WO2011120473A2 - 多点协作接收处理方法、装置和基站 - Google Patents

多点协作接收处理方法、装置和基站 Download PDF

Info

Publication number
WO2011120473A2
WO2011120473A2 PCT/CN2011/073887 CN2011073887W WO2011120473A2 WO 2011120473 A2 WO2011120473 A2 WO 2011120473A2 CN 2011073887 W CN2011073887 W CN 2011073887W WO 2011120473 A2 WO2011120473 A2 WO 2011120473A2
Authority
WO
WIPO (PCT)
Prior art keywords
crc detection
detection result
cooperative
sets
correct
Prior art date
Application number
PCT/CN2011/073887
Other languages
English (en)
French (fr)
Other versions
WO2011120473A3 (zh
Inventor
蔡睿
楼群芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11762047.6A priority Critical patent/EP2701418B1/en
Priority to CN201180000486.3A priority patent/CN102318398B/zh
Priority to PCT/CN2011/073887 priority patent/WO2011120473A2/zh
Publication of WO2011120473A2 publication Critical patent/WO2011120473A2/zh
Publication of WO2011120473A3 publication Critical patent/WO2011120473A3/zh
Priority to US14/075,639 priority patent/US9119192B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • Multipoint coordinated receiving processing method device and base station
  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a multipoint coordinated receiving processing method, apparatus, and base station. Background technique
  • CoMP Coordinatd Multi-point
  • LTE-A Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CoMP is a cooperative transmission and reception technology.
  • One base station is connected to at least one access point, and one access point may contain one or more antennas. Multiple users may be served by one or more access points that are at the same base station or different base stations.
  • CoMP transmission/reception technologies can be mainly divided into two categories: 1. Joint scheduling, inter-sector interaction information belonging to the same collaboration set, performing joint scheduling to obtain interference coordination gain; 2. Joint reception, serving sector and multiple cooperative sectors Receiving the same user's transmission signal at the same time is equivalent to increasing the number of antennas at the receiving end, and improving the demodulation performance through a MIM0 (Multi-Input Multiple-Out-put) receiver.
  • MIM0 Multi-Input Multiple-Out-put
  • the existing CoMP selection scheme is as follows: Assuming that one base station corresponds to three sectors, Cell 0, Cell 1, and Cell 2, and the serving sector in which the UE (User Equipment) is located is Cell 0, the UE may be composed of possible components.
  • the CoMP collaboration set is: ⁇ Cell 0 ⁇ , ⁇ Cell 0, Cell 1 ⁇ , ⁇ Cell 0, Cell 2 ⁇ , ⁇ Cell 0, Cell l , Cell 2 ⁇ ;
  • the base station calculates the data received by the above four cooperative sets for equalization. After the Signal to Interference plus Noise Ratio (SINR), the collaboration set corresponding to the largest SINR is selected as the final CoMP collaboration set.
  • SINR Signal to Interference plus Noise Ratio
  • Embodiments of the present invention provide a multipoint cooperative reception processing method, apparatus, and base station, to improve accuracy of selecting a coordinated set under actual channel estimation, and to optimize system performance.
  • the embodiment of the invention provides a multi-point cooperative receiving processing method, including:
  • the k CRC detection results include at least one correct CRC detection result, processing a signal obtained by one of the at least one correct CRC detection result.
  • An embodiment of the present invention provides a multipoint coordinated receiving and processing device, including:
  • a demodulation and decoding module configured to demodulate and decode an uplink signal received by k cooperative sets in the M cooperative sets, to obtain k cyclic redundancy check code CRC detection results, where the uplink signal is a user
  • the cooperation set sent by the device UE is a service sector in which the UE is located or a set formed by the service sector and any one or more coordinated sectors; M > 2, K k ⁇ M;
  • a first processing module configured to: if the at least one correct CRC detection result is included in the k CRC detection results, process a signal obtained by one of the at least one correct CRC detection result.
  • An embodiment of the present invention provides a base station, including: a multipoint cooperative receiving and processing apparatus provided by an embodiment of the present invention.
  • the base station demodulates and decodes the uplink signal received through one or more cooperative sets, and then obtains CRC detection of the correct detection result after demodulating and decoding.
  • the obtained signal is received and processed.
  • the CRC detection result is correct, it indicates that the cooperation set corresponding to the CRC detection result can accurately receive the signal, and the base station can avoid the problem that the SINR error value is large in the prior art by using the CRC detection. And the accuracy of selecting the cooperation set can be improved, thereby improving the detection performance under actual channel estimation.
  • FIG. 1 is a flowchart of a multi-point cooperative receiving processing method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a multi-point cooperative receiving processing method according to another embodiment of the present invention
  • FIG. 4 is a schematic diagram of a multi-point cooperative receiving processing apparatus according to another embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a multi-point cooperative receiving processing method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes:
  • Step 101 Perform demodulation and decoding on the uplink signals received by the k cooperative sets in the M cooperative sets, and obtain k CRC (Cyclic Redundancy Check) detection results.
  • CRC Cyclic Redundancy Check
  • the embodiment of the present invention may be applied to a scenario of multi-point cooperation (CoMP) reception and transmission.
  • the executor of this embodiment may be a serving base station of the UE, or may be a cooperative base station or an independent control processor.
  • the serving base station is described as an example. Where M > 2, l k M.
  • the principle of using CoMP joint reception may be: jointly receiving signals of a certain user by using antennas of multiple sectors of the same base station or different base stations, which is similar to receiving more antennas in one sector, and thus The signal combining gain and the interference suppression gain of the multi-antenna reception can be obtained at the same time, and the closer to the sector boundary, the larger the signal combining gain; wherein, among the multiple sectors performing CoMP joint reception, other fans except the serving sector
  • the area is a cooperative sector.
  • different cooperation sets may be selected from the serving sector and the coordinated sector for association.
  • Receiving there may be multiple CoMP cooperative set receiving schemes, where the cooperative set may be a serving sector or a set of serving sectors and one or more coordinated sectors. In general, the gains brought by different CoMP cooperative set reception schemes are different.
  • Embodiments of the present invention provide a solution for how to select a CoMP collaboration set.
  • the uplink signal in this implementation is a signal sent by the UE to the network side, and both the serving sector and the cooperative sector can receive the uplink signal sent by the UE.
  • the serving sector is a sector in which the UE is located, and for one UE, there may be one or more cooperative sectors, where the coordinated sector may be a sector corresponding to the same base station as the serving sector, or A sector of a base station that is different from the serving sector.
  • the cooperative set that the serving sector and the cooperative sector may form is: a serving sector, or a set formed by the serving sector and any one or more coordinated sectors.
  • the serving sector of user equipment A is Cell O and the two cooperative sectors are Cell 1 and Cell 2
  • the M cooperative sets that Cell 0 and Cell 1 and Cell 2 may form are the following four collaboration sets: ⁇ Cell O ⁇ , ⁇ Cell O, Cell 1 ⁇ , ⁇ Cell O, Cell 2 ⁇ , ⁇ Cell O, Cell 1 , Cell 2 ⁇ .
  • the serving sector and the coordinated sector of the UE may form M cooperative sets, and the serving base station may demodulate and decode the uplink signals received by the k cooperative sets in the M cooperative sets; wherein, 1 k M; the serving base station may Demodulation decoding is performed on one cooperative set (w when k is equal to 1) in the M cooperative sets, and multiple cooperative sets (1 ⁇ kM) in the M cooperative sets may be demodulated and decoded.
  • the process of demodulating and decoding the uplink signal received by the serving base station by the serving base station may be: the serving base station acquires the uplink signal received through the cooperation set, and performs channel estimation on the received uplink signal.
  • the equalization process is performed according to a certain criterion by the equalizer, and the signal after the equalization process is soft demodulated, and then decoded by the decoder.
  • the serving base station may arbitrarily select one or more cooperation sets in the possible set of cooperation to perform the above-mentioned demodulation and decoding, or may be in a preset order (for example, the strength of the signal that can be received according to the cooperation set or The interference size is selected from one or more coordinated sets that may be formed to perform the above demodulation decoding; wherein, the number of selected cooperative sets is k; or, the serving base station may sequentially demodulate the cooperation set according to a preset sequence. Decoding and performing CRC detection until the CRC detection result is correct, wherein the number of cooperative sets demodulated and decoded is k.
  • Step 102 If at least one correct CRC detection result is included in the k CRC detection results, perform a signal obtained by one of the at least one correct CRC detection result. deal with.
  • the serving base station may obtain k CRC detection results, and then the base station determines whether the detection results are correct in the k CRC detection results, and if a CRC detection is determined. If the result is correct, it indicates that the uplink signal sent by the UE received by the cooperation set corresponding to the CRC detection result is completely correctly received, and then the signal obtained by the CRC detection result may be subsequently processed, for example, the base station informs the UE that the current decoding is correct.
  • Notifying the UE that new data can be sent, for example, generating acknowledgement information, such as ACK (acknowledgement character); if the k CRC detection results are all wrong, the coordinated set other than the k cooperative sets can be demodulated
  • the decoding may be performed by a HARQ (Hybrid Automatic Repeat Request) retransmission. This embodiment does not limit the steps performed after the k CRC detections are all erroneous.
  • the serving base station demodulates and decodes the uplink signal received by the cooperation set one by one and obtains the CRC detection result, the serving base station can determine whether the CRC detection result is correct, if the CRC detection result is obtained.
  • the uplink signal received by the other cooperation set is demodulated and decoded, and the signal obtained correctly by the CRC detection result is subjected to subsequent reception processing.
  • the cooperation set corresponding to the CRC detection result is the kth Collaboration set.
  • the serving base station demodulates and decodes the uplink signal received by the one or more cooperation sets, and then processes the signal obtained by the CRC detection result of the correct detection result after demodulation and decoding, and the CRC detection is performed.
  • the result is correct, it indicates that the cooperation set corresponding to the CRC detection result can accurately receive the signal; in this embodiment, the base station can avoid the problem that the SINR error value is large in the prior art by using the CRC detection, and can improve the selection of the collaboration set. Accuracy, improve system performance.
  • FIG. 2 is a flowchart of a multi-point cooperative receiving processing method according to another embodiment of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 The serving base station selects, as a cooperative sector, the first N sectors with the largest RSRP value from among a plurality of sectors that may be cooperative sectors other than the serving sector.
  • the serving base station of a certain UE measures RSRP (Reference Signal Receiving Power) of multiple sectors to obtain RSRP values of multiple sectors, for example:
  • the RSRP of multiple sectors can be measured by the UE. , and then report the measurement result to the base station;
  • the serving base station selects the first N non-serving sectors with the largest RSRP value as the cooperative sector; wherein the selected non-serving sectors are sectors other than the serving sector in which the UE is located, which may be the cooperative sector. If the difference between the RSRP value of the other sector and the RSRP value of the serving cell is within a predetermined range, the other sectors may serve as a cooperative sector;
  • N is a preset value, and may be specifically set according to actual conditions.
  • the serving base station can periodically select the coordinated sector, and the selected period can be pre-configured according to the actual situation.
  • the plurality of sectors other than the serving sector may be the same base station as the serving sector, or may be different from the serving sector, or may be in a plurality of sectors other than the serving sector.
  • Part of the sector corresponds to the same base station as the serving sector, and another part of the sector corresponds to a different base station.
  • a specific implementation may be: the serving base station where the UE is located corresponds to three sectors Cell 0, Cell 1 and Cell 2, where Cell 0 is the serving sector of the UE, and Cell 0, Cell 1 and Cell 2 are used.
  • the M cooperative sets that the service sector and the cooperation sector may form are: ⁇ Cell 0 ⁇ , ⁇ Cell O, Cell 1 ⁇ .
  • the serving sector and the coordinating sector in which the UE is located may form a cooperation set.
  • the cooperation set may be: a serving sector where the UE is located, or the serving sector and any one or more A collection of collaborative sectors.
  • Step 202 The serving base station demodulates and decodes the uplink signals received by the k cooperative sets in the M cooperative sets to obtain k CRC detection results.
  • the UE sends an uplink signal
  • the serving base station acquires an uplink signal received through each coordinated set.
  • the cooperation set may be: a serving sector where the UE is located, or a cooperation set formed by the serving sector and any one or more candidate coordinated sectors.
  • M cooperative sets can be formed by the serving sector and N cooperative sectors. For example, if the coordinated sector selected in step 201 is Cell 1, then the M cooperative sets in this step may be two coordinated sets of ⁇ Cell 0 ⁇ and ⁇ Cell 0, Cell 1 ⁇ .
  • the uplink signal is demodulated and decoded.
  • the base station may arbitrarily select one cooperation set from all the cooperation sets that the service sector or the service sector and the cooperation sector may form, or select one from all the cooperation sets according to the strength of the signal or interference.
  • the order of selection is not limited, and the serving base station may randomly select, or may select a serving sector first or select another specified collaboration set. For example: If all the cooperative sets that may be formed are ⁇ Cell 0 ⁇ and ⁇ Cell O, Cell 1 ⁇ , then the serving base station can arbitrarily select one of the detections for demodulation decoding first, or the serving base station can preferably select ⁇ Cell 0 ⁇ ( Or ⁇ Cell 0, Cell 1 ⁇ ) performs detection of demodulation decoding, where Cell 0 is the serving sector of the UE.
  • the serving base station may demodulate and decode the uplink signals received through the k cooperative sets. Specifically, the serving base station may perform the operation of this step in each TTI (Transmission Time Interval), that is, the serving base station demodulates and decodes the uplink signal received by one coordinated set in each frame. .
  • TTI Transmission Time Interval
  • Step 203 The serving base station determines whether the CRC detection result is correct in the k CRC detection results. If the correct CRC detection result is included, step 204 is performed; if the correct CRC detection result is not included, step 205 is performed.
  • the serving base station After demodulating and decoding the uplink signals received by the k cooperative sets, the serving base station determines the k CRC detection results obtained after demodulation and decoding. If a CRC detection result is correct, step 204 is performed. If the k CRC detection results are all wrong, step 205 is performed.
  • Step 204 The serving base station selects a correct CRC detection result among the k CRC detection results, and processes the signal obtained by the selected correct CRC detection result.
  • the cooperative set corresponding to the correct CRC detection result is the cooperative set A
  • the serving base station performs the subsequent receiving process on the signal obtained by demodulating and decoding the uplink signal received by the cooperative set A
  • the subsequent receiving processing of the signal obtained by demodulating and decoding the uplink signal received by the serving base station by the serving base station may be: demodulated and decoded by the serving base station according to the uplink signal received by the cooperation set A.
  • the signal generates acknowledgment information; the serving base station can then send the generated acknowledgment information to the UE.
  • Step 205 The serving base station demodulates and decodes the uplink signal sent by the UE received by the one or more cooperative sets except the k cooperative sets in the M cooperative sets, to obtain one or more second CRC detection results.
  • the other cooperative sets in the M cooperative sets are demodulated and decoded, wherein another cooperative set may be demodulated and decoded, or other multiples may be used.
  • the cooperative set performs demodulation decoding, and the obtained detection result is referred to as a second CRC detection result.
  • Step 206 The serving base station determines whether the one or more second CRC detection results obtained after demodulation and decoding in step 205 include a CRC detection result with a correct detection result; if the CRC detection result with the correct detection result is included, If the second CRC detection result is correct, step 207 is performed; if the CRC detection result with the correct detection result is not included, that is, all the second CRC detection results are all wrong, step 205 is repeatedly executed.
  • the serving base station determines in step 203 that the k CRC detection results are all wrong, it indicates that when the uplink signals are received through the k cooperative sets, the performance is not optimal, and thus the other cooperation sets need to be detected, so as to facilitate selection.
  • An accurate CoMP reception scheme If the serving base station determines in step 203 that the k CRC detection results are all wrong, it indicates that when the uplink signals are received through the k cooperative sets, the performance is not optimal, and thus the other cooperation sets need to be detected, so as to facilitate selection.
  • the serving base station determines in step 206 that all of the second CRC detection results are erroneous, the serving base station repeatedly performs demodulation decoding on the uplink signals received through the other undetected any one or more coordinated sets, and The step of determining whether the CRC detection result obtained after demodulation decoding is correct is until a CRC detection result is correct, or until all the cooperative sets have undergone demodulation decoding detection.
  • Step 207 The serving base station performs subsequent receiving processing on the signal obtained by the CRC detection result of the second CRC detection result.
  • the embodiment may further include the following steps:
  • Step a When performing HARQ retransmission, the serving base station only performs reception detection on the uplink signal received on the serving sector where the UE is located.
  • the base station may initiate a HARQ retransmission when the CRC detection results corresponding to all the cooperation sets are in error.
  • the serving base station selects an uplink signal received on the serving sector for receiving detection, for example, the base station receives the data retransmitted by the UE, and uses the uplink signal received on the serving sector to perform detection and demodulation decoding; That is, when HARQ retransmission, it is not necessary to detect the received signals of different cooperation sets.
  • step 201 in this embodiment is an optional step. If there is no step 201, then the M collaboration sets in step 202 are all possible cooperation sets.
  • the serving base station demodulates and decodes the signal received by one cooperation set (for example, the cooperation set a) in the M cooperation sets, if the obtained CRC detection result is obtained. If it is correct, it indicates that the signal received through the cooperation set a is accurate. At this time, the signal received by the cooperation set a is processed, and the signals received by other cooperative sets are not required to be demodulated and decoded; If the corresponding CRC detection result is incorrect, it indicates that the signal received through the cooperation set a is inaccurate. At this time, the signals received by another cooperative set in the M cooperative sets may be repeatedly demodulated and decoded, and the obtained CRC is detected. The test result is correct.
  • the serving base station demodulates and decodes the signals received by the k cooperative sets (for example, the cooperative set a-ak) in the M cooperative sets, and then demodulates and decodes the signals.
  • the k cooperative sets for example, the cooperative set a-ak
  • the serving base station demodulates and decodes the signals received by the k cooperative sets (for example, the cooperative set a-ak) in the M cooperative sets, and then demodulates and decodes the signals.
  • Step 202 to Step 207 in this embodiment may be replaced by the following steps:
  • the serving base station demodulates and decodes the uplink signals received by the M cooperative sets in a preset order until the correct one is obtained.
  • the serving base station may first select a preset number of sectors with the largest RSRP as the coordinated sector according to the size of the RSRP, and then cooperate with one or more collaboration groups that may be formed between the serving sector and the coordinated sector.
  • the received uplink signal is subjected to demodulation decoding detection, and then the signal obtained by the CRC detection result of the correct detection result after demodulation and decoding is processed, and when the CRC detection result is correct, the cooperation corresponding to the CRC detection result is indicated.
  • the set can accurately receive the signal. If the CRC detection result with the correct detection result is not detected, the other cooperative sets are demodulated and decoded until the accurate multi-point cooperative receiving scheme is selected; the base station can avoid the CRC detection.
  • the error value of the SINR is large, and the accuracy of selecting the cooperation set can be improved, and the system performance can be improved.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • FIG. 3 is a schematic diagram of a multipoint cooperative receiving processing apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes: a demodulation decoding module 31 and a first processing module 33.
  • the demodulation and decoding module 31 is configured to demodulate and decode the uplink signals received by the k cooperative sets in the M cooperative sets to obtain k cyclic redundancy check code CRC detection results.
  • the uplink signal is sent by the user equipment UE, where the cooperation set is a service sector in which the UE is located or a set formed by the service sector and any one or more coordinated sectors; M > 2, lk M.
  • the first processing module 33 is configured to process, if the k CRC detection results include at least one correct CRC detection result, a signal obtained by one of the at least one correct CRC detection results.
  • the multi-point cooperative receiving processing apparatus provided in this embodiment is used to implement the method embodiment shown in FIG. 1.
  • the working process and working principle of each module in this embodiment are described in the foregoing method embodiments, and details are not described herein again. .
  • the demodulation and decoding module demodulates and decodes the uplink signal received through one or more cooperative sets, and then the first processing module obtains the CRC detection result of the correct detection result after demodulating and decoding.
  • the signal is processed, and when the CRC detection result is correct, it indicates that the cooperation set corresponding to the CRC detection result can accurately receive the signal; the base station passes the CRC check in this embodiment.
  • the measurement can avoid the problem that the error value of the SINR in the prior art is large, and can improve the accuracy of selecting the cooperation set and improve the system performance.
  • FIG. 4 is a schematic diagram of a multi-point cooperative receiving processing apparatus according to another embodiment of the present invention. On the basis of the embodiment shown in FIG. 3, as shown in FIG. 4:
  • the demodulation and decoding module 31 may be specifically configured to demodulate and decode the uplink signals received by the M cooperative sets according to a preset sequence until a correct CRC detection result is obtained.
  • the demodulation and decoding of the uplink signal received by the kth cooperation set is a correct CRC detection result.
  • the first processing module 33 is specifically configured to process the signal obtained by the CRC detection result of the kth cooperation set.
  • the demodulation and decoding module 31 may be specifically configured to demodulate and decode the uplink signals received by the k cooperative sets.
  • the first processing module 33 is specifically configured to: select a correct CRC detection result among the k CRC detection results, and process the signal obtained by the selected correct CRC detection result.
  • the device may further include: a second processing module 35.
  • the second processing module 35 is configured to: if the k CRC detection results are all wrong, send the uplink sent by the UE that is received by one or more cooperation sets except the k cooperation sets in the M cooperation sets. Demodulating and decoding the signal to obtain one or more second CRC detection results; if at least one of the one or more second CRC detection results is correct, a second CRC detection result that is correct for the detection result The resulting signal is processed.
  • the demodulation and decoding module 31 may be specifically configured to: in demodulate and decode the uplink signals received by the k cooperative sets in the M cooperative sets, in each transmission time interval TTI, one to The uplink signal received by the cooperation set is demodulated and decoded.
  • the first processing module 33 may be specifically configured to: if the at least one correct CRC detection result is included in the k CRC detection results, according to a CRC detection result of the at least one correct CRC detection result Signal generation confirmation information.
  • the multi-point cooperative receiving processing device provided in this embodiment is used to implement the method embodiment shown in FIG. 1 or FIG. 2.
  • the working process and working principle of each module in this embodiment are described in the foregoing method embodiments. No longer.
  • the multipoint coordinated receiving and processing device of the serving base station may first be based on the RSRP The size, selects a preset number of sectors of the RSRP maximum as a coordinated sector, and then performs demodulation and decoding detection on the uplink signals received by one or more cooperative sets in the cooperation set that the serving sector and the cooperative sector may form. Then, the signal obtained by the CRC detection result of the correct detection result after demodulation and decoding is processed, and when the CRC detection result is correct, it means that the cooperation set corresponding to the CRC detection result can accurately receive the signal, if no detection result is detected. If the correct CRC detection result is used, the other cooperative sets are demodulated and decoded until the accurate multi-point cooperative receiving scheme is selected.
  • the base station can avoid the problem of large SINR error value in the prior art through CRC detection. , and can improve the accuracy of selecting collaborative sets and improve system performance.
  • the embodiment of the invention further provides a base station, which comprises any multi-point cooperative receiving processing device provided by the embodiment of the invention.
  • the base station provided in this embodiment is used to implement the method embodiment shown in FIG. 1 or FIG. 2.
  • the working process and working principle of the base station provided in this embodiment are described in the foregoing method embodiments, and details are not described herein again.
  • the base station demodulates and decodes the uplink signal received by one or more cooperative sets, and then processes the signal obtained by the CRC detection result of the correct detection result after demodulation and decoding, and the CRC detection result is processed.
  • it is correct, it indicates that the cooperation set corresponding to the CRC detection result can accurately receive the signal; in this embodiment, the base station can avoid the problem that the SINR error value is large in the prior art by using the CRC detection, and can improve the accuracy of selecting the cooperation set.
  • Sexuality improve systemic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)

Description

多点协作接收处理方法、 装置和基站
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种多点协作接收处理方法、 装置和基站。 背景技术
CoMP ( Coordinated Multi-point , 多点协作)是 LTE-A ( Long Term Evolution-Advanced,长期演进的后续演进)的关键技术之一, 用于扩展高数据 率的覆盖范围, 提升系统的平均吞吐率, 尤其能改善边缘用户性能。
CoMP是一种合作的发送接收技术。 一个基站连接至少一个接入点, 一 个接入点可以包含一个或者多个天线。 多个用户可以由处于同一个基站或者 不同基站的一个或多个接入点服务。 CoMP发送 /接收技术主要可以分为两类: 1、 联合调度, 属于同一协作集的扇区间交互信息, 进行联合调度从而获得干 扰协调增益; 2、 联合接收, 服务扇区与多个协作扇区同时接收同一个用户的 发送信号, 等效于增加接收端的天线数, 通过 MIM0 ( Multiple-Input Multiple-Out-put, 多输入多输出 )接收机提升解调性能。
对于某个用户而言, 选择进行协作的扇区不同, 该用户的 CoMP增益不 同。 为了提升用户的 CoMP增益, 需要选择协作的扇区。 现有的 CoMP选择 方案为: 假设一个基站对应三个扇区 Cell 0、 Cell 1 和 Cell 2, UE ( User Equipment , 用户设备 )所在的服务扇区为 Cell 0 , 则该 UE对应的可能组成 的 CoMP协作集为: {Cell 0}、 {Cell 0, Cell 1 } , {Cell 0, Cell 2} , {Cell 0, Cell l , Cell 2}; 基站分别计算以上四种协作集接收的数据进行均衡后的信干 噪比( Signal to Interference plus Noise Ratio, 简称为 SINR ) , 然后选择最大 的 SINR对应的协作集作为最终的 CoMP协作集。
然而, 在实际应用场景下, 由于除了服务扇区以外的协作集接收的数据 信号能量通常比服务扇区的小, 因此在实际信道估计情况下, 进行均衡后的 SINR的测量误差比较大, 从而导致根据 SINR选择协作集的误差较大, 选择 的结果不准确, 导致出现负增益。 发明内容
本发明实施例提供一种多点协作接收处理方法、 装置和基站, 以提高实 际信道估计下的选择协作集的准确性, 优化系统性能。
本发明实施例提供一种多点协作接收处理方法, 包括:
对 M个协作集中的 k个协作集接收到的上行信号进行解调译码, 得到 k 个循环冗余校验码 CRC检测结果, 其中, 所述上行信号为用户设备 UE发送 的, 所述协作集为所述 UE所在的服务扇区或者所述服务扇区与任意一个或 多个协作扇区形成的集合; M > 2, K k < M;
若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对 所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到的信号进行 处理。
本发明实施例提供一种多点协作接收处理装置, 包括:
解调译码模块, 用于对 M个协作集中的 k个协作集接收到的上行信号进 行解调译码, 得到 k个循环冗余校验码 CRC检测结果, 其中, 所述上行信号 为用户设备 UE发送的 ,所述协作集为所述 UE所在的服务扇区或者所述服务 扇区与任意一个或多个协作扇区形成的集合; M > 2, K k < M;
第一处理模块, 用于若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对所述至少一个正确的 CRC检测结果中的一个 CRC检测 结果得到的信号进行处理。
本发明实施例提供一种基站, 包括: 本发明实施例提供的多点协作接收 处理装置。
本发明实施例的多点协作接收处理方法、 装置和基站, 基站对通过一个 或多个协作集接收到的上行信号进行解调译码, 然后对解调译码后得到正确 检测结果的 CRC检测结果得到的信号进行接收处理, CRC检测结果正确时, 则表示使用该 CRC检测结果对应的协作集可以准确接收信号,基站通过 CRC 检测, 可以避免现有技术中 SINR的误差值较大的问题, 并且可以提高选择 协作集的准确性, 从而可以提高实际信道估计下的检测性能。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的多点协作接收处理方法的流程图; 图 2为本发明另一实施例提供的多点协作接收处理方法的流程图; 图 3为本发明一实施例提供的多点协作接收处理装置的示意图; 图 4为本发明另一实施例提供的多点协作接收处理装置的示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1 为本发明一实施例提供的多点协作接收处理方法的流程图, 如图 1 所示, 该方法包括:
步骤 101、 对 M个协作集中的 k个协作集接收到的上行信号进行解调译 码, 得到 k个 CRC ( Cyclic Redundancy Check, 循环冗余校验码 )检测结果。
本发明实施例可以应用于多点协作(CoMP )接收和发送的场景中; 本实 施例的执行主体可以为 UE的服务基站, 或者也可以为协作基站或者独立的 控制处理器, 本实施例以服务基站为例进行说明。 其中, M > 2, l k M。
利用 CoMP联合接收的原理可以为: 利用同一个基站或不同基站的多个 扇区的天线对某一个用户的信号进行联合接收, 其类似于在一个扇区中使用 更多天线进行接收, 因此也可以同时获得多天线接收的信号合并增益和干扰 抑制增益, 越靠近扇区边界的用户, 信号合并增益越大; 其中, 进行 CoMP 联合接收的多个扇区中, 除了服务扇区以外的其他扇区为协作扇区。 当存在 多个协作扇区时, 可以从服务扇区和协作扇区中选择不同的协作集进行联合 接收, 此时就可以有多种 CoMP协作集接收方案, 其中, 协作集可以为服务 扇区, 也可以为服务扇区与一个或多个协作扇区组成的集合。 一般情况下, 不同 CoMP协作集接收方案带来的增益是不同的。 本发明实施例提供了如何 选择 CoMP协作集的方案。
本实施中的上行信号是 UE发送到网络侧的信号, 服务扇区和协作扇区 都可以接收到 UE发送的上行信号。该服务扇区为 UE所在的扇区, 而对于一 个 UE而言, 其协作扇区可以有一个或多个, 其中协作扇区可以为与该服务 扇区对应同一个基站的扇区,也可以为与该服务扇区对应不同的基站的扇区。
其中, 服务扇区与协作扇区可能形成的协作集为: 服务扇区, 或者服务 扇区与任意一个或多个协作扇区形成的集合。 例如: 用户设备 A的服务扇区 为 Cell O, 两个协作扇区为 Cell 1和 Cell 2, 那么 Cell 0与 Cell 1、 Cell 2可能 形成的 M个协作集为以下 4个协作集: { Cell O} , { Cell O, Cell 1 } , { Cell O, Cell 2} , { Cell O, Cell 1 , Cell 2}。
UE的服务扇区和协作扇区可以形成 M个协作集, 服务基站可以对这 M 个协作集中的 k个协作集接收到的上行信号进行解调译码;其中, 1 k M; 服务基站可以对这 M个协作集中的 1个协作集( k等于 1时)进行解调译码, 也可以对这 M个协作集中的多个协作集( 1 < k M时)进行解调译码。
具体的, 服务基站对其中一个协作集接收到的上行信号进行解调译码的 过程例如可以为: 服务基站获取通过该协作集接收到的上行信号, 对该接收 到的上行信号进行信道估计后, 通过均衡器根据一定准则进行均衡处理, 并 对均衡处理后的信号进行软解调, 然后再通过译码器进行译码处理。
需要说明的是, 服务基站可以在可能形成的协作集中任意选择一个或多 个协作集进行上述解调译码, 也可以按照预设的顺序 (例如可以按照协作集 接收到的信号的强度大小或干扰大小)从可能形成的协作集中选择一个或多 个进行上述解调译码; 其中, 选择的协作集的数量即为 k; 或者, 服务基站 可以按照预设的顺序依次对协作集进行解调译码并进行 CRC检测,直到 CRC 检测结果正确为止, 其中, 解调译码的协作集的数量即为 k。
步骤 102、 若 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对至少一个正确的 CRC检测结果中的一个 CRC检测结果得到的信号进行 处理。
服务基站对 k个协作集接收到的上行信号进行解调译码后, 可以得到 k 个 CRC检测结果, 然后基站判断这 k个 CRC检测结果中是否有检测结果正 确的, 若判断出一个 CRC检测结果正确, 则说明使用该 CRC检测结果对应 的协作集接收 UE发送的上行信号是完全正确接收的, 然后可以对该 CRC检 测结果得到的信号进行后续的处理, 例如: 基站告知 UE 当前译码正确, 通 知 UE可以发送新的数据, 例如生成确认信息, 如 ACK ( acknowledgement character ) ; 若这 k个 CRC检测结果都错误, 则可以对除了这 k个协作集以 外的其他的协作集再进行解调译码, 或者也可以进行 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传请求 )重传, 本实施例并不限定这 k 个 CRC检测都错误后进行的步骤。 此外, 若服务基站是一个一个的对协作集 接收到的上行信号进行解调译码并得到 CRC检测结果时, 每得到一个 CRC 检测结果, 服务基站就可以判断该 CRC检测结果是否正确, 若正确, 则停止 对其他协作集接收到的上行信号进行解调译码,而对该 CRC检测结果正确得 到的信号进行后续的接收处理, 此时, 该 CRC检测结果对应的协作集即为第 k个协作集。
本发明实施例中, 服务基站对通过一个或多个协作集接收到的上行信号 进行解调译码,然后对解调译码后得到正确检测结果的 CRC检测结果得到的 信号进行处理, CRC检测结果正确时, 则表示使用该 CRC检测结果对应的 协作集可以准确接收信号; 本实施例基站通过 CRC检测, 可以避免现有技术 中 SINR的误差值较大的问题, 并且可以提高选择协作集的准确性, 提高系 统性能。
图 2为本发明另一实施例提供的多点协作接收处理方法的流程图, 如图 2所示, 该方法包括:
步骤 201、 服务基站从除了服务扇区以外的可能作为协作扇区的多个扇 区中选择 RSRP值最大的前 N个扇区作为协作扇区。
某一 UE 的服务基站对多个扇区的 RSRP ( Reference Signal Receiving Power, 参考信号接收功率)进行测量, 得到多个扇区的 RSRP值, 例如: 可 以由 UE对多个扇区的 RSRP进行测量, 再将测量结果上报给基站; 然后由 服务基站选择 RSRP值最大的前 N个非服务扇区作为协作扇区; 其中, 这些 供选择的非服务扇区是除了该 UE所在的服务扇区以外的, 可能作为协作扇 区的扇区, 其中, 若其他扇区的 RSRP值与服务小区的 RSRP值的差异在某 个预定范围之内时, 这些其他扇区可以作为协作扇区; N 为预设的值, 可以 根据实际情况具体设置。 需要说明的是, 另一种等同的方式为: 从所有扇区 中选择 RSRP值最大的前 N+1个扇区, 这 N+1个扇区中, 除了服务扇区以外 的 N个扇区作为协作扇区; 所述的所有扇区是指服务扇区和其他可能作为协 作扇区的扇区, 由于服务扇区的 RSRP值是所有扇区的 RSRP值中最大的, 所以该方式与从其他扇区中选择 RSRP值最大的前 N个扇区是等同的替换方 式。
并且, 服务基站可以周期性的选择协作扇区, 该选择的周期可以根据实 际情况预先配置。
其中, 所述的除了服务扇区以外的多个扇区可以与服务扇区对应同一个 基站, 也可以与服务扇区对应不同的基站, 或者除了服务扇区以外的多个扇 区中, 有部分扇区与服务扇区对应同一个基站, 另一部分扇区与服务扇区对 应不同的基站。 例如, 一种具体的实现方案可以为: UE所在的服务基站对应 三个扇区 Cell 0、 Cell 1和 Cell 2, 其中 Cell 0为 UE的服务扇区, 以 Cell 0、 Cell 1和 Cell 2这三个扇区作为 CoMP测量集,即 Cell 1和 Cell 2为可能的协 作扇区, 然后服务基站从 Cell 1和 Cell 2中选择 RSRP值最大的一个作为协 作扇区 (例如 Cell 1的 RSRP值大于 Cell 2的 RSRP值 ) , 此时 N=l ; 由此, 服务扇区与协作扇区可能形成的 M个协作集为: { Cell 0}、 { Cell O, Cell 1} 这 2个协作集。
当协作扇区确定后, UE所在的服务扇区和协作扇区可以形成协作集, 具 体的, 该协作集具体可以为: UE所在的服务扇区, 或者该服务扇区与任意一 个或多个协作扇区形成的集合。 由此, 当协作扇区确定后, 可能形成的 M个 协作集就可以确定。
步骤 202、 服务基站分别对 M个协作集中的 k个协作集接收到的上行信 号进行解调译码, 得到 k个 CRC检测结果。
UE发送上行信号,服务基站获取通过各个协作集接收到的上行信号。其 中, 所述的协作集可以为: UE所在的服务扇区, 或者该服务扇区与任意一个 或多个候选协作扇区形成的协作集。 由服务扇区和 N个协作扇区可以形成 M 个协作集。例如: 步骤 201中选择出的协作扇区为 Cell 1 , 那么本步骤中的 M 个协作集就可以是 { Cell 0}和{ Cell 0, Cell 1 }两个协作集。
其中, 本步骤中可以对 M个协作集中的 k个协作集接收到的上行信号进 行解调译码, 即可以对 M个协作集中的 1个协作集(k=l )接收到的上行信 号进行解调译码, 也可以对 M个协作集中的多个协作集 (l<k<M)接收到的上 行信号进行解调译码, 还可以对 M个协作集 (k=M)接收到的上行信号进行解 调译码。 其中, 当 k=l时, 基站可以从服务扇区或者服务扇区与协作扇区可 能形成的所有协作集中任意选取一个协作集, 或者按照信号或者干扰的强弱 从所有协作集中选取一个。 本实施例不限定选取的顺序, 服务基站可以随机 的选取, 也可以先选取服务扇区或者先选取指定的其他协作集。 例如: 若可 能形成的所有协作集为 { Cell 0}和 { Cell O, Cell 1 } ,那么服务基站可以任意选 一个先进行解调译码的检测, 或者服务基站可以优选选择 { Cell 0} (或 { Cell 0, Cell 1} )进行解调译码的检测, 其中 Cell 0为 UE的服务扇区。
服务基站可以对通过该 k个协作集接收到的上行信号进行解调译码。 具 体的, 服务基站可以在每个 TTI ( Transmission Time Interval, 传输时间间隔 ) 内, 进行本步骤的操作, 即服务基站在每个 ΤΉ内, 对一个协作集接收到的 上行信号进行解调译码。
步骤 203、 服务基站判断 k个 CRC检测结果中是否正确的 CRC检测结 果; 若包含正确的 CRC检测结果, 则执行步骤 204; 若不包含正确的 CRC 检测结果, 则执行步骤 205。
服务基站对通过 k个协作集接收到的上行信号进行解调译码后, 对解调 译码后得到的 k个 CRC检测结果进行判断, 若一个 CRC检测结果正确, 则 执行步骤 204。 若这 k个 CRC检测结果都错误, 则执行步骤 205。
步骤 204、 服务基站在 k个 CRC检测结果中选择一个正确的 CRC检测 结果, 对选择的正确的 CRC检测结果得到的信号进行处理。
例如: 正确的 CRC检测结果对应的协作集为协作集 A, 服务基站对协作 集 A接收到的上行信号进行解调译码后得到的信号进行后续的接收处理; 其 中, 服务基站对协作集 Α接收到的上行信号进行解调译码后得到的信号进行 后续的接收处理例如可以为: 服务基站根据协作集 A接收到的上行信号进行 解调译码后得到的信号生成确认信息; 然后服务基站可以将生成的确认信息 发送给 UE。
步骤 205、 服务基站对 M个协作集中除了 k个协作集以外的一个或多个 协作集接收到的 UE发送的上行信号进行解调译码,得到一个或多个第二 CRC 检测结果。
若 k个协作集的 CRC检测结果都错误, 则对 M个协作集中的其它协作 集进行解调译码, 其中, 可以对其它的一个协作集进行解调译码, 也可以对 其它的多个协作集进行解调译码, 得到的检测结果称为第二 CRC检测结果。
步骤 206、 服务基站判断步骤 205 中解调译码后得到的一个或多个第二 CRC检测结果中是否包含有检测结果正确的 CRC检测结果; 若包含有检测 结果正确的 CRC检测结果, 即其中一个第二 CRC检测结果正确, 则执行步 骤 207; 若没有包含检测结果正确的 CRC检测结果, 即所有的第二 CRC检 测结果都错误, 则重复执行步骤 205。
如果服务基站在步骤 203中判断出 k个 CRC检测结果都错误,则说明通 过这 k个协作集接收上行信号时, 没有达到性能最优, 由此需要对其他的协 作集进行检测, 以便于选择出准确的 CoMP接收方案。
如果服务基站在步骤 206中判断出所有的第二 CRC检测结果错误,则服 务基站重复执行对通过其它未被检测过的任意一个或多个协作集接收到的上 行信号进行解调译码,并判断解调译码后得到的 CRC检测结果是否正确的步 骤, 直至一个 CRC检测结果正确为止, 或者直至所有的协作集均进行过解调 译码检测为止。
步骤 207、 服务基站对第二 CRC检测结果正确的 CRC检测结果得到的 信号进行后续接收处理。
进一步的, 如果通过所有的协作集接收到的上行信号经过解调译码后得 到的 CRC检测结果都错误, 则本实施例还可以包括以下步骤:
步骤 a、 在进行 HARQ重传时, 服务基站只对 UE所在的服务扇区上接 收的上行信号进行接收检测。 在所有的协作集对应的 CRC检测结果都出错时, 基站可以发起 HARQ 重传。 在 HARQ重传过程中, 服务基站选择服务扇区上接收的上行信号进行 接收检测, 例如: 基站收到 UE重新发送的数据, 使用服务扇区上接收到的 上行信号进行检测解调译码; 即 HARQ重传时, 不需要对不同协作集的接收 信号进行检测。
需要说明的是, 本实施例中的步骤 201为可选步骤, 若没有步骤 201时, 那么步骤 202中的 M个协作集就是在所有可能形成的协作集。
此外, 本实施例中的 k的取值可以为: k=l , 或者可以为: l < k M。 当 k为 1时, 本实施例的步骤 202和步骤 203中, 服务基站对 M个协作 集中的一个协作集(例如协作集 a )接收到的信号进行解调译码, 若得到的 CRC检测结果正确, 则说明通过该协作集 a接收到的信号准确, 此时对该协 作集 a接收到的信号进行处理, 并无需对其他协作集接收到的信号再进行解 调译码; 若协作集 a对应的 CRC检测结果错误, 则说明通过该协作集 a接收 到的信号不准确, 此时可以重复对 M个协作集中的另一个协作集接收到的信 号进行解调译码, 并检测得到的 CRC检测结果是否正确。
当 l < k M时, 本实施例的步骤 202和步骤 203中, 服务基站对 M个 协作集中的 k个协作集(例如协作集 al-ak )接收到的信号均进行解调译码, 然后检测解调译码后得到的 k个 CRC检测结果中是否有正确的,若检测到的 一个 CRC检测结果正确, 则说明该 CRC检测结果得到的信号准确, 此时对 该 CRC检测结果得到的信号进行处理, 并无需再判断其他 CRC检测结果是 否正确; 若这 k个协作集对应的 CRC检测结果都错误, 则说明通过这 k个协 作集接收到的信号都不准确, 此时可以重复对 M个协作集中的另一个或多个 协作集接收到的信号进行进行解调译码,并检测得到的 CRC检测结果是否正 确。
需要说明的是: 本实施例中的步骤 202-步骤 207, 可以被以下步骤代替: 服务基站按照预设的顺序依次对 M 个协作集接收到的上行信号进行解调译 码, 直到得到正确的 CRC检测结果; 其中, 对第 k个协作集接收到的上行信 号进行解调译码得到的是正确的 CRC检测结果; 然后, 服务基站对第 k个协 作集的 CRC检测结果得到的信号进行处理。 本发明实施例, 服务基站可以先根据 RSRP的大小, 选择出 RSRP最大 的预设数量的扇区作为协作扇区, 然后对服务扇区与协作扇区可能形成的协 作集中的一个或多个协作集接收到的上行信号进行解调译码检测, 然后对解 调译码后得到正确检测结果的 CRC检测结果得到的信号进行处理, CRC检 测结果正确时, 则表示使用该 CRC检测结果对应的协作集可以准确接收信 号, 若没有检测到检测结果正确的 CRC检测结果, 则继续对其他的协作集进 行解调译码检测, 直至选出准确的多点协作接收方案; 基站通过 CRC检测, 可以避免现有技术中 SINR的误差值较大的问题, 并且可以提高选择协作集 的准确性, 提高系统性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 前述的 存储介质包括: ROM, RAM,磁碟或者光盘等各种可以存储程序代码的介质。
图 3为本发明一实施例提供的多点协作接收处理装置的示意图, 如图 3 所示, 该装置包括: 解调译码模块 31和第一处理模块 33。
解调译码模块 31用于对 M个协作集中的 k个协作集接收到的上行信号 进行解调译码, 得到 k个循环冗余校验码 CRC检测结果。 其中, 所述上行信 号为用户设备 UE发送的,所述协作集为所述 UE所在的服务扇区或者所述服 务扇区与任意一个或多个协作扇区形成的集合; M > 2, l k M。
第一处理模块 33用于若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对所述至少一个正确的 CRC检测结果中的一个 CRC检测 结果得到的信号进行处理。
本实施例提供的多点协作接收处理装置用于实现图 1 所示的方法实施 例, 本实施例中各个模块的工作流程和工作原理参见上述各方法实施例中的 描述, 在此不再赘述。
本发明实施例中, 解调译码模块对通过一个或多个协作集接收到的上行 信号进行解调译码, 然后第一处理模块对解调译码后得到正确检测结果的 CRC检测结果得到的信号进行处理, CRC检测结果正确时, 则表示使用该 CRC检测结果对应的协作集可以准确接收信号; 本实施例基站通过 CRC检 测, 可以避免现有技术中 SINR的误差值较大的问题, 并且可以提高选择协 作集的准确性, 提高系统性能。
图 4为本发明另一实施例提供的多点协作接收处理装置的示意图, 在图 3所示实施例的基础上, 如图 4所示:
解调译码模块 31具体可以用于, 按照预设的顺序对所述 M个协作集接 收到的上行信号进行解调译码, 直到得到正确的 CRC检测结果。 其中, 对第 k个协作集接收到的上行信号进行解调译码得到的是正确的 CRC检测结果。
第一处理模块 33具体可以用于, 对所述第 k个协作集的 CRC检测结果 得到的信号进行处理。
或者, 解调译码模块 31具体可以用于, 分别对所述 k个协作集接收到的 上行信号进行解调译码。 第一处理模块 33具体可以用于, 在所述 k个 CRC 检测结果中选择一个正确的 CRC检测结果, 对选择的正确的 CRC检测结果 得到的信号进行处理。
进一步的, 该装置还可以包括: 第二处理模块 35。
第二处理模块 35用于若所述 k个 CRC检测结果都错误, 则对所述 M个 协作集中除了所述 k个协作集以外的一个或多个协作集接收到的所述 UE发 送的上行信号进行解调译码, 得到一个或多个第二 CRC检测结果; 若所述一 个或多个第二 CRC检测结果中的至少一个检测结果正确,则对检测结果正确 的一个第二 CRC检测结果得到的信号进行处理。
进一步的, 解调译码模块 31具体可以用于: 在对 M个协作集中的 k个 协作集接收到的上行信号进行解调译码的过程中, 在每个传输时间间隔 TTI 内, 对一个协作集接收到的上行信号进行解调译码。
进一步的, 第一处理模块 33具体可以用于: 若所述 k个 CRC检测结果 中包含至少一个正确的 CRC检测结果, 则根据所述至少一个正确的 CRC检 测结果中的一个 CRC检测结果得到的信号生成确认信息。
本实施例提供的多点协作接收处理装置用于实现图 1或图 2所示的方法 实施例, 本实施例中各个模块的工作流程和工作原理参见上述各方法实施例 中的描述, 在此不再赘述。
本发明实施例, 服务基站的多点协作接收处理装置可以先根据 RSRP的 大小, 选择出 RSRP最大的预设数量的扇区作为协作扇区, 然后对服务扇区 与协作扇区可能形成的协作集中的一个或多个协作集接收到的上行信号进行 解调译码检测,然后对解调译码后得到正确检测结果的 CRC检测结果得到的 信号进行处理, CRC检测结果正确时, 则表示使用该 CRC检测结果对应的 协作集可以准确接收信号, 若没有检测到检测结果正确的 CRC检测结果, 则 继续对其他的协作集进行解调译码检测,直至选出准确的多点协作接收方案; 基站通过 CRC检测, 可以避免现有技术中 SINR的误差值较大的问题, 并且 可以提高选择协作集的准确性, 提高系统性能。
本发明实施例还提供一种基站, 包括本发明实施例提供的任一多点协作 接收处理装置。
本实施例提供的基站用于实现图 1或图 2所示的方法实施例, 本实施例 中提供的基站的工作流程和工作原理参见上述各方法实施例中的描述, 在此 不再赘述。
本发明实施例中, 基站对通过一个或多个协作集接收到的上行信号进行 解调译码,然后对解调译码后得到正确检测结果的 CRC检测结果得到的信号 进行处理, CRC检测结果正确时, 则表示使用该 CRC检测结果对应的协作 集可以准确接收信号; 本实施例基站通过 CRC检测, 可以避免现有技术中 SINR的误差值较大的问题, 并且可以提高选择协作集的准确性, 提高系统性
•6匕
3匕。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种多点协作接收处理方法, 其特征在于, 包括:
对 M个协作集中的 k个协作集接收到的上行信号进行解调译码, 得到 k 个循环冗余校验码 CRC检测结果, 其中, 所述上行信号为用户设备 UE发送 的, 所述协作集为所述 UE所在的服务扇区或者所述服务扇区与任意一个或 多个协作扇区形成的集合; M > 2, K k < M;
若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对 所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到的信号进行 处理。
2、根据权利要求 1所述的方法, 其特征在于, 所述对 M个协作集中的 k 个协作集接收到的上行信号进行解调译码包括:
按照预设的顺序对所述 M个协作集接收到的上行信号进行解调译码, 直 到得到正确的 CRC检测结果, 其中, 对第 k个协作集接收到的上行信号进行 解调译码得到的是正确的 CRC检测结果;
所述对所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到 的信号进行处理包括:
对所述第 k个协作集的 CRC检测结果得到的信号进行处理。
3、根据权利要求 1所述的方法, 其特征在于, 所述对 M个协作集中的 k 个协作集接收到的上行信号进行解调译码包括:
分别对所述 k个协作集接收到的上行信号进行解调译码;
所述对所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到 的信号进行处理包括:
在所述 k个 CRC检测结果中选择一个正确的 CRC检测结果, 对选择的 正确的 CRC检测结果得到的信号进行处理。
4、 根据权利要求 3所述的方法, 其特征在于, 还包括:
若所述 k个 CRC检测结果都错误, 则对所述 M个协作集中除了所述 k 个协作集以外的一个或多个协作集接收到的所述 UE发送的上行信号进行解 调译码, 得到一个或多个第二 CRC检测结果;
若所述一个或多个第二 CRC检测结果中的至少一个检测结果正确,则对 检测结果正确的一个第二 CRC检测结果得到的信号进行处理。
5、 根据权利要求 2-4任一所述的方法, 其特征在于, 还包括: 若通过所述 M个协作集接收到所述 UE的上行信号经过解调译码后得到 的 CRC检测结果都错误, 在混合自动重传请求重传时, 只对所述 UE所在的 服务扇区上接收的上行信号进行处理。
6、 根据权利要求 1-4任一所述的方法, 其特征在于, 还包括: 从除了所述服务扇区以外的多个扇区中选择参考信号接收功率 RSRP值 最大的前 N个扇区作为所述协作扇区; N大于或等于 1。
7、 根据权利要求 6所述的方法, 其特征在于: 所述 N=l , 且所述除了所 述服务扇区以外的多个扇区与所述服务扇区对应同一个基站。
8、 根据权利要求 1-4任一所述的方法, 其特征在于, 在所述对 M个协 作集中的 k个协作集接收到的上行信号进行解调译码的过程中, 在每个传输 时间间隔 ΤΉ内, 对一个协作集接收到的上行信号进行解调译码。
9、 根据权利要求 1所述的方法, 其特征在于, 所述对所述至少一个正确 的 CRC检测结果中的一个 CRC检测结果得到的信号进行处理包括:
根据所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到的 信号生成确认信息。
10、 一种多点协作接收处理装置, 其特征在于, 包括:
解调译码模块, 用于对 M个协作集中的 k个协作集接收到的上行信号进 行解调译码, 得到 k个循环冗余校验码 CRC检测结果, 其中, 所述上行信号 为用户设备 UE发送的 ,所述协作集为所述 UE所在的服务扇区或者所述服务 扇区与任意一个或多个协作扇区形成的集合; M > 2, K k < M;
第一处理模块, 用于若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则对所述至少一个正确的 CRC检测结果中的一个 CRC检测 结果得到的信号进行处理。
11、 根据权利要求 10所述的装置, 其特征在于:
所述解调译码模块具体用于,按照预设的顺序对所述 M个协作集接收到 的上行信号进行解调译码, 直到得到正确的 CRC检测结果, 其中, 对第 k个 协作集接收到的上行信号进行解调译码得到的是正确的 CRC检测结果; 所述第一处理模块具体用于,对所述第 k个协作集的 CRC检测结果得到 的信号进行处理。
12、 根据权利要求 10所述的装置, 其特征在于:
所述解调译码模块具体用于, 分别对所述 k个协作集接收到的上行信号 进行解调译码;
所述第一处理模块具体用于,在所述 k个 CRC检测结果中选择一个正确 的 CRC检测结果, 对选择的正确的 CRC检测结果得到的信号进行处理。
13、 根据权利要求 12所述的装置, 其特征在于, 还包括:
第二处理模块, 用于若所述 k个 CRC检测结果都错误, 则对所述 M个 协作集中除了所述 k个协作集以外的一个或多个协作集接收到的所述 UE发 送的上行信号进行解调译码, 得到一个或多个第二 CRC检测结果; 若所述一 个或多个第二 CRC检测结果中的至少一个检测结果正确,则对检测结果正确 的一个第二 CRC检测结果得到的信号进行处理。
14、 根据权利要求 10-13任一所述的装置, 其特征在于, 所述解调译码 模块具体用于: 在对 M个协作集中的 k个协作集接收到的上行信号进行解调 译码的过程中, 在每个传输时间间隔 ΤΉ内, 对一个协作集接收到的上行信 号进行解调译码。
15、 根据权利要求 10所述的装置, 其特征在于, 所述第一处理模块具体 用于: 若所述 k个 CRC检测结果中包含至少一个正确的 CRC检测结果, 则 根据所述至少一个正确的 CRC检测结果中的一个 CRC检测结果得到的信号 生成确认信息。
16、 一种基站, 包括权利要求 10-15任一所述的多点协作接收处理装置。
PCT/CN2011/073887 2011-05-10 2011-05-10 多点协作接收处理方法、装置和基站 WO2011120473A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11762047.6A EP2701418B1 (en) 2011-05-10 2011-05-10 Method, device and base station for coordinated multi-point (comp) reception processing
CN201180000486.3A CN102318398B (zh) 2011-05-10 2011-05-10 多点协作接收处理方法、装置和基站
PCT/CN2011/073887 WO2011120473A2 (zh) 2011-05-10 2011-05-10 多点协作接收处理方法、装置和基站
US14/075,639 US9119192B2 (en) 2011-05-10 2013-11-08 Coordinated multipoint reception processing method and apparatus, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/073887 WO2011120473A2 (zh) 2011-05-10 2011-05-10 多点协作接收处理方法、装置和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/075,639 Continuation US9119192B2 (en) 2011-05-10 2013-11-08 Coordinated multipoint reception processing method and apparatus, and base station

Publications (2)

Publication Number Publication Date
WO2011120473A2 true WO2011120473A2 (zh) 2011-10-06
WO2011120473A3 WO2011120473A3 (zh) 2012-04-05

Family

ID=44712682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073887 WO2011120473A2 (zh) 2011-05-10 2011-05-10 多点协作接收处理方法、装置和基站

Country Status (4)

Country Link
US (1) US9119192B2 (zh)
EP (1) EP2701418B1 (zh)
CN (1) CN102318398B (zh)
WO (1) WO2011120473A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326837A (zh) * 2012-03-19 2013-09-25 上海贝尔股份有限公司 用于管理多点协作的方法与装置
CN103338519A (zh) * 2013-06-18 2013-10-02 北京邮电大学 CoMP协作簇、CoMP用户划分方法及频谱资源分配方法
WO2016146028A1 (en) * 2015-03-16 2016-09-22 Huawei Technologies Co., Ltd. Methods and systems for traffic engineering with redundancy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106031212B (zh) * 2014-02-14 2020-01-10 瑞典爱立信有限公司 用于适配无线电协作方案的方法、节点、计算机程序以及计算机程序产品
CN113691945B (zh) * 2020-05-19 2023-03-24 成都鼎桥通信技术有限公司 Pdt同播时的基站确定方法、设备、基站和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050622B2 (en) * 2006-02-10 2011-11-01 Cisco Technology, Inc. Method and system for detecting messages using enhanced distributed signaling
PL3496325T3 (pl) * 2007-03-23 2022-01-24 Optis Wireless Technology, Llc Urządzenie stacji bazowej do przesyłania sygnałów ACK/NACK łącza w dół oraz przynależne urządzenie stacji mobilnej
WO2009022467A1 (ja) * 2007-08-13 2009-02-19 Panasonic Corporation 無線通信基地局装置、無線通信移動局装置およびarqにおける応答信号のスクランブリング方法
US9215035B2 (en) * 2008-12-08 2015-12-15 Lg Electronics Inc. Method of transmitting and receiving physical downlink shared channel in wireless communication system
CN101483873B (zh) * 2008-12-26 2010-09-08 西安电子科技大学 一种结合小区间干扰协调的上行多点协作实现方法
CN101841495B (zh) 2009-03-16 2013-06-05 上海贝尔股份有限公司 一种用于上行协作多点传输用户数据的方法及装置
CN101860418B (zh) * 2009-04-10 2013-01-16 华为技术有限公司 一种无线网络协作方法及系统、网络节点
CN101873670A (zh) * 2009-04-21 2010-10-27 中兴通讯股份有限公司 多点协作传输中的控制信令处理方法和系统
CN101873661A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种CoMP系统中确定协同小区的方法、系统及终端
CN101997581A (zh) * 2009-08-19 2011-03-30 中兴通讯股份有限公司 多点协作处理方法及装置
CN102006602B (zh) * 2009-09-02 2013-10-16 电信科学技术研究院 一种发送协同数据的方法、系统和装置
CN102484512B (zh) * 2009-09-02 2014-10-22 瑞典爱立信有限公司 用于改进无线电网络特性的方法和设备
CN102025403B (zh) * 2009-09-09 2014-06-25 华为技术有限公司 一种多点协作发射接收方法、设备及系统
US8224314B2 (en) * 2009-10-07 2012-07-17 Telefonaktiebolaget L M Ericsson (Publ) Reduced-complexity coordinated multipoint reception

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2701418A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326837A (zh) * 2012-03-19 2013-09-25 上海贝尔股份有限公司 用于管理多点协作的方法与装置
CN103338519A (zh) * 2013-06-18 2013-10-02 北京邮电大学 CoMP协作簇、CoMP用户划分方法及频谱资源分配方法
WO2016146028A1 (en) * 2015-03-16 2016-09-22 Huawei Technologies Co., Ltd. Methods and systems for traffic engineering with redundancy
US9998355B2 (en) 2015-03-16 2018-06-12 Huawei Technologies Co., Ltd. Methods and systems for traffic engineering with redundancy

Also Published As

Publication number Publication date
EP2701418B1 (en) 2017-07-05
US20140066081A1 (en) 2014-03-06
CN102318398B (zh) 2014-12-31
CN102318398A (zh) 2012-01-11
WO2011120473A3 (zh) 2012-04-05
EP2701418A4 (en) 2014-02-26
EP2701418A2 (en) 2014-02-26
US9119192B2 (en) 2015-08-25

Similar Documents

Publication Publication Date Title
US10142053B2 (en) Method and apparatus for transmitting control information to remove and suppress interference in wireless communication system
US8798526B2 (en) Method and apparatus for selecting and processing signals from a source station and relay stations
JP4759618B2 (ja) E−hich送信を検出し復号化するための無線通信方法および装置
US20190380116A1 (en) Information configuration method, data receiving method, and device
JP5628443B2 (ja) ダウンリンクharq機能強化方法および装置
EP2410778A1 (en) Method and device for uplink cooperative multi-point transmission of user data
US8634404B2 (en) Mobile station, base station, mobile communication system, and communication method
WO2010124554A1 (zh) 通信装置、基站和多点合作通信方法
WO2006064857A1 (ja) マルチアンテナ伝送における再送方法及び送信方法
WO2009158545A2 (en) Broadcast-multicast transmission with rate adaption
US9119192B2 (en) Coordinated multipoint reception processing method and apparatus, and base station
JP2013179632A (ja) チャネル品質インジケーション(cqi)をコンピュートし報告するための方法および装置
US9999061B2 (en) Radio resource adaptation method and associated wireless communication devices
WO2016062074A1 (zh) 一种小区上行协作的方法和基站
CN108370293B (zh) 中继方法、中继器、目的地设备及其通信系统
WO2012171455A1 (zh) CoMP重传方法、装置及系统
US8855227B2 (en) Methods of receiving multiple input multiple output signals and related communication devices
US20150249525A1 (en) Channel transmission method, apparatus, base station and terminal
CN104040906A (zh) 用于执行和控制重传的方法及其装置
CN113424468A (zh) 通信装置和通信方法
WO2017041288A1 (zh) 一种数据重传的方法及装置
WO2013064044A1 (zh) 预编码控制指示反馈方法、用户设备及基站
WO2015124103A1 (zh) 一种用户调度方法及装置
CN106165363A (zh) 用于在无线通信系统中接收下行链路数据的方法和装置
JP5855181B2 (ja) ユーザ・イクイップメントが実行する方法、および、ユーザ・イクイップメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180000486.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762047

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011762047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762047

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762047

Country of ref document: EP

Kind code of ref document: A2