WO2011120960A1 - Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation - Google Patents

Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation Download PDF

Info

Publication number
WO2011120960A1
WO2011120960A1 PCT/EP2011/054808 EP2011054808W WO2011120960A1 WO 2011120960 A1 WO2011120960 A1 WO 2011120960A1 EP 2011054808 W EP2011054808 W EP 2011054808W WO 2011120960 A1 WO2011120960 A1 WO 2011120960A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
magnesium metal
cement
magnesium
matrix
Prior art date
Application number
PCT/EP2011/054808
Other languages
English (en)
Inventor
David Lambertin
Fabien Frizon
Adrien Blachere
Florence Bart
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/638,479 priority Critical patent/US20130014670A1/en
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to JP2013501806A priority patent/JP5635178B2/ja
Priority to EP11710514.8A priority patent/EP2552849B1/fr
Priority to CN201180018125.1A priority patent/CN102834364B/zh
Publication of WO2011120960A1 publication Critical patent/WO2011120960A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0463Hazardous waste
    • C04B18/0472Waste material contaminated by heavy metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/0481Other specific industrial waste materials not provided for elsewhere in C04B18/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/005Geopolymer cements, e.g. reaction products of aluminosilicates with alkali metal hydroxides or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention belongs to the technical field of the disposal and packaging of waste such as metal nuclear waste containing in particular magnesium metal.
  • the present invention provides a method for decreasing the hydrogen source term upon immobilization of magnesium metal by a cementitious matrix. More particularly, the present invention proposes the use of anti-corrosion agents to reduce the production of hydrogen during the conditioning of magnesium metal in a hydraulic or geopolymeric cementitious matrix.
  • the present invention also relates to the packaging materials used in this process and a process for preparing such materials.
  • UNGG nuclear facilities for "Natural Uranium - Graphite - Gas" are based on cooled and natural graphite modulated natural uranium reactors.
  • the fissile material used is a natural uranium in metallic form, while the cladding material is in magnesium metal, in particular in the form of an alloy.
  • Magnesium metal and its alloys are widely studied for applications in aeronautics and many anti-corrosion chemical treatments are available in the literature [7]. Most of these treatments consist of covering with a coating (or “coating") the magnesium metal parts or one of its alloys, the coating containing agents such as dichromates, silicates, phosphates and fluorides.
  • fluoride ions supplied in the form of potassium fluoride (KF), sodium fluoride (NaF) or ammonium fluoride (NH 4 F) as an anti corrosion treatment ⁇ magnesium metal
  • KF potassium fluoride
  • NaF sodium fluoride
  • NH 4 F ammonium fluoride
  • the electrochemical study identified the areas of pH and fluoride ion concentration in solution where magnesium metal had the lowest corrosion currents [8]. The pH and fluoride concentration must be greater than 13 and 2 M.
  • the present invention makes it possible to solve the disadvantages of the conditioning processes of waste containing magnesium metal of the state of the art and achieve the goal that the inventors have set themselves namely to propose a process in which the production of hydrogen due to the oxidative corrosion of magnesium metal is decreased or inhibited.
  • the cementitious matrix type material in which the magnesium metal is then incorporated or a magnesium metal-containing technological waste is thus easy to prepare, easy to handle and ready for use. More particularly, the present invention relates to the use of at least one corrosion inhibiting additive for reducing the production of hydrogen by corrosion of the magnesium metal packaged in a cementitious matrix.
  • the present invention provides a method for reducing the production of hydrogen by corrosion of the magnesium metal packaged in a cementitious matrix, said method consiting to condition the magnesium metal in a cement matrix comprising at least one corrosion inhibitor additive .
  • reducing the production of hydrogen is meant, in the context of the present invention, to reduce, minimize or even inhibit the production of hydrogen, compared to the production of hydrogen by corrosion of the same magnesium metal conditioned in the same cement matrix but in the absence of corrosion inhibitor additive.
  • magnesium metal is meant in the context of the present invention, magnesium metal pure or in the form of a magnesium metal alloy.
  • a magnesium metal alloy is more particularly selected from the group consisting of magnesium / aluminum, magnesium / zirconium and magnesium / manganese. In these alloys, the amount of magnesium is greater than 80%, 90% and 95% expressed by weight relative to the total mass of the alloy.
  • Magnesium / zirconium and magnesium / manganese alloys from UNGG dies are, more particularly, used in the context of the present invention, the magnesium / aluminum alloy being derived from the MAGNOX die.
  • Metallic magnesium are equivalent and can be used interchangeably.
  • corrosion inhibiting additive is meant, in the context of the present invention, an additive capable of inhibiting the corrosion of magnesium metal. Any additive which makes it possible to inhibit the corrosion of magnesium metal and which is known to those skilled in the art can be used in the context of the present invention and in particular the organic and inorganic additives mentioned in document [7].
  • the corrosion inhibiting additive used in the context of the present invention is a mineral additive (i.e. inorganic). Indeed, there is a risk of radiolysis for organic corrosion inhibiting additives such as carboxylates, the waste containing magnesium metal being radioactive.
  • the corrosion inhibiting additive is selected from the group consisting of a fluorinated compound, a stannate compound, a molybdate-based compound, a silicate compound, a cerium (III) compound, a phosphate compound, a (di) chromate compound and a cobalt compound, a carboxylate base and mixtures thereof.
  • the fluorinated compound used in the context of the present invention is a source of fluoride ions.
  • this compound is a mineral fluorinated compound chosen in particular from the group consisting of sodium fluoride, potassium fluoride, ammonium fluoride, cerium (III) fluoride, lithium fluoride, iron bifluoride, lead bifluoride, potassium bifluoride, sodium bifluoride, titanium fluoride, rubidium fluoride and mixtures thereof.
  • the stannate compound used in the context of the present invention is a source of stannate ions Sn03 2 ⁇ or Sn (OH) 6 2 ⁇ .
  • this stannate compound is selected from the group consisting of potassium stannate, sodium stannate, barium stannate, zinc stannate, copper stannate and mixtures thereof.
  • the molybdate compound used in the context of the present invention is a source of oxoanions with molybdenum, in particular of MoO 4 2 ⁇ or ⁇ 4 ⁇ ⁇ 3 2 ⁇ type .
  • the molybdate-based compound is selected from the group consisting of potassium molybdate, sodium molybdate, zinc molybdate, calcium molybdate, zinc and calcium molybdate, and mixtures thereof.
  • the silicate compound used in the context of the present invention is a source of SiO 4 4 ⁇ ions.
  • the silicate compound is selected from the group consisting of calcium silicate, potassium silicate, sodium silicate, aluminum silicate, calcium borosilicate and mixtures thereof.
  • the compound based on cerium (III) used in the context of the present invention is a source of Ce 3+ cations.
  • the compound based on cerium (III) is chosen from the group consisting of cerium (III) nitrate, cerium (III) fluoride, cerium (III) chloride, cerium (III) sulphate and their mixtures.
  • the phosphate-based compound used in the context of the present invention is a PC- 3 anion source such as zinc phosphate, manganese phosphate or a mixture thereof.
  • the compound-based (di) chromate implemented in the context of the present invention is a source of anions CrC ⁇ 2- or anions (3 ⁇ 407 2 ⁇ .
  • the base compound of (di) chromate is selected from the group consisting of sodium (di) chromate, potassium di (chromium), barium (di) chromate, aluminum (di) chromate, zinc (di) chromate and mixtures thereof.
  • the cobalt-based compound used in the context of the present invention is a source of Co 2+ cations.
  • the cobalt-based compound is chosen from the group consisting of cobalt phosphate, cobalt sulfate, cobalt hydroxide, cobalt nitrate and mixtures thereof.
  • the carboxylate compound to basic implemented in the context of the present invention is a source of anions COO- such as magnesium carboxylate, sodium carboxylate or a mixture thereof.
  • mixture in the context of the present invention relates, on the one hand, to a mixture of at least two distinct elements belonging to groups of the same or different corrosion inhibitor additives and, on the other hand, a Corrosion inhibiting additive belonging to two groups of different corrosion inhibitor additives.
  • cerium (III) fluoride is a source of both fluoride ions and cerium (III) cations and, for this reason, belongs to both the group of fluorinated compounds and the group of cerium (III).
  • cementitious matrix is intended to mean a solid and porous material in the dry state, obtained following the hardening of a plastic mixture containing finely ground materials and water or a saline solution. said plastic mixture being able to set and harden over time.
  • This mixture may also be referred to as "cementitious mix” or "cementitious composition”.
  • cementitious matrix in the context of the present invention, can be hydraulic or geopolymeric.
  • the cementitious matrix used in the context of the present invention is a hydraulic cement matrix in which the hardening is the result of the hydration of the finely ground materials of the mixture. cementitious.
  • the finely ground materials of the cementitious mixture consist, in whole or in part, of a finely ground clinker.
  • clinker is meant a mixture comprising one (or more) element (s) chosen from the group consisting of:
  • a source of alumina such as ordinary bauxite or red bauxite
  • a sulphate source such as gypsum, calcium sulphate hemihydrate, plaster, natural anhydrite or suifocalcic ash, said element (s) being crushed, homogenized and carried (s) at high temperature above 1200 ° C, especially above 1300 ° C, in particular of the order of 1450 ° C.
  • By “of the order of 1450 ° C” means a temperature of 1450 ° C ⁇ 100 ° C, preferably a temperature of 1450 ° C ⁇ 50 ° C.
  • the high temperature cooking step is called "clinkerization". After the preparation of the clinker and before or during its grinding, at least one other additive such as a sulfate source as defined above can be added thereto.
  • the cement matrix may be a Portland cement or a Portland cement compound.
  • a Portland cement advantageously comprises between 50 and 70% of tricalcium silicate [(CaO) 3 S 10 2 ], between 10 and 25% of dicalcium silicate [(CaO) 2 S 10 2], between 5 and 15% of tricalcium aluminate [ (CaO) 3 Al 2 O 3], between 5 and 10% of tetracalcium aluminoferrite [(CaO) 4 Al 2 0 3 Fe20 3].
  • Such Portland cement can be mixed with secondary compounds to give a "Portland cement compound" in which the amount of secondary compounds such as limestone or blast furnace slags is greater than 3%, especially between 5 and 80%, in in particular, between 10 and 60% by weight relative to the total weight of said Portland cement compound.
  • the cementitious matrix may also be an aluminous cementitious matrix, i.e., the clinker of which mainly comprises calcium aluminates.
  • the cementitious matrix may also be a sulfo-aluminous and / or ferro-aluminous cementitious matrix.
  • the patent application EP 0 900 771 describes in particular cementitious mixtures based on aluminosiloxines and ferroaluminous clinkers.
  • clinkers are cementitious binders with fast curing properties and obtained by clinkerization at a temperature ranging between 1200 and 1350 ° C of mixtures containing at least one source of lime such as limestone with a CaO content ranging between 50 and 60% at least one source of alumina and at least one sulphate source as previously defined.
  • a sulfo-aluminous clinker comprises between 28 and 40% of Al 2 O 3 , between 3 and 10% of SiO 2 , between 36 and 43% of CaO, between 1 and 3% of Fe 2 O 3 , and between 8 and 15% SO 3 .
  • a ferroaluminous clinker comprises, for its part, between 25 and 30% of Al 2 O 3, between 6 and 12% of SiO 2 , between 36 and 43% of CaO, between 5 and 12% of Fe 2 O 3 , and between 5 and 10% SO 3 .
  • the hydration of the finely ground materials of the cementitious mixture requires the use of a solution called "mixing solution".
  • the latter may comprise at least one corrosion inhibiting additive as defined above.
  • the solvent of the mixing solution is in particular a protic solvent and, in particular, water.
  • the concentration of additive (s) inhibitor (s) corrosion in the mixing solution is advantageously between 10 mM and 10 M, especially between 100 mM and 8 M and, in particular, between 200 mM and 5 M.
  • the hydraulic cementitious matrices used for the conditioning of magnesium metal in the state of the art must have a small amount of water to prevent the corrosion of the magnesium metal and therefore the production of hydrogen.
  • the addition of corrosion inhibitor (s) in the mixing water makes it possible to solve the technical problem of producing hydrogen: cementitious matrices Hydraulics are therefore not limited in the amount of water to be used.
  • the ratio E / C ratio in the present invention is advantageously greater than 0.2, in particular between 0.3 and 1.5 and, in particular, between 0.38 and 1.
  • E / C ratio we mean the mass ratio of the amount of water (ie the amount of mixing solution) on the amount of cement (ie dry cement mixture which corresponds to the cement mixture without mixing solution).
  • the cementitious matrix used in the context of the present invention is a geopolymeric cementitious matrix in which the hardening is the result of the dissolution / polycondensation of the finely ground materials of the cementitious mixture. in a saline solution such as a saline solution of high pH.
  • the geopolymeric cementitious matrix is therefore a geopolymer.
  • the term "geopolymer” is intended to mean an amorphous aluminosilicate inorganic polymer. Said polymer is obtained from a reactive material essentially containing silica and aluminum, activated by a strongly alkaline solution, the solid / solution weight ratio in the formulation being low.
  • the structure of a geopolymer is composed of an Si-O-Al lattice formed of silicate (SiO 4 ) and aluminate (AlO 4 ) tetrahedra bound at their vertices by oxygen atom sharing.
  • compensation cation is (are) advantageously chosen from the group consisting of alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), alkaline earth metals such as magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba) and mixtures thereof.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs
  • alkaline earth metals such as magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba) and mixtures thereof.
  • the reactive material containing essentially silica and aluminum that can be used to prepare the geopolymeric cement matrix used in the context of the invention is advantageously a solid source containing amorphous aluminosilicates.
  • amorphous aluminosilicates are chosen in particular from the minerals of natural aluminosilicates such as illite, stilbite, kaolinite, pyrophyllite, andalusite, bentonite, kyanite, milanite, grovenite, amesite, cordierite, feldspar, allophane, etc .; calcined natural aluminosilicate minerals such as metakaolin; synthetic glasses based on pure aluminosilicates; aluminous cement; pumice; calcined by-products or industrial mining residues such as fly ash and blast furnace slags respectively obtained from the burning of coal and during the processing of cast iron ore in a blast furnace; and mixtures thereof.
  • activation solution is a strongly alkaline aqueous solution which may optionally contain silicate components, especially chosen from the group consisting of silica, colloidal silica and vitreous silica.
  • strongly alkaline or high pH means a solution whose pH is greater than 9, especially greater than 10, in particular greater than 11 and more particularly greater than 12.
  • the high pH salt solution comprises the compensation cation or the compensation cation mixture in the form of an ionic solution or a salt.
  • the saline solution of high pH is chosen in particular from an aqueous solution of sodium silicate (a 2 SiO 3), potassium silicate (K 2 SiO 2 ), sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2), cesium hydroxide (CsOH) and their derivatives etc ....
  • the activation solution may further comprise at least one corrosion inhibiting additive as defined above.
  • concentration of corrosion inhibitor additive (s) in the activation solution is advantageously between 10 mM and 10 M, especially between 100 mM and 8 M and, in particular, between 200 mM and 5 M.
  • invention also relates to a magnesium metal conditioning material comprising a cementitious matrix with a corrosion inhibiting additive, according to the present invention (ie according to the two forms of implementation envisaged for the cement matrix).
  • the magnesium metal conditioning material comprising a hydraulic cement matrix in which the magnesium metal is conditioned, the hydraulic cement matrix also comprising at least one corrosion inhibiting additive selected from the group consisting of with a fluorinated compound, a stannate-based compound, a molybdate-based compound, a silicate-based compound, a cerium (III) -based compound, a phosphate-based compound, a di-based compound, ) chromate, a cobalt compound, a carboxylate compound and mixtures thereof.
  • at least one corrosion inhibiting additive selected from the group consisting of with a fluorinated compound, a stannate-based compound, a molybdate-based compound, a silicate-based compound, a cerium (III) -based compound, a phosphate-based compound, a di-based compound, ) chromate, a cobalt compound, a carboxylate compound and mixtures thereof.
  • the present invention also relates to a magnesium metal conditioning material comprising a geopolymeric cementitious matrix in which the magnesium metal is conditioned, the geopolymeric cementitious matrix further comprising at least one corrosion inhibiting additive selected from the group consisting of a fluorinated compound, a stannate-based compound, a molybdate-based compound, a cerium (III) -based compound, a phosphate-based compound, a (di) chromate-based compound, a cobalt compound, a carboxylate compound and mixtures thereof.
  • a corrosion inhibiting additive selected from the group consisting of a fluorinated compound, a stannate-based compound, a molybdate-based compound, a cerium (III) -based compound, a phosphate-based compound, a (di) chromate-based compound, a cobalt compound, a carboxylate compound and mixtures thereof.
  • the corrosion inhibiting additive is incorporated in the cement matrix to an incorporation rate of 20% by weight relative to the total mass of said material.
  • this degree of incorporation is between 0.01 and 15% and, in particular, between 0.1 and 10% by weight relative to the total mass of said material.
  • the material object of the present invention having a hydraulic or geopolymeric cementitious matrix may be in various forms, small or large, depending on the desired application and the amount of magnesium metal conditioning.
  • the magnesium metal and in particular the waste containing it are encapsulated, coated and / or dispersed in the cement matrix.
  • the present invention also relates to a process for preparing a magnesium metal conditioning material as previously defined.
  • the method of preparation comprises the following successive steps of:
  • At least one corrosion inhibiting additive is added to the hydraulic or geopolymeric dry cementitious mixture, prior to the addition of the mixing solution or the activation solution respectively.
  • the cementitious mixture used in the process for preparing the packaging material according to the first variant applied to the first embodiment comprises:
  • a clinker in particular as defined above comprising at least one corrosion inhibiting additive, especially as defined above, and
  • iiii) optionally a source of sulphate in particular as defined above.
  • the cementitious mixture used in the process for preparing the packaging material according to the first variant applied to the second form of implementation comprises:
  • an activating solution i.e. a high pH saline solution, especially as defined above,
  • At least one corrosion inhibiting additive is added to the mixing solution (in the case of hydraulic cementitious matrices) or to the activation solution (in the case of geopolymeric cementitious matrices).
  • the cementitious mixture used in the process for preparing the packaging material according to the second variant applied to the first embodiment comprises:
  • the cementitious mixture used in the process for preparing the packaging material according to the second variant applied to the second embodiment comprises:
  • an activating solution ie a high pH saline solution, especially as defined above, comprising at least one additive corrosion inhibitor, in particular as defined above,
  • the elements that make up the cement mixture can be mixed together either in groups or simultaneously.
  • the protocols used are conventional protocols for the preparation of hydraulic cements or geopolymers.
  • At least one corrosion inhibiting additive is added to the cementitious mixture following the addition of the mixing solution (in the case of hydraulic cementitious matrices) or of the activation solution (in the case of geopolymeric cementitious matrices).
  • the corrosion inhibiting additive is added to the slurry.
  • the cementitious mixture used in the preparation process of the packaging material according to the third variant applied to the first embodiment comprises:
  • At least one corrosion inhibiting additive especially as defined above, and 1 3) optionally a sulphate source such as previously defined.
  • the cementitious mixture used in the process for preparing the packaging material according to the third variant applied to the second form of implementation comprises:
  • an activating solution i.e. a high pH saline solution especially as previously defined
  • V3 ' optionally silicate components in particular as previously defined.
  • the corrosion inhibiting additives that may be used in the context of the present invention are compounds that are commercially available and do not require any particular preparation before being introduced into the hydraulic or geopolymeric cementitious mixture. However, if necessary, those skilled in the art will easily prepare one (or more) additive (s) corrosion inhibitor (s) by known techniques.
  • the corrosion inhibiting additive is advantageously in solid form such as a powder or in liquid form.
  • the introduction of this additive into the dry cementitious mixture, the mixing solution, the activation solution or the slurry is a simple protocol consisting of mixing, dissolving or dilution.
  • corrosion inhibiting additives are used, they may be introduced according to the same variant chosen from the three variants above or according to different variants, chosen from the three variants above.
  • the cementitious mixture in which the corrosion inhibiting additive is incorporated is used to condition the mixture.
  • magnesium metal and especially waste containing magnesium metal. This step is more particularly to introduce (or disperse) the magnesium metal or waste in the cement mixture or to cover (to coat, encapsulate, imprison or block) magnesium metal or waste with the cement mixture.
  • the magnesium metal or the technological waste including the container are placed in a barrel-type container and the cement mixture in which is incorporated the corrosion inhibitor additive is poured into the container so as to fill all the free space between magnesium metal or waste.
  • the cementitious mixture in which the corrosion-inhibiting additive is incorporated and the Magnesium metal (or waste containing it) is advantageously subjected to conditions allowing the hardening of the cement matrix.
  • the cementitious mixture is subjected to conditions allowing the hardening of the cementitious matrix. Any technique known to those skilled in the art for curing a hydraulic cementitious mixture or a geopolymeric cementitious mixture can be used during the curing step of the process.
  • This hardening advantageously comprises a curing step and / or a drying step.
  • the curing step comprises a curing step
  • the latter can be done by humidifying the atmosphere surrounding the cementitious mixture in which are incorporated the corrosion inhibitor additive and the magnesium metal (or waste containing it) or by applying a waterproof coating to said mixture.
  • This curing step can be carried out under a temperature of between 10 and 60 ° C, especially between 20 and 50 ° C and, in particular, between 30 and 40 ° C and can last between 1 and 40 days, between 5 and 30 days and, in particular, between
  • the curing step comprises a drying step
  • the latter can be carried out at a temperature of between 30 and 90 ° C., especially between
  • the curing step comprises a curing step followed by a drying step, as previously defined.
  • the latter may be placed in molds so as to give it a predetermined shape more to this hardening.
  • Figure 1 shows the influence of fluoride present in the mixing water of a CEM I cement on the evolution of hydrogen in the presence of magnesium metal.
  • Figure 2 shows the influence of fluoride present in the geopolymer activation solution on the evolution of hydrogen in the presence of magnesium metal.
  • Fluoride grouts were prepared from different binders.
  • the two binders used for the preparation of grouts are as follows:
  • Aqueous solutions with sodium fluoride (Merck, 99%) were prepared at a concentration of 2.58 M (No. 1 and No. 3 slurry) and at 0.258 M (slurry No. 2). These solutions are used in slurries No. 1 and No. 2 as an activating solution and as a mixing solution for grout No. 3.
  • the products used for the geopolymer are Pieri Premix MK metakaolin (Grade Construction Products), NaOH (Prolabo, 98%) and SiO 2 (Tixosil, Degussa).
  • the Portland-based grout was prepared with CEM I 52.5 N type cement (Lafarge Le teil).
  • compositions of the various slurries are reported in Table 1 below.
  • Table 1 Composition of different grouts for the immobilization of magnesium
  • magnesium corrosion inhibitors fluoride, silicates, etc.
  • Portland cement mixing water or in the geopolymer activation solution makes it possible to reduce the amount of hydrogen produced by magnesium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention concerne l'utilisation d'au moins un additif inhibiteur de corrosion pour diminuer la production d'hydrogène par corrosion du magnésium métal conditionné dans une matrice cimentaire. La présente invention concerne également un matériau de conditionnement de magnésium métal ainsi mis en œuvre et son procédé de préparation.

Description

UTILISATION D'AGENTS ANTI-CORROSION POUR LE
CONDITIONNEMENT DE MAGNÉSIUM MÉTAL, MATÉRIAU DE CONDITIONNEMENT AINSI OBTENU ET PROCÉDÉ DE PRÉPARATION
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention appartient au domaine technique de l'élimination et du conditionnement des déchets tels que des déchets nucléaires métalliques contenant notamment du magnésium métal.
La présente invention propose une méthode pour diminuer le terme source d'hydrogène lors de l'immobilisation de magnésium métal par une matrice cimentaire. Plus particulièrement, la présente invention propose l'utilisation d'agents anti-corrosion pour diminuer la production d'hydrogène lors du conditionnement du magnésium métal dans une matrice cimentaire hydraulique ou géopolymérique .
La présente invention concerne également les matériaux de conditionnement mis en œuvre dans ce procédé et un procédé de préparation de tels matériaux.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les installations nucléaires de type UNGG pour « Uranium Naturel - Graphite - Gaz » sont basées sur des réacteurs à uranium naturel modérés au graphite et refroidis. Dans ces installations, la matière fissile mise en œuvre est un uranium naturel sous forme métallique, alors que le matériau de gainage est en magnésium métallique se présentant notamment sous forme d'un alliage.
L'exploitation de ce type d'installations a été arrêtée en France et leur démantèlement est en cours . En Angleterre, au contraire, ces installations ont connu un développement important sous le nom de MAGNOX (pour « MAGnesium Non OXidising ») en référence à l'alliage de magnésium utilisé dans ces dernières qui est un alliage de magnésium/aluminium.
Aussi bien le démantèlement que l'exploitation de telles installations produisent des déchets métalliques réactifs contenant du magnésium métallique (ou magnésium métal) . Plusieurs procédés pour permettre le conditionnement de ces déchets ont été envisagés.
Toutefois, ils sont confrontés au problème d'un dégagement (ou de la production) d'hydrogène résultant de la corrosion du magnésium métallique en présence d'eau. Un tel dégagement peut être dommageable pour la stabilité des conditionnements et entraîne des risques d'accident lors de l'immobilisation, de l'entreposage, du stockage, de l'évacuation et/ou du transport de tels conditionnements .
Ainsi, l'utilisation l'un liant hydraulique de type ciment Portland pour l'enrobage des déchets métalliques réactifs contenant du magnésium métal est difficile car un dégagement d'hydrogène est provoqué par la réaction entre l'eau du ciment et le magnésium métal [1] .
Cependant, depuis 1990, des déchets métalliques issus des réacteurs MAGNOX contenant entre autre du magnésium métal ont été conditionnés avec un mélange ciment Portland et cendres de hauts fourneaux ou cendres volantes [1, 2, 3]. La stratégie de cette formulation est d'utiliser un minimum d'eau pour l'hydratation du ciment et atteindre un pH important (de l'ordre de 12.5) [1]. Concernant la faible quantité d'eau à utiliser, Fairhall et Palmer préconisent d'employer une matrice cimentaire hydraulique présentant un rapport massique Eau/Ciment, ci-après désigné rapport E/C inférieur à 0,37 [2] . De même, les matrices cimentaires décrites dans [4] présentent un rapport E/C égal à 0,33. Des dégagements d'hydrogène ont cependant été observés avec la formation d'hydroxyde de magnésium à la surface du magnésium métal provoquant des dégâts sur le colis [4] .
Une solution alternative à l'utilisation de ciment Portland a été proposée avec l'utilisation de géopolymère minéral [1, 5].
Des essais d'enrobage de déchets de type MAGNOX à base de magnésium ont été réalisés avec des polymères organiques [1, 6] afin de limiter la quantité d'eau et ainsi éviter un dégagement d'hydrogène. En effet, des essais ont été conduits avec des polymères thermodurcissables tels que des résines époxy ou polyester. Toutefois, ces polymères organiques présentent plusieurs inconvénients tels qu'un durcissement rapide et donc désavantageux pour une utilisation industrielle et un coût élevé [1] . Les travaux décrits dans [6] ont, pour leur part, testé l'efficacité d'une encapsulation par du polyuréthane de déchets de type MAGNOX dans des conditions d'incendie. Les inventeurs se sont donc fixés pour but de proposer un procédé pour le conditionnement de déchets contenant du magnésium métal dans lequel l'hydrogène produit par la corrosion du magnésium métal est diminué fortement, voire inhibé.
Le magnésium métal et ses alliages sont largement étudiés pour des applications dans l'aéronautique et de nombreux traitements chimiques anti-corrosion sont disponibles dans la littérature [7] . La plupart de ces traitements consiste à recouvrir d'un revêtement (ou « coating ») les pièces en magnésium métal ou en un de ses alliages, le revêtement contenant des agents tels que dichromates, silicates, phosphates et fluorures. De plus, concernant l'utilisation d'ions fluorure apportés sous forme de fluorure de potassium (KF) , de fluorure de sodium (NaF) ou de fluorure d'ammonium (NH4F) comme traitement anti¬ corrosion du magnésium métal, une étude électrochimique a permis de déterminer, en solution, les zones de pH et de concentration en ions fluorure où le magnésium métal présentait les courants de corrosion les plus faibles [8] . Le pH et la concentration en fluorures doivent être respectivement supérieurs à 13 et 2 M.
Song et StJohn ont étudié l'effet anti¬ corrosion de solutions contenant de l'éthylène glycol sur du magnésium pur et ce, notamment pour des applications dans le domaine automobile [9] . Les résultats de ces travaux ont montré que, d'une part, le taux de corrosion du magnésium diminue avec des concentrations croissantes en éthylène glycol et que, d'autre part, la corrosion du magnésium dans l'éthylène glycol peut être inhibée efficacement par l'addition de fluorures. De même, l'utilisation de fluorures comme inhibiteurs de corrosion du magnésium dans des acides organiques tels qu'une combinaison d'acide alkylbenzoïque et d'acide monobasique ou dibasique aliphatique a été proposée pour l'industrie automobile
[10] .
Récemment, une méthode de protection du magnésium métal en environnement basique mettant en œuvre un mélange de fluorosilicate, de polyphosphate et d' acide organique a été proposée dans une demande de brevet chinois [11] .
Toutefois, même si l'utilisation d'inhibiteurs de corrosion dans les bétons pour le génie civil est largement utilisée, l'homme du métier aurait été dissuadé d'en utiliser pour le conditionnement de déchets contenant du magnésium métal et ce, pour résoudre le problème de la production d'hydrogène. En effet, Fairhall et Palmer indiquent clairement que, lors d'essais réalisés au début des années 80, l'utilisation de chromâtes et de fluorures dans des matrices cimentaires n'avait eu aucun effet sur le taux de corrosion du magnésium métal et, par conséquent, sur la production d'hydrogène [2]. Il convient, de plus, de remarquer qu'aucun détail technique et pratique relatif à cette utilisation n'est donné dans le document [2].
EXPOSÉ DE L' INVENTION
La présente invention permet de résoudre les inconvénients des procédés de conditionnement de déchets contenant du magnésium métal de l'état de la technique et d' atteindre le but que se sont fixés les inventeurs à savoir proposer un procédé dans lequel la production d'hydrogène due à la corrosion oxydative du magnésium métal est diminuée, voire inhibée.
En effet, les inventeurs ont résolu ce problème technique en ajoutant des produits anti-corrosion directement dans le mélange cimentaire hydraulique ou géopolymérique sec, dans l'eau de gâchage, dans la solution d' activation ou dans le coulis lors de l'enrobage par des matrices cimentaires des déchets magnésiens. Ces travaux ont ainsi permis de surmonter le préjugé technique de l'état de la technique selon lequel les chromâtes et les fluorures n'ont aucun effet sur la corrosion du magnésium métal et donc sur la production d'hydrogène.
L'ajout de produits anti-corrosion directement dans le mélange cimentaire hydraulique ou géopolymérique sec, dans la solution de gâchage, dans la solution d' activation ou dans le coulis obtenu permet d'éviter une étape de prétraitement du magnésium métal et donc des déchets le contenant avant leur conditionnement. De plus, la présence de produits anti- corrosion en excès dans l'enrobé final permet de garantir une efficacité dans le temps.
Le matériau de type matrice cimentaire dans lequel est ensuite incorporé le magnésium métal ou un déchet technologique contenant du magnésium métal est donc facile à préparer, facile à manipuler et prêt à 1 ' emploi . Plus particulièrement, la présente invention concerne l'utilisation d'au moins un additif inhibiteur de corrosion pour diminuer la production d'hydrogène par corrosion du magnésium métal conditionné dans une matrice cimentaire.
En d'autres termes, la présente invention propose un procédé pour diminuer la production d'hydrogène par corrosion du magnésium métal conditionné dans une matrice cimentaire, ledit procédé consitant à conditionner le magnésium métal dans une matrice cimentaire comprenant au moins un additif inhibiteur de corrosion.
Par « diminuer la production d'hydrogène », on entend, dans le cadre de la présente invention, diminuer, minimiser ou voire inhiber la production d'hydrogène, par rapport à la production d'hydrogène par corrosion du même magnésium métal conditionné dans la même matrice cimentaire mais en absence d'additif inhibiteur de corrosion.
Par « magnésium métal », on entend, dans le cadre de la présente invention, du magnésium métal pur ou se présentant sous forme d'un alliage de magnésium métal. Un alliage de magnésium métal est plus particulièrement choisi dans le groupe constitué par le magnésium/aluminium, le magnésium/zirconium et le magnésium/manganèse. Dans ces alliages, la quantité de magnésium est supérieure à 80%, à 90% et à 95% exprimée en masse par rapport à la masse totale de l'alliage. Les alliages magnésium/zirconium et magnésium/manganèse issus des filières UNGG sont, plus particulièrement, utilisés dans le cadre de la présente invention, l'alliage magnésium/aluminium étant issu de la filière MAGNOX .
Les expressions « magnésium métal » et
« magnésium métallique » sont équivalentes et peuvent être utilisées de façon interchangeable.
Le magnésium métal est avantageusement contenu dans un déchet technologique en provenance d'un atelier de démantèlement d'une installation de type UNGG ou d'un atelier de démantèlement, d'exploitation, de maintien ou d'entretien d'une installation de type MAGNOX . Par « additif inhibiteur de corrosion », on entend, dans le cadre de la présente invention, un additif apte à inhiber la corrosion du magnésium métal. Tout additif permettant d' inhiber la corrosion du magnésium métal et connu de l'homme du métier est utilisable dans le cadre de la présente invention et notamment les additifs aussi bien organiques qu'inorganiques cités dans le document [7]. Avantageusement, l'additif inhibiteur de corrosion mis en œuvre dans le cadre de la présente invention est un additif minéral (i.e. inorganique) . En effet, il existe un risque de radiolyse pour les additifs inhibiteurs de corrosion organiques tels que les carboxylates , les déchets contenant le magnésium métal étant radioactifs.
Plus particulièrement, l'additif inhibiteur de corrosion est choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de silicate, un composé à base de cérium(III), un composé à base de phosphate, un composé à base de (di)chromate et un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
Le composé fluoré mis en œuvre dans le cadre de la présente invention est une source d'ions fluorure. Avantageusement, ce composé est un composé fluoré minéral notamment choisi dans le groupe constitué par le fluorure de sodium, le fluorure de potassium, le fluorure d'ammonium, le fluorure de cérium(III), le fluorure de lithium, le bifluorure de fer, le bifluorure de plomb, le bifluorure de potassium, le bifluorure de sodium, le fluorure de titane, le fluorure de rubidium et leurs mélanges.
Le composé à base de stannate mis en œuvre dans le cadre de la présente invention est une source d' ions stannate Sn032~ ou Sn(OH) 62~. Avantageusement, ce composé à base de stannate est choisi dans le groupe constitué par le stannate de potassium, le stannate de sodium, le stannate de baryum, le stannate de zinc, le stannate de cuivre et leurs mélanges.
Le composé à base de molybdate mis en œuvre dans le cadre de la présente invention est une source d' oxoanions avec du molybdenum notamment de type Mo04 2~ ou Μθ4θΐ3 2~. Avantageusement, le composé à base de molybdate est choisi dans le groupe constitué par le molybdate de potassium, le molybdate de sodium, le molybdate de zinc, le molybdate de calcium, le molybdate de zinc et de calcium et leurs mélanges. Le composé à base de silicate mis en œuvre dans le cadre de la présente invention est une source d' ions Si04 4~. Avantageusement, le composé à base de silicate est choisi dans le groupe constitué par le silicate de calcium, le silicate de potassium, le silicate de sodium, le silicate d'aluminium, le borosilicate de calcium et leurs mélanges.
Le composé à base de cérium ( III ) mis en œuvre dans le cadre de la présente invention est une source de cations Ce3+. Avantageusement, le composé à base de cérium ( III ) est choisi dans le groupe constitué par le nitrate de cérium ( III ) , le fluorure de cérium(III), le chlorure de cérium(III), le sulfate de cérium(III) et leurs mélanges.
Le composé à base de phosphate mis en œuvre dans le cadre de la présente invention est une source d' anions PC^3- telle que du phosphate de zinc, du phosphate de manganèse ou leur mélange.
Le composé à base de (di)chromate mis en œuvre dans le cadre de la présente invention est une source d' anions CrC^2- ou d' anions (¾072~ . Avantageusement, le composé à base de (di)chromate est choisi dans le groupe constitué par le (di)chromate de sodium, le (di)chromate de potassium, le (di)chromate de baryum, le (di)chromate d'aluminium, le (di)chromate de zinc et leurs mélanges.
Le composé à base de cobalt mis en œuvre dans le cadre de la présente invention est une source de cations Co2+. Avantageusement, le composé à base de cobalt est choisi dans le groupe constitué par le phosphate de cobalt, le sulfate de cobalt, l'hydroxyde de cobalt, le nitrate de cobalt et leurs mélanges.
Le composé à base de carboxylate mis en œuvre dans le cadre de la présente invention est une source d' anions COO~ telle que du carboxylate de magnésium, du carboxylate de sodium ou leur mélange.
Le terme « mélange », dans le cadre de la présente invention concerne, d'une part, un mélange d'au moins deux éléments distincts appartenant à des groupes d'additifs inhibiteurs de corrosion identiques ou différents et, d'autre part, un additif inhibiteur de corrosion appartenant à deux groupes d'additifs inhibiteurs de corrosion différents. Par exemple, le fluorure de cérium ( III ) est une source à la fois d'ions fluorure et de cations cérium ( III ) et, pour cette raison, appartient à la fois au groupe des composés fluorés et à celui des composés à base de cérium ( III ) .
Par « matrice cimentaire », on entend dans le cadre de la présente invention un matériau solide et poreux à l'état sec, obtenu suite au durcissement d'un mélange plastique contenant des matériaux finement broyés et de l'eau ou une solution saline, ledit mélange plastique étant capable de faire prise et de durcir au cours du temps. Ce mélange peut également être désigné sous les termes « mélange cimentaire » ou « composition cimentaire ». Toute matrice cimentaire, naturelle ou synthétique, connue de l'homme du métier est utilisable dans le cadre de la présente invention. La matrice cimentaire, dans le cadre de la présente invention, peut être hydraulique ou géopolymérique . Ainsi, dans une première forme de mise en œuvre de l'invention, la matrice cimentaire mise en œuvre dans le cadre de la présente invention est une matrice cimentaire hydraulique dans laquelle le durcissement est le résultat de l'hydratation des matériaux finement broyés du mélange cimentaire. Les matériaux finement broyés du mélange cimentaire sont constitués, en totalité ou en partie, d'un clinker finement broyé. Par « clinker », on entend un mélange comprenant un (ou plusieurs) élément (s) choisi (s) dans le groupe constitué par :
- un calcaire,
- un calcaire ayant une teneur en CaO variant entre 50 et 60%,
- une source d'alumine telle que de la bauxite ordinaire ou de la bauxite rouge,
- une argile, et
- une source de sulfate telle que du gypse, du sulfate de calcium hémihydraté, du plâtre, de l'anhydrite naturelle ou des cendres suifocalciques , ledit (ou lesdits) élément (s) étant concassé (s), homogénéisé ( s ) et porté (s) à haute température supérieure à 1200 °C, notamment supérieure à 1300°C, en particulier de l'ordre de 1450°C. Par « de l'ordre de 1450 °C », on entend une température de 1450°C ± 100°C, avantageusement une température de 1450°C ± 50°C. L'étape de cuisson à haute température est appelée « clinkerisation ». Après la préparation du clinker et avant ou pendant son broyage, au moins un autre additif comme une source de sulfate telle que précédemment définie peut lui être ajouté. Dans cette première forme de mise en œuvre de l'invention, la matrice cimentaire peut être un ciment Portland ou un ciment Portland composé. Un ciment Portland comprend avantageusement entre 50 et 70% de silicate tricalcique [ (CaO) 3 S 1O2 ] , entre 10 et 25% de silicate bicalcique [ (CaO) 2 S 1O2 ] , entre 5 et 15% d' aluminate tricalcique [ (CaO) 3AI2O3 ] , entre 5 et 10% d' aluminoferrite tétracalcique [ (CaO) 4Al203Fe203 ] . Un tel ciment Portland peut être mélangé avec des composés secondaires pour donner un « ciment Portland composé » dans lequel la quantité de composés secondaires comme du calcaire ou des laitiers de haut fourneau est supérieure à 3%, notamment comprise entre 5 et 80%, en particulier, comprise entre 10 et 60% en poids par rapport au poids total dudit ciment Portland composé.
Dans cette première forme de mise en œuvre de l'invention, la matrice cimentaire peut également être une matrice cimentaire alumineuse, i.e. dont le clinker comprend majoritairement des aluminates de calcium.
De plus, dans cette première forme de mise en œuvre de l'invention, la matrice cimentaire peut également être une matrice cimentaire suifo-alumineuse et/ou ferro-alumineuse . La demande de brevet EP 0 900 771 décrit notamment des mélanges cimentaires à base de clinkers suifo-alumineux et ferro-alumineux
[12] . Ces clinkers sont des liants cimentaires aux propriétés de durcissement rapide et obtenus par une clinkerisation à une température variant entre 1200 et 1350°C de mélanges contenant au moins une source de chaux telle que des calcaires ayant une teneur en CaO variant entre 50 et 60%, au moins une source d'alumine et au moins une source de sulfate telles que précédemment définies. Avantageusement, un clinker suifo-alumineux comprend entre 28 et 40% de AI 2O3 , entre 3 et 10% de Si02, entre 36 et 43% de CaO, entre 1 et 3% de Fe2Û3, et entre 8 et 15% de SO3. Un clinker ferro- alumineux comprend, quant à lui, entre 25 et 30% de AI 2O3 , entre 6 et 12% de Si02, entre 36 et 43% de CaO, entre 5 et 12% de Fe2Û3, et entre 5 et 10% de S O3 .
Dans les matrices cimentaires hydrauliques, l'hydratation des matériaux finement broyés du mélange cimentaire nécessite l'utilisation d'une solution dite « solution de gâchage ». Dans le cadre de la présente invention, cette dernière peut comprendre au moins un additif inhibiteur de corrosion tel que précédemment défini. Le solvant de la solution de gâchage est notamment un solvant protique et, en particulier, de l'eau. La concentration en additif (s) inhibiteur ( s ) de corrosion dans la solution de gâchage est avantageusement comprise entre 10 mM et 10 M, notamment entre 100 mM et 8 M et, en particulier, entre 200 mM et 5 M.
Comme déjà expliqué, les matrices cimentaires hydrauliques utilisées pour le conditionnement de magnésium métal dans l'état de la technique doivent présenter une faible quantité d'eau pour éviter la corrosion du magnésium métal et donc la production d'hydrogène. Dans le cadre de la présente invention, l'ajout d' inhibiteur ( s ) de corrosion dans l'eau de gâchage permet de résoudre le problème technique de la production d'hydrogène : les matrices cimentaires hydrauliques ne sont donc pas limitées dans la quantité d'eau à utiliser.
Ainsi, le rapport rapport E/C dans la présente invention est avantageusement supérieur à 0,2, notamment compris entre 0,3 et 1,5 et, en particulier, entre 0,38 et 1. Par « rapport E/C », on entend le rapport en masse de la quantité d'eau (i.e. la quantité de solution de gâchage) sur la quantité de ciment (i.e. mélange cimentaire sec qui correspond au mélange cimentaire sans solution de gâchage) .
Dans une seconde forme de mise en œuvre de l'invention, la matrice cimentaire mise en œuvre dans le cadre de la présente invention est une matrice cimentaire géopolymérique dans laquelle le durcissement est le résultat de la dissolution/polycondensation des matériaux finement broyés du mélange cimentaire dans une solution saline telle qu'une solution saline de fort pH.
Dans cette seconde forme de mise en œuvre, la matrice cimentaire géopolymérique est donc un géopolymère. Par « géopolymère », on entend, dans le cadre de la présente invention, un polymère inorganique alumino-silicaté amorphe. Ledit polymère est obtenu à partir d'un matériau réactif contenant essentiellement de la silice et de l'aluminium, activé par une solution fortement alcaline, le rapport massique solide/solution dans la formulation étant faible. La structure d'un géopolymère est composée d'un réseau Si-O-Al formé de tétraèdres de silicates (Si04) et d'aluminates (A104) liés en leurs sommets par partage d'atomes d'oxygène. Au sein de ce réseau, se trouve (nt) un (ou plusieurs) cation (s) compensateur ( s ) de charge également appelé (s) cation (s) de compensation qui permettent de compenser la charge négative du complexe A104 ~. Ledit (ou lesdits) cation (s) de compensation est (sont) avantageusement choisi (s) dans le groupe constitué par les métaux alcalins tels que le lithium (Li) , le sodium (Na) , le potassium (K) , le rubidium (Rb) et le césium (Cs) , les métaux alcalino-terreux tels que le magnésium (Mg) , le calcium (Ca) , le strontium (Sr) et le barium (Ba) et leurs mélanges. Le matériau réactif contenant essentiellement de la silice et de l'aluminium utilisable pour préparer la matrice cimentaire géopolymérique mise en œuvre dans le cadre de l'invention est avantageusement une source solide contenant des alumino-silicates amorphes. Ces alumino- silicates amorphes sont notamment choisis parmi les minéraux d' alumino-silicates naturels tels que illite, stilbite, kaolinite, pyrophyllite, andalousite, bentonite, kyanite, milanite, grovénite, amésite, cordiérite, feldspath, allophane, etc.. ; des minéraux d' alumino-silicates naturels calcinés tels que le métakaolin ; des verres synthétiques à base d' alumino- silicates purs ; du ciment alumineux ; de la ponce ; des sous-produits calcinés ou résidus d'exploitation industrielle tels que des cendres volantes et des laitiers de haut fourneau respectivement obtenus à partir de la combustion du charbon et lors de la transformation du minerai de fer en fonte dans un haut fourneau ; et des mélanges de ceux-ci. La solution saline de fort pH également connue, dans le domaine de la géopolymérisation, comme « solution d' activation » est une solution aqueuse fortement alcaline pouvant éventuellement contenir des composants silicatés notamment choisis dans le groupe constitué par la silice, la silice colloïdale et la silice vitreuse. Par « fortement alcaline » ou « de fort pH », on entend une solution dont le pH est supérieur à 9, notamment supérieur à 10, en particulier, supérieur à 11 et, plus particulièrement supérieur à 12.
La solution saline de fort pH comprend le cation de compensation ou le mélange de cations de compensation sous forme d'une solution ionique ou d'un sel. Ainsi, la solution saline de fort pH est notamment choisie parmi une solution aqueuse de silicate de sodium ( a2Si03) , de silicate de potassium (K2S1O2) , d'hydroxyde de sodium (NaOH) , d'hydroxyde de potassium (KOH) , d'hydroxyde de calcium (Ca(OH)2), d'hydroxyde de césium (CsOH) et leurs dérivés etc....
Dans le cadre de la présente invention, la solution d' activation peut comprendre en outre au moins un additif inhibiteur de corrosion tel que précédemment défini. La concentration en additif (s) inhibiteur ( s ) de corrosion dans la solution d' activation est avantageusement comprise entre 10 mM et 10 M, notamment entre 100 mM et 8 M et, en particulier, entre 200 mM et 5 M. La présente invention concerne également un matériau de conditionnement de magnésium métal comprenant une matrice cimentaire avec un additif inhibiteur de corrosion, selon la présente invention (i.e. selon les deux formes de mise en œuvre envisagées pour la matrice cimentaire) .
Ainsi, dans une première forme de mise en œuvre, le matériau de conditionnement de magnésium métal comprenant une matrice cimentaire hydraulique dans laquelle le magnésium métal est conditionné, la matrice cimentaire hydraulique comprenant en outre au moins un additif inhibiteur de corrosion choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de silicate, un composé à base de cérium ( III ) , un composé à base de phosphate, un composé à base de (di) chromate, un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
Dans une seconde forme de mise en œuvre, la présente invention concerne également un matériau de conditionnement de magnésium métal comprenant une matrice cimentaire géopolymérique dans laquelle le magnésium métal est conditionné, la matrice cimentaire géopolymérique comprenant en outre au moins un additif inhibiteur de corrosion choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de cérium ( III ) , un composé à base de phosphate, un composé à base de (di) chromate, un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
Dans le matériau objet de la présente invention présentant une matrice cimentaire soit hydraulique, soit géopolymérique, l'additif inhibiteur de corrosion est incorporé dans la matrice cimentaire jusqu'à un taux d'incorporation de 20% en masse par rapport à la masse totale dudit matériau. Avantageusement, ce taux d'incorporation est compris entre 0,01 et 15% et, en particulier, entre 0,1 et 10% en masse par rapport à la masse totale dudit matériau.
Le matériau objet de la présente invention présentant une matrice cimentaire hydraulique ou géopolymérique peut se présenter sous diverses formes, de petite ou grande taille, en fonction de l'application recherchée et de la quantité de magnésium métal conditionné. Dans le cadre de la présente invention, le magnésium métal et notamment les déchets le contenant sont encapsulés, enrobés et/ou dispersés dans la matrice cimentaire.
La présente invention concerne également un procédé de préparation d'un matériau de conditionnement de magnésium métal tel que précédemment défini. Ledit procédé de préparation comprend les étapes suivantes successives consistant à :
- incorporer au moins un additif inhibiteur de corrosion dans un mélange cimentaire hydraulique ou géopolymérique, puis
- conditionner le magnésium métal ou un déchet contenant du magnésium métal dans le mélange cimentaire hydraulique ou géopolymérique ainsi obtenu (i.e. mélange cimentaire hydraulique ou géopolymérique + additif (s) inhibiteur ( s ) de corrosion). En ce qui concerne l'incorporation de l'additif inhibiteur de corrosion, trois variantes peuvent être envisagées .
Dans une première variante, au moins un additif inhibiteur de corrosion est ajouté au mélange cimentaire sec hydraulique ou géopolymérique, préalablement à l'ajout de la solution de gâchage ou de la solution d' activation respectivement.
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la première variante appliquée à la première forme de mise en œuvre (mélange cimentaire hydraulique) comprend :
i i ) une solution de gâchage notamment telle que précédemment définie,
iii) un clinker notamment tel que précédemment défini, comprenant au moins un additif inhibiteur de corrosion notamment tel que précédemment défini, et
iiii) éventuellement une source de sulfate notamment telle que précédemment définie.
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la première variante appliquée à la seconde forme de mise en œuvre (mélange cimentaire géopolymérique) comprend :
i i ' ) une solution d' activation i.e. une solution saline à fort pH notamment telle que précédemment définie,
iii' ) une source solide contenant des aluminosilicates amorphes notamment telle que précédemment définie, comprenant au moins un additif inhibiteur de corrosion notamment tel que précédemment défini, et
iiii' ) éventuellement des composants silicatés notamment tels que précédemment définis.
Dans une seconde variante, au moins un additif inhibiteur de corrosion est ajouté à la solution de gâchage (cas des matrices cimentaires hydrauliques) ou à la solution d' activation (cas des matrices cimentaires géopolymériques ) .
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la seconde variante appliquée à la première forme de mise en œuvre (mélange cimentaire hydraulique) comprend :
± 2 ) une solution de gâchage notamment telle que précédemment définie, comprenant au moins un additif inhibiteur de corrosion notamment tel que précédemment défini ,
Û2) un clinker notamment tel que précédemment défini, et
1112) éventuellement une source de sulfate notamment telle que précédemment définie.
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la seconde variante appliquée à la seconde forme de mise en œuvre (mélange cimentaire géopolymérique) comprend :
± 2 ' ) une solution d' activation i.e. une solution saline à fort pH notamment telle que précédemment définie, comprenant au moins un additif inhibiteur de corrosion notamment tel que précédemment défini ,
112' ) une source solide contenant des aluminosilicates amorphes notamment telle que précédemment définie, et
1112' ) éventuellement des composants silicatés notamment tels que précédemment définis.
Les éléments qui composent le mélange cimentaire peuvent être mélangés ensemble soit par groupe, soit simultanément. Les protocoles mis en œuvre sont des protocoles classiques de la préparation de ciments hydrauliques ou de géopolymères.
Dans une troisième variante, au moins un additif inhibiteur de corrosion est ajouté au mélange cimentaire suite à l'ajout de la solution de gâchage (cas des matrices cimentaires hydrauliques) ou de la solution d' activation (cas des matrices cimentaires géopolymériques ) . Dans cette variante, l'additif inhibiteur de corrosion est ajouté au coulis.
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la troisième variante appliquée à la première forme de mise en œuvre (mélange cimentaire hydraulique) comprend :
13) une solution de gâchage notamment telle que précédemment définie,
Û3) un clinker notamment tel que précédemment défini ,
1113) au moins un additif inhibiteur de corrosion notamment tel que précédemment défini, et 1 3 ) éventuellement une source de sulfate notamment telle que précédemment définie.
Le mélange cimentaire mis en œuvre dans le procédé de préparation du matériau de conditionnement selon la troisième variante appliquée à la seconde forme de mise en œuvre (mélange cimentaire géopolymérique) comprend :
13 ' ) une solution d' activation i.e. une solution saline à fort pH notamment telle que précédemment définie,
1 13 ' ) une source solide contenant des aluminosilicates amorphes notamment telle que précédemment définie,
1 1 13 ' ) au moins un additif inhibiteur de corrosion notamment tel que précédemment défini, et
1 V3 ' ) éventuellement des composants silicatés notamment tels que précédemment définis.
Les additifs inhibiteurs de corrosion susceptibles d'être utilisés dans le cadre de la présente invention sont des composés accessibles dans le commerce qui ne nécessitent aucune préparation particulière avant l'introduction dans le mélange cimentaire hydraulique ou géopolymérique. Toutefois, si nécessaire, l'homme du métier saura facilement préparer un (ou plusieurs) additif (s) inhibiteur ( s ) de corrosion par des techniques connues.
Avant d'être incorporé dans le mélange cimentaire sec, dans la solution de gâchage, dans la solution d' activation ou dans le coulis, l'additif inhibiteur de corrosion se présente avantageusement sous forme solide telle qu'une poudre ou sous forme liquide. Aussi, l'introduction de cet additif dans le mélange cimentaire sec, dans la solution de gâchage, dans la solution d' activation ou dans le coulis est un protocole simple consistant en un mélange, une dissolution ou en une dilution.
Si plusieurs additifs inhibiteurs de corrosion sont utilisés, ils peuvent être introduits selon la même variante choisie parmi les trois variantes ci- dessus ou selon des variantes différentes, choisies parmi les trois variantes ci-dessus.
Suite à l'étape d'incorporation d'au moins un additif inhibiteur de corrosion dans un mélange cimentaire hydraulique ou géopolymérique dans le procédé selon l'invention, le mélange cimentaire dans lequel est incorporé l'additif inhibiteur de corrosion est utilisé pour conditionner le magnésium métal et notamment des déchets contenant du magnésium métal. Cette étape consiste plus particulièrement à introduire (ou à disperser) le magnésium métal ou les déchets dans le mélange cimentaire ou à recouvrir (à enrober, à encapsuler, à emprisonner ou à bloquer) le magnésium métal ou les déchets avec le mélange cimentaire.
Dans une forme particulière de mise en œuvre, le magnésium métal ou les déchets notamment technologiques le contenant sont placés dans un conteneur de type fût puis le mélange cimentaire dans lequel est incorporé l'additif inhibiteur de corrosion est coulé dans le conteneur de façon à remplir tout l'espace libre entre le magnésium métal ou les déchets. Suite à l'étape de conditionnement du magnésium métal ou du déchet le contenant dans un mélange cimentaire contenant au moins un additif inhibiteur de corrosion dans le procédé selon l'invention, le mélange cimentaire dans lequel sont incorporés l'additif inhibiteur de corrosion et le magnésium métal (ou les déchets le contenant) est avantageusement soumis à des conditions permettant le durcissement de la matrice cimentaire. Ainsi, suite au conditionnement du magnésium métal ou d'un déchet contenant du magnésium métal dans le mélange cimentaire hydraulique ou géopolymérique, le mélange cimentaire est soumis à des conditions permettant le durcissement de la matrice cimentaire. Toute technique connue de l'homme du métier pour faire durcir un mélange cimentaire hydraulique ou un mélange cimentaire géopolymérique est utilisable lors de l'étape de durcissement du procédé.
Ce durcissement comprend avantageusement une étape de cure et/ou une étape de séchage. Lorsque l'étape de durcissement comprend une étape de cure, cette dernière peut se faire par humidification de l'atmosphère entourant le mélange cimentaire dans lequel sont incorporés l'additif inhibiteur de corrosion et le magnésium métal (ou les déchets le contenant) ou par application d'un enduit imperméable sur ledit mélange. Cette étape de cure peut être mise en œuvre sous une température comprise entre 10 et 60°C, notamment entre 20 et 50°C et, en particulier, entre 30 et 40°C et peut durer entre 1 et 40 jours, notamment entre 5 et 30 jours et, en particulier, entre
10 et 20 jours.
Lorsque l'étape de durcissement comprend une étape de séchage, cette dernière peut se faire à une température comprise entre 30 et 90 °C, notamment entre
40 et 80°C et, en particulier, entre 50 et 70°C et peut durer entre 6 h et 10 jours, notamment entre 12 h et
5 jours et, en particulier, entre 24 et 60 h.
Avantageusement, l'étape de durcissement comprend une étape de cure suivie par une étape de séchage, telles que précédemment définies.
De plus, préalablement au durcissement du mélange cimentaire dans lequel sont incorporés l'additif inhibiteur de corrosion et le magnésium métal (ou les déchets le contenant) , ce dernier peut être placé dans des moules de façon à lui conférer une forme pré-déterminée suite à ce durcissement.
D'autres caractéristiques et avantages de la présente invention apparaîtront encore à l'homme du métier à la lecture des exemples ci-dessous donnés à titre illustratif et non limitatif, en référence aux figures annexées.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 présente l'influence du fluorure présent dans l'eau de gâchage d'un ciment CEM I sur le dégagement d'hydrogène en présence de magnésium métal.
La Figure 2 présente l'influence du fluorure présent dans la solution d' activation d'un géopolymère sur le dégagement d'hydrogène en présence de magnésium métal .
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS 1. Préparation de coulis avec du fluorure de sodium pour l'immobilisation du magnésium métal.
Des coulis à base de fluorures ont été préparés à partir de différents liants. Les deux liants utilisés pour la préparation des coulis sont les suivants :
- Géopolymère (coulis n°l et n°2)
- Ciment portland CEM I (coulis n°3)
Des solutions aqueuses avec du fluorure de sodium (Merck, 99%) ont été préparées à une concentration de 2,58 M (coulis n°l et 3) et à 0, 258 M (coulis n°2) . Ces solutions sont utilisées dans les coulis n°l et n°2 comme solution d' activation et comme solution de gâchage pour le coulis n°3.
Les produits employés pour le géopolymère sont du métakaolin de Pieri Premix MK (Grade Construction Products), du NaOH (Prolabo, 98%) et du Si02 (Tixosil, Degussa) .
Le coulis à base de Portland a été préparé avec du ciment de type CEM I 52.5 N (Lafarge Le teil) .
Les compositions des différents coulis sont reportées dans le tableau 1 ci-après. Tableau 1 : Composition des différents coulis pour l'immobilisation du magnésium
Figure imgf000029_0001
Après gâchage des coulis pendant 1 min, ils ont été mis en contact avec du magnésium métal et le dégagement d'hydrogène a été mesuré en fonction du temps . 2. Influence du fluorure sur le dégagement d'hydrogène des coulis en présence de magnésium métal.
Afin de déterminer l'influence de la présence de fluorure sur le dégagement d'hydrogène des coulis n°l, 2 et 3 en présence de magnésium métal, des analyses dans un pot hermétique ont été réalisées et la comparaison avec les coulis n°l, 2 et 3 sans fluorure a été réalisée en fonction du temps.
Sur la Figure 1, est reporté le volume d'hydrogène produit par des coulis à base de CEM I + NaF (coulis n°3) et CEM I sans NaF en présence de magnésium métal. Une diminution claire du volume d'hydrogène produit par le magnésium métal est induite en présence de fluorure dans l'eau de gâchage.
Sur la Figure 2, les résultats sur le géopolymère montrent que l'augmentation de la quantité de fluorure dans la solution d' activation induit une diminution de la quantité d'hydrogène produite par le magnésium métal.
3. Conclusions .
L' incorporation d' inhibiteurs de corrosion du magnésium (fluorure, silicates...) dans l'eau de gâchage de ciment Portland ou dans la solution d' activation d'un géopolymère permet de diminuer la quantité d'hydrogène produite par le magnésium métal dans une matrice à base de liant hydraulique ou de polymères alumino-silicatés amorphes.
RÉFÉRENCES
1. Article de Morris et al., 2009, "Contingency options for the drying, conditioning and packaging of Magnox spent fuel in the UK", Proceedings of the 12th International Conférence on Environmental Remediation and Radioactive Waste Management, ICEM2009, October 11- 15, 2009, Liverpool, UK. 2. Article de Fairhall et Palmer, 1992, "The encapsulation of Magnox in cernent in the United Kingdom", Cernent and Concrète Research, vol. 22, pages 293-298. 3. Article de Spasova et Ojovan, 2008,
"Characterisation of Al corrosion and its impact on the mechanical performance of composite cernent wasteforms by the acoustic émission technique", Journal of Nuclear Materials, vol. 375, pages 347-358.
4. Article de Setiadi et al., 2006, "Corrosion of aluminium and magnésium in BFS composite céments", Advances in Applied Ceramics, vol. 105, pages 191-196. 5. Article de Zosin et al., 1998, "Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes", Atomic Energy, vol. 85, pages 510-514. 6. Article de Turner et al., 2007, "Small scale fire testing of polymer as an encapsulant for Magnox waste", Proceedings of the 15th International Symposium on the Packaging and Transportation of Radioactive Materials ( PATRAM 2007), Miami, Florida. 7. Article de Gray et Luan, 2002, "Protective coatings on magnésium and its alloys - a critical review", Journal of Alloys and Compounds, vol. 336, pages 88-113. 8. Article de Gulbrandsen et al., 1993, "The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and électron microscopical investigations", Corrosion Science, vol. 34, pages 1423-1440.
9. Article de Song et StJohn, 2004, "Corrosion behaviour of magnésium in ethylene glycol", Corrosion Science, vol. 46, pages 1381-1399. 10. Demande de brevet EP 0 995 785 déposée au nom de Texaco Development Corporation et publiée le 26 avril 2000.
11. Demande de brevet chinois N° 101358343 déposée au nom de University Jiaotong SouthWest et publiée le 4 février 2009.
12. Demande de brevet européen N° 0 900 771 déposée au nom de CIMENTS FRANÇAIS et publiée sous le numéro EP le 10 mars 1999.

Claims

REVENDICATIONS
1) Utilisation d'au moins un additif inhibiteur de corrosion pour diminuer la production d'hydrogène par corrosion du magnésium métal conditionné dans une matrice cimentaire.
2) Utilisation selon la revendication 1, caractérisée en ce que ledit magnésium métal est pur ou se présente sous forme d'un alliage tel qu'un alliage de magnésium/aluminium, de magnésium/zirconium ou de magnésium/manganèse .
3) Utilisation selon la revendication 1 ou 2, caractérisée en ce que ledit additif inhibiteur de corrosion est choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de silicate, un composé à base de cérium(III), un composé à base de phosphate, un composé à base de (di) chromate, un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
4) Utilisation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ladite matrice cimentaire est une matrice cimentaire hydraulique .
5) Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite matrice cimentaire est un ciment Porland ou un ciment Portland composé.
6) Utilisation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ladite matrice cimentaire est une matrice cimentaire sulfo- alumineuse et/ou ferro-alumineuse .
7) Utilisation selon selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ladite matrice cimentaire est une matrice cimentaire géopolymérique .
8) Matériau de conditionnement de magnésium métal comprenant une matrice cimentaire hydraulique dans laquelle le magnésium métal est conditionné, la matrice cimentaire hydraulique comprenant en outre au moins un additif inhibiteur de corrosion choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de silicate, un composé à base de cérium ( III ) , un composé à base de phosphate, un composé à base de (di) chromate, un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
9) Matériau de conditionnement de magnésium métal comprenant une matrice cimentaire géopolymérique dans laquelle le magnésium métal est conditionné, la matrice cimentaire géopolymérique comprenant en outre au moins un additif inhibiteur de corrosion choisi dans le groupe constitué par un composé fluoré, un composé à base de stannate, un composé à base de molybdate, un composé à base de cérium ( III ) , un composé à base de phosphate, un composé à base de (di) chromate, un composé à base de cobalt, un composé à base de carboxylate et leurs mélanges.
10) Matériau de conditionnement selon la revendication 8 ou 9, caractérisé en ce que ledit (ou lesdits) additif (s) inhibiteur ( s ) de corrosion est (sont) incorporé (s) dans la matrice cimentaire jusqu'à un taux d'incorporation de 20% en masse par rapport à la masse totale dudit matériau, ce taux d' incorporation étant avantageusement compris entre 0,01 et 15% et, en particulier, entre 0,1 et 10% en masse par rapport à la masse totale dudit matériau.
11) Procédé de préparation d'un matériau de conditionnement tel que défini à l'une quelconque des revendications 8 à 10, caractérisé en ce que ledit procédé de préparation comprend les étapes suivantes successives consistant à :
- incorporer au moins un additif inhibiteur de corrosion tel que défini à la revendication 8 ou 9 dans un mélange cimentaire hydraulique ou géopolymérique, puis
- conditionner du magnésium métal ou un déchet contenant du magnésium métal dans le mélange cimentaire hydraulique ou géopolymérique ainsi obtenu. 12) Procédé de préparation selon la revendication 11, caractérisé en ce qu'au moins un additif inhibiteur de corrosion est ajouté au mélange cimentaire sec hydraulique ou géopolymérique, préalablement à l'ajout de la solution de gâchage ou de la solution d' activation respectivement.
13) Procédé de préparation selon la revendication 11 ou 12, caractérisé en ce qu'au moins un additif inhibiteur de corrosion est ajouté à la solution de gâchage ou à la solution d' activation .
14) Procédé de préparation selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'au moins un additif inhibiteur de corrosion est ajouté au mélange cimentaire suite à l'ajout de la solution de gâchage ou de la solution d' activation .
15) Procédé de préparation selon l'une quelconque des revendications 11 à 14, caractérisé en ce que, suite au conditionnement du magnésium métal ou d'un déchet contenant du magnésium métal dans le mélange cimentaire hydraulique ou géopolymérique, le mélange cimentaire est soumis à des conditions permettant le durcissement de la matrice cimentaire.
PCT/EP2011/054808 2010-04-01 2011-03-29 Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation WO2011120960A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/638,479 US20130014670A1 (en) 2010-04-01 2010-03-29 Use of anticorrosion agents for conditioning magnesium metal, conditioning material thus obtained and preparation process
JP2013501806A JP5635178B2 (ja) 2010-04-01 2011-03-29 マグネシウム金属調整用防食剤、これにより得られる調整材料、および調製法
EP11710514.8A EP2552849B1 (fr) 2010-04-01 2011-03-29 Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation
CN201180018125.1A CN102834364B (zh) 2010-04-01 2011-03-29 用于调节镁金属的防蚀剂的应用、由此获得的调节材料和制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052466A FR2958285B1 (fr) 2010-04-01 2010-04-01 Utilisation d'agents anti-corrosion pour le conditionnement de magnesium metal, materiau de conditionnement ainsi obtenu et procede de preparation
FR1052466 2010-04-01

Publications (1)

Publication Number Publication Date
WO2011120960A1 true WO2011120960A1 (fr) 2011-10-06

Family

ID=43064451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/054808 WO2011120960A1 (fr) 2010-04-01 2011-03-29 Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation

Country Status (6)

Country Link
US (1) US20130014670A1 (fr)
EP (1) EP2552849B1 (fr)
JP (1) JP5635178B2 (fr)
CN (1) CN102834364B (fr)
FR (1) FR2958285B1 (fr)
WO (1) WO2011120960A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193098A1 (fr) * 2014-06-20 2015-12-23 Areva Nc Conditionnement par cimentation d'un déchet nucléaire comprenant du magnésium à l'état de métal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995882B1 (fr) 2012-09-21 2016-01-01 Commissariat Energie Atomique Procede pour preparer un materiau composite a partir d'un liquide organique et materiau ainsi obtenu
FR3003252B1 (fr) 2013-03-13 2015-04-17 Commissariat Energie Atomique Liant et son utilisation pour le conditionnement de dechets contenant de l'aluminium metallique
CN109206026B (zh) * 2017-06-30 2021-12-24 润泰精密材料股份有限公司 环保波特兰(Portland)水泥、其制备方法以及其应用
CN113668515A (zh) * 2021-08-23 2021-11-19 广州东宇王建筑工程有限公司 一种旋挖钻孔灌注桩及其施工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0129491A1 (fr) * 1983-06-21 1984-12-27 Pechiney Electrometallurgie Procédé de passivation à sec de magnésium à l'état divisé
US4943394A (en) * 1988-01-30 1990-07-24 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method of storing radioactive waste without risk of hydrogen escape
EP0900771A1 (fr) 1997-09-04 1999-03-10 Ciments Francais Mélanges cimentaires à base de clinkers sulfoalumineux et ferroalumineux et leur utilisation dans la construction d'ouvrages cimentaires au contact de solutions agressives
EP0995785A1 (fr) 1998-10-14 2000-04-26 Texaco Development Corporation Inhibiteurs de corrosion et combinaisons synergiques d'inhibiteurs pour la protection des métaux légers dans les fluides de transfert thermique et les liquides de refroidissement de moteurs
CN101358343A (zh) 2008-09-09 2009-02-04 西南交通大学 镁合金碱性缓蚀剂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859367A (en) * 1987-10-02 1989-08-22 Joseph Davidovits Waste solidification and disposal method
JPH0971446A (ja) * 1995-09-05 1997-03-18 Lion Corp セメント組成物用防錆剤
CN1552945A (zh) * 2003-06-06 2004-12-08 成都发动机(集团)有限公司有色金属 镁合金铸件表面抗腐蚀处理技术
US20040256030A1 (en) * 2003-06-20 2004-12-23 Xia Tang Corrosion resistant, chromate-free conversion coating for magnesium alloys
CA2545407A1 (fr) * 2003-11-19 2005-06-02 Rocla Pty Ltd. Ciment en geopolymeres et procede de preparation et de coulage
GB0505330D0 (en) * 2005-03-16 2005-04-20 British Nuclear Fuels Plc Waste disposal method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0129491A1 (fr) * 1983-06-21 1984-12-27 Pechiney Electrometallurgie Procédé de passivation à sec de magnésium à l'état divisé
US4943394A (en) * 1988-01-30 1990-07-24 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Method of storing radioactive waste without risk of hydrogen escape
EP0900771A1 (fr) 1997-09-04 1999-03-10 Ciments Francais Mélanges cimentaires à base de clinkers sulfoalumineux et ferroalumineux et leur utilisation dans la construction d'ouvrages cimentaires au contact de solutions agressives
EP0995785A1 (fr) 1998-10-14 2000-04-26 Texaco Development Corporation Inhibiteurs de corrosion et combinaisons synergiques d'inhibiteurs pour la protection des métaux légers dans les fluides de transfert thermique et les liquides de refroidissement de moteurs
CN101358343A (zh) 2008-09-09 2009-02-04 西南交通大学 镁合金碱性缓蚀剂

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
A.P. ZOSIN ET AL: "Geopolymer materials based on magnesia-iron slags fro normalisation and storage of radioactive wastes", ATOMIC ENERGY, vol. 85, no. 1, 1998, pages 510 - 514, XP002610396 *
CHEMICAL ABSTRACTS, vol. 88, no. 4, 23 January 1978, Columbus, Ohio, US; abstract no. 26819r, L.P.KOZHEVNIKOVA: "Effect of aluminum corrosion passivators on the swelling of porous concrete mixtures" page 226; XP000059674 *
FAIRHALL G A ET AL: "Encapsulation of Magnox Swarf in cement in the United Kingdom", CEMENT AND CONCRETE RESEARCH 1992 MAR-MAY, vol. 22, no. 2-3, March 1992 (1992-03-01), pages 293 - 298, XP002610393 *
FAIRHALL, PALMER: "The encapsulation of Magnox in cement in the United Kingdom", CEMENT AND CONCRETE RESEARCH, vol. 22, 1992, pages 293 - 298, XP002610393
GRAY, LUAN: "Protective coatings on magnesium and its alloys - a critical review", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 336, 2002, pages 88 - 113, XP004343802, DOI: doi:10.1016/S0925-8388(01)01899-0
GULBRANDSEN ET AL.: "The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations", CORROSION SCIENCE, vol. 34, 1993, pages 1423 - 1440, XP026685889, DOI: doi:10.1016/0010-938X(93)90238-C
MORRIS ET AL.: "Contingency options for the drying, conditioning and packaging of Magnox spent fuel in the UK", PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT, ICEM2009, OCTOBER 11-15, 2009, LIVERPOOL, UK, 11 October 2009 (2009-10-11)
SETIADI A ET AL: "Corrosion of aluminium and magnesium in BFS composite cements", ADVANCES IN APPLIED CERAMICS AUGUST 2006 MANEY PUBLISHING GB, vol. 105, no. 4, August 2006 (2006-08-01), pages 191 - 196, XP008129281, DOI: DOI:10.1179/174367606X120142 *
SETIADI ET AL.: "Corrosion of aluminium and magnesium in BFS composite cements", ADVANCES IN APPLIED CERAMICS, vol. 105, 2006, pages 191 - 196, XP008129281, DOI: doi:10.1179/174367606X120142
SONG, STJOHN: "Corrosion behaviour of magnesium in ethylene glycol", CORROSION SCIENCE, vol. 46, 2004, pages 1381 - 1399
SPASOVA, OJOVAN: "Characterisation of Al corrosion and its impact on the mechanical performance of composite cement wasteforms by the acoustic emission technique", JOURNAL OF NUCLEAR MATERIALS, vol. 375, 2008, pages 347 - 358, XP022590084, DOI: doi:10.1016/j.jnucmat.2007.11.010
STROIT. MATER. IZDELIYA OSN. OTKHODOV PROM-STI. VERMIKULITA, 1976, USSR, pages 56 - 59 *
TURNER ET AL.: "Small scale fire testing of polymer as an encapsulant for Magnox waste", PROCEEDINGS OF THE 15TH INTERNATIONAL SYMPOSIUM ON THE PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIALS (PATRAM 2007), MIAMI, FLORIDA, 2007
ZOSIN ET AL.: "Geopolymer materials based on magnesia-iron slags for normalization and storage of radioactive wastes", ATOMIC ENERGY, vol. 85, 1998, pages 510 - 514, XP002610396, DOI: doi:10.1007/BF02358790

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193098A1 (fr) * 2014-06-20 2015-12-23 Areva Nc Conditionnement par cimentation d'un déchet nucléaire comprenant du magnésium à l'état de métal
FR3022677A1 (fr) * 2014-06-20 2015-12-25 Areva Nc Conditionnement par cimentation d'un dechet nucleaire comprenant du magnesium a l'etat de metal
GB2558209A (en) * 2014-06-20 2018-07-11 Areva Nc Conditioning by cementation of a nuclear waste comprising magnesium in metal form
GB2558209B (en) * 2014-06-20 2021-06-23 Areva Nc Conditioning by cementation of a nuclear waste comprising magnesium in metal form

Also Published As

Publication number Publication date
FR2958285A1 (fr) 2011-10-07
FR2958285B1 (fr) 2012-06-08
CN102834364A (zh) 2012-12-19
US20130014670A1 (en) 2013-01-17
CN102834364B (zh) 2016-03-16
EP2552849A1 (fr) 2013-02-06
EP2552849B1 (fr) 2016-05-04
JP2013523577A (ja) 2013-06-17
JP5635178B2 (ja) 2014-12-03

Similar Documents

Publication Publication Date Title
US5830815A (en) Method of waste stabilization via chemically bonded phosphate ceramics
JP5219999B2 (ja) ホウ素含有水溶液を包埋するためのセメント系組成物、包埋方法及びセメントグラウト組成物
EP2552849B1 (fr) Utilisation d'agents anti-corrosion pour le conditionnement de magnésium métal, matériau de conditionnement ainsi obtenu et procédé de préparation
FR2542223A1 (fr) Procede pour incorporer des resines echangeuses d'ions dans une masse solide
JP3150445B2 (ja) 放射性廃棄物の処理方法,放射性廃棄物の固化体及び固化材
JP5751499B2 (ja) ケイ酸塩系表面含浸工法に用いる反応促進材及びコンクリート補強方法
CN1884155A (zh) 石油钻井废弃泥浆固化剂及其使用方法
US20080134943A1 (en) Encapsulation Medium
KR101787416B1 (ko) 고비중 광물 미분과 유동층상 보일러 석탄회를 포함하는 자기 경화형 인공골재 및 그의 제조방법
FR2995882A1 (fr) Procede pour preparer un materiau composite a partir d'un liquide organique et materiau ainsi obtenu
CN102107204A (zh) 一种以废治废的工业重金属废渣无害化处理工艺
CA2911855C (fr) Liant de geosynthese comprenant un activateur alcalino-calcique et un compose silico-alumineux
CA2110737A1 (fr) Procede servant a la synthese d'une matiere argilacee en couches, de meme que son utilisation
Kim et al. Effect of Si/Al molar ratio and curing temperatures on the immobilization of radioactive borate waste in metakaolin-based geopolymer waste form
FR2881740A1 (fr) Procede de solidification et de stabilisation d'une solution aqueuse d'hydroxyde de sodium concentree
FR2525803A1 (fr) Procede pour ameliorer la retention des radionucleides par les dechets radioactifs solidifies
FR3092835A1 (fr) Compositions pour le conditionnement des déchets radioactifs et procédé de conditionnement
US8366820B2 (en) Curable composition, paste, and oxidatively carbonated composition
CZ81094A3 (en) Process of treatment contaminating waste and a product obtained therefrom
EP3065140B1 (fr) Procédé de dissolution d'un métal et mise en euvre pour conditionner ledit métal dans un géopolymère
JP4060498B2 (ja) 放射性廃棄物の固化処理方法
EP3873683B1 (fr) Procédé de conditionnement par cimentation d'un déchet acide
EP1741109A1 (fr) Stockage de materiaux dangereux
JP2001289993A (ja) 両性金属を含む放射性廃棄物の固化用ペーストの製造装置
CN115504730A (zh) 回填材料组合物、回填材料及其制备方法和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018125.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11710514

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013501806

Country of ref document: JP

Ref document number: 2011710514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638479

Country of ref document: US