WO2011120114A1 - Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas - Google Patents

Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas Download PDF

Info

Publication number
WO2011120114A1
WO2011120114A1 PCT/BR2010/000448 BR2010000448W WO2011120114A1 WO 2011120114 A1 WO2011120114 A1 WO 2011120114A1 BR 2010000448 W BR2010000448 W BR 2010000448W WO 2011120114 A1 WO2011120114 A1 WO 2011120114A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
emu oil
make
pure
complexed
Prior art date
Application number
PCT/BR2010/000448
Other languages
English (en)
French (fr)
Inventor
José Emílio FEHR PEREIRA LOPES
Original Assignee
Fehr Pereira Lopes Jose Emilio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fehr Pereira Lopes Jose Emilio filed Critical Fehr Pereira Lopes Jose Emilio
Priority to PCT/BR2010/000448 priority Critical patent/WO2011120114A1/pt
Publication of WO2011120114A1 publication Critical patent/WO2011120114A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/57Birds; Materials from birds, e.g. eggs, feathers, egg white, egg yolk or endothelium corneum gigeriae galli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • Emu oil consists of 70% unsaturated fatty acids, including oleic acid (51.6%), alpha-linoleic acid (13.1%) and gamma-linoleic acid (5.3%).
  • oleic acid 51.6%)
  • alpha-linoleic acid 13.1%)
  • gamma-linoleic acid 5.3%
  • the molecular structures respectively for a) oleic acids, b) alpha-linoleic and CO gamma-linoleic acids are as shown below:
  • the patient has a strong ischemia.
  • the second table presents results from a week of using only Emu oil. The latter presents the results after 3 weeks.
  • Emu Oil Institute http: / www.emu-oil.com
  • the site itself makes it impossible for these cases to be taken into account.
  • a large number of studies suggest that Emu oil applied topically to the skin has anti-inflammatory properties. (Yoganathan, S. 2003 and Politis, MJ. 1998)
  • the most well-known CDs are the ⁇ -, ⁇ - and ⁇ -CDs, the most used and known that exist.
  • the main ability of these macrocycles is their ability to form non-covalent and reversible inclusion complexes with various compounds of appropriate size and polarity, altering their properties such as solubility, stability or bioavailability. This ability is the result of the union of all its intrinsic properties: chemical stability, aqueous solubility, cavity hydrophobicity, rigid structure and chirality.
  • the macromolecular system of DCs has been pointed in recent years as a very effective association in this type of process because it fits the molecular scale of active principles.
  • Figure 1 shows the molecular geometry of native CDs, so-called because they are naturally produced.
  • CDs are obtained as a final product by enzymatic degradation of sugar by the action of CDs glucanotransferase (CGTase, EC 2.4.1.19) from Bacillus sp.
  • CGTase CDs glucanotransferase
  • SCD is the complex formed in 1: 1 stoichiometry
  • CD is the macromolecular system
  • SCD 2 is the inclusion complex composed of two CD molecules. This affinity energy is as high as the affinity of molecules in forming the complex.
  • Table 1 presents the results for the possible associations between oleic, alpha-linoleic and gamma-linoleic acids with ⁇ -, ⁇ - and ⁇ -CDs among others artificially and synthetically modified.
  • Table 1 ⁇ (kcal. Mor) -CD ⁇ -CD ⁇ -CD
  • Figure 1 shows the ⁇ -, ⁇ - and ⁇ -CDs with 6.7 and 8 D (+) - glucoside units respectively.
  • Figure 2 shows the lowest energy molecular structures for the associations between oleic acid and -, ⁇ - and ⁇ -cyclodextrins in 1: 1 and 1: 2 stoichiometry.
  • Figure 4 shows the lowest energy molecular structures for the associations between gamma-linoleic acid and ⁇ -, ⁇ - and ⁇ -cyclodextrins in 1: 1 and 1: 2 stoichiometry.
  • Figure 5 shows the lowest energy molecular structures for the associations between oleic, alpha-linoleic and gamma-linoleic acids and ⁇ -cyclodextrin in 1: 3 stoichiometry.
  • Figure 6 shows the lowest energy molecular structures for the associations between oleic, alpha-linoleic and gamma-linoleic acids and ⁇ -cyclodextrin in 1: 3 stoichiometry.
  • Figure 7 shows the lowest energy molecular structures for the associations between oleic, alpha-linoleic and gamma-linoleic acids and ⁇ -cyclodextrin in 1: 3 stoichiometry.
  • the nanos carriers are the nanos carriers.
  • nanoparticles is generic and is used according to the particle size to which it refers. Particles larger than or equal to 1. nm (one nanometer) are considered nanoparticles, while particles larger than 999 nm (nine hundred and ninety-nine nanometers) are called microparticles.
  • nanoparticles applied to controlled drug release is broad and refers to two different types of structures, nanospheres and nanocapsules.
  • Nonospheres are those systems in which the drug is homogeneously dispersed or solubilized within the polymeric matrix. In this way a monolithic system is obtained, where it is not It is possible to identify a differentiated nucleus.
  • Nanocapsules by contrast, constitute so-called reservoir-type systems, where it is possible to identify a differentiated nucleus, which may be solid or liquid. In this case, the substance is surrounded by a membrane, usually polymeric, isolating the nucleus from the external environment.
  • biodegradable polymer nanoparticles It is a system in which drug targeting to specific organism target sites is clearly identifiable, and is also quite stable and is not recognized by macrophages of the endothelial reticulum defense system. Therefore, it is the best system available to investigate the behavior of colloidal carriers in living organisms, strictly linked to the controlled release of drugs.
  • Cyclodextrins are cyclic oligosaccharides formed by D - glucose molecules joined by glycosidic bonds, obtained from enzymatic degradation (enzyme - cyclodextrin glucosyl transferase CGT) of starch.
  • the most well-known DCs are ⁇ , ⁇ and ⁇ -cyclodextrins, consisting of 6, 7 and 8 glucose units, respectively, which adopt the chair conformation.
  • the CD's are in the form of "truncated cones" with the broader side formed by the C-2 and C-3 secondary hydroxyls and the narrow face consisting of the C-6-linked primary hydroxyls.
  • Cavity size is determined by the number of glucose units constituting the CD. Oxygen atoms involved in glycosidic bonds (at C-1 and C-4) and hydrogen atoms bonded at C-3 and C-5 determine the hydrophobic character of the interior of the CD's cavity.
  • cyclodextrins can form inclusion complexes, that is, molecules that result from the sum of two compounds, one of which (the guest molecule) is situated in the molecule's cavity without significantly modifying its structure.
  • Cyclodextrins can form inclusion complexes with a remarkable variety of ionic and molecular species, including many active ingredients of fundamental importance in cosmetics. Encapsulating the active ingredient in cyclodextrins has several advantages that suggest its use also in dermocosmetics. Cyclodextrin complexes may have a crystalline structure, they are not sensitive to the force of pressure, they protect the guest molecule, preventing the natural degradation of the active ingredients, in fact intensifying their effects. Cyclodextrins also have another feature that makes them extremely interesting for cosmetic applications: they can form a Drug Release System. By temporarily encapsulating the active ingredients, cyclodextrins allow the "controlled release" of their contents, thus contributing to the improvement of bioavailability. Several studies have shown a better or greater activity of the complexed active molecule compared to its free form.
  • Cyclodextrins are in all respects naturally occurring substances and as such present a favorable toxicological situation. Their ability to "host” a wide variety of active substances and to form controlled release inclusion complexes makes them particularly interesting for their biotherapeutic use (http://www.gerbras.com.br/produtos/cycloazelon.asp, accessed 13-07-08).
  • modified cyclodextrins such as hydroxypropyl Beta Cyclodextrin
  • modified cyclodextrins with any type of hydroxyl group substitution
  • methylated cyclodextrins such as DIMEB and TRIMEB
  • branched cyclodextrins charged cyclodextrins
  • cyclodextrin polymers Such cyclodextrins are encompassed in the compounds object of the present patent application.
  • Liposomes and micro and nano emulsions Liposomes and micro and nano emulsions
  • Micro and nano emulsions also have great potential as vehicles for intravaginal and rectal lipophilic drug delivery, such as microbicides, steroids and hormones, because they increase drug solubilization capacity, increase absorption and improve clinical efficiency.
  • drug solubilization capacity increase absorption and improve clinical efficiency.
  • this system for intravaginal and intraretal administration has imposed stringent requirements regarding the toxicity and bioavailability of the formulation.
  • Microemulsions are often composed of four-component mixtures such as surfactant, oil, co-surfactant and water.
  • a mixture of surfactants and co-surfactants is added to a two-phase water-oil type system, an isotropic system, optically transparent or translucent and thermodynamically stable is formed spontaneously.
  • the nature and structure of surfactant, co-surfactant, and oil are essential characteristics for formulating this system.
  • the domain of the existence of microemulsion systems can be identified through the pseudoternary phase diagram (CRUZ et. Al., 2001).
  • Nano emulsions can be made from:
  • Phosphatidylcholines in particular are well known to form microemulsified systems with low amounts of water and as a result have been obtained organogels that function as matrices for transdermal drug delivery, ie topical use (WILLIMANN et al. , 1992).
  • Lecithin is a complex mixture of acetone insoluble phosphatides, which mainly consist of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinusitol, combined with various amounts of other substances such as triglycerides, fatty acids and carbohydrates (HANDBOOK, 2000).
  • Lecithin composition and physical properties are dependent on the origin and degree of purification. Its functional category is emollient, emulsifying agent and solubilizing agent and can be used in injectable pharmaceutical preparations (intramuscular and intravenous), formulations for parenteral nutrition and topical products such as creams and ointments, as well as being used in food products (HANDBOOK, 2000).
  • phosphatidylcholine in solution should be considered when preparing phospholipid-based microemulsions for parenteral use.
  • FS has strongly hydrophobic characteristics due to the two long hydrocarbon chains and also has strongly hydrophilic characteristics due to the head of polar zi-ionic groups which have dipole moments. There is a close balance between hydrophilic and lipophilic properties.
  • Phosphatidylcholine is too lipophilic to spontaneously form the zero interfacial tension lipid layer required to form a microemulsion. Therefore, a co-surfactant, such as short chain alcohol, is required to form this system (PARK et al., 1999).
  • Phosphatidylcholine is a natural surfactant, and due to this feature is rapidly diffused at the oil-water interface. Microemulsions composed of phospholipid have been shown to improve gastric lesions induced by non-steroidal antiinflammatory drugs (LEYCK et al., 1985; CRUZ et al., 2001).
  • Lecithin comes in various physical forms from viscous semi-liquids to powders, depending on the content of free fatty acids. These may vary in color from brown to light yellow, depending on their purity. When exposed to air, they quickly oxidize, resulting in a dark yellow or brown tinge. They are practically odorless. Vegetable derivatives have a pleasant taste, similar to soybean oil. They have a density of 0.97 g / cm3, liquid lecithin, and 0.5 g / cm3 powder. The saturation number is for 95-100 and 82-88 for liquid and powder respectively. The isoelectric point is 3,5 and the saponification index is 196. Lecithins are soluble in aliphatic, aromatic and halogenated hydrocarbons, mineral oils and fatty acids. They are practically insoluble in cold animal and vegetable oils, polar solvents and water. When mixed in water they are hydrated to form the emulsions (Handbook 2000).
  • Lecithins break down to extreme pHs. They are hygroscopic and subject to microbial degradation. When heated, they oxidize, darken and decompose. At temperatures of 160-180 ° C, they will cause degradation within 24 hours. Fluid lecithins or waxes should be stored at or above room temperature.
  • Lecithins are biocompatible, circumvent toxicity and sensitivity problems, and can therefore be used as pharmaceutical adjuvants in tablets, topical, vaginal and rectal preparations, suspensions, capsules, intravenous and intramuscular injections and preparations for inhalation use (HANDBOOK, 2000).
  • Polyoxyl-40-Hydrogenated Castor Oil is naturally occurring, is an ethylene oxide derived from castor oil and approximately 75% of the mixture of its components is hydrophobic. These mainly include polyethylene glycol glycerol fatty acid esters and polyethylene glycol fatty acid esters.
  • the hydrophilic moiety consists of polyethylene glycols and glycerol ethoxylates.
  • As a nonionic surfactant it is used in oral, topical and parenteral pharmaceutical formulations and has also been used in cosmetic and food formulations.
  • polyoxyl-40-hydrogenated castor oil can be used to solubilize vitamins, essential oils and certain drugs (HANDBOOK, 2000).
  • Polyoxyl-40-hydrogenated castor oil is found as a semi-solid white paste which liquefies at 30 ° C. It has a poor taste and characteristic odor in aqueous solutions. When in aqueous solutions, if heated for a prolonged time, can separate into liquid and solid phases when cooled. However, the product may be returned in its original form by homogenization. These aqueous solutions may be autoclaved at 121 ° C, but may cause slight decrease in pH. These solutions may be subject to microbial contamination in storage and should be stored in tightly sealed bottles protected from light in a cool and dry environment (Handbook, 2000).
  • Polyoxyl-40-hydrogenated castor oil produced by the reaction of 1 mol of hydrogenated castor oil with 40-45 moles of ethylene oxide. Chronic and acute animal toxicity tests have shown that polyoxyethylene castor oil derivatives bypass toxicity and irritation problems (HANDBOOK, 2000).
  • Cholesterol Cholesterol is of animal origin and can also be produced according to human food regulation. It is a stable, non-irritating material that bypasses toxicity problems when used as an excipient. Its functional category is emollient and emulsifying agent and it can be used for injectable, ophthalmic, topical and vaginal pharmaceutical preparations (HANDBOOK, 2000).
  • the chemical name of cholesterol is colest-5en-3p-ol. Its molecular weight is 386.7. It has a boiling point of 360 ° C; density 1.052g / cm3 for anhydrous form; dielectric constant D20: 5.41 and melting point 147-150oC. It is soluble in acetone, vegetable oils, benzene, chloroform, ether, poorly soluble in ethanol and methanol and practically insoluble in water (HANDBOOK, 2000).
  • White or slightly yellow, odorless powder is found in the form of small pearly leaves, needles, powder or granules. It is hygroscopic and has a slight exposure to light and air, it gets yellow in color, so the bottle containing this substance should be hermetically sealed and protected from light (HANDBOOK, 2000).
  • LDE is an artificial molecule, resulting from the manipulation of LDL, characterized by its nanometric size and high affinity to hydrophobic substances, thus allowing that same molecule to be a carrier of hydrophobic drugs.
  • the LDE is treated with an artificial nano molecule and these nano molecules are high in cholesterol in patients with genital tract and breast malignancies. This way, it will be possible to verify if the artificial lipid emulsion, LDE, acts as a useful vehicle for the incorporation of cytotoxic agents and their possible use in the chemotherapeutic treatment.
  • Dendrimers are highly branched, monodisperse macromolecules with well-defined structures and uniform molecular weight. This class of compounds has received great attention from researchers in recent years due to the particularity of their physical and chemical properties. Currently some studies have been performed using dendrimers with porphyrin dendritic nuclei. Dendrimers are nanoscopic systems with a highly organized structure. This type of molecule has highly controlled surfaces and interfaces and internal voids, which allow, for example, the encapsulation of guest molecules, similar to a micelle, ie acting as a monomolecular micelle (Nelson Massaki Hiramatsua, Ivan Pérsio de Arruda Campos and Daisy by Brito Rezende).
  • Suitable dendrimers of the present invention may be of the type (i) carbosilanes, (ii) carboxylanes, (iii) polyphenylenes, (iv) polyesters and (v) PAMAM.
  • the placement of the jasmonate family members may be complexed between the voids found in the dendrimer complexes. This is possible because this type of molecule has several highly controlled surfaces and interfaces and have internal voids, which allows, for example, the encapsulation of guest molecules, similar to a micelle, ie acting as a monomolecular micelle.
  • the polymers may be: i. Natural polymers: They are always biodegradable such as collagen, cellulose and chitosan and are widely used as drug release matrices. An example is the application of poly (acrylic acid) grafted chitosan to form a copolymer in the manufacture of nanospheres to study time-controlled release using eosin, a water-soluble dye, as a marker. ii.
  • Modified Natural Polymers One problem encountered with natural polymers is that they often take a long time to degrade. This can be solved by adding polar groups to the chains, which, because they are more labile, can decrease the degradation time. Examples of such modifications may be gelatin cross-linking using formaldehyde, chitosan cross-linking using glutaraldehyde, cellulose to cellulose acetate. Enzymatic modifications are also used, such as tyrosinase modification of chitosan. iii. Synthetic polymers: They are also widely used, such as poly (ethylene), poly (vinyl alcohol), poly (acrylic acid), poly (acrylamides), poly (ethylene glycol), polyesters.
  • glycolate monomer is synthesized from glycolic acid dimerization and ring opening polymerization leads to high molar mass materials with approximately 1-3% of the residual monomer.
  • glycolate copolymers with l-lactate and dl-lactate are the most widely used in controlled release systems, with advantages.
  • a typical structure of a biodegradable polymer is poly (lactic acid).
  • Block copolymers composed of PEO-PPO-PEO (Pluronic, a relatively hydrophilic block copolymer) and poly ( ⁇ - caprolactone) (hydrophobic) obtained from the ⁇ - caprolactone ring opening in the presence of PEO-PPO are also prepared.
  • -PEO and stannous octoate catalyst are also prepared.
  • F-CD F-CD
  • Obtaining complexes of elements of the jasmonate family, elements of the salicylate family and nitric oxide donors, called In this patent as a fancy drug name, F-CD (F-CD) in solution is relatively simple and fast.
  • the most common preparation procedure consists of solubilizing the CD in water or buffer solution and then adding excess active compound.
  • the resulting suspension remains at constant temperature under agitation for sufficient time to achieve thermodynamic encapsulation equilibrium (Rajewski & Stella 1996).
  • the solid structure of binary drug-CD mixtures may be quite different from those found in aqueous solutions. In these, there is a dynamic equilibrium between molecules in a polar environment, while Solid Cyclodextrin systems are static and have limited influence of their residual aqueous content. Most solid complex preparation methods include varying degrees of solubilization as an intermediate step in their obtaining process. The presence of water solubilizes the components and favors the hydrophobic interaction between the guest molecule and CD. In some cases, water promotes the formation of hydrogen bridges between hydroxyl groups and aids drug uptake and maintenance in the CD cavity as part of the crystalline structure of the solid state complex (Hedges, 1998).
  • Drug and CD-containing solid pharmaceutical systems are heterogeneous structures which may be constituted by their individual uncomplexed components, and / or by different types of associations between them, as in the form of inclusion complexes of different stoichiometries and inclusion levels or as aggregates. with variable crystalline or amorphous state. For this reason, the complexation efficiency (free drug complexed ratio) of these systems is completely dependent on the preparation process. Due to the particular characteristics inherent in each F-CD binary system, there is no general preparation technique. Conditions must be defined for each guest molecule. In this section, the most commonly used methods for obtaining solid complexes will be discussed, evaluating the different aspects involved.
  • This method is based on simply mixing the components without adding water. In some cases it takes several days to detect inclusion complex formation. In general, it is an inefficient complexation method, restricted to liquid active ingredients, such as lemon essence, which acts as a solvent, providing the encapsulation of essential oils within a few minutes (Hedges, 1998).
  • the mixing of components is done in a milling machine.
  • the drying of the material can be done in a greenhouse or directly in the milling machine accompanied by spraying to even out the particle size.
  • This technique starts from a drug and CD solution under conditions very close to saturation and by sudden changes in temperature or addition of organic solvents, precipitation of the material in the form of inclusion complex is obtained.
  • the obtained crystals are collected by centrifugation or filtration (Miro et al., 2000).
  • dendrimers may be CARBOSSILANES ( Figure 4) and CARBOSSILOXANS (Figure 5), POLYPHENYLENES (Figure 6) ( Figure 7), POLYESTERS ( Figure 8):
  • Emu oil family of compounds may be complexed between the voids found in the dendrimer complexes. Because this type of molecule has several highly controlled surfaces and interfaces and internal voids, which allows, for example, the encapsulation of guest molecules, similar to a micelle, ie acting as a monomolecular micelle.
  • the drugs used, as claimed in this patent elements of the Emu oil element family, pure or associated with various types of elements can be encapsulated, first by choosing the structural dendrimer suitable for their intended uses (the dendrimers that may be used in the final product claimed in this patent are cited therein). Once the dendrimer is chosen, the micelle is generally proceeded as follows: In a container, the molecule and the size thereof should be placed in the same manner. The dendrimer selected is added to the same enclosure and the appropriate size is encapsulated and the solution is shaken for 15 minutes to 24 hours depending on the size of the desired molecule. .
  • the dendrimer solution is stirred by stirring in the presence of the substance to be encapsulated, always in the appropriate molar ratio (dendrimer: desired substance).
  • a solvent that solubilizes both the dendrimers and the desired molecule can be methanol, water or mixtures of the two solvents or other solvents
  • the solvent is distilled off under reduced pressure.
  • the compounds object of the present patent application are characterized by such innovations. This is. they are formed by the nanoencapsulation of the above-identified active principles and cyclodextrin complexation, as well as by the use - where appropriate - of the amine radical in place of the ester radical (which facilitates solubility and prevents esterase action on the molecule by body metabolism). ).
  • the present invention encompasses compounds containing (a) elements of the family of elements that make up emu oil, whether or not pure elements are conjugated to a number of other simple and / or compound molecules, including the prostaglandins family, pure or not, and other cyclopentanones, pure or not, and / or sufasalazine, pure or not, or other elements of the salicylate family, pure or not, and either L-Arginine and / or other nitric oxide donor elements, and / or phytoporphyrin and / or hematoporphyrin, pure and or of pure or not pure coenzymes Q10 and or CoQ-10, and or coenzyme A, whether or not pure, and whether or not such elements may or may not be conjugated to organic molecules of any kind or species, and or conjugated to pure, mineral and / or compound elements, as well as compounds formed by nanoencapsulation of such elements, where appropriate.
  • fungicides and or (5) antiparasitics, and or (6) analgesics, and or (7) anti-inflammatories, and or (8) immunomodulators, and or (9) anticoagulants, and or (10) and / or (11) tensoregulators, and or (12) cosmetic and / or cosmetic-dermatological, and or (13) food, and or (14) therapeutic-vascular, and or (15) hematomodulators, and or (16) priogenic and anti-angiogenic, and or (17) erection and libido modulators and (18) central nervous system (CNS) antidegenerators and or (19) anti-aging agents.
  • CNS central nervous system
  • the encapsulation is chosen, which, on the one hand, avoids the previous degradation of the encapsulated compound, and, on the other, favors solubility in various media for pharmaceutical use.
  • Ad cells due to the nanocapsulation employed, facilitate the entry of the active principles carried in the cell membranes, reaching the organelles and thus stopping the pathology in progress.
  • Ad tissue is what happens in mutagenic cells with mitochondria showing a permeability transport of the pore complex (PTPC).
  • PTPC permeability transport of the pore complex
  • the compounds that are currently the subject of a patent application require less of the drug to achieve satisfactory therapeutic results, thus resulting in a drastic decrease in the traditionally administered dosage.
  • the decrease in toxicity from the metabolism by-products of the active ingredients is reinforced.
  • the inclusion of the conjugate of the elements present in Emu oil is of relevance.
  • nitric oxide (L-arginine) and phytoporphyrins and hematoporphyrins are of relevance.
  • those, notably those integrated by elements present in Emu oil allowing in its structure to be changed by any element, effecting the greater synergism of the compound and also enabling more effectively by preventing esterase, present in various parts of the body, and thus strengthen the integrity transport ability of the active principle.
  • Another problem also solved by the compounds of the present invention is to prevent the formation of drug flow-deactivating immune activation complexes via the bloodstream. Such an effect is obtained by morphological changes of the various enclosures covered by the present patent application. Changes in the structures of the compounds which are the subject of a patent application circumvent bodily immunological recognition, resulting in lower drug resistance.
  • the present invention encompasses compounds containing (a) elements present in Emu oil, pure or not carried by micro and / or nano carriers. These conjugations or additions may form new molecules within the carriers, and or the elements that make up my carrier's oil, may be composed of several other molecules that are not necessarily carried, thus playing an additional and supporting role to other substances.
  • beta and gamma whether or not modified, and or (ii) phosphatylcholine liposomes, and or (iii) fatty acids and derivatives thereof, and or (iv) cholesterol, whether or not modified artificially, and or (v) biodegradable polymers and absorbable, and or (vi) dendrimers, and or (vii) nanospheres, and or (viii) talospheres, and or (ix) nano-emulsions and or (x) microemulsions prepared based on the aforementioned substances, combined for use.
  • antitumor agents in a wide variety of cancers in mammalian and non-mammalian individuals, and or (2) antivirals, and or (3) antibacterials, and or (4) fungicides, and or (5) antiparasitics, and or (6) analgesics, and or (7) anti-inflammatory drugs, and or (8) immunomodulators, and or (9) anticoagulants, and or (10) scarring, and or (11) tensoregulators, and or (12) cosmetic and cosmetic-dermatological, and or (13) dietary supplementation, and or (14) therapeutic-vascular, and or (15) hematomodulators, and or (16) pro-angiogenics and anti- i-angiogenic drugs, and or (17) erection and sexual libido modulators, and or (18) central nervous system (CNS) antidegenerators and or (19) anti-aging agents.
  • CNS central nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

A presente invenção abrange compostos contendo elementos da família dos elementos presente no óleo de emú, puros ou não carreados por micro ou nano carreadores. Estas conjugações ou adições podem formar dentro dos carreadores novas moléculas, e ou os elementos que compõe o óleo do emu carreados, podem se compor com inúmeras outras moléculas que não estejam necessariamente carreadas, fazendo assim, um papel adicional e coadjuvante a outras substâncias.

Description

Figure imgf000002_0001
O óleo de Emu, Dromaius novaehollandiae, uma ave nativa da Austrália, faz parte da cultura aborígene. Desde tempos remotos, estes índios australianos, usam este óleo como medicina natural contra queimaduras, infecções e doenças na pele.
Hoje em dia este tratamento é difundido em vários países da Oceania. Somente a pouco tempo os constituintes do óleo de Emu foram devidamente caracterizados. O óleo de Emu consiste de 70% de ácidos graxos insaturados, entre eles o ácido oléico (51,6%), o ácido alfa-linoléico (13,1%) e o gama-linoléico (5,3%). As estruturas moleculares respectivamente para os a) ácidos oléico, b) alfa-linoléico e CO gama-linoléico, são como apresentadas abaixo:
Figure imgf000002_0002
Com cerca de 20 átomos de carbono, em uma forma mais ou menos linear, seria de esperar que sua ação sobre a membrana fosse de mimetizar os fosfolipídios, e assim, recuperar a membrana celular.
Porém, muita especulação foi feita em torno desta substância. A dificuldade encontrada na determinação de sua pureza, procedência e composição química, física e estrutural lançaram sobre o óleo de Emu muita controvérsia.
Há relatos na literatura medica internacionais casos positivos e outros nem tanto.
Figure imgf000003_0001
Esta seqijência apresentada na pagina web do instituto do óleo de Emu1, relata um paciente, com oito anos de idade, de queimadura por gasolina. O ultimo quadro é o resultado em 21 dias de tratamento apenas com o óleo de Emu.
Neste segundo caso o paciente esta com uma forte isquemia. O segundo quadro apresenta resultados de uma semana de uso de apenas óleo de Emu. O último apresenta os resultados depois de 3 semanas.
Figure imgf000004_0001
Emu oil institute, http:/ www.emu-oil.com Porém, o próprio site coloca a impossibilidade de estes casos sejam levados em conta. Não somos doutores, justifica o Emu oil institute. Por outro lado, um grande numero de trabalhos sugerem que o óleo de Emu aplicado topicamente sobre a pele, possuem propriedades anti inflamatórias. (Yoganathan, S. 2003 e Politis, MJ. 1998)
Não há estudos comprovando a eficácia do óleo de Emu, comercialmente as empresas que o possuem estão a voltas com problemas na padronização de testes de eficácia e de pureza. (Withehouse, MW 1998).
Mas a crítica mais dura que o óleo de Emu já recebeu foi exatamente da U. S. Food and Drug Administration FDA. (kutzweil, P. 2009) em um artigo intitulado "Como acertar em uma fraude (na saúde)"
Por outro lado existe o deposito PCT WO 03018743A2[1] o qual reivindica o óleo de Emu com formulação específica para seu uso tópico em feridas.
Por vezes pensamos que isto pode ocorrer por fatores externos que influenciam nas interações em um ambiente supramolecular Com tantos átomos de carbono estes podem admitir geometrias das mais diversas, devido ao alto grau de liberdade. E se entrelaçarem das mais diferentes formas. Se os mecanismos de ação na pele for tal como pensamos em relação aos fosfolipídios, talvez estas interações sejam no sentido inverso. Na verdade a disposição em que estes ácidos graxos estão alinhados perpendicularmente entre si é que seja mais rara. E assim o fato do óleo de Emu ser ou não eficaz esta por trás de uma conjunção molecular que depende de probabilidade de se formar. Pequenas diferenças físicas no ponto exato de aplicação podem ser determinantes na eficiência ou não do tratamento. Desta percepção é que esta invenção foi planejada. Um estudo que aponta como possível este mecanismo proposto faz parte da patente US 5,492,814, que explica a interação entre tecidos biológicos e óxidos férricos como marcadores para exames de Ressonância Magnética Nuclear. Este estudo comprova a interação entre membranas no espaço intersticial entre as camadas.
Existem algumas moléculas diferentes que são conhecidas por realizarem este tipo de > proteção proposta. Moléculas que possuem a característica de se auto organizarem, como micelas, lipossomos, os próprios fosfolipídios que formam a membrana celular. Na verdade o princípio que possibilitou a vida como conhecemos passa pelo mesmo princípio. A formação da membrana celular por meio de pequenas diferenças de polaridade e de carga parcial, positiva ou negativa,
i O estudo de complexos de inclusão envolvendo as ciclodextrinas (CDs), e inúmeros outros agentes denominados nanocarreadores ou micros carreadores vêem se mostrando uma das mais importantes áreas em pesquisa pura e aplicada. Devido a gama de possibilidades envolvendo as suas possíveis aplicações práticas em farmácia, ciência de alimentos, bem como em nanotecnologia, biotecnologia e áreas que ainda nem mesmo sabemos. Isto se deve porque o estudo dos compostos envolvendo carreadores é uma área multidisciplinar que só pôde ganhar força com o desenvolvimento da multidisciplinaridade aplicada à química. Inicialmente devemos entender que devido a sua essência multidisciplinar este tipo de trabalho vem quebrar vários paradigmas da química como veremos sua subdivisão e concomitante no que tange aspectos teóricos ou experimentais. Não acreditando 'a priori nestas amarras da ciência chamamos atenção para o que entendemos ser a fronteira da química atualmente.
.Como exemplo dos citados nanos carreadores, estão as mais conhecidas CDs são as α-, β- e γ-CDs, as mais utilizadas e conhecidas que existem. A principal habilidade destes macrociclos é a capacidade de formar complexos de inclusão não-covalentes e reversíveis com vários compostos de tamanhos e polaridades apropriados, alterando suas propriedades, como solubilidade, estabilidade ou biodisponibilidade. Esta capacidade é o resultado da união de todas as suas propriedades intrínsecas: estabilidade química, solubilidade em meio aquoso, hidrofobicidade da cavidade, estrutura rígida e quiralidade. Desta forma, o sistema macromolecular das CDs vem sendo apontado nos últimos anos como uma associação muito eficaz neste tipo de processo por se adequar à escala molecular de princípios ativos. A Figura 1 apresenta a geometria molecular das CDs nativas, assim chamadas por serem produzidas naturalmente. As CDs são obtidas como produto final por meio da degradação enzimática do açúcar pela ação da CDs glucanotransferase (CGTase, EC 2.4.1.19) proveniente de Bacillus sp.
Atualmente, as propriedades já confirmadas com relação ao efeito das CDs sobre a farmacocinética de princípios ativos, são:
• Solubilização de fármacos apoiares;
• Inibição de efeitos colaterais, com a diminuição da rejeição pelo organismo;
• Proteção e estabilização do fármaco frente a reações de hidrólise e oxidação;2
• Liberação controlada do fármaco, aumentando o seu efeito ao longo do tempo.
Utilizando MM foi possível elaborar uma técnica capaz de diferenciar qual a posição relativa entre as duas moléculas, hospedeiro e convidado, que leva ao maior abaixamento de energia total no sistema. Uma medida qualitativa da posição possível para a inclusão pode ser feita com base termodinâmica. Por meio de cálculos de MM é possível o cálculo da entalpia de formação para cada uma das espécies envolvidas. Assim:
S + CD => S * CD
2 Estes exemplos são de reações bem estabelecidas, inclusive com cálculos de constante de equilíbrio. onde S é o soluto de interesse. CD é o sistema macromolecular e S CD é o complexo de inclusão formado. A energia resultante do abaixamento de energia total do sistema devido a formação do complexo de inclusão é a energia de ligação entre as duas moléculas ( Eafinidade )■ Seja a entropia envolvida constante para uma série de cálculos sistemáticos, é valido para comparação uma proporcionalidade entre ΔΗ e AG por meio da equação [1]:
ΔΗ = AG - TAS [1] neste caso definimos AH = AG e a relação para a constante de equilíbrio do complexo é:
ΔΗ ~ AG = -RT In K [2] Este ΔΗ é a Eafinidade,dada pela diferença entre o AHf soluto mais o ΔΗί do sistema macromolecular e o AHf do complexo de inclusão. Podemos escrever:
ΔΗ = AHf s:CD ~ (AHf s + AHf CD) [3] Adicionando-se uma segunda molécula de CD a reação para estequiometria 1 :2 pode ser escrita como:
S · CD + CD => S * CD2
onde SCD é o complexo formado em estequiometria 1 :1 , CD é o sistema macromolecular e SCD2 é o complexo de inclusão composto de duas moléculas de CD. Esta energia de afinidade é tão maior quanto a afinidade das moléculas em formar o complexo. Assim:
AH = AHf s:CD2 ~ (AHf S:CD + AHf CD) [4]
E aqssim sucessivimente com estequiometrias maiores do que 2 observando sempre que a estequiometria anterior serve como convidada para a adição de mais uma unidade de CDs..
A Tabela 1 apresenta os resultados para as associações possíveis entre os ácidos oléico, alfa-linoleico e gama-linoleico com as α-, β- e γ-CDs entre outras artificialmente e sinteticamente modificadas. Tabela 1: ΔΗ (kcal. mor) -CD β-CD γ-CD
oleicoll -21 -23,12 -17,1
oleicol2 -46,56 -99,18 -47,95
oleicol3 -39,75 13,98 -71,67
alfa-linoleicoll -31 -27,94 -21,75
a!fa-linoleicol2 -40,79 -41,01 -20,87
alfa-linoleicol3 -37,01 -74,87 -79,79
gama-linoleicoll -28,21 -32,73 -18,57
gama-linoleicol2 -49,42 -5,09 -51,58
gama-linoleicol3 -31,41 -74,67 -50,11
A Figura 1 apresenta as α-, β- and γ-CDs com 6,7 e 8 unidades de D(+)-glucosa respectivamente
A Figura 2 apresentam as estruturas moleculares de menor energia para as associações entre o acido oléico e as -, β- e γ-ciclodextrinas em estequiometrias 1:1 e 1:2
A Figura 3 estruturas moleculares de menor energia para as associações entre o acido alfa-linoléico e as α-, β- e γ-ciclodextrinas em estequiometrias 1:1 e 1:2
A Figura 4 apresenta as estruturas moleculares de menor energia para as associações entre o acido gama-linoléico e as α-, β- e γ-ciclodextrinas em estequiometrias 1:1 e 1:2
A Figura 5 apresenta as estruturas moleculares de menor energia para as associações entre os ácidos oleico, alfa-linoleico e gama-linoléico e a α-ciclodextrina em estequiometrias 1:3
A Figura 6 apresenta as estruturas moleculares de menor energia para as associações entre os ácidos oleico, alfa-linoleico e gama-linoléico e a β-ciclodextrina em estequiometrias 1:3 A Figura 7 apresenta as estruturas moleculares de menor energia para as associações entre os ácidos oleico, alfa-linoleico e gama-linoléico e a γ-ciclodextrina em estequiometrias 1:3
REFERENCIAS
REFERENCIAS NÃO-PATENTÁRIAS
1. Yoganathan S, Nicolosi R, Wilson T, et al. (June 2003). "Antagonism of croton oil inflammation by topical emu oil in CD-1 mice". Lipids 38 (6): 603-7. PMID 12934669.
2. Politis MJ, Dmytrowich A (December 1998). "Promotion of second intention wound healing by meu oil lotion: comparative results with furasin, polysporin, and cortisone". Plast. Reconstr. Surg. 102 (7):2404-7. PMID 9858176.
3. Whitehouse MW, Turner AG, Davis CK, Roberts MS (1998). "Emu oil(s): A source of non-toxic transdermal anti-inflammatory agents in aboriginal medicine". Inflammopharmacology 6 (1): 1-8.doi:10.1007/s10787-998-0001 -9. PMID 17638122.
4. Kurtzweil, Paula (April 30, 2009). "How to Spot Health Fraud". U.S. Food and Drug Administration.http://www.fda.gov/Drugs/EmergencyPreparedness/BioterrorismandD rugPreparedness/ucm137284.htm.Retrieved on June 29, 2009
REFERENCIAS PATENTÁRIAS
WO 03018743A2[1]
US 5,492,814
Os nanos carreadores
É importante neste momento definirmos alguns termos relacionados a nanoencapsulamento. Estas estruturas variam grandemente e vários tipos são possíveis. O termo nanopartículas é genérico, sendo usado de acordo com o tamanho da partícula a que se está referindo. Partículas com tamanho igual ou maior que 1. nm (um nanômetro) são consideradas nanopartículas, enquanto que as partículas maiores de 999 nm (novecentos e noventa e nove nanômetros) são denominadas micropartículas.
O termo nanopartículas aplicado à liberação controlada de fármacos é amplo e refere-se a dois tipos de estruturas diferentes, nanoesferas e nanocápsulas. Denominam-se nonoesferas aqueles sistemas em que o fármaco encontra-se homogeneamente disperso ou solubilizado no interior da matriz polimérica. Desta forma obtém-se um sistema monolítico, onde não é possível identificar um núcleo diferenciado. Nanocápsulas, ao contrário, constituem os chamados sistemas do tipo reservatórios, onde é possível identificar um núcleo diferenciado, que pode ser sólido ou líquido. Neste caso, a substância encontra-se envolvida por uma membrana, geralmente polimérica, isolando o núcleo do meio externo.
Os métodos de obtenção são semelhantes, com diferenças no mecanismo de polimerização.
As pesquisas em torno do nanoencapsulamento foram embasadas pelo trabalho de Wurster, por volta de 1950, com o processo patenteado de encapsulamento de finas partículas sólidas em leito fluidizado. Em seguida vieram os processos de coacervação (inicialmente para encapsulamento de líquidos e tempos mais tarde como técnica preparativa de nanopartículas), implantes (primeiramente introduzidos nos anos 70) e aplicações transdérmicas (1980).
Em trabalhos anteriores, os sistemas que se mostraram particularmente interessantes foram nanopartículas de polímeros biodegradáveis. Trata-se de um sistema em que o direcionamento do fármaco a sítios-alvo específicos do organismo é claramente identificável, sendo também bastante estável, não sendo reconhecido por macrofagos do sistema retículo endotelial de defesa. Trata-se, portanto, do melhor sistema ora disponível para se investigar o comportamento de carregadores coloidais em organismos vivos, estritamente ligados à liberação controlada de fármacos.
Passa-se adiante a uma breve explanação sobre cada um dos principais elementos nanocapsuladores e complexadores envolvidos na obtenção das compostos objeto do presente pedido de patente de invenção. Ciclodextrinas
As Ciclodextrinas (CD's) são oligossacarídeos cíclicos formados por moléculas de D - glicose unidas através de ligações glicosídicas, obtidas a partir da degradação enzimática (enzima - ciclodextrina-glucosil-transferase CGT) do amido. As CD's mais conhecidas são as α, β e γ-ciclodextrinas, constituídas por 6, 7 e 8 unidades de glicose, respectivamente, que adotam a conformação de cadeira. Do ponto de vista estrutural, as CD's apresentam-se na forma de "cones truncados" com o lado mais largo formado pelas hidroxilas secundárias em C-2 e C-3 e a face mais estreita constituída pelas hidroxilas primárias ligadas em C-6. A dimensão da cavidade é determinada pelo número de unidades de glicose constituintes da CD. Os átomos de oxigénio envolvidos nas ligações glicosídicas (em C-1 e C-4) e os átomos de hidrogénio ligados em C-3 e C-5 determinam o caráter hidrofóbico do interior da cavidade das CD's.
A presença das hidroxilas livres na parte externa das CD's confere a essas moléculas um caráter hidrofílico. Esse arranjo estrutural das moléculas de glicose nas CD's possibilita a utilização desses compostos como hospedeiros na formação de complexos de inclusão. A presença de uma cavidade hidrofóbica e de grupos hidroxilas livres na parte externa da molécula permite a "dissolução" em meio aquoso de compostos (hóspedes) de baixa solubilidade. Esse aspecto molecular tem possibilitado a utilização de ciclodextrinas em diferentes áreas da ciência e tecnologia, sendo o principal domínio de aplicação a indústria farmacêutica, em função da possibilidade de obtenção de novos fármacos com propriedades físicas e químicas diferentes e o mesmo princípio ativo.
A estrutura particular das suas moléculas assegura que as ciclodextrinas podem formar complexos de inclusão, isto quer dizer, moléculas que resultam da soma de dois compostos, um dos quais (a molécula hóspede) está situado na cavidade da molécula sem significantemente modificar sua estrutura.
As ciclodextrinas podem formar complexos de inclusão com uma variedade notável de espécies iónicas e moleculares, dentre as quais muitos princípios ativos de importância fundamental nos cosméticos. Encapsular o princípio ativo nas ciclodextrinas apresenta várias vantagens que sugerem o seu uso também em dermocosméticos. Os complexos de ciclodextrinas podem ter uma estrutura cristalina, eles não são sensíveis à força da pressão, eles protegem a molécula hóspede, prevenindo a degradação natural dos princípios ativos, de fato intensificando os seus efeitos. As ciclodextrinas também possuem uma outra característica que as tornam extremamente interessantes para aplicações cosméticas: elas podem formar um Sistema de Liberação da Droga. Ao encapsular temporariamente os princípios ativos, as ciclodextrinas permitem a "liberação controlada" de seu conteúdo, desta forma contribuindo para a melhora da biodisponibilidade. Vários trabalhos têm mostrado uma melhor ou uma maior atividade da molécula ativa complexada, comparada à sua forma livre.
As ciclodextrinas são em todos os aspectos substâncias de origem natural e, como tal, apresentam uma situação toxicológica favorável. A sua capacidade de "hospedar" uma ampla variedade de substâncias ativas e de formar complexos de inclusão para liberação controlada faz deles substâncias particularmente interessantes para seu uso bioterápico (http://www.gerbras.com.br/produtos/cycloazelon.asp, acessado em 13-07- 08).
É já objeto de requerimento de patente a complexação de elementos da família dos Jasmonatos, salicilatos, sulfasalazina e doadores de NO, complexados ou não, em ciclodextrinas, alfa, beta e gama, tal como protocolado por José Emílio Fehr Pereira Lopes (em 28/02/2007, Protocolo n. 018070011450) perante este mesmo Instituto Nacional de Propriedade Industrial (INPI).
Contudo, a continuidade das pesquisas feitas pelo inventor apontou a eficiência ainda mais intensa no uso de ciclodextrinas modificadas, tais como hidroxipropil Beta Ciclodextrina, e todas as demais ciclodextrinas modificadas com qualquer tipo de substituição do grupo hidroxila, ciclodextrinas metiladas, como exemplo a DIMEB e a TRIMEB, ciclodextrinas ramificadas, ciclodextrinas com cargas e por fim polímeros de ciclodextrinas. Essas ciclodextrinas estão abrangidas nas compostos objeto do presente pedido de patente de invenção.
A preparação de tais nanocápsulas é conhecida na literatura, valendo como referência Cunha Filho e Sá Barreto.
Lipossomos e micro e nano emulsões
Micro e nano emulsões também apresentam grande potencial como veículos de liberação de fármacos lipofílicos via intravaginal e retal, tais como, microbicidas, esteróides e hormônios, porque aumentam a capacidade de solubilização de fármacos, aumentam absorção e melhoram a eficiência clínica. Entretanto, o uso desse sistema para administração intravaginal e intraretal impôs rigorosas exigências no que diz respeito à toxicidade e a biodisponibilidade da formulação.
As microemulsões são frequentemente compostas por misturas de quatro componentes, tais como tensoativo, óleo, co-tensoativo e água. Quando uma mistura de tensoativos e co-tensoativos é adicionada a um sistema bifásico do tipo água-óleo, um sistema isotrópico, opticamente transparente ou translúcido e termodinamicamente estável é formado espontaneamente. A natureza e a estrutura do tensoativo, do co-tensoativo, e do óleo são características essenciais para formulação desse sistema. E o domínio da existência de sistemas microemulsionados pode ser identificado através do diagrama de fases pseudoternário (CRUZ et. al., 2001).
Recentemente muita atenção tem sido dada à utilização de fosfolipídios em microemulsões, pois estes contornam problemas de toxicidade e essa característica faz com que sejam excipientes de primeira escolha, especialmente ao preparar-se microemulsões para uso parenteral (PARK et al., 1999).
As nano emulsões podem ser feitas a partir de:
Fosf atid i Icol i nas
As fosfatidilcolinas (Lecitinas) em particular são bem conhecidas por formarem sistemas microemulsionados com baixas quantidades de água e como resultado tem-se a obtenção de organogéis que funcionam como matrizes para liberação de drogas via transdérmica, ou seja, uso tópico (WILLIMANN et al., 1992).
A lecitina é uma mistura complexa de fosfatides insolúvel em acetona, os quais consistem principalmente de fosfatidilcolina, fosfatidiletanolamina, fosfatidilserina e fosfatidilinusitol, combinados com várias quantidades de outras substâncias tais como triglicerídeos, ácidos graxos e carboidratos (HANDBOOK, 2000).
A composição da lecitina e as propriedades físicas são dependentes da origem e do grau de purificação. A sua categoria funcional é emoliente, agente emulsificante e agente solubilizante e podem ser utilizadas em preparações farmacêuticas injetáveis (intramuscular e intravenosa), formulações para nutrição parenteral e produtos tópicos tais como cremes e pomadas, além de ser usada em produtos alimentícios (HANDBOOK, 2000).
As características da fosfatidilcolina (FS) em solução devem ser consideradas ao preparar microemulsões baseadas em fosfolipídios para uso parenteral. A FS apresenta características fortemente hidrofóbicas devido às duas longas cadeias de hidrocarbonetos e apresenta também características fortemente hidrofílicas devido à cabeça de grupos zioteriônicos polares, os quais têm momentos dipolo. Há uma proximidade de balanço entre as propriedades hidrofílicas e lipofílicas.
A fosfatidilcolina é lipofílica demais para formar espontaneamente a camada lipídica de tensão interfacial zero necessária para a formação de uma microemulsão. Então, um co-tensoativo, tal como álcool de cadeia curta, é necessário para formar esse sistema (PARK et al., 1999).
A fosfatidilcolina é um tensoativo natural, e devido a esta característica é rapidamente difundido na interface óleo-água. Microemulsões compostas de fosfolípidio têm mostrado melhorar as lesões gástricas induzidas por fármacos antiinflamátorios não esteroidais (LEYCK et al., 1985; CRUZ et al., 2001).
A lecitina apresenta em diversas formas físicas desde semilíquidos viscosos a pós, dependendo do conteúdo de ácidos graxos livres. Estas podem apresentar várias colorações desde marrom a amarelo claro, dependendo do seu grau de pureza. Quando expostas ao ar, rapidamente sofrem oxidação, resultando em uma coloração amarela escura ou marrom. São praticamente inodoras. As derivadas de origem vegetal apresentam um sabor agradável, similar ao óleo de soja. Apresentam densidade de 0,97g/cm3, a lecitina líquida, e 0,5 g/cm3 a em pó. O número de saturação é para 95-100 e 82-88 para líquida e pó, respectivamente. O ponto isoelétrico é 3,5 e o índice de saponificação é de 196. As lecitinas são solúveis em hidrocarbonetos alifáticos, aromáticos e halogenados, óleos minerais e ácidos graxos. Elas são praticamente insolúveis em óleos animais e vegetais frios, solventes polares e água. Quando misturadas em água estas são hidratadas para formar as emulsões (HANDBOOK, 2000).
As lecitinas decompõem-se em pHs extremos. Elas são higroscópicas e estão sujeitas a degradações microbianas. Quando aquecidas, oxidam, escurecem e se decompõem. A temperaturas de 160- 180° C, irão causar degradação com 24 horas. Lecitinas fluídas ou ceras deveriam ser estocadas a temperatura ambiente ou acima.
As lecitinas são biocompátiveis, contornam problemas de toxicidade e sensibilidade, portanto podem ser usadas como adjuvantes farmacotécnicos em comprimidos, preparações tópicas, vaginal e retal, suspensões, cápsulas, injeções intravenosa e intramuscular e preparações para uso inalatório (HANDBOOK, 2000).
Óleo de Rícino Polioxil-40-Hidlrogenado
O Óleo de Rícino Polioxil-40-Hidrogenado ocorre naturalmente, é um óxido etileno derivado do óleo castor e aproximadamente 75% da mistura de seus componentes são hidrofóbicas. Estes incluem principalmente ésteres de ácidos graxos de glicerol polietilienoglicol e ésteres de ácidos graxos de polietilenoglicol. A porção hidrofílica consiste de polietilenoglicóis e etoxilatos de glicerol. Como é um tensoativo do tipo não-iônico, é utilizado em formulações farmacêuticas de uso oral, tópico e parenteral e também tem sido utilizado em formulações cosméticas e alimentícias.
É amplamente utilizado como agente emulsificante, solubilizante, molhante e adjunto de formulações farmacêuticas (HANDBOOK, 2000). Quando utilizados em soluções hidroalcoólicas e aquosas, o óleo de castor polioxil-40- hidrogenado, pode ser usado para solubilizar vitaminas, óleos essenciais e certos fármacos (HANDBOOK, 2000).
O óleo de castor polioxil-40-hidrogenado é encontrado na forma de uma pasta branca semi-sólida, a qual se liquefaz a 30° C. Apresenta fraco sabor e odor característico em soluções aquosas. Quando em soluções aquosas, se aquecido por tempo prolongado, pode separar em fases líquidas e sólidas quando resfriada. Entretanto, o produto pode ser restituído na forma original por homogenização. Essas soluções aquosas podem ser esterelizadas por autoclave a 121° C, mas podem causar pequena diminuição do pH. Estas soluções podem sofrer contaminação microbiana na estocagem e devem ser estocados em frascos herméticamente fechados, protegidos de luz em ambiente fresco e seco (HANDBOOK, 2000).
O óleo de castor polioxil-40- hidrogenado produzido pela reação de 1 mol de óleo castor hidrogenado com 40-45 moles de óxido de etileno. Testes de toxicidade crónica e aguda em animais têm mostrado que derivados de óleo castor polioxietileno contornam problemas de toxicidade e irritação (HANDBOOK, 2000).
O polioxil-40-hidrogenado apresenta propriedades físicas tais como equilíbrio lipófilo-hidrófilo igual a 14-16, ponto de fusão igual a 30, ponto de solidificação = 21-23, pH 6-7 , índice de refração 1,453-1 ,457, Viscosidade a 25° C é de 20-40 mPa.s e concentração micelar crítica (%) igual a 0,039.
É solúvel em óleo castor, clorofórmio, etanol, ácidos graxos, óleo de oliva, álcoois graxos e água (HANDBOOK, 2000).
Colesterol O colesterol é de origem animal e também pode ser produzido de acordo com a regulação da alimentação humana. É um material estável, não irritante e que contorna problemas de toxicidade quando empregado como excipiente. A sua categoria funcional é de emoliente e agente emulsificante e este pode ser utilizado para preparações farmacêuticas injetáveis, oftálmicas, tópicas e vaginais (HANDBOOK, 2000).
O nome químico do colesterol é colest-5en-3p-ol. O seu peso molecular é de 386,7. Este apresenta ponto de ebulição de 360° C; densidade de 1 ,052g/cm3 para a forma anidra; constante dielétrica D20:5,41 e ponto de fusão de 147-150oC. É solúvel em acetona, óleos vegetais, benzeno, clorofórmio, éter, pouco solúvel em etanol e metanol e praticamente insolúvel em água (HANDBOOK, 2000).
Pó branco ou ligeiramente amarelo, inodoro, é encontrado na forma de pequenas folhas peroladas, agulhas, pó ou grânulos. É higroscópico e uma pequena exposição à luz e ao ar, este adquire coloração amarela, portanto o frasco contendo esta substância deve ser hermeticamente fechado e protegido da luz (HANDBOOK, 2000).
Oleato de Sódio
O oleato de sódio apresenta peso molecular de 304,45, ponto de fusão de 232-235 e fórmula estrutural de CH3(CH2)7CH=CH(CH2)7C02Na (ALDRICH, 2000-2001). É um sal do ácido oléico sódico, eunatrol. Geralmente contém pequenas quantidades de sal de sódio esteárico, ácido e etc. (MERCK INDEX, 2001).
LDE
O LDE é uma molécula artificial, resultante da manipulação do LDL, caracterizando-se pelo tamanho nanométrico e grande afinidade a substâncias hidrofóbicas, permitindo assim que essa mesma molécula seja uma carreadora de fármacos hidrofóbicos. Cuida-se o LDE de uma nano molécula artificial sendo estas nano moléculas ricas em colesterol em pacientes com neoplasias malignas do trato genital e da mama. Desta feita, poder-se-á comprovar se a emulsão lipídica artificial, LDE, atua como veículo útil para incorporação de agentes cito tóxicos e sua possível utilização no tratamento quimioterápico.
DENDRÍMEROS
Dendrímeros são macromoléculas monodispersas, altamente ramificadas, apresentando estruturas bem definidas e um peso molecular uniforme. Esta classe de compostos tem recebido grande atenção dos pesquisadores nestes últimos anos devido à particularidade de suas propriedades físicas e químicas. Atualmente alguns estudos têm sido realizados utilizando dendrímeros com núcleos dendríticos porfirínicos. Os dendrímeros são sistemas de dimensões nanoscópicas, possuindo uma estrutura altamente organizada. Este tipo de molécula possui superfícies e interfaces altamente controladas e apresenta vazios internos, o que permite, por exemplo, o encapsulamento de moléculas hóspedes, à semelhança de uma micela, ou seja, atuando como uma micela monomolecular (Nelson Massaki Hiramatsua, Ivan Pérsio de Arruda Campos e Daisy de Brito Rezende).
Os dendrímeros aptos ao emprego na presente patente podem ser do tipo (i) carbossilanos, (ii) carboxilanos, (iii) polifenilenos, (iv) poliésteres e (v) PAMAM.
A colocação dos membros da família dos jasmonatos poderá ser complexada entre os espaços vazios encontrados nos complexos formados de dendrímeros. Tal é possível devido a este tipo de molécula possuir diversas superfícies e interfaces altamente controladas e apresentar vazios internos, o que permite, por exemplo, o encapsulamento de moléculas hóspedes, à semelhança de uma micela, ou seja, atuando como uma micela monomolecular.
Os polímeros encapsuladores para fármacos
A preparação de nano e microesferas através de polimerização em micelas reversas ou mesmo novas formulações de comprimidos com resistência gástrica, utilizando como componentes polivinilpirrolidona reticulado, alginato de sódio, goma xantana e bicarbonato de sódio, dirigindo- se a absorção ao trato gastrointestinal. Os polímeros podem ser: i. Polímeros naturais: são sempre biodegradáveis como, por exemplo, o colágeno, a celulose e a quitosana e são muito utilizados como matrizes em liberação de fármacos. Um exemplo é a aplicação de quitosana enxertada com poli (ácido acrílico), formando um copolímero, na confecção de nanoesferas para se estudar a liberação controlada em função do tempo, utilizando-se de eosina, um corante solúvel em água, como marcador. ii. Polímeros naturais modificados: um problema encontrado em polímeros naturais é que eles frequentemente levam muito tempo para degradar. Isto pode ser resolvido adicionando-se grupos polares às cadeias, que, por serem mais lábeis, podem diminuir o tempo de degradação. Exemplos destas modificações podem ser a reticulação de gelatina utilizando-se formaldeído, a reticulação de quitosana utilizando-se glutaraldeído, levar celulose a acetato de celulose. Modificações enzimáticas também são utilizadas, como a modificação de quitosana por tirosinase. iii. Polímeros sintéticos: são também largamente utilizados, como, por exemplo, poli(etileno), poli(álcool vinílico), poli(ácido acrílico), poli(acrilamidas), poli(etilenoglicol), poliésteres. No caso dos poliésteres, estes são mais utilizados pelo químico e têm no poíi(glicolato) o polímero alifático linear mais simples. O monômero glicolato é sintetizado a partir da dimerização do ácido glicólico e a polimerização por abertura de anel leva a materiais de alta massa molar, com aproximadamente 1-3% do monômero residual. Na prática, copolímeros de glicolato com l-lactato e dl-lactato são os mais utilizados em sistemas de liberação controlada, com vantagens. Uma delas é o menor tempo de degradação. Este menor tempo de degradação se explica devido à amortização provocada pela quebra da regularidade entre as cadeias na presença do monômero em copolímeros de l-lactato com 25— 70% em glicolato. Uma estrutura típica de um polímero biodegradável é a do poli(ácido láctico).
São também preparados copolímeros-bloco compostos de PEO- PPO-PEO (Pluronic, um copolímero-bloco relativamente hidrofílico) e poli (□- caprolactona) (hidrofóbico) obtido a partir da abertura de anel de □- caprolactona na presença de PEO-PPO-PEO e catalisador octoato estanoso. (Drumond W. S.; Wang, S. H. - "Síntese e Caracterização do copolímero Poli ácido lático-B-Glicol Etilênico" Polímeros: Ciência e Tecnologia, 14,n 2, p. 74- 79, 2004).
Métodos de preparação das Ciclodextrinas baseados na descrição de Cunha Filho e Sá Barreto
Em solução aquosa
A obtenção de complexos de elementos da família dos jasmonatos, elementos da família dos salicilatos e doadores de oxido nítrico, denominados nesta patente como denominação fantasia de fármacos, F-CD (F-CD) em solução é relativamente simples e rápida. O procedimento de preparação mais habitual consiste na solubilização da CD em água ou solução tampão e posterior adição do composto ativo em excesso. A suspensão resultante permanece a temperatura constante, sob agitação, por um intervalo de tempo suficiente para atingir o equilíbrio termodinâmico de encapsulação (Rajewski & Stella, 1996).
Alguns produtos necessitam vários dias, enquanto que outros requerem apenas algumas horas. Técnicas auxiliares, como a utilização de ultrasom, conseguem acelerar o processo de equilíbrio e são comumente utilizadas.
A formação de complexos é um processo exotérmico e a redução da temperatura normalmente favorece a sua formação (Loftsson & Brewster, 1996).
A adição de cosolventes, na maioria das ocasiões, diminui a capacidade de encapsulação de fármacos devido a uma competição que se estabelece pela cavidade hidrofóbica da CD (Pitha et al.,1992).
Em estado sólido
A estrutura sólida de misturas binárias entre fármaco e CD pode ser bastante diferente das encontradas em soluções aquosas. Nestas, há um equilíbrio dinâmico entre as moléculas em um meio polar, enquanto que os sistemas Ciclodextrina Sólidos são estáticos e sofrem limitada influência do seu conteúdo aquoso residual. A maioria dos métodos de preparação de complexos sólidos inclui diferentes graus de solubilização como etapa intermediária do seu processo de obtenção. A presença da água solubiliza os componetes e favorece a interação hidrofóbica entre a molécula hóspede e a CD. Em alguns casos, a água fomenta a formação de pontes de hidrogénio entre os grupos hidroxílicos e auxilia a captação e manutenção do fármaco na cavidade da CD, fazendo parte da estrutura cristalina do complexo no estado sólido (Hedges, 1998).
Os sistemas farmacêuticos sólidos contendo fármaco e CD são estruturas heterogéneas que podem estar constituídas pelos seus componentes individuais não complexados, e/ou por diferentes tipos de associações entre eles, como na forma de complexos de inclusão de diferentes estequiometrias e níveis de inclusão ou como agregados com variável estado cristalino ou amorfo. Por esta razão, a eficiência de complexação (relação entre fármaco livre e complexado) destes sistemas é completamente dependente do processo de preparação. Devido às características particulares inerentes a cada sistema binário F-CD, não existe uma técnica geral de preparação. As condições devem ser definidas para cada molécula hóspede. Nesta seção, serão discutidos os métodos mais comumente utilizados na obtenção de complexos sólidos, avaliando os diferentes aspectos envolvidos.
Mistura física
Este método baseia-se na simples mistura dos componentes sem adição de água. Em alguns casos são necessários vários dias para detectar- se a formação de complexos de inclusão. Em geral é um método de complexação pouco eficiente, restrito a princípios ativos líquidos, como a essência de limão, que atua como solvente, propiciando a encapsulação dos óleos essenciais em escassos minutos (Hedges, 1998).
Malaxagem 8
25
Consiste em formar uma pasta a partir da adição da mínima quantidade de líquido (água ou misturas etano-aquosas) suficiente para umedecer a mistura em pó de fármaco e CD. Em escala laboratorial, é realizada em um almofariz com auxílio de um pistilo (Fernandes & Veiga, 2002; Cirri et a!., 2005b; Cunha-Filho et al., 2007).
Industrialmente, a mistura de componentes é efetuada em uma malaxadora. A secagem do material pode ser feita em estufa ou diretamente na malaxadora acompanhada de pulverização para uniformizar o tamanho de partícula.
Variações desta técnica utilizando extrusores de calor ou granuladores de leito fluidizado são reportadas (Suzuki et al., 1993; Zema et al., 2001 ; Mura et al., 2005).
Devido à simplicidade, ao elevado rendimento e à facilidade de transposição de escala, este método é um dos mais utilizados na indústria farmacêutica, ainda que sua eficiência de complexação seja inferior à conseguida com outras técnicas.
Atomização
Representa um dos métodos mais empregados para produzir complexos de inclusão a partir de uma solução. A mistura parcial do sistema e a rápida eliminação de água propiciam uma eficiência de complexação elevada. Além disso, esta técnica permite controlar o tamanho de partículas obtido em intervalos bastante estreitos, fundamental, por exemplo, para obtenção de pós de administração pulmonar (Vozone & Marques, 2003).
O baixo rendimento e o estresse térmico são algumas das limitações desta técnica (Fernandes & Veiga, 2002). Liofilizacão
Consiste na eliminação de solvente dos sistemas em solução, através de um prévio congelamento e posterior secagem a pressões reduzidas. Esta técnica permite a obtenção de complexos de inclusão com elevado rendimento e um baixo estresse térmico. Geralmente se obtêm pós secos, amorfos e com elevado grau de interação fármaco-CD (Cao et al., 2005; Ventura et al., 2005; Rodriguez-Perez et al., 2006).
Apresenta como desvantagens, o longo tempo de processamento e as más características de fluxo do material obtido.
Coprecipitacão
Esta técnica parte de uma solução de fármaco e CD em condições muito próximas à saturação e através de mudanças bruscas de temperatura ou adição de solventes orgânicos, se obtém a precipitação do aterial em forma de complexo de inclusão. Os cristais obtidos são coletados por centrifugação ou filtração (Miro et al., 2000).
Este método é bastante utilizado em escala laboratorial, sendo frequentemente empregado na obtenção de complexos de inclusão cristalinos com a CD. No entanto, o baixo rendimento conseguido em escalas maiores, o risco de formação de complexos de inclusão com solventes orgânicos e o longo tempo do processamento (um a três dias) torna-o pouco atrativo em escala industrial (Hedges, 1998).
Fluidizacão supercrítica
Constitui um dos métodos mais inovadores de obtenção de complexos em estado sólido. O desenho de partículas empregando CO em estado supercrítico confere aos materiais obtidos por esta técnica, características únicas quanto à interação (Palakodaty & York, 1999).
Apesar de ser um método atóxico (não utiliza solventes orgânicos), rápido, quimicamente estável (utiliza temperaturas moderadas), de baixo custo de manutenção e com promissores resultados descritos na literatura, ainda é uma técnica experimental e que apresenta um custo inicial bastante elevado (Junco et a!., 2002; Al-Marzouqi et ai., 2007).
Dendrimeros
Para gerar o dendrímero, baseado em estudo prévio feito por Nelson Massaki Hiramatsua (IC), Ivan Pérsio de Arruda Campos (PQ) e Daisy de Brito Rezende (PQ), é necessário primeiramente sintetizar o precursor zero (Figura 2). A preparação envolve quatro etapas, duas das quais encontram- se otimizadas.
Figure imgf000028_0001
5 4 A partir de 1 , foi gerado seu enolato por adição de sódio metálico. Adicionando-se l2) a refluxo, obtém-se 2, caracterizado (IV e RMN de 1H) como sendo um dímero do éster malônico3. Na segunda etapa da síntese de 5, que consiste na metilação de 2, gera-se o sal sódico seguida de adição de iodeto de metila a refluxo, obtendo-se o composto 3, identificado por RMN de H e micro-análise. Como figura acima.
As próximas etapas da síntese de 5 consistem na reação de redução dos grupos éster do di-metihb s-malonato de tetraetila (3) e bromação dos grupos álcool assim formados, obtendo-se 5. Com 5 sintetizado, será feita a síntese das primeiras gerações do dendrímero (Figura 3). De uma maneira geral, a síntese do dendrímero seguirá praticamente o mesmo esquema da síntese do precursor 5, consistindo numa substituição do bromo pelo enolato do éster malônico; redução dos grupos éster e uma nova etapa de bromação dos grupos álcool assim formados (Figura 3).
Podendo estes dendrímeros ser CARBOSSILANOS (Figura 4) E CARBOSSILOXANOS (Figura 5), POLIFENILENOS (Figura 6) (Figura 7), POLIÉSTERES (Figura 8):
A colocação dos membros da família dos compostos do óleo de Emu poderá ser complexada entre os espaços vazios encontrados nos complexos formados de dendrímeros. Devido a este tipo de molécula possuir diversas superfícies e interfaces altamente controladas e apresentar vazios internos, o que permite, por exemplo, o encapsulamento de moléculas hóspedes, à semelhança de uma micela, ou seja, atuando como uma micela monomolecular.
Dendrímeros PAMAM (Figura 9) Fórmula: Os elementos da família dos jasmonatos, inclusos nas modalidades acima descritas dos mesmos (Figura 10).
MÉTODO DE PREPARO:
As drogas usadas, sendo as reivindicadas nesta patente: elementos da família dos elementos do óleo de Emu, puros ou associados a diversos tipos de elementos podem ser encapsuladas, primeiramente com a escolha do dendrímero estrutural adequado aos usos que se propõem (os dendrímeros que poderão ser usados no produto final, objeto de reivindicação desta patente, estão nela citada. Uma vez escolhido o dendrímero, a micela procede-se de maneira geral do seguinte modo: Em recipiente, deve ser colocada a molécula e o tamanho da mesma definido, forma simples ou composta, e adicionado ao mesmo recinto o dendrímero selecionado, e portador do tamanho adequado ao encapsulamento. Coloca-se a solução em agitamento, por tempo que pode variar entre 15 minutos a 24 horas, dependendo do tamanho da molécula que se deseja atingir.
Uma vez iniciado o processo de mistura, mantida por agitação a solução com os dendrímero em presença da substancia a ser encapsulada, sempre na proporção molar (dendrímero: substância desejada) adequada. Para que esta mistura seja feita de forma efetiva e homogénea, usa-se um solvente que solubilize tanto os dendrímero quanto a molécula desejada (pode ser metanol, água ou misturas dos dois solventes ou de outros solventes), a temperatura ambiente, por 24 horas e, se necessário, em atmosfera inerte. Após este período o solvente é destilado à pressão reduzida.
. Resumo do estado da técnica e avanço da técnica trazida pela invenção De um lado, é já conhecido no estado da técnica o variado emprego bioterapêutico das substâncias ativas acima referidas. Também é conhecido na ampla literatura técnica os vários tipos de nanoencapsulamento referidos também nos subtópicos acima .
O estado da técnica justamente debate-se com a dificuldade em transportar tais elementos ativos em sua integridade estrutural ao sítio específico a ser alvo da terapia. No percurso trilhado pelas substâncias ativas acima identificadas, segundo conhecimento do estado da técnica, as mesmas sofrem degradação precoce provocada pelo metabolismo corpóreo e ainda têm dificuldade de solubilidade.
O estado da técnica não produziu compostos mediante o nanoencapsulamento das substâncias ativas acima citadas, nem muito menos a complexação das mesmas com ciclodextrina. Ademais, também não foram produzidas ainda no estado da técnica compostos da família dos elementos que compõem o oleo de emú e outras substâncias dentre as quais ciclopentanonas e ciclo pentenonas.
As compostos ora objeto do presente pedido de patente de invenção caracterizam-se justamente por tais inovações. Isto é. são formadas pelo nanoencapsulamento dos princípios ativos acima identificados e complexação nas ciclodextrinas, bem como pelo emprego - naquelas em que cabível - do radical amina em substituição ao radical éster (o que facilita a solubilidade e evita a acão da esterase sobre a molécula pelo metabolismo corpóreo).
A INVENÇÃO: SEUS OBJETIVOS E SOLUÇÕES TRAZIDAS PELA MESMA
A presente invenção abrange compostos contendo (a) elementos da família dos elementos que compõe o oleo de emú, puros ou não podendo os elementos estarem conjugados a diversos outras moléculas simples e ou compostas dentre as quais a família das prostaglandinas, puras ou não, e ou demais ciclopentanonas, puras ou não, e ou de sufasalazina, pura ou não, e ou demais elementos da família dos salicilatos, puros ou não, e ou L-Arginina e/ou outros elementos doadores de óxido nítrico, e ou de fitoporfirina e/ou hematoporfirina, puras ou não, e ou de coenzimas Q10 e ou CoQ-10, puras ou não, e ou de coenzima A, pura ou não, e ou podendo tais elementos serem ainda conjugados ou não com moléculas orgânicas de qualquer género ou espécie, e ou conjugados com elementos minerais, puros e ou compostos, bem como compostos formados pelo nanoencapsulamento desses elementos substituído, quando cabível, por qualquer elementos que possa acrescentar o efeito sinérgico da substância carreada, todos esses compostos opcionalmente em complexos de inclusão e/ou nanoencapsulados em (I) ciclodextrinas alfa, beta e gama, modificadas ou não, e ainda as ciclodextrinas hidroxipropil beta ciclodextrina, e ou randomly metilada beta ciclodextrina, e ou sulphobutylether beta ciclodextrinas, e ou (II) lipossomos compostos de fosfatil-colina, e ou (III) ácidos graxos e seus derivados, e ou (IV) colesterol, modificado ou não artificialmente, e ou (V) polímeros biodegradáveis e absorvíveis, e ou (VI) dendrímeros, e ou (VII) nanoesferas, e ou (VIII) talosferas, e ou (IX) nano-emulsões e ou (X) micro-emulsões preparadas com base nas substâncias supracitadas, combinadas para uso como agentes (1) antitumorais, em uma grande variedade de cânceres em indivíduos mamíferos e não mamíferos, e ou (2) antivirais, e ou (3) antibacterianos, e ou (4) fungicidas, e ou (5) antiparasitários, e ou (6) analgésicos, e ou (7) antiinflamatórios, e ou (8) imuno-moduladores, e ou (9) anticoagulantes, e ou (10) cicatrizantes, e ou (11) tensioreguladores, e ou (12) cosméticos e ou cosmético-dermatológico, e ou (13) de suplementação alimentar, e ou (14) terapêutico-vascular, e ou (15) hematomoduladores, e ou (16) pro- angiogênicos e anti-angiogênicos, e ou (17) moduladores de ereção e libido sexual, e ou (18) antidegeneradores do sistema nervoso central (SNC) e ou (19) agentes antienvelhecimento.
A superação das dificuldades do estado da técnica - Benefícios/ganos alcançados pelos compostos ora objeto de requerimento de patente de invenção
Para solucionar as dificuldades vivenciadas no estado da técnica conforme acima descrito, opta-se pelo encapsulamento, que, de um lado, evita a degradação prévia do composto encapsulado, e, de outro, favorece a solubilidade em meios variados para uso farmacêutico.
Os compostos cuja patente de invenção ora se requer, obtidas da conjugação dos compostos ativos acima descritos nas nanocápsulas acima arroladas, resolvem o problema vivenciado no estado da técnica.
Com efeito, no estado da técnica dá-se que os compostos ativos acima referidos - com potencialidades terapêuticas já identificadas - não conseguem alcançar de forma estruturalmente íntegra o alvo desejado para fins terapêuticos, justamente porque (a) ou são objeto de degração precoce pelo metabolismo corpóreo, (b) ou ofertam dificuldades de solubilidade, (c) ou ainda apresentam eficácia colateral negativa devido à toxicidade sobre tecidos e órgãos sãos.
Os compostos obtidos ao ensejo do nanoencapsulamento - nas nanocápsulas acima aludidas e consoante as medidas objeto deste requerimento de patente (de um nanômetro a 999 nanômetros) - ensejam soluções para todas essas dificuldades: (i) impedem a biodegração precoce do composto ativo, pois o encaminham íntegro ao alvo terapêutico desejado; (ii) proporcionam ou aumentam a solubilidade aquosa, facilitando a administração futura de novos fármacos; e, (iii) uma vez obtido o transporte íntegro do composto ativo ao alvo terapêutico desejado, evitam-se ou diminuem-se drasticamente efeitos tóxicos colaterais que decorreriam do metabolismo precoce da referida substância durante o percurso do fármaco até o sítio a ser objeto da terapia.
Os compostos objeto do presente requerimento de patente de invenção, devido ao nanoecapsulamento empregado, facilitam a entrada dos princípios ativos carreados nas membranas celulares, atingindo as organelas e assim detendo a patologia em andamento. Ad exemplum, é o que se passa, em células mutagênicas, com as mitocôndrias apresentando uma variação da permeabilidade de suas membranas (permeability transport of the pore complex - PTPC). Nesse caso, dos elementos compostos do óleo de emu deverá atuar na sua forma e estrutura íntegra (assim alcançada pelo transporte protegido dentro da estrutura micro e ou nanocapsuiar) o alvo desejado posso reagir ao efeito esperado.
Outrossim, justamente por proporcionar o ingresso da estrutura íntegra de seu princípio ativo, os compostos que ora são objeto de requerimento de patente de invenção demandam menor quantidade do fármaco para alcançar resultados terapêuticos satisfatórios, resultando assim uma diminuição drástica da posologia tradicionalmente administrada. Nesse mesmo caminho, reforça-se a diminuição da toxicidade oriunda dos subprodutos do metabolismo dos princípios ativos.
Notadamente no que diz respeito à potencialidade terapêutica ofertada pelos compostos ora objeto de pedido de patente de invenção, avulta em relevância a inclusão do conjugado de dos elementos presentes no óleo de Emu, tais como os citados dentre os quais os salicilatos, prostaglandinas, de doadores de óxido nítrico (L-arginina) e de fitoporfirinas e hematoporfirinas. Dentre os compostos objeto do presente pedido de patente de invenção, aqueles, destacadamente os integradas por elementos presentes no óleo de Emu, permitindo em sua estrutura seja mudada por qualquer elemento,efetivando o sinergismo maior do composto e ainda possibilitando com maior eficácia ao impedir a atuação da esterase, presente em várias partes do organismo, e, assim, reforçar a capacidade de transporte íntegro do princípio ativo.
Outro problema também resolvido pelos compostos ora objeto de patente de invenção está em impedir a formação de complexos de ativação imunológica desativadores do fluxo da droga, via corrente sanguínea. Tal efeito é obtido pelas mudanças morfológicas dos vários invólucros abrangidos no presente pedido de patente de invenção. Mediante mudanças nas estruturas das compostos ora objeto de requerimento de patente de invenção burla-se o reconhecimento imunológico corpóreo, resultando em menor resistência ao fármaco.
Descrição detalhada da invenção
A presente invenção abrange compostos contendo (a) elementos presentes no óleo de Emu, puros ou não carreados por micro e ou nano carreadores. Estas conjugações ou adições podem formar dentro dos carreadores novas moléculas, e ou os elementos que compõe o óleo do meu carreados, podem se compor com imueras outras moléculas que não estejam necessariamente carreadas, fazendo assim, um papel adicional e coadjuvante a outras substâncias. Como exemplo conjugações com a família das prostaglandinas, puras ou não, e ou com demais ciclopentanonas, puras ou não, e ou (c) de sufasalazina, pura ou não, e ou demais elementos da família dos salicilatos, puros ou não, e ou (d) L-Arginina e ou outros elementos
Figure imgf000036_0001
beta e gama, modificadas ou não, e ou (ii) lipossomos compostos de fosfatil- colina, e ou (iii) ácidos graxos e seus derivados, e ou (iv) colesterol, modificado ou não artificialmente, e ou (v) polímeros biodegradáveis e absorvíveis, e ou (vi) dendrímeros, e ou (vii) nanoesferas, e ou (viii) talosferas, e ou (ix) nano-emulsões e ou (x) micro-emulsões preparadas com base nas substâncias supracitadas, combinadas para uso potencial como agentes (1 ) antitumorais, em uma grande variedade de cânceres em indivíduos mamíferos e não mamíferos, e ou (2) antivirais, e ou (3) antibacterianos, e ou (4) fungicidas, e ou (5) antiparasitários, e ou (6) analgésicos, e ou (7) anti-inflamatórios, e ou (8) imuno-moduladores, e ou (9) anticoagulantes, e ou (10) cicatrizantes, e ou (11) tensioreguladores, e ou (12) cosméticos e cosmético-dermatológico, e ou (13) de suplementação alimentar, e ou (14) terapêutico-vascular, e ou (15) hematomoduladores, e ou (16) pro-angiogênicos e anti-angiogênicos, e ou (17) moduladores de ereção e libido sexual, e ou (18) antidegeneraclores do sistema nervoso central (SNC) e ou (19) agentes antienvelhecimento.
O que é revindicado:
Reinvidicaçoes:

Claims

1 - Todas os compostos, ora objeto do presente pedido de patente de invenção, caracterizam-se por envolverem o conceito de micro e ou nano encapsulamento ou complexação na sua formação, resultando em produtos de eficiente uso terapêutico. O micro e ou nanoecapsulamento e ou complexação, os caracteres de transporte de seus princípios ativos com integridade estrutural e com ganho de solubilidade e a funcionalidade terapêutica desses compostos configuram a unidade de conceito inventivo.
2 - Dentre os compostos ora objeto do presente pedido de patente de invenção, aqueles conjugáveis com amina podem ser transformadas em pó, resolvendo problemas, tais como: a administrabilidade da substância em produção de medicamentos e outras formas de aplicabilidade da droga que necessitaria de uma maior dissolubilidade, possibilitando o uso via oral em comprimidos pelo processo de possíveis taponações para melhorar a palatibilidade.
3 - São prevista também a ligação de elementos que compõe o óleo de emu conjugados ou com inúmeros outros elementos, simples e ou compostos, orgânicos, vegetais, e ou, animais, e ou, bacterianos, e ou, fúngicos, e ou, mineirais puros ou não, e ou modificados ou não, e ou, sintéticos ou não,
4 - São prevista também a ligação de elementos que compõe o óleo de emu conjugados ou com Salicilato de Sódio com açucares e Sulfasalazina, como também o metil salicilato e o ácido salicílico.
5 - São prevista também a ligação de elementos que compõe o óleo de emu conjugados ou com com metil salicilatos, ácido salicílico, sulfasalazina e Salicilato de Sódio e fito porfirinas ou também, com um espaçador ligante, "spacer" em conjugação com doadores de óxido nítrico.
6 - A presente invenção abrange compostos contendo (a) elementos presentes no óleo de Emu, puros ou não carreados por micro e ou nano carreadores. Estas conjugações ou adições podem formar dentro dos carreadores novas moléculas, e ou os elementos que compõe o óleo do meu carreados, podem se compor com inúmeras outras moléculas que não estejam necessariamente carreadas, fazendo assim, um papel adicional e coadjuvante a outras substâncias. Como exemplo conjugações com a família das prostaglandinas, puras ou não, e ou com demais ciclopentanonas, puras ou não, e ou (c) de sufasalazina, pura ou não, e ou demais elementos da família dos salicilatos, puros ou não, e ou (d) L-Arginina e ou outros elementos doadores de óxido nítrico, e ou (e) de fitoporfirina e ou hematoporfirina, puras ou não, e ou (f) de coenzimas Q10 e ou CoQ-10, puras ou não, e ou (g) de coenzima A, pura ou não, e ou (h) podendo tais elementos serem ainda conjugados ou não com compostos orgânicos e ou minerais, e ou (i)
7 - Compostos formadas pelo micro e ou nano encapsulamento desses elementos substituído, quando cabível, qualquer radical por qualquer outro elemento que venha modificar a sua estrutura química. Carreados em (i) ciciodextrinas alfa, beta e gama, modificadas ou não, e ou (ii) lipossomos compostos de fosfatil-colina, e ou (iii) ácidos graxos e seus derivados, e ou (iv) colesterol, modificado ou não artificialmente, e ou (v) polímeros biodegradáveis e absorvíveis, e ou (vi) dendrímeros, e ou (vii) nanoesferas, e ou (viii) talosferas, e ou (ix) nano-emulsões e ou (x) micro-emulsões preparadas com base nas substâncias supracitadas, 8 - A presente invenção abrange composta contendo (a) elementos presentes no óleo de Emu, puros ou não carreados por micro e ou nano carreadores combinadas para uso potencial como agentes (1) antitumorais, em uma grande variedade de cânceres em indivíduos mamíferos e não mamíferos, e ou (2) antivirais, e ou (3) antibacterianos, e ou (4) fungicidas, e ou (5) antiparasitários, e ou (6) analgésicos, e ou (7) anti-inflamatórios, e ou (8) imuno-moduladores, e ou (9) anticoagulantes, e ou (10) cicatrizantes, e ou (11) tensioreguladores, e ou (12) cosméticos e cosmético-dermatológico, e ou (13) de suplementação alimentar, e ou (14) terapêutico-vascular, e ou (15) hematomoduladores, e ou (16) pro-angiogênicos e anti-angiogênicos, e ou (17) moduladores de ereção e libido sexual, e ou (18) antidegeneradores do sistema nervoso central (SNC) e ou (19) agentes antienvelhecimento.
O invento em questão prevê, quanto à conjugação da família dos elementos que compõe o óleo de meu em:
- Micro e nano emulsões de oleato de sódio, conjugados ou não com todos os tipos de ciclodextrinas.
- Suspensões de micro e ou nano partículas lipidicas, fosfo-lipidicas, de todas as derivações de fosfatil colina, isoladamente ou em associação com fosfolípides naturais ou sintéticos: Fosfatidil etanolamina. , Fosfatidil serina, Fosfatidil inositol. Ácido fosfatídico.
- Dissolvidos em micro e ou nano emulsões com Omega 3, Omega 6 e Omega 9, Acido Linonelico e suas variações.
- Conjugados e ou complexados com aminoácidos, mineirais, oligo elementos e co-enzimas, complexados ou nao com todos os tipos de ciclodextrinas. - Conjugado com anti-tumorais e ou anti inflamatórios, complexados ou não por ciclodextrina, como meio de liberação e ação em terapia alvo em câncer, viroses, doenças e demais patologias.
- Composição com óleos minerais e ou vegetais e ou de origem animal, em forma de nano ou micro lipossomos, complexados opcionalmente ou não por ciclodextrinas, ou substância simples, podendo ou não constituir conjugados com elementos minerais simples ou não, aminoácidos e outros oligoelementos adicionados ao óleo.
- A inclusão dos elementos que compõe o óleo de emu com vitaminas K3 e ácido ascórbico, bem como outras vitaminas, complexados ou não em ciclodextrinas.
- Inclusão de elementos que compõe o óleo de emu com violaceina compelxados ou não, em ciclodextrinas.
- Inclusão dos elementos que compõe o óleo de emu em carregadores lipidicos LDL, ou carreadores similares que mimetizam o primeiro.
- Conjugação de elementos que compõe o óleo de emu, com gluco- oxidase, livre ou encontrada em mel ou outros alimentos.
- Conjugação de elementos que compõe o óleo de emu, com elementos presentes em alimentos, como mel, propolis.
- Conjugação de elementos que compõe o óleo de emu, em ovos, via administração do mesmo na albumina, ou indução de postura artificial com a presença do mesmo, via alimentação, ou inalicação ou administração de qualquer via do produto. - O uso complexados dos elementos que compõe o óleo de emu, para que o mesmo seja ligado, conjugado ou re-arranjado com produtos fúngicos que interajam diretamente com a enzima produzida pelas bactérias (a beta-cetoacil-ACP sintase) envolvida na síntese de ácidos graxos.
- O uso conjugado de elementos que compõe o óleo de emu, complexados ou não, com a crisoterapia, ou terapia áurica, como também o uso deourotiomalato de sódio ou a ourotioglucose.
- O uso conjugado de elementos que compõe o óleo de emu, complexados ou não com revesratrol, complexados em ciclo dextrinas ou não.
- O uso conjugado de elementos que compõe o óleo de emu, complexados ou não com ciclodextrinas, como também com agentes anti-cox-1 anti cox-2.
- elementos que compõe o óleo de emu, complexados com albumina.
- O uso de elementos que compõe o óleo de emu, com rapamicina, em nano partículas ou complexados ou não em ciclodextrinas.
- A complexação de elementos que compõe o óleo de emu em qualquer tipo de formação de nano elementos, dentre os quais
- lipossomos
- nanopartículas poliméricas
- ciclodextrinas dendrímeros - nanoesferas e talosferas
- A conjugação de elementos que compõe o óleo de emu, com antibióticos, sintéticos ou naturais, anfotericina B, complexados ou não com ciclodextrina.
- A conjugação de elementos que compõe o óleo de emu, com metais, como zinco, cobre e selenio. Complexados ou não em ciclodextrinas.
- A conjugação ou o uso de elementos que compõe o óleo de emu em matrizes sintéticas destinadas a implantes biológicos, substituição de tecido ósseo, cartilaginoso ou vascular, controle de regeneração de pele e mucosas, controle de angiogênese em tecido renal, "stents" e válvulas artificiais.
- Géis e outros coloides contendo elementos que compõe o óleo de emu para uso em soluções oftálmicas, fluidos de perfusão e preservação de tecidos para transplante.
Os componentesformados pelas compostos ora obieto do pedido de patente são previstos em:
• Formulação solúvel em água para aplicação intramuscular, venosa e dérmica.
• Formulação em creme para aplicação tópica, pomada, loções, spray, colírio, creme, esmalte, tónicos, colutorios, pastas de dentes, emulsões e pastas de uso diário, xampu e condicionadores e qualquer outro derivado para higiene pessoal.
Formulação de ação inalatória Formulação entérica
• Formulação drágeas, pílulas, partilhas, spray.
• Formulação de uso transdérmico.
Dosagem
As doses reivindicadas nesta patente, dentro dos carreadores mencionados, vão de 1 nano molar a 1 milimolar, complexadas ou puras, inclusas ou não, ligadas e/ou encapsuladas a qualquer um destes carreadores descritos.
PCT/BR2010/000448 2009-08-11 2010-08-11 Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas WO2011120114A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2010/000448 WO2011120114A1 (pt) 2009-08-11 2010-08-11 Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR18090038930 2009-08-11
PCT/BR2010/000448 WO2011120114A1 (pt) 2009-08-11 2010-08-11 Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas

Publications (1)

Publication Number Publication Date
WO2011120114A1 true WO2011120114A1 (pt) 2011-10-06

Family

ID=44711244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000448 WO2011120114A1 (pt) 2009-08-11 2010-08-11 Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas

Country Status (1)

Country Link
WO (1) WO2011120114A1 (pt)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
No relevant documents disclosed *

Similar Documents

Publication Publication Date Title
Bhatt et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation
Jahangirian et al. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine
Hou et al. Phytosomes loaded with mitomycin C–soybean phosphatidylcholine complex developed for drug delivery
Tiwari et al. The ascension of nanosponges as a drug delivery carrier: preparation, characterization, and applications
Jain et al. Engineered nanosponges as versatile biodegradable carriers: An insight
Rasheed Cyclodextrins as drug carrier molecule: a review
Çırpanlı et al. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model
Gayathri et al. Nano formulation approaches for curcumin delivery-a review
CN108078914B (zh) 一种可注射温敏磁性超分子凝胶的制备和应用方法
JP2006160664A (ja) フリーラジカル疾患予防治療用組成物
Bandopadhyay et al. Overview of different carrier systems for advanced drug delivery
JP2001501931A (ja) 蛋白質安定化した薬理学的活性薬剤、その製造方法およびその使用方法
JP3693341B2 (ja) タキソールまたはタキソテレまたはイチイ抽出物と、シクロデキストリンとから成る封入複合体、該複合体の製造及び使用
Chen et al. Recent developments of mesoporous silica nanoparticles in biomedicine
Liu et al. Self-assembled pH and redox dual responsive carboxymethylcellulose-based polymeric nanoparticles for efficient anticancer drug codelivery
Rocha et al. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment
Zhao et al. Starch-based carriers of paclitaxel: A systematic review of carriers, interactions, and mechanisms
US20160354312A1 (en) Formulations of jasmonates and nanocarriers or microcarriers
Elfadil et al. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections
Rastogi et al. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review
Rahmanian et al. Nanogels, nanodiscs, yeast cells, and metallo-complexes-based curcumin delivery for therapeutic applications
Wei et al. Construction of curcumin and paclitaxel co-loaded lipid nano platform and evaluation of its anti-hepatoma activity in vitro and pharmacokinetics in vivo
Rai et al. Potential of nano-structured drug delivery system for phytomedicine delivery
JP5629888B2 (ja) 糖鎖担持デンドリマーからなる標的選択的薬剤放出担体
WO2011120114A1 (pt) Formulação farmacêutica a base de óleo de emu, puro ou associado e inúmero outros elementos, carreados ou complexados em micro e ou qualquer nano partículas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848638

Country of ref document: EP

Kind code of ref document: A1