WO2011118940A2 - 상향링크 제어정보 전송방법 및 사용자기기 - Google Patents

상향링크 제어정보 전송방법 및 사용자기기 Download PDF

Info

Publication number
WO2011118940A2
WO2011118940A2 PCT/KR2011/001892 KR2011001892W WO2011118940A2 WO 2011118940 A2 WO2011118940 A2 WO 2011118940A2 KR 2011001892 W KR2011001892 W KR 2011001892W WO 2011118940 A2 WO2011118940 A2 WO 2011118940A2
Authority
WO
WIPO (PCT)
Prior art keywords
nack
ack
modulation symbol
complex modulation
information
Prior art date
Application number
PCT/KR2011/001892
Other languages
English (en)
French (fr)
Other versions
WO2011118940A3 (ko
Inventor
안준기
양석철
김민규
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/636,603 priority Critical patent/US8867548B2/en
Priority to EP11759689.0A priority patent/EP2552044A4/en
Publication of WO2011118940A2 publication Critical patent/WO2011118940A2/ko
Publication of WO2011118940A3 publication Critical patent/WO2011118940A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1635Cumulative acknowledgement, i.e. the acknowledgement message applying to all previous messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for transmitting uplink control information.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the present invention is to provide a method and apparatus for transmitting uplink control information in a wireless communication system. Specifically, the present invention provides a method and apparatus for transmitting ACK / NACK when ACK / NACK information and other UL control information should be transmitted in a subframe.
  • the user equipment in the wireless communication system to transmit the uplink control information, receiving step of receiving downlink data on a plurality of carriers from the base station; And generating ACK / NACK (ACKnowlegement / NegativeACK) information for the downlink data.
  • ACK / NACK ACKnowlegement / NegativeACK
  • Modulating the ACK / NACK information to generate a complex modulation symbol And transmitting the complex modulation symbol to the base station using a physical uplink control channel (PUCCH) resource for a scheduling request, wherein the modulating step includes a specific carrier of the plurality of carriers and all remaining carriers
  • PUCCH physical uplink control channel
  • a method of transmitting uplink control information is provided that modulates the ACK / NACK information to a first complex modulation symbol if NACK, and modulates the ACK / NACK information to a second complex modulation symbol if all of the plurality of carriers are NACK.
  • a method for transmitting uplink control information is provided.
  • a user equipment in a wireless communication system transmits uplink control information, comprising: a receiver configured to receive downlink data on a plurality of carriers from a base station; And a transmitter configured to transmit an uplink signal to the base station.
  • a processor configured to control the receiver and the transmitter, the processor configured to generate ACK / NACK (ACKnowlegement / NegativeACK) information for the downlink data;
  • the transmitter is controlled to modulate the ACK / NACK information into a first complex modulation symbol when a specific carrier of the plurality of carriers is ACK and all other carriers are NACK, and when the plurality of carriers are all NACK, the ACK / NACK information is controlled.
  • a user equipment configured to control the transmitter to transmit the first complex modulation symbol or the second complex modulation symbol to a base station using a Physical Uplink Control CHannel (PUCCH) resource for a scheduling request.
  • PUCCH Physical Uplink Control CHannel
  • a user equipment in a wireless communication system transmits uplink control information, comprising: a receiver configured to receive downlink data on a plurality of carriers from a base station; And a transmitter configured to transmit an uplink signal to the base station.
  • a processor configured to control the receiver and the transmitter, the processor configured to generate ACK / NACK (ACKnowlegement / NegativeACK) information for the downlink data; If the specific carrier of the plurality of carriers is ACK and the bundled ACK / NACK for all other carriers is NACK, the transmitter is controlled to modulate the ACK / NACK information into a first complex modulation symbol, the specific carrier is NACK and the Control the transmitter to modulate the ACK / NACK information with a second complex modulation symbol if a bundled ACK / NACK is NACK;
  • a user equipment is provided, configured to control the transmitter to transmit the first complex modulation symbol or the second complex modulation symbol to a base station using a Physical Uplink Control CHannel (PUCCH) resource for a scheduling request.
  • PUCCH Physical Uplink Control CHannel
  • the specific carrier may be a primary carrier.
  • the first complex modulation symbol is the same as the complex modulation symbol of the ACK information for the downlink data received on a single carrier
  • the second complex modulation symbol is a downlink received on the single carrier It is the same as the complex modulation symbol of the NACK information for the data.
  • the first complex modulation symbol may be a modulation symbol 1
  • the second complex modulation symbol may be a modulation symbol -1.
  • an ACK / NACK signal can be efficiently transmitted in a multi-carrier system.
  • FIG. 1 is a block diagram illustrating components of a user equipment (UE) and a base station (BS) for carrying out the present invention.
  • UE user equipment
  • BS base station
  • FIG. 2 illustrates an example of a structure of a transmitter in a user equipment and a base station.
  • FIG. 3 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 4 shows an example of a DL / UL slot structure in a wireless communication system.
  • FIG. 5 shows an example of a downlink subframe structure in a wireless communication system.
  • FIG. 6 shows an example of an uplink subframe structure in a wireless communication system.
  • FIG. 10 illustrates operations of a base station and a user equipment in a DL CC change interval.
  • FIG. 11 shows an example of mapping ACK / NACK to SR PUCCH according to Embodiment 1 of the present invention.
  • FIG. 13 shows an example of mapping ACK / NACK to SR PUCCH according to Embodiment 3 of the present invention.
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA).
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • MCD division multiple access
  • MCDMA multi-carrier frequency division multiple access
  • CDMA may be implemented in a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in wireless technologies such as Global System for Mobile Communication (GSM), General Packet Radio Service (GPRS), Enhanced Data Rates for GSM Evolution (EDGE), and the like.
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE802-20, evolved-UTRA (E-UTRA), and the like.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX WiMAX
  • IEEE802-20 evolved-UTRA
  • UTRA is part of Universal Mobile Telecommunication System (UMTS)
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • 3GPP LTE adopts OFDMA in downlink and SC-FDMA in uplink.
  • LTE-advanced (LTE-A) is an evolution of 3GPP LTE. For convenience of explanation, hereinafter, it will be described on the assumption that the present invention is applied to 3GPP LTE / LTE-A.
  • a user equipment may be fixed or mobile, and various devices which communicate with a base station to transmit and receive user data and / or various control information belong to the same.
  • the user equipment may be a terminal equipment, a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), a wireless modem ( It may be called a wireless modem, a handheld device, or the like.
  • a base station generally refers to a fixed station that communicates with a user equipment and / or another base station, and communicates with the user equipment and other base stations for various data and control information. Replace it.
  • the base station may be called in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the rank or transmission rank means the number of layers multiplexed / assigned on one OFDM symbol or one data RE.
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Means a set of resource elements that carry Control Format Indicator (DAC) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink data
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • Resource elements assigned to or belonging thereto are called PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources, respectively.
  • the expression that the user equipment transmits the PUCCH / PUSCH / PRACH is used in the same sense as transmitting uplink control information / uplink data / random access signal on the PUSCH / PUCCH / PRACH, respectively.
  • the expression that the base station transmits the PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • mapping ACK / NACK information to a specific constellation point is used in the same sense as mapping the ACK / NACK information to a specific complex modulation symbol.
  • mapping ACK / NACK information to a specific complex modulation symbol is used in the same sense as modulating the ACK / NACK information to a specific complex modulation symbol.
  • FIG. 1 is a block diagram illustrating components of a user equipment (UE) and a base station (BS) for carrying out the present invention.
  • UE user equipment
  • BS base station
  • the UE operates as a transmitter in uplink and as a receiver in downlink.
  • the BS may operate as a receiver in uplink and as a transmitter in downlink.
  • the UE and BS are antennas 500a and 500b capable of receiving information and / or data, signals, messages, and the like, transmitters 100a and 100b for transmitting messages by controlling the antennas, and messages by controlling the antennas.
  • the UE and BS each include processors 400a and 400b operatively connected to components such as a transmitter, a receiver, and a memory included in the UE or BS to control the components to perform the present invention. .
  • the transmitter 100a, the receiver 300a, the memory 200a, and the processor 400a in the UE may be implemented as independent components by separate chips, respectively, and two or more are one chip. It may be implemented by.
  • the transmitter 100b, the receiver 300b, the memory 200b, and the processor 400b in the BS may be implemented as separate components by separate chips, respectively, and two or more may be implemented as one chip ( chip).
  • the transmitter and the receiver may be integrated to be implemented as one transceiver in the UE or BS.
  • the antennas 500a and 500b transmit a signal generated by the transmitters 100a and 100b to the outside, or receive a radio signal from the outside and transmit the signal to the receivers 300a and 300b.
  • Antennas 500a and 500b are also called antenna ports.
  • Each antenna port may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna port can no longer be resolved by the receiver 300a in the UE.
  • the reference signal transmitted corresponding to the corresponding antenna port defines an antenna port viewed from the UE's point of view, and whether the channel is a single radio channel from one physical antenna or a plurality of physical antenna elements including the antenna port.
  • a transceiver supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas may be connected to two or more antennas.
  • MIMO multi-input multi-output
  • Processors 400a and 400b typically control the overall operation of various modules in a UE or BS.
  • the processor 400a or 400b includes various control functions for performing the present invention, a medium access control (MAC) frame variable control function according to service characteristics and a propagation environment, a power saving mode function for controlling idle mode operation, and a hand. Handover, authentication and encryption functions can be performed.
  • the processors 400a and 400b may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. Meanwhile, the processors 400a and 400b may be implemented by hardware or firmware, software, or a combination thereof.
  • firmware or software When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 400a and 400b.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 400a and 400b or may be stored in the memory 200a and 200b to be driven by the processors 400a and 400b.
  • the transmitters 100a and 100b perform a predetermined encoding and modulation on a signal and / or data to be transmitted from the processor 400a or 400b or a scheduler connected to the processor to be transmitted to the outside, and then an antenna ( 500a, 500b).
  • the transmitters 100a and 100b convert the data sequence to be transmitted into K layers through demultiplexing, channel encoding, and modulation.
  • the K layers are transmitted through the transmit antennas 500a and 500b through a transmitter in the transmitter.
  • the transmitters 100a and 100b and the receivers 300a and 300b of the UE and BS may be configured differently according to a process of processing a transmission signal and a reception signal.
  • the memories 200a and 200b may store a program for processing and controlling the processors 400a and 400b and may temporarily store information input and output.
  • the memory 200a, 200b may be utilized as a buffer.
  • the memory may be a flash memory type, a hard disk type, a multimedia card micro type or a card type memory (e.g. SD or XD memory, etc.), RAM Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), Magnetic Memory, Magnetic Disk, It can be implemented using an optical disk or the like.
  • FIG. 2 illustrates an example of a structure of a transmitter in a user equipment and a base station. The operation of the transmitters 100a and 100b will be described in more detail with reference to FIG. 2 as follows.
  • the transmitters 100a and 100b in the UE or BS include a scrambler 301 and a modulation mapper 302, a layer mapper 303, a precoder 304, a resource element mapper 305, and an OFDM / SC.
  • - May comprise an FDM signal generator 306.
  • the transmitters 100a and 100b may transmit one or more codewords. Coded bits in each codeword are scrambled by the scrambler 301 and transmitted on a physical channel. Codewords are also referred to as data streams and are equivalent to data blocks provided by the MAC layer. The data block provided by the MAC layer may also be referred to as a transport block.
  • the scrambled bits are modulated into complex-valued modulation symbols by the modulation mapper 302.
  • the modulation mapper may generate a complex modulation symbol representing a position on a signal constellation by modulating the scrambled bit according to a predetermined modulation scheme.
  • m-PSK m-Phase Shift Keying
  • m-QAM m-Quadrature Amplitude Modulation
  • the complex modulation symbol is mapped to one or more transport layers by the layer mapper 303.
  • the complex modulation symbol on each layer is precoded by the precoder 304 for transmission on the antenna port.
  • the precoder 304 processes the complex modulation symbol in a MIMO scheme according to the multiple transmit antennas 500-1, ..., 500-N t to output antenna specific symbols, and applies the antenna specific symbols.
  • the resource element mapper 305 is distributed. That is, mapping of the transport layer to the antenna port is performed by the precoder 304.
  • the precoder 304 may be output to the matrix z of the layer mapper 303, an output x N t ⁇ M t precoding matrix W is multiplied with N t ⁇ M F of the.
  • the resource element mapper 305 maps / assigns the complex modulation symbols for each antenna port to appropriate resource elements.
  • the resource element mapper 305 may assign a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.
  • the OFDM / SC-FDM signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by an OFDM or SC-FDM scheme, thereby complex-valued time domain OFDM (Orthogonal) Generates a Frequency Division Multiplexing (SCC) symbol signal or a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol signal.
  • the OFDM / SC-FDM signal generator 306 may perform an Inverse Fast Fourier Transform (IFFT) on an antenna specific symbol, and a cyclic prefix (CP) may be inserted into a time domain symbol on which the IFFT is performed.
  • IFFT Inverse Fast Fourier Transform
  • CP cyclic prefix
  • the OFDM symbol is transmitted to the receiving apparatus through each of the transmission antennas 500-1, ..., 500-N t through digital-to-analog conversion, frequency up-conversion, and the like.
  • the OFDM / SC-FDM signal generator 306 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency uplink converter, and the like.
  • the transmitters 100a and 100b may include a fast Fourier transformer.
  • the fast Fourier transform performs a fast fourier transform (FFT) on the antenna specific symbol and outputs the fast Fourier transformed symbol to the resource element mapper 305.
  • FFT fast fourier transform
  • the signal processing of the receivers 300a and 300b consists of the inverse of the signal processing of the transmitter.
  • the receivers 300a and 300b decode and demodulate the radio signals received through the antennas 500a and 500b from the outside and transmit them to the corresponding processors 400a and 400b.
  • the antennas 500a and 500b connected to the receivers 300a and 300b may include N r multiple receive antennas, and each of the signals received through the receive antennas is restored to a baseband signal and then multiplexed and MIMO demodulated.
  • the transmitters 100a and 100b restore the data sequence originally intended to be transmitted.
  • the receivers 300a and 300b may include a signal restorer for restoring a received signal to a baseband signal, a multiplexer for combining and multiplexing the received processed signals, and a channel demodulator for demodulating the multiplexed signal sequence with a corresponding codeword.
  • the signal restorer, the multiplexer, and the channel demodulator may be composed of one integrated module or each independent module for performing their functions. More specifically, the signal restorer is an analog-to-digital converter (ADC) for converting an analog signal into a digital signal, a CP remover for removing a CP from the digital signal, and a fast fourier transform (FFT) to the signal from which the CP is removed.
  • ADC analog-to-digital converter
  • FFT fast fourier transform
  • FFT module for outputting a frequency domain symbol by applying a, and may include a resource element demapper (equalizer) to restore the frequency domain symbol to an antenna-specific symbol (equalizer).
  • the antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by a transmitting device by a channel demodulator.
  • the receiver (300a, 300b) when the receiver (300a, 300b) receives a signal transmitted by the SC-FDMA scheme, the receiver (300a, 300b) further includes an IFFT module.
  • the IFFT module performs an IFFT on the antenna specific symbol reconstructed by the resource element demapper and outputs the inverse fast Fourier transformed symbol to the multiplexer.
  • the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 are provided.
  • the processor (400a, 400b) of the transmitting device is a scrambler 301, modulation mapper 302, layer mapper 303, precoder 304, resource element mapper ( 305), it may be configured to include an OFDM / SC-FDMA signal generator 306.
  • the signal restorer, the multiplexer, and the channel demodulator are included in the receivers 300a and 300b.
  • the processor 400a and 400b of the receiver is the signal restorer, the multiplexer, and the channel demodulator. It is also possible to be configured to include a demodulator.
  • the scrambler 301, the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 may include these.
  • Receivers included in the transmitters 100a and 100b separated from the processors 400a and 400b for controlling the operation of the processor, and signal receivers, multiplexers, and channel demodulators are separated from the processors 400a and 400b for controlling their operations. It will be described as being included in (300a, 300b).
  • the scrambler 301 and the modulation mapper 302, the layer mapper 303, the precoder 304, the resource element mapper 305, and the OFDM / SC-FDMA signal generator 306 are provided to the processors 400a and 400b.
  • the embodiments of the present invention may be equally applied.
  • FIG. 3 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 3 illustrates the structure of a radio frame of a 3GPP LTE / LTE-A system.
  • the radio frame structure of FIG. 3 may be applied to a frequency division duplex (FDD) mode, a half FDD (H-FDD) mode, and a time division duplex (TDD) mode.
  • FDD frequency division duplex
  • H-FDD half FDD
  • TDD time division duplex
  • a radio frame used in 3GPP LTE / LTE-A has a length of 10 ms (307200 Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame are sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • FIG. 4 shows an example of a DL / UL slot structure in a wireless communication system.
  • FIG. 4 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
  • a slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • An OFDM symbol may mean a symbol period.
  • the RB includes a plurality of subcarriers in the frequency domain.
  • the OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
  • FIG. 4 for convenience of description, a subframe in which one slot includes 7 OFDM symbols is illustrated. However, embodiments of the present invention may be applied to subframes having other numbers of OFDM symbols in the same manner.
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone.
  • RE resource element
  • a signal transmitted in each slot is represented by a resource grid composed of N DL / UL RB N RB sc subcarriers and N DL / UL symb OFDM or SC-FDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in a downlink slot
  • N UL RB represents the number of RBs in an uplink slot.
  • N DL RB and N UL RB depend on downlink transmission bandwidth and uplink transmission bandwidth, respectively.
  • Each OFDM symbol includes N DL / UL RB N RB sc subcarriers in the frequency domain. The number of subcarriers for one carrier is determined according to the fast fourier transform (FFT) size.
  • FFT fast fourier transform
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
  • the null subcarrier for the DC component is a subcarrier that remains unused and is mapped to a carrier frequency (carrier freqeuncy, f 0 ) in the OFDM signal generation process.
  • the carrier frequency is also called the center frequency.
  • N DL symb represents the number of OFDM or SC-FDM symbols in a downlink slot
  • N UL symb represents the number of OFDM or SC-FDM symbols in an uplink slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • a physical resource block is defined as N DL / UL symb consecutive OFDM symbols or SC-FDM symbols in the time domain and is defined by N RB sc consecutive subcarriers in the frequency domain. . Therefore, one PRB is composed of N DL / UL symb x N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB N RB sc -1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb -1 in the time domain.
  • FIG. 5 shows an example of a downlink subframe structure in a wireless communication system.
  • each subframe may be divided into a control region and a data region.
  • the control region includes one or more OFDM symbols starting from the first OFDM symbol.
  • the number of OFDM symbols used as a control region in a subframe may be independently set for each subframe, and the number of OFDM symbols is transmitted through a physical control format indicator channel (PCFICH).
  • PCFICH physical control format indicator channel
  • the base station may transmit various control information to the user device (s) through the control area.
  • a physical downlink control channel (PDCCH), a PCFICH, and a physical hybrid automatic retransmit request indicator channel (PHICH) may be allocated to the control region.
  • the base station transmits information related to resource allocation of the paging channel (PCH) and downlink-shared channel (DL-SCH), uplink scheduling grant, and HARQ information on the PDCCH. Is sent to.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • HARQ information on the PDCCH. Is sent to.
  • the base station may transmit data for the user equipment or the user equipment group through the data area. Data transmitted through the data area is also called user data.
  • a physical downlink shared channel (PDSCH) may be allocated to the data area.
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH.
  • the user equipment may read the data transmitted through the PDSCH by decoding the control information transmitted through the PDCCH. Information indicating to which user equipment or group of user equipments the PDSCH data is transmitted, and how the user equipment or user equipment group should receive and decode PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, frequency location) of "B” and a transmission type information of "C" (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RNTI Radio Network Temporary Identity
  • C transmission type information
  • the UE of the cell monitors the PDCCH using its own RNTI information, and the UE having the "A" RNTI receives the PDCCH and is indicated by "B” and "C” through the received PDCCH information.
  • Receive the PDSCH Receive the PDSCH.
  • a plurality of PDCCHs may be transmitted in the control region.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs.
  • the DCI carried by one PDCCH has a different size and use depending on the PUCCH format, and its size may vary depending on a coding rate.
  • the DCI format is independently applied to each UE, and PDCCHs of multiple UEs may be multiplexed in one subframe.
  • the PDCCH of each UE is independently channel coded to add a cyclic redundancy check (CRC).
  • CRC cyclic redundancy check
  • the CRC is masked with a unique identifier of each UE so that each UE can receive its own PDCCH.
  • blind detection also called blind decoding
  • Information shows an example of an uplink subframe structure in a wireless communication system.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or more physical uplink shared channels may be allocated to the data area to carry user data.
  • the UCI carried by one PUCCH is different in size and use according to the PUCCH format, and may vary in size according to a coding rate.
  • the following PUCCH format may be defined.
  • Table 1 PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
  • One N / A N / A SR (Scheduling Request) 1a BPSK One ACK / NACK One codeword 1b QPSK 2 ACK / NACK
  • Two codeword 2 QPSK 20 CQI Joint coding ACK / NACK (extended CP) 2a QPSK + BPSK 21 CQI + ACK / NACK Normal CP only 2b QPSK + QPSK 22 CQI + ACK / NACK Normal CP only 3 QPSK 48 SR + ACK / NACK
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the uplink transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during the frequency upconversion process by the OFDM / SC-FDM signal generator 306.
  • the PUCCH for one UE is allocated to an RB pair in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier. Regardless of whether or not frequency hopping, the PUCCH for one UE is allocated to an RB pair in one subframe, so that the same PUCCH is transmitted twice through one RB once in each slot in one UL subframe.
  • an RB pair used for each PUCCH transmission in one subframe is called a PUCCH region or a PUCCH resource.
  • a PUCCH carrying ACK / NACK among the PUCCHs is called an ACK / NACK PUCCH
  • a PUCCH carrying CQI / PMI / RI is called a CSI (Channel State Information) PUCCH
  • a PUCCH carrying an SR It is called SR PUCCH.
  • the UE is allocated a PUCCH resource for transmission of UCI from the BS by higher layer signaling or dynamic control signaling or implicit.
  • the UL subframe control information such as ACK / NACK (ACKnowlegement / negative ACK), CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Information), SR (Scheduling Request), etc. It can be transmitted on the control area of.
  • a BS and a UE mutually transmit / receive data.
  • the BS / UE transmits data to the UE / BS
  • the UE / BS decodes the received data and sends an ACK to the BS / UE if the data decoding is successful, and the data decoding is successful. Otherwise, NACK is transmitted to the BS / UE.
  • UE receives data unit (eg PDSCH) from BS and ACK for each data unit via PUCCH resource determined by PDCCH resource carrying scheduling information for the data unit Send / NACK to the BS.
  • data unit eg PDSCH
  • the PUCCH resources for ACK / NACK are not pre-allocated to each UE, and a plurality of PUCCH resources are divided and used at every time point by a plurality of UEs in a cell.
  • the PUCCH resources used by the UE to transmit ACK / NACK are dynamically determined based on the PDCCH carrying scheduling information for the PDSCH carrying corresponding downlink data.
  • the entire region in which the PDCCH is transmitted in each DL subframe consists of a plurality of CCEs, and the PDCCH transmitted to the UE consists of one or more CCEs.
  • the UE transmits ACK / NACK through a PUCCH resource linked to a specific CCE (for example, the first CCE) among the CCEs constituting the PDCCH received by the UE.
  • each PUCCH resource index corresponds to a PUCCH resource for ACK / NACK.
  • the UE has 4 PUCCHs corresponding to 4 CCEs, which is the first CCE constituting the PDCCH.
  • ACK / NACK to transmit to the BS. 7 illustrates a case in which up to M ′ CCEs exist in a DL and up to M PUCCHs exist in a UL.
  • M ' may be M, but M' and M may be designed differently, and mapping of CCE and PUCCH resources may overlap.
  • the PUCCH resource index in the LTE system is determined as follows.
  • n (1) PUCCH represents a PUCCH resource index for ACK / NACK transmission
  • N (1) PUCCH represents a signaling value received from the upper layer
  • n CCE is the smallest value among the CCE index used for PDCCH transmission Indicates.
  • ACK / NACKs from a plurality of UEs may be multiplexed onto one PUCCH resource.
  • the orthogonality of ACK / NACK signals is secured between UEs by the cyclic time shift in the SC-FDM symbol and the SC-FDM symbol time domain spread using the Orthogonal Code.
  • other cyclic time shifts of the waveform e.g., information and Chu (ZC) sequences
  • ZC Zac
  • each waveform has a single carrier property to ensure a low peak-to-average power ratio (PAPR) in the uplink.
  • the SC-FDM symbol for each ACK / NACK with a small number of ACK / NACK bits (e.g., 1 or 2 bits) is modulated by the elements of one orthogonal spreading code.
  • the 3GPP LTE PUCCH structure for ACK / NACK transmission of multiple UEs uses frequency-domain code multiplexing (different circular time transitions in the sequence) and / or time-domain code multiplexing (different orthogonal block spreading codes).
  • Each PUCCH resource (or each PUCCH resource index) is mapped to a combination of cyclic time shift and orthogonal spreading code number.
  • the BS reserves PUCCH resources in predetermined subframes for the SR for the UE through higher layer signaling (eg, Radio Resource Control (RRC) signaling).
  • RRC Radio Resource Control
  • PUCCH resources may be reserved for a certain number of subframes for the SR for a particular UE.
  • the UE may determine a PUCCH resource reserved for SR in the UE, that is, an SR PUCCH resource, based on the higher layer signaling.
  • the UE wants to request uplink scheduling from the BS, the UE transmits modulation symbol 1 indicating an SR using the SR PUCCH resource. While the UE does not make an uplink scheduling request, the UE does not transmit information through the SR PUCCH.
  • the BS determines that there is an uplink scheduling request by the UE. On the other hand, if there is no signal received through the SR PUCCH resources in the subframe reserved SR PUCCH resources, it is determined that there is no uplink scheduling request by the UE.
  • the ACK / NACK PUCCH resource dynamically determined by the PDSCH resource is located in the same subframe as the SR PUCCH resource may occur.
  • the UE may transmit uplink control information through only one PUCCH resource in one subframe. .
  • one UE is not allowed to use a plurality of PUCCH resources for transmission of uplink control information.
  • the UE piggybacks the ACK / NACK information to other control information ( piggyback) to transmit on the PUCCH allocated for the transmission of the other control information. That is, if a CSI PUCCH resource or an SR PUCCH resource is allocated to a subframe in which the UE should transmit ACK / NACK information, the CSI PUCCH resource or the SR PUCCH resource is used instead of the dynamically determined ACK / NACK PUCCH resource. To transmit the ACK / NACK information.
  • control information eg, CQI / PMI / RI, SR, etc.
  • the ACK / NACK is modulated by a complex modulation symbol on the SR PUCCH by BPSK or QPSK.
  • 1-bit ACK / NACK or 2-bit ACK / NACK may be modulated with complex modulation symbols according to the following table.
  • ACK / NACK information is mapped to two constellation points according to BPSK or four constellation points according to QPSK regardless of the ACK / NACK bits. Even if the ACK / NACK bits to be transmitted are greater than two, the ACK / NACK information should be mapped to four constellation points, which are constellations for two bits. That is, one ACK / NACK information must be modulated with one of two demodulation modulation symbols (for BPSK) or one with four demodulation modulation symbols (for QPSK).
  • 8 shows an example of performing communication in a single carrier situation. 8 may correspond to an example of communication in an LTE system.
  • a general FDD wireless communication system performs data transmission and reception through one downlink band and one uplink band corresponding thereto.
  • the BS and the UE transmit and receive data and / or control information scheduled in subframe units. Data is transmitted and received through the data area set in the uplink / downlink subframe, and control information is transmitted and received through the control area set in the uplink / downlink subframe.
  • the uplink / downlink subframe carries signals through various physical channels.
  • FIG. 8 illustrates the FDD scheme for the sake of convenience, the above description may be applied to the TDD scheme by dividing the radio frame of FIG. 3 in the uplink / downlink in the time domain.
  • the LTE-A system collects a plurality of uplink / downlink frequency blocks to use a wider frequency band and uses a carrier aggregation or bandwidth aggregation technique that uses a larger uplink / downlink bandwidth.
  • Each frequency block is transmitted using a Component Carrier (CC).
  • CC Component Carrier
  • a component carrier may be understood as a carrier frequency (or center carrier, center frequency) for a corresponding frequency block. When only one component carrier is used for communication, it corresponds to communication under the single carrier situation of FIG.
  • each of the CCs may be gathered on the uplink and the downlink to support a 100 MHz bandwidth.
  • Each of the CCs may be adjacent or non-adjacent to each other in the frequency domain.
  • FIG. 9 illustrates a case where the bandwidth of the UL CC and the bandwidth of the DL CC are the same and symmetrical. However, the bandwidth of each CC can be determined independently.
  • the bandwidth of the UL CC may be configured as 5 MHz (UL CC0) + 20 MHz (UL CC1) + 20 MHz (UL CC2) + 20 MHz (UL CC3) + 5 MHz (UL CC4).
  • Asymmetrical carrier aggregation in which the number of UL CCs and the number of DL CCs are different is possible.
  • Asymmetric carrier aggregation may occur due to the limitation of available frequency bands or may be artificially established by network configuration. For example, even if the BS manages X CCs, a frequency band that a specific UE can receive may be limited to Y ( ⁇ X) DL CCs.
  • the UE may monitor the DL signals / data transmitted through the Y CCs.
  • the BS may allocate a predetermined number of CCs to the UE by activating some or all of the CCs managed by the BS or deactivating some CCs.
  • the BS may change the number of CCs that are activated / deactivated and may change the number of CCs that are activated / deactivated. Meanwhile, the BS may configure Z DL CCs (where 1 ⁇ Z ⁇ Y ⁇ X) that the UE should monitor / receive preferentially as cell-specific or UE-specificity as a main DL CC.
  • Various parameters for carrier aggregation may be set to cell-specific, UE group-specific or UE-specific.
  • the BS assigns a cell-specific or UE-specifically available CC to the UE, at least one of the assigned CCs once is assigned unless the CC assignment for the UE is globally reconfigured or the UE is handed over It is not deactivated.
  • CCs that are not deactivated are referred to as PCCs (Primary CCs)
  • SCCs Secondary CCs
  • Single carrier communication uses one PCC for communication between the UE and BS, and no SCC is used for communication. Meanwhile, the PCC and the SCC may be divided based on the control information.
  • control information may be set to be transmitted and received only through a specific CC.
  • a specific CC may be referred to as a PCC and the remaining CCs may be referred to as an SCC.
  • PCC In multi-carrier communication, one or more PCCs and zero or one or more secondary SCCs are used for communication.
  • the PCC is called a primary cell, an anchor cell, or a primary carrier, and the PCC is also called a secondary cell or secondary carrier.
  • LTE-A uses the concept of a cell (cell) to manage radio resources.
  • a cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on a primary frequency (or PCC) is called a primary cell (PCell), and a cell operating on a secondary frequency (or SCC) is called a secondary cell (SCell). It may be referred to as.
  • PCell is used by the UE to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as a serving cell. Accordingly, in case of a UE that is in an RRC_CONNECTED state but carrier aggregation is not configured or does not support carrier aggregation, there is only one serving cell configured with a PCell.
  • the network may configure one or more SCells for UEs supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • a BS can send a plurality of data units to a UE on a given CC (s), which can transmit ACK / NACKs for the plurality of data units in one subframe.
  • the UE may be assigned one or a plurality of DL CCs that receive PDSCH for downlink data reception.
  • DL CC (s) for the UE may be configured or reconfigured semi-statically by RRC signaling.
  • DL CC (s) for the UE may be dynamically activated / deactivated by L1 / L2 (MAC) control signaling.
  • the maximum number of ACK / NACK bits to be transmitted by the UE will vary depending on the DL CCs available to the UE (ie, DL CCs configured / reconfigured by RRC or activated by L1 / L2 signaling).
  • FIG. 10 illustrates operations of a base station and a user equipment in a DL CC change interval.
  • the timing at which the BS and the UE start applying the changed DL CC (s) may be different.
  • the timing at which the BS and the UE start applying the changed DL CC (s) may be different.
  • the timing at which the number of DL CCs monitored by the UE is changed from 3 to 2 may be different.
  • a time interval may occur in which the number of DL CCs known by the UE and the number of DL CCs known by the BS are different.
  • the UE knowing that the number of DL CCs is 3 determines whether reception is successful for each of the three DL CCs, and maps ACK / NACK for the three CCs to one modulation symbol on the SR PUCCH and transmits them to the BS. For example, if the PCC is ACK and both SCCs are NACK, the UE transmits a modulation symbol corresponding to (ACK, NACK, NACK) on one SR PUCCH in one subframe.
  • the UE knowing that the number of DL CCs is 2 determines whether the reception success for each of the two DL CCs, and transmits to the BS by mapping the ACK / NACK for the two CCs to one modulation symbol on the SR PUCCH . For example, if the PCC is ACK and one SCC is NACK, the UE transmits a modulation symbol corresponding to (ACK, NACK) on one SR PUCCH in one subframe. Even if the BS changes the number of CCs to 2, the UE may transmit ACK / NACK for three DL CCs.
  • a BS knowing that the number of DL CCs is 2 expects to receive ACK / NACK for two DL CCs. While the BS knows that the number of DL CCs is 2, if the UE transmits ACK / NACK for three DL CCs, the BS references ACK / NACK for two DL CCs for the ACK / NACK received from the UE. Since demodulation is attempted, the received ACK / NACK cannot be correctly demodulated. This is because the mapping relationship between ACK / NACKs for two CCs and modulation symbols on SR PUCCH is different from the mapping relationship between ACK / NACKs for three CCs and modulation symbols on SR PUCCH.
  • the present invention provides embodiments in which the mapping of ACK / NACK to SR PUCCH for a specific CC is the same regardless of the number of CCs.
  • the specific CC may be a PCC, which is a CC that is not deactivated unless the CC of the UE is completely reconfigured or the UE is handed over.
  • mapping of ACK / NACK to SR PUCCH for a specific subframe of a specific CC may be maintained regardless of the number of CCs and the number of downlink subframes. .
  • the specific subframe may be statically selected or dynamically selected according to downlink data scheduling information.
  • FIGS. 11 to 13 illustrate embodiments of mapping ACK / NACK to SR PUCCH according to the present invention.
  • Y represents the number of DL CCs
  • A represents ACK
  • N / D represents NACK.
  • DTX Discontinuous Transmission
  • Embodiments of the present invention apply regardless of whether the UE determines NACK or DTX for a given CC. Accordingly, hereinafter, embodiments of the present invention will be described by collectively naming both NACK and DTX as NACK without distinguishing between NACK and DTX.
  • four points of a square in FIGS. 11 to 13 represent four constellation points of QPSK modulation.
  • one ACK / NACK information is mapped to one of four constellation points (0,0), (0,1), (1,0), and (1,1).
  • one ACK / NACK information is mapped to one of two constellation points on the real axis, e.g., (0,0) and (1,1), or two constellation points on the imaginary axis, e.g. For example, it is mapped to one of (0,1) and (1,0).
  • signal constellation points (0,0), (0,1), (1,0), and (1,1) correspond to complex modulation symbols 1, -j, j, -1, respectively, Embodiments of the invention will be described.
  • FIG. 11 shows an example of mapping ACK / NACK to SR PUCCH according to Embodiment 1 of the present invention.
  • the UE may modulate ACK / NACK information indicating (ACK) into complex modulation symbol 1 and transmit the complex modulation symbol 1 using SR PUCCH resources.
  • the UE may modulate ACK / NACK information indicating (NACK) to complex modulation symbol -1 and transmit the complex modulation symbol -1 using SR PUCCH resources.
  • the UE may transmit information indicating the number of ACKs to the BS using QPSK. Assuming that up to five DL CCs can be allocated to the UE, the UE may generate ACK / NACK information indicating the number of ACKs according to the following table.
  • the UE if the UE does not detect all DL CCs, or if the decoding of DL data transmitted on all DL CCs is unsuccessful, then the UE indicates that the number of ACKs is zero. NACK information may be generated.
  • the UE may generate ACK / NACK information indicating that the number of ACKs is one.
  • the UE receives five CCs and all of the data received on the five CCs are successfully decoded, the UE generates ACK / NACK information having a number of ACKs.
  • the UE may map the six cases to four constellation points using QPSK. Since the number of mappable constellation points 4 is smaller than the number 6 of ACK / NACK information to be mapped, at least two pieces of ACK / NACK information are mapped to the same constellation points as other ACK / NACK information.
  • Embodiment 1 of the present invention regardless of the number of Y, if the number of ACKs is 0, ACK / NACK information is modulated by complex modulation symbol -1. When the number of ACKs is 1, the ACK / NACK information is modulated by the complex modulation symbol 1. Regardless of the number of DL CCs configured by the BS, when the BS receives a complex modulation symbol -1 on the SR PUCCH, the BS can know that the UE has successfully received DL data on 0 DL CCs, and on the SR PUCCH. When the complex modulation symbol 1 is received, it can be seen that DL data has been successfully received on one DL CC.
  • the BS schedules DL data only in a specific DL CC (or a specific subframe of a specific DL CC in the case of TDD) in a section in which the DL CC configuration of the UE is unclear. It can correctly receive the ACK / NACK for.
  • the BS may transmit downlink data only on the PCC during a predetermined time period after signaling reconfiguration of the DL CC or change of the DL CC to the UE.
  • the UE if the UE successfully receives DL data on one CC, the UE modulates ACK / NACK information into complex modulation symbol 1 and transmits it on the SR PUCCH, and transmits DL data on 0 CCs. If successfully received, it modulates ACK / NACK information by complex modulation symbol -1 and transmits on SR PUCCH.
  • the BS receives the complex modulation symbol 1 on the SR PUCCH, the BS determines that the DL data transmitted by using the PCC has been successfully transmitted to the UE, and when receiving the complex modulation symbol -1 on the SR PUCCH, the DL data using the PCC. It can be determined that the transmission of has failed.
  • FIG. 12 shows an example of mapping ACK / NACK to SR PUCCH according to Embodiment 2 of the present invention.
  • the UE when Y is greater than 1, the UE transmits a combination of ACK / NACKs for DL CCs to the BS as ACK / NACK information.
  • the UE according to Embodiment 2 of the present invention uses a combination of a 1-bit ACK for a specific CC and a (Y-1) bit NACK for all other CCs except for the specific CC. It maps to the same constellation point as the ACK is mapped to, for example, (1,1).
  • the CC is ACK for a specific CC and the remaining CCs except the specific CC (the number of remaining CCs).
  • ACK / NACK information indicating a state of NACK is modulated by complex modulation symbol 1.
  • ACK / NACK information indicating a state in which all CCs including the specific CC are NACK is modulated by complex modulation symbol -1.
  • the BS when the BS receives the complex modulation symbol -1 on the SR PUCCH reserved for the UE, the BS can know that the UE has successfully received DL data on 0 DL CCs. When receiving the complex modulation symbol 1 on the SR PUCCH, it can be seen that DL data has been successfully received on one DL CC.
  • the BS can accurately receive ACK / NACK for at least the specific DL CC by scheduling DL data only in a specific DL CC in a section in which the DL CC configuration of the UE is unclear.
  • the BS may transmit downlink data only on the PCC during a predetermined time period after signaling reconfiguration of the DL CC or change of the DL CC to the UE.
  • the UE according to Embodiment 2 of the present invention complex-modulates ACK / NACK information if the UE successfully receives DL data on the PCC and does not successfully receive DL data on the remaining CCs, regardless of the number of Y recognized by the UE.
  • Modulation is performed on symbol 1 and transmitted on SR PUCCH.
  • the UE if the UE does not successfully receive DL data on all CCs regardless of the number of Y, the UE modulates the ACK / NACK information to complex modulation symbol -1 and transmits the information on the SR PUCCH.
  • the BS receives the complex modulation symbol 1 on the SR PUCCH, the BS determines that DL data has been successfully transmitted to the UE on the PCC.
  • the BS transmits the DL data to the UE on the PCC. It can be judged to have failed.
  • the ACK or NACK for each CC may be bundled ACK or NACK. That is, when one CC carries more than one codeword, that is, when spatial multiplexing is applied to the CC, the ACK for one CC may indicate that all of the plurality of codewords transmitted using the CC are ACK, NACK May indicate that at least one of the plurality of codewords transmitted using the CC is NACK.
  • FIG. 13 shows an example of mapping ACK / NACK to SR PUCCH according to Embodiment 3 of the present invention.
  • the UE bundles ACK / NACK for a specific CC, for example, the remaining CCs except the PCC by AND logic operation, thereby releasing 1 for the remaining CCs. It can generate a bit ACK / NACK.
  • the UE transmits a combination of 1 bit ACK / NACK for a specific CC and bundled 1 bit ACK / NACK for other CC (s) other than the specific CC to the BS as ACK / NACK information.
  • the UE complex when Y is greater than 1, the UE complex modulates a combination of 1 bit ACK / NACK indicating that the PCC is ACK and 1 bit ACK / NACK indicating bundled NACK for all remaining SCCs. Modulation is performed with symbol 1, and a combination of 1-bit ACK / NACK indicating that PCC is NACK and 1-bit ACK / NACK indicating that all remaining SCCs are NACK can be modulated with complex modulation symbol -1.
  • the bundled NACK indicates that at least one of the CCs participating in the bundling is NACK.
  • the UE may configure a 2-bit ACK / NACK composed of 1 bit of Most Significant Bit (MSB) corresponding to PCC and 1 bit of Least Significant Bit (LSB) corresponding to SCC bundled.
  • the CC is ACK for a specific CC and the remaining CCs except the specific CC (the number of remaining CCs).
  • ACK / NACK information indicating a state in which at least one of N) is NACK is modulated by complex modulation symbol 1.
  • ACK / NACK information indicating a state in which a specific CC is NACK and at least one of the remaining CCs (including when the number of remaining CCs is 0) is NACK is modulated by complex modulation symbol -1.
  • the BS when the BS receives the complex modulation symbol -1 on the SR PUCCH reserved for the UE, the BS can know that the UE has successfully received DL data on 0 DL CCs. When receiving the complex modulation symbol 1 on the SR PUCCH, it can be seen that DL data has been successfully received on one DL CC.
  • the BS may correctly receive at least ACK / NACK for the specific DL CC by scheduling DL data only to a specific DL CC in a section in which the DL CC configuration of the UE is unclear.
  • the BS may transmit downlink data only on the PCC during a predetermined time period after signaling reconfiguration of the DL CC or change of the DL CC to the UE.
  • the UE according to Embodiment 2 of the present invention successfully receives DL data on the PCC and fails to receive DL data on at least one of the remaining CCs, ACK / NACK information.
  • the UE modulates ACK / NACK information to complex modulation symbol -1. Transmit on SR PUCCH.
  • the BS receives the complex modulation symbol 1 on the SR PUCCH, the BS determines that DL data has been successfully transmitted to the UE on the PCC.
  • the BS transmits the DL data to the UE on the PCC. It can be judged to have failed.
  • the ACK or NACK for each CC may be bundled ACK or NACK. That is, when one CC carries more than one codeword, that is, when spatial multiplexing is applied to the CC, the ACK for one CC may indicate that all of the plurality of codewords transmitted using the CC are ACK, NACK May indicate that at least one of the plurality of codewords transmitted using the CC is NACK.
  • the ACK / NACK for a specific CC is ACK
  • all of the ACK / NACK for other CC (s) is NACK (in case of Embodiment 2) or bundled. If NACK (in case of Embodiment 3), regardless of the number of CCs, the ACK / NACK information for the specific CC and the other CC (s) are all the same demodulation modulation symbol (first complex modulation symbol), for example , Is modulated to one.
  • ACK / NACK for all CC (s) including the specific CC are all NACK (in the case of Embodiment 2) or bundled NACK (in the case of Embodiment 3), all are the same regardless of the number of CCs.
  • Complex modulation symbol for example, -1.
  • the processor 400a of the UE configured according to an embodiment of the present invention may be allocated one or more CCs for the UE by receiving an upper layer signaling message from the BS.
  • the UE processor 400a may receive DL data through the assigned CC from the BS.
  • the UE processor 400a may generate ACK / NACK information on the CC (s) to be configured for the UE by determining whether the DL data through the CC is successfully received for each assigned CC.
  • the UE processor 400a configured according to the first embodiment of the present invention may generate information indicating the number of ACKs as the ACK / NACK information.
  • the UE processor 400a configured according to the second embodiment of the present invention may generate Y-bit ACK / NACK information that is a combination of ACK / NACK for each of the Y CC (s) configured for the UE.
  • the UE processor 400a configured according to the third embodiment of the present invention may generate 2-bit ACK / NACK information including 1-bit ACK / NACK for a specific CC and 1-bit ACK / NACK bundled for the remaining CCs. .
  • the UE processor 400a transmits the ACK / NACK information to the first complex modulation symbol to indicate ACK / NACK information indicating that the number of CCs that are ACK is one.
  • the UE transmitter 100a is controlled to modulate ACK / NACK information indicating that the number of CCs that are ACK is 0 to the second complex modulation symbol.
  • the UE processor 400a according to the second embodiment of the present invention modulates the ACK / NACK information of the Y bits indicating that a specific CC is ACK and all remaining CCs are NACK to the first complex modulation symbol.
  • the UE transmitter 100a is controlled to control the UE transmitter 100a, and the UE transmitter 100a is controlled to modulate the ACK / NACK information of Y bits indicating that all CCs including the specific CC are NACK to the second complex modulation symbol.
  • the UE processor 400a may provide 2-bit ACK / NACK information including 1 bit indicating that a specific CC is ACK and 1 bit indicating that at least one of the remaining CCs is NACK.
  • the UE transmitter 100a is controlled to modulate the first complex modulation symbol, and the 2-bit ACK / NACK information includes 1 bit indicating that the specific CC is NACK and 1 bit indicating that at least one of the remaining CCs is NACK.
  • the UE transmitter 100a is controlled to modulate with two complex modulation symbols.
  • the UE processor 400a maps the remaining ACK / NACK states to one of four constellation points according to a predefined ACK / NACK state-to-complex modulation symbol mapping relationship. According to the ACK / NACK state-to-complex modulation symbol mapping relationship defined according to any one of Embodiments 1 to 3 of the present invention, the UE processor 400a transmits ACK / NACK information to constellation points on signal constellations.
  • the modulation mapper 302 may be controlled to map to.
  • the UE processor 400a controls the UE transmitter 100a to transmit ACK / NACK information modulated by complex modulation symbols according to any one of Embodiments 3 through 3 using SR PUCCH resources. .
  • the resource element mapper 305 of the UE transmitter 100a may map the complex modulation symbol of ACK / NACK information to the SR PUCCH resource under the control of the UE processor 400a.
  • the UE transmitter 100a may transmit a complex modulation symbol of the ACK / NACK information on the SR PUCCH.
  • the processor 400b of the BS determines that the UE has made an uplink scheduling request. Further, when the BS receiver 300b receives the first complex modulation symbol on the SR PUCCH, the BS processor 400b indicates that the DL data transmitted to the UE on at least a specific CC has been successfully received by the UE. You can judge. When the BS receiver 300b receives the second complex modulation symbol on the SR PUCCH, the BS processor 400b may determine that DL data transmitted on at least the specific CC has not been successfully received by the UE. have.
  • the BS processor 400b may control the BS transmitter 100b to generate an RRC control message or an L1 / L2 control message and to transmit the message to change the CC available to the UE.
  • the BS processor 400b may be configured to prevent DL data transmission error and / or UL ACK / NACK transmission error due to a mismatch between a time point when the BS changes the CC configuration and a time point when the UE changes the CC.
  • DL data may be scheduled only for the specific CC during a predetermined time interval.
  • the BS processor 400b may schedule DL data only in a specific subframe of the specific CC.
  • the BS transmitter transmits DL CCs only through the specific CC during the predetermined time interval.
  • the UE processor 400a may transmit the first complex modulation symbol when the specific CC is ACK and all remaining CCs are NACK, regardless of the number of CCs configured for the UE. If the CC is NACK and all other CCs are NACK, the UE transmitter 100a is controlled to transmit the second complex modulation symbol, so that the UE transmits the correct ACK / NACK to the BS at least for the specific CC.
  • Example 1 to Example 3 of the present invention described above the present invention has been described by taking the case where Y is 1, 2, or 3, but the present invention can be applied to other number of DL CCs.
  • Embodiment 1 to Embodiment 3 may be applied.
  • ACK / NACK for at least a specific CC can be correctly transmitted from the UE to the BS.
  • transmission error remains for ACK / NACK transmission for the remaining CCs, but at least the specific CC enables accurate ACK / NACK transmission.
  • An ACK / NACK transmission error for a CC other than a specific CC can be prevented by transmitting DL data only through the specific CC during a predetermined time interval after the BS reconfigures or changes the CC.
  • Embodiments of the present invention may be used in a base station or user equipment or other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

하나 이상의 반송파 상에서 전송된 하향링크 데이터에 대한 ACK/NACK 정보를 SR과 함께 일 PUCCH 상에서 전송해야 하는 경우, 본 발명의 사용자기기는, 특정 반송파가 ACK이고 나머지 모든 반송파가 NACK이거나 상기 특정 반송파가 ACK이고 나머지 모든 반송파에 대한 번들된 ACK/NACK이 NACK이면, 반송파의 개수와 관계없이 상기 ACK/NACK 정보를 항상 제1복소변조심볼로 변조한다. 또한, 상기 사용자기기는, 상기 특정 반송파가 NACK이고, 나머지 모든 반송파가 NACK이거나 상기 특정 반송파가 ACK이고 나머지 모든 반송파에 대한 번들된 ACK/NACK이 NACK이면, 반송파의 개수와 관계없이 상기 ACK/NACK 정보를 항상 제2복소변조심볼로 변조한다. 본 발명에 의하면, 상기 사용자기기를 위해 구성된 반송파의 개수에 관계없이, 적어도 상기 특정 반송파에 대한 ACK/NACK 정보는 정확하게 기지국에 전송될 수 있다.

Description

상향링크 제어정보 전송방법 및 사용자기기
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 상향링크 제어정보를 전송하는 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명은 무선 통신 시스템에서 상향링크 제어정보를 전송하는 방법 및 장치를 제공하기 위한 것이다. 구체적으로, 본 발명은 ACK/NACK 정보고 다른 상향링크 제어정보와 함께 서브프레임에서 전송되어야 하는 경우, ACK/NACK을 전송하는 방법 및 장치를 제공한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하는 수신단계; 및 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하는 생성단계; 상기 ACK/NACK 정보를 변조하여 복소변조심볼을 생성하는 변조단계; 상기 복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송단계를 포함하되, 상기 변조단계는, 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파가 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하고, 상기 복수의 반송파가 모두 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하는, 상향링크 제어정보 전송방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하는 수신단계; 및 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하는 생성단계; 상기 ACK/NACK 정보를 변조하여 복소변조심볼을 생성하는 변조단계; 상기 복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송단계를 포함하되, 상기 변조단계는, 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파에 대하여 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하고, 상기 특정 반송파가 NACK이고 상기 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하는, 상향링크 제어정보 전송방법이 제공된다.
본 발명의 또 다른 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하도록 구성된 수신기; 및 상기 기지국에 상향링크 신호를 전송하도록 구성된 송신기; 상기 수신기 및 상기 송신기를 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는, 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하도록 구성되고; 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파가 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하도록 상기 송신기를 제어하고, 상기 복수의 반송파가 모두 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하도록 상기 송신기를 제어하도록 구성되고; 상기 제1복소변조심볼 혹은 상기 제2복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송하도록 상기 송신기를 제어하도록 구성된, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하도록 구성된 수신기; 및 상기 기지국에 상향링크 신호를 전송하도록 구성된 송신기; 상기 수신기 및 상기 송신기를 제어하도록 구성된 프로세서를 포함하되, 상기 프로세서는, 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하도록 구성되고; 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파에 대하여 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하도록 상기 송신기를 제어하고, 상기 특정 반송파가 NACK이고 상기 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하도록 상기 송신기를 제어하도록 구성되고; 상기 제1복소변조심볼 혹은 상기 제2복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송하도록 상기 송신기를 제어하도록 구성된, 사용자기기가 제공된다.
본 발명의 각 양상에 있어서, 상기 특정 반송파는 주 반송파(primary carrier)일 수 있다.
본 발명의 각 양상에 있어서, 상기 제1복소변조심볼은 단일 반송파 상에서 수신된 하향링크 데이터에 대한 ACK 정보의 복소변조심볼과 동일하고, 상기 제2복소변조심볼은 상기 단일 반송파 상에서 수신된 하향링크 데이터에 대한 NACK 정보의 복소변조심볼과 동일하다.
본 발명의 각 양상에 있어서, 상기 제1복소변조심볼은 변조심볼 1이고, 상기 제2복소변조심볼은 변조심볼 -1일 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 의하면, 다중 반송파 시스템에서 ACK/NACK 신호가 효율적으로 전송될 수 있다는 장점이 있다.
또한, 본 발명의 실시예들에 의하면, 반송파의 개수에 관계없이, 특정 반송파에 대한 ACK/NACK이 사용자기기로부터 기지국에 정확하게 전송될 수 있다는 장점이 있다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국(BS)의 구성요소를 나타내는 블록도이다.
도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다.
도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 도시한 것이다.
도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다.
도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6은 무선 통신 시스템에서 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 7은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다.
도 8는 단일 반송파 상황에서 통신을 수행하는 예를 나타낸다.
도 9는 다중 반송파 상황 하에서 통신을 수행하는 예를 나타낸다.
도 10은 DL CC 변경 구간에서의 기지국 및 사용자기기의 동작을 예시한다.
도 11은 본 발명의 실시예1에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다.
도 12는 본 발명의 실시예2에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다.
도 13은 본 발명의 실시예3에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA (Universal Terrestrial Radio Access) 또는 CDMA2000과 같은 무선 기술(technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communication), GPRS(General Packet Radio Service), EDGE(Enhanced Data Rates for GSM Evolution) 등과 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE802-20, E-UTRA(evolved-UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunication System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 이용하는 E-UMTS의 일부이다. 3GPP LTE는 하향링크에서는 OFDMA를 채택하고, 상향링크에서는 SC-FDMA를 채택하고 있다. LTE-A(LTE-advanced)는 3GPP LTE의 진화된 형태이다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE/LTE-A에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/LTE-A 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/LTE-A에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, 기지국과 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. 사용자기기는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 사용자기기 및/또는 다른 기지국과 통신하는 고정된 지점(fixed station)을 말하며, 사용자기기 및 타 기지국과 통신하여 각종 데이터 및 제어정보를 교환한다. 기지국은 eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
본 발명에서, 특정 신호가 프레임/서브프레임/슬롯/반송파/부반송파에 할당된다는 것은, 상기 특정 신호가 해당 프레임/서브프레임/슬롯/심볼의 기간/타이밍 동안 해당 반송파/부반송파를 통해 전송되는 것을 의미한다.
본 발명에서 랭크 혹은 전송랭크라 함은 일 OFDM 심볼 혹은 일 데이터 RE 상에 다중화된/할당된 레이어의 개수를 의미한다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다.
따라서, 본 발명에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 기지국이 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
한편, 본 발명에서, ACK/NACK 정보를 특정 성상 포인트에 맵핑한다는 것은 상기 ACK/NACK 정보를 특정 복소변조심볼로 맵핑한다는 것과 동일한 의미로 사용된다. 또한, ACK/NACK 정보를 특정 복소변조심볼로 맵핑한다는 것은 상기 ACK/NACK 정보를 특정 복소변조심볼로 변조한다는 것과 동일한 의미로 사용된다.
도 1은 본 발명을 수행하는 사용자기기(UE) 및 기지국(BS)의 구성요소를 나타내는 블록도이다.
UE는 상향링크에서는 송신장치로 동작하고 하향링크에서는 수신장치로 동작한다. 이와 반대로, BS는 상향링크에서는 수신장치로 동작하고, 하향링크에서는 송신장치로 동작할 수 있다.
UE 및 BS는 정보 및/또는 데이터, 신호, 메시지 등을 수신할 수 있는 안테나 (500a, 500b)와, 안테나를 제어하여 메시지를 전송하는 송신기(Transmitter; 100a, 100b), 안테나를 제어하여 메시지를 수신하는 수신기(Receiver; 300a, 300b), 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(200a, 200b)를 포함한다. 또한, UE 및 BS는 UE 또는 BS에 포함된 송신기 및 수신기, 메모리 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 본 발명을 수행하도록 구성된 프로세서(400a, 400b)를 각각 포함한다. 상기 UE 내 송신기(100a), 수신기(300a), 메모리(200a), 프로세서(400a)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 마찬가지로, 상기 BS 내 송신기(100b), 수신기(300b), 메모리(200b), 프로세서(400b)는 각각 별개의 칩(chip)에 의해 독립된 구성요소로서 구현될 수도 있고, 둘 이상이 하나의 칩(chip)에 의해 구현될 수도 있다. 송신기와 수신기가 통합되어 UE 또는 BS 내에서 한 개의 송수신기(transceiver)로 구현될 수도 있다.
안테나(500a, 500b)는 송신기(100a, 100b)에서 생성된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 수신기(300a, 300b)로 전달하는 기능을 수행한다. 안테나(500a, 500b)는 안테나 포트로 불리기도 한다. 각 안테나 포트는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나 포트로부터 전송된 신호는 UE 내 수신기(300a)에 의해 더 이상 분해될 수 없다. 해당 안테나 포트에 대응하여 전송된 참조신호는 UE의 관점에서 본 안테나 포트를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나 포트를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 UE로 하여금 상기 안테나 포트에 대한 채널 추정을 가능하게 한다. 즉, 안테나 포트는 상기 안테나 포트 상의 심볼을 전달하는 채널이 상기 동일 안테나 포트 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 송수신기의 경우에는 2개 이상의 안테나와 연결될 수 있다.
프로세서(400a, 400b)는 통상적으로 UE 또는 BS 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(400a, 400b)는 본 발명을 수행하기 위한 각종 제어 기능, 서비스 특성 및 전파 환경에 따른 MAC(Medium Access Control) 프레임 가변 제어 기능, 유휴모드 동작을 제어하기 위한 전력절약모드 기능, 핸드오버(Handover) 기능, 인증 및 암호화 기능 등을 수행할 수 있다. 프로세서(400a, 400b)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 한편, 프로세서(400a, 400b)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(400a, 400b) 내에 구비되거나 메모리(200a, 200b)에 저장되어 프로세서(400a, 400b)에 의해 구동될 수 있다.
송신기(100a, 100b)는 프로세서(400a, 400b) 또는 상기 프로세서와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 안테나(500a, 500b)에 전달한다. 예를 들어, 송신기(100a, 100b)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 상기 K개의 레이어는 송신기 내 송신처리기를 거쳐 송신 안테나(500a, 500b)를 통해 전송된다. UE 및 BS의 송신기(100a, 100b) 및 수신기(300a, 300b)는 송신신호 및 수신신호를 처리하는 과정에 따라 다르게 구성될 수 있다.
메모리(200a, 200b)는 프로세서(400a, 400b)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입출력되는 정보를 임시 저장할 수 있다. 메모리(200a, 200b)가 버퍼로서 활용될 수 있다. 메모리는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type) 또는 카드 타입의 메모리(예를 들어, SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 등을 이용하여 구현될 수 있다.
도 2는 사용자기기 및 기지국 내 송신기 구조의 일 예를 도시한 것이다. 도 2를 참조하여 송신기(100a, 100b)의 동작을 보다 구체적으로 설명하면 다음과 같다.
도 2를 참조하면, UE 또는 BS 내 송신기(100a, 100b)는 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDM 신호생성기(306)를 포함할 수 있다.
상기 송신기(100a, 100b)는 하나 이상의 코드워드(codeword)를 송신할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 상기 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터열로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록과 등가이다. MAC 계층이 제공하는 데이터 블록은 전송 블록으로 지칭되기도 한다.
스크램블된 비트는 상기 변조맵퍼(302)에 의해 복소변조심볼(complex-valued modulation symbols)로 변조된다. 상기 변조맵퍼는 상기 스크램블된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소변조심볼을 생성할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다.
상기 복소변조심볼은 상기 레이어맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑된다.
각 레이어 상의 복소변조심볼은 안테나 포트상에서의 전송을 위해 프리코더(304)에 의해 프리코딩된다. 구체적으로, 프리코더(304)는 상기 복소변조심볼을 다중 송신 안테나(500-1,..., 500-Nt)에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원요소맵퍼(305)로 분배한다. 즉, 전송 레이어의 안테나 포트로의 맵핑은 프리코더(304)에 의해 수행된다. 프리코더(304)는 레이어맵퍼(303)의 출력 x를 Nt×Mt의 프리코딩 행렬 W와 곱해 Nt×MF의 행렬 z로 출력할 수 있다.
상기 자원요소맵퍼(305)는 각 안테나 포트에 대한 복소변조심볼을 적절한 자원요소(resource elements)에 맵핑/할당한다. 상기 자원요소맵퍼(305)는 상기 각 안테나 포트에 대한 복소변조심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다.
OFDM/SC-FDM 신호생성기(306)는 상기 각 안테나 포트에 대한 복소변조심볼, 즉, 안테나 특정 심볼을 OFDM 또는 SC-FDM 방식으로 변조하여, 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호 또는 SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 신호를 생성한다. OFDM/SC-FDM 신호생성기(306)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)을 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 송신 안테나(500-1,...,500-Nt)를 통해 수신장치로 송신된다. OFDM/SC-FDM 신호생성기(306)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
한편, 상기 송신기(100a, 100b)가 코드워드의 송신에 SC-FDM 접속(SC-FDMA) 방식을 채택하는 경우, 상기 송신기(100a, 100b)는 고속푸리에변환기(fast Fourier transformer)를 포함할 수 있다. 상기 고속 푸리에변환기는 상기 안테나 특정 심볼에 FFT(Fast Fourier Transform)를 수행하여 고속푸리에변환된 심볼을 상기 자원요소맵퍼(305)에 출력한다.
수신기(300a, 300b)의 신호 처리 과정은 송신기의 신호 처리 과정의 역으로 구성된다. 구체적으로, 수신기(300a, 300b)는 외부에서 안테나(500a, 500b)를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여 해당 프로세서(400a, 400b)로 전달한다. 상기 수신기(300a, 300b)에 연결된 안테나(500a, 500b)는 Nr개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 송신기(100a, 100b)가 본래 전송하고자 했던 데이터열로 복원된다. 수신기(300a, 300b)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 송신장치가 전송하고자 했던 코드워드로 복원된다.
한편, 상기 수신기(300a, 300b)가 SC-FDMA 방식에 의해 전송된 신호를 수신하는 경우, 상기 수신기는(300a, 300b)는 IFFT 모듈을 추가로 포함한다. 상기 IFFT 모듈은 자원요소디맵퍼에 의해 복원된 안테나 특정 심볼에 IFFT를 수행하여 역고속푸리에변환된 심볼을 다중화기에 출력한다.
참고로, 도 1 및 도 2에서 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 송신기(100a, 100b)에 포함되는 것으로 설명하였으나, 송신장치의 프로세서(400a, 400b)가 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)를 포함하도록 구성되는 것도 가능하다. 마찬가지로, 도 1 및 도 2에서는 신호복원기 및 다중화기, 채널복조기가 수신기(300a, 300b)에 포함되는 것으로 설명하였으나, 수신장치의 프로세서(400a, 400b)가 상기 신호복원기 및 다중화기, 채널복조기를 포함하도록 구성되는 것도 가능하다. 이하에서는 설명의 편의를 위하여, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 이들의 동작을 제어하는 프로세서(400a, 400b)와 분리된 송신기(100a, 100b)에 포함되고, 신호복원기 및 다중화기, 채널복조기가 이들의 동작을 제어하는 프로세서(400a, 400b)와는 분리된 수신기(300a, 300b)에 포함된 것으로 설명한다. 그러나, 스크램블러(301) 및 변조맵퍼(302), 레이어맵퍼(303), 프리코더(304), 자원요소맵퍼(305), OFDM/SC-FDMA 신호생성기(306)가 프로세서(400a, 400b)에 포함된 경우 및 신호복원기 및 다중화기, 채널복조기가 프로세서(400a, 400b)에 포함된 경우에도 본 발명의 실시예들이 동일하게 적용될 수 있다.
도 3은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 도시한 것이다. 특히, 도 3은 3GPP LTE/LTE-A 시스템의 무선 프레임의 구조를 예시한다. 도 3의 무선 프레임 구조는 FDD(Frequency Division Duplex) 모드와, 반(half) FDD(H-FDD) 모드와, TDD(Time Division Duplex) 모드에 적용될 수 있다.
도 3을 참조하면, 3GPP LTE/LTE-A에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다.여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048x15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링된다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다.
도 4는 무선 통신 시스템에서 DL/UL 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 4는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
도 4를 참조하면, 슬롯은 시간 도메인에서 복수의 OFDM 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 자원블록은 주파수 도메인에서 다수의 부반송파를 포함한다. OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정상(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 4에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다.
도 4를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RBNRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 혹은 SC-FDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 상향링크 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 하향링크 전송 대역폭과 상향링크 전송 대역폭에 각각 의존한다. 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RBNRB sc개의 부반송파를 포함한다. 일 반송파에 대한 부반송파의 개수는 FFT(Fast Fourier Transform) 크기에 따라 결정된다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인채 남겨지는 부반송파로서, OFDM 신호 생성과정에서 반송파 주파수(carrier freqeuncy, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다. NDL symb은 하향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타내며, NUL symb은 상향링크 슬롯 내 OFDM 혹은 SC-FDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
다시 말해, 물리자원블록(physical resource block, PRB)는 시간 도메인에서 NDL/UL symb개의 연속하는 OFDM 심볼 혹은 SC-FDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개의 연속하는 부반송파에 의해 정의된다. 따라서, 하나의 PRB는 NDL/UL symb×NRB sc개의 자원요소로 구성된다.
자원격자 내 각 자원요소는 일 슬롯 내 인덱스쌍 (k,1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RBNRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
도 5는 무선 통신 시스템에서 하향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5를 참조하면, 각 서브프레임은 제어영역(control region)과 데이터영역(data region)으로 구분될 수 있다. 제어영역은 첫번째 OFDM 심볼로부터 시작하여 하나 이상의 OFDM 심볼을 포함한다. 서브프레임 내 제어영역으로 사용되는 OFDM 심볼의 개수는 서브프레임별로 독립적으로 설정될 수 있으며, 상기 OFDM 심볼의 개수는 PCFICH(Physical Control Format Indicator CHannel)를 통해 전송된다. 기지국은 제어영역을 통해 각종 제어정보를 사용자기기(들)에 전송할 수 있다. 제어정보의 전송을 위하여, 상기 제어영역에는 PDCCH(Physical Downlink Control CHannel), PCFICH, PHICH(Physical Hybrid automatic retransmit request Indicator CHannel) 등이 할당될 수 있다.
기지국은 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 PDCCH 상에서 각 사용자기기 또는 사용자기기 그룹에게 전송된다.
기지국은 데이터영역을 통해 사용자기기 혹은 사용자기기그룹를 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 사용자기기는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. PDSCH의 데이터가 어떤 사용자기기 혹은 사용자기기 그룹에게 전송되는지, 상기 사용자기기 혹은 사용자기기그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 해당 셀의 UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 UE는 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.
복수의 PDCCH가 제어영역에서 전송될 수 있다. UE는 상기 복수의 PDCCH를 모니터하여, 자신의 PDCCH를 검출할 수 있다. 일 PDCCH가 나르는 DCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
DCI 포맷은 각 UE별로 독립적으로 적용되며, 일 서브프레임 안에 여러 UE의 PDCCH가 다중화될 수 있다. 각 UE의 PDCCH는 독립적으로 채널코딩되어 CRC(cyclic redundancy check)가 부가된다. CRC는 각 UE가 자신의 PDCCH를 수신할 수 있도록, 각 UE의 고유 식별자로 마스크(mask)된다. 그러나, 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 수신할 때까지 블라인드 검출(블라인드 복호(decoding)이라고도 함)을 수행한다.
정보와은 무선 통신 시스템에서 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)을 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, 상기 데이터영역에 할당될 수 있다. UE가 상향링크 전송에 SC-FDMA 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, PUCCH와 PUSCH를 동시에 전송할 수 없다.
일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 예를 들어, 다음과 같은 PUCCH 포맷이 정의될 수 있다.
표 1
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A SR (Scheduling Request)
1a BPSK 1 ACK/NACK One codeword
1b QPSK 2 ACK/NACK Two codeword
2 QPSK 20 CQI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI + ACK/NACK Normal CP only
3 QPSK 48 SR + ACK/NACK
상향링크 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, 상향링크 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, OFDM/SC-FDM 신호 생성기(306)에 의한 주파수 상향 변환 과정에서 반송파 주파수 f0로 맵핑된다.
일 UE에 대한 PUCCH는 일 서브프레임 내 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다. 주파수 호핑 여부와 관계없이, 일 UE에 대한 PUCCH는 일 서브프레임 내 RB 쌍에 할당되므로, 동일 PUCCH가 일 UL 서브프레임 내 각 슬롯에서 한 개의 RB를 통해 한 번씩, 두 번 전송되게 된다.
이하에서는, 일 서브프레임 내 각 PUCCH 전송에 이용되는 RB쌍을 PUCCH 영역(PUCCH region) 또는 PUCCH 자원(PUCCH resource)이라고 칭한다. 또한, 이하에서는 설명의 편의를 위하여, PUCCH 중 ACK/NACK을 나르는 PUCCH를 ACK/NACK PUCCH라고 칭하고, CQI/PMI/RI를 나르는 PUCCH를 CSI(Channel State Information) PUCCH라 칭하며, SR을 나르는 PUCCH를 SR PUCCH라고 칭한다.
UE는 상위(higher) 레이어 시그널링 혹은 동적(dynamic) 제어 시그널링 혹은 암묵적(implicit) 방식에 의해 BS로부터 UCI의 전송을 위한 PUCCH 자원을 할당받는다.
ACK/NACK(ACKnowlegement/negative ACK), CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Information), SR(Scheduling Request) 등의 상항링크 제어정보(UCI)가 상기 상향링크 서브프레임의 제어영역 상에서 전송될 수 있다.
무선 통신 시스템에서, BS와 UE는 데이터를 상호 전송/수신한다. BS/UE가 데이터를 UE/BS에 전송하면, 상기 UE/BS는 상기 수신한 데이터를 복호(decode)하고 상기 데이터 복호가 성공적이면 상기 BS/UE에 ACK을 전송하고, 상기 데이터 복호가 성공적이지 않으면 상기 BS/UE에 NACK을 전송한다. 기본적으로, 3GPP LTE 시스템에서, UE는 BS로부터 데이터 유닛(예를 들어, PDSCH)를 수신하고, 상기 데이터 유닛에 대한 스케줄링 정보를 나르는 PDCCH 자원에 의해 결정되는 PUCCH 자원을 통해 각 데이터 유닛에 대한 ACK/NACK을 상기 BS에 전송한다.
도 7은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다.
LTE 시스템에서 ACK/NACK을 위한 PUCCH 자원은 각 UE에 미리 할당되어 있지 않고, 복수의 PUCCH 자원을 셀 내의 복수의 UE들이 매 시점마다 나눠서 사용한다. 구체적으로, UE가 ACK/NACK을 전송하는 데 사용하는 PUCCH 자원은 해당 하향링크 데이터를 나르는 PDSCH에 대한 스케줄링 정보를 나르는 PDCCH를 기반으로 동적으로 결정된다. 각각의 DL 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, UE에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. UE는 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE(예를 들어, 첫 번째 CCE)에 링크된 PUCCH 자원을 통해 ACK/NACK을 전송한다.
도 7을 참조하면, 각각의 PUCCH 자원 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 7에서와 같이, 4~6번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 스케줄링 정보가 UE에 전송된다고 가정할 경우, 상기 UE는 상기 PDCCH를 구성하는 첫번째 CCE인 4번 CCE에 대응하는 4번 PUCCH를 통해 ACK/NACK을 BS에 전송한다. 도 7은 DL에 최대 M'개의 CCE가 존재하고, UL에 최대 M개의 PUCCH가 존재하는 경우를 예시한다. M'=M일 수도 있으나, M'값과 M값이 다르게 설계되고, CCE와 PUCCH 자원의 맵핑이 겹치게 하는 것도 가능하다.
구체적으로, LTE 시스템에서 PUCCH 자원 인덱스는 다음과 같이 정해진다.
수학식 1
Figure PCTKR2011001892-appb-M000001
여기서, n(1) PUCCH는 ACK/NACK 전송을 위한 PUCCH 자원 인덱스를 나타내고, N(1) PUCCH는 상위 레이어로부터 전달받는 시그널링 값을 나타내며, nCCE는 PDCCH 전송에 사용된 CCE 인덱스 중에서 가장 작은 값을 나타낸다.
한편, 순환시간천이(cyclic time shift) 및 직교확산코드(orthogonal spreading codes)를 이용한 코드분할다중화(Code Division Multiplexing)을 기반으로, 복수의 UE로부터의 ACK/NACK들이 일 PUCCH 자원에 다중화될 수 있다. 특히, SC-FDM 심볼 내에서의 순환시간천이와, 직교환산코드를 이용한 SC-FDM 심볼 시간 도메인 확산에 의해, UE들 사이에서 ACK/NACK 신호들의 직교성(orthogonality)이 확보된다. 소정 SC-FDM 심볼에서, 파형(waveform)(예를 들어정보와Chu(ZC) 시퀀스)의 다른 순환시간천이들이 필요한 ACK/NACK 정보를 나르는 UE-특정 QAM 심볼로 변조된다. 이때, 각 파형이 상향링크에서 낮은 PAPR(Peak-to-Average Power Ratio)를 보장하기 위해 단일 반송파 속성(property)을 갖는다. 작은 개수의 ACK/NACK 비트(예를 들어, 1 또는 2비트)를 갖는 각 ACK/NACK을 위한 SC-FDM 심볼은 일 직교확산코드의 요소들에 의해 변조된다. 따라서, 복수 UE들의 ACK/NACK 전송을 위한 3GPP LTE PUCCH 구조는 주파수-도메인 코드 다중화 (시퀀스의 다른 순환시간천이) 및/또는 시간-도메인 코드 다중화(다른 직교 블락 확산 코드)를 이용한다. 각 PUCCH 자원 (혹은 각 PUCCH 자원 인덱스)이 순환시간천이 및 직교환산코드번호(orthogonal spreading code number)의 조합에 대해 맵핑된다.
한편, BS는 상위 레이어 시그널링(예를 들어, RRC(Radio Resource Control) 시그널링)을 통해, UE를 위해 SR용으로 소정 서브프레임들에 PUCCH 자원을 유보한다. 예를 들어, 상위 레이어 시그널링에 의해, 특정 UE를 위해 SR 용으로 소정 개수의 서브프레임마다 PUCCH 자원이 유보될 수 있다. 상기 UE는 상기 상위 레이어 시그널링을 바탕으로, 상기 UE에 SR용으로 유보된 PUCCH 자원, 즉, SR PUCCH 자원을 결정할 수 있다. 상기 UE가 상기 BS에 상향링크 스케줄링을 요청하고자 하는 경우, 상기 UE는 상기 SR PUCCH 자원을 이용하여, SR을 나타내는 변조심볼 1을 전송한다. 상기 UE가 상향링크 스케줄링 요청을 하지 않는 동안에는, 상기 UE는 상기 SR PUCCH를 통해 정보를 전송하지 않는다. 기본적으로, BS는 SR PUCCH 자원이 유보된 서브프레임에서 상기 SR PUCCH 자원을 통해 수신한 신호가 있으면, 상기 UE에 의한 상향링크 스케줄링 요청이 있는 것으로 판단한다. 반면, SR PUCCH 자원이 유보된 서브프레임에서 상기 SR PUCCH 자원을 통해 수신한 신호가 없으면, 상기 UE에 의한 상향링크 스케줄링 요청이 없는 것으로 판단한다.
PDSCH 자원에 의해 동적으로 결정된 ACK/NACK PUCCH 자원이 SR PUCCH 자원과 동일한 서브프레임에 위치하는 경우가 발생할 수 있다. 일 서브프레임에서 다수의 UE가 동일한 PUCCH 자원을 이용하여 상향링크 제어정보를 전송하는 것이 가능하다고 하더라도, 일 UE의 입장에서는 일 서브프레임에서 오직 1개의 PUCCH 자원을 통해 상향링크 제어정보를 전송할 수 있다. 다시 말해, 현재 3GPP LTE 시스템에서는 일 UE가 상향링크 제어정보의 전송을 위해 다수의 PUCCH 자원을 사용하는 것이 허용되지 않는다. 따라서, 일 서브프레임에서 ACK/NACK 정보와정보와제어정보(예를 들어, CQI/PMI/RI, SR 등)가 함께 전송되어야 하는 경우, UE는 ACK/NACK 정보를 다른 제어정보에 피기백(piggyback)하여, 상기 다른 제어정보의 전송을 위해 할당된 PUCCH 상에서 전송한다. 즉, UE가 ACK/NACK 정보를 전송해야 하는 서브프레임에, CSI PUCCH 자원 혹은 SR PUCCH 자원이 할당되어 있으면, 동적으로 결정된 ACK/NACK PUCCH 자원이 아니라, 상기 CSI PUCCH 자원 혹은 상기 SR PUCCH 자원을 이용하여 상기 ACK/NACK 정보를 전송한다.
예를 들어, 도 6을 참조하면, PUCCH (m=1)이 특정 UE의 SR용으로 유보된 서브프레임에서 PUCCH (m=3)가 ACK/NACK PUCCH 자원으로 결정되는 경우가 발생할 수 있다. 이 경우, 상기 특정 UE는 ACK/NACK 정보를 PUCCH (m=3)이 아닌 PUCCH (m=1) 상에서 전송한다. BS는 상기 특정 UE를 위해 유보된 상기 PUCCH (m=1) 상에서 수신한 신호가 있으므로, 상기 특정 UE에 의한 상향링크 스케줄링 요청이 있다고 판단한다.
ACK/NACK이 SR PUCCH 자원을 통해 전송되는 경우, 상기 ACK/NACK은 BPSK 혹은 QPSK에 의해 상기 SR PUCCH 상의 복소변조심볼로 변조된다. 예를 들어, 1비트 ACK/NACK 혹은 2비트 ACK/NACK이 다음표에 따라 복소변조심볼로 변조될 수 있다.
표 2
Modulation Binary bits Modulation symbol
BPSK 0 1
1 -1
QPSK 00 1
01 -j
10 j
11 -1
한편, 현재 3GPP LTE-A 표준에 의하면, ACK/NACK 정보가 ACK/NACK 비트에 관계없이 BPSK에 따른 2개 성상 포인트 혹은 QPSK에 따른 4개 성상 포인트에 맵핑된다. 전송해야 하는 ACK/NACK 비트가 2보다 크다고 하더라도, ACK/NACK 정보가, 2비트용 성상인, 4개 성상 포인트에 맵핑되어야 한다. 즉, 일 ACK/NACK 정보가 2가지 복조변조심볼 중 하나로 변조(BPSK의 경우)되거나, 4가지 복조변조심볼 중 하나로 변조(QPSK의 경우)되어야 한다.
도 8는 단일 반송파 상황에서 통신을 수행하는 예를 나타낸다. 도 8은 LTE 시스템에서의 통신 예에 대응할 수 있다.
도 8을 참조하면, 일반적인 FDD 방식 무선 통신 시스템은 하나의 하향링크 대역과 이에 대응하는 하나의 상향링크 대역을 통해 데이터 송수신을 수행한다. BS와 UE는 서브프레임 단위로 스케줄링된 데이터 및/또는 제어 정보를 송수신한다. 데이터는 상/하향링크 서브프레임에 설정된 데이터 영역을 통해 송수신되고, 제어 정보는 상/하향링크 서브프레임에 설정된 제어 영역을 통해 송수신된다. 이를 위해, 상/하향링크 서브프레임은 다양한 물리 채널을 통해 신호를 나른다. 도 8은 편의상 FDD 방식을 위주로 설명했지만, 상술한 내용은 도 3의 무선 프레임을 시간 영역에서 상/하향링크 구분함으로써 TDD 방식에도 적용될 수 있다.
도 9는 다중 반송파 상황 하에서 통신을 수행하는 예를 나타낸다. LTE-A 시스템은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록을 모다 더 큰 상/하향링크 대역폭을 사용하는 반송파 집성(carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각각의 주파수 블록은 콤포넌트 반송파(Component Carrier; CC)를 이용하여 전송된다. 본 명세서에서, 콤포넌트 반송파는 해당 주파수 블록을 위한 반송파 주파수 (또는 중심 반송파, 중심 주파수)로 이해될 수 있다. 1개의 콤퍼넌트 반송파만이 통신에 사용되는 경우, 도 8의 단일 반송파 상황 하에서의 통신에 해당한다.
예를 들어, 도 9를 참조하면, 상/하향링크에 각각 5개의 20MHz CC들이 모여서 100MHz 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 도 9는 편의상 UL CC의 대역폭과 DL CC의 대역폭이 모두 동일하고 대칭인 경우를 도시하였다. 그러나, 각 CC의 대역폭은 독립적으로 정해질 수 있다. 일 예로, UL CC의 대역폭은 5MHz(UL CC0) + 20MHz(UL CC1) + 20MHz(UL CC2) + 20MHz(UL CC3) + 5MHz(UL CC4)와 같이 구성될 수 있다. 또한, UL CC의 개수와 DL CC의 개수가 다른 비대칭적 반송파 집성도 가능하다. 비대칭적 반송파 집성은 가용한 주파수 대역의 제한으로 인해 발생되거나 네트워크 설정에 의해 인위적으로 조성될 수 있다. 일 예로, BS가 X개의 CC를 관리하더라도, 특정 UE가 수신할 수 있는 주파수 대역은 Y(<X)개의 DL CC로 한정될 수 있다. UE는 상기 Y개의 CC를 통해 전송되는 DL 신호/데이터를 모니터하면 된다. BS는 상기 BS가 관리하는 CC들 중 일부 또는 전부를 활성화(activate)하거나, 일부 CC를 비활성화(deactivate)함으로써, 상기 UE에게 소정 개수의 CC를 할당할 수 있다. 상기 BS는 활성화/비활성화되는 CC를 변경할 수 있으며, 활성화/비활성화되는 CC의 개수를 변경할 수 있다. 한편, BS는 셀-특정적 혹은 UE-특정적으로 UE가 우선적으로 모니터/수신해야하는 Z개의 DL CC(여기서, 1≤Z≤Y≤X)를 주요(main) DL CC로서 구성할 수 있다. 반송파 집성에 대한 다양한 파라미터는 셀-특정적(cell-specific), UE 그룹-특정적(UE group-specific) 또는 UE-특정적(UE-specific)으로 설정될 수 있다.
일단 BS가 UE에 이용가능한 CC를 셀-특정적 혹은 UE-특정적으로 할당하면, 상기 UE에 대한 CC 할당이 전면적으로 재구성되거나 상기 UE가 핸드오버되지 않는 한, 일단 할당된 CC 중 적어도 하나는 비활성화되지 않는다. 이하에서는, UE에 대한 CC 할당의 전면적인 재구성이 아닌 한 비활성화되지 않는 CC를 PCC(Primary CC)라고 칭하고, BS가 자유롭게 활성화/비활성화활수 있는 CC를 SCC(Secondary CC)라고 칭한다. 단일 반송파 통신은 1개의 PCC를 UE와 BS 사이의 통신에 이용하며, SCC는 통신에 이용하지 않는다. 한편, PCC와 SCC는 제어정보를 기준으로 구분될 수도 있다. 예를 들어, 제어정보는 특정 CC를 통해서만 송수신되도록 설정될 수 있는데, 이러한 특정 CC를 PCC로 지칭하고, 나머지 CC를 SCC로 지칭할 수 있다. 다중 반송파 통신은 1개 이상의 PCC와 0개 또는 1개 이상의 부 SCC가 통신에 이용된다. PCC는 주 셀(primary cell), 앵커 셀(anchor cell) 혹은 주 반송파(primary carrier)라고 불리며, PCC는 부 셀(secondary cell) 혹은 부 반송파(secondary carrier)라고도 불린다.
참고로, LTE-A는 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 반송파 집성이 지원되는 경우, 하향링크 자원의 반송파 주파수(또는, DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 주 주파수(Primary frequency)(또는 PCC) 상에서 동작하는 셀을 주 셀(Primary Cell, PCell)로 지칭하고, 부 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 부 셀(Secondary Cell, SCell)로 지칭할 수 있다. PCell은 UE가 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭될 수 있다. 따라서, RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 반송파 집성이 설정된 UE의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 반송파 집성을 위해, 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 반송파 집성을 지원하는 UE를 위해 구성할 수 있다.
다중 반송파 시스템에서, BS는 복수의 데이터 유닛을 주어진 CC(들) 상에서 UE에 전송할 수 있으며, 상기 UE는 일 서브프레임에서 상기 복수의 데이터 유닛에 대한 ACK/NACK들을 전송할 수 있다. UE는 하향링크 데이터 수신을 위한 PDSCH를 수신하는 하나 또는 복수의 DL CC를 할당받을 수 있다. 상기 UE를 위한 DL CC(들)은 RRC 시그널링에 의해 반-정적(semi-static)으로 구성(configure) 혹은 재구성될 수 있다. 또한, 상기 UE를 위한 DL CC(들)은 L1/L2(MAC) 제어 시그널링에 의해 동적으로 활성화/비활성화될 수 있다. 그러므로, UE가 전송할 ACK/NACK 비트의 최대 개수는 상기 UE가 이용가능한 DL CC(즉, RRC에 의해 구성/재구성되거나 L1/L2 시그널링에 의해 활성화된 DL CC)에 따라 변하게 된다.
도 10은 DL CC 변경 구간에서의 기지국 및 사용자기기의 동작을 예시한다.
BS가 RRC 재구성 혹은 L1/L2 제어 시그널링에 의해 UE가 이용가능한 DL CC(들)을 변경하는 경우, 상기 BS와 상기 UE에서 상기 변경된 DL CC(들)을 적용하기 시작하는 타이밍이 서로 다를 수 있다. 예를 들어, 도 10을 참조하면, BS가 UE가 이용가능한 CC의 개수를 3에서 2로 변경하는 경우, BS가 DL CC의 개수를 3에서 2로 변경하여 하향링크 데이터를 전송하는 시점과, UE가 모니터하는 DL CC의 개수를 3에서 2로 변경하는 시점이 다를 수 있다. 또한, BS가 CC 개수의 변경을 지시하더라도, UE가 상기 지시를 수신하는 데 실패하면 UE가 알고 있는 DL CC의 개수와 BS가 알고 있는 DL CC의 개수가 다른 시간 구간이 발생할 수 있다.
DL CC의 개수가 3이라고 알고 있는 UE는 3개의 DL CC 각각에 대하여 수신 성공 여부를 판단하고, 3개의 CC에 대한 ACK/NACK을 SR PUCCH 상의 일 변조심볼에 맵핑하여 BS에 전송한다. 예를 들어, PCC가 ACK이고 2개의 SCC가 모두 NACK인 경우, UE는 (ACK, NACK, NACK)에 대응하는 변조심볼을 일 서브프레임 내 일 SR PUCCH 상에서 전송한다. 반면에, DL CC의 개수가 2라고 알고 있는 UE는 2개의 DL CC 각각에 대하여 수신 성공 여부를 판단하고, 2개의 CC에 대한 ACK/NACK을 SR PUCCH 상의 일 변조심볼에 맵핑하여 BS에 전송한다. 예를 들어, PCC가 ACK이고 1개의 SCC가 NACK인 경우, UE는 (ACK, NACK)에 대응하는 변조심볼을 일 서브프레임 내 일 SR PUCCH 상에서 전송한다. BS가 CC의 개수를 2로 변경하더라도, UE는 3개의 DL CC에 대한 ACK/NACK을 전송하는 경우가 발생할 수 있다.
DL CC의 개수가 2라고 알고 있는 BS는 2개의 DL CC에 대한 ACK/NACK을 수신할 것을 예상한다. BS가 DL CC의 개수가 2라고 알고 있는 동안, UE가 3개의 DL CC에 대한 ACK/NACK을 전송하면, BS는 UE로부터 수신한 ACK/NACK에 대해 2개의 DL CC에 대한 ACK/NACK을 기준으로 복조를 시도하게 될 것이므로, 상기 수신한 ACK/NACK이 정확하게 복조될 수 없게 된다. 이는 2개의 CC에 대한 ACK/NACK들과 SR PUCCH 상의 변조심볼들간의 맵핑관계가 3개의 CC에 대한 ACK/NACK들과 SR PUCCH 상의 변조심볼들간의 맵핑관계와 다르기 때문이다.
이러한 문제점을 해결하기 위하여, 본 발명에서는, 특정 CC에 대한 ACK/NACK의 SR PUCCH로의 맵핑을, CC의 개수와 관계없이, 동일하게 유지하는 실시예들을 제공한다. 상기 특정 CC는, UE의 CC가 전면적으로 재구성되거나 상기 UE가 핸드오버되는 등의 특별한 경우가 아닌 한 비활성화되지 않는 CC인, PCC일 수 있다. 한편, 본 발명에서는, TDD 시스템의 경우에는, 특정 CC의 특정 서브프레임에 대한 ACK/NACK의 SR PUCCH로의 맵핑이, CC의 개수 및 하향링크 서브프레임의 개수에 관계없이, 동일하게 유지될 수 있다. 상기 특정 서브프레임은 정적으로 정해지거나 하향링크 데이터 스케줄링 정보에 따라 동적으로 선택될 수 있다.
도 11에서 도 13은 본 발명에 따라 ACK/NACK을 SR PUCCH로 맵핑하는 실시예들을 나타낸 것으로서, 도 11 내지 도 13에서, Y는 DL CC의 개수를 나타내며, A는 ACK을 N/D는 NACK 혹은 DTX(Discontinuous Transmission)을 나타낸다. UE가 CC 상에서 하향링크 데이터를 성공적으로 수신한 경우, 상기 UE는 상기 CC에 대해 ACK으로 판단한다. UE가 CC를 수신할 것이라고 예상하고 있었으나, 상기 CC를 수신하지 못한 경우, 상기 UE는 상기 CC에 대해 DTX로 판단한다. 반면, 상기 CC를 수신하였으나, 상기 CC 상에서 하향링크 데이터를 성공적으로 수신하지 못한 경우, 상기 UE는 상기 CC에 대해 NACK이라고 판단한다. 본 발명의 실시예들은 소정 CC에 대해 UE가 NACK으로 판단하는지 DTX로 판단하는지와 관계없이 적용된다. 따라서, 이하에서는, NACK과 DTX를 구분하지 않고, NACK과 DTX를 모두 NACK으로 통칭하여 본 발명의 실시예들을 설명한다.
또한, 도 11 내지 도 13에서 정사각형의 네 포인트(point)는 QPSK 변조의 4개 성상(constellation) 포인트를 나타낸다. QPSK 변조의 경우, 일 ACK/NACK 정보가 4개 성상 포인트 (0,0), (0,1), (1,0), (1,1) 중에 하나로 맵핑된다. BPSK 변조의 경우, 일 ACK/NACK 정보가 실수축 상의 2개 성상 포인트, 예를 들어, (0,0) 및 (1,1) 중 하나로 맵핑되거나, 혹은 허수축 상의 2개 성상 포인트, 예를 들어, (0,1) 및 (1,0) 중 하나로 맵핑된다. 이하에서는, 신호 성상 포인트 (0,0), (0,1), (1,0), (1,1)가 각각 복소변조심볼 1, -j, j, -1에 대응한다고 가정하여, 본 발명의 실시예들을 설명한다.
도 11은 본 발명의 실시예1에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다.
도 11(a)를 참조하면, DL CC의 개수 Y=1이면 1비트의 ACK/NACK 전송을 위해 BPSK가 사용된다. 1개의 DL CC가 ACK으로 판단되면, UE는 (ACK)을 나타내는 ACK/NACK 정보를 복소변조심볼 1로 변조하고, 상기 복소변조심볼 1을 SR PUCCH 자원을 이용하여 전송할 수 있다. 또한, 상기 UE는 상기 1개의 DL CC가 NACK으로 판단되면, (NACK)을 나타내는 ACK/NACK 정보를 복소변조심볼 -1로 변조하고, 상기 복소변조심볼 -1을 SR PUCCH 자원을 이용하여 전송할 수 있다.
도 11(b)를 참조하면, DL CC의 개수 Y가 1보다 큰 경우, UE는 ACK의 개수를 나타내는 정보를 QPSK를 이용하여 BS에 전송할 수 있다. 최대 5개의 DL CC가 UE에 할당될 수 있다고 가정하면, UE는 다음표에 따라 ACK의 개수를 나타내는 ACK/NACK 정보를 생성할 수 있다.
표 3
Number of ACK Binary bits
0 00
1 11
2 10
3 01
4 11
5 10
예를 들어, 표 3을 참조하면, UE가 모든 DL CC를 검출(detect)하지 못하거나, 모든 DL CC 상에서 전송된 DL 데이터의 디코딩이 성공적이지 않으면, UE는 ACK의 개수가 0임을 나타내는 ACK/NACK 정보를 생성할 수 있다. 상기 UE가 1개의 CC 상에서만 DL 데이터를 성공적으로 수신하고, 나머지 CC 상에서는 DL 데이터를 성공적으로 수신하지 못한 경우, 상기 UE는 ACK의 개수가 1임을 나타내는 ACK/NACK 정보를 생성할 수 있다. 상기 UE가 5개의 CC를 수신하고 상기 5개 CC 상에서 수신한 데이터가 모두 성공적으로 디코딩된 경우, 상기 UE는 ACK의 개수가 5인 ACK/NACK 정보를 생성한다. 상기 UE는 상기 6가지 경우들을 QPSK를 이용하여 4개의 성상 포인트들에 맵핑할 수 있다. 맵핑가능한 성상 포인트의 개수 4가 맵핑해야할 ACK/NACK 정보의 가지수 6에 비해 적으므로, 적어도 2가지 ACK/NACK 정보는 다른 ACK/NACK 정보와 동일한 성상 포인트에 중첩하여 맵핑된다.
6가지 ACK/NACK 정보를 4개 성상 포인트에 맵핑하되, 본 발명의 실시예1에 따른 UE는, ACK의 개수가 0임을 나타내는 ACK/NACK 정보를 Y=1인 경우에서의 ACK 정보가 맵핑되는 성상 포인트와 동일한 성상 포인트에 맵핑하고, ACK의 개수가 1임을 나타내는 ACK/NACK 정보를 Y=1인 경우에서의 NACK 정보가 맵핑되는 성상 포인트와 동일한 성상 포인트에 맵핑한다. 예를 들어, 도 11을 참조하면, 상기 UE는 ACK의 개수가 0임을 나타내는 ACK/NACK 정보는 복소변조심볼 -1로 변조하고, ACK의 개수가 1임을 나타내는 ACK/NACK 정보는 복소변조심볼 1로 변조한다. 다른 개수의 ACK들, 즉, ACK의 개수 = 2, 3, 4, 5인 ACK/NACK들은 4개 성상 포인트 중 하나에 각각 맵핑된다. 동일한 성상 포인트에 서로 다른 ACK/NACK 정보가 맵핑되는 것도 가능하다.
도 11(a) 및 도 11(b)에서 알 수 있듯이, 본 발명의 실시예1에 의하면, Y의 개수와 관계없이, ACK의 개수가 0이면 ACK/NACK 정보가 복소변조심볼 -1로 변조되고 ACK의 개수가 1이면 ACK/NACK 정보가 복소변조심볼 1로 변조된다. 상기 BS가 구성한 DL CC의 개수와 관계없이, 상기 BS는 상기 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 상기 UE가 0개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있고, 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 1개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있다.
본 발명의 실시예1에 의하면, BS는 UE의 DL CC 구성이 불분명한 구간에서 특정 DL CC(혹은 TDD의 경우, 특정 DL CC의 특정 서브프레임)에만 DL 데이터를 스케줄링함으로써, 적어도 상기 특정 DL CC에 대한 ACK/NACK을 정확히 수신할 수 있다. 예를 들어, BS는, DL CC의 재구성 혹은 DL CC의 변경을 UE에 시그널링한 후 소정 시간 구간 동안에는, PCC 상에서만 하향링크 데이터를 전송할 수 있다. UE는 상기 UE가 인식하고 있는 Y의 개수와 관계없이, 1개의 CC 상에서 DL 데이터를 성공적으로 수신하면 ACK/NACK 정보를 복소변조심볼 1로 변조하여 SR PUCCH 상에서 전송하고, 0개의 CC 상에서 DL 데이터를 성공적으로 수신하면 ACK/NACK 정보를 복소변조심볼 -1로 변조하여 SR PUCCH 상에서 전송한다. 상기 BS는, 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 PCC를 이용하여 전송한 DL 데이터가 성공적으로 UE에 전송되었다고 판단하고, 상기 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 PCC를 이용한 DL 데이터의 전송이 실패한 것으로 판단할 수 있다.
도 12는 본 발명의 실시예2에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다. 도 12(a)는 도 11(a)와 마찬가지로, DL CC의 개수 Y=1인 경우의 1비트 ACK/NACK 전송을 나타낸다.
도 12(b) 및 도 12(c)를 참조하면, Y가 1보다 큰 경우, UE는 DL CC들에 대한 ACK/NACK들의 조합을 ACK/NACK 정보로서 BS에 전송한다. 이때, 본 발명의 실시예2에 따른 UE는 특정 CC에 대한 1비트 ACK과 상기 특정 CC를 제외한 모든 다른 CC에 대한 (Y-1)비트 NACK의 조합을, Y=1인 경우에서의 1비트 ACK이 맵핑되는 성상 포인트와 동일한 성상 포인트, 예를 들어, (1,1)에 맵핑한다. 또한, 상기 UE는 상기 특정 CC를 포함한 모든 CC에 대한 Y비트 NACK 조합을, Y=1인 경우에서의 1비트 NACK이 맵핑되는 성상 포인트와 동일한 성상 포인트, 예를 들어, (0,0)에 맵핑한다.
예를 들어, 도 12(b)를 참조하면, Y=2인 경우, 상기 UE는 PCC가 ACK이고 SCC가 NACK임을 나타내는 2비트 ACK/NACK을 복소변조심볼 1로 변조하고, PCC 및 SCC가 모두 NACK임을 나타내는 2비트 ACK/NACK을 복소변조심볼 -1로 변조할 수 있다. 상기 UE는 다른 ACK/NACK 상태들, 예를 들어, (PCC=NACK, SCC=ACK)인 상태와 (PCC=ACK, SCC=ACK)인 상태는 4개의 성상 포인트들 중 2개 성상 포인트에 각각 맵핑할 수 있다.
다른 예로, 도 12(c)를 참조하면, Y=3인 경우, 상기 UE는 PCC가 ACK이고 나머지 2개의 SCC가 모두 NACK임을 나타내는 3비트 ACK/NACK을 복소변조심볼 1로 변조하고, PCC 및 모든 SCC가 NACK임을 나타내는 3비트 ACK/NACK을 복소변조심볼 -1로 변조할 수 있다. 상기 UE는 다른 ACK/NACK 상태들, 예를 들어, (PCC=ACK,SCC1=ACK,SCC2=ACK)인 상태, (PCC=ACK,SCC1=ACK,SCC2=NACK)인 상태, (PCC=ACK,SCC1=NACK,SCC2=ACK)인 상태, (PCC=NACK,SCC1=ACK,SCC2=ACK)인 상태, (PCC=NACK,SCC1=NACK,SCC2=ACK)인 상태, (PCC=NACK,SCC1=ACK,SCC2=NACK)인 상태는 4개의 성상 포인트들에 각각 맵핑할 수 있다. 맵핑될 수 있는 성상 포인트의 개수인 4보다 ACK/NACK의 상태 개수인 8이 더 크므로, 동일한 성상 포인트에 서로 다른 ACK/NACK 상태가 맵핑되는 것도 가능하다.
도 12(a)에서 도 12(c)로부터 알 수 있듯이, 본 발명의 실시예2에 의하면, Y의 크기에 관계없이, 특정 CC에 대해서는 ACK이고 상기 특정 CC를 제외한 나머지 CC(나머지 CC의 개수가 0인 경우 포함)가 NACK인 상태를 나타내는 ACK/NACK 정보는 복소변조심볼 1로 변조된다. 또한, Y의 크기에 관계없이, 특정 CC를 포함한 모든 CC가 NACK인 상태를 나타내는 ACK/NACK 정보는 복소변조심볼 -1로 변조된다. 상기 BS가 구성한 DL CC의 개수와 관계없이, 상기 BS는 상기 UE를 위해 유보된 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 상기 UE가 0개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있고, 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 1개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있다.
본 발명의 실시예2에 의하면, BS는 UE의 DL CC 구성이 불분명한 구간에서 특정 DL CC에만 DL 데이터를 스케줄링함으로써, 적어도 상기 특정 DL CC에 대한 ACK/NACK을 정확히 수신할 수 있다. 예를 들어, BS는, DL CC의 재구성 혹은 DL CC의 변경을 UE에 시그널링한 후 소정 시간 구간 동안에는, PCC 상에서만 하향링크 데이터를 전송할 수 있다. 본 발명의 실시예2에 따른 UE는 상기 UE가 인식하고 있는 Y의 개수와 관계없이, PCC 상에서 DL 데이터를 성공적으로 수신하고 나머지 CC 상에서 DL 데이터를 성공적으로 수신하지 못하면 ACK/NACK 정보를 복소변조심볼 1로 변조하여 SR PUCCH 상에서 전송한다. 또한, 상기 UE는 Y의 개수와 관계없이 모든 CC 상에서 DL 데이터를 성공적으로 수신하지 못하면 ACK/NACK 정보를 복소변조심볼 -1로 변조하여 SR PUCCH 상에서 전송한다. 상기 BS는 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 PCC 상에서는 DL 데이터가 성공적으로 UE에 전송되었다고 판단하고, 상기 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 PCC 상에서도 DL 데이터의 상기 UE로의 전송이 실패한 것으로 판단할 수 있다.
참고로, 도 12에서 각 CC에 대한 ACK 또는 NACK은 번들(bundle)된 ACK 또는 NACK일 수 있다. 즉, 일 CC가 1개보다 많은 코드워드를 나르는 경우, 즉, CC에 공간 다중화가 적용된 경우, 일 CC에 대한 ACK은 상기 CC를 이용하여 전송된 복수 코드워드 전부가 ACK임을 나타낼 수 있으며, NACK은 상기 CC를 이용하여 전송된 복수 코드워드 중 하나 이상이 NACK임을 나타낼 수 있다.
도 13은 본 발명의 실시예3에 따른, ACK/NACK의 SR PUCCH로의 맵핑 예를 나타낸다. 도 13(a)는 도 11(a) 및 도 12(a)와 마찬가지로, DL CC의 개수 Y=1인 경우의 1비트 ACK/NACK 전송을 나타낸다.
도 13(b)를 참조하면, Y가 1보다 큰 경우, UE는 특정 CC, 예를 들어, PCC를 제외한 나머지 CC에 대한 ACK/NACK은 AND 논리 연산에 의해 번들함으로써, 상기 나머지 CC에 대한 1비트 ACK/NACK을 생성할 수 있다. 상기 UE는 특정 CC에 대한 1비트 ACK/NACK과, 상기 특정 CC가 아닌 다른 CC(들)에 대한 번들된 1비트 ACK/NACK의 조합을 ACK/NACK 정보로서 BS에 전송한다.
이때, 본 발명의 실시예3에 따른 UE는 특정 CC에 대한 ACK과 상기 특정 CC를 제외한 모든 다른 CC에 대한 번들된 NACK의 조합을, Y=1인 경우에서의 ACK 정보가 맵핑되는 성상 포인트와 동일한 성상 포인트, 예를 들어, (1,1)에 맵핑한다. 또한, 상기 UE는 상기 특정 CC에 대한 NACK과 다른 모든 CC에 대한 번들된 NACK의 조합을, Y=1인 경우에서의 NACK 정보가 맵핑되는 성상 포인트와 동일한 성상 포인트, 예를 들어, (0,0)에 맵핑한다.
도 13(b)를 참조하면, Y가 1보다 큰 경우, 상기 UE는 PCC가 ACK임을 나타내는 1비트 ACK/NACK과 나머지 모든 SCC에 대한 번들된 NACK을 나타내는 1비트 ACK/NACK의 조합을 복소변조심볼 1로 변조하고, PCC가 NACK임을 나타내는 1비트 ACK/NACK과 나머지 모든 SCC가 NACK임을 나타내는 1비트 ACK/NACK의 조합을 복소변조심볼 -1로 변조할 수 있다. 여기서, 번들된 NACK은 번들링에 참여하는 CC 중 적어도 하나가 NACK임을 나타낸다. 예를 들어, 상기 UE는 PCC에 대응하는 MSB(Most Significant Bit) 1비트와 번들된 SCC에 대응하는 LSB (Least Significant Bit) 1비트로 구성된 2비트 ACK/NACK을 구성할 수 있다. 상기 UE는 (PCC=ACK, 번들된 SCC=NACK)인 상태를 나타내는 ACK/NACK 정보 10b을 생성하고, 상기 10b를 복소변조심볼 1로 변조할 수 있다. 또한, 상기 UE는 (PCC=NACK, 번들된 SCC=NACK)인 상태를 나타내는 ACK/NACK 정보 10b을 생성하고, 상기 00b를 복소변조심볼 -1로 변조할 수 있다. 상기 UE는 다른 ACK/NACK 상태들, 예를 들어, (PCC=NACK, 번들된 SCC=ACK)인 상태와 (PCC=ACK, 번들된 SCC=ACK)인 상태는 4개의 성상 포인트들 중 나머지 2개 성상 포인트 (0,1) 및 (1,0) 에 각각 맵핑할 수 있다.
도 13(a)에서 도 13(b)로부터 알 수 있듯이, 본 발명의 실시예3에 의하면, Y의 크기에 관계없이, 특정 CC에 대해서는 ACK이고 상기 특정 CC를 제외한 나머지 CC(나머지 CC의 개수가 0인 경우 포함) 중 적어도 하나가 NACK인 상태를 나타내는 ACK/NACK 정보는 복소변조심볼 1로 변조된다. 또한, Y의 크기에 관계없이, 특정 CC가 NACK이고 나머지 CC(나머지 CC의 개수가 0인 경우 포함) 중 적어도 하나가 NACK인 상태를 나타내는 ACK/NACK 정보는 복소변조심볼 -1로 변조된다. 상기 BS가 구성한 DL CC의 개수와 관계없이, 상기 BS는 상기 UE를 위해 유보된 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 상기 UE가 0개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있고, 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 1개의 DL CC 상에서 DL 데이터를 성공적으로 수신했음을 알 수 있다.
본 발명의 실시예3에 의하면, BS는 UE의 DL CC 구성이 불분명한 구간에서 특정 DL CC에만 DL 데이터를 스케줄링함으로써, 적어도 상기 특정 DL CC에 대한 ACK/NACK을 정확히 수신할 수 있다. 예를 들어, BS는, DL CC의 재구성 혹은 DL CC의 변경을 UE에 시그널링한 후 소정 시간 구간 동안에는, PCC 상에서만 하향링크 데이터를 전송할 수 있다. 본 발명의 실시예2에 따른 UE는 상기 UE가 인식하고 있는 Y의 개수와 관계없이, PCC 상에서 DL 데이터를 성공적으로 수신하고 나머지 CC 중 적어도 하나 상에서 DL 데이터를 성공적으로 수신하지 못하면 ACK/NACK 정보를 복소변조심볼 1로 변조하여 SR PUCCH 상에서 전송한다. 또한, 상기 UE는 Y의 개수와 관계없이 상기 특정 CC 상에서 DL 데이터를 성공적으로 수신하지 못하고 나머지 CC 중 적어도 하나 상에서 DL 데이터를 성공적으로 수신하지 못하면 ACK/NACK 정보를 복소변조심볼 -1로 변조하여 SR PUCCH 상에서 전송한다. 상기 BS는 상기 SR PUCCH 상에서 복소변조심볼 1을 수신하면 PCC 상에서는 DL 데이터가 성공적으로 UE에 전송되었다고 판단하고, 상기 SR PUCCH 상에서 복소변조심볼 -1을 수신하면 PCC 상에서도 DL 데이터의 상기 UE로의 전송이 실패한 것으로 판단할 수 있다.
참고로, 도 13에서 각 CC에 대한 ACK 또는 NACK은 번들된 ACK 또는 NACK일 수 있다. 즉, 일 CC가 1개보다 많은 코드워드를 나르는 경우, 즉, CC에 공간 다중화가 적용된 경우, 일 CC에 대한 ACK은 상기 CC를 이용하여 전송된 복수 코드워드 전부가 ACK임을 나타낼 수 있으며, NACK은 상기 CC를 이용하여 전송된 복수 코드워드 중 적어도 하나가 NACK임을 나타낼 수 있다.
정리하면, 본 발명의 실시예1에서 실시예3에 의하면, 특정 CC에 대한 ACK/NACK이 ACK이고, 다른 CC(들)에 대한 ACK/NACK이 모두 NACK(실시예2의 경우) 혹은 번들된 NACK(실시예3의 경우)이면, CC의 개수와 관계없이, 상기 특정 CC 및 상기 다른 CC(들)에 대한 ACK/NACK 정보가 모두 동일한 복조변조심볼(제1복소변조심볼), 예를 들어, 1로 변조된다. 또한, 상기 특정 CC를 포함한 모든 CC(들)들에 대한 ACK/NACK이 모두 NACK(실시예2의 경우) 혹은 번들된 NACK(실시예3의 경우)이면, CC의 개수와 관계없이, 모두 동일한 복소변조심볼(제2복소변조심볼), 예를 들어, -1로 변조된다.
본 발명의 일 실시예에 따라 구성된 UE의 프로세서(400a)는 BS로부터 상위 레이어 시그널링 메시지를 수신함으로써, 상기 UE를 위한 하나 이상의 CC를 할당받을 수 있다. 상기 UE 프로세서(400a)는 상기 BS로부터 상기 할당 받은 CC를 통해 DL 데이터를 수신할 수 있다. 상기 UE 프로세서(400a)는 상기 할당받은 CC별로 해당 CC를 통한 DL 데이터의 수신 성공 여부를 판단하여 상기 UE를 위해 구성될 CC(들)에 대한 ACK/NACK 정보를 생성할 수 있다.
본 발명의 제1실시예에 따라 구성된 UE 프로세서(400a)는 ACK의 개수를 나타내는 정보를 상기 ACK/NACK 정보로서 생성할 수 있다. 본 발명의 제2실시예에 따라 구성된 UE 프로세서(400a)는 상기 UE를 위해 구성된 Y개 CC(들) 각각 대한 ACK/NACK의 조합인 Y비트의 ACK/NACK 정보를 생성할 수 있다. 본 발명의 제3실시예에 따라서 구성된 UE 프로세서(400a)는 특정 CC에 대한 1비트 ACK/NACK과 나머지 CC에 대하여 번들된 1비트 ACK/NACK으로 구성된 2비트 ACK/NACK 정보를 생성할 수 있다.
상기 UE 프로세서(400a)는 상기 ACK/NACK 정보를 기정의된 변조방식에 따라 변조하도록 UE 송신기(100a)를 제어한다. 예를 들어, Y=1인 경우, 상기 UE 프로세서(400a)는 1개 CC에 대한 ACK을 나타내는 1비트 ACK/NACK 정보를 제1복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어하고, 상기 1개 CC에 대한 NACK을 나타내는 1비트 ACK/NACK 정보를 제2복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어할 수 있다.
Y가 1보다 큰 경우, 본 발명의 제1실시예에 따른 UE 프로세서(400a)는 ACK인 CC의 개수가 1개임을 나타내는 ACK/NACK 정보를 상기 제1복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어하고, ACK인 CC의 개수가 0개임을 나타내는 ACK/NACK 정보를 상기 제2복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어한다. Y가 1보다 큰 경우, 본 발명의 제2실시예에 따른 UE 프로세서(400a)는 특정 CC가 ACK이고 나머지 모든 CC가 NACK임을 나타내는 Y 비트의 ACK/NACK 정보를 상기 제1복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어하고, 상기 특정 CC를 포함한 모든 CC가 NACK임을 나타내는 Y 비트의 ACK/NACK 정보를 상기 제2복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어한다. Y가 1보다 큰 경우, 본 발명의 제3실시예에 따른 UE 프로세서(400a)는 특정 CC가 ACK임을 나타내는 1비트와 나머지 CC 중 적어도 하나가 NACK임을 나타내는 1 비트로 구성된 2비트 ACK/NACK 정보를 상기 제1복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어하고, 상기 특정 CC가 NACK임을 나타내는 1비트와 나머지 CC 중 적어도 하나가 NACK임을 나타내는 1 비트로 구성된 2비트 ACK/NACK 정보를 상기 제2복소변조심볼로 변조하도록 상기 UE 송신기(100a)를 제어한다. 상기 UE 프로세서(400a)는, 나머지 ACK/NACK 상태들을, 기정의된 ACK/NACK 상태-대-복소변조심볼 맵핑관계에 따라 각각 4개의 성상 포인트 중 하나에 맵핑한다. 상기 UE 프로세서(400a)는, 본 발명의 실시예1에서 실시예3 중 어느 하나에 따라 정의된 ACK/NACK 상태-대-복소변조심볼 맵핑관계에 따라, ACK/NACK 정보를 신호 성상 상의 성상 포인트에 맵핑하도록 변조맵퍼(302)를 제어할 수 있다.
상기 UE 프로세서(400a)는 본 발명의 실시예1에서 실시예3 중 어느 하나에 따라 복소변조심볼로 변조된 ACK/NACK 정보를 SR PUCCH 자원을 이용하여 전송하도록 상기 UE 송신기(100a)를 제어한다. 상기 UE 송신기(100a)의 자원요소맵퍼(305)는 상기 UE 프로세서(400a)의 제어하에 ACK/NACK 정보의 복소변조심볼을 SR PUCCH 자원에 맵핑할 수 있다. 상기 UE 송신기(100a)는 상기 SR PUCCH 상에서 상기 ACK/NACK 정보의 복소변조심볼을 전송할 수 있다.
본 발명의 일 실시예에 따라 구성된 BS의 프로세서(400b)는, BS 수신기(300b)가 상기 UE를 위해 유보된 SR PUCCH 상에서 신호를 수신하면, 상기 UE가 상향링크 스케줄링 요청을 한 것으로 판단한다. 또한, 상기 BS 프로세서(400b)는, 상기 BS 수신기(300b)가 상기 SR PUCCH 상에서 제1복소변조심볼을 수신하면, 적어도 특정 CC 상에서 상기 UE에 전송한 DL 데이터가 성공적으로 상기 UE에 의해 수신되었다고 판단할 수 있다. 상기 BS 프로세서(400b)는, 상기 BS 수신기(300b)가 상기 SR PUCCH 상에서 제2복소변조심볼을 수신하면, 적어도 상기 특정 CC 상에서 전송된 DL 데이터는 상기 UE에 의해 성공적으로 수신되지 않았다고 판단할 수 있다.
상기 BS 프로세서(400b)는, 상기 UE가 이용가능한 CC를 변경하기 위해, RRC 제어 메시지 혹은 L1/L2 제어 메시지를 생성하고, 상기 메시지를 전송하도록 BS 송신기(100b)를 제어할 수 있다. 상기 BS 프로세서(400b)는, 상기 BS가 CC 구성을 변경하는 시점과 상기 UE가 CC를 변경하는 시점의 불일치에 의해, DL 데이터 전송 오류 및/또는 UL ACK/NACK 전송 오류를 방지하기 위하여, 상기 메시지를 전송 후 소정 시간 구간 동안에는 상기 특정 CC에만 DL 데이터를 스케줄링할 수 있다. 상기 UE가 상기 BS에 TDD 모드로 연결된 경우, 상기 BS 프로세서(400b)는 상기 특정 CC의 특정 서브프레임에만 DL 데이터를 스케줄링할 수 있다. 이 경우, 상기 UE를 위해 구성된 실제 DL CC의 개수와 관계없이, 상기 BS 송신기는 상기 소정 시간 구간 동안에는 상기 특정 CC를 통해서만 DL CC를 전송한다. 본 발명의 실시예들에 의하면, 상기 UE 프로세서(400a)는, 상기 UE를 위해 구성된 CC의 개수와 관계없이, 특정 CC가 ACK이고 나머지 모든 CC가 NACK이면 제1복소변조심볼을 전송하고 상기 특정 CC가 NACK이고 나머지 모든 CC가 NACK이면 제2복소변조심볼을 전송하도록 상기 UE 송신기(100a)를 제어하므로, 상기 UE는 적어도 상기 특정 CC에 대해서는 정확한 ACK/NACK을 상기 BS에 전송하게 된다.
전술한 본 발명의 실시예1에서 실시예3에서는, Y가 1 또는 2, 3인 경우를 예로 하여 본 발명을 설명하였으나, 다른 개수의 DL CC에도 본 발명이 적용될 수 있다. 또한, ACK/NACK 정보가 BPSK 혹은 QPSK보다 높은 차수의 변조방식으로 변조되는 경우에도, 본 발명의 실시예1에서 실시예3가 적용될 수 있다. 즉, 특정 CC에 대한 ACK 및 모든 다른 CC에 대한 NACK 혹은 번들된 NACK이, Y=1일 때의 1비트 ACK과 동일한 복소변조심볼로 변조되고, 상기 특정 CC를 포함하는 모든 CC에 대한 NACK 혹은 번들된 NACK이, Y=1일 때의 1비트 NACK과 동일한 복소변조심볼로 변조되는 한, 본 발명에 해당한다.
본 발명의 실시예들에 의하면, DL CC의 개수에 관계없이, 적어도 특정 CC에 대한 ACK/NACK은 UE로부터 BS에 정확하게 전송될 수 있다는 장점이 있다. 본 발명의 실시예들에 의하면, 나머지 CC에 대한 ACK/NACK 전송은 전송 오류가 발생할 여지가 남아 있으나, 적어도 상기 특정 CC에 대해서는 정확한 ACK/NACK 전송이 가능해진다. 특정 CC가 아닌 다른 CC에 대한 ACK/NACK 전송 오류는, BS가 CC를 재구성하거나 CC를 변경한 후 소정 시간 구간 동안에는 상기 특정 CC를 통해서만 DL 데이터를 전송함으로써, 방지할 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (8)

  1. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하는 수신단계; 및
    상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하는 생성단계;
    상기 ACK/NACK 정보를 변조하여 복소변조심볼을 생성하는 변조단계;
    상기 복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송단계를 포함하되,
    상기 변조단계는, 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파가 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하고, 상기 복수의 반송파가 모두 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하는,
    상향링크 제어정보 전송방법.
  2. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하는 수신단계; 및
    상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하는 생성단계;
    상기 ACK/NACK 정보를 변조하여 복소변조심볼을 생성하는 변조단계;
    상기 복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송단계를 포함하되,
    상기 변조단계는, 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파에 대하여 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하고, 상기 특정 반송파가 NACK이고 상기 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하는,
    상향링크 제어정보 전송방법.
  3. 제1항 또는 제2항에 있어서,
    상기 특정 반송파는 주 반송파(primary carrier)인,
    상향링크 제어정보 전송방법.
  4. 제3항에 있어서,
    상기 제1복소변조심볼은 단일 반송파 상에서 수신된 하향링크 데이터에 대한 ACK 정보의 복소변조심볼과 동일하고, 상기 제2복소변조심볼은 상기 단일 반송파 상에서 수신된 하향링크 데이터에 대한 NACK 정보의 복소변조심볼과 동일한,
    상향링크 제어정보 전송방법.
  5. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하도록 구성된 수신기; 및
    상기 기지국에 상향링크 신호를 전송하도록 구성된 송신기;
    상기 수신기 및 상기 송신기를 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는, 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하도록 구성되고; 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파가 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하도록 상기 송신기를 제어하고, 상기 복수의 반송파가 모두 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하도록 상기 송신기를 제어하도록 구성되고; 상기 제1복소변조심볼 혹은 상기 제2복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송하도록 상기 송신기를 제어하도록 구성된,
    사용자기기.
  6. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    기지국으로부터 복수의 반송파 상에서 하향링크 데이터를 수신하도록 구성된 수신기; 및
    상기 기지국에 상향링크 신호를 전송하도록 구성된 송신기;
    상기 수신기 및 상기 송신기를 제어하도록 구성된 프로세서를 포함하되,
    상기 프로세서는, 상기 하향링크 데이터에 대한 ACK/NACK (ACKnowlegement/NegativeACK) 정보를 생성하도록 구성되고; 상기 복수의 반송파 중 특정 반송파가 ACK이고 나머지 모든 반송파에 대하여 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제1복소변조심볼로 변조하도록 상기 송신기를 제어하고, 상기 특정 반송파가 NACK이고 상기 번들된 ACK/NACK이 NACK이면 상기 ACK/NACK 정보를 제2복소변조심볼로 변조하도록 상기 송신기를 제어하도록 구성되고; 상기 제1복소변조심볼 혹은 상기 제2복소변조심볼을 스케줄링 요청을 위한 PUCCH(Physical Uplink Control CHannel) 자원을 이용하여 상기 기지국으로 전송하는 전송하도록 상기 송신기를 제어하도록 구성된,
    사용자기기.
  7. 제5항 또는 제6항에 있어서,
    상기 특정 반송파는 주 반송파(primary carrier)인,
    사용자기기.
  8. 제7항에 있어서,
    상기 제1복소변조심볼은 단일 반송파 상에서 수신된 하향링크 데이터에 대한 ACK 정보의 복소변조심볼과 동일하고, 상기 제2복소변조심볼은 상기 단일 반송파 상에서 수신된 하향링크 데이터에 대한 NACK 정보의 복소변조심볼과 동일한,
    사용자기기.
PCT/KR2011/001892 2010-03-22 2011-03-18 상향링크 제어정보 전송방법 및 사용자기기 WO2011118940A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/636,603 US8867548B2 (en) 2010-03-22 2011-03-18 Method and user equipment for transmitting uplink control information
EP11759689.0A EP2552044A4 (en) 2010-03-22 2011-03-18 METHOD AND USER DEVICE FOR TRANSMITTING UPLINK TAX INFORMATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31599510P 2010-03-22 2010-03-22
US61/315,995 2010-03-22

Publications (2)

Publication Number Publication Date
WO2011118940A2 true WO2011118940A2 (ko) 2011-09-29
WO2011118940A3 WO2011118940A3 (ko) 2011-12-15

Family

ID=44673734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001892 WO2011118940A2 (ko) 2010-03-22 2011-03-18 상향링크 제어정보 전송방법 및 사용자기기

Country Status (3)

Country Link
US (1) US8867548B2 (ko)
EP (1) EP2552044A4 (ko)
WO (1) WO2011118940A2 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011041623A1 (en) 2009-10-01 2011-04-07 Interdigital Patent Holdings, Inc. Uplink control data transmission
KR101521001B1 (ko) 2010-01-08 2015-05-15 인터디지탈 패튼 홀딩스, 인크 다중 반송파의 채널 상태 정보 전송 방법
WO2011118940A2 (ko) * 2010-03-22 2011-09-29 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기
JP5552161B2 (ja) * 2010-05-19 2014-07-16 パナソニック株式会社 端末装置及び応答信号送信方法
WO2012018193A2 (en) * 2010-08-05 2012-02-09 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment
KR101878143B1 (ko) * 2010-09-19 2018-07-13 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US8743802B2 (en) 2010-11-08 2014-06-03 Blackberry Limited Allocating wireless resources
US8755340B2 (en) * 2010-11-08 2014-06-17 Blackberry Limited Releasing wireless resources
CN103329605B (zh) 2010-11-08 2016-09-28 黑莓有限公司 无线资源
US8830883B2 (en) * 2010-11-16 2014-09-09 Qualcomm Incorporated Method and apparatus for improving acknowledgement/negative acknowledgement feedback
KR101943821B1 (ko) * 2011-06-21 2019-01-31 한국전자통신연구원 무선 통신 시스템에서 제어채널 송수신 방법
EP2801233A1 (en) * 2012-01-02 2014-11-12 Nokia Solutions and Networks Oy Rate capping with multiple carrier aggregation schedulers
CN104137638A (zh) * 2013-01-18 2014-11-05 华为技术有限公司 信息传输方法和设备
KR102004544B1 (ko) 2013-02-06 2019-07-26 노키아 테크놀로지스 오와이 무선 통신 시스템에서 채널측정 기준신호 전송 방법 및 장치
WO2015020018A1 (ja) * 2013-08-09 2015-02-12 京セラ株式会社 ユーザ端末、無線アクセスネットワーク、及び通信制御方法
US11637593B2 (en) * 2015-07-09 2023-04-25 Qualcomm Incorporated Machine type communication (MTC) configuration, interference management, and retuning time for uplink transmissions
KR102323798B1 (ko) * 2015-07-16 2021-11-09 삼성전자 주식회사 무선 통신 시스템에서 단말의 하향링크 수신 방법 및 장치
US10135596B2 (en) * 2016-01-20 2018-11-20 Qualcomm Incorporated Narrow band ACK / NACK transmissions
CN107547176A (zh) * 2016-06-24 2018-01-05 北京信威通信技术股份有限公司 一种重传数据的方法及装置
CN109565681B (zh) * 2017-06-16 2021-04-09 华为技术有限公司 一种资源请求的发送方法、用户设备和基站
CN111082893B (zh) * 2018-10-19 2024-04-26 华为技术有限公司 数据发送的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646249B1 (ko) * 2008-08-11 2016-08-16 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2011118940A2 (ko) * 2010-03-22 2011-09-29 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기
CN101958778B (zh) * 2010-09-28 2015-11-25 中兴通讯股份有限公司 正确/错误应答消息的映射方法及终端
US8891416B2 (en) * 2011-01-02 2014-11-18 Lg Electronics Inc. Method and device for ACK/NACK transmission in TDD-based wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2552044A2

Also Published As

Publication number Publication date
WO2011118940A3 (ko) 2011-12-15
US8867548B2 (en) 2014-10-21
US20130010743A1 (en) 2013-01-10
EP2552044A4 (en) 2014-12-31
EP2552044A2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2011118940A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기
WO2011111977A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2012057526A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
KR101165643B1 (ko) Ack/nack 전송방법 및 사용자기기와, ack/nack 수신방법 및 기지국
WO2017099556A1 (ko) 상향링크 신호를 전송하는 방법 및 이를 위한 장치
WO2011159121A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2009116789A1 (en) Method of transmitting uplink data in wireless communication system
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2010123267A2 (ko) 무선 통신 시스템에서 제어 신호 송신 방법 및 이를 위한 장치
WO2011142608A2 (ko) 무선통신 시스템에서 srs 트리거링 기반 srs 전송 방법
WO2012108616A1 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2014142593A1 (ko) 제어 채널의 송수신 방법 및 이를 위한 장치
WO2011025195A2 (ko) 무선 통신 시스템에서 하향링크 신호 송신 방법 및 이를 위한 송신 장치
WO2012124969A2 (ko) 신호 송수신 방법 및 이를 위한 장치
WO2010140748A1 (en) Method for transmitting information of ack/nack sequence in wireless communication system and apparatus therefor
WO2013012261A2 (ko) 무선통신 시스템에서 자원 할당 정보를 송신 및 수신하는 방법과 이를 위한 장치
WO2010131897A2 (ko) 다중 반송파 시스템에서 통신 방법 및 장치
WO2011102666A2 (ko) 상향링크 전송 전력을 제어하는 단말 장치 및 그 방법
WO2017052251A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
KR20110096482A (ko) Ack/nack 정보를 전송하는 방법 및 이를 위한 장치와, ack/nack 정보를 수신하는 방법 및 이를 위한 장치
WO2016036100A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2010126247A2 (ko) 무선 통신 시스템에서 상향링크 제어 신호 송신 방법 및 이를 위한 장치
WO2012157967A2 (ko) 무선통신 시스템에서 tdd(time division duplex) 방식을 이용하는 단말이 상향링크 전송 전력을 제어하는 방법 및 그 단말 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759689

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13636603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011759689

Country of ref document: EP