WO2011118401A1 - Process for production of medical instrument, and medical instrument - Google Patents

Process for production of medical instrument, and medical instrument Download PDF

Info

Publication number
WO2011118401A1
WO2011118401A1 PCT/JP2011/055620 JP2011055620W WO2011118401A1 WO 2011118401 A1 WO2011118401 A1 WO 2011118401A1 JP 2011055620 W JP2011055620 W JP 2011055620W WO 2011118401 A1 WO2011118401 A1 WO 2011118401A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
polishing
stent
medical instrument
ion
Prior art date
Application number
PCT/JP2011/055620
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 早場
村山 啓
植村 賢介
Original Assignee
テルモ株式会社
永田精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社, 永田精機株式会社 filed Critical テルモ株式会社
Priority to JP2012506930A priority Critical patent/JPWO2011118401A1/en
Priority to US13/636,521 priority patent/US20130004362A1/en
Publication of WO2011118401A1 publication Critical patent/WO2011118401A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/12Brackets; Arch wires; Combinations thereof; Accessories therefor
    • A61C7/20Arch wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire

Definitions

  • the present invention relates to a method for manufacturing a medical device and a medical device.
  • NiTi-based alloys which are shape-memory alloys having biocompatibility
  • base materials for medical devices such as stents and guidewires (paragraph [0028] in Patent Document 1 and paragraph [0011] in Patent Document 2).
  • the NiTi alloy includes a wide range of alloys mainly composed of nickel and titanium, and a representative one is a NiTi alloy containing 43 to 57 wt% of Ni and the balance of Ti and inevitable impurities.
  • a small amount of other metals such as cobalt, iron, palladium, platinum, boron, aluminum, silicon, vanadium, niobium, copper, and the like may be added to such a NiTi alloy.
  • Patent Document 1 discloses a technique for imparting antithrombogenicity by modifying the surface of a polymer-coated stent by ion bombardment.
  • these ions “He + , C + , N + , Ne” are disclosed. + , Na + , N 2 + , O 2 + , Ar + , Kr + ”(see paragraph [0044]).
  • Patent Document 2 discloses a technique for producing a guide wire by ion-implanting a metal wire to form a guide wire in order to harden the surface of the guide wire and reduce the frictional resistance.
  • N, F, C, B, Ti, Ca, Ni, Co, Al, O, He, Ne, P (see paragraph [0024]).
  • an object of the present invention is to obtain a medical device such as a stent and a guide wire having excellent fatigue life.
  • the present inventor has found that a medical device obtained by irradiating Xe ions in a manufacturing process has an extremely excellent fatigue life, and has completed the present invention. . That is, the present invention provides the following (1) to (6).
  • a medical device manufacturing method comprising: a preparation step of preparing a medical device based on a NiTi-based alloy; and an ion irradiation step of ion irradiating Xe ions to the medical device prepared by the preparation step.
  • a medical device such as a stent or a guide wire having an excellent fatigue life.
  • the method for manufacturing a medical device of the present invention includes a preparation step of preparing a medical device based on a NiTi alloy, and an ion irradiation step of ion irradiating Xe ions to the medical device prepared by the preparation step. It is a manufacturing method of a medical device. Below, each process with which the manufacturing method of the medical device of this invention is provided is explained in full detail.
  • the manufacturing method of the medical device of this invention is equipped with the preparatory process which prepares the medical device which makes a NiTi type alloy a base material.
  • the said preparatory process can be implemented according to the normal procedure at the time of manufacturing the medical device which makes a NiTi type alloy a base material. For example, when the medical device is a stent, the non-stented portion of the pipe made of NiTi alloy is removed (removal is performed, for example, by cutting, melting, etc.) and formed into a stent shape. High temperature side shape memory processing and low temperature side shape memory processing are performed. Other medical devices are also prepared and prepared by known manufacturing methods. In addition, the said preparatory process is performed before the ion irradiation mentioned later.
  • the medical device when the medical device is a stent, ion irradiation to the non-stented portion of the stent can be omitted, and when the non-stented portion of the stent is removed, the ion irradiation effect layer of the stent-constituting portion may be removed. Disappear.
  • the medical device prepared in the preparation step is not particularly limited, and examples thereof include a stent, a guide wire, an embolic coil, a venous filter, and an orthodontic wire.
  • the NiTi alloy used as the base material of the medical device prepared in the preparation step includes a wide range of alloys mainly composed of nickel and titanium. Some NiTi alloys are generally called shape memory alloys and exhibit superelasticity at least at a living body temperature (around 37 ° C.). Superelasticity here means that even if it is deformed (bending, pulling, compressing) to a region where normal metal is plastically deformed at the operating temperature, it will recover to its almost uncompressed shape without the need for heating after the deformation is released. It means to do. As a typical NiTi alloy, there is a NiTi alloy containing 43 to 57 wt% of Ni and the balance of Ti and inevitable impurities.
  • NiTi alloy used as the base material of the medical device prepared in the preparation step is preferably one containing 54.5 to 57 wt% Ni and the balance being Ti and inevitable impurities.
  • C is 0.070 wt% or less
  • Co is 0.050 wt% or less
  • Cu is 0.010 wt% or less
  • Cr is 0.010 wt% or less
  • H is 0.00. You may contain 005 wt% or less, Fe 0.050 wt% or less, Nb 0.025 wt% or less, and O 0.050 wt% or less.
  • the manufacturing method of the medical device of this invention is equipped with the ion irradiation process which ion-irradiates Xe ion to the medical device prepared by the said preparatory process.
  • the ion irradiation step By providing the ion irradiation step, the fatigue life of the obtained medical device is improved. This is presumably because the dislocation density of the NiTi alloy increases when Xe ions heavier than Ar or the like collide with the NiTi alloy as the base material.
  • the conditions for ion irradiation of Xe ions in the ion irradiation step are not particularly limited.
  • ion irradiation for example, an ion implanter type II (manufactured by Nagata Seiki Co., Ltd.) can be preferably used.
  • the Xe gas pressure is preferably 0.004 to 0.008 Pa.
  • the Penning Current is preferably 1.2 to 1.6 A.
  • the acceleration voltage is preferably 10 to 30 kV.
  • the acceleration current is preferably 35 to 50 mA.
  • the dose is preferably 10 16 to 10 18 ions / cm 2 . If the Xe ion irradiation conditions are within this range, the fatigue life of the obtained medical device is more excellent.
  • the method for producing a medical device of the present invention may further include an acid treatment step of acid-treating the medical device prepared by the above preparation step.
  • an acid treatment step of acid-treating the medical device prepared by the above preparation step there may be inclusions generated during the manufacture of the alloy.
  • foreign matter may adhere to the surface of a medical device such as a stent or a guide wire. Therefore, in the acid treatment step, the outermost layer on the surface of the medical device in which inclusions and foreign matters may be present is removed.
  • the acid used for the acid treatment is not particularly limited as long as it has an action of dissolving the NiTi-based alloy.
  • examples thereof include nitric acid, hydrofluoric acid, hydrogen peroxide, and mixed acids thereof.
  • a mixed acid of nitric acid and hydrofluoric acid is preferable because of its strong action of dissolving the alloy.
  • a commercially available etching solution can be used, and examples thereof include Fujidiaclean FE-17 (manufactured by Fuji Acetylene Kogyo Co., Ltd.).
  • the method of acid treatment is not particularly limited and includes, for example, spraying, dipping, etc., but is suitable for bringing acid into contact with the surface of a medical device such as a stent having a fine and complicated shape. Is preferred.
  • the order of the acid treatment is not particularly limited, but is preferably after the preparation step and before the ion irradiation step.
  • the method for producing a medical device of the present invention includes a polishing step of polishing the surface of the medical device prepared by the above preparation step (for example, a stent after removing a non-stent component). It is preferable.
  • the surface roughness Ra of the surface of the medical device prepared in the preparation step is preferably 1.5 ⁇ m or less, more preferably 0.32 ⁇ m or less, and 0.15 ⁇ m or less. Is more preferable.
  • the polishing in the polishing step is not particularly limited, but is preferably polishing by electron beam irradiation and / or electrolytic polishing.
  • polishing by electron beam irradiation As conditions for polishing by electron beam irradiation, for example, the following conditions are preferably satisfied.
  • Energy density about 1 J / cm 2 or more, preferably about 1 J / cm 2 or more and 20 J / cm 2 or less, more preferably about 2 J / cm 2 or more and 15 J / cm 2 or less, more preferably about 4 J / cm 2 or 12 J / cm 2 or less, and most preferably from about 5 J / cm 2 or more 9J / cm 2 or less.
  • Pulse width 1 ⁇ s or more.
  • Electrolyte A mixture of sulfuric acid, phosphoric acid and water. -Voltage: 15V.
  • the order of the polishing steps is not particularly limited, but is preferably after the acid treatment step and before the ion irradiation step.
  • polishing by electron beam irradiation and electrolytic polishing may be performed in any order.
  • the polishing by electron beam irradiation may reduce the fatigue life, but the polishing is simpler than the electrolytic polishing in which the treatment of the electrolytic solution is complicated. Therefore, after performing polishing by electron beam irradiation, if Xe ion irradiation is performed, polishing can be performed easily and uniformly, and the fatigue life can be improved.
  • the method for producing a medical device of the present invention preferably further includes a heat treatment step because a better fatigue life can be obtained.
  • the heat treatment step is a step of heat-treating the medical device prepared in the preparation step.
  • an annealing treatment is preferable.
  • the annealing treatment is performed at 300 to 1100 ° C., preferably 450 to 700 ° C., more preferably 500 to 600 ° C. for 1 minute to 10 hours, preferably 5 minutes to 5 minutes in a vacuum or a rare gas atmosphere such as argon or helium. It may be carried out for 1 hour, more preferably 5 to 30 minutes.
  • the order of the heat treatment step is not particularly limited, but it is preferable that the heat treatment step is after the polishing step and before the ion irradiation step.
  • the method for producing a medical device of the present invention may further include another step as necessary.
  • a layer containing a biological physiologically active substance such as an immunosuppressive agent or an anticancer agent is provided on the surface of the medical device.
  • the medical device of the present invention is a medical device obtained by irradiating a medical device having a NiTi-based alloy as a base material with Xe ions.
  • the “medical device based on a NiTi alloy” means a medical device prepared by the above preparation process.
  • the medical device of the present invention may be subjected to acid treatment in the acid treatment step, polishing in the polishing step, heat treatment in the heat treatment step, and the like. Therefore, the medical device of the present invention substantially corresponds to the medical device obtained by the method for manufacturing the medical device of the present invention.
  • the medical device of this invention and the medical device obtained by the manufacturing method of the medical device of this invention are collectively called “the medical device of this invention.”
  • the medical device of the present invention include a stent, a guide wire, an embolic coil, a venous filter, and an orthodontic wire.
  • FIG. 1 is a front view showing a medical device of the present invention applied to a stent.
  • a stent 301 shown in FIG. 1 is formed in a substantially cylindrical shape.
  • the stent 301 is a so-called self-expanding stent that is reduced in diameter when inserted into a living body and restored to a shape before reducing diameter when placed in the living body.
  • FIG. 1 shows the external shape of the stent 301 when it is expanded.
  • the size of the stent 301 varies depending on the site to be placed, and is not particularly limited.
  • the outer diameter at the time of expansion is preferably 2.0 to 30 mm, and more preferably 2.5 to 20 mm.
  • the length is preferably 5 to 250 mm, more preferably 15 to 200 mm.
  • the outer diameter is preferably 2.0 to 14 mm, and more preferably 2.5 to 12 mm.
  • the length is preferably 5 to 100 mm, more preferably 10 to 80 mm.
  • the wall thickness is preferably 0.04 to 0.3 mm, and more preferably 0.06 to 0.22 mm.
  • the stent 301 formed in a substantially cylindrical shape includes a plurality of wavy annular bodies 302 in the axial direction.
  • the number of wavy annular bodies 302 varies depending on the length of the stent 301, but is preferably 2 to 150, and more preferably 5 to 100.
  • the wavy line 302 is formed of an endless wavy line that is continuous in an annular shape.
  • the wavy line forming the wavy line 302 is always curved and has very few straight portions. For this reason, the wavy body forming the annular body 302 has a sufficient length and exhibits a high expansion force during expansion.
  • the axial length of the wavy annular member 302 is preferably 1 to 10 mm, and more preferably 1.5 to 5 mm.
  • the wavy annular body 302 includes a plurality of one end side bent portions having apexes 302a on one end side in the axial direction of the stent 301, and a plurality of other end side bent portions having apexes 302b on the other end side in the axial direction of the stent 301.
  • the one end side bent portion and the other end side bent portion are alternately formed, and the number of each is the same.
  • the number of one-end-side bent portions (other-end-side bent portions) in one wavy-line annular body 302 is preferably 4 to 20, and more preferably 6 to 12.
  • the vertex 302a penetrates into the space formed between the vertices 302b of the adjacent wavy annular bodies 302, and the vertex 302b penetrates into the space formed between the vertices 302a of the adjacent wavy annular bodies 302. Yes.
  • the wavy annular body 302 has a shared linear portion 321.
  • the shared linear portion 321 has a start end 322 at or near the vertex 302b, and further has a termination 323 between the vertex 302b and the vertex 302a.
  • Adjacent wavy-line annular bodies 302 are integrated by such a shared linear portion 321.
  • the wavy annular body 302 includes a short line portion 325 and a long line portion 324.
  • the short linear portion 325 connects the start end 322 of the shared linear portion 321 and the apex 302b of the other end side bent portion.
  • the short line portions 325 are not continuous in the axial direction of the stent 301, and are formed such that a plurality of short line portions 325 are arranged in a substantially straight line.
  • the long linear portion 324 connects the end 323 of the shared linear portion 321 and the other apex 302b of the other end side bent portion.
  • the long linear portion 324 is slightly longer than the combined length of the shared linear portion 321 and the short linear portion 325. Details of the shape of the stent 301 are described in Japanese Patent Application No. 2008-238215.
  • the stent 301 having such a shape does not break due to large deformation even after being placed in a highly deformed blood vessel such as a lower limb. And since the Xe ion is irradiated in the manufacturing process, the stent 301 is excellent in the fatigue life.
  • the base material of the core member and the coil-shaped member is the above-described NiTi-based material. It is an alloy.
  • the bending strength is preferably 600 N / mm 2 or more, more preferably 800 to 1100 N / mm 2 .
  • Example wire a wire ( ⁇ 0.5 mm) made of a NiTi alloy (Ti: 49 atomic% (43.94 wt%), Ni: 51 atomic% (56.06 wt%)) is long.
  • the sample was cut to a length of 20 cm (hereinafter referred to as “sample wire”) and subjected to the treatment described below.
  • the treatments performed and their order are shown in Table 2 below.
  • the sample wire was irradiated with an electron beam under the following conditions.
  • Anode voltage 20 kV
  • Energy density about 7 J / cm 2 -Distance between electron gun end and sample wire: 20mm -Number of pulses: 10 shots
  • the sample wire was turned over and the back side was irradiated in the same manner.
  • Electrolytic polishing was performed at a voltage of 15 V using a mixed solution of sulfuric acid, phosphoric acid and water as the electrolytic solution.
  • Heat treatment The heat treatment was performed by annealing at 650 ° C. for 1 hour in vacuum (pressure 8 ⁇ 10 ⁇ 3 Pa), and then ice quenching.
  • the graph of FIG. 2 is a graph showing changes in fatigue life when electrolytic polishing or polishing by electron beam irradiation is performed. From the graph of FIG. 2, it was found that the fatigue life of the sample wire (Comparative Example 2) that was polished by electron beam irradiation was significantly lower than that of the untreated sample wire (Reference Example 1). .
  • the graph of FIG. 3 is a graph comparing the fatigue lives of sample wires subjected to electropolishing.
  • the sample wire (Example 3) which performed the ion irradiation of Xe ion after implementing electropolishing is compared with the sample wire which did not perform the ion irradiation of Xe ion (Comparative Example 1).
  • the fatigue life is remarkably improved.
  • the graph of FIG. 4 is a graph comparing the fatigue lives of sample wires that have been polished by electron beam irradiation. As described above, the fatigue life of the sample wire (Comparative Example 2) that has been polished by electron beam irradiation is significantly reduced. However, when the graph of FIG. It was found that the fatigue life of the irradiated sample wire (Example 1) was improved over the untreated sample wire (Reference Example 1). In addition, the sample wire (Example 2) in which the electrolytic polishing was performed before polishing by electron beam irradiation and Xe ion irradiation was performed thereafter (after polishing by electron beam irradiation) (Example 2) has a fatigue life. Was found to be better.
  • Stent 302 Wave-like annular body 302a Vertex 302b Vertex 321 Shared linear portion 322 Start end 323 End 324 Long linear portion 325 Short linear portion

Abstract

Disclosed are: a process for producing a medical instrument, such as a stent and a guide wire, which has an excellent fatigue life; and a medical instrument, such as a stent and a guide wire, which has an excellent fatigue life. The process for producing a medical instrument comprises: a preparation step of preparing a medical instrument comprising a NiTi-based alloy as a base material; and an ion irradiation step of irradiating the medical instrument prepared in the preparation step with Xe ions. The medical instrument is produced by irradiating a medical instrument comprising a NiTi-based alloy as a base material with Xe ions.

Description

医療用具の製造方法および医療用具Method for manufacturing medical device and medical device
 本発明は、医療用具の製造方法および医療用具に関する。 The present invention relates to a method for manufacturing a medical device and a medical device.
 従来、ステント、ガイドワイヤ等の医療用具の基材として、生体適合性を有する形状記憶合金であるNiTi系合金が知られている(特許文献1の段落[0028]、特許文献2の段落[0011]参照)。
 ここで、NiTi系合金とは、ニッケルおよびチタンを主成分とする合金を広く含み、代表的なものとしては、Niを43~57wt%含有し、残部がTiと不可避不純物からなるNiTi合金がある。このようなNiTi合金には、少量の他の金属、例えば、コバルト、鉄、パラジウム、白金、ホウ素、アルミニウム、ケイ素、バナジウム、ニオブ、銅等が添加されている場合もある。
Conventionally, NiTi-based alloys, which are shape-memory alloys having biocompatibility, are known as base materials for medical devices such as stents and guidewires (paragraph [0028] in Patent Document 1 and paragraph [0011] in Patent Document 2). ]reference).
Here, the NiTi alloy includes a wide range of alloys mainly composed of nickel and titanium, and a representative one is a NiTi alloy containing 43 to 57 wt% of Ni and the balance of Ti and inevitable impurities. . A small amount of other metals such as cobalt, iron, palladium, platinum, boron, aluminum, silicon, vanadium, niobium, copper, and the like may be added to such a NiTi alloy.
 ところで、ステント、ガイドワイヤ等の医療用具には諸性能が要求され、様々な改良が望まれている。
 例えば、特許文献1には、イオン衝撃によって高分子被覆されたステントの表面を改質して抗血栓性を付与する技術が開示され、このイオンとして、「He、C、N、Ne、Na、N 、O 、Ar、Kr」が挙げられている(段落[0044]参照)。
 また、特許文献2には、ガイドワイヤの表面を硬化させて摩擦抵抗を低下させるために、金属線にイオン注入してコイル成形してガイドワイヤを製造する技術が開示され、このイオンとして、「N、F、C、B、Ti、Ca、Ni、Co、Al、O、He、Ne、P」が挙げられている(段落[0024]参照)。
By the way, various performances are required for medical devices such as stents and guide wires, and various improvements are desired.
For example, Patent Document 1 discloses a technique for imparting antithrombogenicity by modifying the surface of a polymer-coated stent by ion bombardment. As these ions, “He + , C + , N + , Ne” are disclosed. + , Na + , N 2 + , O 2 + , Ar + , Kr + ”(see paragraph [0044]).
Patent Document 2 discloses a technique for producing a guide wire by ion-implanting a metal wire to form a guide wire in order to harden the surface of the guide wire and reduce the frictional resistance. N, F, C, B, Ti, Ca, Ni, Co, Al, O, He, Ne, P ”(see paragraph [0024]).
特開2003-325655号公報JP 2003-325655 A 特開平9-182799号公報JP 9-182799 A
 本発明者が、特許文献1,2に開示されたような医療用具についてさらに検討を行ったところ、疲労寿命については昨今要求されるレベルに達しておらず、改良が必要であることが明らかとなった。
 そこで、本発明は、疲労寿命に優れたステント、ガイドワイヤ等の医療用具を得ることを目的とする。
When the present inventor further examined the medical devices disclosed in Patent Documents 1 and 2, it was clear that the fatigue life did not reach the level required recently and improvement is necessary. became.
Therefore, an object of the present invention is to obtain a medical device such as a stent and a guide wire having excellent fatigue life.
 本発明者は、上記課題を解決するために鋭意検討した結果、製造工程においてXeイオンがイオン照射されて得られた医療用具は、疲労寿命が格段に優れることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(6)を提供する。
As a result of intensive studies to solve the above problems, the present inventor has found that a medical device obtained by irradiating Xe ions in a manufacturing process has an extremely excellent fatigue life, and has completed the present invention. .
That is, the present invention provides the following (1) to (6).
 (1)NiTi系合金を基材とする医療用具を準備する準備工程と、上記準備工程によって準備された医療用具にXeイオンをイオン照射するイオン照射工程と、を備える医療用具の製造方法。 (1) A medical device manufacturing method comprising: a preparation step of preparing a medical device based on a NiTi-based alloy; and an ion irradiation step of ion irradiating Xe ions to the medical device prepared by the preparation step.
 (2)さらに、上記準備工程によって準備された医療用具の表面を研磨する研磨工程を備える、上記(1)に記載の医療用具の製造方法。 (2) The method for manufacturing a medical device according to (1), further including a polishing step of polishing a surface of the medical device prepared by the preparation step.
 (3)上記研磨工程における研磨が、電子線照射による研磨および/または電解研磨である、上記(1)または(2)に記載の医療用具の製造方法。 (3) The method for producing a medical device according to (1) or (2), wherein the polishing in the polishing step is polishing by electron beam irradiation and / or electrolytic polishing.
 (4)さらに、上記準備工程によって準備された医療用具を熱処理する熱処理工程を備える、上記(1)~(3)のいずれかに記載の医療用具の製造方法。 (4) The method for manufacturing a medical device according to any one of (1) to (3), further including a heat treatment step of heat-treating the medical device prepared in the preparation step.
 (5)上記準備工程において準備する医療用具が、ステント、ガイドワイヤ、塞栓コイル、静脈フィルタ、または歯列矯正ワイヤである、上記(1)~(4)のいずれかに記載の医療用具の製造方法。 (5) The manufacturing of the medical device according to any one of (1) to (4), wherein the medical device prepared in the preparation step is a stent, a guide wire, an embolic coil, a venous filter, or an orthodontic wire. Method.
 (6)NiTi系合金を基材とする医療用具にXeイオンが照射されて得られる医療用具。 (6) A medical device obtained by irradiating a medical device based on a NiTi alloy with Xe ions.
 本発明によれば、疲労寿命に優れたステント、ガイドワイヤ等の医療用具を得ることができる。 According to the present invention, it is possible to obtain a medical device such as a stent or a guide wire having an excellent fatigue life.
ステントに適用された本発明の医療用具を示す正面図である。It is a front view which shows the medical device of this invention applied to the stent. 疲労寿命評価の結果を示すグラフである。It is a graph which shows the result of fatigue life evaluation. 疲労寿命評価の結果を示すグラフである。It is a graph which shows the result of fatigue life evaluation. 疲労寿命評価の結果を示すグラフである。It is a graph which shows the result of fatigue life evaluation.
<医療用具の製造方法>
 本発明の医療用具の製造方法は、NiTi系合金を基材とする医療用具を準備する準備工程と、上記準備工程によって準備された医療用具にXeイオンをイオン照射するイオン照射工程と、を備える医療用具の製造方法である。
 以下に、本発明の医療用具の製造方法が備える各工程について、詳述する。
<Method for manufacturing medical device>
The method for manufacturing a medical device of the present invention includes a preparation step of preparing a medical device based on a NiTi alloy, and an ion irradiation step of ion irradiating Xe ions to the medical device prepared by the preparation step. It is a manufacturing method of a medical device.
Below, each process with which the manufacturing method of the medical device of this invention is provided is explained in full detail.
 [準備工程]
 本発明の医療用具の製造方法は、NiTi系合金を基材とする医療用具を準備する準備工程を備える。上記準備工程は、NiTi系合金を基材とする医療用具を製造する際の通常の手順にしたがって実施することができる。
 例えば、医療用具がステントの場合、NiTi系合金からなるパイプのステント非構成部分を除去(除去は、例えば、切削、溶解等により行われる)してステント形状に成形し、必要な場合は公知の高温側形状記憶処理、低温側形状記憶処理を行う。
 他の医療用具についてもそれぞれ公知の製造方法により製造して準備する。
 なお、上記準備工程は、後述するイオン照射の前に行われる。これにより、例えば、医療用具がステントの場合、ステント非構成部分へのイオン照射が省け、また、ステント非構成部分を除去する際に、ステント構成部分のイオン照射効果層を除去してしまうおそれも無くなる。
[Preparation process]
The manufacturing method of the medical device of this invention is equipped with the preparatory process which prepares the medical device which makes a NiTi type alloy a base material. The said preparatory process can be implemented according to the normal procedure at the time of manufacturing the medical device which makes a NiTi type alloy a base material.
For example, when the medical device is a stent, the non-stented portion of the pipe made of NiTi alloy is removed (removal is performed, for example, by cutting, melting, etc.) and formed into a stent shape. High temperature side shape memory processing and low temperature side shape memory processing are performed.
Other medical devices are also prepared and prepared by known manufacturing methods.
In addition, the said preparatory process is performed before the ion irradiation mentioned later. Thereby, for example, when the medical device is a stent, ion irradiation to the non-stented portion of the stent can be omitted, and when the non-stented portion of the stent is removed, the ion irradiation effect layer of the stent-constituting portion may be removed. Disappear.
 上記準備工程において準備する医療用具としては、特に限定されないが、例えば、ステント、ガイドワイヤ、塞栓コイル、静脈フィルタ、歯列矯正ワイヤ等が挙げられる。 The medical device prepared in the preparation step is not particularly limited, and examples thereof include a stent, a guide wire, an embolic coil, a venous filter, and an orthodontic wire.
 上記準備工程において準備する医療用具の基材となるNiTi系合金は、ニッケルおよびチタンを主成分とする合金を広く含む。NiTi系合金の中は、一般に形状記憶合金と呼ばれ、少なくとも生体温度(37℃付近)で超弾性を示すものがある。ここでいう超弾性とは、使用温度において通常の金属が塑性変形する領域まで変形(曲げ、引張り、圧縮)させても、変形の解放後、加熱を必要とせずにほぼ圧縮前の形状に回復することを意味する。
 代表的なNiTi系合金としては、Niを43~57wt%含有し、残部がTiと不可避不純物とからなるNiTi合金がある。このようなNiTi合金には、少量の他の金属、例えば、コバルト、鉄、パラジウム、白金、ホウ素、アルミニウム、ケイ素、バナジウム、ニオブ、銅等が添加されている場合もある。
 上記準備工程において準備する医療用具の基材となるNiTi系合金としては、Niを54.5~57wt%含有し、残部がTiと不可避不純物とからなるものが好ましい。このようなNiTi合金には、TiおよびNi以外に、Cを0.070wt%以下、Coを0.050wt%以下、Cuを0.010wt%以下、Crを0.010wt%以下、Hを0.005wt%以下、Feを0.050wt%以下、Nbを0.025wt%以下、Oを0.050wt%以下含有してもよい。
The NiTi alloy used as the base material of the medical device prepared in the preparation step includes a wide range of alloys mainly composed of nickel and titanium. Some NiTi alloys are generally called shape memory alloys and exhibit superelasticity at least at a living body temperature (around 37 ° C.). Superelasticity here means that even if it is deformed (bending, pulling, compressing) to a region where normal metal is plastically deformed at the operating temperature, it will recover to its almost uncompressed shape without the need for heating after the deformation is released. It means to do.
As a typical NiTi alloy, there is a NiTi alloy containing 43 to 57 wt% of Ni and the balance of Ti and inevitable impurities. A small amount of other metals such as cobalt, iron, palladium, platinum, boron, aluminum, silicon, vanadium, niobium, copper, and the like may be added to such a NiTi alloy.
The NiTi alloy used as the base material of the medical device prepared in the preparation step is preferably one containing 54.5 to 57 wt% Ni and the balance being Ti and inevitable impurities. In such a NiTi alloy, in addition to Ti and Ni, C is 0.070 wt% or less, Co is 0.050 wt% or less, Cu is 0.010 wt% or less, Cr is 0.010 wt% or less, and H is 0.00. You may contain 005 wt% or less, Fe 0.050 wt% or less, Nb 0.025 wt% or less, and O 0.050 wt% or less.
 [イオン照射工程]
 本発明の医療用具の製造方法は、上記準備工程によって準備された医療用具にXeイオンをイオン照射するイオン照射工程を備える。上記イオン照射工程を備えることによって、得られる医療用具の疲労寿命が向上する。これは、Ar等よりも重いXeのイオンを、基材であるNiTi系合金に衝突させることによって、このNiTi系合金の転位密度が上がるためであると考えられる。
[Ion irradiation process]
The manufacturing method of the medical device of this invention is equipped with the ion irradiation process which ion-irradiates Xe ion to the medical device prepared by the said preparatory process. By providing the ion irradiation step, the fatigue life of the obtained medical device is improved. This is presumably because the dislocation density of the NiTi alloy increases when Xe ions heavier than Ar or the like collide with the NiTi alloy as the base material.
 上記イオン照射工程におけるXeイオンのイオン照射の条件は、特に限定されないが、イオン照射に際しては、例えば、イオン注入器I-I型(永田精機社製)を好ましく用いることができる。 The conditions for ion irradiation of Xe ions in the ion irradiation step are not particularly limited. For ion irradiation, for example, an ion implanter type II (manufactured by Nagata Seiki Co., Ltd.) can be preferably used.
 このとき、Xeガス圧(Pressure)は、0.004~0.008Paが好ましい。ペニング電流(Penning Current)は、1.2~1.6Aが好ましい。加速電圧(Acc. Voltage)は、10~30kVが好ましい。加速電流(Acc. Current)は、35~50mAが好ましい。ドーズ量(Dose)は、1016~1018ions/cm2が好ましい。
 Xeイオンのイオン照射条件がこの範囲であれば、得られる医療用具の疲労寿命がより優れる。
At this time, the Xe gas pressure (Pressure) is preferably 0.004 to 0.008 Pa. The Penning Current is preferably 1.2 to 1.6 A. The acceleration voltage (Acc. Voltage) is preferably 10 to 30 kV. The acceleration current (Acc. Current) is preferably 35 to 50 mA. The dose is preferably 10 16 to 10 18 ions / cm 2 .
If the Xe ion irradiation conditions are within this range, the fatigue life of the obtained medical device is more excellent.
 [酸処理工程]
 本発明の医療用具の製造方法は、上記準備工程によって準備された医療用具を酸処理する酸処理工程を、さらに備えていてもよい。
 医療用具を構成するNiTi系合金中には、合金製造時に生成した介在物が存在している場合がある。また、上記準備工程においてステント、ガイドワイヤ等の医療用具の表面に異物が付着する場合がある。そこで、上記酸処理工程では、介在物や異物が存在する可能性がある医療用具の表面の最外層を除去する。
[Acid treatment process]
The method for producing a medical device of the present invention may further include an acid treatment step of acid-treating the medical device prepared by the above preparation step.
In the NiTi-based alloy constituting the medical device, there may be inclusions generated during the manufacture of the alloy. In the preparation step, foreign matter may adhere to the surface of a medical device such as a stent or a guide wire. Therefore, in the acid treatment step, the outermost layer on the surface of the medical device in which inclusions and foreign matters may be present is removed.
 酸処理に使用する酸としては、NiTi系合金を溶解する作用があれば特に限定されないが、例えば、硝酸、フッ酸、過酸化水素酸、および、これらの混酸等が挙げられ、中でも、NiTi系合金を溶解する作用が強いことから、硝酸およびフッ酸の混酸が好ましい。
 また、酸処理に使用する酸としては、市販品のエッチング液も使用することができ、例えば、フジアセクリーンFE-17(富士アセチレン工業社製)等が挙げられる。
 酸処理の方法は、特に限定されず、例えば、スプレー、浸漬等が挙げられるが、微細で複雑な形状をしたステント等の医療用具の表面に酸を接触させるのに適していることから、浸漬が好ましい。
 上記酸処理の順番は、特に限定されないが、上記準備工程の後であって、上記イオン照射工程の前であることが好ましい。
The acid used for the acid treatment is not particularly limited as long as it has an action of dissolving the NiTi-based alloy. Examples thereof include nitric acid, hydrofluoric acid, hydrogen peroxide, and mixed acids thereof. A mixed acid of nitric acid and hydrofluoric acid is preferable because of its strong action of dissolving the alloy.
In addition, as the acid used for the acid treatment, a commercially available etching solution can be used, and examples thereof include Fujidiaclean FE-17 (manufactured by Fuji Acetylene Kogyo Co., Ltd.).
The method of acid treatment is not particularly limited and includes, for example, spraying, dipping, etc., but is suitable for bringing acid into contact with the surface of a medical device such as a stent having a fine and complicated shape. Is preferred.
The order of the acid treatment is not particularly limited, but is preferably after the preparation step and before the ion irradiation step.
 [研磨工程]
 本発明の医療用具の製造方法は、上記準備工程によって準備された医療用具(例えば、ステント非構成部分を除去した後のステント)の表面を滑らかにするため、この表面を研磨する研磨工程を備えることが好ましい。
 上記研磨工程では、上記準備工程によって準備された医療用具の表面の表面粗さRaを1.5μm以下にすることが好ましく、0.32μm以下にすることがより好ましく、0.15μm以下にすることがさらに好ましい。
[Polishing process]
The method for producing a medical device of the present invention includes a polishing step of polishing the surface of the medical device prepared by the above preparation step (for example, a stent after removing a non-stent component). It is preferable.
In the polishing step, the surface roughness Ra of the surface of the medical device prepared in the preparation step is preferably 1.5 μm or less, more preferably 0.32 μm or less, and 0.15 μm or less. Is more preferable.
 上記研磨工程における研磨としては、特に限定されないが、電子線照射による研磨および/または電解研磨であることが好ましい。
  (電子線照射による研磨)
 電子線照射による研磨の条件としては、例えば下記を満たすことが好ましい。
・エネルギー密度:約1J/cm2以上、好ましくは約1J/cm2以上20J/cm2以下、より好ましくは、約2J/cm2以上15J/cm2以下、さらに好ましくは、約4J/cm2以上12J/cm2以下、最も好ましくは約5J/cm2以上9J/cm2以下。
・パルス幅:1μs以上。
・照射回数(パルス数):約5回以上、より好ましくは、約20~40回。
  (電解研磨)
 電解研磨の条件としては、例えば下記を満たすことが好ましい。
・電解液:硫酸、リン酸および水の混合液。
・電圧:15V。
The polishing in the polishing step is not particularly limited, but is preferably polishing by electron beam irradiation and / or electrolytic polishing.
(Polishing by electron beam irradiation)
As conditions for polishing by electron beam irradiation, for example, the following conditions are preferably satisfied.
Energy density: about 1 J / cm 2 or more, preferably about 1 J / cm 2 or more and 20 J / cm 2 or less, more preferably about 2 J / cm 2 or more and 15 J / cm 2 or less, more preferably about 4 J / cm 2 or 12 J / cm 2 or less, and most preferably from about 5 J / cm 2 or more 9J / cm 2 or less.
・ Pulse width: 1μs or more.
Number of irradiation (number of pulses): about 5 times or more, more preferably about 20 to 40 times.
(Electrolytic polishing)
As conditions for electropolishing, for example, the following conditions are preferably satisfied.
Electrolyte: A mixture of sulfuric acid, phosphoric acid and water.
-Voltage: 15V.
 上記研磨工程の順番は、特に限定されないが、上記酸処理工程の後であって、上記イオン照射工程の前であることが好ましい。
 また、上記研磨工程における研磨として電子線照射による研磨および電解研磨を行う場合には、電子線照射による研磨と電解研磨とをいかなる順番で行ってもよい。
 なお、電子線照射による研磨は、後述するように、疲労寿命を低下させる場合もあるが、電解液の処理が煩雑である電解研磨と比較して、研磨が簡便である。したがって、電子線照射による研磨を実施した後、Xeイオンのイオン照射を実施すれば、簡便かつ均一に研磨でき、疲労寿命も向上するという効果を奏する。
The order of the polishing steps is not particularly limited, but is preferably after the acid treatment step and before the ion irradiation step.
Moreover, when polishing by electron beam irradiation and electrolytic polishing are performed as polishing in the polishing step, polishing by electron beam irradiation and electrolytic polishing may be performed in any order.
As will be described later, the polishing by electron beam irradiation may reduce the fatigue life, but the polishing is simpler than the electrolytic polishing in which the treatment of the electrolytic solution is complicated. Therefore, after performing polishing by electron beam irradiation, if Xe ion irradiation is performed, polishing can be performed easily and uniformly, and the fatigue life can be improved.
 [熱処理工程]
 本発明の医療用具の製造方法は、より良好な疲労寿命が得られるという理由から、さらに、熱処理工程を備えることが好ましい。上記熱処理工程は、上記準備工程によって準備された医療用具を熱処理する工程である。
 上記熱処理工程における熱処理としては、焼鈍処理が好ましい。焼鈍処理は、真空下、または、アルゴン、ヘリウム等の希ガス雰囲気下で300~1100℃、好ましくは450~700℃、より好ましくは500~600℃で1分~10時間、好ましくは5分~1時間、より好ましくは5分~30分時間実施すればよい。
 上記熱処理工程の順番は、特に限定されないが、上記研磨工程の後であって上記イオン照射工程の前であることが好ましい。
[Heat treatment process]
The method for producing a medical device of the present invention preferably further includes a heat treatment step because a better fatigue life can be obtained. The heat treatment step is a step of heat-treating the medical device prepared in the preparation step.
As the heat treatment in the heat treatment step, an annealing treatment is preferable. The annealing treatment is performed at 300 to 1100 ° C., preferably 450 to 700 ° C., more preferably 500 to 600 ° C. for 1 minute to 10 hours, preferably 5 minutes to 5 minutes in a vacuum or a rare gas atmosphere such as argon or helium. It may be carried out for 1 hour, more preferably 5 to 30 minutes.
The order of the heat treatment step is not particularly limited, but it is preferable that the heat treatment step is after the polishing step and before the ion irradiation step.
 [その他の工程]
 本発明の医療用具の製造方法は、必要に応じて、さらに別の工程を備えていてもよく、例えば、免疫抑制剤、抗癌剤などの生物学的生理活性物質を含有する層を医療用具の表面に形成する工程;親水化処理、樹脂コーティング処理などを行う表面改質工程;等が挙げられる。これらの付加的な工程は、上記イオン照射工程の後に行う。
[Other processes]
The method for producing a medical device of the present invention may further include another step as necessary. For example, a layer containing a biological physiologically active substance such as an immunosuppressive agent or an anticancer agent is provided on the surface of the medical device. A surface modification step for performing a hydrophilization treatment, a resin coating treatment, and the like. These additional steps are performed after the ion irradiation step.
<医療用具>
 本発明の医療用具は、NiTi系合金を基材とする医療用具にXeイオンが照射されて得られる医療用具である。ここで、「NiTi系合金を基材とする医療用具」とは、上記準備工程によって準備された医療用具を意味する。
 また、本発明の医療用具は、上記酸処理工程における酸処理、上記研磨工程における研磨、上記熱処理工程における熱処理等が施されていてもよい。
 したがって、本発明の医療用具は、実質的に、本発明の医療用具の製造方法によって得られる医療用具に相当する。
 以下では、本発明の医療用具と、本発明の医療用具の製造方法によって得られる医療用具とを併せて「本発明の医療用具」ともいう。本発明の医療用具としては、ステント、ガイドワイヤ、塞栓コイル、静脈フィルタ、歯列矯正ワイヤ等が挙げられる。
<Medical tools>
The medical device of the present invention is a medical device obtained by irradiating a medical device having a NiTi-based alloy as a base material with Xe ions. Here, the “medical device based on a NiTi alloy” means a medical device prepared by the above preparation process.
The medical device of the present invention may be subjected to acid treatment in the acid treatment step, polishing in the polishing step, heat treatment in the heat treatment step, and the like.
Therefore, the medical device of the present invention substantially corresponds to the medical device obtained by the method for manufacturing the medical device of the present invention.
Below, the medical device of this invention and the medical device obtained by the manufacturing method of the medical device of this invention are collectively called "the medical device of this invention." Examples of the medical device of the present invention include a stent, a guide wire, an embolic coil, a venous filter, and an orthodontic wire.
 本発明の医療用具のステントへの適用例について説明する。
 図1は、ステントに適用された本発明の医療用具を示す正面図である。図1に示すステント301は、略円筒形状に形成されている。また、ステント301は、生体内挿入時には縮径され、生体内留置時には縮径前の形状に復元する、いわゆる自己拡張型のステントである。なお、図1は、ステント301の拡張時の外観形状を示している。
 ステント301の大きさは留置対象部位によって異なり特に限定されないが、拡張時の外径は、2.0~30mmであるのが好ましく、2.5~20mmであるのがより好ましい。また、長さは、5~250mmであるのが好ましく、15~200mmであるのがより好ましい。
 特に、ステント301が血管内留置用ステントである場合には、外径は2.0~14mmであるのが好ましく、2.5~12mmであるのがより好ましい。また、長さは5~100mmであるのが好ましく、10~80mmであるのがより好ましい。
 そして、肉厚は、0.04~0.3mmであるのが好ましく、0.06~0.22mmであるのがより好ましい。
An application example of the medical device of the present invention to a stent will be described.
FIG. 1 is a front view showing a medical device of the present invention applied to a stent. A stent 301 shown in FIG. 1 is formed in a substantially cylindrical shape. In addition, the stent 301 is a so-called self-expanding stent that is reduced in diameter when inserted into a living body and restored to a shape before reducing diameter when placed in the living body. FIG. 1 shows the external shape of the stent 301 when it is expanded.
The size of the stent 301 varies depending on the site to be placed, and is not particularly limited. However, the outer diameter at the time of expansion is preferably 2.0 to 30 mm, and more preferably 2.5 to 20 mm. The length is preferably 5 to 250 mm, more preferably 15 to 200 mm.
In particular, when the stent 301 is an intravascular placement stent, the outer diameter is preferably 2.0 to 14 mm, and more preferably 2.5 to 12 mm. Further, the length is preferably 5 to 100 mm, more preferably 10 to 80 mm.
The wall thickness is preferably 0.04 to 0.3 mm, and more preferably 0.06 to 0.22 mm.
 略円筒形状に形成されたステント301は、軸方向に複数の波線状環状体302を備える。波線状環状体302の数としては、ステント301の長さによっても相違するが、2~150が好ましく、5~100がより好ましい。
 波線状環状体302は、環状に連続した無端の波線状体により構成されている。波線状環状体302を構成する波線状体は、常に湾曲しており、直線状部分が極めて少ない。このため、環状体302を形成する波線状体は十分な長さを有し、拡張時における高い拡張力を発揮する。また、波線状環状体302の軸方向の長さとしては、1~10mmが好ましく、1.5~5mmがより好ましい。
The stent 301 formed in a substantially cylindrical shape includes a plurality of wavy annular bodies 302 in the axial direction. The number of wavy annular bodies 302 varies depending on the length of the stent 301, but is preferably 2 to 150, and more preferably 5 to 100.
The wavy line 302 is formed of an endless wavy line that is continuous in an annular shape. The wavy line forming the wavy line 302 is always curved and has very few straight portions. For this reason, the wavy body forming the annular body 302 has a sufficient length and exhibits a high expansion force during expansion. The axial length of the wavy annular member 302 is preferably 1 to 10 mm, and more preferably 1.5 to 5 mm.
 波線状環状体302は、ステント301の軸方向の一端側に頂点302aを有する複数の一端側屈曲部と、ステント301の軸方向の他端側に頂点302bを有する複数の他端側屈曲部と、を有する。
 一端側屈曲部と他端側屈曲部とは、交互に形成されており、かつそれぞれの数は同じである。1つの波線状環状体302における一端側屈曲部(他端側屈曲部)の数としては、4~20が好ましく、6~12がより好ましい。
 頂点302aは、隣り合う波線状環状体302の頂点302b間に形成される空間に侵入しており、頂点302bは、隣り合う波線状環状体302の頂点302a間に形成される空間に侵入している。
The wavy annular body 302 includes a plurality of one end side bent portions having apexes 302a on one end side in the axial direction of the stent 301, and a plurality of other end side bent portions having apexes 302b on the other end side in the axial direction of the stent 301. Have.
The one end side bent portion and the other end side bent portion are alternately formed, and the number of each is the same. The number of one-end-side bent portions (other-end-side bent portions) in one wavy-line annular body 302 is preferably 4 to 20, and more preferably 6 to 12.
The vertex 302a penetrates into the space formed between the vertices 302b of the adjacent wavy annular bodies 302, and the vertex 302b penetrates into the space formed between the vertices 302a of the adjacent wavy annular bodies 302. Yes.
 また、波線状環状体302は、共有線状部321を有する。
 共有線状部321は、頂点302bまたはその付近に始端322を有し、さらに、頂点302bと頂点302aとの間に終端323を有する。このような共有線状部321により、隣り合う波線状環状体302が一体化している。
Moreover, the wavy annular body 302 has a shared linear portion 321.
The shared linear portion 321 has a start end 322 at or near the vertex 302b, and further has a termination 323 between the vertex 302b and the vertex 302a. Adjacent wavy-line annular bodies 302 are integrated by such a shared linear portion 321.
 さらに、波線状環状体302は、短線状部325と長線状部324とを有する。
 短線状部325は、共有線状部321の始端322と他端側屈曲部の頂点302bとを連結する。短線状部325は、ステント301の軸方向に連続せず、複数の短線状部325がほぼ直線状に並ぶように形成されている。
 長線状部324は、共有線状部321の終端323と他端側屈曲部の他の頂点302bとを連結する。共有線状部321と短線状部325とを合わせた長さよりも、長線状部324の方が若干長い。
 このステント301の形状の詳細については、特願2008-238215号明細書に記載される。
Furthermore, the wavy annular body 302 includes a short line portion 325 and a long line portion 324.
The short linear portion 325 connects the start end 322 of the shared linear portion 321 and the apex 302b of the other end side bent portion. The short line portions 325 are not continuous in the axial direction of the stent 301, and are formed such that a plurality of short line portions 325 are arranged in a substantially straight line.
The long linear portion 324 connects the end 323 of the shared linear portion 321 and the other apex 302b of the other end side bent portion. The long linear portion 324 is slightly longer than the combined length of the shared linear portion 321 and the short linear portion 325.
Details of the shape of the stent 301 are described in Japanese Patent Application No. 2008-238215.
 このような形状を有するステント301は、下肢など変形の大きい血管への留置後も、大きな変形による破壊がない。そして、ステント301は、その製造工程においてXeイオンが照射されているため、疲労寿命に優れる。 The stent 301 having such a shape does not break due to large deformation even after being placed in a highly deformed blood vessel such as a lower limb. And since the Xe ion is irradiated in the manufacturing process, the stent 301 is excellent in the fatigue life.
 以上、本発明の医療用具のステントへの適用例を説明したが、これに限定されない。
 例えば、細長形状のコア部材とこのコア部材の全部または一部を包囲するコイル状部材とを有するガイドワイヤに適用される場合においては、コア部材およびコイル状部材の基材が、上述したNiTi系合金である。そして、このようなコア部材およびコイル状部材に成型後、Xeイオンが照射されているため、得られるガイドワイヤは疲労寿命に優れる。
 このようなガイドワイヤにおいては、曲げ強度が600N/mm2以上であるのが好ましく、800~1100N/mm2であるのがより好ましい。
As mentioned above, although the application example to the stent of the medical device of this invention was demonstrated, it is not limited to this.
For example, when applied to a guide wire having an elongated core member and a coil-shaped member surrounding all or part of the core member, the base material of the core member and the coil-shaped member is the above-described NiTi-based material. It is an alloy. And since Xe ion is irradiated after shaping | molding into such a core member and a coil-shaped member, the obtained guide wire is excellent in fatigue life.
In such a guide wire, the bending strength is preferably 600 N / mm 2 or more, more preferably 800 to 1100 N / mm 2 .
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の参考例、比較例および実施例では、NiTi系合金(Ti:49原子%(43.94wt%)、Ni:51原子%(56.06wt%))製のワイヤ(φ0.5mm)を長さ20cmに切断したもの(以下、「サンプルワイヤ」という)を使用し、以下に記載する処理を施した。施した処理およびその順序については下記第2表に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In the following reference examples, comparative examples, and examples, a wire (φ0.5 mm) made of a NiTi alloy (Ti: 49 atomic% (43.94 wt%), Ni: 51 atomic% (56.06 wt%)) is long. The sample was cut to a length of 20 cm (hereinafter referred to as “sample wire”) and subjected to the treatment described below. The treatments performed and their order are shown in Table 2 below.
 [酸処理]
 フジアセクリーンFE-17(HNO3:53.8%、HF:8.0%、H2O:38.2%)を水で25vol%の濃度に希釈した溶液にサンプルワイヤを室温で30秒間浸漬させた。
[Acid treatment]
FUJI SECLEAN FE-17 (HNO 3 : 53.8%, HF: 8.0%, H 2 O: 38.2%) was diluted with water to a concentration of 25 vol%, and the sample wire was placed at room temperature for 30 seconds. Soaked.
 [電子線照射による研磨]
 サンプルワイヤに下記条件で電子線照射を実施した。
・陽極電圧:20kV
・エネルギー密度:約7J/cm2
・電子銃端部とサンプルワイヤとの距離:20mm
・パルス数:10ショット
 サンプルワイヤの長手方向に35mm間隔を開けて電子線を3個所に照射した後、サンプルワイヤを裏返して裏面側にも同様に照射した。
[Polishing by electron beam irradiation]
The sample wire was irradiated with an electron beam under the following conditions.
・ Anode voltage: 20 kV
Energy density: about 7 J / cm 2
-Distance between electron gun end and sample wire: 20mm
-Number of pulses: 10 shots After irradiating three electron beams at intervals of 35 mm in the longitudinal direction of the sample wire, the sample wire was turned over and the back side was irradiated in the same manner.
 [電解研磨]
 電解液として硫酸、リン酸および水の混合液を使用し、電圧15Vで電解研磨を実施した。
[Electrolytic polishing]
Electrolytic polishing was performed at a voltage of 15 V using a mixed solution of sulfuric acid, phosphoric acid and water as the electrolytic solution.
 [熱処理]
 熱処理は、真空中(圧力8×10-3Pa)で650℃1時間焼鈍処理し、その後アイスクエンチングした。
[Heat treatment]
The heat treatment was performed by annealing at 650 ° C. for 1 hour in vacuum (pressure 8 × 10 −3 Pa), and then ice quenching.
 [イオン照射]
 サンプルワイヤに対して、上述したイオン注入器I-I型(永田精機社製)を用いて、下記第1表に示す条件で、イオン照射を実施した(照射したイオン:Xeイオン)。
Figure JPOXMLDOC01-appb-T000001
[Ion irradiation]
The sample wire was subjected to ion irradiation under the conditions shown in Table 1 below using the above-described ion implanter type II (manufactured by Nagata Seiki Co., Ltd.) (irradiated ions: Xe ions).
Figure JPOXMLDOC01-appb-T000001
 [疲労寿命評価]
 各処理後のサンプルワイヤに対して下記条件で回転曲げ試験を実施して疲労寿命(サイクル数)を評価した。結果を下記第2表および図2~4に示す。
・ワイヤを浸漬する水浴温度:37℃
・回転速度:3600rpm
 なお、回転曲げ試験における負荷応力を同等レベルにするため、下記条件で3点曲げ試験を実施し、各サンプルについて回転曲げ試験時のセンター距離(center distance)を調整した。
  (3点曲げ試験)
・試験速度:2mm/min
・支点距離:25mm
・押込み量:0→2.5→0mm
[Fatigue life evaluation]
A rotating bending test was performed on the sample wire after each treatment under the following conditions to evaluate the fatigue life (number of cycles). The results are shown in Table 2 below and FIGS.
・ Water bath temperature for immersing wires: 37 ° C
・ Rotation speed: 3600 rpm
In addition, in order to make the load stress in a rotation bending test into an equivalent level, the three-point bending test was implemented on the following conditions, and the center distance (center distance) at the time of a rotation bending test was adjusted about each sample.
(3-point bending test)
・ Test speed: 2 mm / min
・ Support distance: 25mm
・ Pushing amount: 0 → 2.5 → 0mm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図2のグラフは、電解研磨または電子線照射による研磨を実施した場合における疲労寿命の変化を示すグラフである。
 図2のグラフを見ると、電子線照射による研磨を実施したサンプルワイヤ(比較例2)は、未処理のサンプルワイヤ(参考例1)と比較して、疲労寿命が著しく低下することが分かった。
The graph of FIG. 2 is a graph showing changes in fatigue life when electrolytic polishing or polishing by electron beam irradiation is performed.
From the graph of FIG. 2, it was found that the fatigue life of the sample wire (Comparative Example 2) that was polished by electron beam irradiation was significantly lower than that of the untreated sample wire (Reference Example 1). .
 図3のグラフは、電解研磨を実施したサンプルワイヤにおける疲労寿命を比較したグラフである。
 図3のグラフを見ると、電解研磨を実施した後にXeイオンのイオン照射を実施したサンプルワイヤ(実施例3)は、Xeイオンのイオン照射を実施しなかったサンプルワイヤ(比較例1)と比較して、疲労寿命が著しく向上することが分かった。
The graph of FIG. 3 is a graph comparing the fatigue lives of sample wires subjected to electropolishing.
When the graph of FIG. 3 is seen, the sample wire (Example 3) which performed the ion irradiation of Xe ion after implementing electropolishing is compared with the sample wire which did not perform the ion irradiation of Xe ion (Comparative Example 1). Thus, it was found that the fatigue life is remarkably improved.
 図4のグラフは、電子線照射による研磨を実施したサンプルワイヤにおける疲労寿命を比較したグラフである。
 上述したように、電子線照射による研磨を実施したサンプルワイヤ(比較例2)は疲労寿命が著しく低下するが、図4のグラフを見ると、電子線照射による研磨を実施した後にXeイオンのイオン照射を実施したサンプルワイヤ(実施例1)は、未処理のサンプルワイヤ(参考例1)よりも疲労寿命が向上することが分かった。また、電子線照射による研磨を実施する前に電解研磨を実施し、その後(電子線照射による研磨を実施した後)にXeイオンのイオン照射を実施したサンプルワイヤ(実施例2)は、疲労寿命がより優れることが分かった。
The graph of FIG. 4 is a graph comparing the fatigue lives of sample wires that have been polished by electron beam irradiation.
As described above, the fatigue life of the sample wire (Comparative Example 2) that has been polished by electron beam irradiation is significantly reduced. However, when the graph of FIG. It was found that the fatigue life of the irradiated sample wire (Example 1) was improved over the untreated sample wire (Reference Example 1). In addition, the sample wire (Example 2) in which the electrolytic polishing was performed before polishing by electron beam irradiation and Xe ion irradiation was performed thereafter (after polishing by electron beam irradiation) (Example 2) has a fatigue life. Was found to be better.
 301 ステント
 302 波線状環状体
 302a 頂点
 302b 頂点
 321 共有線状部
 322 始端
 323 終端
 324 長線状部
 325 短線状部
301 Stent 302 Wave-like annular body 302a Vertex 302b Vertex 321 Shared linear portion 322 Start end 323 End 324 Long linear portion 325 Short linear portion

Claims (6)

  1.  NiTi系合金を基材とする医療用具を準備する準備工程と、
     前記準備工程によって準備された医療用具にXeイオンをイオン照射するイオン照射工程と、
    を備える医療用具の製造方法。
    A preparation step of preparing a medical device based on a NiTi alloy;
    An ion irradiation step of ion irradiating Xe ions to the medical device prepared by the preparation step;
    A method of manufacturing a medical device comprising:
  2.  さらに、前記準備工程によって準備された医療用具の表面を研磨する研磨工程を備える、請求項1に記載の医療用具の製造方法。 Furthermore, the manufacturing method of the medical device of Claim 1 provided with the grinding | polishing process of grind | polishing the surface of the medical device prepared by the said preparation process.
  3.  前記研磨工程における研磨が、電子線照射による研磨および/または電解研磨である、請求項1または2に記載の医療用具の製造方法。 The method for producing a medical device according to claim 1 or 2, wherein the polishing in the polishing step is polishing by electron beam irradiation and / or electrolytic polishing.
  4.  さらに、前記準備工程によって準備された医療用具を熱処理する熱処理工程を備える、請求項1~3のいずれかに記載の医療用具の製造方法。 The method for manufacturing a medical device according to any one of claims 1 to 3, further comprising a heat treatment step of heat-treating the medical device prepared by the preparation step.
  5.  前記準備工程において準備する医療用具が、ステント、ガイドワイヤ、塞栓コイル、静脈フィルタ、または歯列矯正ワイヤである、請求項1~4のいずれかに記載の医療用具の製造方法。 The method for producing a medical device according to any one of claims 1 to 4, wherein the medical device prepared in the preparation step is a stent, a guide wire, an embolic coil, a venous filter, or an orthodontic wire.
  6.  NiTi系合金を基材とする医療用具にXeイオンが照射されて得られる医療用具。 A medical device obtained by irradiating a medical device based on a NiTi alloy with Xe ions.
PCT/JP2011/055620 2010-03-25 2011-03-10 Process for production of medical instrument, and medical instrument WO2011118401A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012506930A JPWO2011118401A1 (en) 2010-03-25 2011-03-10 Method for manufacturing medical device and medical device
US13/636,521 US20130004362A1 (en) 2011-03-10 2011-03-10 Process for production of medical instrument, and medical instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010069524 2010-03-25
JP2010-069524 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118401A1 true WO2011118401A1 (en) 2011-09-29

Family

ID=44672962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055620 WO2011118401A1 (en) 2010-03-25 2011-03-10 Process for production of medical instrument, and medical instrument

Country Status (2)

Country Link
JP (1) JPWO2011118401A1 (en)
WO (1) WO2011118401A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961891A (en) * 2020-09-10 2020-11-20 沈阳中核舰航特材科技有限公司 Manufacturing method of high-performance medical nickel-titanium alloy guide needle material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502638A (en) * 1998-02-10 2002-01-29 インプラント サイエンシーズ コーポレイション Medical devices that emit soft X-rays
JP2004500167A (en) * 1999-11-19 2004-01-08 アドバンスト・バイオ・プロスゼティック・サーフィスズ・リミテッド Intraluminal device providing improved endothelialization and method of making same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050059994A1 (en) * 2003-09-17 2005-03-17 Steven Walak Fatigue resistant medical devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502638A (en) * 1998-02-10 2002-01-29 インプラント サイエンシーズ コーポレイション Medical devices that emit soft X-rays
JP2004500167A (en) * 1999-11-19 2004-01-08 アドバンスト・バイオ・プロスゼティック・サーフィスズ・リミテッド Intraluminal device providing improved endothelialization and method of making same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKIRA HASEGAWA ET AL.: "Heisei 14 Nendo Genken Shisetsu Riyo Kenkyu Seika Hokokusho, Kekkan Keisei Jutsugo no Saikyosaku Yoboho to shite no Ion Chunyu ni yoru Hosha Kassei Stent no Rinsho Oyo", GENKEN SHISETSU RIYO KYODO KENKYU SEIKA HOKOKUSHO, 2004, pages 110 - 112 *
ANDERSON M.E. ET AL.: "Fracture resistance of electropolished rotary nickel-titanium endodontic instruments.", JOURNAL OF ENDODONTICS, vol. 33, no. 10, 2007, pages 1212 - 1216, XP022263064, DOI: doi:10.1016/j.joen.2007.07.007 *
MAENDL S. ET AL.: "Wear behaviour of NiTi shape memory alloy after oxygen-PIII treatment.", SURFACE & COATINGS TECHNOLOGY, vol. 200, no. 22-23, 2006, pages 6225 - 6229 *
RYOZO NAGAI ET AL.: "Heisei 11 Nendo Genken Daigaku Genshiro Riyo Kyodo Kenkyu Seika Hokokusho, Ion Chunyuho ni yoru Hosha Kassei Stent no Kaihatsu to Domyaku Saikyosaku Yobo eno Oyo", GENKEN SHISETSU RIYO KYODO KENKYU SEIKA HOKOKUSHO, 2001, pages 128 - 130 *
VIANA A.C. ET AL.: "Influence of sterilization on mechanical properties and fatigue resistance of nickel-titanium rotary endodontic instruments.", INTERNATIONAL ENDODONTIC JOURNAL, vol. 39, no. 9, 2006, pages 709 - 715 *
WOLLE C.F. ET AL.: "The effect of argon and nitrogen ion implantation on nickel-titanium rotary instruments.", JOURNAL OF ENDODONTICS, vol. 35, no. 11, 2009, pages 1558 - 1562, XP026697991, DOI: doi:10.1016/j.joen.2009.07.023 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961891A (en) * 2020-09-10 2020-11-20 沈阳中核舰航特材科技有限公司 Manufacturing method of high-performance medical nickel-titanium alloy guide needle material

Also Published As

Publication number Publication date
JPWO2011118401A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US11001910B2 (en) Fatigue strength of shape memory alloy tubing and medical devices made therefrom
JP5068672B2 (en) Method for forming an improved metal alloy stent
US20020092583A1 (en) Medical devices, particularly stents, and methods for their manufacture
EP2242864B1 (en) A superelastic or Shape Memory Article
JP6094901B2 (en) Fatigue-resistant wire and manufacturing method thereof
US9402936B2 (en) Medical devices having alloy compositions
EP2885074B1 (en) Surface oxide removal methods
US20040117001A1 (en) Medical devices, particularly stents, and methods for their manufacture
US9480550B2 (en) Highly elastic stent and production method for highly elastic stent
US20130004362A1 (en) Process for production of medical instrument, and medical instrument
US9561120B2 (en) Intravascular functional element and method of manufacture
WO2011118401A1 (en) Process for production of medical instrument, and medical instrument
US20130092555A1 (en) Removal of an island from a laser cut article
EP1877114B1 (en) Medical devices and methods of making the same
CN111187945B (en) TiNb/NiTi memory material containing Nb layer and preparation method
JP5355972B2 (en) Stent manufacturing method
KR101976074B1 (en) Method for manufacturing biodegradable stent
WO2009070133A1 (en) Process for forming an improved metal alloy stent
Oncel et al. Cutting of 316L Stainless Steel Stents by using Different Methods and Effect of Following Heat Treatment on Their Microstructures
JP2003094109A (en) Metal wire of metal plate, and thin wire and thin sheet for medical equipment
JP2016187501A (en) Medical implant
CN117364003A (en) Preparation method of super-elastic nickel-titanium alloy wire and super-elastic nickel-titanium alloy wire
JP2001096307A (en) Method for manufacturing shape memory alloy tube
JP2023154806A (en) Method for manufacturing ptir alloy pipe
Oncel et al. EFFECT OF CUTTING METHODS AND ANNEALING ON THE 316L STAINLESS STEEL STENT STRUCTURE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759208

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506930

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759208

Country of ref document: EP

Kind code of ref document: A1