embodiment, description thereof is omitted.
 上記構成の、本発明の実施の形態2の燃料電池システムによれば、燃料電池3の発電を停止してから、アノード2a及びカソード2bの電極電位を上昇させる前に、一旦、酸化剤ガス及び燃料ガスのそれぞれカソード2b及びアノード2aへの供給を停止したままの状態とし、カソード2bに残留した酸素をアノード2aからクロスリークする水素と反応させ、消費させることにより、カソード2bの電極の界面の触媒が還元され、触媒の活性を回復させることができる。 According to the fuel cell system of the second embodiment of the present invention having the above-described configuration, after stopping the power generation of the fuel cell 3, before increasing the electrode potential of the anode 2a and the cathode 2b, the oxidizing gas and the The supply of the fuel gas to the cathode 2b and the anode 2a is stopped, and oxygen remaining in the cathode 2b is reacted with hydrogen that cross-leaks from the anode 2a and consumed, so that the interface of the electrode of the cathode 2b The catalyst is reduced and the activity of the catalyst can be restored.
 また、このときカソード2bの触媒界面の酸素がなくなるため、カソード2bの電極電位が低下し、電圧検出器14で検出する見かけ上の電池電圧(アノード2aとカソード2bの電位差)は低下し、電圧検出器14で検出する電池電圧が、カソード2bの触媒の活性が十分に回復する第2の電圧(例えば、0.2V)以下に到達してから、アノード不活性ガス供給部13で不活性ガスをアノード2aに一定量供給し、酸化剤ガス供給部11で再度、酸化剤ガスをカソード2bに一定量供給して、アノード2a及びカソード2bの電極電位を上昇させ、アノード2a及びカソード2bの触媒活性を高く保持して、不純物を酸化除去するので、長期間高い電池電圧を維持することができ、発電効率及び耐久性に優れた燃料電池システムを得ることができる。第2の電圧は、通常運転時の発電電圧より低ければよく、例えば、0V~0.5Vであることが好ましい。 At this time, since the oxygen at the catalyst interface of the cathode 2b disappears, the electrode potential of the cathode 2b decreases, and the apparent battery voltage (potential difference between the anode 2a and the cathode 2b) detected by the voltage detector 14 decreases. After the battery voltage detected by the detector 14 reaches a second voltage (for example, 0.2 V) at which the activity of the catalyst of the cathode 2b is sufficiently recovered, the inert gas is supplied to the anode inert gas supply unit 13. Is supplied to the anode 2a, and the oxidant gas supply unit 11 again supplies a constant amount of oxidant gas to the cathode 2b to increase the electrode potentials of the anode 2a and cathode 2b, and the catalyst of the anode 2a and cathode 2b. Since the activity is kept high and impurities are oxidized and removed, a high battery voltage can be maintained for a long time, and a fuel cell system excellent in power generation efficiency and durability is obtained. Door can be. The second voltage may be lower than the power generation voltage during normal operation, and is preferably 0 V to 0.5 V, for example.
 (実施の形態3)
 本発明の実施の形態3の燃料電池システムは、制御器15が、第1の期間が経過する毎に、燃料電池3の発電を停止し、冷却部12で冷却する燃料電池3の冷却を停止し、電圧検出器14で検出する燃料電池3の電池電圧が第2の電圧以下に低下し、かつ、燃料電池3の温度が第1の温度以下に低下した後、アノード不活性ガス供給部13で不活性ガスをアノード2aに、及び酸化剤ガス供給部11で酸化剤ガスをカソード2bにそれぞれ一定量供給するようにした点で、実施の形態2とは異なる。
(Embodiment 3)
In the fuel cell system according to Embodiment 3 of the present invention, the controller 15 stops the power generation of the fuel cell 3 and stops the cooling of the fuel cell 3 cooled by the cooling unit 12 every time the first period elapses. Then, after the battery voltage of the fuel cell 3 detected by the voltage detector 14 falls below the second voltage and the temperature of the fuel cell 3 falls below the first temperature, the anode inert gas supply unit 13 The second embodiment is different from the second embodiment in that an inert gas is supplied to the anode 2a and an oxidizing gas is supplied to the cathode 2b by the oxidizing gas supply unit 11 in a certain amount.
 なお、燃料電池3の温度が第1の温度以下に低下するまでところのシーケンス以外の構成要素は、実施の形態2と同様であるため、説明を省略する。 The constituent elements other than the sequence until the temperature of the fuel cell 3 decreases to the first temperature or lower are the same as those in the second embodiment, and thus the description thereof is omitted.
 図4に本発明の実施の形態3の燃料電池システムのフローチャートを示す。 FIG. 4 shows a flowchart of the fuel cell system according to Embodiment 3 of the present invention.
 まず、制御器15は、燃料電池3の発電時間が、所定の時間が経過(例えば、第1の期間に到達)したら(ステップ301)、燃料電池3の発電を停止し、かつ、燃料電池3への冷却流体を用いて燃料電池3の温度を冷却する(ステップ302)。そして、酸化剤ガス供給部11でカソード2bに供給する酸化剤ガス、及び燃料ガス供給部10でアノード2aに供給する燃料ガスを停止し(ステップ303)、電圧検出器14で検出する電池電圧が第2の電圧(約0.2V)以下になり、さらに、燃料電池3の温度が第1の温度(約50℃)以下になるまで待つ(ステップ304)。 First, when the power generation time of the fuel cell 3 has elapsed (for example, reaches the first period) (step 301), the controller 15 stops the power generation of the fuel cell 3 and the fuel cell 3 The temperature of the fuel cell 3 is cooled using the cooling fluid (step 302). Then, the oxidant gas supplied to the cathode 2b by the oxidant gas supply unit 11 and the fuel gas supplied to the anode 2a by the fuel gas supply unit 10 are stopped (step 303), and the battery voltage detected by the voltage detector 14 is reduced. The process waits until the temperature is lower than the second voltage (about 0.2 V) and the temperature of the fuel cell 3 is lower than the first temperature (about 50 ° C.) (step 304).
 ここで、第1の温度とは、アノード2a及びカソード2bに供給される燃料ガス及び酸化剤ガスの露点に対して低く、アノード2a及びカソード2bに吸着した不純物を洗い流すのに、十分な凝縮水が生成する温度であり、アノード2a及びカソード2bの露点温度よりも少なくとも5℃以上低い温度が好ましい。なお、第1の温度は予め実験的に求めておくことが好ましい。 Here, the first temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. Is preferably at least 5 ° C. lower than the dew point temperatures of the anode 2a and the cathode 2b. The first temperature is preferably obtained experimentally in advance.
 ステップ305以降の動作シーケンスは実施の形態2と同様であるので説明を省略する。 Since the operation sequence after step 305 is the same as that of the second embodiment, description thereof is omitted.
 次に、上記構成の燃料電池システムで、実際に不純物が蓄積したことにより、燃料電池3の劣化が起こっていると推定される燃料電池システムを用い、上記運転シーケンスを適用したときの燃料電池3の電圧変化と、燃料電池3の劣化を表すドレイン水中のフッ素イオン濃度の解析を行った。また、比較として、上記運転シーケンスを入れない場合の燃料電池システムの電圧変化及びフッ素イオン濃度の挙動について同様の評価を行った。 Next, in the fuel cell system configured as described above, a fuel cell system in which deterioration of the fuel cell 3 is estimated to have occurred due to actual accumulation of impurities, and the fuel cell 3 when the above operation sequence is applied. And the fluorine ion concentration in the drain water representing the deterioration of the fuel cell 3 were analyzed. For comparison, the same evaluation was performed on the behavior of the voltage change and fluorine ion concentration of the fuel cell system when the operation sequence was not included.
 このときの、アノード2a側に供給する燃料ガスの利用率は70%、露点は約55℃、カソード2b側に供給する酸化剤ガスの利用率は50%、露点は約65℃とした。そして、電流が一定に流れるようにアノード2a及びカソード2bの電極面積に対し電流密度が0.2A/cm2となるように負荷を制御した。また、燃料電池3を冷却する冷却流体は、燃料電池冷却流体流路入口マニホールドの近傍で約60℃、燃料電池冷却流体流路出口マニホールドの近傍で約70℃となるように冷却流体の流量を制御した。 At this time, the utilization rate of the fuel gas supplied to the anode 2a side was 70%, the dew point was about 55 ° C., the utilization rate of the oxidant gas supplied to the cathode 2b side was 50%, and the dew point was about 65 ° C. Then, the load was controlled so that the current density was 0.2 A / cm 2 with respect to the electrode areas of the anode 2 a and the cathode 2 b so that the current flowed constant. The cooling fluid for cooling the fuel cell 3 has a cooling fluid flow rate of about 60 ° C. near the fuel cell cooling fluid channel inlet manifold and about 70 ° C. near the fuel cell cooling fluid channel outlet manifold. Controlled.
 そして、発電試験を行いながらアノード2a及びカソード2bから排出されるドレイン水中に含まれるフッ素イオン濃度を計測した。 Then, the fluorine ion concentration contained in the drain water discharged from the anode 2a and the cathode 2b was measured while performing a power generation test.
 図5に、不純物を除去するシーケンスを実施した停止から起動までの電圧挙動と燃料電池3の劣化を表すフッ素イオン濃度の測定結果を示す。図5より、ステップ302で燃料電池3の発電を停止するとともに、電池電圧は一旦開回路電圧(約1V)まで上昇した後、速やかに減少し、第2の電圧(約0.2V)を下回った。このとき、カソード2bに残留していた酸素はアノード2aからクロスリークしてくる水素と反応して消費され、カソード2bの触媒は十分に還元されてその活性が上がる。 FIG. 5 shows the measurement result of the fluorine ion concentration representing the voltage behavior from the stop to the start and the deterioration of the fuel cell 3 in which the impurity removal sequence is performed. As shown in FIG. 5, the power generation of the fuel cell 3 is stopped in step 302, and the battery voltage once rises to the open circuit voltage (about 1V) and then quickly decreases and falls below the second voltage (about 0.2V). It was. At this time, the oxygen remaining in the cathode 2b is consumed by reacting with hydrogen leaking from the anode 2a, and the catalyst of the cathode 2b is sufficiently reduced to increase its activity.
 そして、ステップ305でアノード2aにアノード不活性ガス供給部13で残留した燃料ガスを不活性ガスで置換するとともに、再びカソード2bに酸化剤ガスを供給すると、酸化剤ガスを供給した瞬間、アノード2aに残留した水素により一旦開回路電圧に近い電圧が生じるが、すぐにアノード2aに水素が除去されるので、電池電圧は再び低下する。このとき、アノード2aにはカソード2bからクロスリークする酸素により酸化され、アノード2aの電極電位は徐々に上昇し、空気が供給されるカソード2bの電極電位に近づく。 In step 305, the fuel gas remaining in the anode 2a in the anode inert gas supply unit 13 is replaced with the inert gas in step 305, and the oxidant gas is supplied again to the cathode 2b. Although the voltage close to the open circuit voltage is once generated due to the hydrogen remaining in the battery, the battery voltage decreases again because the hydrogen is immediately removed from the anode 2a. At this time, the anode 2a is oxidized by oxygen leaking from the cathode 2b, and the electrode potential of the anode 2a gradually rises and approaches the electrode potential of the cathode 2b to which air is supplied.
 そして、アノード2aの電極電位が、1V近くにまで上昇したとき、電池電圧は第1の電圧である約0.1V以下となった。 Then, when the electrode potential of the anode 2a rose to close to 1V, the battery voltage became about 0.1V or less which is the first voltage.
 そして、ステップ309において、再び発電するために燃料ガス及び酸化剤ガスがそれぞれ供給されると開回路電圧となり、負荷を取り始めて発電が再開される。 In step 309, when fuel gas and oxidant gas are respectively supplied to generate power again, an open circuit voltage is obtained, load is started, and power generation is resumed.
 また、比較例のフッ素イオン濃度の挙動は、いずれも初期にはフッ素イオン濃度の上昇は見られなかったが、約5,000時間経過後徐々にフッ素イオン濃度が上昇していることが分かった。そして、この不純物除去シーケンスの前後でフッ素イオン濃度の挙動を調べると、本発明の実施の形態3の燃料電池システムについて、不純物を除去するシーケンスを動作させたところ、図5に示したように、本発明の実施の形態3の燃料電池システムのフッ素イオン濃度の増加が止まり、フッ素イオン濃度がほぼ初期と同等程度まで減少した。一方、不純物を除去するシーケンスを入れない通常の起動停止をした比較例はフッ素イオン濃度が増加し続けていることが分かった。 In addition, in the behavior of the fluorine ion concentration in the comparative example, no increase in the fluorine ion concentration was observed in the initial stage, but it was found that the fluorine ion concentration gradually increased after about 5,000 hours. . Then, when the behavior of the fluorine ion concentration was examined before and after this impurity removal sequence, the sequence for removing impurities was operated for the fuel cell system of Embodiment 3 of the present invention, as shown in FIG. The increase in the fluorine ion concentration of the fuel cell system according to Embodiment 3 of the present invention stopped, and the fluorine ion concentration decreased to almost the same level as the initial stage. On the other hand, it was found that the fluorine ion concentration continued to increase in the comparative example in which the normal start-stop was not performed without the sequence for removing impurities.
 したがって、上記構成の、本発明の実施の形態3の燃料電池システムによれば、燃料電池3の発電の停止時に、発電中に供給されていた燃料ガス及び酸化剤ガス中に含まれる水蒸気及び反応で生成する水蒸気が冷やされて凝縮し、アノード2a及びカソード2bそれぞれに凝縮水が生成される。燃料電池3の作成時に内部に残留した不純物、あるいは、燃料電池3の運転中に燃料電池3を構成する部材が熱分解などして発生する不純物などの内、水溶性の不純物はこの凝縮水に溶け込むので、この不純物を吸収した停止中の凝縮水をステップ305で供給される不活性ガス、あるいは酸化剤ガスとともに系外へと排出することができる。 Therefore, according to the fuel cell system of the third embodiment of the present invention configured as described above, the water vapor and reaction contained in the fuel gas and the oxidant gas supplied during power generation when the power generation of the fuel cell 3 is stopped. The water vapor generated in step 1 is cooled and condensed, and condensed water is generated in each of the anode 2a and the cathode 2b. Water-soluble impurities, such as impurities remaining inside when the fuel cell 3 is produced, or impurities generated by thermal decomposition of members constituting the fuel cell 3 during operation of the fuel cell 3 are contained in this condensed water. Since it dissolves, the stopped condensed water that has absorbed this impurity can be discharged out of the system together with the inert gas or oxidant gas supplied in step 305.
 (実施の形態4)
 本発明の実施の形態4の燃料電池システムは、制御器15が、アノード不活性ガス供給部13で不活性ガスをアノード2aに一定量供給した後、酸化剤ガス供給部11で酸化剤ガスを前記カソード2bに一定量供給するようにした点で、実施の形態3とは異なる。
(Embodiment 4)
In the fuel cell system according to Embodiment 4 of the present invention, the controller 15 supplies a certain amount of inert gas to the anode 2a by the anode inert gas supply unit 13, and then supplies the oxidant gas by the oxidant gas supply unit 11. The difference from Embodiment 3 is that a constant amount is supplied to the cathode 2b.
 なお、この不活性ガスと酸化剤ガスの供給する順番以外の構成要素は、実施の形態3と同様であるため、説明を省略する。 The constituent elements other than the order in which the inert gas and the oxidant gas are supplied are the same as those in the third embodiment, and thus the description thereof is omitted.
 図6に本発明の実施の形態4の燃料電池システムのフローチャートを示す。 FIG. 6 shows a flowchart of the fuel cell system according to Embodiment 4 of the present invention.
 発電を停止して、燃料電池3の電池電圧が第2の電圧以下になるまでのステップは実施の形態3と同じである。 Steps until power generation is stopped and the battery voltage of the fuel cell 3 becomes equal to or lower than the second voltage are the same as those in the third embodiment.
 そして、燃料電池3の電池電圧が第2の電圧に到達したら、アノード不活性ガス供給部13でアノード2aに不活性ガスを供給し(ステップ405)、残留した燃料ガスを置換する一定量の不活性ガスを供給してから(ステップ406)、アノード不活性ガス供給部で供給する不活性ガスを停止し、カソード2bに酸化剤ガス供給部11で酸化剤ガスを供給する(ステップ407)。 Then, when the battery voltage of the fuel cell 3 reaches the second voltage, the anode inert gas supply unit 13 supplies an inert gas to the anode 2a (step 405), and a certain amount of inert gas replacing the remaining fuel gas. After supplying the active gas (step 406), the inert gas supplied by the anode inert gas supply unit is stopped, and the oxidant gas is supplied to the cathode 2b by the oxidant gas supply unit 11 (step 407).
 そして、酸化剤ガスを一定量供給したら(ステップ408)、酸化剤ガスの供給を停止し(ステップ409)、カソード2bから酸素をクロスリークさせて、アノード2aの電極電位を上昇させる。 When a certain amount of oxidant gas is supplied (step 408), the supply of oxidant gas is stopped (step 409), oxygen is cross-leaked from the cathode 2b, and the electrode potential of the anode 2a is raised.
 ステップ410以降は実施の形態3と同様であるため説明を省略する。 Since step 410 and subsequent steps are the same as those in the third embodiment, description thereof is omitted.
 上記構成の、本発明の実施の形態4の燃料電池システムによれば、アノード不活性ガス供給部13がアノード2aに残留する水素を含む燃料ガスを不活性ガスに置換し、酸素と反応してしまう水素を追い出してから、不活性ガスの供給を停止し、アノード2aの内圧を下げて、その後、酸化剤ガス供給部11がカソード2bに空気を供給するので、電解質1の膜を介してクロスリークする酸素の量を増やすことができ、より短時間でアノード2aの電極電位を上昇させ、アノード2aの触媒が高電位に曝される時間を短くすることができるので、アノード2aの触媒の酸化をさらに抑制することができる。 According to the fuel cell system of Embodiment 4 of the present invention configured as described above, the anode inert gas supply unit 13 replaces the fuel gas containing hydrogen remaining on the anode 2a with the inert gas, and reacts with oxygen. Then, the supply of the inert gas is stopped, the internal pressure of the anode 2a is lowered, and then the oxidant gas supply unit 11 supplies air to the cathode 2b. The amount of oxygen leaking can be increased, the electrode potential of the anode 2a can be increased in a shorter time, and the time during which the catalyst of the anode 2a is exposed to a high potential can be shortened. Can be further suppressed.
 (実施の形態5)
 本発明の実施の形態5の燃料電池システムは、制御器15が、第1の期間が経過する第2の期間前に、燃料電池3の温度が、第1の温度以下となるように冷却部12を制御して、第2の期間発電した後、前記燃料電池の発電を停止するようにした点で、実施の形態3とは異なる。
(Embodiment 5)
In the fuel cell system according to Embodiment 5 of the present invention, the controller 15 has the cooling unit so that the temperature of the fuel cell 3 becomes equal to or lower than the first temperature before the second period when the first period elapses. 12 is different from Embodiment 3 in that the power generation of the fuel cell is stopped after generating power for the second period.
 なお、この不純物を除去するシーケンスの発電を停止する前に、燃料電池3の温度を下げる点以外の構成要素は、実施の形態3と同様であるため、説明を省略する。 The constituent elements other than the point of lowering the temperature of the fuel cell 3 before stopping the power generation of the sequence for removing the impurities are the same as those in the third embodiment, and thus the description thereof is omitted.
 図7に本発明の実施の形態5の燃料電池システムのフローチャートを示す。 FIG. 7 shows a flowchart of the fuel cell system according to Embodiment 5 of the present invention.
 まず、制御器15は、所定の時間の所定時間前(例えば、燃料電池3の劣化に影響を与えない程度の量の不純物が蓄積する第1の期間の第2の期間前(数十分~数十時間程度前))になったら(ステップ501)、燃料電池3の温度が下がるように冷却部12の冷却流体ポンプ122を早く回すなどの制御を行い、燃料電池3の温度を第1の温度(約50℃)以下まで冷却する(ステップ502)。 First, the controller 15 performs a predetermined time before a predetermined time (for example, before the second period (several tens of minutes to the first period in which an amount of impurities that does not affect the deterioration of the fuel cell 3 is accumulated). (Several tens of hours ago))) (step 501), the cooling fluid pump 122 of the cooling unit 12 is controlled so that the temperature of the fuel cell 3 decreases, and the temperature of the fuel cell 3 is set to the first temperature. Cool to a temperature (about 50 ° C.) or lower (step 502).
 ここで、第1の温度とは、アノード2a及びカソード2bに供給される燃料ガス及び酸化剤ガスの露点に対して低く、アノード2a及びカソード2bに吸着した不純物を洗い流すのに十分な凝縮水が生成する温度であり、アノード2a及びカソード2bの露点温度よりも少なくとも5℃以上低い温度が好ましく、フラッディングが起こらない程度の温度が好ましい。なお、第1の温度は予め実験的に求めておくことが好ましい。 Here, the first temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and there is sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. It is a temperature to be generated and is preferably at least 5 ° C. lower than the dew point temperature of the anode 2a and the cathode 2b, and is preferably a temperature at which flooding does not occur. The first temperature is preferably obtained experimentally in advance.
 そして、燃料電池3の温度が低い状態のまま発電が、所定時間(例えば、第2の期間)経過したら(ステップ503)、発電を停止する(ステップ504)。発電を停止してから以降のステップは実施の形態3と同様であるため説明を省略する。 Then, after a predetermined time (for example, the second period) elapses while the temperature of the fuel cell 3 is low (step 503), the power generation is stopped (step 504). Since the subsequent steps after power generation is stopped are the same as those in Embodiment 3, the description thereof is omitted.
 上記構成の、本発明の実施の形態5の燃料電池システムによれば、発電を停止する前に、燃料電池3の温度が所定の温度以下に制御され、アノード2a及びカソード2bが過加湿な状態となり、アノード2a及びカソード2bに多量の凝縮水が生成され、この状態で第2の期間発電を継続することにより、アノード2a及びカソード2bのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、発電が停止するまでにさらにコンタミ量を低減させることができる。 According to the fuel cell system of the fifth embodiment of the present invention configured as described above, the temperature of the fuel cell 3 is controlled to be equal to or lower than a predetermined temperature before power generation is stopped, and the anode 2a and the cathode 2b are in an excessively humid state. Thus, a large amount of condensed water is generated at the anode 2a and the cathode 2b. By continuing the power generation in the second period in this state, the contamination of the anode 2a and the cathode 2b is absorbed by the condensed water, and the fuel gas and the oxidant are respectively The amount of contamination can be further reduced by the time gas is discharged out of the system together with the gas and power generation stops.
 (実施の形態6)
 本発明の実施の形態6の燃料電池システムは、制御器15が、燃料電池3の発電再開時に、燃料電池3の温度が、第2の温度以下となるように冷却部12を制御して、第3の期間発電するようにした点で、実施の形態3とは異なる。
(Embodiment 6)
In the fuel cell system according to Embodiment 6 of the present invention, the controller 15 controls the cooling unit 12 so that the temperature of the fuel cell 3 is equal to or lower than the second temperature when the power generation of the fuel cell 3 is resumed. The third embodiment is different from the third embodiment in that power is generated in the third period.
 なお、この起動時に燃料電池3の温度を下げて発電する点以外の構成要素は、実施の形態3と同様であるため、説明を省略する。 Note that the components other than the point of generating power by lowering the temperature of the fuel cell 3 at the time of startup are the same as those in the third embodiment, and thus the description thereof is omitted.
 図8に本発明の実施の形態6の燃料電池システムのフローチャートを示す。 FIG. 8 shows a flowchart of the fuel cell system according to Embodiment 6 of the present invention.
 発電を停止してから、アノード2a及びカソード2bにそれぞれ不活性ガス及び酸化剤ガスを供給し、第1の電圧以下にするステップまでは実施の形態3と同様であり、説明を省略する。 After the power generation is stopped, the steps up to the step of supplying the inert gas and the oxidant gas to the anode 2a and the cathode 2b, respectively, to make the voltage lower than the first voltage are the same as in the third embodiment, and the description is omitted.
 制御器15は、電圧検出器14が検出する電池電圧が第1の電圧以下になったら(ステップ608)、燃料電池3の温度を第2の温度(室温~約50℃)以下になるように冷却部12の冷却流体ポンプ122を早く回すなどの制御を行う(ステップ609)。 When the battery voltage detected by the voltage detector 14 becomes equal to or lower than the first voltage (step 608), the controller 15 causes the temperature of the fuel cell 3 to become equal to or lower than the second temperature (room temperature to about 50 ° C.). Control such as quickly turning the cooling fluid pump 122 of the cooling unit 12 is performed (step 609).
 ここで、第2の温度とは、アノード2a及びカソード2bに供給される燃料ガス及び酸化剤ガスの露点に対して低く、アノード2a及びカソード2bに吸着した不純物を洗い流すのに十分な凝縮水が生成する温度であり、アノード2a及びカソード2bの露点温度よりも少なくとも5℃以上低い温度が好ましく、フラッディングが起こらない程度の温度が好ましい。なお、第2の温度は予め実験的に求めておくことが好ましい。 Here, the second temperature is lower than the dew points of the fuel gas and the oxidant gas supplied to the anode 2a and the cathode 2b, and there is sufficient condensed water to wash away impurities adsorbed on the anode 2a and the cathode 2b. It is a temperature to be generated and is preferably at least 5 ° C. lower than the dew point temperature of the anode 2a and the cathode 2b, and is preferably a temperature at which flooding does not occur. The second temperature is preferably obtained experimentally in advance.
 そして、燃料電池3の温度が低い状態で燃料ガス及び酸化剤ガスを供給し(ステップ610)、発電を再開する(ステップ611)。 Then, fuel gas and oxidant gas are supplied in a state where the temperature of the fuel cell 3 is low (step 610), and power generation is resumed (step 611).
 そして、燃料電池3の温度が低い状態で発電して、所定時間(例えば、第3の期間(数分~数時間程度))が経過したら(ステップ612)、燃料電池3の温度を通常の発電時と同じ温度に戻す(ステップ613)。 Then, power generation is performed in a state where the temperature of the fuel cell 3 is low, and when a predetermined time (for example, the third period (several minutes to several hours)) has elapsed (step 612), the temperature of the fuel cell 3 is changed to normal The temperature is returned to the same temperature (step 613).
 上記構成の、本発明の実施の形態6の燃料電池システムによれば、起動時に燃料電池3の温度が低い状態で発電し、アノード2a及びカソード2bが過加湿な状態となり、アノード2a及びカソード2bに多量の凝縮水が生成され、アノード2a及びカソード2bのコンタミが凝縮水に吸収され、それぞれ燃料ガス及び酸化剤ガスとともに系外に排出され、コンタミ量を低減させることができる。 According to the fuel cell system of the sixth embodiment of the present invention having the above-described configuration, power is generated with the temperature of the fuel cell 3 being low at the time of start-up, the anode 2a and the cathode 2b are in an excessively humid state, and the anode 2a and the cathode 2b A large amount of condensed water is generated, and the contamination of the anode 2a and the cathode 2b is absorbed by the condensed water and discharged together with the fuel gas and the oxidant gas, respectively, and the amount of contamination can be reduced.
 (実施の形態7)
 本発明の実施の形態7の燃料電池システムは、アノード不活性ガス供給部13は、燃料ガス供給部10を介して、不活性ガスをアノード2a供給する点以外の構成要素は、実施の形態1と同様であるため、説明を省略する。
(Embodiment 7)
In the fuel cell system according to Embodiment 7 of the present invention, the components other than the anode inert gas supply unit 13 supplying the inert gas to the anode 2a via the fuel gas supply unit 10 are the same as those in Embodiment 1. Since it is the same as that of FIG.
 図9に本発明の実施の形態7の燃料電池システムの概略構成図を示す。 FIG. 9 shows a schematic configuration diagram of a fuel cell system according to Embodiment 7 of the present invention.
 この構成により、不活性ガスを直接燃料電池3のアノード2aに供給する構成を追加する必要がないので、燃料電池システムが簡素化され、低コスト化が図れるとともに、燃料ガス供給部10も不活性ガスでパージされるので、燃料ガス供給部10で用いられる触媒の酸化による劣化を抑制することができ、燃料電池システムの耐久性をより向上させることができる。 With this configuration, it is not necessary to add a configuration for supplying the inert gas directly to the anode 2a of the fuel cell 3, so that the fuel cell system can be simplified, the cost can be reduced, and the fuel gas supply unit 10 is also inert. Since it is purged with gas, deterioration due to oxidation of the catalyst used in the fuel gas supply unit 10 can be suppressed, and the durability of the fuel cell system can be further improved.
 なお、本発明の実施の形態1~7では、不活性ガスとして、原料ガスを用いたが、これに限定されない。不活性ガスは、アノードに供給する還元ガス以外のガスであって、化学的安定性を有し、かつ、燃料電池システムの停止状態の環境下でアノード自体と化学反応しないガスであればよい。不活性ガスとしては、原料ガス以外に、例えば、窒素ガス、希ガスなどを用いることができる。 In the first to seventh embodiments of the present invention, the source gas is used as the inert gas, but the present invention is not limited to this. The inert gas is a gas other than the reducing gas supplied to the anode, and may be any gas that has chemical stability and does not chemically react with the anode itself in the environment where the fuel cell system is stopped. As the inert gas, for example, nitrogen gas, rare gas, or the like can be used in addition to the source gas.
 また、本発明の実施の形態1~7では、燃料ガス供給部10として、脱硫器101、原料ガス供給部102及び水素生成部103を用い、アノード不活性ガス供給部13として、脱硫器101及び原料ガス供給部102を用いる構成としたが、これに限定されない。例えば、燃料ガス供給部10として、水素を供給する水素ボンベを用い、アノード不活性ガス供給部13として、不活性ガスを供給する不活性ガスボンベを用いる構成であってもよい。 In the first to seventh embodiments of the present invention, the desulfurizer 101, the raw material gas supply unit 102 and the hydrogen generator 103 are used as the fuel gas supply unit 10, and the desulfurizer 101 and the anode inert gas supply unit 13 are used. Although the raw material gas supply unit 102 is used, the present invention is not limited to this. For example, the fuel gas supply unit 10 may be a hydrogen cylinder that supplies hydrogen, and the anode inert gas supply unit 13 may be an inert gas cylinder that supplies an inert gas.
 また、燃料電池システムの構成を簡素化し、低コスト化するという観点から、不活性ガスとして原料ガスを用いることが好ましい。原料ガスとしては、メタン、プロパン、ブタンなどの炭化水素を含むガスを用いることができ、例えば、都市ガス、天然ガス、液化プロパンガスなどを用いることができる。また、原料ガスが硫黄成分を含む場合には、脱硫器を用いて硫黄成分の濃度を低減した原料ガスを用いることが好ましい。 Also, it is preferable to use a raw material gas as the inert gas from the viewpoint of simplifying the configuration of the fuel cell system and reducing the cost. As the source gas, a gas containing a hydrocarbon such as methane, propane, or butane can be used. For example, city gas, natural gas, liquefied propane gas, or the like can be used. Further, when the raw material gas contains a sulfur component, it is preferable to use a raw material gas in which the concentration of the sulfur component is reduced using a desulfurizer.
 以上のように、本発明にかかる燃料電池システムは、不純物による劣化の影響を受けにくく、耐久性の向上が要望される、高分子型固体電解質を用いた燃料電池、燃料電池デバイス、定置用燃料電池コジェネレーションシステム等の用途にも適用できる。 As described above, the fuel cell system according to the present invention is hardly affected by deterioration due to impurities, and a fuel cell, a fuel cell device, and a stationary fuel using a polymer type solid electrolyte that are required to be improved in durability. It can also be used for applications such as battery cogeneration systems.
 2a アノード
 2b カソード
 3  燃料電池
 10 燃料ガス供給部
 11 酸化剤ガス供給部
 12 冷却部
 13 アノード不活性ガス供給部
 14 電圧検出器
 15 制御器
2a Anode 2b Cathode 3 Fuel cell 10 Fuel gas supply unit 11 Oxidant gas supply unit 12 Cooling unit 13 Anode inert gas supply unit 14 Voltage detector 15 Controller

Claims (18)

  1.  アノード及びカソードを有する燃料電池と、
     少なくとも水素を含む燃料ガスを前記アノードに供給する燃料ガス供給部と、
     少なくとも酸素を含む酸化剤ガスを前記カソードに供給する酸化剤ガス供給部と、
     不活性ガスを前記アノードに供給して、前記燃料ガスの少なくとも一部を前記不活性ガスに置換するアノード不活性ガス供給部と、
     前記燃料電池の電池電圧を検出する電圧検出器と、
     前記燃料電池、前記燃料ガス供給部、前記酸化剤ガス供給部及び前記アノード不活性ガス供給部の動作を制御する制御器と、
    を備え、
     前記制御器は、
     前記燃料電池の発電を停止する停止動作を行い、
     その後、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給し、かつ、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給する、活性回復動作を行い、
     前記電圧検出器で検出する前記燃料電池の電池電圧が、第1の電圧以下に低下した後、前記燃料ガス供給部が、前記アノードに供給する前記燃料ガスの供給を再開し、前記燃料電池の発電を再開するよう制御する、
    燃料電池システム。
    A fuel cell having an anode and a cathode;
    A fuel gas supply unit for supplying a fuel gas containing at least hydrogen to the anode;
    An oxidant gas supply unit for supplying an oxidant gas containing at least oxygen to the cathode;
    An anode inert gas supply unit for supplying an inert gas to the anode and replacing at least a part of the fuel gas with the inert gas;
    A voltage detector for detecting a battery voltage of the fuel cell;
    A controller for controlling operations of the fuel cell, the fuel gas supply unit, the oxidant gas supply unit, and the anode inert gas supply unit;
    With
    The controller is
    Performing a stop operation to stop power generation of the fuel cell;
    Thereafter, the fuel gas supply unit stops supplying the fuel gas to the anode, the anode inert gas supply unit supplies the inert gas to the anode, and the oxidant gas supply unit Supplying the oxidant gas to the cathode, performing an activity recovery operation,
    After the battery voltage of the fuel cell detected by the voltage detector drops below a first voltage, the fuel gas supply unit restarts the supply of the fuel gas supplied to the anode, and the fuel cell Control to resume power generation,
    Fuel cell system.
  2.  前記制御器は、
     前記燃料電池の発電を停止し、前記酸化剤ガス供給部が前記カソードに供給する前記酸化剤ガスの供給を停止し、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止する、停止動作を行い、
     前記電圧検出器で検出される前記燃料電池の電池電圧が、第2の電圧以下に低下した後、前記活性回復動作を行うよう制御する、請求項1に記載の燃料電池システム。
    The controller is
    The power generation of the fuel cell is stopped, the supply of the oxidant gas supplied to the cathode by the oxidant gas supply unit is stopped, and the supply of the fuel gas supplied to the anode by the fuel gas supply unit is stopped. , Stop operation,
    2. The fuel cell system according to claim 1, wherein the activation recovery operation is controlled after the battery voltage of the fuel cell detected by the voltage detector has decreased to a second voltage or less.
  3.  前記燃料電池を冷却する冷却部と、
     前記燃料電池の温度を検出する温度検出器と、
    を備え、
     前記制御器は、
     前記燃料電池の発電を停止し、かつ、前記燃料電池を冷却するよう前記冷却部を制御する前記停止動作を行い、
     前記温度検出器で検出する前記燃料電池の温度が、第1の温度以下に低下した後、前記活性回復動作を行うよう制御する、請求項1又は2に記載の燃料電池システム。
    A cooling unit for cooling the fuel cell;
    A temperature detector for detecting the temperature of the fuel cell;
    With
    The controller is
    Stop the power generation of the fuel cell, and perform the stop operation to control the cooling unit to cool the fuel cell,
    3. The fuel cell system according to claim 1, wherein after the temperature of the fuel cell detected by the temperature detector drops below a first temperature, control is performed to perform the activity recovery operation. 4.
  4.  前記燃料電池を冷却する冷却部と、
     前記燃料電池の温度を検出する温度検出器と、
    を備え、
     前記制御器は、前記温度検出器で検出される前記燃料電池の温度が、前記第1の温度以下となるように前記冷却部を制御し、前記燃料電池の発電を第2の期間行った後、前記燃料電池の発電を停止する、前記停止動作を行い、
     その後、前記活性回復動作を行うよう制御する、請求項3に記載の燃料電池システム。
    A cooling unit for cooling the fuel cell;
    A temperature detector for detecting the temperature of the fuel cell;
    With
    The controller controls the cooling unit so that the temperature of the fuel cell detected by the temperature detector is equal to or lower than the first temperature, and performs power generation of the fuel cell for a second period. , Stop power generation of the fuel cell, perform the stop operation,
    4. The fuel cell system according to claim 3, wherein control is performed to perform the activity recovery operation thereafter.
  5.  前記燃料電池を冷却する冷却部と、
     前記燃料電池の温度を検出する温度検出器と、
    を備え、
     前記制御器は、前記燃料電池の起動動作の際に、
     前記燃料電池の温度が、第2の温度以下となるように前記冷却部を制御し、前記燃料電池の発電を第3の期間行うよう制御する、請求項1~4のいずれか一項に記載の燃料電池システム。
    A cooling unit for cooling the fuel cell;
    A temperature detector for detecting the temperature of the fuel cell;
    With
    The controller, during the startup operation of the fuel cell,
    The control unit according to any one of claims 1 to 4, wherein the cooling unit is controlled so that the temperature of the fuel cell is equal to or lower than a second temperature, and the power generation of the fuel cell is controlled to be performed for a third period. Fuel cell system.
  6.  前記制御器は、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給した後、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給する、活性回復動作を行うよう制御する、請求項1~5のいずれか一項に記載の燃料電池システム。 The controller stops the supply of the fuel gas supplied to the anode by the fuel gas supply unit, and the oxidant gas supply after the anode inert gas supply unit supplies the inert gas to the anode. The fuel cell system according to any one of claims 1 to 5, wherein the control unit performs a recovery operation of supplying an oxidant gas to the cathode.
  7.  前記制御器は、第1の期間が経過する毎に、前記停止動作を行い、その後、前記活性回復動作を行った後、前記燃料電池の発電を再開するよう制御する、請求項1~6のいずれか一項に記載の燃料電池システム。 The controller according to any one of claims 1 to 6, wherein the controller performs the stop operation every time the first period elapses, and thereafter controls to restart the power generation of the fuel cell after performing the activity recovery operation. The fuel cell system according to any one of the above.
  8.  前記制御器で制御する前記第1の期間は、前記燃料電池の発電時間を積算した発電時間積算値が所定発電積算時間に到達した時間である、請求項7に記載の燃料電池システム。 8. The fuel cell system according to claim 7, wherein the first period controlled by the controller is a time when a power generation time integrated value obtained by integrating the power generation time of the fuel cell reaches a predetermined power generation integrated time.
  9.  前記アノード不活性ガス供給部は、原料ガスを脱硫する脱硫器を備え、
     前記不活性ガスは前記脱硫器で脱硫した原料ガスである請求項1~8のいずれか一項に記載の燃料電池システム。
    The anode inert gas supply unit includes a desulfurizer for desulfurizing the raw material gas,
    The fuel cell system according to any one of claims 1 to 8, wherein the inert gas is a raw material gas desulfurized by the desulfurizer.
  10.  前記アノード不活性ガス供給部は、前記燃料ガス供給部を介して、前記不活性ガスを前記アノードに供給する構成である請求項1~9のいずれか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 9, wherein the anode inert gas supply unit is configured to supply the inert gas to the anode via the fuel gas supply unit.
  11.  アノード及びカソードを有する燃料電池を備え、少なくとも水素を含む燃料ガスを前記アノードに供給し、少なくとも酸素を含む酸化剤ガスを前記カソードに供給して発電する燃料電池システムの運転方法であって、
     前記燃料電池の発電を停止する停止ステップと、
     その後、前記燃料ガスの前記アノードへの供給を停止し、前記不活性ガスを前記アノードに供給し、かつ、少なくとも酸素を含む酸化剤ガスを前記カソードに供給する、活性回復ステップと、
     前記燃料電池の電池電圧が、第1の電圧以下に低下した後、前記アノードに供給する前記燃料ガスの供給を再開し、前記燃料電池の発電を再開する再開ステップと、
    を備えた、
    燃料電池システムの運転方法。
    An operating method of a fuel cell system comprising a fuel cell having an anode and a cathode, supplying a fuel gas containing at least hydrogen to the anode, and supplying an oxidant gas containing at least oxygen to the cathode to generate electric power,
    A stop step of stopping power generation of the fuel cell;
    Thereafter, stopping the supply of the fuel gas to the anode, supplying the inert gas to the anode, and supplying an oxidant gas containing at least oxygen to the cathode;
    A restarting step of restarting the supply of the fuel gas supplied to the anode and restarting the power generation of the fuel cell after the battery voltage of the fuel cell drops below a first voltage;
    With
    Operation method of fuel cell system.
  12.  前記停止ステップは、前記燃料電池の発電を停止し、前記カソードに供給する前記酸化剤ガスの供給を停止し、前記アノードに供給する前記燃料ガスの供給を停止するステップであり、
     前記停止ステップ後に、前記燃料電池の電池電圧が、第2の電圧以下に低下した後、前記活性回復ステップを行う、請求項11に記載の燃料電池システムの運転方法。
    The stopping step is a step of stopping power generation of the fuel cell, stopping supply of the oxidant gas supplied to the cathode, and stopping supply of the fuel gas supplied to the anode,
    12. The method of operating a fuel cell system according to claim 11, wherein after the stop step, the activation recovery step is performed after the battery voltage of the fuel cell has dropped below a second voltage.
  13.  前記停止ステップは、前記燃料電池の発電を停止し、かつ、前記燃料電池を冷却するステップであり、
     前記燃料電池の温度が、第1の温度以下に低下した後、前記活性回復ステップを行う、請求項11又は12に記載の燃料電池システムの運転方法。
    The stopping step is a step of stopping power generation of the fuel cell and cooling the fuel cell;
    The operation method of the fuel cell system according to claim 11 or 12, wherein the activity recovery step is performed after the temperature of the fuel cell is lowered to a first temperature or lower.
  14.  前記燃料電池の温度が、前記第1の温度以下となるように前記燃料電池を冷却し、
     前記燃料電池の発電を前記第2の期間行った後、前記燃料電池の発電を停止する、前記停止ステップを行い、
     その後、前記活性回復ステップを行う、請求項13に記載の燃料電池システムの運転方法。
    Cooling the fuel cell such that the temperature of the fuel cell is equal to or lower than the first temperature;
    Performing the stopping step of stopping the power generation of the fuel cell after performing the power generation of the fuel cell for the second period;
    The operation method of the fuel cell system according to claim 13, wherein the activity recovery step is performed thereafter.
  15.  前記燃料電池の起動動作の際に、
     前記燃料電池の温度が、第2の温度以下となるように前記燃料電池を冷却し、前記燃料電池の発電を第3の期間行う、請求項11~14のいずれか一項に記載の燃料電池システムの運転方法。
    During the start-up operation of the fuel cell,
    The fuel cell according to any one of claims 11 to 14, wherein the fuel cell is cooled so that the temperature of the fuel cell is equal to or lower than a second temperature, and the power generation of the fuel cell is performed for a third period. How to operate the system.
  16.  前記活性回復ステップは、前記燃料ガス供給部が前記アノードに供給する前記燃料ガスの供給を停止し、前記アノード不活性ガス供給部が前記不活性ガスを前記アノードに供給した後、前記酸化剤ガス供給部が前記酸化剤ガスを前記カソードに供給するステップである、請求項11~15のいずれか一項に記載の燃料電池システムの運転方法。 In the activity recovery step, the fuel gas supply unit stops supplying the fuel gas supplied to the anode, and the anode inert gas supply unit supplies the inert gas to the anode, and then the oxidant gas. The method of operating a fuel cell system according to any one of claims 11 to 15, wherein the supply unit is a step of supplying the oxidant gas to the cathode.
  17.  第1の期間が経過する毎に、前記停止ステップを行い、その後、前記活性回復ステップを行った後、前記再開ステップを行う、請求項11~16のいずれか一項に記載の燃料電池システム。 The fuel cell system according to any one of claims 11 to 16, wherein the stop step is performed each time the first period elapses, and then the resumption step is performed after performing the activity recovery step.
  18.  前記第1の期間は、前記燃料電池の発電時間を積算した発電時間積算値が所定発電積算時間に到達した時間である、請求項17に記載の燃料電池システムの運転方法。 The fuel cell system operating method according to claim 17, wherein the first period is a time when a power generation time integrated value obtained by integrating the power generation time of the fuel cell reaches a predetermined power generation integrated time.
PCT/JP2011/001902 2010-03-30 2011-03-30 Fuel cell system and method for driving same WO2011122019A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/636,084 US20130017458A1 (en) 2010-03-30 2011-03-30 Fuel cell system and operation method thereof
EP11762262.1A EP2555298A4 (en) 2010-03-30 2011-03-30 Fuel cell system and method for driving same
JP2012508092A JP5049413B2 (en) 2010-03-30 2011-03-30 Fuel cell system and operation method thereof
KR1020127028278A KR20130023223A (en) 2010-03-30 2011-03-30 Fuel cell system and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-078397 2010-03-30
JP2010078397 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122019A1 true WO2011122019A1 (en) 2011-10-06

Family

ID=44711774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001902 WO2011122019A1 (en) 2010-03-30 2011-03-30 Fuel cell system and method for driving same

Country Status (5)

Country Link
US (1) US20130017458A1 (en)
EP (1) EP2555298A4 (en)
JP (1) JP5049413B2 (en)
KR (1) KR20130023223A (en)
WO (1) WO2011122019A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125627A (en) * 2011-12-14 2013-06-24 Panasonic Corp Fuel cell power generation system
JP2017162674A (en) * 2016-03-09 2017-09-14 東京瓦斯株式会社 Fuel cell system
JP2020047418A (en) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 Processing method for fuel cell system and component detaching method
JP7477005B1 (en) 2023-03-07 2024-05-01 富士電機株式会社 Fuel cell power generation device and fuel cell power generation system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646403B1 (en) * 2014-12-09 2016-08-08 현대자동차주식회사 Control method of fuel cell system
US10439241B2 (en) * 2015-10-28 2019-10-08 GM Global Technology Operations LLC Methods and processes to recover the voltage loss due to anode contamination
US10770741B2 (en) * 2016-08-31 2020-09-08 Toshiba Energy Systems & Solutions Corporation Fuel cell module with hydrodesulfurizer and preheating
KR102129013B1 (en) * 2017-12-15 2020-07-01 (주)엠텍정보기술 Hybrid fuel cell power pack
DE102021105899A1 (en) * 2021-03-11 2022-09-15 Bayerische Motoren Werke Aktiengesellschaft Device and method for checking the inerting status of a fuel supply system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219715A (en) * 1998-01-30 1999-08-10 Toyota Central Res & Dev Lab Inc Operation control method for fuel cell
JP2000243417A (en) * 1999-02-23 2000-09-08 Mazda Motor Corp Fuel cell apparatus
JP2003303608A (en) * 2002-02-07 2003-10-24 Matsushita Electric Ind Co Ltd Fuel cell generation system, control method of fuel cell generation system
JP2005044621A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell power generation device and its operation method
JP2005071949A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Fuel battery electric power generator and its operation method
JP2005310644A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell power generator
JP2006172972A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Fuel cell power generating device
JP2009301868A (en) * 2008-06-13 2009-12-24 Panasonic Corp Fuel cell electric power generation system and its operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096448A (en) * 1997-12-23 2000-08-01 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
CN100346519C (en) * 2002-03-29 2007-10-31 埃斯特科电池管理有限公司 Fuel cell health management system
JP2008218050A (en) * 2007-02-28 2008-09-18 Nissan Motor Co Ltd Fuel cell system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11219715A (en) * 1998-01-30 1999-08-10 Toyota Central Res & Dev Lab Inc Operation control method for fuel cell
JP3536645B2 (en) 1998-01-30 2004-06-14 株式会社豊田中央研究所 Fuel cell operation control method
JP2000243417A (en) * 1999-02-23 2000-09-08 Mazda Motor Corp Fuel cell apparatus
JP2003303608A (en) * 2002-02-07 2003-10-24 Matsushita Electric Ind Co Ltd Fuel cell generation system, control method of fuel cell generation system
JP2005044621A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Fuel cell power generation device and its operation method
JP2005071949A (en) * 2003-08-28 2005-03-17 Matsushita Electric Ind Co Ltd Fuel battery electric power generator and its operation method
JP2005310644A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Fuel cell power generator
JP2006172972A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Fuel cell power generating device
JP2009301868A (en) * 2008-06-13 2009-12-24 Panasonic Corp Fuel cell electric power generation system and its operation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555298A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125627A (en) * 2011-12-14 2013-06-24 Panasonic Corp Fuel cell power generation system
JP2017162674A (en) * 2016-03-09 2017-09-14 東京瓦斯株式会社 Fuel cell system
JP2020047418A (en) * 2018-09-18 2020-03-26 トヨタ自動車株式会社 Processing method for fuel cell system and component detaching method
JP7047685B2 (en) 2018-09-18 2022-04-05 トヨタ自動車株式会社 How to handle the fuel cell system and how to remove parts
JP7477005B1 (en) 2023-03-07 2024-05-01 富士電機株式会社 Fuel cell power generation device and fuel cell power generation system

Also Published As

Publication number Publication date
JP5049413B2 (en) 2012-10-17
EP2555298A4 (en) 2013-07-31
EP2555298A1 (en) 2013-02-06
JPWO2011122019A1 (en) 2013-07-04
KR20130023223A (en) 2013-03-07
US20130017458A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5049413B2 (en) Fuel cell system and operation method thereof
US8071243B2 (en) Fuel cell system
JP4782241B2 (en) Fuel cell power generation system
JP5221766B2 (en) Fuel cell power generation system and operation method thereof
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
JP4661055B2 (en) Fuel cell system and operation method
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP2005093115A (en) Fuel cell power generating device and its operating method
JP4613480B2 (en) Fuel cell power generator and its operation method
JP4872181B2 (en) Fuel cell system and operation method thereof
JP2007323863A (en) Fuel cell system and shutdown method of fuel cell
JP4617647B2 (en) Fuel cell system and operation method thereof
WO2005020359A1 (en) Fuel cell system and method for stopping operation of fuel cell system
JP4613482B2 (en) Fuel cell power generator and its operation method
JP2011086398A (en) Fuel cell system and method for operating fuel cell system
JP2014186891A (en) Fuel cell power generation system
JP2010267563A (en) Fuel cell power generation system
JP5370342B2 (en) Fuel cell system and operation method
JP5678278B2 (en) Fuel cell system and operation method
JP2012109064A (en) Fuel cell power generation system
JP2011100547A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762262

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012508092

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636084

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028278

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011762262

Country of ref document: EP