WO2011121754A1 - Motor speed reduction mechanism - Google Patents

Motor speed reduction mechanism Download PDF

Info

Publication number
WO2011121754A1
WO2011121754A1 PCT/JP2010/055840 JP2010055840W WO2011121754A1 WO 2011121754 A1 WO2011121754 A1 WO 2011121754A1 JP 2010055840 W JP2010055840 W JP 2010055840W WO 2011121754 A1 WO2011121754 A1 WO 2011121754A1
Authority
WO
WIPO (PCT)
Prior art keywords
motors
motor
reduction mechanism
gear
speed reduction
Prior art date
Application number
PCT/JP2010/055840
Other languages
French (fr)
Japanese (ja)
Inventor
山本 健次
政史 三輪
Original Assignee
シロキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シロキ工業株式会社 filed Critical シロキ工業株式会社
Priority to PCT/JP2010/055840 priority Critical patent/WO2011121754A1/en
Publication of WO2011121754A1 publication Critical patent/WO2011121754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F11/00Man-operated mechanisms for operating wings, including those which also operate the fastening
    • E05F11/38Man-operated mechanisms for operating wings, including those which also operate the fastening for sliding windows, e.g. vehicle windows, to be opened or closed by vertical movement
    • E05F11/44Man-operated mechanisms for operating wings, including those which also operate the fastening for sliding windows, e.g. vehicle windows, to be opened or closed by vertical movement operated by one or more lifting arms
    • E05F11/445Man-operated mechanisms for operating wings, including those which also operate the fastening for sliding windows, e.g. vehicle windows, to be opened or closed by vertical movement operated by one or more lifting arms for vehicle windows
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/60Power-operated mechanisms for wings using electrical actuators
    • E05F15/603Power-operated mechanisms for wings using electrical actuators using rotary electromotors
    • E05F15/665Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings
    • E05F15/689Power-operated mechanisms for wings using electrical actuators using rotary electromotors for vertically-sliding wings specially adapted for vehicle windows
    • E05F15/697Motor units therefor, e.g. geared motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/40Control units therefor
    • E05Y2400/41Control units therefor for multiple motors
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows

Definitions

  • the present invention relates to a motor speed reduction mechanism applied to various devices such as a window regulator, a seat slide, and a seat lifter.
  • the motor speed reduction mechanism transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear), and extracts the reduction power from the helical gear.
  • Patent Document 1 discloses a technique for engaging two worm gears that are separately motor-driven by one helical gear. It is also possible to mesh three or more worm gears that are separately motor-driven with one helical gear, and it is also possible to rotate one worm gear with a plurality of motors. As described above, if a plurality of motors for driving the worm gear in the forward and reverse directions are provided, there is an advantage that a high torque can be generated using a plurality of relatively inexpensive motors.
  • the present invention prevents a torque reduction phenomenon in a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear).
  • An object of the present invention is to obtain a motor speed reduction mechanism that can be used.
  • the present invention when a plurality of motors of the same specification are driven by the same drive power supply (same phase power supply), at least one motor of the plurality of motors is prevented so that switching of commutators for the brushes of the plurality of motors does not occur simultaneously.
  • the switching timing of the brush of one motor is different from the switching timing of the commutator for the brush of the other motor (so that the phases of the commutators of the rotors of one motor and the other motor are different). This is based on the viewpoint that the torque reduction phenomenon can be prevented.
  • the motor speed reduction mechanism of the present invention is a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors to a driven gear via a drive gear, wherein at least one of the plurality of motors is the one motor.
  • the switching timing of the commutator for the other brush is different from the switching timing of the commutator for the brushes of other motors.
  • the plurality of motors have a rotor and a plurality of commutators arranged at equal intervals in the circumferential direction, and are arranged so that phases at the time of stopping of the plurality of commutators of the respective rotors are different.
  • the at least one drive gear can be meshed with the driven gear, and the plurality of motors can be engaged with the at least one drive gear. Further, a plurality of drive gears can be engaged with the driven gear, and at least one of the plurality of motors can be engaged with each of the plurality of drive gears.
  • the drive gear and the plurality of motors are provided with an index that defines a stop phase with respect to a plurality of commutators of a rotor of the plurality of motors.
  • the present invention is a regulator driving device having any one of the motor speed reduction mechanisms described above.
  • the present invention is a motor that engages with at least one drive gear that meshes with a driven gear, and is provided with an index that defines a stop phase for a plurality of commutators of a rotor of the motor. It can be.
  • a torque reduction phenomenon can be prevented in a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear).
  • FIG. 1 It is a front view which shows one Embodiment which applied the motor deceleration mechanism by this invention to the X arm type
  • FIG. 1 shows a state in which a motor speed reduction mechanism 30 is mounted on an X-arm type wind regulator.
  • a motor inner device (mounting panel) 10 of a vehicle door is provided with a motor driving device 20 and a horizontal equalizer arm bracket. 11 is fixed.
  • a lift arm bracket 13 in the horizontal direction is fixed to the lower end portion of the elevating window glass 12, and rollers (rolling elements) provided at the upper and lower end portions of the equalizer arm 14 are respectively attached to the lift arm bracket 13 and the equalizer arm bracket 11. , Not shown) is movably fitted.
  • a lift arm 16 is pivotally attached to the equalizer arm 14 by a shaft 15, and a roller (rolling element, not shown) provided at the upper end of the lift arm 16 is similarly movably fitted to the lift arm bracket 13. waiting.
  • the lift arm 16 is supported so as to be rotatable about a rotation shaft 21 on the motor drive device 20, and a driven gear (rotating member, driven gear) having a sector gear 17 a centering on the rotation shaft 21 at the lower end thereof. Member) 17 is fixed.
  • the sector gear 17a meshes with the pinion 31 (FIGS. 2 to 4) of the motor speed reduction mechanism 30, and when the pinion 31 rotates in the forward and reverse directions, the lift arm 16 (driven gear 17) is moved forward and backward around the rotation shaft 21. It rotates and the raising / lowering glass 12 raises / lowers.
  • the basic structure (operation) of the above X-arm type window regulator is well known.
  • the motor drive device 20 includes a lift arm 16 fixed to the driven gear 17, a motor speed reduction mechanism 30, a base plate 40, and a mounting leg member 50, and is primarily assembled before being supported on the inner panel 10 (subassembly). ).
  • FIG. 2 shows the motor speed reduction mechanism 30, the lift arm 16 (driven gear 17), the base plate 40, and the mounting leg member 50 in an exploded state
  • FIG. 3 shows the state after assembly in cross section.
  • a motor speed reduction mechanism 30 having a pinion 31 has a metal motor holder 36 positioned in a housing 32 (upper housing 32a and lower housing 32b) made of a synthetic resin material.
  • a pair of motors 100 and 200 are supported on the holder 36.
  • the pair of motors 100 and 200 (rotor shafts) are engaged (coupled) to both ends of the single worm gear (drive gear) 39 in the axial direction so that the worm gear 39 rotates in the same direction.
  • a pair of fixing bolts 33 and a rotation center shaft member 34 are integrally coupled to the motor holder 36.
  • a metal pinion 31 and a synthetic resin helical gear (driven gear) 38 are rotatably supported on the rotation center shaft member 34, and the helical gear 38 is rotationally driven by a pair of motors 100 and 200. 39 is engaged. That is, the rotational driving force of the pair of motors 100 and 200 is transmitted to the helical gear 38 via the worm gear 39.
  • the pinion 31 has a metal gear member 31a at the center and a metal rotation plate 31b that is coaxially coupled to the gear member 31a by serrations 31a 'and 31b'.
  • the helical gear 38 has a plurality of fitting holes 38a formed at intervals in the circumferential direction, and the rotating plate 31b has a plurality of fitting protrusions 31c that fit into the plurality of fitting holes 38a without play.
  • the pinion 31 and the helical gear 38 are coupled so as not to rotate relative to each other.
  • the base plate 40 made of a pressed product of an elongated metal plate member has a pair of fixing holes 41 for fixing the fixing bolt 33 of the motor speed reduction mechanism 30 at one end, and the circular penetration of the lift arm 16 at the other end.
  • a circular projecting portion 42 projecting from the hole 16a is provided, and a fixing hole 43 corresponding to the rotation center shaft member 34 is provided in an intermediate portion.
  • a fixing nut 44 is screwed to the protruding portion from the base plate 40 to the fixing bolt 33, and a fixing nut 45 is screwed to the fixing screw portion 34a of the protruding portion from the base plate 40 to the rotation center shaft member 34.
  • the base plate 40 and the motor speed reduction mechanism 30 are coupled.
  • the metal mounting leg member 50 which is a member different from the base plate 40, includes a circular portion 51 that is welded and fixed to the circular protrusion 42 of the base plate 40. That is, the circular protruding portion 42 of the base plate 40 protrudes from the circular through hole 16 a of the lift arm 16, and the circular portion 51 is fixed to the circular protruding portion 42 by welding.
  • the circular projecting portion 42, the circular portion 51, and the circular through hole 16 a constitute the rotating shaft 21 of the lift arm 16.
  • the mounting leg member 50 is provided with a pair of fixed seats 52 located on both sides of the circular portion 51.
  • a linear gear-opposing contact portion 36a corresponding to the peripheral arc of the helical gear 38 protrudes from the helical gear-facing surface (FIG. 3) of the motor holder 36. Is formed. That is, the gear-opposing contact portion 36a has a linear shape that crosses the peripheral arc in the vicinity of the meshing portion of the helical gear 38 with the worm gear 39, and opposes the meshing portion.
  • the arc-shaped gear facing surface corresponding to the peripheral arc of the helical gear 38 (the inner peripheral portion of the tooth portion 38b (meshing portion with the worm gear 39)).
  • a contact portion 32c is formed to project, and a thrust force receiving projection 32d that abuts against the base plate 40 is formed on the surface facing the base plate (upper surface in the figure).
  • the thrust force receiving protrusion 32d has a columnar shape or a cylindrical shape including at least a part of the meshing portion of the worm gear 39 and the helical gear 38 within a planar profile.
  • the base plate 40 is formed with an arc-shaped gear abutting convex portion that contacts the peripheral edge of the driven gear 17 (the inner peripheral surface of the gear 17a (the upper surface in the drawing)) in an arc shape.
  • the upper housing 32a is located between the driven gear 17 and the rotating plate 31b that rotate in directions opposite to each other. The upper housing 32a functions to prevent mechanical contact between the two and the driven gear 17 at the same time.
  • the upper housing 32a has an arcuate gear abutment convex portion that contacts the peripheral edge of the driven gear 17 (the back surface on the inner peripheral side of the gear 17a (the lower surface in the drawing)) and the surface of the rotating plate 31b ( Arc-shaped spacer protrusions that are in contact with the upper surface of the figure are formed.
  • the above motor drive device 20 is fixed on the inner panel 10. That is, the pair of fixing seats 52 of the mounting leg member 50 are fixed to the pair of mounting seats 10a of the inner panel 10 via the fixing bolt nuts 53 and 54 (FIGS. 2 and 3), and the mounting bolt ( The mounting shaft 35 (FIG. 3) is fixed to another mounting seat 10 b of the inner panel 10 by a fixing nut 46.
  • the mounting bolt 35 is the same shaft member as the rotation center shaft member 34 and is implanted (press-fit and fixed) in a metal motor holder 36 (FIGS. 3 and 4) fixed in the housing of the motor speed reduction mechanism 30. And project in opposite directions.
  • the configuration of the pair of motors 100 and 200 will be described with reference to FIGS. Since the pair of motors 100 and 200 have the same specification, only the motor 100 will be described in the present specification (in FIG. 5 to FIG. 7, the reference numeral of the motor 200 is given in parentheses). As shown in FIG. 5, the motor 100 is roughly divided into a housing 110, a rotor (rotor) 120, and a brush unit 130.
  • the housing 110 is, for example, a steel plate, which is a conductor, drawn by a pressing device, so that the cross section is a quadrangular shape with rounded corners, one end in the axial direction is opened, and the other end is closed by the bottom wall portion 110a. It has a bottomed cylindrical shape. As shown in FIG. 6, four magnets 111 extending in the axial direction are fixed to the four rounded corners of the inner surface of the housing 110 so that the same poles face each other. The housing 110 and the four magnets 111 A magnetic field is formed inside the housing 110.
  • a rotor 120 is accommodated in the housing 110.
  • the rotor 120 has a shaft 121, and the shaft 121 is pivotally supported at one end thereof by a bearing 112 provided on the bearing support portion 110 b of the bottom wall portion 110 a of the housing 110, so that the shaft 121 is rotatable on the housing 110. It is supported by.
  • An armature 122 is fixed to the shaft 121 so as to be positioned inside a magnetic field formed by the housing 110 and the four magnets 111, and the shaft 121 and the armature 122 rotate integrally.
  • the armature 122 is formed in a substantially cylindrical shape by laminating plate-shaped steel materials (cores) as conductors in the axial direction. As shown in FIG.
  • the armature 122 has a central shaft portion 122a and a peripheral shaft from the central shaft portion 122a. There are six extending portions 122b extending at equal intervals (60 ° intervals) outward in the direction, and six umbrella portions 122c provided at the tips of the respective extending portions 122b. Each of the six extending portions 122b is provided with windings (coils) 123 by lap winding, and these windings 123 rotate together with the armature 122 (shaft 121). Six slits (slots) constituted by the central shaft portion 122a and the adjacent extending portions 122b and umbrella portions 122c serve as paths for the electromagnetic force generated by the current flowing in the winding 123 to flow. In FIG. 6, the winding 123 is not shown.
  • a commutator 124 is fixed to the shaft 121 adjacent to the armature 122 in the axial direction.
  • the commutator 124 includes six commutator pieces (electrical contacts) 124a arranged at regular intervals (60 ° intervals) in the circumferential direction, and the corresponding windings 123 are electrically connected to the commutator pieces 124a. It is connected.
  • two opposing sets among the six rectifying pieces 124 a are referred to as 124 a 1, 124 a 2, and 124 a 3.
  • a brush unit 130 is accommodated in the housing 110.
  • the brush unit 130 has a resin brush holder 131, and two brushes 132 for supplying a drive current to the winding 123 via the commutator 124 (commutator piece 124a) are provided in the radial direction. Is mounted opposite (at intervals of 180 °).
  • the two brushes 132 are held by the brush arm 133, and are elastically slidably contacted with the outer peripheral surface of the commutator 124 (commutator piece 124a).
  • a terminal (not shown) electrically connected to the two brushes 132 extends outside the brush unit 130.
  • the motor 100 also includes a lid member (not shown) that closes the open end of the housing 110 in a state where the rotor 120 and the brush unit 130 are accommodated inside the housing 110. The outside is electrically insulated.
  • the motor 100 accommodates the rotor 120 and the brush unit 130 inside the housing 110
  • one end of the shaft 121 of the rotor 120 is rotatably supported by the bottom wall portion 110 a of the housing 110 and the other end portion of the shaft 121.
  • the two brushes 132 of the brush unit 130 are in contact with (electrically connected to) one of the rectifying pieces 124a1, 124a2, and 124a3.
  • a current is passed through a terminal (not shown) electrically connected to the two brushes 132 in this state, the current is generated from the two brushes 132 in the magnetic field formed inside the housing 110.
  • the two brushes 132 switch the rectifying piece 124a in contact with the rectifying piece 124a1, the rectifying piece 124a2, and the rectifying piece 124a3 in this order. To go.
  • the shafts of the rotors 120 and 220 of the two motors 100 and 200 are generated at different timings (in series) between the commutators 124 and 224 with respect to the brushes 132 and 232 in the two motors 100 and 200. Is engaged (fixed) at both axial ends of the worm gear 39. More specifically, the arrangement of the housings 110 and 210 and the brush units 130 and 230 of the motors 100 and 200 is symmetric, and the rotors 120 and 220 are arranged in the motors 100 and 200 as shown in FIG.
  • the stop phase of the rotors 120 and 220 with respect to the commutators 124 and 224 is defined by using a cogging torque generated by the attractive force of the rotors 120 and 220 and the magnets 111 and 211 (the rotation angle of the rotors 120 and 220 is maintained).
  • the worm gear 39 and the motors 100 and 200 are provided with an index that defines a stop phase with respect to the plurality of commutators 124 and 224 of the rotors 120 and 220 of the motors 100 and 200. Assembling of the rotors 120 and 220 is facilitated.
  • the index may be a D-cut provided on the shafts of the worm gear 39 and the rotors 120 and 220 of the motors 100 and 200.
  • the brush 132 and the commutator 124 (rectifying pieces 124 a 1 to 124 a 3) in the motor 100 are switched (broken lines in FIG. 9), and the motor 200
  • the switching of the brush 232 and the commutator 224 (the rectifying pieces 224a1 to 224a3) at the same time (the one-dot chain line in FIG. 9) occurs at different timings. Can do.
  • the case where the number of commutators included in the rotors of the two motors is six is described as an example, but the number of commutators is not limited to this.
  • the motor speed reduction mechanism is a twin motor speed reduction mechanism in which the two motors 100 and 200 are engaged (coupled) at both ends in the axial direction of the worm gear 39 has been described as an example. It is not limited to this. This modification will be described with reference to FIGS.
  • two motors M1 and M3 are coupled to one end of the worm gear 39 engaged with the helical gear 38 in the axial direction, and one motor M2 is coupled to the other end.
  • two motors M1 and M3 are coupled to one axial end portion of the worm gear meshed with the helical gear 38, and two motors M2 and M4 are coupled to the other end portion.
  • FIG. 13A two worm gears 39A and 39B are meshed with the helical gear 38, and one motor M1 and M2 are coupled to the two worm gears 39A and 39B, respectively.
  • FIG. 13B three worm gears 39A, 39B, and 39C are meshed with the helical gear 38, and one motor M1, M2, and M3 is coupled to each of the three worm gears 39A, 39B, and 39C.
  • the helical gear 38 is meshed with two worm gears (39A, 39B), three worm gears (39A-39C), and four worm gears (39A-39D), respectively. These worm gears are each coupled with one motor. Each motor is arranged in a windmill shape so that motors coupled to adjacent worm gears do not interfere with each other.
  • FIG. 15 (A) two worm gears 39A and 39B are meshed with a helical gear 38, two motors M1 and M2 are coupled to both axial ends of one worm gear 39A, and two axially opposite ends of the other worm gear 39B. Two motors M3 and M4 are connected.
  • FIG. 15 (B) two worm gears are meshed with a helical gear, two motors M1 and M2 are coupled to both axial ends of one worm gear 39A, and one motor is coupled to one axial end of the other worm gear 39B.
  • M3 is bound.
  • the torque switching phenomenon can be prevented by arranging the switching timing of the commutator to be different from the switching timing of the commutator for the brushes of other motors. The same applies when the number of motors is five or more. Further, the engagement of the motor to the worm gear (drive gear) and the engagement of the plurality of motors may be performed by a flexible shaft.
  • the present invention is applied to an arm type window regulator.
  • the present invention is a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors to a driven gear via a driving gear. It can be applied to various devices such as seat slides and seat lifters.
  • the motor speed reduction mechanism of the present invention is useful as a motor speed reduction mechanism applied to various devices such as a window regulator, a seat slide, and a seat lifter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is a motor speed reduction mechanism for transmitting the rotation driving forces of a plurality of motors (commutator motors) to a helical gear (driven gear) via a warm gear (drive gear), wherein a phenomenon in which the torque is lowered can be prevented. Specifically provided is a motor speed reduction mechanism for transmitting the rotation driving forces of a plurality of motors to a driven gear via a drive gear. Said motor speed reduction mechanism is characterized in that at least one motor among the plurality of motors is disposed such that the switching timing of a commutator with respect to a brush in said one motor is different from the switching timing of a commutator with respect to a brush in another motor.

Description

モータ減速機構Motor speed reduction mechanism
 本発明は、ウィンドレギュレータ、シートスライド、シートリフター等の各種装置に適用されるモータ減速機構に関する。 The present invention relates to a motor speed reduction mechanism applied to various devices such as a window regulator, a seat slide, and a seat lifter.
 モータ減速機構は、複数のモータ(整流子電動機)の回転駆動力を、ウォームギヤ(駆動ギヤ)を介してヘリカルギヤ(従動ギヤ)に伝達して、このヘリカルギヤから減速動力を取り出すものである。 The motor speed reduction mechanism transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear), and extracts the reduction power from the helical gear.
 例えば、特許文献1は、1つのヘリカルギヤに別々にモータ駆動される2つのウォームギヤを噛み合わせる技術を開示している。また、1つのヘリカルギヤに別々にモータ駆動される3つ以上のウォームギヤを噛み合わせることも可能であるし、さらには1つのウォームギヤを複数のモータで回転駆動させることも可能である。このように、ウォームギヤを正逆に駆動するモータを複数設ければ、比較的安価な複数のモータを用いて、高トルクを発生させることができるという利点がある。 For example, Patent Document 1 discloses a technique for engaging two worm gears that are separately motor-driven by one helical gear. It is also possible to mesh three or more worm gears that are separately motor-driven with one helical gear, and it is also possible to rotate one worm gear with a plurality of motors. As described above, if a plurality of motors for driving the worm gear in the forward and reverse directions are provided, there is an advantage that a high torque can be generated using a plurality of relatively inexpensive motors.
特開2005-186192号公報JP 2005-186192 A
 しかしながら、ウォームギヤを正逆に駆動するモータを複数設けた場合、これら複数のモータでブラシに対する整流子の切り替わりが同時に生じると、この切り替わりタイミングでトルク低下現象が生じるという問題がある。 However, when a plurality of motors that drive the worm gears in the forward and reverse directions are provided, there is a problem that a torque reduction phenomenon occurs at the switching timing when switching of the commutator with respect to the brush occurs simultaneously in the plurality of motors.
 本発明は、以上の知見に基づき、複数のモータ(整流子電動機)の回転駆動力を、ウォームギヤ(駆動ギヤ)を介してヘリカルギヤ(従動ギヤ)に伝達するモータ減速機構において、トルク低下現象を防止することができるモータ減速機構を得ることを目的とする。 Based on the above knowledge, the present invention prevents a torque reduction phenomenon in a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear). An object of the present invention is to obtain a motor speed reduction mechanism that can be used.
 本発明は、同一仕様の複数のモータを同一駆動電源(同一位相電源)で駆動するとき、これら複数のモータのブラシに対する整流子の切り替わりが同時に生じないように、複数のモータの少なくとも1つのモータを、該1つのモータのブラシに対する切り替わりタイミングが他のモータのブラシに対する整流子の切り替わりタイミングと異なるように(1つのモータと他のモータのロータの整流子に対する位相が異なるように)して配置すれば、トルク低下現象を防止できるとの着眼に基づいてなされたものである。 In the present invention, when a plurality of motors of the same specification are driven by the same drive power supply (same phase power supply), at least one motor of the plurality of motors is prevented so that switching of commutators for the brushes of the plurality of motors does not occur simultaneously. Are arranged so that the switching timing of the brush of one motor is different from the switching timing of the commutator for the brush of the other motor (so that the phases of the commutators of the rotors of one motor and the other motor are different). This is based on the viewpoint that the torque reduction phenomenon can be prevented.
 すなわち、本発明のモータ減速機構は、複数のモータの回転駆動力を、駆動ギヤを介して従動ギヤに伝達するモータ減速機構において、上記複数のモータのうち少なくとも1つのモータは、該1つのモータのブラシに対する整流子の切り替わりタイミングが他のモータのブラシに対する整流子の切り替わりタイミングと異なるように配置されていることを特徴としている。 That is, the motor speed reduction mechanism of the present invention is a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors to a driven gear via a drive gear, wherein at least one of the plurality of motors is the one motor. The switching timing of the commutator for the other brush is different from the switching timing of the commutator for the brushes of other motors.
 上記複数のモータは、ロータ及び周方向に等間隔で並ぶ複数の整流子を有しており、それぞれのロータの複数の整流子に対する停止時位相が異なるように配置されていることが好ましい。 It is preferable that the plurality of motors have a rotor and a plurality of commutators arranged at equal intervals in the circumferential direction, and are arranged so that phases at the time of stopping of the plurality of commutators of the respective rotors are different.
 上記従動ギヤに少なくとも1つの駆動ギヤを噛み合わせ、この少なくとも1つの駆動ギヤに上記複数のモータを係合させることができる。また、上記従動ギヤに複数の駆動ギヤを噛み合わせ、この複数の駆動ギヤのそれぞれに、上記複数のモータの少なくとも1つを係合させることができる。 The at least one drive gear can be meshed with the driven gear, and the plurality of motors can be engaged with the at least one drive gear. Further, a plurality of drive gears can be engaged with the driven gear, and at least one of the plurality of motors can be engaged with each of the plurality of drive gears.
 上記駆動ギヤ及び上記複数のモータには、上記複数のモータのロータの複数の整流子に対する停止時位相を規定する指標を設けることが好ましい。 It is preferable that the drive gear and the plurality of motors are provided with an index that defines a stop phase with respect to a plurality of commutators of a rotor of the plurality of motors.
 本発明は、その一態様では、上記いずれかのモータ減速機構を有するレギュレータ駆動装置である。 In one aspect, the present invention is a regulator driving device having any one of the motor speed reduction mechanisms described above.
 本発明は、別の態様では、従動ギヤに噛み合う少なくとも1つの駆動ギヤに係合するモータであって、上記モータのロータの複数の整流子に対する停止時位相を規定する指標が設けられているモータとすることができる。 In another aspect, the present invention is a motor that engages with at least one drive gear that meshes with a driven gear, and is provided with an index that defines a stop phase for a plurality of commutators of a rotor of the motor. It can be.
 本発明によれば、複数のモータ(整流子電動機)の回転駆動力を、ウォームギヤ(駆動ギヤ)を介してヘリカルギヤ(従動ギヤ)に伝達するモータ減速機構において、トルク低下現象を防止することができる。 According to the present invention, a torque reduction phenomenon can be prevented in a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors (commutator motors) to a helical gear (driven gear) via a worm gear (driving gear). .
本発明によるモータ減速機構をXアーム式ウィンドレギュレータに適用した一実施形態を示す正面図である。It is a front view which shows one Embodiment which applied the motor deceleration mechanism by this invention to the X arm type | formula window regulator. 同分解斜視図である。It is the same exploded perspective view. 図1のIII-III線に沿う断面図である。It is sectional drawing which follows the III-III line of FIG. モータ減速機構の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of a motor deceleration mechanism. モータの構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of a motor. モータの内部の構成を示す断面図である。It is sectional drawing which shows the structure inside a motor. モータの整流子とブラシの切り替わりの様子を示す概念図であり、図中の矢印はモータのロータの回転方向を示している。It is a conceptual diagram which shows the mode of switching of the commutator and brush of a motor, and the arrow in a figure has shown the rotation direction of the rotor of a motor. 本発明の2つのモータにおける整流子とブラシの切り替わりの様子を対比して示す概念図であり、図中の矢印は2つのモータのロータの回転方向を示している。It is a conceptual diagram which shows the mode of switching of the commutator and the brush in the two motors of the present invention, and the arrows in the figure indicate the rotation directions of the rotors of the two motors. 本発明の2つのモータにおける整流子とブラシの切り替わりのタイミングを示すタイミングチャートである。It is a timing chart which shows the timing of switching of a commutator and a brush in two motors of the present invention. 2つのモータをそのロータの整流子に対する位相を同一とした場合における整流子とブラシの切り替わりの様子を対比して示す概念図であり、図中の矢印は2つのモータのロータの回転方向を示している。It is a conceptual diagram which shows the mode of change of a commutator and a brush when two motors make the phase with respect to the commutator of the rotor the same, and the arrow in a figure shows the rotation direction of the rotor of two motors ing. 2つのモータをそのロータの整流子に対する位相を同一とした場合における整流子とブラシの切り替わりのタイミングを示すタイミングチャートである。It is a timing chart which shows the switching timing of a commutator and a brush in case two motors make the phase with respect to the commutator of the rotor the same. 本発明のモータ減速機構の別の実施形態を示す第1の概念図である。It is a 1st conceptual diagram which shows another embodiment of the motor deceleration mechanism of this invention. 本発明のモータ減速機構の別の実施形態を示す第2の概念図である。It is a 2nd conceptual diagram which shows another embodiment of the motor deceleration mechanism of this invention. 本発明のモータ減速機構の別の実施形態を示す第3の概念図である。It is a 3rd conceptual diagram which shows another embodiment of the motor deceleration mechanism of this invention. 本発明のモータ減速機構の別の実施形態を示す第4の概念図である。It is a 4th conceptual diagram which shows another embodiment of the motor deceleration mechanism of this invention.
 図1ないし図11を参照して、本発明のモータ減速機構30をXアーム式ウィンドレギュレータ(レギュレータ駆動装置)に適用した一実施形態を説明する。本実施形態では、モータ減速機構30として、ヘリカルギヤ(従動ギヤ)38に噛み合うウォームギヤ(駆動ギヤ)39の軸方向両端に2つのモータ100、200(のロータの軸)を係合(結合)したツインモータ減速機構を例示して説明する。図1は、モータ減速機構30をXアーム式ウィンドレギュレータに装着した状態を示しており、車両ドアの金属製のインナパネル(取付パネル)10には、モータ駆動装置20と水平方向のイコライザアームブラケット11が固定されている。昇降窓ガラス12の下端部には、水平方向のリフトアームブラケット13が固定されており、このリフトアームブラケット13とイコライザアームブラケット11にそれぞれ、イコライザアーム14の上下端部に設けたローラ(転動体、図示せず)が移動自在に嵌まっている。イコライザアーム14には、軸15でリフトアーム16が枢着されており、リフトアーム16の上端部に設けたローラ(転動体、図示せず)が同様に、リフトアームブラケット13に移動自在に嵌まっている。 1 to 11, an embodiment in which the motor speed reduction mechanism 30 according to the present invention is applied to an X-arm type window regulator (regulator driving device) will be described. In this embodiment, the motor speed reduction mechanism 30 is a twin in which two motors 100 and 200 (rotor shafts) are engaged (coupled) at both axial ends of a worm gear (drive gear) 39 that meshes with a helical gear (driven gear) 38. A motor speed reduction mechanism will be described as an example. FIG. 1 shows a state in which a motor speed reduction mechanism 30 is mounted on an X-arm type wind regulator. A motor inner device (mounting panel) 10 of a vehicle door is provided with a motor driving device 20 and a horizontal equalizer arm bracket. 11 is fixed. A lift arm bracket 13 in the horizontal direction is fixed to the lower end portion of the elevating window glass 12, and rollers (rolling elements) provided at the upper and lower end portions of the equalizer arm 14 are respectively attached to the lift arm bracket 13 and the equalizer arm bracket 11. , Not shown) is movably fitted. A lift arm 16 is pivotally attached to the equalizer arm 14 by a shaft 15, and a roller (rolling element, not shown) provided at the upper end of the lift arm 16 is similarly movably fitted to the lift arm bracket 13. waiting.
 リフトアーム16は、モータ駆動装置20上の回動軸21を中心に回動自在に支持されており、その下端部に、回動軸21を中心とするセクタギヤ17aを有するドリブンギヤ(回転部材、ドリブンギヤ部材)17が固定されている。セクタギヤ17aは、モータ減速機構30のピニオン31(図2ないし図4)に噛み合っており、ピニオン31が正逆に回転すると、リフトアーム16(ドリブンギヤ17)が回動軸21を中心に正逆に回動し、昇降ガラス12が昇降する。以上のXアーム式ウィンドレギュレータの基本構造(動作)は周知である。 The lift arm 16 is supported so as to be rotatable about a rotation shaft 21 on the motor drive device 20, and a driven gear (rotating member, driven gear) having a sector gear 17 a centering on the rotation shaft 21 at the lower end thereof. Member) 17 is fixed. The sector gear 17a meshes with the pinion 31 (FIGS. 2 to 4) of the motor speed reduction mechanism 30, and when the pinion 31 rotates in the forward and reverse directions, the lift arm 16 (driven gear 17) is moved forward and backward around the rotation shaft 21. It rotates and the raising / lowering glass 12 raises / lowers. The basic structure (operation) of the above X-arm type window regulator is well known.
 モータ駆動装置20は、ドリブンギヤ17に固定されたリフトアーム16、モータ減速機構30、ベースプレート40及び取付脚部材50を有し、インナパネル10上に支持される前において、一次的に組み立てられる(サブアッシとされる)。図2は、モータ減速機構30、リフトアーム16(ドリブンギヤ17)、ベースプレート40及び取付脚部材50を分解状態で示し、図3は組付後の状態を断面で示している。 The motor drive device 20 includes a lift arm 16 fixed to the driven gear 17, a motor speed reduction mechanism 30, a base plate 40, and a mounting leg member 50, and is primarily assembled before being supported on the inner panel 10 (subassembly). ). FIG. 2 shows the motor speed reduction mechanism 30, the lift arm 16 (driven gear 17), the base plate 40, and the mounting leg member 50 in an exploded state, and FIG. 3 shows the state after assembly in cross section.
 ピニオン31を有するモータ減速機構30は、図4に示すように、合成樹脂材料からなるハウジング32(アッパハウジング32aとロアハウジング32b)内に、金属製のモータホルダ36が位置しており、このモータホルダ36に、一対のモータ100、200が支持されている。この一対のモータ100、200(のロータの軸)は、単一のウォームギヤ(駆動ギヤ)39の軸方向両端に、ウォームギヤ39を同一の方向に回転させるように係合(結合)されている。また、モータホルダ36には、一対の固定ボルト33と、回転中心軸部材34が一体に結合されている。この回転中心軸部材34には、金属製のピニオン31と合成樹脂製のヘリカルギヤ(従動ギヤ)38が回転自在に支持されており、ヘリカルギヤ38には一対のモータ100、200によって回転駆動されるウォームギヤ39が噛み合っている。すなわち、一対のモータ100、200の回転駆動力が、ウォームギヤ39を介してヘリカルギヤ38に伝達されるようになっている。 As shown in FIG. 4, a motor speed reduction mechanism 30 having a pinion 31 has a metal motor holder 36 positioned in a housing 32 (upper housing 32a and lower housing 32b) made of a synthetic resin material. A pair of motors 100 and 200 are supported on the holder 36. The pair of motors 100 and 200 (rotor shafts) are engaged (coupled) to both ends of the single worm gear (drive gear) 39 in the axial direction so that the worm gear 39 rotates in the same direction. A pair of fixing bolts 33 and a rotation center shaft member 34 are integrally coupled to the motor holder 36. A metal pinion 31 and a synthetic resin helical gear (driven gear) 38 are rotatably supported on the rotation center shaft member 34, and the helical gear 38 is rotationally driven by a pair of motors 100 and 200. 39 is engaged. That is, the rotational driving force of the pair of motors 100 and 200 is transmitted to the helical gear 38 via the worm gear 39.
 ピニオン31は、中心部の金属製のギヤ部材31aと、このギヤ部材31aにセレーション31a’と31b’によって同軸に結合した金属製の回転プレート31bとを有している。ヘリカルギヤ38には、周方向に間隔をおいて複数の嵌合穴38aが形成されており、回転プレート31bには、これらの複数の嵌合穴38aに遊びなく嵌まる複数の嵌合突起31cが形成されていて、同ピニオン31とヘリカルギヤ38が相対回転不能に結合されている。 The pinion 31 has a metal gear member 31a at the center and a metal rotation plate 31b that is coaxially coupled to the gear member 31a by serrations 31a 'and 31b'. The helical gear 38 has a plurality of fitting holes 38a formed at intervals in the circumferential direction, and the rotating plate 31b has a plurality of fitting protrusions 31c that fit into the plurality of fitting holes 38a without play. The pinion 31 and the helical gear 38 are coupled so as not to rotate relative to each other.
 細長い金属板部材のプレス加工品からなるベースプレート40は、その一端部に、モータ減速機構30の固定ボルト33を固定する一対の固定穴41を有し、他端部に、リフトアーム16の円形貫通穴16aから突出する円形突出部42を有し、中間部分に、回転中心軸部材34に対応する固定穴43を有している。固定ボルト33には、ベースプレート40からの突出部に固定ナット44が螺合され、回転中心軸部材34には、ベースプレート40からの突出部の固定ねじ部34aに固定ナット45が螺合されて、ベースプレート40とモータ減速機構30が結合されている。 The base plate 40 made of a pressed product of an elongated metal plate member has a pair of fixing holes 41 for fixing the fixing bolt 33 of the motor speed reduction mechanism 30 at one end, and the circular penetration of the lift arm 16 at the other end. A circular projecting portion 42 projecting from the hole 16a is provided, and a fixing hole 43 corresponding to the rotation center shaft member 34 is provided in an intermediate portion. A fixing nut 44 is screwed to the protruding portion from the base plate 40 to the fixing bolt 33, and a fixing nut 45 is screwed to the fixing screw portion 34a of the protruding portion from the base plate 40 to the rotation center shaft member 34. The base plate 40 and the motor speed reduction mechanism 30 are coupled.
 ベースプレート40とは別部材からなる金属製の取付脚部材50は、ベースプレート40の円形突出部42に溶接固定される円形部51を備えている。すなわち、ベースプレート40の円形突出部42は、リフトアーム16の円形貫通穴16aから突出しており、この円形突出部42に円形部51が溶接固定されている。円形突出部42、円形部51および円形貫通穴16aは、リフトアーム16の回動軸21を構成する。取付脚部材50には、円形部51の両側に位置する一対の固定座52が設けられている。 The metal mounting leg member 50, which is a member different from the base plate 40, includes a circular portion 51 that is welded and fixed to the circular protrusion 42 of the base plate 40. That is, the circular protruding portion 42 of the base plate 40 protrudes from the circular through hole 16 a of the lift arm 16, and the circular portion 51 is fixed to the circular protruding portion 42 by welding. The circular projecting portion 42, the circular portion 51, and the circular through hole 16 a constitute the rotating shaft 21 of the lift arm 16. The mounting leg member 50 is provided with a pair of fixed seats 52 located on both sides of the circular portion 51.
 モータホルダ36のヘリカルギヤ対向面(図3)には、ヘリカルギヤ38の周縁円弧(歯部38b(ウォームギヤ39との噛合部)の内周部)に対応する直線状のギヤ対向当接部36aが突出形成されている。すなわち、このギヤ対向当接部36aは、ヘリカルギヤ38のウォームギヤ39との噛合部近傍において、その周縁円弧を横切る直線状をなしていて、噛合部に対向当接する。 A linear gear-opposing contact portion 36a corresponding to the peripheral arc of the helical gear 38 (inner peripheral portion of the tooth portion 38b (meshing portion with the worm gear 39)) protrudes from the helical gear-facing surface (FIG. 3) of the motor holder 36. Is formed. That is, the gear-opposing contact portion 36a has a linear shape that crosses the peripheral arc in the vicinity of the meshing portion of the helical gear 38 with the worm gear 39, and opposes the meshing portion.
 一方、アッパハウジング32aのヘリカルギヤ対向面(図3)には、同様に、ヘリカルギヤ38の周縁円弧(歯部38b(ウォームギヤ39との噛合部)の内周部)に対応する円弧状のギヤ対向当接部32cが突出形成され、ベースプレート対向面(図の上面)には、ベースプレート40に当接するスラスト力受け突起32dが突出形成されている。 On the other hand, on the helical gear facing surface (FIG. 3) of the upper housing 32a, similarly, the arc-shaped gear facing surface corresponding to the peripheral arc of the helical gear 38 (the inner peripheral portion of the tooth portion 38b (meshing portion with the worm gear 39)). A contact portion 32c is formed to project, and a thrust force receiving projection 32d that abuts against the base plate 40 is formed on the surface facing the base plate (upper surface in the figure).
 スラスト力受け突起32dは、平面的に見た輪郭内に、ウォームギヤ39とヘリカルギヤ38の噛合部の少なくとも一部を含む円柱状または円筒状をなしている。 The thrust force receiving protrusion 32d has a columnar shape or a cylindrical shape including at least a part of the meshing portion of the worm gear 39 and the helical gear 38 within a planar profile.
 ベースプレート40には、ドリブンギヤ17の周縁部(ギヤ17aの内周側の表面(図の上面))に円弧状に接触する円弧状のギヤ当接凸部が形成されている。一方、アッパハウジング32aは、互いに反対方向に回転するドリブンギヤ17と回転プレート31bの間に位置していて、両者の機械的接触を防ぐと同時に、ドリブンギヤ17の変形を防止する作用をする。すなわち、アッパハウジング32aには、ドリブンギヤ17の周縁部(ギヤ17aの内周側の裏面(図の下面))に円弧状に接触する円弧状のギヤ当接凸部と、回転プレート31bの表面(図の上面)に接触する円弧状のスペーサ突起が形成されている。 The base plate 40 is formed with an arc-shaped gear abutting convex portion that contacts the peripheral edge of the driven gear 17 (the inner peripheral surface of the gear 17a (the upper surface in the drawing)) in an arc shape. On the other hand, the upper housing 32a is located between the driven gear 17 and the rotating plate 31b that rotate in directions opposite to each other. The upper housing 32a functions to prevent mechanical contact between the two and the driven gear 17 at the same time. That is, the upper housing 32a has an arcuate gear abutment convex portion that contacts the peripheral edge of the driven gear 17 (the back surface on the inner peripheral side of the gear 17a (the lower surface in the drawing)) and the surface of the rotating plate 31b ( Arc-shaped spacer protrusions that are in contact with the upper surface of the figure are formed.
 以上のモータ駆動装置20は、インナパネル10上に固定される。すなわち、取付脚部材50の一対の固定座52をインナパネル10の一対の取付座10aに固定ボルトナット53、54(図2、図3)を介して固定し、モータ減速機構30の取付ボルト(取付軸)35(図3)を固定ナット46によりインナパネル10の別の取付座10bに固定する。取付ボルト35は、回転中心軸部材34と同一の軸部材であり、モータ減速機構30のハウジング内に固定された金属製のモータホルダ36(図3、図4)に植設(圧入固定)されていて、互いに反対方向に突出している。 The above motor drive device 20 is fixed on the inner panel 10. That is, the pair of fixing seats 52 of the mounting leg member 50 are fixed to the pair of mounting seats 10a of the inner panel 10 via the fixing bolt nuts 53 and 54 (FIGS. 2 and 3), and the mounting bolt ( The mounting shaft 35 (FIG. 3) is fixed to another mounting seat 10 b of the inner panel 10 by a fixing nut 46. The mounting bolt 35 is the same shaft member as the rotation center shaft member 34 and is implanted (press-fit and fixed) in a metal motor holder 36 (FIGS. 3 and 4) fixed in the housing of the motor speed reduction mechanism 30. And project in opposite directions.
 図5ないし図7を用いて、一対のモータ100、200の構成を説明する。一対のモータ100、200は同一仕様であるため、本明細書中ではモータ100のみの符号を付して説明する(図5ないし図7ではモータ200の符号を括弧書きで付している)。図5に示すように、モータ100は大別して、ハウジング110、ロータ(回転子)120及びブラシユニット130から構成される。 The configuration of the pair of motors 100 and 200 will be described with reference to FIGS. Since the pair of motors 100 and 200 have the same specification, only the motor 100 will be described in the present specification (in FIG. 5 to FIG. 7, the reference numeral of the motor 200 is given in parentheses). As shown in FIG. 5, the motor 100 is roughly divided into a housing 110, a rotor (rotor) 120, and a brush unit 130.
 ハウジング110は、例えば導体である鋼板をプレス装置により絞り加工することにより、断面が四隅が丸みを帯びた四角型であってその軸方向の一端が開口し他端が底壁部110aにより閉塞された有底筒状に形成されている。図6に示すように、ハウジング110の内面の丸みを帯びた四隅には、軸方向に延びる4つのマグネット111が互いに同極を向かい合わせて固定されており、ハウジング110と4つのマグネット111により、ハウジング110の内部に磁界が形成される。 The housing 110 is, for example, a steel plate, which is a conductor, drawn by a pressing device, so that the cross section is a quadrangular shape with rounded corners, one end in the axial direction is opened, and the other end is closed by the bottom wall portion 110a. It has a bottomed cylindrical shape. As shown in FIG. 6, four magnets 111 extending in the axial direction are fixed to the four rounded corners of the inner surface of the housing 110 so that the same poles face each other. The housing 110 and the four magnets 111 A magnetic field is formed inside the housing 110.
 ハウジング110の内部にはロータ120が収容されている。ロータ120はシャフト121を有し、このシャフト121がその一端においてハウジング110の底壁部110aの軸受支持部110bに設けられた軸受112で軸支されることにより、シャフト121がハウジング110に回転自在に支持されている。シャフト121には、ハウジング110と4つのマグネット111により形成された磁界の内部に位置するようにアーマチャ122が固定されており、シャフト121とアーマチャ122が一体に回転するようになっている。アーマチャ122は、導体である板状鋼材(コア)を軸方向に積層することにより略円柱状に形成されており、図6に示すように、中心軸部122aと、この中心軸部122aから周方向外方に等間隔(60°間隔)で延びる6つの延出部122bと、それぞれの延出部122bの先端に設けられた6つの傘部122cとを有する。6つの延出部122bにはそれぞれ、巻線(コイル)123が重ね巻きにより装着されており、これら巻線123はアーマチャ122(シャフト121)とともに回転するようになっている。中心軸部122a並びに隣接する延出部122b及び傘部122cにより構成される6つのスリット(スロット)は、巻線123に流れた電流により発生した電磁力を流す通り道となる。なお、図6では巻線123の図示を省略している。 A rotor 120 is accommodated in the housing 110. The rotor 120 has a shaft 121, and the shaft 121 is pivotally supported at one end thereof by a bearing 112 provided on the bearing support portion 110 b of the bottom wall portion 110 a of the housing 110, so that the shaft 121 is rotatable on the housing 110. It is supported by. An armature 122 is fixed to the shaft 121 so as to be positioned inside a magnetic field formed by the housing 110 and the four magnets 111, and the shaft 121 and the armature 122 rotate integrally. The armature 122 is formed in a substantially cylindrical shape by laminating plate-shaped steel materials (cores) as conductors in the axial direction. As shown in FIG. 6, the armature 122 has a central shaft portion 122a and a peripheral shaft from the central shaft portion 122a. There are six extending portions 122b extending at equal intervals (60 ° intervals) outward in the direction, and six umbrella portions 122c provided at the tips of the respective extending portions 122b. Each of the six extending portions 122b is provided with windings (coils) 123 by lap winding, and these windings 123 rotate together with the armature 122 (shaft 121). Six slits (slots) constituted by the central shaft portion 122a and the adjacent extending portions 122b and umbrella portions 122c serve as paths for the electromagnetic force generated by the current flowing in the winding 123 to flow. In FIG. 6, the winding 123 is not shown.
 シャフト121には、アーマチャ122に対して軸方向に隣接して整流子(コミテータ)124が固定されている。整流子124は、周方向に等間隔(60°間隔)で並ぶ6つの整流子片(電気接点)124aを備えており、各整流子片124aには、それぞれ対応する巻線123が電気的に接続されている。本実施形態では、図7に示すように、6つの整流片124aのうち対向する2つの組を124a1、124a2、124a3と呼ぶこととする。 A commutator 124 is fixed to the shaft 121 adjacent to the armature 122 in the axial direction. The commutator 124 includes six commutator pieces (electrical contacts) 124a arranged at regular intervals (60 ° intervals) in the circumferential direction, and the corresponding windings 123 are electrically connected to the commutator pieces 124a. It is connected. In the present embodiment, as shown in FIG. 7, two opposing sets among the six rectifying pieces 124 a are referred to as 124 a 1, 124 a 2, and 124 a 3.
 ハウジング110の内部にはブラシユニット130が収容されている。ブラシユニット130は樹脂製のブラシホルダ131を有し、このブラシホルダ131に、整流子124(整流子片124a)を介して巻線123に駆動電流を供給するための2つのブラシ132が径方向に対向して(180°間隔で)装着されている。2つのブラシ132はブラシアーム133に保持されており、整流子124(整流子片124a)の外周面に弾性的に摺接するようになっている。ブラシユニット130の外部には、2つのブラシ132と電気的に接続されたターミナル(図示せず)が延出されている。また、モータ100は、ハウジング110の内部にロータ120及びブラシユニット130を収容した状態でハウジング110の開口端を塞ぐ蓋部材(図示せず)を備えており、この蓋部材によってハウジング110の内部と外部が電気的に絶縁される。 A brush unit 130 is accommodated in the housing 110. The brush unit 130 has a resin brush holder 131, and two brushes 132 for supplying a drive current to the winding 123 via the commutator 124 (commutator piece 124a) are provided in the radial direction. Is mounted opposite (at intervals of 180 °). The two brushes 132 are held by the brush arm 133, and are elastically slidably contacted with the outer peripheral surface of the commutator 124 (commutator piece 124a). A terminal (not shown) electrically connected to the two brushes 132 extends outside the brush unit 130. The motor 100 also includes a lid member (not shown) that closes the open end of the housing 110 in a state where the rotor 120 and the brush unit 130 are accommodated inside the housing 110. The outside is electrically insulated.
 モータ100は、ハウジング110の内部にロータ120及びブラシユニット130を収容すると、ロータ120のシャフト121の一端がハウジング110の底壁部110aに回転自在に支持されるとともに、同シャフト121の他端部がブラシユニット130のブラシホルダ131に回転自在に支持される。ブラシユニット130の2つのブラシ132は、整流片124a1、124a2、124a3のいずれかに接触している(電気的に接続している)。この状態で2つのブラシ132と電気的に接続されたターミナル(図示せず)に電流を流すと、この電流は、ハウジング110の内部に形成された磁界の中で、2つのブラシ132からこの2つのブラシ132と接触している2つの整流片124a及びこれに対応する巻線123に流れて、ロータ120が回転し始め、その後、ロータ120は、2つのブラシ132に接触する整流片124aを切り替えながら回転し続ける。すなわち、図7(A)-(C)に示すように、ロータ120が回転するに従って、2つのブラシ132は、接触する整流片124aを、整流片124a1、整流片124a2、整流片124a3の順に切り替えていく。 When the motor 100 accommodates the rotor 120 and the brush unit 130 inside the housing 110, one end of the shaft 121 of the rotor 120 is rotatably supported by the bottom wall portion 110 a of the housing 110 and the other end portion of the shaft 121. Is rotatably supported by the brush holder 131 of the brush unit 130. The two brushes 132 of the brush unit 130 are in contact with (electrically connected to) one of the rectifying pieces 124a1, 124a2, and 124a3. When a current is passed through a terminal (not shown) electrically connected to the two brushes 132 in this state, the current is generated from the two brushes 132 in the magnetic field formed inside the housing 110. The two rectifying pieces 124a that are in contact with the two brushes 132 and the corresponding windings 123 flow to the rotor 120, and then the rotor 120 switches between the rectifying pieces 124a that are in contact with the two brushes 132. Continue to rotate while. That is, as shown in FIGS. 7A to 7C, as the rotor 120 rotates, the two brushes 132 switch the rectifying piece 124a in contact with the rectifying piece 124a1, the rectifying piece 124a2, and the rectifying piece 124a3 in this order. To go.
 そして本実施形態では、2つのモータ100、200でブラシ132、232に対する整流子124、224の切り替わりが異なるタイミングで(シリーズで)生じるように、2つのモータ100、200のロータ120、220の軸をウォームギヤ39の軸方向両端に係合(固定)している。より具体的には、モータ100、200のハウジング110、210及びブラシユニット130、230の配置は対称としつつ、図8に示すように、モータ100、200内にロータ120、220を、両ロータ120、220の整流子124、224に対する(を基準とする)停止時位相が30°だけ異なるように配置している(両ロータ120、220を30°だけ相対回転させて配置している)。ロータ120、220の整流子124、224に対する停止時位相は、ロータ120、220とマグネット111、211の吸引力により発生するコギングトルクを利用して規定される(ロータ120、220の回転角度が保持される)。また、ウォームギヤ39及びモータ100、200には、モータ100、200のロータ120、220の複数の整流子124、224に対する停止時位相を規定する指標が設けられており、モータ100、200内へのロータ120、220の組付けが容易になる。この指標は例えば、ウォームギヤ39及びモータ100、200のロータ120、220の軸に設けられたDカット等とすることができる。 In this embodiment, the shafts of the rotors 120 and 220 of the two motors 100 and 200 are generated at different timings (in series) between the commutators 124 and 224 with respect to the brushes 132 and 232 in the two motors 100 and 200. Is engaged (fixed) at both axial ends of the worm gear 39. More specifically, the arrangement of the housings 110 and 210 and the brush units 130 and 230 of the motors 100 and 200 is symmetric, and the rotors 120 and 220 are arranged in the motors 100 and 200 as shown in FIG. , 220 with respect to the commutators 124, 224 are arranged so that the phase at the time of stopping (relative to) is different by 30 ° (the rotors 120, 220 are arranged by being relatively rotated by 30 °). The stop phase of the rotors 120 and 220 with respect to the commutators 124 and 224 is defined by using a cogging torque generated by the attractive force of the rotors 120 and 220 and the magnets 111 and 211 (the rotation angle of the rotors 120 and 220 is maintained). ) In addition, the worm gear 39 and the motors 100 and 200 are provided with an index that defines a stop phase with respect to the plurality of commutators 124 and 224 of the rotors 120 and 220 of the motors 100 and 200. Assembling of the rotors 120 and 220 is facilitated. For example, the index may be a D-cut provided on the shafts of the worm gear 39 and the rotors 120 and 220 of the motors 100 and 200.
 以上の構成によるモータ減速機構によれば、図9のタイミングチャートに示すように、モータ100におけるブラシ132と整流子124(整流片124a1~124a3)の切り替わり(図9中の破線)と、モータ200におけるブラシ232と整流子224(整流片224a1~224a3)の切り替わり(図9中の一点鎖線)が異なるタイミングで生じ、しかもその切り替わりが起こる周期Tを同一にできるので、トルク低下現象を防止することができる。 According to the motor speed reduction mechanism configured as described above, as shown in the timing chart of FIG. 9, the brush 132 and the commutator 124 (rectifying pieces 124 a 1 to 124 a 3) in the motor 100 are switched (broken lines in FIG. 9), and the motor 200 The switching of the brush 232 and the commutator 224 (the rectifying pieces 224a1 to 224a3) at the same time (the one-dot chain line in FIG. 9) occurs at different timings. Can do.
 仮に、図10に示すように、2つのモータ100、200のロータ120、220の整流子124、224に対する位相が同一であると、図11のタイミングチャートに示すように、モータ100におけるブラシ132と整流子124(整流片124a1~124a3)の切り替わりと、モータ200におけるブラシ232と整流子224(整流片224a1~224a3)の切り替わりが同時に生じ、これが原因でトルク低下現象が生じてしまうが、本実施の形態ではそのような問題は発生しない。 As shown in FIG. 10, if the phases of the rotors 120 and 220 of the two motors 100 and 200 are the same as those of the commutators 124 and 224, as shown in the timing chart of FIG. Switching of the commutator 124 (rectifying pieces 124a1 to 124a3) and switching of the brush 232 and the commutator 224 (rectifying pieces 224a1 to 224a3) in the motor 200 occur at the same time, and this causes a torque reduction phenomenon. Such a problem does not occur in this form.
 以上の実施形態においては、2つのモータのロータが有する整流子の数が6つである場合を例示して説明したが、整流子の数はこれに限定されない。そして整流子の数がnであるとき(整流子の角度間隔θ=360°/n)、2つのロータの停止時位相をθ/2(=180゜/n)だけ異ならせればよい。 In the above embodiment, the case where the number of commutators included in the rotors of the two motors is six is described as an example, but the number of commutators is not limited to this. When the number of commutators is n (the commutator angular interval θ = 360 ° / n), the phase when the two rotors are stopped may be different by θ / 2 (= 180 ° / n).
 以上の実施形態においては、モータ減速機構が、ウォームギヤ39の軸方向両端に2つのモータ100、200を係合(結合)したツインモータ減速機構である場合を例示して説明したが、本願発明はこれに限定されない。この変形例について、図12ないし図15を用いて説明する。 In the above embodiment, the case where the motor speed reduction mechanism is a twin motor speed reduction mechanism in which the two motors 100 and 200 are engaged (coupled) at both ends in the axial direction of the worm gear 39 has been described as an example. It is not limited to this. This modification will be described with reference to FIGS.
 図12(A)では、ヘリカルギヤ38に噛み合わせたウォームギヤ39の軸方向の一端部に2つのモータM1,M3を結合し、他端部に1つのモータM2を結合している。図12(B)では、ヘリカルギヤ38に噛み合わせたウォームギヤの軸方向の一端部に2つのモータM1,M3を結合し、他端部に2つのモータM2,M4を結合している。 In FIG. 12A, two motors M1 and M3 are coupled to one end of the worm gear 39 engaged with the helical gear 38 in the axial direction, and one motor M2 is coupled to the other end. In FIG. 12B, two motors M1 and M3 are coupled to one axial end portion of the worm gear meshed with the helical gear 38, and two motors M2 and M4 are coupled to the other end portion.
 図13(A)では、ヘリカルギヤ38に2つのウォームギヤ39A、39Bを噛み合わせて、この2つのウォームギヤ39A、39Bにそれぞれ1つのモータM1,M2を結合している。図13(B)では、ヘリカルギヤ38に3つのウォームギヤ39A、39B、39Cを噛み合わせて、この3つのウォームギヤ39A、39B、39Cにそれぞれ1つのモータM1,M2,M3を結合している。 In FIG. 13A, two worm gears 39A and 39B are meshed with the helical gear 38, and one motor M1 and M2 are coupled to the two worm gears 39A and 39B, respectively. In FIG. 13B, three worm gears 39A, 39B, and 39C are meshed with the helical gear 38, and one motor M1, M2, and M3 is coupled to each of the three worm gears 39A, 39B, and 39C.
 図14(A)、(B)、(C)では、それぞれ、ヘリカルギヤ38に2つのウォームギヤ(39A、39B)、3つのウォームギヤ(39A-39C)、4つのウォームギヤ(39A-39D)を噛み合わせて、これらウォームギヤにそれぞれ1つのモータを結合している。そして隣接するウォームギヤに結合されたモータが互いに干渉しないように、各モータを風車状に配置している。 14A, 14B, and 14C, the helical gear 38 is meshed with two worm gears (39A, 39B), three worm gears (39A-39C), and four worm gears (39A-39D), respectively. These worm gears are each coupled with one motor. Each motor is arranged in a windmill shape so that motors coupled to adjacent worm gears do not interfere with each other.
 図15(A)では、ヘリカルギヤ38に2つのウォームギヤ39A、39Bを噛み合わせて、一方のウォームギヤ39Aの軸方向両端に2つのモータM1,M2を結合し、他方のウォームギヤ39Bの軸方向両端に2つのモータM3,M4を結合している。図15(B)では、ヘリカルギヤに2つのウォームギヤを噛み合わせて、一方のウォームギヤ39Aの軸方向両端に2つのモータM1,M2を結合し、他方のウォームギヤ39Bの軸方向の一端部に1つのモータM3を結合している。 In FIG. 15 (A), two worm gears 39A and 39B are meshed with a helical gear 38, two motors M1 and M2 are coupled to both axial ends of one worm gear 39A, and two axially opposite ends of the other worm gear 39B. Two motors M3 and M4 are connected. In FIG. 15 (B), two worm gears are meshed with a helical gear, two motors M1 and M2 are coupled to both axial ends of one worm gear 39A, and one motor is coupled to one axial end of the other worm gear 39B. M3 is bound.
 図12ないし図15のいずれの態様であっても、2つのモータM1-M2、3つのモータM1-M3、又は4つのモータM1-M4のうち少なくとも1つのモータを、該1つのモータのブラシに対する整流子の切り替わりタイミングが他のモータのブラシに対する整流子の切り替わりタイミングと異なるように配置して、トルク低下現象を防止することができる。モータの数を5つ以上とした場合でも同様である。また、ウォームギヤ(駆動ギヤ)に対するモータの係合及び複数のモータどうしの係合は、フレキシブルシャフトで行ってもよい。 12 to 15, at least one of the two motors M1-M2, the three motors M1-M3, or the four motors M1-M4 is connected to the brush of the one motor. The torque switching phenomenon can be prevented by arranging the switching timing of the commutator to be different from the switching timing of the commutator for the brushes of other motors. The same applies when the number of motors is five or more. Further, the engagement of the motor to the worm gear (drive gear) and the engagement of the plurality of motors may be performed by a flexible shaft.
 以上の実施形態は、本発明をアーム式ウィンドレギュレータに適用したものであるが、本発明は、複数のモータの回転駆動力を、駆動ギヤを介して従動ギヤに伝達するモータ減速機構であれば、シートスライド、シートリフター等の各種装置に適用可能である。 In the above embodiment, the present invention is applied to an arm type window regulator. However, the present invention is a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors to a driven gear via a driving gear. It can be applied to various devices such as seat slides and seat lifters.
 本発明のモータ減速機構は、ウィンドレギュレータ、シートスライド、シートリフター等の各種装置に適用されるモータ減速機構として有用である。 The motor speed reduction mechanism of the present invention is useful as a motor speed reduction mechanism applied to various devices such as a window regulator, a seat slide, and a seat lifter.
10 インナパネル(取付パネル)
10a 10b 取付座
11 イコライザアームブラケット
12 昇降ガラス
13 リフトアームブラケット
14 イコライザアーム
15 軸
16 リフトアーム
16a 円形貫通穴
17 ドリブンギヤ(回転部材、ドリブンギヤ部材)
17a セクタギヤ
20 モータ駆動装置
21 回動軸
30 モータ減速機構(ツインモータ減速機構)
31 ピニオン
31a ギヤ部材
31b 回転プレート
31c 嵌合突起
32 ハウジング
32c ギヤ対向当接部
32d スラスト力受け突起
33 固定ボルト
34 回転中心軸部材
35 取付ボルト
36 モータホルダ
36a ギヤ対向当接部
38 ヘリカルギヤ(従動ギヤ)
38a 嵌合穴
38b 歯部
39 39A 39B 39C 39D ウォームギヤ(駆動ギヤ)
40 ベースプレート
41 固定穴
42 円形突出部
43 固定穴
50 取付脚部材
51 円形部
52 固定座
100、200 一対のモータ
110、210 ハウジング
110a、210a 底壁部
110b、210b 軸受支持部
111、211 マグネット
112、212 軸受
120、220 ロータ(回転子)
121、221 シャフト
122、222 アーマチャ
122a、222a 中心軸部
122b、222b 延出部
122c、222c 傘部
123、223 巻線(コイル)
124、224 整流子
124a、124a1、124a2、124a3、224a、224a1、224a2、224a3 整流子片
130、230 ブラシユニット
131、231 ブラシホルダ
132、232 ブラシ
133、233 ブラシアーム
10 Inner panel (mounting panel)
10a 10b Mounting seat 11 Equalizer arm bracket 12 Elevating glass 13 Lift arm bracket 14 Equalizer arm 15 Shaft 16 Lift arm 16a Circular through hole 17 Driven gear (rotating member, driven gear member)
17a Sector gear 20 Motor drive device 21 Rotating shaft 30 Motor speed reduction mechanism (twin motor speed reduction mechanism)
31 Pinion 31a Gear member 31b Rotating plate 31c Fitting protrusion 32 Housing 32c Gear facing contact portion 32d Thrust force receiving protrusion 33 Fixing bolt 34 Rotating center shaft member 35 Mounting bolt 36 Motor holder 36a Gear facing contact portion 38 Helical gear (driven gear) )
38a Fitting hole 38b Tooth 39 39A 39B 39C 39D Worm gear (drive gear)
40 Base plate 41 Fixed hole 42 Circular protrusion 43 Fixed hole 50 Mounting leg member 51 Circular portion 52 Fixed seat 100, 200 Pair of motors 110, 210 Housing 110a, 210a Bottom wall portion 110b, 210b Bearing support portion 111, 211 Magnet 112, 212 Bearing 120, 220 Rotor (rotor)
121, 221 Shafts 122, 222 Armatures 122a, 222a Center shaft portions 122b, 222b Extension portions 122c, 222c Umbrella portions 123, 223 Windings (coils)
124, 224 Commutator 124a, 124a1, 124a2, 124a3, 224a, 224a1, 224a2, 224a3 Commutator piece 130, 230 Brush unit 131, 231 Brush holder 132, 232 Brush 133, 233 Brush arm

Claims (7)

  1.  複数のモータの回転駆動力を、駆動ギヤを介して従動ギヤに伝達するモータ減速機構において、
     上記複数のモータのうち少なくとも1つのモータは、該1つのモータのブラシに対する整流子の切り替わりタイミングが他のモータのブラシに対する整流子の切り替わりタイミングと異なるように配置されていることを特徴とするモータ減速機構。
    In a motor speed reduction mechanism that transmits the rotational driving force of a plurality of motors to a driven gear via a driving gear,
    At least one of the plurality of motors is arranged such that the switching timing of the commutator for the brush of the one motor is different from the switching timing of the commutator for the brush of the other motor. Reduction mechanism.
  2.  請求の範囲第1項記載のモータ減速機構において、
     上記複数のモータは、ロータ及び周方向に等間隔で並ぶ複数の整流子を有しており、それぞれのロータの複数の整流子に対する停止時位相が異なるように配置されているモータ減速機構。
    In the motor speed reduction mechanism according to claim 1,
    The motor reduction mechanism, wherein the plurality of motors includes a rotor and a plurality of commutators arranged at equal intervals in the circumferential direction, and are arranged such that phases at the time of stopping of the plurality of commutators of the respective rotors are different.
  3.  請求の範囲第1項または第2項記載のモータ減速機構において、
     上記従動ギヤには少なくとも1つの駆動ギヤが噛み合っており、この少なくとも1つの駆動ギヤに上記複数のモータが係合されているモータ減速機構。
    In the motor speed reduction mechanism according to claim 1 or 2,
    A motor speed reduction mechanism in which at least one drive gear meshes with the driven gear, and the plurality of motors are engaged with the at least one drive gear.
  4.  請求の範囲第1項ないし第3項のいずれか1項記載のモータ減速機構において、
     上記従動ギヤには複数の駆動ギヤが噛み合っており、この複数の駆動ギヤのそれぞれに、上記複数のモータの少なくとも1つが係合されているモータ減速機構。
    The motor speed reduction mechanism according to any one of claims 1 to 3,
    A motor speed reduction mechanism in which a plurality of drive gears are engaged with the driven gear, and at least one of the plurality of motors is engaged with each of the plurality of drive gears.
  5.  請求の範囲第1項ないし第4項のいずれか1項記載のモータ減速機構において、
     上記駆動ギヤ及び上記複数のモータには、上記複数のモータのロータの複数の整流子に対する停止時位相を規定する指標が設けられているモータ減速機構。
    The motor speed reduction mechanism according to any one of claims 1 to 4,
    A motor speed reduction mechanism in which the driving gear and the plurality of motors are provided with an index for defining a stop phase with respect to a plurality of commutators of a rotor of the plurality of motors.
  6.  従動ギヤに噛み合う少なくとも1つの駆動ギヤに係合するモータであって、
     上記モータのロータの複数の整流子に対する停止時位相を規定する指標が設けられているモータ。
    A motor engaged with at least one drive gear meshing with a driven gear,
    The motor provided with the parameter | index which prescribes | regulates the phase at the time of the stop with respect to several commutators of the rotor of the said motor.
  7.  請求の範囲第1項ないし第5項のいずれか1項記載のモータ減速機構を有するレギュレータ駆動装置。 A regulator driving device having the motor speed reduction mechanism according to any one of claims 1 to 5.
PCT/JP2010/055840 2010-03-31 2010-03-31 Motor speed reduction mechanism WO2011121754A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055840 WO2011121754A1 (en) 2010-03-31 2010-03-31 Motor speed reduction mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055840 WO2011121754A1 (en) 2010-03-31 2010-03-31 Motor speed reduction mechanism

Publications (1)

Publication Number Publication Date
WO2011121754A1 true WO2011121754A1 (en) 2011-10-06

Family

ID=44711541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055840 WO2011121754A1 (en) 2010-03-31 2010-03-31 Motor speed reduction mechanism

Country Status (1)

Country Link
WO (1) WO2011121754A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192957A1 (en) * 2014-06-16 2015-12-23 Novoferm Tormatic Gmbh Drive device for a gate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344927A (en) * 1993-06-04 1994-12-20 Koyo Seiko Co Ltd Motor-driven power steering device
JPH08280157A (en) * 1995-04-06 1996-10-22 Nakamichi Corp Composite motor
JP2001037138A (en) * 1999-07-21 2001-02-09 Asmo Co Ltd Motor attachment structure and power window regulator
JP2006166685A (en) * 2004-12-10 2006-06-22 Sony Corp Vibration generating motor and electronic apparatus provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344927A (en) * 1993-06-04 1994-12-20 Koyo Seiko Co Ltd Motor-driven power steering device
JPH08280157A (en) * 1995-04-06 1996-10-22 Nakamichi Corp Composite motor
JP2001037138A (en) * 1999-07-21 2001-02-09 Asmo Co Ltd Motor attachment structure and power window regulator
JP2006166685A (en) * 2004-12-10 2006-06-22 Sony Corp Vibration generating motor and electronic apparatus provided with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192957A1 (en) * 2014-06-16 2015-12-23 Novoferm Tormatic Gmbh Drive device for a gate

Similar Documents

Publication Publication Date Title
KR100750402B1 (en) Fan motor
US11828098B2 (en) Drive device for a window lift, having a bearing element for fixing a stator in a housing
JP7026045B2 (en) Permanent magnet application motor
JPH0327757A (en) Electric motor
US20190284863A1 (en) Drive device for a window lifter having an external rotor motor
JP5559864B2 (en) Electric auxiliary drive, especially wiper drive
KR20090055879A (en) Reduction-gears integrated bldc motor
JP4897476B2 (en) Small motor
JP5563885B2 (en) Motor with reduction mechanism
JPH0366882A (en) Door locking device
JP2005503979A (en) Small drive for elevator doors
WO2011121754A1 (en) Motor speed reduction mechanism
WO2003065551A1 (en) Axial gap electric motor
JP2022157471A (en) Rotation-driving device
JP5959272B2 (en) Method of using motor and motor
JP3589994B2 (en) motor
CN212109155U (en) Air door device and refrigerator
GB2574792A (en) Rotationally balanced electric motor with air-core stator coils
CN107559387B (en) Motor speed reducer
JP2010091009A (en) Motor with speed reduction mechanism
KR101266487B1 (en) Reduction gear apparatus
JP7034810B2 (en) Speed reduction mechanism and motor with speed reducer
JP3694251B2 (en) Inductor-type rotating electrical machine with speed reduction mechanism
JP2008230600A (en) Seat adjusting device
US20230383586A1 (en) Drive device for pivoting a leaf, hinged door or casement window assembly, and use of the drive device for a hinged door or casement window drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP