WO2011118203A1 - Compound semiconductor particle composition, compound semiconductor film and method for same, photoelectric conversion element, and solar cell - Google Patents

Compound semiconductor particle composition, compound semiconductor film and method for same, photoelectric conversion element, and solar cell Download PDF

Info

Publication number
WO2011118203A1
WO2011118203A1 PCT/JP2011/001687 JP2011001687W WO2011118203A1 WO 2011118203 A1 WO2011118203 A1 WO 2011118203A1 JP 2011001687 W JP2011001687 W JP 2011001687W WO 2011118203 A1 WO2011118203 A1 WO 2011118203A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
compound semiconductor
group
semiconductor
composition
Prior art date
Application number
PCT/JP2011/001687
Other languages
French (fr)
Japanese (ja)
Inventor
良太 小宮
貴理博 中野
寛政 澁谷
秀利 工藤
一彦 松浦
佐々木 繁
鶴田 仁志
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2012506845A priority Critical patent/JPWO2011118203A1/en
Publication of WO2011118203A1 publication Critical patent/WO2011118203A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a chalcopyrite compound semiconductor particle composition, a chalcopyrite compound semiconductor film using the same, a manufacturing method thereof, a photoelectric conversion element and a solar cell using the compound semiconductor film.
  • the chalcopyrite compound semiconductor is a compound represented by the general formula LMX 2 (wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB). is there.
  • L is at least one selected from the group consisting of Cu, Ag, and Au.
  • M is preferably at least one selected from the group consisting of Al, Ga, and In.
  • X is preferably at least one selected from the group consisting of S, Se, and Te.
  • CIS CuInSe 2
  • Cu In, Ga) Se 2
  • CIGS Cu (In, Ga) Se 2
  • CIS and CIGS are collectively referred to as a CI (G) S system.
  • CI (G) S-based chalcopyrite compound semiconductors can be made lighter than conventional solar cells using silicon, and can be manufactured at low cost because material costs can be reduced. It has the advantage that it can be used (Non-Patent Document 1, etc.).
  • a multi-source deposition method is known as a method for forming a CIGS film (Non-Patent Document 2 or the like).
  • the III-VI group compound is formed by simultaneously depositing a group III element and a VI group element in the first stage, and the group I element and the VI group element are simultaneously deposited in the second stage.
  • a three-stage vapor deposition method is known in which a group III element and a group VI element are deposited at the same time. It is known that a film showing high photoelectric conversion efficiency can be formed by this production method.
  • this method needs to form a film under a vacuum, the manufacturing facility is limited, so it is not suitable for mass production and is a manufacturing method with high manufacturing cost.
  • a selenization method As another film formation method for CIGS films, a selenization method is known (Patent Documents 1, 2, etc.).
  • the selenization method components other than selenium, such as copper, indium, and gallium, are previously formed into a thin film by vapor deposition or sputtering, and then solid selenium, selenium gas, hydrogen selenide, or alkyl selenium is used.
  • This is a manufacturing method for forming a CIGS film by selenization.
  • this method can improve the mass productivity as compared with the above-described multi-source vapor deposition method, it is a production process under vacuum and the production cost is high because a selenium compound is used.
  • Non-patent Document 3 As a film forming method capable of reducing the manufacturing cost by a non-vacuum process, a particle coating method using chalcopyrite compound semiconductor particles has been studied. For example, Wada et al. Of Ryukoku University obtained an ink for screen printing by adding an organic solvent to CIGS particles produced by a low-temperature, short-time MCP (Mechanochemical process), and applied this onto the substrate by screen printing, and selenium gas A CIGS film is formed by firing at 575 ° C. in an atmosphere (Non-patent Document 3). However, the CIGS film actually formed in Non-Patent Document 3 has a low photoelectric conversion efficiency of 2.7%.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a chalcopyrite compound semiconductor particle composition capable of improving the photoelectric conversion efficiency of a compound semiconductor film by a particle coating method. Is. Another object of the present invention is to provide a chalcopyrite compound semiconductor film that is manufactured using the above-described particle composition and can improve the photoelectric conversion efficiency, and a manufacturing method thereof.
  • the compound semiconductor particle composition of the present invention comprises: A group of particles each consisting of at least one semiconductor particle comprising a chalcopyrite compound semiconductor (i) represented by the following general formula and having a number average particle size calculated by a transmission electron microscope of 100 nm or more ( A) and A particle group (BX) composed of at least one kind of a plurality of semiconductor particles and having a number average particle size calculated by a transmission electron microscope smaller than the particle group (A) and / or a non-solid which becomes a solid semiconductor by heating It consists of a semiconductor precursor composition (BY) and contains a filler (B) that fills the gaps between the particle groups (A).
  • LMX 2 wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB.
  • the compound semiconductor film of the present invention is A compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i), A step (1) of preparing the compound semiconductor particle composition of the present invention, The film thickness is 0.5 ⁇ m or more and 10 ⁇ m or less manufactured by a manufacturing method that sequentially includes the step (2) of forming the coating film by applying the compound semiconductor particle composition on a substrate.
  • the method for producing the compound semiconductor film of the present invention comprises: A method for producing a compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i), A step (1) of preparing the compound semiconductor particle composition of the present invention, A step (2) of applying the compound semiconductor particle composition on a substrate to form a coating film.
  • the method for producing a compound semiconductor film of the present invention preferably includes a step (3) of baking the coating film after the step (2).
  • the photoelectric conversion element of the present invention comprises a light absorption layer comprising the compound semiconductor film of the present invention and a pair of electrodes.
  • the solar cell of the present invention comprises the above-described photoelectric conversion element of the present invention.
  • the chalcopyrite type compound semiconductor particle composition which can aim at the improvement of the photoelectric conversion efficiency of the compound semiconductor film by a particle-coating method can be provided.
  • a chalcopyrite-based compound semiconductor film that is manufactured by a particle coating method and can improve the photoelectric conversion efficiency and a method for manufacturing the same can be provided by using the particle composition. .
  • the compound semiconductor film of the present invention includes at least one chalcopyrite compound semiconductor represented by the following general formula (i) and is manufactured by a particle coating method.
  • L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB.
  • L include Cu, Ag, and Au.
  • M include Al, Ga, and In.
  • X include O, S, Se, and Te.
  • the compound semiconductor film of the present invention preferably includes at least one compound semiconductor represented by the following general formula (ii), and is represented by the following general formula (iii). More preferably, it contains at least one compound semiconductor.
  • (L1) (M1) (X1) 2 (where L1 is at least one IB group element selected from the group consisting of Cu, Ag, and Au, and M1 is selected from the group consisting of Al, Ga, and In) At least one group IIIB, X1 represents at least one group VIB selected from the group consisting of S, Se, and Te.) (Ii), (L2) (M2) (X2) 2 (where L2 is at least one group IB element containing Cu, M2 is at least one group IIIB containing Ga and / or In, and X2 is at least one containing Se) Each represents a VIB family of species.) ... (iii)
  • Examples of the compound semiconductor represented by the formula (iii) include CuInSe 2 (CIS) and Cu (In, Ga) Se 2 (CIGS). These CI (G) S systems have a matching band gap, a high light absorption coefficient, and a high photoelectric conversion efficiency can be obtained with a thin film.
  • the method for producing the compound semiconductor film of the present invention comprises: A step (1) of preparing the compound semiconductor particle composition of the present invention, A step (2) of applying the compound semiconductor particle composition on a substrate to form a coating film.
  • the method for producing a compound semiconductor film of the present invention preferably includes a step (3) of baking the coating film after the step (2).
  • the compound semiconductor particle composition of the present invention is prepared.
  • the relationship between the semiconductor conductivity types of the particle group (A) and the filler (B) is not particularly limited (unless otherwise specified in the present specification, the semiconductor precursor composition (BY)). Is the semiconductor conductivity type after heating.), And these conductivity types are preferably the same.
  • a p-type is generally used as a light absorption layer of a photoelectric conversion element. Accordingly, the semiconductor conductivity type of the particle group (A) and the filler (B) is preferably p-type.
  • composition of the particle group (A) and the filler (B) may be any composition as long as the composition of the compound semiconductor film to be finally formed as a whole.
  • the composition of the particle group (A) may be the same as or different from the composition of the compound semiconductor film to be formed.
  • the amount of selenium in the particle group (A) is set to be smaller than the amount of selenium of the compound semiconductor film of the present invention to be finally produced. it can.
  • the composition of the particle group (BX) and the fired semiconductor precursor composition (BY) may be a chalcopyrite compound semiconductor or any other semiconductor.
  • the semiconductor band gap Eg of the particle group (A) and the filler (B) (unless otherwise specified in the present specification, the semiconductor precursor composition (BY) means a semiconductor band gap after heating). The difference is preferably within 15%.
  • the particle group (BX) is preferably a chalcopyrite compound semiconductor.
  • the compound semiconductor particle composition of the present invention when the compound semiconductor particle composition of the present invention includes a particle group (BX), the compound semiconductor particle composition of the present invention is a chalcopyrite compound represented by the above general formula as the particle group (BX). It is preferable to include a particle group composed of at least one kind of a plurality of semiconductor particles composed of the semiconductor (i).
  • the composition of the semiconductor precursor composition (BY) after firing is preferably a chalcopyrite compound semiconductor.
  • the compound semiconductor particle composition of the present invention includes a semiconductor precursor composition (BY)
  • the compound semiconductor particle composition of the present invention is heated as the semiconductor precursor composition (BY) by heating.
  • the semiconductor precursor composition (BY) comprises at least one elemental metal and / or metal compound containing at least one constituent metal element of the chalcopyrite compound semiconductor (i) represented by the general formula. It is set as the composition containing.
  • the metal compound include various metal salts such as metal halide salts.
  • the simple metal and / or metal compound may form a metal complex in the semiconductor precursor composition (BY).
  • the semiconductor precursor composition (BY) includes at least one organic solvent and / or inorganic solvent that solubilizes the at least one elemental metal and / or the metal compound.
  • the semiconductor precursor composition (BY) can contain any additive such as a pH adjuster or a dispersant.
  • a compound semiconductor particle composition comprising a semiconductor precursor composition (BY) and a filler (B) that fills the gaps of the particle group (A) is used.
  • the particle group (A) having a relatively large average particle diameter may increase the gap between the particles when the coating film is formed.
  • the particle interface distance is long, and the fusion of the particle interface is difficult to proceed during firing. For this reason, voids are not filled during firing, and the resulting compound semiconductor film has large voids.
  • an n-type semiconductor enters a void in a buffer layer formation process such as a chemical bath deposition method (CBD method) after the formation of the light absorption layer. .
  • CBD method chemical bath deposition method
  • a particle group (A) having a relatively large average particle diameter and a particle group (BX) having a relatively small average particle diameter are used in combination, as shown in FIG.
  • Into the voids of a plurality of particles (A) having a relatively large average particle diameter are filled with the particle group (BX) having a relatively small average particle diameter to obtain a film having a small void volume per unit volume. It is done.
  • the generated carrier group (A) having a relatively large average particle diameter functions as a conductive path, deactivation of the carrier can be suppressed.
  • a non-solid semiconductor precursor composition that becomes a solid semiconductor by heating, a particle group (A) having a relatively large average particle diameter, a particle group (BX) having a relatively small average particle diameter, and heating. Even if it uses together with a thing (BY), the effect similar to FIG. 2C and FIG. 2D is acquired.
  • the average particle diameter of the particle group (BX) is smaller because the void volume per unit volume can be reduced.
  • the number average particle diameter calculated from the transmission electron microscope of the particle group (BX) is 50% or less of the number average particle diameter calculated from the transmission electron microscope of the particle group (A). Is preferable, more preferably 20% or less, and still more preferably 10% or less.
  • the particle group (BX) is preferably a particle group (BX-1) having a number average particle diameter calculated by a transmission electron microscope of 100 nm or less.
  • the number average particle size of the particle group (BX) is more preferably 0.1 to 100 nm, further preferably 1 to 80 nm, and particularly preferably 5 to 50 nm.
  • particle diameter the average value of the lengths of the longest axis and the shortest axis.
  • the compound semiconductor particle composition includes a particle group (BX), a particle group (A-1) having a particle diameter mode value calculated by a laser diffraction scattering method of 250 nm or more as the particle group (A); It is preferable that the particle group (BX) includes a particle group (BX-1) having a number average particle diameter calculated by a transmission electron microscope of 100 nm or less.
  • the volume content of the particle group (A-1) in all particles is preferably 20 vol% or more, and the volume content of the particle group (BX-1) is preferably 30 vol% or more.
  • the proportion of the particle group (A) in the compound semiconductor particle composition increases, the deactivation of carriers can be suppressed, which is preferable.
  • the theoretical packing rate when the spherical particles are packed close-packed is 74 vol%.
  • the particle group (A) is combined at a mixing ratio of 74 vol% and the particle group (BX) is 26 vol%. It can be said that it is the most preferable aspect that it is a film.
  • the particle size (BX) is determined from the above volume ratio because the particle shape is not perfectly spherical, has a particle size distribution, does not have a close-packed structure in the film, and the like. It is preferable to increase the ratio of the film structure to reduce the voids.
  • the amount of the particle group (A) in all the particles is preferably 20 to 70 vol%, more preferably 30 to 65 vol%, and further preferably 40 to 60 vol%.
  • the amount of the particle group (BX) in all particles is preferably 30 to 80 vol%, preferably 35 to 70 vol%, and more preferably 40 to 60 vol%.
  • the particle size distribution of the particle group (A) and the particle group (BX) is not limited, but it is easy to design a film structure in which voids are reduced and carrier deactivation is suppressed, and such a film structure can be stably obtained and uniform. In order to obtain a simple film structure, it is preferable that the particle size distribution of each particle is narrow.
  • Examples of the method for producing a chalcopyrite compound semiconductor particle group include a method of applying a known pulverization technique to a bulk or film of a chalcopyrite compound semiconductor and a method for synthesizing fine particles in a liquid phase. Examples include a method of synthesizing fine particle groups in the process of crystal growth from the nucleus.
  • a method for producing a bulk body of a chalcopyrite compound semiconductor for pulverization A method for obtaining a uniform group I-III-VI chalcopyrite crystal by applying pressure while heating a group I element, a group III element, a group VI element, and / or a compound thereof in a solid phase; A solid phase synthesis method such as a method of obtaining a uniform group I-III-VI chalcopyrite crystal by melting a group I element, a group III element, a group VI element, and / or a compound thereof in a high-temperature furnace and air cooling. Can be mentioned.
  • a group I element and a group III element are mixed in a vapor deposition method, a sputtering method, or a molten state to prepare an alloy-like precursor composed of a group I element and a group III element in advance.
  • a method of obtaining a bulk body of chalcopyrite compound semiconductor by a solid phase synthesis method and pulverizing it is particularly preferable.
  • the pulverization method a known technique can be applied, and examples thereof include a dry pulverization method and a wet pulverization method.
  • the dry pulverization method is a method of pulverization in a gas phase such as air or an inert gas. Examples thereof include a method using a mortar and a method using a ball mill or a jet mill.
  • the wet pulverization method is a method of pulverizing in a liquid phase using a solvent, and examples thereof include a method of pulverizing using a mill such as a ball mill, a bead mill, and a jet mill. Since the particle size distribution of the powder obtained by the pulverization method is different, a suitable pulverization method is selected so as to obtain a desired particle size distribution. By classifying the obtained pulverized product using a sieve or the like, a powder having a desired particle size distribution can be obtained.
  • Non-patent Document 5 A method of obtaining CIGS fine particle groups (Non-patent Document 5), or reacting copper chloride, indium chloride, gallium chloride, and selenium element in oleylamine by raising the temperature from room temperature to 240 ° C., and then centrifuging the reaction solution
  • Non-Patent Document 6 A method for obtaining CIGS fine particle groups (Non-Patent Document 6) and the like are known.
  • composition used in the above method for synthesizing fine particle groups in the process of crystal growth from the nucleus can be used as a non-solid semiconductor precursor composition (BY) that becomes a solid semiconductor by heating.
  • the compound semiconductor particle composition of the present invention preferably contains a solvent from the viewpoint of ease of application on a substrate.
  • a solvent is not particularly limited, and an organic solvent, an inorganic solvent such as water, or an organic / inorganic mixed solvent can be used.
  • an organic solvent, an inorganic solvent such as water, or an organic / inorganic mixed solvent can be used.
  • the solvent concentration is too high, there is a high possibility that the film will crack due to bubbles generated in the process of volatilization of the solvent. In addition, if the solvent concentration is too low, it is difficult to obtain a uniform coating film.
  • halides and chalcogenides of Group I elements such as CuCl, CuCl 2 , CuBr, CuBr 2 , and CuSe
  • simple chalcogen elements such as S, Se, and Te
  • firing aids it is preferable to use a material composed of the same kind of element because different elements act as impurities, and CuSe, Se, or the like that melts at a firing temperature or lower is suitable.
  • the compound semiconductor particle composition of the present invention can be prepared by mixing a plurality of components constituting the composition.
  • the method for mixing a plurality of constituent components is not particularly limited, and all the constituent components may be mixed at once, or the plurality of constituent components may be separately mixed and finally mixed.
  • Step (2) is a step of forming a coating film on the substrate by applying the compound semiconductor particle composition prepared in step (1).
  • the compound semiconductor particle composition does not contain the semiconductor precursor composition (BY) or the amount thereof is small, a powdery compound semiconductor particle composition containing little or no solvent (dispersing a solid if necessary) Can also be applied directly dry.
  • an inert gas such as nitrogen or argon, or the same group VI group as the I-III-VI group chalcopyrite compound. It is preferable to use elemental gas.
  • the firing step (3) may be performed in multiple stages by changing the heating temperature.
  • the “multi-stage baking process” mentioned here includes a temporary baking process before the main baking and an annealing process after the main baking. As described above, the chalcopyrite compound semiconductor film of the present invention is manufactured.
  • the entire composition of the compound semiconductor film of the present invention may be uniform or may have a composition distribution in the thickness direction.
  • steps (1) and (2) are repeated by changing the composition of the coating film
  • steps (1) to (3) are repeated.
  • a compound semiconductor film having a composition distribution in the thickness direction can be produced by repeating the above composition. Moreover, even if there is only one coating film, composition distribution may occur naturally in the thickness direction in the step (3) and the like.
  • the thickness of the compound semiconductor film of the present invention is not too large compared to the particle size of the particle group (A), and is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the film thickness exceeds 10 ⁇ m, the influence of the grain boundary between the particle groups (A) becomes large, and it becomes difficult to sufficiently achieve the effects of the present invention.
  • a chalcopyrite compound semiconductor particle composition capable of improving the photoelectric conversion efficiency of a compound semiconductor film by a particle coating method.
  • a chalcopyrite-based compound semiconductor film that is manufactured by a particle coating method and can improve the photoelectric conversion efficiency and a method for manufacturing the same can be provided by using the particle composition.
  • a compound semiconductor film is manufactured by a particle coating method, unlike a conventional multi-source deposition method or a selenization method, a high-quality compound semiconductor film can be manufactured at a low cost without requiring a vacuum process. .
  • FIG. 1 is a cross-sectional view, and in order to facilitate visual recognition, the actual scales of the layers are appropriately changed.
  • the photoelectric conversion element 10 includes a back electrode layer 12, a light absorption layer (p-type semiconductor layer) 13, a buffer layer (n-type semiconductor layer) 14, a translucent high resistance layer 15, a translucent layer, on a substrate 11.
  • the photoelectrode layer 16 is sequentially laminated.
  • the translucent high resistance layer 15 is a layer provided as necessary, and is not essential.
  • extraction electrodes 17 and 18 are provided on the back electrode layer 12 and the translucent electrode layer 16 as necessary.
  • light and electricity are converted by generating electrons and holes when light is applied to the interface between the p-type semiconductor and the n-type semiconductor.
  • the type of the substrate 11 is not limited and a glass substrate is generally used.
  • a flexible film such as a resin film such as PET (polyethylene terephthalate) or polyimide, or a metal foil such as aluminum or stainless steel may be used.
  • a metal foil such as aluminum or stainless steel
  • an insulating film is necessary on the substrate surface.
  • an alkali metal such as Na and / or an alkaline earth metal such as Mg is supplied from the substrate side during the formation of the light absorption layer, the crystallinity of the film is improved and photoelectric conversion is performed. It is known to improve efficiency.
  • a substrate containing Na such as blue plate glass is used, or an alkali (earth) metal supply layer such as sodium halide is formed between the above-mentioned substrate not containing Na and the light absorption layer 13 by a known method. Also good.
  • a known material can be applied to the back electrode layer 12 as long as it can make ohmic contact with the light absorption layer 13.
  • a known material include gold, molybdenum, nickel, titanium, tantalum, and combinations thereof. Among them, molybdenum and the like are preferably applied because they are inexpensive and easily available.
  • a known method can be applied, and a sputtering method, a heat evaporation method, an electrolytic plating method, an electroless plating method, or the like can be applied.
  • the light absorption layer 13 is a p-type semiconductor layer made of the chalcopyrite compound semiconductor film of the present invention.
  • a thicker light absorption layer 13 is preferable because it can increase light absorption and generate more carriers.
  • the p-type semiconductor layer also functions as a resistance component, it is preferable that the film thickness is small from the viewpoint of efficient extraction of generated carriers. Considering both, the film thickness of the light absorption layer 13 is preferably 0.5 to 10 ⁇ m, more preferably 1 to 5 ⁇ m, and further preferably 1.5 to 3 ⁇ m.
  • the light absorption layer is adjusted at a temperature at which CdS is precipitated by adjusting an aqueous solution containing a cadmium salt (for example, cadmium iodide) and a sulfur-containing compound (for example, thiourea) to a pH at which sulfur is dissociated.
  • a cadmium salt for example, cadmium iodide
  • a sulfur-containing compound for example, thiourea
  • the thickness of the buffer layer 14 is preferably 1 to 300 nm, more preferably 10 to 200 nm, and still more preferably 20 to 150 nm.
  • the high resistance film 15 can be introduced on the buffer layer 14 as necessary.
  • the material of the high resistance film 15 include ZnO.
  • the film thickness of the high resistance film is preferably 300 nm or less, more preferably 100 nm or less.
  • the material of the translucent electrode layer 16 a material having high light transmittance and low resistance is applied.
  • Preferred examples of such materials include indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), and zinc oxide ZnO doped with various metals.
  • the doping element of zinc oxide include gallium, aluminum, boron, silicon, tin, indium, germanium, antimony, iridium, rhenium, cerium, zirconium, scandium, yttrium, and lanthanoid. .05-15 mol% can be doped.
  • a known technique can be applied to the method for forming the translucent electrode layer 16, such as sputtering, electron beam vapor deposition, ion plating, molecular beam epitaxy, ionization vapor deposition, laser ablation, arc plasma vapor deposition, A thermal CVD method, a plasma CVD method, an MOCVD method, a spray pyrolysis method, a sol-gel method, an electroless plating method, an electrolytic plating method, a coating baking method, an aerosol deposition method, a fine particle coating method, and the like can be applied.
  • the photoelectric conversion element 10 of this embodiment can be provided with arbitrary layers other than the above as needed.
  • the photoelectric conversion element 10 of the present embodiment uses the compound semiconductor film of the present invention as the light absorption layer 13, it can be manufactured at a low cost and can improve the photoelectric conversion efficiency. is there.
  • the photoelectric conversion element 1 can be used as a solar cell with a cover glass and a protective film.
  • Average particle diameter / particle group (A-1) The particle group (A-1) having a particle size mode value calculated by the laser diffraction scattering method of 250 nm or more was measured using the following apparatus and solvent.
  • Solvent Chloroform and isopropanol particle group (A)
  • TEM Transmission electron microscope
  • the open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF), and conversion efficiency were calculated as follows.
  • Open circuit voltage (Voc) Voltage at the intersection with the voltage axis
  • Short-circuit current (Jsc) Current at the intersection with the current axis
  • Fill factor (FF) Ratio of maximum output to the product of Voc and Jsc
  • Conversion efficiency ratio of maximum output per unit area to incident power (1000 W / m 2 ). The maximum output per unit area was calculated and taken as the conversion efficiency (%) by taking the ratio with the incident power (1000 W / m 2 ).
  • the CIGS particle group (P2) dispersion having an average particle diameter of 200 nm and the average particle diameter of 100 nm are obtained by changing the pulverization method, rotation speed, pulverization time, and the like of the CIGS bulk body 1 g produced above.
  • a CIGS particle group (P3) dispersion liquid and a CIGS particle group (P4) dispersion liquid having an average particle diameter of 800 nm were obtained.
  • the CIGS particle group (P2) was a wet jet mill
  • the CIGS particle group (P3) was a wet ball mill
  • the CIGS particle group (P4) was a dry jet mill.
  • the CIGS particle concentration in the dispersion was 2% by mass.
  • the CIGS particles after pulverization were used as they were.
  • a crude CIGS particle group was obtained.
  • chloroform, ethanol, and a small amount of oleylamine were added to this particle group and centrifuged, and the supernatant was removed.
  • a CIGS particle group was obtained (6.1 g, 18.5 mmol).
  • the yield was 37%.
  • chloroform By adding chloroform to this CIGS particle group and diluting it, a dispersion having a CIGS particle concentration of 1% by mass was obtained.
  • the number average particle diameter calculated from the transmission electron microscope of the obtained CIGS particle group was 15 nm.
  • the light absorption layer 13 was formed on the back electrode layer 12 by the following process. At least one of the CIGS particle groups (P1) to (P5) dispersions obtained above and the CIGS precursor composition (PC) and a solvent (toluene) are mixed at a predetermined mixing ratio to obtain a total CIGS. It diluted so that particle concentration might be 0.03 vol%, and the coating liquid (particle composition) was obtained. The blending ratio was changed according to Examples and Comparative Examples. 0.4 ml of the coating solution was dropped onto the back electrode 12 to obtain a coating film. After heating at 60 ° C. for 3 minutes, the solvent was removed by heating at 230 ° C. for 10 seconds.
  • the CIGS particle groups (P1) to (P5) dispersions obtained above and the CIGS precursor composition (PC) and a solvent (toluene) are mixed at a predetermined mixing ratio to obtain a total CIGS. It diluted so that particle concentration might be 0.03 vol%, and the coating liquid (particle composition)
  • the operation of coating and solvent removal was repeated 5 times. Thereafter, the obtained coating film was baked at 575 ° C. for 1 hour in a nitrogen atmosphere or a hydrogen / nitrogen atmosphere. This fired film was formed at a rate of 2 L / min. With diethyl selenium gas as nitrogen or hydrogen / nitrogen as a carrier gas.
  • the light absorption layer 13 was obtained by baking at 520 ° C. for 1 hour while flowing at a flow rate of 92 ml / min.
  • a high resistance film 15 was formed by depositing ZnO having a purity of 3N (manufactured by Toyoshima Seisakusho Co., Ltd.) at 100 nm by RF sputtering.
  • the i-ZnO transparent electrode layer 16 is deposited by RF sputtering in the range of 100 to 1000 nm using ZnO (manufactured by Toshima Seisakusho Co., Ltd.) with a purity of 3N and 2 mol% Ga doped.
  • ZnO manufactured by Toshima Seisakusho Co., Ltd.
  • Comparative Example 1-1 Using only the CIGS particle group (P1) dispersion liquid, a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 2 shows the main production conditions and evaluation results. The photoelectric conversion efficiency of the obtained device was 0.1%, and the short-circuit current was 1.6 mA / cm 2 .
  • Comparative Example 1-2 Using only the CIGS particle group (P5) dispersion liquid, a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 2 shows the main production conditions and evaluation results. The photoelectric conversion efficiency of the obtained device was 0.03%, and the short-circuit current was 1.3 mA / cm 2 .
  • Example 2 Using the CIGS particle group (P2) dispersion liquid (average particle diameter 200 nm) and the CIGS particle group (P5) dispersion liquid (average particle diameter 15 nm), a coating liquid used for film formation of the light absorption layer was prepared.
  • the volume ratio of the particle group (P2) and the particle group (P5) in the coating solution was 1: 1, and the photoelectric conversion element of the present invention was obtained according to the above process.
  • Table 3 shows the main production conditions and evaluation results.
  • the photoelectric conversion efficiency of the obtained device was 0.20%, and the short-circuit current was 3.7 mA / cm 2 . A short-circuit current was higher than that of Comparative Example 2 described later, and a highly efficient device was obtained.
  • the photoelectric conversion element using the compound semiconductor film of the present invention as a light absorption layer has high conversion efficiency between light and electricity and can be manufactured at low cost, it is used as a photoelectric conversion element such as a solar cell, an optical sensor, an image sensor, and a photodiode. Available.

Abstract

Disclosed is a chalcopyrite compound semiconductor particle composition which can increase the photoelectric conversion efficiency of a compound semiconductor film. The disclosed compound semiconductor particle composition comprises: particles (A) which are formed from a plurality of at least one kind of semiconductor particles, and which have a number average particle diameter of 100nm or more, as calculated with a transmission electron microscope; and filling (B), which is formed from a plurality of at least one kind of semiconductor particles, is formed from particles (BX) which have a smaller number average particle diameter than particles (A) as calculated with a transmission electron microscope, and/or a non-solid semiconductor precursor composition (BY) which forms a solid semiconductor on heating. Both (A) and (B) are formed from chalcopyrite compound semiconductors each represented by the general formula below, and filling (B) fills in the gaps between particles (A). (i) LMX2 (therein, L represents at least one kind of group IB element, M represents at least one kind of IIIB group, and X represents at least one kind of VIB group).

Description

化合物半導体粒子組成物、化合物半導体膜とその製造方法、光電変換素子、及び太陽電池Compound semiconductor particle composition, compound semiconductor film and manufacturing method thereof, photoelectric conversion element, and solar cell
 本発明は、カルコパイライト系の化合物半導体粒子組成物、これを用いたカルコパイライト系の化合物半導体膜とその製造方法、この化合物半導体膜を用いた光電変換素子及び太陽電池に関するものである。 The present invention relates to a chalcopyrite compound semiconductor particle composition, a chalcopyrite compound semiconductor film using the same, a manufacturing method thereof, a photoelectric conversion element and a solar cell using the compound semiconductor film.
 カルコパイライト系化合物半導体は、一般式LMX(Lは少なくとも1種のIB族元素、Mは少なくとも1種のIIIB族、Xは少なくとも1種のVIB族を各々示す。)で表される化合物である。
 LはCu,Ag,及びAuからなる群より選ばれた少なくとも1種である。MはAl,Ga,及びInからなる群より選ばれた少なくとも1種が好ましい。XはS,Se,及びTeからなる群より選ばれた少なくとも1種が好ましい。
The chalcopyrite compound semiconductor is a compound represented by the general formula LMX 2 (wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB). is there.
L is at least one selected from the group consisting of Cu, Ag, and Au. M is preferably at least one selected from the group consisting of Al, Ga, and In. X is preferably at least one selected from the group consisting of S, Se, and Te.
 上記カルコパイライト系化合物半導体の中でも、CuInSe(CIS)及びCu(In,Ga)Se(CIGS)等は直接遷移型の吸収係数を示すため、薄膜で高光電変換効率が得られることが期待され、太陽電池の光吸収層材料として研究されている。本明細書では、「CIS及びCIGS」を合わせてCI(G)S系と称す。
 CI(G)S系等のカルコパイライト系化合物半導体は、従来のシリコンを用いた太陽電池と比較して、軽量化ができること、材料コストを抑えることができるため低コストで製造できること、フレキシブル基板を使用できること等の利点を有する(非特許文献1等)。
Among the chalcopyrite compound semiconductors, CuInSe 2 (CIS), Cu (In, Ga) Se 2 (CIGS), and the like exhibit a direct transition type absorption coefficient, so that high photoelectric conversion efficiency can be expected with a thin film. It has been studied as a light absorption layer material for solar cells. In this specification, “CIS and CIGS” are collectively referred to as a CI (G) S system.
CI (G) S-based chalcopyrite compound semiconductors can be made lighter than conventional solar cells using silicon, and can be manufactured at low cost because material costs can be reduced. It has the advantage that it can be used (Non-Patent Document 1, etc.).
 従来、CIGS膜の成膜法としては、多元蒸着法が知られている(非特許文献2等)。例えば、1段階目にIII族元素とVI族元素とを同時に蒸着することでIII-VI族化合物を形成し、2段階目にI族元素とVI族元素とを同時に蒸着し、3段階目にIII族元素とVI族元素とを同時に蒸着する三段階蒸着法が知られている。本製造法では高い光電変換効率を示す膜を成膜できることが知られている。しかしながら、この方法は、真空下で成膜する必要があることから、製造設備に制約があるため量産には不向きであり、製造コストが高い製造法である。 Conventionally, a multi-source deposition method is known as a method for forming a CIGS film (Non-Patent Document 2 or the like). For example, the III-VI group compound is formed by simultaneously depositing a group III element and a VI group element in the first stage, and the group I element and the VI group element are simultaneously deposited in the second stage. A three-stage vapor deposition method is known in which a group III element and a group VI element are deposited at the same time. It is known that a film showing high photoelectric conversion efficiency can be formed by this production method. However, since this method needs to form a film under a vacuum, the manufacturing facility is limited, so it is not suitable for mass production and is a manufacturing method with high manufacturing cost.
 その他のCIGS膜の成膜法としては、セレン化法が知られている(特許文献1、2等。)。セレン化法は、セレン以外の成分である銅、インジウム、及びガリウムを予め蒸着法やスパッタ法で薄膜状に成膜しておき、その後に固体セレン、セレンガス、セレン化水素、あるいはアルキルセレン等でセレン化することで、CIGS膜を成膜する製造法である。本手法では上記の多元蒸着法と比較して量産性を向上することができるが、真空下での製造工程であり、またセレン化合物を使用することから製造コストの高いものである。 As another film formation method for CIGS films, a selenization method is known (Patent Documents 1, 2, etc.). In the selenization method, components other than selenium, such as copper, indium, and gallium, are previously formed into a thin film by vapor deposition or sputtering, and then solid selenium, selenium gas, hydrogen selenide, or alkyl selenium is used. This is a manufacturing method for forming a CIGS film by selenization. Although this method can improve the mass productivity as compared with the above-described multi-source vapor deposition method, it is a production process under vacuum and the production cost is high because a selenium compound is used.
特開平4-127483号公報JP-A-4-127383 特開2006-186114号公報JP 2006-186114 A
 上記従来の真空プロセスに対して、非真空プロセスで製造コストを低減可能な成膜方法として、カルコパイライト系の化合物半導体粒子を用いた粒子塗布法が検討されている。
 例えば、龍谷大の和田らは、低温短時間のMCP(Mechanochemical process)により作製したCIGS粒子に有機溶媒を添加してスクリーン印刷用インクを得、これを基板上にスクリーン印刷法で塗布し、セレンガス雰囲気下575℃で焼成することで、CIGS膜を成膜している(非特許文献3)。しかしながら、非特許文献3で実際に成膜されたCIGS膜の光電変換効率は低く、2.7%である。
As a film forming method capable of reducing the manufacturing cost by a non-vacuum process, a particle coating method using chalcopyrite compound semiconductor particles has been studied.
For example, Wada et al. Of Ryukoku University obtained an ink for screen printing by adding an organic solvent to CIGS particles produced by a low-temperature, short-time MCP (Mechanochemical process), and applied this onto the substrate by screen printing, and selenium gas A CIGS film is formed by firing at 575 ° C. in an atmosphere (Non-patent Document 3). However, the CIGS film actually formed in Non-Patent Document 3 has a low photoelectric conversion efficiency of 2.7%.
 その他、非特許文献4には、液相法によってCISナノ粒子を含むコロイドインクを作製し、これを基板上に塗布し、セレンガス雰囲気下450~550℃で焼成することで、CIS膜を成膜している。しかしながら、本製造法も光電変換効率が低く、非特許文献3と同程度の2.8%である。
 本発明の参考文献としては、非特許文献5,6があるが、内容については後述する。
In Non-Patent Document 4, a CIS film is formed by preparing a colloidal ink containing CIS nanoparticles by a liquid phase method, coating it on a substrate, and baking it at 450 to 550 ° C. in a selenium gas atmosphere. is doing. However, this production method also has low photoelectric conversion efficiency, which is 2.8%, which is the same as that of Non-Patent Document 3.
References of the present invention include non-patent documents 5 and 6, which will be described later.
 本発明は上記事情に鑑みてなされたものであり、粒子塗布法による化合物半導体膜の光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体粒子組成物を提供することを目的とするものである。
 本発明はまた、上記粒子組成物を用いて製造され、光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体膜とその製造方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a chalcopyrite compound semiconductor particle composition capable of improving the photoelectric conversion efficiency of a compound semiconductor film by a particle coating method. Is.
Another object of the present invention is to provide a chalcopyrite compound semiconductor film that is manufactured using the above-described particle composition and can improve the photoelectric conversion efficiency, and a manufacturing method thereof.
 本発明の化合物半導体粒子組成物は、
 各々が下記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が100nm以上である粒子群(A)と、
 少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が粒子群(A)より小さい粒子群(BX)、及び/又は、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)からなり、粒子群(A)の間隙を埋める充填物(B)とを含むものである。
 LMX(ここで、Lは少なくとも1種のIB族元素、Mは少なくとも1種のIIIB族、Xは少なくとも1種のVIB族を各々示す。)・・・(i)
The compound semiconductor particle composition of the present invention comprises:
A group of particles each consisting of at least one semiconductor particle comprising a chalcopyrite compound semiconductor (i) represented by the following general formula and having a number average particle size calculated by a transmission electron microscope of 100 nm or more ( A) and
A particle group (BX) composed of at least one kind of a plurality of semiconductor particles and having a number average particle size calculated by a transmission electron microscope smaller than the particle group (A) and / or a non-solid which becomes a solid semiconductor by heating It consists of a semiconductor precursor composition (BY) and contains a filler (B) that fills the gaps between the particle groups (A).
LMX 2 (wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB.) (I)
 本発明の化合物半導体膜は、
 前記一般式(i)で表される少なくとも1種のカルコパイライト系化合物半導体を含む化合物半導体膜であって、
 上記の本発明の化合物半導体粒子組成物を用意する工程(1)と、
 基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有する製造方法により製造された膜厚が0.5μm以上10μm以下のものである。
The compound semiconductor film of the present invention is
A compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i),
A step (1) of preparing the compound semiconductor particle composition of the present invention,
The film thickness is 0.5 μm or more and 10 μm or less manufactured by a manufacturing method that sequentially includes the step (2) of forming the coating film by applying the compound semiconductor particle composition on a substrate.
 本発明の化合物半導体膜の製造方法は、
 前記一般式(i)で表される少なくとも1種のカルコパイライト系化合物半導体を含む化合物半導体膜の製造方法であって、
 上記の本発明の化合物半導体粒子組成物を用意する工程(1)と、
 基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有するものである。
The method for producing the compound semiconductor film of the present invention comprises:
A method for producing a compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i),
A step (1) of preparing the compound semiconductor particle composition of the present invention,
A step (2) of applying the compound semiconductor particle composition on a substrate to form a coating film.
 本発明の化合物半導体膜の製造方法は、工程(2)後に、前記塗布膜を焼成する工程(3)を有することが好ましい。 The method for producing a compound semiconductor film of the present invention preferably includes a step (3) of baking the coating film after the step (2).
 本発明の光電変換素子は、上記の本発明の化合物半導体膜からなる光吸収層と一対の電極とを備えたものである。
 本発明の太陽電池は、上記の本発明の光電変換素子を備えたものである。
The photoelectric conversion element of the present invention comprises a light absorption layer comprising the compound semiconductor film of the present invention and a pair of electrodes.
The solar cell of the present invention comprises the above-described photoelectric conversion element of the present invention.
 本発明によれば、粒子塗布法による化合物半導体膜の光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体粒子組成物を提供することができる。
 本発明によれば、上記粒子組成物を用いることにより、粒子塗布法で製造され、光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体膜とその製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the chalcopyrite type compound semiconductor particle composition which can aim at the improvement of the photoelectric conversion efficiency of the compound semiconductor film by a particle-coating method can be provided.
According to the present invention, a chalcopyrite-based compound semiconductor film that is manufactured by a particle coating method and can improve the photoelectric conversion efficiency and a method for manufacturing the same can be provided by using the particle composition. .
本発明に係る一実施形態の光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element of one Embodiment concerning this invention. 粒子群(A)のみからなる塗布膜の模式図である。It is a schematic diagram of the coating film which consists only of particle groups (A). 粒子群(BX)のみからなる塗布膜の模式図である。It is a schematic diagram of the coating film which consists only of particle groups (BX). 粒子群(A)と粒子群(BX)とを併用した塗布膜の模式図である。It is a schematic diagram of the coating film which used together particle group (A) and particle group (BX). 粒子群(A)と半導体前駆体組成物(BY)とを併用した塗布膜の模式図である。It is a schematic diagram of the coating film which used together particle group (A) and the semiconductor precursor composition (BY).
「化合物半導体粒子組成物、及びカルコパイライト系化合物半導体膜とその製造方法」
 本発明の化合物半導体粒子組成物は、
 各々が下記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が100nm以上である粒子群(A)と、
 少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が粒子群(A)より小さい粒子群(BX)、及び/又は、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)からなり、粒子群(A)の間隙を埋める充填物(B)とを含むものである。
 ここで、本発明の化合物半導体粒子組成物に用いる粒子群は、不可避不純物を含んでいてもよい。
“Compound Semiconductor Particle Composition, Chalcopyrite Compound Semiconductor Film and Method for Producing the Same”
The compound semiconductor particle composition of the present invention comprises:
A group of particles each consisting of at least one semiconductor particle comprising a chalcopyrite compound semiconductor (i) represented by the following general formula and having a number average particle size calculated by a transmission electron microscope of 100 nm or more ( A) and
A particle group (BX) composed of at least one kind of a plurality of semiconductor particles and having a number average particle size calculated by a transmission electron microscope smaller than the particle group (A) and / or a non-solid which becomes a solid semiconductor by heating It consists of a semiconductor precursor composition (BY) and contains a filler (B) that fills the gaps between the particle groups (A).
Here, the particle group used for the compound semiconductor particle composition of the present invention may contain inevitable impurities.
 本発明の化合物半導体膜は、下記一般式(i)で表される少なくとも1種のカルコパイライト系化合物半導体を含み、粒子塗布法により製造されたものである。 The compound semiconductor film of the present invention includes at least one chalcopyrite compound semiconductor represented by the following general formula (i) and is manufactured by a particle coating method.
 LMX(ここで、Lは少なくとも1種のIB族元素、Mは少なくとも1種のIIIB族、Xは少なくとも1種のVIB族を各々示す。)・・・(i)
 Lとしては、Cu,Ag,及びAuが挙げられる。MとしてはAl,Ga,及びIn等が挙げられる。Xとしては、O,S,Se,及びTeが挙げられる。
LMX 2 (wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB.) (I)
Examples of L include Cu, Ag, and Au. Examples of M include Al, Ga, and In. Examples of X include O, S, Se, and Te.
 高い光電変換効率が得られることから、本発明の化合物半導体膜は、下記一般式(ii)で表される少なくとも1種の化合物半導体を含むことが好ましく、下記一般式(iii)で表される少なくとも1種の化合物半導体を含むことがより好ましい。
 (L1)(M1)(X1)(ここで、L1はCu,Ag,及びAuからなる群より選ばれた少なくとも1種のIB族元素、M1はAl,Ga,及びInからなる群より選ばれた少なくとも1種のIIIB族、X1はS,Se,及びTeからなる群より選ばれた少なくとも1種のVIB族を各々示す。)・・・(ii)、
 (L2)(M2)(X2)(ここで、L2はCuを含む少なくとも1種のIB族元素、M2はGa及び/又はInを含む少なくとも1種のIIIB族、X2はSeを含む少なくとも1種のVIB族を各々示す。)・・・(iii)
Since high photoelectric conversion efficiency is obtained, the compound semiconductor film of the present invention preferably includes at least one compound semiconductor represented by the following general formula (ii), and is represented by the following general formula (iii). More preferably, it contains at least one compound semiconductor.
(L1) (M1) (X1) 2 (where L1 is at least one IB group element selected from the group consisting of Cu, Ag, and Au, and M1 is selected from the group consisting of Al, Ga, and In) At least one group IIIB, X1 represents at least one group VIB selected from the group consisting of S, Se, and Te.) (Ii),
(L2) (M2) (X2) 2 (where L2 is at least one group IB element containing Cu, M2 is at least one group IIIB containing Ga and / or In, and X2 is at least one containing Se) Each represents a VIB family of species.) ... (iii)
 式(iii)で表される化合物半導体としては、CuInSe(CIS)、及びCu(In,Ga)Se(CIGS)等が挙げられる。これらCI(G)S系はバンドギャップが整合しており、かつ光吸収係数が高く、薄膜で高光電変換効率を得ることができる。 Examples of the compound semiconductor represented by the formula (iii) include CuInSe 2 (CIS) and Cu (In, Ga) Se 2 (CIGS). These CI (G) S systems have a matching band gap, a high light absorption coefficient, and a high photoelectric conversion efficiency can be obtained with a thin film.
 本発明の化合物半導体膜は、
 上記の本発明の化合物半導体粒子組成物を用意する工程(1)と、
 基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有する製造方法により製造された膜厚が0.5μm以上10μm以下のものである。
The compound semiconductor film of the present invention is
A step (1) of preparing the compound semiconductor particle composition of the present invention,
The film thickness is 0.5 μm or more and 10 μm or less manufactured by a manufacturing method that sequentially includes the step (2) of forming the coating film by applying the compound semiconductor particle composition on a substrate.
 本発明の化合物半導体膜の製造方法は、
 上記の本発明の化合物半導体粒子組成物を用意する工程(1)と、
 基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有するものである。
The method for producing the compound semiconductor film of the present invention comprises:
A step (1) of preparing the compound semiconductor particle composition of the present invention,
A step (2) of applying the compound semiconductor particle composition on a substrate to form a coating film.
 本発明の化合物半導体膜の製造方法は、工程(2)後に、塗布膜を焼成する工程(3)を有することが好ましい。 The method for producing a compound semiconductor film of the present invention preferably includes a step (3) of baking the coating film after the step (2).
 以下、各工程について詳述する。
<工程(1)>
 この工程では、上記の本発明の化合物半導体粒子組成物を用意する。
 本発明の化合物半導体粒子組成物において、粒子群(A)と充填物(B)の半導体導電型の関係は特に制限されず(本明細書において特に明記しない限り、半導体前駆体組成物(BY)については、加熱後の半導体導電型を意味する。)、これらの導電型は同一であることが好ましい。
 光電変換素子の光吸収層としては、p型が一般的である。したがって、粒子群(A)と充填物(B)の半導体導電型はp型であることが好ましい。
Hereinafter, each process is explained in full detail.
<Step (1)>
In this step, the compound semiconductor particle composition of the present invention is prepared.
In the compound semiconductor particle composition of the present invention, the relationship between the semiconductor conductivity types of the particle group (A) and the filler (B) is not particularly limited (unless otherwise specified in the present specification, the semiconductor precursor composition (BY)). Is the semiconductor conductivity type after heating.), And these conductivity types are preferably the same.
A p-type is generally used as a light absorption layer of a photoelectric conversion element. Accordingly, the semiconductor conductivity type of the particle group (A) and the filler (B) is preferably p-type.
 粒子群(A)及び充填物(B)の組成は、全体として最終的に成膜しようとする化合物半導体膜の組成となるものであればよい。 The composition of the particle group (A) and the filler (B) may be any composition as long as the composition of the compound semiconductor film to be finally formed as a whole.
 粒子群(A)の組成は、成膜しようとする化合物半導体膜の組成と同一でもよいし、非同一でもよい。
 例えば、焼成工程(3)においてセレン雰囲気で処理する場合には、粒子群(A)中のセレン量は最終的に生成する本発明の化合物半導体膜のセレン量よりも少なく設定しておくことができる。
 また、粒子群(A)の組成は、最終的に成膜しようとする化合物半導体膜の組成よりも低次元(=構成金属数の少ない)の組成、あるいは低次元組成の組み合わせでもよい。
The composition of the particle group (A) may be the same as or different from the composition of the compound semiconductor film to be formed.
For example, when the treatment is performed in the selenium atmosphere in the firing step (3), the amount of selenium in the particle group (A) is set to be smaller than the amount of selenium of the compound semiconductor film of the present invention to be finally produced. it can.
The composition of the particle group (A) may be a composition having a lower dimension (= the number of constituent metals is smaller) or a combination of lower dimensional compositions than the composition of the compound semiconductor film to be finally formed.
 粒子群(BX)及び焼成後の半導体前駆体組成物(BY)の組成は、カルコパイライト系化合物半導体でもよいし、他の任意の半導体でも構わない。
 ただし、粒子群(A)と充填物(B)の半導体バンドギャップEg(本明細書において特に明記しない限り、半導体前駆体組成物(BY)については、加熱後の半導体バンドギャップを意味する。)の差が15%以内であることが好ましい。
 本明細書において、「半導体バンドギャップEgの差」は、Egが小さい方を100%としたときの大きい方と小さい方のEgの差である。
 例えば、In/Ga(モル比)=8/2のCIGS(Eg=1.15eV)中に、CIS(Eg=1.0eV)を複合するなどが可能である。
The composition of the particle group (BX) and the fired semiconductor precursor composition (BY) may be a chalcopyrite compound semiconductor or any other semiconductor.
However, the semiconductor band gap Eg of the particle group (A) and the filler (B) (unless otherwise specified in the present specification, the semiconductor precursor composition (BY) means a semiconductor band gap after heating). The difference is preferably within 15%.
In this specification, the “difference in the semiconductor band gap Eg” is the difference between the larger Eg and the smaller Eg when the smaller Eg is 100%.
For example, it is possible to combine CIS (Eg = 1.0 eV) in CIGS (Eg = 1.15 eV) with In / Ga (molar ratio) = 8/2.
 粒子群(BX)は、カルコパイライト系化合物半導体であることが好ましい。
 換言すれば、本発明の化合物半導体粒子組成物が粒子群(BX)を含む場合、本発明の化合物半導体粒子組成物は、粒子群(BX)として、前記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなる粒子群を含むことが好ましい。
The particle group (BX) is preferably a chalcopyrite compound semiconductor.
In other words, when the compound semiconductor particle composition of the present invention includes a particle group (BX), the compound semiconductor particle composition of the present invention is a chalcopyrite compound represented by the above general formula as the particle group (BX). It is preferable to include a particle group composed of at least one kind of a plurality of semiconductor particles composed of the semiconductor (i).
 焼成後の半導体前駆体組成物(BY)の組成は、カルコパイライト系化合物半導体であることが好ましい。
 換言すれば、本発明の化合物半導体粒子組成物が半導体前駆体組成物(BY)を含む場合、本発明の化合物半導体粒子組成物は、半導体前駆体組成物(BY)として、加熱により、前記一般式で表されるカルコパイライト系化合物半導体(i)となる半導体前駆体組成物を含むことが好ましい。
 この場合、半導体前駆体組成物(BY)は、前記一般式で表されるカルコパイライト系化合物半導体(i)の少なくとも1種の構成金属元素を含む少なくとも1種の金属単体及び/又は金属化合物を含む組成とする。
 金属化合物としては、ハロゲン化金属塩等の各種金属塩等が挙げられる。
 金属単体及び/又は金属化合物は、半導体前駆体組成物(BY)中で金属錯体を形成していてもよい。
 半導体前駆体組成物(BY)は、上記の少なくとも1種の金属単体及び/又は金属化合物を可溶化する少なくとも1種の有機溶媒及び/又は無機溶媒を含む。
 半導体前駆体組成物(BY)は、pH調製剤あるいは分散剤等の任意の添加剤を含むことができる。
The composition of the semiconductor precursor composition (BY) after firing is preferably a chalcopyrite compound semiconductor.
In other words, when the compound semiconductor particle composition of the present invention includes a semiconductor precursor composition (BY), the compound semiconductor particle composition of the present invention is heated as the semiconductor precursor composition (BY) by heating. It is preferable to contain the semiconductor precursor composition used as the chalcopyrite compound semiconductor (i) represented by the formula.
In this case, the semiconductor precursor composition (BY) comprises at least one elemental metal and / or metal compound containing at least one constituent metal element of the chalcopyrite compound semiconductor (i) represented by the general formula. It is set as the composition containing.
Examples of the metal compound include various metal salts such as metal halide salts.
The simple metal and / or metal compound may form a metal complex in the semiconductor precursor composition (BY).
The semiconductor precursor composition (BY) includes at least one organic solvent and / or inorganic solvent that solubilizes the at least one elemental metal and / or the metal compound.
The semiconductor precursor composition (BY) can contain any additive such as a pH adjuster or a dispersant.
 本発明では、
 各々が前記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が100nm以上である粒子群(A)と、
 少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が粒子群(A)より小さい粒子群(BX)、及び/又は、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)からなり、粒子群(A)の間隙を埋める充填物(B)とを含む化合物半導体粒子組成物を用いている。
In the present invention,
A group of particles each comprising a plurality of semiconductor particles of at least one chalcopyrite compound semiconductor (i) represented by the above general formula and having a number average particle size calculated by a transmission electron microscope of 100 nm or more ( A) and
A particle group (BX) composed of at least one kind of a plurality of semiconductor particles and having a number average particle size calculated by a transmission electron microscope smaller than the particle group (A) and / or a non-solid which becomes a solid semiconductor by heating A compound semiconductor particle composition comprising a semiconductor precursor composition (BY) and a filler (B) that fills the gaps of the particle group (A) is used.
 図2Aに示すように、相対的に平均粒径の大きい粒子群(A)のみでは、塗布膜を形成したときの粒子間の空隙が大きくなる場合がある。この場合、粒子界面距離が長く、焼成時に粒子界面の融着が進行しにくい。このため、焼成時に空隙が埋まらず、得られる化合物半導体膜は空隙の大きいものとなる。このような膜を光電変換素子の光吸収層として用いると、光吸収層の成膜後の化学浴析出法(CBD法)等によるバッファ層の成膜工程でn型半導体が空隙に入り込んでしまう。このような構造を持つ光電変換素子では、pn界面で発生したキャリアが光吸収層内に入り込んだn型半導体を介してリークするため、取り出せる電流が小さくなる。ゆえに、光電変換効率は低下する。 As shown in FIG. 2A, only the particle group (A) having a relatively large average particle diameter may increase the gap between the particles when the coating film is formed. In this case, the particle interface distance is long, and the fusion of the particle interface is difficult to proceed during firing. For this reason, voids are not filled during firing, and the resulting compound semiconductor film has large voids. When such a film is used as a light absorption layer of a photoelectric conversion element, an n-type semiconductor enters a void in a buffer layer formation process such as a chemical bath deposition method (CBD method) after the formation of the light absorption layer. . In the photoelectric conversion element having such a structure, carriers generated at the pn interface leak through the n-type semiconductor that has entered the light absorption layer, so that the current that can be extracted is reduced. Therefore, the photoelectric conversion efficiency decreases.
 図2Bに示すように、相対的に平均粒径の小さい粒子群(BX)のみでは、膜を形成したときの空隙は低減されるが、粒子の界面積が広くなる。粒子界面ではキャリアの再結合が起きやすいため、粒子の接触界面が多いと発生したキャリアが失活しやすい。このため、このような膜を用いた光電変換素子はキャリアの失活が多いため、取り出せる電流が小さくなる。ゆえに、光電変換効率は低くなる。
 粒子群(BX)としてナノ粒子を用いる場合、高価なナノ粒子を多く使用しなければならず高コストでもある。
As shown in FIG. 2B, only the particle group (BX) having a relatively small average particle diameter reduces the voids when the film is formed, but increases the interfacial area of the particles. Since recombination of carriers is likely to occur at the particle interface, the generated carriers are liable to be deactivated when there are many particle contact interfaces. For this reason, since the photoelectric conversion element using such a film | membrane has many deactivation of a carrier, the electric current which can be taken out becomes small. Therefore, the photoelectric conversion efficiency is lowered.
When nanoparticles are used as the particle group (BX), many expensive nanoparticles must be used, which is also expensive.
 これに対して、図2Cに示すように、相対的に平均粒径の大きい粒子群(A)と相対的に平均粒径の小さい粒子群(BX)とを併用すると、塗布膜を形成したときに相対的に平均粒径の大きい複数の粒子(A)の空隙に相対的に平均粒径の小さい粒子群(BX)が入って空隙が充填され、単位体積あたりの空隙体積の小さい膜が得られる。また、発生したキャリアは相対的に平均粒径の大きい粒子群(A)が導電パスとして働くため、キャリアの失活が抑制できる。 On the other hand, when a particle group (A) having a relatively large average particle diameter and a particle group (BX) having a relatively small average particle diameter are used in combination, as shown in FIG. Into the voids of a plurality of particles (A) having a relatively large average particle diameter are filled with the particle group (BX) having a relatively small average particle diameter to obtain a film having a small void volume per unit volume. It is done. Moreover, since the generated carrier group (A) having a relatively large average particle diameter functions as a conductive path, deactivation of the carrier can be suppressed.
 同様に、図2Dに示すように、相対的に平均粒径の大きい粒子群(A)と加熱により固体半導体となる非固形の半導体前駆体組成物(BY)とを併用すると、相対的に平均粒径の大きい粒子群(A)の空隙に半導体前駆体組成物(BY)が入り、焼成後に単位体積あたりの空隙体積の小さい膜が得られる。この場合も、発生したキャリアは相対的に平均粒径の大きい粒子群(A)が導電パスとして働くため、キャリアの失活が抑制できる。 Similarly, as shown in FIG. 2D, when a particle group (A) having a relatively large average particle diameter and a non-solid semiconductor precursor composition (BY) that becomes a solid semiconductor by heating are used in combination, the average The semiconductor precursor composition (BY) enters the voids of the particle group (A) having a large particle size, and a film having a small void volume per unit volume is obtained after firing. Also in this case, since the generated carrier is a group of particles (A) having a relatively large average particle size, it can act as a conductive path, so that deactivation of the carrier can be suppressed.
 図示はしていないが、相対的に平均粒径の大きい粒子群(A)と、相対的に平均粒径の小さい粒子群(BX)と、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)とを併用しても、図2C及び図2Dと同様の効果が得られる。 Although not shown, a non-solid semiconductor precursor composition that becomes a solid semiconductor by heating, a particle group (A) having a relatively large average particle diameter, a particle group (BX) having a relatively small average particle diameter, and heating. Even if it uses together with a thing (BY), the effect similar to FIG. 2C and FIG. 2D is acquired.
 上記のように、相対的に平均粒径の大きい粒子群(A)と、相対的に平均粒径の小さい粒子群(BX)及び/又は半導体前駆体組成物(BY))からなる充填物(B)とを併用すると、キャリアの失活箇所である粒子間の界面が少ないためキャリア輸送時のロスが少なく、しかも、膜中の空隙が少ないため化学浴析出法(CBD法)等の既存の方法でバッファ層を積層しても膜中にバッファ層成分が入り込まない素子が得られる。このような素子は上記の電流低下が抑制できるため、光電変換効率の高いものとなる。 As described above, a packing comprising a particle group (A) having a relatively large average particle diameter, a particle group (BX) and / or a semiconductor precursor composition (BY) having a relatively small average particle diameter ( In combination with B), there are few interfaces between particles which are the deactivation sites of carriers, so there is little loss during carrier transport, and there are few voids in the film, so there are few existing pores such as chemical bath deposition (CBD method). Even if the buffer layer is laminated by the method, an element in which the buffer layer component does not enter the film can be obtained. Since such an element can suppress the above-described current drop, the photoelectric conversion efficiency is high.
 図2A~図2Dは焼成前の塗布膜を示す模式図である。これらの図では、粒子群(A)の粒径、及び粒子群(BX)の粒径はそれぞれ均一であるが、これらは分布を有していてもよい。粒子(A)の平均粒径/粒子(BX)の平均粒径も図示するものに限定されない。粒子形状も球状に限らない。 2A to 2D are schematic views showing the coating film before firing. In these figures, the particle size of the particle group (A) and the particle size of the particle group (BX) are uniform, but they may have a distribution. The average particle diameter of the particles (A) / the average particle diameter of the particles (BX) is not limited to that shown in the figure. The particle shape is not limited to spherical.
 本発明では、粒子群(A)の平均粒径を透過型電子顕微鏡より算出された数平均粒径が100nm以上に規定している。
 粒子群(A)の平均粒径が100nm以上であれば、粒子群(A)は導電パスとして機能する。
In the present invention, the number average particle size calculated from the transmission electron microscope is defined as 100 nm or more for the average particle size of the particle group (A).
When the average particle diameter of the particle group (A) is 100 nm or more, the particle group (A) functions as a conductive path.
 粒子群(A)の平均粒径は大きい程キャリアの失活を抑制できるため好ましい。このため、粒子群(A)の平均粒径は最終的な光吸収層の膜厚に近い方が好ましい。しかし、粒子群(A)の平均粒径が大きすぎると、均一塗布性が低下し、表面粗さが大きくなり、均一膜が得られにくくなる。
 以上の理由から、粒子群(A)は、レーザー回折散乱法により算出された粒径のモード値が250nm以上である粒子群(A-1)であることが好ましい。
 粒子群(A)のモード値は、より好ましくは250nm~3μm、さらに好ましくは300nm~2.5μm、特に好ましくは350nm~2.0μmである。
A larger average particle size of the particle group (A) is preferable because deactivation of carriers can be suppressed. For this reason, it is preferable that the average particle diameter of the particle group (A) is close to the final thickness of the light absorption layer. However, when the average particle size of the particle group (A) is too large, the uniform coating property is lowered, the surface roughness is increased, and it is difficult to obtain a uniform film.
For the above reasons, the particle group (A) is preferably a particle group (A-1) having a mode value of the particle diameter calculated by the laser diffraction scattering method of 250 nm or more.
The mode value of the particle group (A) is more preferably 250 nm to 3 μm, further preferably 300 nm to 2.5 μm, and particularly preferably 350 nm to 2.0 μm.
 粒子群(BX)の平均粒径は小さい程、単位体積あたりの空隙体積を減らすことができるため好ましい。具体的には、粒子群(BX)の透過型電子顕微鏡より算出された数平均粒径は、粒子群(A)の透過型電子顕微鏡より算出された数平均粒径の50%以下であることが好ましく、より好ましくは20%以下であり、さらに好ましくは10%以下である。 It is preferable that the average particle diameter of the particle group (BX) is smaller because the void volume per unit volume can be reduced. Specifically, the number average particle diameter calculated from the transmission electron microscope of the particle group (BX) is 50% or less of the number average particle diameter calculated from the transmission electron microscope of the particle group (A). Is preferable, more preferably 20% or less, and still more preferably 10% or less.
 また、粒子の製造容易性等を考慮すれば、粒子群(BX)は、透過型電子顕微鏡より算出された数平均粒径が100nm以下である粒子群(BX-1)であることが好ましい。
 粒子群(BX)の数平均粒径は、より好ましくは0.1~100nm、さらに好ましくは1~80nm、特に好ましくは5~50nmである。
In consideration of the ease of production of the particles, the particle group (BX) is preferably a particle group (BX-1) having a number average particle diameter calculated by a transmission electron microscope of 100 nm or less.
The number average particle size of the particle group (BX) is more preferably 0.1 to 100 nm, further preferably 1 to 80 nm, and particularly preferably 5 to 50 nm.
 粒子群(A)及び粒子群(BX)の粒子形状に制限はなく、略球状、略ラグビーボール状、あるいは略扁平状等が挙げられる。なお、粒子が球状以外の形状のときは、もっとも長い軸ともっとも短い軸の長さの平均値を「粒径」と定義する。 There is no restriction | limiting in the particle shape of particle group (A) and particle group (BX), and a substantially spherical shape, a substantially rugby ball shape, a substantially flat shape, etc. are mentioned. When the particles have a shape other than a spherical shape, the average value of the lengths of the longest axis and the shortest axis is defined as “particle diameter”.
 化合物半導体粒子組成物が粒子群(BX)を含む場合、粒子群(A)としての、レーザー回折散乱法により算出された粒径のモード値が250nm以上である粒子群(A-1)と、粒子群(BX)としての、透過型電子顕微鏡より算出された数平均粒径が100nm以下である粒子群(BX-1)とを含むことが好ましい。
 この場合、全粒子に占める、粒子群(A-1)の体積含有率が20vol%以上であり、粒子群(BX-1)の体積含有率が30vol%以上であることが好ましい。
When the compound semiconductor particle composition includes a particle group (BX), a particle group (A-1) having a particle diameter mode value calculated by a laser diffraction scattering method of 250 nm or more as the particle group (A); It is preferable that the particle group (BX) includes a particle group (BX-1) having a number average particle diameter calculated by a transmission electron microscope of 100 nm or less.
In this case, the volume content of the particle group (A-1) in all particles is preferably 20 vol% or more, and the volume content of the particle group (BX-1) is preferably 30 vol% or more.
 化合物半導体粒子組成物中における粒子群(A)の割合が多くなる程キャリアの失活が抑制できるため、好ましい。ここで、球状の粒子が最密充填されたときの理論充填率は74vol%である。
 化合物半導体粒子組成物が粒子群(A)と粒子群(BX)のみからなる場合、理論的には、粒子群(A)が74vol%で粒子群(BX)が26vol%の混合比で複合された膜であることが最も好ましい態様と言える。しかしながら、現実的には、粒子形状は完全な球状ではないこと、粒径分布があること、膜中で最密充填構造を取っていないこと等の理由から、上記体積比より粒子群(BX)の割合を上げて、空隙を減らした膜構造とすることが好ましい。
As the proportion of the particle group (A) in the compound semiconductor particle composition increases, the deactivation of carriers can be suppressed, which is preferable. Here, the theoretical packing rate when the spherical particles are packed close-packed is 74 vol%.
When the compound semiconductor particle composition is composed only of the particle group (A) and the particle group (BX), theoretically, the particle group (A) is combined at a mixing ratio of 74 vol% and the particle group (BX) is 26 vol%. It can be said that it is the most preferable aspect that it is a film. However, in reality, the particle size (BX) is determined from the above volume ratio because the particle shape is not perfectly spherical, has a particle size distribution, does not have a close-packed structure in the film, and the like. It is preferable to increase the ratio of the film structure to reduce the voids.
 上記理由から、全粒子中における粒子群(A)の量は20~70vol%が好ましく、30~65vol%がより好ましく、40~60vol%がさらに好ましい。全粒子中における粒子群(BX)の量は30~80vol%が好ましく、35~70vol%が好ましく、40~60vol%以下がさらに好ましい。 For the above reasons, the amount of the particle group (A) in all the particles is preferably 20 to 70 vol%, more preferably 30 to 65 vol%, and further preferably 40 to 60 vol%. The amount of the particle group (BX) in all particles is preferably 30 to 80 vol%, preferably 35 to 70 vol%, and more preferably 40 to 60 vol%.
 粒子群(A)及び粒子群(BX)の粒径分布に制限はないが、空隙が低減されキャリア失活が抑制された膜構造が設計しやすく、かかる膜構造が安定的に得られ、均一な膜構造が得られることから、それぞれの粒子の粒径分布は狭い方が好ましい。 The particle size distribution of the particle group (A) and the particle group (BX) is not limited, but it is easy to design a film structure in which voids are reduced and carrier deactivation is suppressed, and such a film structure can be stably obtained and uniform. In order to obtain a simple film structure, it is preferable that the particle size distribution of each particle is narrow.
 粒子群(A)及び粒子群(BX)の結晶状態は制限されず、アモルファスでも微結晶でもよく、これらの混合物でもよい。 The crystal state of the particle group (A) and the particle group (BX) is not limited, and may be amorphous or microcrystalline, or a mixture thereof.
 カルコパイライト系化合物半導体粒子群の製造方法としては、カルコパイライト系化合物半導体のバルク体又は膜に公知の粉砕技術を適用して微粉化する方法、及び、液相での微粒子合成法に代表される核から結晶成長を行う過程で微粒子群を合成する方法等が挙げられる。 Examples of the method for producing a chalcopyrite compound semiconductor particle group include a method of applying a known pulverization technique to a bulk or film of a chalcopyrite compound semiconductor and a method for synthesizing fine particles in a liquid phase. Examples include a method of synthesizing fine particle groups in the process of crystal growth from the nucleus.
 微粉化用のカルコパイライト系化合物半導体のバルク体の製造方法としては、
 I族元素、III族元素、VI族元素、及び/又はこれらの化合物を固相で加熱しながら、圧力をかけることで均一なI-III-VI族カルコパイライト結晶を得る方法;
 I族元素、III族元素、VI族元素、及び/又はこれらの化合物を高温炉で融解させ、空冷することで均一なI-III-VI族カルコパイライト結晶を得る方法等の固相合成法が挙げられる。
As a method for producing a bulk body of a chalcopyrite compound semiconductor for pulverization,
A method for obtaining a uniform group I-III-VI chalcopyrite crystal by applying pressure while heating a group I element, a group III element, a group VI element, and / or a compound thereof in a solid phase;
A solid phase synthesis method such as a method of obtaining a uniform group I-III-VI chalcopyrite crystal by melting a group I element, a group III element, a group VI element, and / or a compound thereof in a high-temperature furnace and air cooling. Can be mentioned.
 微粉化用のカルコパイライト系化合物半導体膜の製造方法としては、多元蒸着法やセレン化法等が挙げられる。
 多元蒸着法としては例えば、1段階目にIII族元素とVI族元素とを同時に蒸着することでIII-VI族化合物膜を形成し、2段階目にI族元素とVI族元素とを同時に蒸着し、3段階目にIII族元素とVI族元素とを同時に蒸着する三段階蒸着法が挙げられる。
 セレン化法は、I族とIII族元素とを蒸着法やスパッタ法あるいは溶融状態で混合することでI族元素及びIII族元素からなる合金状の前駆体を予め作製しておき、この前駆体を固体セレン、セレンガス、セレン化水素、あるいはアルキルセレン等でセレン化する方法である。
Examples of the method for producing a chalcopyrite compound semiconductor film for pulverization include multi-source deposition and selenization.
In the multi-source deposition method, for example, a group III-VI compound film is formed by simultaneously depositing a group III element and a group VI element in the first stage, and a group I element and a group VI element are simultaneously deposited in the second stage. In addition, there is a three-stage vapor deposition method in which a group III element and a group VI element are vapor-deposited at the third stage.
In the selenization method, a group I element and a group III element are mixed in a vapor deposition method, a sputtering method, or a molten state to prepare an alloy-like precursor composed of a group I element and a group III element in advance. Is selenized with solid selenium, selenium gas, hydrogen selenide, alkyl selenium or the like.
 量産性や組成制御の容易性等の観点から、固相合成法によりカルコパイライト系化合物半導体のバルク体を得、これを微粉化する方法が特に好ましい。
 粉砕方法としては公知の技術を適用でき、乾式粉砕法や湿式粉砕法等が挙げられる。乾式粉砕法とは、空気や不活性ガス等の気相中で粉砕する方法で、例えば乳鉢を使用する方法や、ボールミルあるいはジェットミル等のミルを使用して粉砕する方法等が挙げられる。湿式粉砕法とは、溶剤を使用して液相中で粉砕する方法であり、例えば、ボールミル、ビーズミル、及びジェットミル等のミルを使用して粉砕する方法等が挙げられる。粉砕方法によって得られる粉体の粒径分布が異なるため、所望の粒径分布となるよう好適な粉砕方法を選択する。
 得られた粉砕物を篩等を用いて分級することで、所望の粒径分布の粉体を得ることができる。
From the viewpoint of mass productivity, ease of composition control, etc., a method of obtaining a bulk body of chalcopyrite compound semiconductor by a solid phase synthesis method and pulverizing it is particularly preferable.
As the pulverization method, a known technique can be applied, and examples thereof include a dry pulverization method and a wet pulverization method. The dry pulverization method is a method of pulverization in a gas phase such as air or an inert gas. Examples thereof include a method using a mortar and a method using a ball mill or a jet mill. The wet pulverization method is a method of pulverizing in a liquid phase using a solvent, and examples thereof include a method of pulverizing using a mill such as a ball mill, a bead mill, and a jet mill. Since the particle size distribution of the powder obtained by the pulverization method is different, a suitable pulverization method is selected so as to obtain a desired particle size distribution.
By classifying the obtained pulverized product using a sieve or the like, a powder having a desired particle size distribution can be obtained.
 核から結晶成長を行う過程で微粒子群を形成させる方法としては、液相中で化学反応を行う方法が挙げられる。
 例えば、オレイルアミンに溶解させた銅アセチルアセトナト、インジウムアセチルアセトナト、及びガリウムアセチルアセトナトと、オレイルアミンに溶解させたセレン元素とを250℃で混合して反応させた後、反応液の遠心分離によりCIGS微粒子群を得る方法(非特許文献5)や、オレイルアミン中、塩化銅、塩化インジウム、塩化ガリウム、及びセレン元素を室温から240℃に昇温して反応させた後、反応液を遠心分離によりCIGS微粒子群を得る方法(非特許文献6)等が知られている。
As a method for forming a fine particle group in the process of crystal growth from a nucleus, a method of performing a chemical reaction in a liquid phase can be mentioned.
For example, copper acetylacetonate, indium acetylacetonate, and gallium acetylacetonate dissolved in oleylamine and selenium element dissolved in oleylamine are mixed and reacted at 250 ° C., and then the reaction solution is centrifuged. A method of obtaining CIGS fine particle groups (Non-patent Document 5), or reacting copper chloride, indium chloride, gallium chloride, and selenium element in oleylamine by raising the temperature from room temperature to 240 ° C., and then centrifuging the reaction solution A method for obtaining CIGS fine particle groups (Non-Patent Document 6) and the like are known.
 核から結晶成長を行う過程で微粒子群を合成する上記の方法に用いられる組成物は、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)として使用できる。 The composition used in the above method for synthesizing fine particle groups in the process of crystal growth from the nucleus can be used as a non-solid semiconductor precursor composition (BY) that becomes a solid semiconductor by heating.
 本発明の化合物半導体粒子組成物は、基板上への塗布容易性から溶媒を含むことが好ましい。
 半導体前駆体組成物(BY)を用いる場合、それに溶媒が含まれているので、それをそのまま利用してもよい。
 溶媒としては特に制限されず、有機溶媒、水等の無機溶媒、あるいは有機/無機混合溶媒を使用することができる。
 本発明の化合物半導体粒子組成物中の粒子群と溶媒との量比に制限はない。ただし、溶媒濃度が高すぎると溶媒が揮発する過程で発生する気泡によって膜にひび割れが生じる可能性が高くなり好ましくない。また、溶媒濃度が低すぎると均一な塗布膜を得るのが難しくなり、均一な塗布膜を得るには一度に成膜する膜厚を薄くする必要があり所望の膜厚を達成するためには工程を増やす必要がある。以上の観点から、粒子組成物中の粒子濃度は0.001~50vol%が好ましく、より好ましくは0.005~30vol%であり、さらに好ましくは0.01~20vol%である。
The compound semiconductor particle composition of the present invention preferably contains a solvent from the viewpoint of ease of application on a substrate.
When the semiconductor precursor composition (BY) is used, since it contains a solvent, it may be used as it is.
The solvent is not particularly limited, and an organic solvent, an inorganic solvent such as water, or an organic / inorganic mixed solvent can be used.
There is no restriction | limiting in the quantity ratio of the particle group and solvent in the compound semiconductor particle composition of this invention. However, if the solvent concentration is too high, there is a high possibility that the film will crack due to bubbles generated in the process of volatilization of the solvent. In addition, if the solvent concentration is too low, it is difficult to obtain a uniform coating film. In order to obtain a uniform coating film, it is necessary to reduce the film thickness to be formed at one time. It is necessary to increase the number of processes. From the above viewpoint, the particle concentration in the particle composition is preferably 0.001 to 50 vol%, more preferably 0.005 to 30 vol%, and still more preferably 0.01 to 20 vol%.
 本発明の化合物半導体粒子組成物は、上記必須成分以外の任意成分を含んでいてもよい。
 本発明の化合物半導体粒子組成物は必要に応じて、粒子間の結着性向上を目的として、ポリマー等のバインダ成分を含むことができる。バインダの種類に制限はないが、一般的にバインダとして用いられている、ポリオレフィン系、ハロゲン化ビニル系、ポリカーボネート系、ポリアミド系、ABS系、ポリ酢酸ビニル系、ポリエステル系、及びポリエーテル系等の樹脂が適用できる。このうち後の焼成工程(3)で分解されやすく、また焼成後にハロゲン等のヘテロ元素が残存しないものが好ましい。この理由から、炭化水素系ポリアミド、炭化水素系ポリエステル、炭化水素系ポリエーテル、及びポリオレフィン等が好ましい。
The compound semiconductor particle composition of the present invention may contain an optional component other than the essential components.
The compound semiconductor particle composition of the present invention can contain a binder component such as a polymer for the purpose of improving the binding property between the particles, if necessary. The type of binder is not limited, but is generally used as a binder, such as polyolefin, vinyl halide, polycarbonate, polyamide, ABS, polyvinyl acetate, polyester, and polyether. Resin can be applied. Among these, those which are easily decomposed in the subsequent firing step (3) and which do not leave a heteroelement such as halogen after firing are preferable. For this reason, hydrocarbon polyamides, hydrocarbon polyesters, hydrocarbon polyethers, polyolefins and the like are preferable.
 本発明の化合物半導体粒子組成物には必要に応じて、後の焼成工程(3)における焼結を助成するために、焼成温度以下で融解する化合物を焼結助剤として添加してもよい。焼結助剤はフラックスとして働くため、焼成時に、結晶成長や粒子界面の融着を促進する効果を期待できる。焼結助剤として異種化合物を添加すると不純物として働くことから、I-III-VI族カルコパイライト化合物の構成金属と同種の金属元素を含む単体又は化合物を用いることが好ましい。具体的には、CuCl、CuCl、CuBr、CuBr、及びCuSe等のI族元素のハロゲン化物やカルコゲン化物、さらにはS、Se、及びTe等の単体のカルコゲン元素が焼成助剤として好適である。特に、CIGSの焼成助剤としては、異種元素は不純物として働くため同種の元素からなる物質を適用することが好ましく、焼成温度以下で融解するCuSeやSe等が好適である。 If necessary, a compound that melts at a firing temperature or lower may be added to the compound semiconductor particle composition of the present invention as a sintering aid in order to assist the sintering in the subsequent firing step (3). Since the sintering aid works as a flux, it can be expected to promote the effect of crystal growth and fusion at the particle interface during firing. Since the addition of a foreign compound as a sintering aid works as an impurity, it is preferable to use a simple substance or a compound containing the same metal element as the constituent metal of the group I-III-VI chalcopyrite compound. Specifically, halides and chalcogenides of Group I elements such as CuCl, CuCl 2 , CuBr, CuBr 2 , and CuSe, and simple chalcogen elements such as S, Se, and Te are suitable as firing aids. is there. In particular, as a firing aid for CIGS, it is preferable to use a material composed of the same kind of element because different elements act as impurities, and CuSe, Se, or the like that melts at a firing temperature or lower is suitable.
 その他、本発明の化合物半導体粒子組成物には、本発明の効果を損なわない範囲であれば、酸化防止剤、凍結防止剤、pH調整剤、分散剤、可塑剤、隠蔽剤、着色剤、及び油剤などの添加剤が含まれていてもよい。 In addition, in the compound semiconductor particle composition of the present invention, an antioxidant, an antifreezing agent, a pH adjuster, a dispersant, a plasticizer, a concealing agent, a colorant, and the like, as long as the effects of the present invention are not impaired. Additives such as oil agents may be included.
 本発明の化合物半導体粒子組成物は、組成物をなす複数の構成成分を混合することで調製できる。複数の構成成分の混合方法は特に制限されず、すべての構成成分を一括混合してもよいし、複数の構成成分を分けてそれぞれ混合し、最終的にこれらを混合してもよい。 The compound semiconductor particle composition of the present invention can be prepared by mixing a plurality of components constituting the composition. The method for mixing a plurality of constituent components is not particularly limited, and all the constituent components may be mixed at once, or the plurality of constituent components may be separately mixed and finally mixed.
<工程(2)>
 工程(2)は、基板上に、工程(1)で用意した化合物半導体粒子組成物を塗布して塗布膜を形成する工程である。
<Step (2)>
Step (2) is a step of forming a coating film on the substrate by applying the compound semiconductor particle composition prepared in step (1).
 化合物半導体粒子組成物として、溶媒を含む粒子分散液を用い、湿式法で塗布を行うことが好ましい。
 粒子分散液の塗布法としては、スプレーコーティング法、キャスト法、インクジェット印刷法、スクリーン印刷法、アプリケータやブロックコーターで塗工する塗工法、凹版印刷法、凸版印刷法、平版印刷法、グラビア印刷法、及びフレキソ印刷法等の各種塗布法が挙げられる。
The compound semiconductor particle composition is preferably applied by a wet method using a particle dispersion containing a solvent.
The particle dispersion can be applied by spray coating, casting, ink jet printing, screen printing, coating using an applicator or block coater, intaglio printing, letterpress printing, planographic printing, gravure printing. And various coating methods such as a flexographic printing method.
 化合物半導体粒子組成物が溶媒を含む場合、本工程(2)後、次の焼成工程(3)前に、加熱乾燥、減圧乾燥、あるいは加熱減圧乾燥等により、焼成温度よりも低い温度で溶媒を揮発除去する溶媒除去工程を有することができる。焼成工程(3)において溶媒が飛ぶため、溶媒除去工程は必須ではないが、あらかじめ溶媒を除去しておくことで、緻密な化合物半導体膜が得られる。なお、焼成工程(3)において溶媒が飛ぶため、溶媒除去工程において、すべての溶媒を除去する必要はなく、ある程度の溶媒を除去できればよい。
 必要に応じて、化合物半導体粒子組成物の塗布及び溶媒除去の操作は複数回繰り返すことができる。一度に厚膜を形成するより複数回に分ける方が緻密で均一な膜が得られ、好ましい。また、厚み方向に組成分布を付けることもできる。
When the compound semiconductor particle composition contains a solvent, after this step (2) and before the next firing step (3), the solvent is removed at a temperature lower than the firing temperature by heating, drying under reduced pressure, or drying under reduced pressure. It may have a solvent removal step of removing by volatilization. Since the solvent flies in the firing step (3), the solvent removal step is not essential, but a dense compound semiconductor film can be obtained by removing the solvent in advance. In addition, since a solvent flies in a baking process (3), it is not necessary to remove all the solvent in a solvent removal process, and should just remove a certain amount of solvent.
If necessary, the operation of applying the compound semiconductor particle composition and removing the solvent can be repeated a plurality of times. It is preferable to divide the film into a plurality of times rather than forming a thick film at a time because a dense and uniform film can be obtained. Moreover, a composition distribution can also be attached in the thickness direction.
 化合物半導体粒子組成物が半導体前駆体組成物(BY)を含まない、あるいはその量が少ない場合、溶媒を含まない若しくはほとんど含まない粉体状の化合物半導体粒子組成物(必要に応じて固体の分散剤を含むことができる。)を直接乾式で塗布することもできる。 In the case where the compound semiconductor particle composition does not contain the semiconductor precursor composition (BY) or the amount thereof is small, a powdery compound semiconductor particle composition containing little or no solvent (dispersing a solid if necessary) Can also be applied directly dry.
<工程(3)>
 工程(3)は工程(2)で得られた塗布膜を焼成する工程(3)である。
 塗布膜を焼成することで、粒子界面での融着が進行し、結晶性が良く緻密な膜が得られる。焼成温度は化合物半導体粒子組成物の組成等により制限されない。
 焼成温度が低すぎると粒子界面の融着が不充分となる恐れがあり、高すぎるとスファレライト結晶等の目的生成物以外の結晶が生成される恐れがある。焼成温度は400~900℃の範囲内が好ましく、より好ましくは500~800℃の範囲内である。
 焼成雰囲気は特に制限されず、I-III-VI族カルコパイライト化合物の酸化を抑制するという観点で、窒素やアルゴン等の不活性ガス、あるいはI-III-VI族カルコパイライト化合物と同種のVI族元素ガスを用いることが好ましい。
 焼成工程(3)は加熱温度を変えて複数段階で実施してもよい。ここで言う「複数段階の焼成工程」には、本焼成前の仮焼成工程、及び本焼成後のアニール工程も含まれるものとする。
 以上のようにして、本発明のカルコパイライト系化合物半導体膜が製造される。
<Step (3)>
Step (3) is a step (3) of baking the coating film obtained in step (2).
By baking the coating film, fusion at the particle interface proceeds, and a dense film with good crystallinity can be obtained. The firing temperature is not limited by the composition of the compound semiconductor particle composition.
If the firing temperature is too low, there is a fear that the fusion at the particle interface will be insufficient, and if it is too high, crystals other than the target product such as sphalerite crystals may be produced. The firing temperature is preferably in the range of 400 to 900 ° C, more preferably in the range of 500 to 800 ° C.
The firing atmosphere is not particularly limited. From the viewpoint of suppressing oxidation of the I-III-VI group chalcopyrite compound, an inert gas such as nitrogen or argon, or the same group VI group as the I-III-VI group chalcopyrite compound. It is preferable to use elemental gas.
The firing step (3) may be performed in multiple stages by changing the heating temperature. The “multi-stage baking process” mentioned here includes a temporary baking process before the main baking and an annealing process after the main baking.
As described above, the chalcopyrite compound semiconductor film of the present invention is manufactured.
 本発明の化合物半導体膜は、全体の組成が均一でもよいし、厚み方向に組成分布を有しても構わない。
 例えば、工程(3)がない場合には工程(1)と工程(2)を塗布膜の組成を変えて繰り返し、工程(3)がある場合には工程(1)~(3)を塗布膜の組成を変えて繰り返すことで、厚み方向組成分布を有する化合物半導体膜を製造できる。
 また、塗布膜が一層のみであっても、工程(3)等の工程において、厚み方向に自然に組成分布が生じる場合もある。
The entire composition of the compound semiconductor film of the present invention may be uniform or may have a composition distribution in the thickness direction.
For example, when there is no step (3), steps (1) and (2) are repeated by changing the composition of the coating film, and when there is step (3), steps (1) to (3) are repeated. A compound semiconductor film having a composition distribution in the thickness direction can be produced by repeating the above composition.
Moreover, even if there is only one coating film, composition distribution may occur naturally in the thickness direction in the step (3) and the like.
 本発明の化合物半導体膜の厚さは粒子群(A)の粒径に比べ大きすぎないことが重要であり、0.5μm以上10μm以下であるのが好ましい。膜厚が10μmを超えると、粒子群(A)の間の粒界の影響が大きくなり、本発明の作用効果を充分に奏することが難しくなる。 It is important that the thickness of the compound semiconductor film of the present invention is not too large compared to the particle size of the particle group (A), and is preferably 0.5 μm or more and 10 μm or less. When the film thickness exceeds 10 μm, the influence of the grain boundary between the particle groups (A) becomes large, and it becomes difficult to sufficiently achieve the effects of the present invention.
 I-III-VI族カルコパイライト系化合物においては、III族元素によって、バンドギャップを制御できることが知られている。例えば、CuInSeのバンドギャップは約1.0eVであり、CuGaSeのバンドギャップは約1.65eVである。III族元素としてInとGaの双方を用いたCIGS等の混晶系では、InとGaの複合比を変えることでバンドギャップを変えることができる。しかしながら、InとGaの複合比が異なる界面はバンドの不整合による再結合が行われ、キャリアの失活につながり好ましくない。このため、CIGS膜の場合、厚み方向のIn/(In+Ga)=x±0.1(0<x<1)に収めることが好ましい。 In group I-III-VI chalcopyrite compounds, it is known that the band gap can be controlled by group III elements. For example, the band gap of CuInSe 2 is about 1.0 eV, and the band gap of CuGaSe 2 is about 1.65 eV. In a mixed crystal system such as CIGS using both In and Ga as group III elements, the band gap can be changed by changing the composite ratio of In and Ga. However, an interface having a different composite ratio of In and Ga undergoes recombination due to band mismatch, which leads to carrier deactivation and is not preferable. For this reason, in the case of a CIGS film, it is preferable to keep it in the thickness direction of In / (In + Ga) = x ± 0.1 (0 <x <1).
 本発明の化合物半導体膜は結晶性が低いと、これを光吸収層として用いた光電変換素子の性能低下の要因になる。「結晶性」はXRD(X線回折)パターンの半値幅よりScherrerの式で算出される結晶粒径が指標になる。本発明の化合物半導体膜の結晶子サイズは100Å以上であることが好ましい。 If the compound semiconductor film of the present invention has low crystallinity, it will be a factor of performance deterioration of a photoelectric conversion element using this as a light absorption layer. “Crystallinity” is based on the crystal grain size calculated by Scherrer's formula from the half width of the XRD (X-ray diffraction) pattern. The crystallite size of the compound semiconductor film of the present invention is preferably 100 mm or more.
 以上説明したように、本発明によれば、粒子塗布法による化合物半導体膜の光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体粒子組成物を提供することができる。
 本発明によれば、上記粒子組成物を用いることにより、粒子塗布法で製造され、光電変換効率の向上を図ることが可能なカルコパイライト系の化合物半導体膜とその製造方法を提供することができる。
 本発明では、粒子塗布法により化合物半導体膜を製造するので、従来の多元蒸着法やセレン化法等と異なり、真空プロセスを要さず、低コストに良質な化合物半導体膜を製造することができる。
As described above, according to the present invention, a chalcopyrite compound semiconductor particle composition capable of improving the photoelectric conversion efficiency of a compound semiconductor film by a particle coating method can be provided.
According to the present invention, a chalcopyrite-based compound semiconductor film that is manufactured by a particle coating method and can improve the photoelectric conversion efficiency and a method for manufacturing the same can be provided by using the particle composition. .
In the present invention, since a compound semiconductor film is manufactured by a particle coating method, unlike a conventional multi-source deposition method or a selenization method, a high-quality compound semiconductor film can be manufactured at a low cost without requiring a vacuum process. .
「光電変換素子」
 次に、図面を参照して、上記の本発明の化合物半導体膜を光吸収層(光電変換層)として備えた光電変換素子の一実施形態について説明する。図1は断面図であり、視認しやすくするため、各層の縮尺等は実際のものは適宜異ならせてある。
"Photoelectric conversion element"
Next, an embodiment of a photoelectric conversion element provided with the compound semiconductor film of the present invention as a light absorption layer (photoelectric conversion layer) will be described with reference to the drawings. FIG. 1 is a cross-sectional view, and in order to facilitate visual recognition, the actual scales of the layers are appropriately changed.
 本実施形態の光電変換素子10は、基板11上に、裏面電極層12、光吸収層(p型半導体層)13、バッファ層(n型半導体層)14、透光性高抵抗層15、透光性電極層16とが順次積層されたものである。透光性高抵抗層15は必要に応じて設けられる層であり、必須なものではない。
 光電変換素子1においては必要に応じて、裏面電極層12及び透光性電極層16上に取出し電極17、18を設けられる。
 光電変換素子10では、p型半導体とn型半導体との界面に光が照射されたときに電子及びホールが生成することで、光から電気への変換が起きる。
The photoelectric conversion element 10 according to the present embodiment includes a back electrode layer 12, a light absorption layer (p-type semiconductor layer) 13, a buffer layer (n-type semiconductor layer) 14, a translucent high resistance layer 15, a translucent layer, on a substrate 11. The photoelectrode layer 16 is sequentially laminated. The translucent high resistance layer 15 is a layer provided as necessary, and is not essential.
In the photoelectric conversion element 1, extraction electrodes 17 and 18 are provided on the back electrode layer 12 and the translucent electrode layer 16 as necessary.
In the photoelectric conversion element 10, light and electricity are converted by generating electrons and holes when light is applied to the interface between the p-type semiconductor and the n-type semiconductor.
 基板11の種類は限定されるものはなくガラス基板が一般的に使用される。また、光電変換素子10にフレキシブル性を付与することを目的として、PET(ポリエチレンテレフタレート)やポリイミド等の樹脂フィルム、アルミやステンレス等の金属箔等のフレキシブル基板を用いてもよい。アルミやステンレス等の金属箔を用いる場合には、基板表面に絶縁膜が必要である。
 CI(G)S系等では、光吸収層の成膜時に基板側からNa等のアルカリ金属及び/又はMg等のアルカリ土類金属が供給されると、膜の結晶性が良くなり、光電変換効率が向上することが知られている。青板ガラス等のNaを含む基板を使用したり、Naを含まない上述の基板と光吸収層13との間にハロゲン化ナトリウム等のアルカリ(土類)金属供給層を公知の方法で形成してもよい。
The type of the substrate 11 is not limited and a glass substrate is generally used. For the purpose of imparting flexibility to the photoelectric conversion element 10, a flexible film such as a resin film such as PET (polyethylene terephthalate) or polyimide, or a metal foil such as aluminum or stainless steel may be used. When a metal foil such as aluminum or stainless steel is used, an insulating film is necessary on the substrate surface.
In CI (G) S, etc., when an alkali metal such as Na and / or an alkaline earth metal such as Mg is supplied from the substrate side during the formation of the light absorption layer, the crystallinity of the film is improved and photoelectric conversion is performed. It is known to improve efficiency. A substrate containing Na such as blue plate glass is used, or an alkali (earth) metal supply layer such as sodium halide is formed between the above-mentioned substrate not containing Na and the light absorption layer 13 by a known method. Also good.
 裏面電極層12には、光吸収層13とオーミック接触が取れるものであれば公知の材料を適用することができる。そのような材料として、金、モリブデン、ニッケル、チタン、タンタル、及びこれらの組合わせ等が挙げられ、その中でも安価で入手容易などの理由からモリブデン等が好ましく適用される。また、裏面電極層12の成膜方法としては公知の方法が適用でき、スパッタ法、加熱蒸着法、電解メッキ法、及び無電解メッキ法等が適用できる。 A known material can be applied to the back electrode layer 12 as long as it can make ohmic contact with the light absorption layer 13. Examples of such a material include gold, molybdenum, nickel, titanium, tantalum, and combinations thereof. Among them, molybdenum and the like are preferably applied because they are inexpensive and easily available. Further, as a method for forming the back electrode layer 12, a known method can be applied, and a sputtering method, a heat evaporation method, an electrolytic plating method, an electroless plating method, or the like can be applied.
 光吸収層13は、上記の本発明のカルコパイライト系化合物半導体膜からなるp型半導体層である。
 光吸収層13の膜厚は厚い方が光吸収を増加できるためキャリアを多く発生することができ、好ましい。一方で、p型半導体層は抵抗成分としても働くため、発生キャリアの効率的な取出しという観点からは膜厚が薄い方が好ましい。
 両者を加味すると、光吸収層13の膜厚は0.5~10μmであることが好ましく、1~5μmであることがより好ましく、1.5~3μmであることがさらに好ましい。
The light absorption layer 13 is a p-type semiconductor layer made of the chalcopyrite compound semiconductor film of the present invention.
A thicker light absorption layer 13 is preferable because it can increase light absorption and generate more carriers. On the other hand, since the p-type semiconductor layer also functions as a resistance component, it is preferable that the film thickness is small from the viewpoint of efficient extraction of generated carriers.
Considering both, the film thickness of the light absorption layer 13 is preferably 0.5 to 10 μm, more preferably 1 to 5 μm, and further preferably 1.5 to 3 μm.
 光吸収層13上に形成されるバッファ層14は、n型半導体層である。
 バッファ層14の材料としては、II-VI族化合物及び/又はIII-VI族化合物等が主に適用される。例えば、Cd(S,O)、Zn(S,O)、In(S,O)、及びInSe等が公知の物質として適用される。また、これらの化合物中は水酸化物等を微量含んでいてもよい。
 バッファ層14は、化学浴析出法(CBD法:Chemical Bath Deposition法)、及びスパッタ法等で形成できる。例えば、CdSの場合、カドミウム塩(例えば、ヨウ化カドミウム)と硫黄含有化合物(例えば、チオ尿素)とを含む水溶液を硫黄が解離するpHに調整して、CdSが析出する温度で、光吸収層13が形成された基板11を浸漬することでバッファ層14を堆積することができる。
The buffer layer 14 formed on the light absorption layer 13 is an n-type semiconductor layer.
As a material of the buffer layer 14, a II-VI group compound and / or a III-VI group compound are mainly applied. For example, Cd (S, O), Zn (S, O), In (S, O), InSe, and the like are applied as known substances. These compounds may contain a trace amount of hydroxide and the like.
The buffer layer 14 can be formed by a chemical bath deposition method (CBD method: Chemical Bath Deposition method), a sputtering method, or the like. For example, in the case of CdS, the light absorption layer is adjusted at a temperature at which CdS is precipitated by adjusting an aqueous solution containing a cadmium salt (for example, cadmium iodide) and a sulfur-containing compound (for example, thiourea) to a pH at which sulfur is dissociated. The buffer layer 14 can be deposited by immersing the substrate 11 on which 13 is formed.
 バッファ層14にピンホールのような孔が存在すると、それを介して電流がリークするため好ましくない。一方、バッファ層14の膜厚が厚いときには光の透過率が低下するためキャリアの発生数の低下を招き、また直列抵抗成分の増大に繋がることから発生したキャリアが伝送する際のロスの増加に繋がる。両者を加味すると、バッファ層14の膜厚は1~300nmであることが好ましく、より好ましくは10~200nmであり、さらに好ましくは20~150nmである。 If a hole such as a pinhole is present in the buffer layer 14, current leaks through the hole, which is not preferable. On the other hand, when the thickness of the buffer layer 14 is thick, the light transmittance decreases, leading to a decrease in the number of carriers generated, and an increase in loss when the generated carriers are transmitted because it leads to an increase in the series resistance component. Connected. Considering both, the thickness of the buffer layer 14 is preferably 1 to 300 nm, more preferably 10 to 200 nm, and still more preferably 20 to 150 nm.
 上記のバッファ層14中のピンホールを介したリーク電流を抑制するために、バッファ層14上に必要に応じて高抵抗膜15を導入することができる。高抵抗膜15の材料としてはZnO等が挙げられる。ただし、高抵抗膜の膜厚が厚いときは直列抵抗成分の増大によるキャリア伝送の際のロスに繋がるため、その膜厚は300nm以下であることが好ましく、より好ましくは100nm以下である。 In order to suppress the leakage current through the pinhole in the buffer layer 14, the high resistance film 15 can be introduced on the buffer layer 14 as necessary. Examples of the material of the high resistance film 15 include ZnO. However, when the film thickness of the high resistance film is thick, it leads to a loss in carrier transmission due to an increase in the series resistance component. Therefore, the film thickness is preferably 300 nm or less, more preferably 100 nm or less.
 透光性電極層16の材料としては、光の透過率が高く、抵抗が低いものが適用される。このような材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、フッ素ドープ酸化スズ(FTO)、あるいは各種金属をドープした酸化亜鉛ZnO等が好適な例として挙げられる。酸化亜鉛のドープ元素としては、ガリウム、アルミニウム、ホウ素、ケイ素、スズ、インジウム、ゲルマニウム、アンチモン、イリジウム、レニウム、セリウム、ジルコニウム、スカンジウム、イットリウム、及びランタノイドが挙げられ、これらの少なくとも1種以上を0.05~15モル%ドープすることができる。 As the material of the translucent electrode layer 16, a material having high light transmittance and low resistance is applied. Preferred examples of such materials include indium tin oxide (ITO), indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), and zinc oxide ZnO doped with various metals. Examples of the doping element of zinc oxide include gallium, aluminum, boron, silicon, tin, indium, germanium, antimony, iridium, rhenium, cerium, zirconium, scandium, yttrium, and lanthanoid. .05-15 mol% can be doped.
 透光性電極層16の膜厚が厚いときには光の透過率が低下するためキャリアの発生数の低下を招くため好ましくない。一方、膜厚が薄いときには取出し電極18までの抵抗成分が大きくなるためキャリア伝送時のロスに繋がるため好ましくない。両者を加味すると、透光性電極層16の膜厚は10~1000nmであることが好ましく、より好ましくは100~700nmであり、さらに好ましくは200~500nmである。 When the film thickness of the translucent electrode layer 16 is thick, it is not preferable because the light transmittance is lowered and the number of carriers generated is reduced. On the other hand, when the film thickness is small, the resistance component up to the extraction electrode 18 is increased, which leads to loss during carrier transmission, which is not preferable. Considering both, the film thickness of the translucent electrode layer 16 is preferably 10 to 1000 nm, more preferably 100 to 700 nm, and still more preferably 200 to 500 nm.
 透光性電極層16の成膜方法は公知の技術が適用でき、例えばスパッタリング法、電子ビーム蒸着法、イオンプレーティング法、分子線エピタキシー法、イオン化蒸着法、レーザーアブレーション法、アークプラズマ蒸着法、熱CVD法、プラズマCVD法、MOCVD法、スプレー熱分解法、ゾルゲル法、無電解めっき法、電解めっき法、塗布焼成法、エアロゾルデポジション法、及び微粒子塗布法等が適用できる。 A known technique can be applied to the method for forming the translucent electrode layer 16, such as sputtering, electron beam vapor deposition, ion plating, molecular beam epitaxy, ionization vapor deposition, laser ablation, arc plasma vapor deposition, A thermal CVD method, a plasma CVD method, an MOCVD method, a spray pyrolysis method, a sol-gel method, an electroless plating method, an electrolytic plating method, a coating baking method, an aerosol deposition method, a fine particle coating method, and the like can be applied.
 光電変換素子10内で生成したキャリアを外部回路に取り出す際の接触抵抗を低減させる目的で、裏面電極層12及び透光性電極層16上に取出し電極17,18を設置してもよい。取出し電極17/18は裏面電極層12/透光性電極16とオーミック接合を取れる抵抗が低いものであれば制限はなく、例えば金、あるいはアルミニウム等をスパッタ法や蒸着法で堆積することで形成できる。 The extraction electrodes 17 and 18 may be provided on the back electrode layer 12 and the translucent electrode layer 16 for the purpose of reducing the contact resistance when the carriers generated in the photoelectric conversion element 10 are taken out to the external circuit. The extraction electrode 17/18 is not limited as long as it has a low resistance that can form an ohmic contact with the back electrode layer 12 / translucent electrode 16. For example, gold or aluminum is deposited by sputtering or vapor deposition. it can.
 本実施形態の光電変換素子10は必要に応じて、上記以外の任意の層を備えることができる。 The photoelectric conversion element 10 of this embodiment can be provided with arbitrary layers other than the above as needed.
 本実施形態の光電変換素子10は、上記の本発明の化合物半導体膜を光吸収層13として用いたものであるので、低コストで製造でき、光電変換効率の向上を図ることが可能なものである。 Since the photoelectric conversion element 10 of the present embodiment uses the compound semiconductor film of the present invention as the light absorption layer 13, it can be manufactured at a low cost and can improve the photoelectric conversion efficiency. is there.
 光電変換素子1は、カバーガラス及び保護フィルム等を付けて、太陽電池として利用することができる。 The photoelectric conversion element 1 can be used as a solar cell with a cover glass and a protective film.
 以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
 以下の実施例及び比較例において用いた測定機器及び測定方法を以下に示す。
(1)平均粒径
・粒子群(A-1)
 レーザー回折散乱法により算出された粒径のモード値が250nm以上である粒子群(A-1)については、下記装置及び溶媒を用いて測定した。
 機器:堀場製作所社製LA-950(レーザー回折・散乱法)
 溶媒:クロロホルム及びイソプロパノール
・粒子群(A)
 機器:日本電子社製:透過型電子顕微鏡(TEM)JEM-2100F
 TEMによって観察された画像で、無作為に選んだ粒子30点の粒径を測定し、その平均を平均粒径とした。
 なお、粒子群(A-1)では、レーザー回折・散乱法により算出された粒径のモード値とTEM画像から算出された平均粒径との誤差が30%以内であることを確認している。
Measuring instruments and measuring methods used in the following examples and comparative examples are shown below.
(1) Average particle diameter / particle group (A-1)
The particle group (A-1) having a particle size mode value calculated by the laser diffraction scattering method of 250 nm or more was measured using the following apparatus and solvent.
Equipment: LA-950 manufactured by HORIBA, Ltd. (Laser diffraction / scattering method)
Solvent: Chloroform and isopropanol particle group (A)
Equipment: JEOL Ltd .: Transmission electron microscope (TEM) JEM-2100F
In the image observed by TEM, the particle size of 30 randomly selected particles was measured, and the average was taken as the average particle size.
In the particle group (A-1), it has been confirmed that the error between the mode value of the particle diameter calculated by the laser diffraction / scattering method and the average particle diameter calculated from the TEM image is within 30%. .
(2)光電変換素子の特性
 光源:三永電気社製 ソーラーシミュレータ XES-502S+XEC-502S+ELS-100、
 計測器:ADCMT社製 DC VOLTAGE CURRENT SOURCE/MONITOR6244、
 測定方法:下記プロセスに従って作製した光電変換素子を、メカニカルスクライバを使用して1mmに細分化した上で、変換効率の測定を実施した。計測器のプラス側の端子を裏面電極層12上に、マイナス側の端子を透光性電極層16上に接触させた状態で、1000W/mのAM-1.5の擬似太陽光を照射時の単位面積あたりの電流-電圧特性を測定した。測定した電流-電圧特性から、下記のように、開放電圧(Voc)、短絡電流(Jsc)、フィルファクター(FF)、及び変換効率を算出した。
開放電圧(Voc):電圧軸との交点の電圧、
短絡電流(Jsc):電流軸との交点の電流、
フィルファクター(FF):VocとJscの積に対する最大出力の割合、
変換効率:入射電力(1000W/m)に対する単位面積あたりの最大出力の割合。
 単位面積あたりの最大出力を算出し、入射電力(1000W/m)との比を取ることで変換効率(%)とした。
(2) Characteristics of photoelectric conversion element Light source: Solar simulator XES-502S + XEC-502S + ELS-100 manufactured by Mitsunaga Electric Co., Ltd.
Measuring instrument: DCVOLTAG CURRENT SOURCE / MONITOR 6244, manufactured by ADMT
Measurement method: The photoelectric conversion element produced according to the following process was subdivided into 1 mm 2 using a mechanical scriber, and then the conversion efficiency was measured. Irradiate 1000 W / m 2 of AM-1.5 simulated sunlight with the positive terminal of the measuring instrument in contact with the back electrode layer 12 and the negative terminal on the translucent electrode layer 16. The current-voltage characteristics per unit area were measured. From the measured current-voltage characteristics, the open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF), and conversion efficiency were calculated as follows.
Open circuit voltage (Voc): Voltage at the intersection with the voltage axis,
Short-circuit current (Jsc): Current at the intersection with the current axis,
Fill factor (FF): Ratio of maximum output to the product of Voc and Jsc,
Conversion efficiency: ratio of maximum output per unit area to incident power (1000 W / m 2 ).
The maximum output per unit area was calculated and taken as the conversion efficiency (%) by taking the ratio with the incident power (1000 W / m 2 ).
「CIGSバルク体の製造」
 InSe:45.6g及びGaSe:9.2gを乳鉢で個別に粉砕し、100マイクロメートルの開口を持つ篩を通過したものを、ジルコニア製ボールを用いて卓上ボールミルにて30分間混合した。ここにさらにCuSe:25.185gを加え、24時間同様に混合した。得られた粉体混合物をカーボン製ダイスに入れ、温度:700℃、プレス圧力:15MPa、雰囲気(Ar)圧力:2気圧の条件で1時間ホットプレスし、ディスク状のCIGS(In/Gaモル比=8/2)バルク体を得た。
"Manufacture of CIGS bulk material"
In 2 Se 3 : 45.6 g and Ga 2 Se 3 : 9.2 g were individually pulverized in a mortar and passed through a sieve having an opening of 100 μm, using a zirconia ball in a table ball mill. Mixed for minutes. Further, Cu 2 Se: 25.185 g was added thereto and mixed in the same manner for 24 hours. The obtained powder mixture was put into a carbon die and hot-pressed for 1 hour under the conditions of temperature: 700 ° C., press pressure: 15 MPa, atmosphere (Ar) pressure: 2 atm, and disc-like CIGS (In / Ga molar ratio) = 8/2) A bulk body was obtained.
「CIGS粒子群(P1)分散液の作製」
 上記で作製したCIGSバルク体1gにクロロホルムとイソプロパノールとを体積比で2:8で混合した混合溶媒を8ml加え、メディア径1mmの粉砕メディアを充填した遊星ボールミル(フリッチュ社製P-6)にて回転数370rpmで3時間粉砕した後に、上記の混合溶媒で希釈することでCIGS粒子濃度が2質量%の分散液を得た。この分散液の平均粒径は360nmであった。
“Preparation of CIGS particle group (P1) dispersion”
In a planetary ball mill (Fritsch P-6) filled with 1 ml of CIGS bulk material prepared above, 8 ml of a mixed solvent prepared by mixing chloroform and isopropanol at a volume ratio of 2: 8, and filled with a grinding medium having a media diameter of 1 mm. After pulverizing at 370 rpm for 3 hours, the dispersion was diluted with the above mixed solvent to obtain a dispersion having a CIGS particle concentration of 2 mass%. The average particle size of this dispersion was 360 nm.
「CIGS粒子群(P2)~(P4)分散液の作製」
 上記で作製したCIGSバルク体1gの粉砕方法や回転数、粉砕時間等の粉砕条件を変えることにより、平均粒径が200nmであるCIGS粒子群(P2)分散液と、平均粒径が100nmであるCIGS粒子群(P3)分散液と、平均粒径が800nmであるCIGS粒子群(P4)分散液とを得た。
 CIGS粒子群(P2)は湿式ジェットミル、CIGS粒子群(P3)は湿式ボールミル、CIGS粒子群(P4)は乾式ジェットミルで、それぞれ粉砕を実施した。P2、P3では分散液中のCIGS粒子濃度は2質量%とした。P4では粉砕後のCIGS粒子をそのまま使用した。
“Preparation of CIGS particle group (P2) to (P4) dispersion”
The CIGS particle group (P2) dispersion having an average particle diameter of 200 nm and the average particle diameter of 100 nm are obtained by changing the pulverization method, rotation speed, pulverization time, and the like of the CIGS bulk body 1 g produced above. A CIGS particle group (P3) dispersion liquid and a CIGS particle group (P4) dispersion liquid having an average particle diameter of 800 nm were obtained.
The CIGS particle group (P2) was a wet jet mill, the CIGS particle group (P3) was a wet ball mill, and the CIGS particle group (P4) was a dry jet mill. In P2 and P3, the CIGS particle concentration in the dispersion was 2% by mass. In P4, the CIGS particles after pulverization were used as they were.
「CIGS粒子群(P5)分散液の作製」
 温度計、還流コンデンサー、及び攪拌装置を取り付けた1L容積4つ口フラスコに窒素を充填し、塩化銅(I)5.0g(50.0mmol)、塩化インジウム8.1g(36.5mmol)、塩化ガリウム2.4g(13.5mmol)、セレン7.9g(100.0mmol)、及びオレイルアミン406.5gを仕込み、240℃で4時間反応させた。反応生成液にクロロホルム(740.0g)及びエタノール(197.3g)を加え、8000rpmで10分間遠心分離した。上澄み液を除去した後、粗CIGS粒子群を得た。
 次に、この粒子群にクロロホルム、エタノール、及び少量のオレイルアミンを加えて遠心分離し、上澄み液を除去した。この処理を合計3回繰り返すことにより、CIGS粒子群を得た(6.1g、18.5mmol)。収率は37%であった。このCIGS粒子群にクロロホルムを加えて希釈することで、CIGS粒子濃度が1質量%の分散液を得た。
 得られたCIGS粒子群の透過型電子顕微鏡より算出された数平均粒径は15nmであった。
"Preparation of CIGS particle group (P5) dispersion"
A 1 L four-necked flask equipped with a thermometer, a reflux condenser, and a stirrer was charged with nitrogen, copper (I) chloride 5.0 g (50.0 mmol), indium chloride 8.1 g (36.5 mmol), chloride 2.4 g (13.5 mmol) of gallium, 7.9 g (100.0 mmol) of selenium, and 406.5 g of oleylamine were charged and reacted at 240 ° C. for 4 hours. Chloroform (740.0 g) and ethanol (197.3 g) were added to the reaction product and centrifuged at 8000 rpm for 10 minutes. After removing the supernatant, a crude CIGS particle group was obtained.
Next, chloroform, ethanol, and a small amount of oleylamine were added to this particle group and centrifuged, and the supernatant was removed. By repeating this treatment three times in total, a CIGS particle group was obtained (6.1 g, 18.5 mmol). The yield was 37%. By adding chloroform to this CIGS particle group and diluting it, a dispersion having a CIGS particle concentration of 1% by mass was obtained.
The number average particle diameter calculated from the transmission electron microscope of the obtained CIGS particle group was 15 nm.
 CIGS粒子群(P1)~(P5)の製造方法と平均粒径を表1にまとめておく。 Table 1 summarizes the production methods and average particle diameters of CIGS particle groups (P1) to (P5).
「CIGS前駆体組成物(PC)の作製」
 5ml容器にマグネティック撹拌子を入れた後、系内をアルゴン雰囲気にした。その後、この容器内に50mg(0.5mmol)の塩化銅(I)と3.7g(5mmol)のブチルアミンとを加え、電磁波及び加熱が可能な合成装置を用い、電磁波照射下、150℃で10分間加熱して、塩化銅(I)のブチルアミン溶液を得た。
 同様の手法にて、111mg(0.5mmol)の塩化インジウムと3.7g(5mmol)のブチルアミンとを、電磁波照射下、100℃で10分間加熱して、塩化インジウムのブチルアミン溶液を得た。
 同様の手法にて、225mg(0.5mmol)のヨウ化ガリウムと3.7g(5mmol)のブチルアミンとを、電磁波照射下、70℃で10分間加熱して、ヨウ化ガリウムのブチルアミン溶液を得た。
 同様の手法にて、40mg(0.5mmol)のセレンと3.7g(5mmol)のブチルアミンとを、電磁波照射下、220℃で10分間加熱して、セレンのブチルアミン溶液を得た。
 いずれも、金属単体又は金属塩が良好に溶解したアミン溶液が得られた。アミン溶液調製の際の圧力はいずれも、2MPa以下であった。
 得られた塩化銅(I)、塩化インジウム、ヨウ化ガリウム、及びセレンの各ブチルアミン溶液を、それぞれブチルアミンで10倍に希釈して0.01Nの溶液に調整した。
 次に、0.01Nの塩化銅(I)、塩化インジウム、ヨウ化ガリウム、及びセレンのブチルアミン溶液を、それぞれ1.0ml、0.8ml、0.2ml、2.0ml取得して混合し、塗布剤を調製した。
 塗布剤の金属元素の組成比(モル比)は、Cu:In:Ga:Se=1.0:0.8:0.2:2.0である。
“Preparation of CIGS precursor composition (PC)”
After putting a magnetic stirring bar in a 5 ml container, the inside of the system was put into an argon atmosphere. Thereafter, 50 mg (0.5 mmol) of copper chloride (I) and 3.7 g (5 mmol) of butylamine are added to the container, and the mixture is used at 150 ° C. under irradiation of electromagnetic waves using a synthesizer capable of electromagnetic waves and heating. Heating for a minute gave a butylamine solution of copper (I) chloride.
In the same manner, 111 mg (0.5 mmol) of indium chloride and 3.7 g (5 mmol) of butylamine were heated at 100 ° C. for 10 minutes under electromagnetic wave irradiation to obtain a butylamine solution of indium chloride.
In the same manner, 225 mg (0.5 mmol) of gallium iodide and 3.7 g (5 mmol) of butylamine were heated at 70 ° C. for 10 minutes under electromagnetic wave irradiation to obtain a butylamine solution of gallium iodide. .
In the same manner, 40 mg (0.5 mmol) of selenium and 3.7 g (5 mmol) of butylamine were heated at 220 ° C. for 10 minutes under electromagnetic wave irradiation to obtain a butylamine solution of selenium.
In either case, an amine solution in which a simple metal or a metal salt was dissolved satisfactorily was obtained. The pressure during the amine solution preparation was 2 MPa or less.
The obtained butylamine solutions of copper (I) chloride, indium chloride, gallium iodide, and selenium were each diluted 10-fold with butylamine to prepare a 0.01N solution.
Next, 0.01N copper chloride (I), indium chloride, gallium iodide, and selenium in butylamine solution were respectively obtained by mixing 1.0 ml, 0.8 ml, 0.2 ml, and 2.0 ml, and coated. An agent was prepared.
The composition ratio (molar ratio) of the metal element of the coating agent is Cu: In: Ga: Se = 1.0: 0.8: 0.2: 2.0.
「光電変換素子の製造」
<裏面電極層の成膜>
 白板ガラス基板を用意し、この上に、純度が3Nのモリブデン(豊島製作所社製)をターゲットとして、RFスパッタ法にて厚み500nm、2.3cmの裏面電極層12を成膜した。
"Manufacture of photoelectric conversion elements"
<Deposition of back electrode layer>
A white glass substrate was prepared, and a back electrode layer 12 having a thickness of 500 nm and 2.3 cm 2 was formed thereon by RF sputtering using molybdenum having a purity of 3N (manufactured by Toyoshima Seisakusho Co., Ltd.) as a target.
<光吸収層の成膜>
 次に、下記プロセスで裏面電極層12上に光吸収層13を形成した。
 上記で得られたCIGS粒子群(P1)~(P5)分散液、及びCIGS前駆体組成物(PC)のうち少なくとも1つと、溶媒(トルエン)とを所定の混合比で混合し、トータルのCIGS粒子濃度が0.03vol%になるように希釈して、塗布液(粒子組成物)を得た。配合比は実施例及び比較例によって変更した。
 上記裏面電極12上に0.4mlの上記塗布液を滴下して塗布膜を得、60℃で3分間加熱した後、230℃で10秒間加熱することで溶媒を除去した。塗布及び溶媒除去の操作を5回繰り返した。その後、得られた塗布膜を、窒素雰囲気下又は水素/窒素雰囲気下、575℃で1時間焼成した。この焼成膜を、ジエチルセレンガスをキャリアガスである窒素又は水素/窒素とともに2L/min.(ジエチルセレンガスのみの流量は92ml/min.)の流量で流しながら、520℃で1時間焼成することで光吸収層13を得た。
<Deposition of light absorption layer>
Next, the light absorption layer 13 was formed on the back electrode layer 12 by the following process.
At least one of the CIGS particle groups (P1) to (P5) dispersions obtained above and the CIGS precursor composition (PC) and a solvent (toluene) are mixed at a predetermined mixing ratio to obtain a total CIGS. It diluted so that particle concentration might be 0.03 vol%, and the coating liquid (particle composition) was obtained. The blending ratio was changed according to Examples and Comparative Examples.
0.4 ml of the coating solution was dropped onto the back electrode 12 to obtain a coating film. After heating at 60 ° C. for 3 minutes, the solvent was removed by heating at 230 ° C. for 10 seconds. The operation of coating and solvent removal was repeated 5 times. Thereafter, the obtained coating film was baked at 575 ° C. for 1 hour in a nitrogen atmosphere or a hydrogen / nitrogen atmosphere. This fired film was formed at a rate of 2 L / min. With diethyl selenium gas as nitrogen or hydrogen / nitrogen as a carrier gas. The light absorption layer 13 was obtained by baking at 520 ° C. for 1 hour while flowing at a flow rate of 92 ml / min.
<バッファ層の成膜>
 水150ml、アンモニア(28%)80ml、及びヨウ化カドミウム0.48gを加えて攪拌し、その後、予めチオ尿素8.4gを水150ml中に溶解した水溶液を加えた。この混合液中に、光吸収層13を形成した上記基板を浸し、20分間加熱保持した後に取り出した。加熱温度は、基板を浸した時点を20℃、取出し時を70℃となるように設定した。
<Deposition of buffer layer>
150 ml of water, 80 ml of ammonia (28%) and 0.48 g of cadmium iodide were added and stirred, and then an aqueous solution in which 8.4 g of thiourea was previously dissolved in 150 ml of water was added. The substrate on which the light absorption layer 13 was formed was dipped in this mixed solution, heated and held for 20 minutes, and then taken out. The heating temperature was set to 20 ° C. when the substrate was immersed and 70 ° C. when the substrate was taken out.
<高抵抗膜15及び透光性電極層16の成膜>
 上記バッファ層14上に、純度3NのZnO(豊島製作所社製)をターゲットとして、RFスパッタ法で100nmに堆積することで高抵抗膜15を成膜した。その上に、純度3Nの、Gaを2モル%ドープしたZnO(豊島製作所社製)をターゲットとして、RFスパッタ法で100~1000nmの範囲内で堆積することでi-ZnO透光性電極層16を成膜した。
<Film Formation of High Resistance Film 15 and Translucent Electrode Layer 16>
On the buffer layer 14, a high resistance film 15 was formed by depositing ZnO having a purity of 3N (manufactured by Toyoshima Seisakusho Co., Ltd.) at 100 nm by RF sputtering. On top of that, the i-ZnO transparent electrode layer 16 is deposited by RF sputtering in the range of 100 to 1000 nm using ZnO (manufactured by Toshima Seisakusho Co., Ltd.) with a purity of 3N and 2 mol% Ga doped. Was deposited.
「実施例1」
 CIGS粒子群(P1)分散液(平均粒径360nm)とCIGS粒子群(P5)分散液(平均粒径15nm)を用いて、光吸収層の成膜に用いる塗布液を調製した。塗布液における粒子群(P1)と粒子群(P5)との体積比を1:1とし、上記プロセスにしたがって本発明の光電変換素子を得た。主な製造条件と評価結果を表2に示す。
 得られた素子の光電変換効率は0.5%であり、短絡電流は6.3mA/cmであった。後記比較例1-1~1-2より、短絡電流が高く、高効率な素子が得られた。
"Example 1"
Using the CIGS particle group (P1) dispersion liquid (average particle diameter 360 nm) and the CIGS particle group (P5) dispersion liquid (average particle diameter 15 nm), a coating liquid used for film formation of the light absorption layer was prepared. The volume ratio of the particle group (P1) and the particle group (P5) in the coating solution was 1: 1, and the photoelectric conversion element of the present invention was obtained according to the above process. Table 2 shows the main production conditions and evaluation results.
The photoelectric conversion efficiency of the obtained device was 0.5%, and the short-circuit current was 6.3 mA / cm 2 . From Comparative Examples 1-1 to 1-2 described later, a high-efficiency element with a high short-circuit current was obtained.
「比較例1-1」
 CIGS粒子群(P1)分散液のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表2に示す。得られた素子の光電変換効率は0.1%であり、短絡電流は1.6mA/cmであった。
"Comparative Example 1-1"
Using only the CIGS particle group (P1) dispersion liquid, a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 2 shows the main production conditions and evaluation results. The photoelectric conversion efficiency of the obtained device was 0.1%, and the short-circuit current was 1.6 mA / cm 2 .
「比較例1-2」
 CIGS粒子群(P5)分散液のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表2に示す。得られた素子の光電変換効率は0.03%であり、短絡電流は1.3mA/cmであった。
"Comparative Example 1-2"
Using only the CIGS particle group (P5) dispersion liquid, a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 2 shows the main production conditions and evaluation results. The photoelectric conversion efficiency of the obtained device was 0.03%, and the short-circuit current was 1.3 mA / cm 2 .
「実施例2」
 CIGS粒子群(P2)分散液(平均粒径200nm)とCIGS粒子群(P5)分散液(平均粒径15nm)を用いて、光吸収層の成膜に用いる塗布液を調製した。塗布液における粒子群(P2)と粒子群(P5)との体積比を1:1とし、上記プロセスにしたがって本発明の光電変換素子を得た。主な製造条件と評価結果を表3に示す。
 得られた素子の光電変換効率は0.20%であり、短絡電流は3.7mA/cmであった。後記比較例2より短絡電流が高く、高効率な素子が得られた。
"Example 2"
Using the CIGS particle group (P2) dispersion liquid (average particle diameter 200 nm) and the CIGS particle group (P5) dispersion liquid (average particle diameter 15 nm), a coating liquid used for film formation of the light absorption layer was prepared. The volume ratio of the particle group (P2) and the particle group (P5) in the coating solution was 1: 1, and the photoelectric conversion element of the present invention was obtained according to the above process. Table 3 shows the main production conditions and evaluation results.
The photoelectric conversion efficiency of the obtained device was 0.20%, and the short-circuit current was 3.7 mA / cm 2 . A short-circuit current was higher than that of Comparative Example 2 described later, and a highly efficient device was obtained.
「比較例2」
 CIGS粒子群(P2)分散液(平均粒径200nm)のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表3に示す。得られた素子の光電変換効率は0.03%であり、短絡電流は0.85mA/cmであった。
"Comparative Example 2"
Using only the CIGS particle group (P2) dispersion liquid (average particle diameter 200 nm), a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 3 shows the main production conditions and evaluation results. The photoelectric conversion efficiency of the obtained device was 0.03%, and the short-circuit current was 0.85 mA / cm 2 .
「実施例3」
 CIGS粒子群(P3)分散液(平均粒径100nm)とCIGS前駆体組成物(PC)を用いて、光吸収層の成膜に用いる塗布液を調製した。塗布液における粒子群(P3)とCIGS前駆体組成物(PC)との体積比を1:1とし、上記プロセスにしたがって本発明の光電変換素子を得た。主な製造条件と評価結果を表4に示す。
 得られた素子の光電変換効率は0.18%であった。後記比較例3-1、3-2よりも高効率が得られた。
"Example 3"
The coating liquid used for film-forming of a light absorption layer was prepared using the CIGS particle group (P3) dispersion liquid (average particle diameter of 100 nm) and the CIGS precursor composition (PC). The volume ratio of the particle group (P3) and the CIGS precursor composition (PC) in the coating solution was 1: 1, and the photoelectric conversion device of the present invention was obtained according to the above process. Table 4 shows the main production conditions and evaluation results.
The photoelectric conversion efficiency of the obtained device was 0.18%. Higher efficiency was obtained than Comparative Examples 3-1 and 3-2 described later.
「比較例3-1」
 CIGS粒子群(P3)分散液(平均粒径100nm)のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表4に示す。得られた素子は発電しなかった。
「比較例3-2」
 CIGS前駆体組成物(PC)のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表4に示す。得られた素子は発電しなかった。
“Comparative Example 3-1”
Using only the CIGS particle group (P3) dispersion liquid (average particle diameter 100 nm), a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 4 shows the main production conditions and evaluation results. The obtained element did not generate electricity.
"Comparative Example 3-2"
The coating liquid used for film-forming of a light absorption layer was prepared using only the CIGS precursor composition (PC), and the photoelectric conversion element for a comparison was obtained according to the said process. Table 4 shows the main production conditions and evaluation results. The obtained element did not generate electricity.
「実施例4」
CIGS粒子群(P4)分散液(平均粒径800nm)とCIGS前駆体組成物(PC)を用いて、光吸収層の成膜に用いる塗布液を調製した。塗布液における粒子群(P4)とCIGS前駆体組成物(PC)との体積比を1:1とし、上記プロセスにしたがって本発明の光電変換素子を得た。主な製造条件と評価結果を表5に示す。
 得られた素子の光電変換効率は0.07%であった。後記比較例4よりも高効率が得られ
た。
"Example 4"
The coating liquid used for film-forming of a light absorption layer was prepared using the CIGS particle group (P4) dispersion liquid (average particle diameter of 800 nm) and the CIGS precursor composition (PC). The volume ratio of the particle group (P4) and the CIGS precursor composition (PC) in the coating solution was 1: 1, and the photoelectric conversion device of the present invention was obtained according to the above process. Table 5 shows the main production conditions and evaluation results.
The photoelectric conversion efficiency of the obtained device was 0.07%. Higher efficiency was obtained than Comparative Example 4 described later.
「比較例4」
 CIGS粒子群(P4)分散液(平均粒径800nm)のみを用いて、光吸収層の成膜に用いる塗布液を調製し、上記プロセスにしたがって比較用の光電変換素子を得た。主な製造条件と評価結果を表5に示す。得られた素子は発電しなかった。
“Comparative Example 4”
Using only the CIGS particle group (P4) dispersion liquid (average particle diameter 800 nm), a coating liquid used for film formation of the light absorption layer was prepared, and a comparative photoelectric conversion element was obtained according to the above process. Table 5 shows the main production conditions and evaluation results. The obtained element did not generate electricity.
 上記の実施例1~4では、非特許文献1、2より変換効率が低いものとなっているが、現研究段階ではCIGSの成膜が最適化されていないためであるにすぎない。上記の結果は、本発明を適用することで非特許文献1、2に記載の光電変換素子をより高効率なものとできることを示唆している。すなわち、非特許文献1、2に本発明を適用することで、非特許文献1、2よりも高効率な光電変換素子を得ることが可能であると期待される。 In Examples 1 to 4 above, the conversion efficiency is lower than that of Non-Patent Documents 1 and 2, but this is only because the CIGS film formation is not optimized at the present research stage. The above results suggest that the photoelectric conversion elements described in Non-Patent Documents 1 and 2 can be made more efficient by applying the present invention. That is, by applying the present invention to Non-Patent Documents 1 and 2, it is expected that a photoelectric conversion element with higher efficiency than Non-Patent Documents 1 and 2 can be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の化合物半導体膜を光吸収層とする光電変換素子は、光と電気との変換効率が高く安価に製造できることから、太陽電池、光センサ、イメージセンサ、及びフォトダイオード等の光電変換素子として利用できる。 Since the photoelectric conversion element using the compound semiconductor film of the present invention as a light absorption layer has high conversion efficiency between light and electricity and can be manufactured at low cost, it is used as a photoelectric conversion element such as a solar cell, an optical sensor, an image sensor, and a photodiode. Available.
 この出願は、2010年3月23日に出願された日本出願特願2010-065467号、及び2011年3月14日に出願された日本出願特願2011-055789号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2010-0665467 filed on Mar. 23, 2010 and Japanese Patent Application No. 2011-055789 filed on Mar. 14, 2011. The entire disclosure of which is incorporated herein.
10 光電変換素子
11 基板
12 裏面電極層
13 光吸収層(化合物半導体膜)
14 バッファ層
15 透光性高抵抗層
16 透光性電極層
17、18 取出し電極
DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element 11 Board | substrate 12 Back surface electrode layer 13 Light absorption layer (compound semiconductor film)
14 Buffer layer 15 Translucent high resistance layer 16 Translucent electrode layers 17 and 18 Extraction electrode

Claims (19)

  1.  各々が下記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が100nm以上である粒子群(A)と、
     少なくとも1種の複数の半導体粒子からなり、透過型電子顕微鏡より算出された数平均粒径が粒子群(A)より小さい粒子群(BX)、及び/又は、加熱により固体半導体となる非固形の半導体前駆体組成物(BY)からなり、粒子群(A)の間隙を埋める充填物(B)とを含む化合物半導体粒子組成物。
     LMX(ここで、Lは少なくとも1種のIB族元素、Mは少なくとも1種のIIIB族、Xは少なくとも1種のVIB族を各々示す。)・・・(i)
    A group of particles each consisting of at least one semiconductor particle comprising a chalcopyrite compound semiconductor (i) represented by the following general formula and having a number average particle size calculated by a transmission electron microscope of 100 nm or more ( A) and
    A particle group (BX) composed of at least one kind of a plurality of semiconductor particles and having a number average particle size calculated by a transmission electron microscope smaller than the particle group (A) and / or a non-solid which becomes a solid semiconductor by heating A compound semiconductor particle composition comprising a semiconductor precursor composition (BY) and a filler (B) that fills the gaps of the particle group (A).
    LMX 2 (wherein L represents at least one group IB element, M represents at least one group IIIB, and X represents at least one group VIB.) (I)
  2.  粒子群(A)と充填物(B)の半導体導電型が同一(半導体前駆体組成物(BY)については、加熱後の半導体導電型を意味する。)である請求項1に記載の化合物半導体粒子組成物。 2. The compound semiconductor according to claim 1, wherein the particle group (A) and the filler (B) have the same semiconductor conductivity type (the semiconductor precursor composition (BY) means the semiconductor conductivity type after heating). Particle composition.
  3.  粒子群(A)と充填物(B)の半導体バンドギャップ(半導体前駆体組成物(BY)については、加熱後の半導体バンドギャップを意味する。)の差(ここで、「半導体バンドギャップの差」は、半導体バンドギャップが小さい方を100%としたときの大きい方と小さい方の差により定義する。)が15%以内である請求項1又は2に記載の化合物半導体粒子組成物。 The difference in the semiconductor band gap between the particle group (A) and the filler (B) (for the semiconductor precursor composition (BY), it means the semiconductor band gap after heating)). The compound semiconductor particle composition according to claim 1, wherein “is defined by a difference between a larger semiconductor band gap and a smaller semiconductor band gap when the smaller semiconductor band gap is 100%.” Is within 15%.
  4.  粒子群(BX)として、前記一般式で表されるカルコパイライト系化合物半導体(i)からなる少なくとも1種の複数の半導体粒子からなる粒子群を含む請求項1~3のいずれかに記載の化合物半導体粒子組成物。 The compound according to any one of claims 1 to 3, wherein the particle group (BX) includes a particle group composed of at least one semiconductor particle composed of a chalcopyrite compound semiconductor (i) represented by the general formula. Semiconductor particle composition.
  5.  半導体前駆体組成物(BY)として、加熱により、前記一般式で表されるカルコパイライト系化合物半導体(i)となる半導体前駆体組成物を含む請求項1~4のいずれかに記載の化合物半導体粒子組成物。 5. The compound semiconductor according to claim 1, wherein the semiconductor precursor composition (BY) includes a semiconductor precursor composition that becomes a chalcopyrite compound semiconductor (i) represented by the general formula by heating. Particle composition.
  6.  半導体前駆体組成物(BY)が、前記一般式で表されるカルコパイライト系化合物半導体(i)の少なくとも1種の構成金属元素を含む少なくとも1種の金属単体及び/又は金属化合物を含む請求項5に記載の化合物半導体粒子組成物。 The semiconductor precursor composition (BY) contains at least one elemental metal and / or metal compound containing at least one constituent metal element of the chalcopyrite compound semiconductor (i) represented by the general formula. 5. The compound semiconductor particle composition according to 5.
  7.  粒子群(BX)の透過型電子顕微鏡より算出された数平均粒径が、粒子群(A)の透過型電子顕微鏡より算出された数平均粒径の50%以下である請求項1~6のいずれかに記載の化合物半導体粒子組成物。 The number average particle diameter calculated from the transmission electron microscope of the particle group (BX) is 50% or less of the number average particle diameter calculated from the transmission electron microscope of the particle group (A). The compound semiconductor particle composition according to any one of the above.
  8.  粒子群(A)は、レーザー回折散乱法により算出された粒径のモード値が250nm以上である粒子群(A-1)である請求項1~7のいずれかに記載の化合物半導体粒子組成物。 The compound semiconductor particle composition according to any one of claims 1 to 7, wherein the particle group (A) is a particle group (A-1) having a particle size mode value calculated by a laser diffraction scattering method of 250 nm or more. .
  9.  充填物(B)は、粒子群(BX)としての、透過型電子顕微鏡より算出された数平均粒径が100nm以下である粒子群(BX-1)を含む請求項1~8のいずれかに記載の化合物半導体粒子組成物。 The packing (B) includes a particle group (BX-1) having a number average particle diameter calculated by a transmission electron microscope of 100 nm or less as the particle group (BX). The compound semiconductor particle composition described.
  10.  粒子群(A)としての、レーザー回折散乱法により算出された粒径のモード値が250nm以上である粒子群(A-1)と、粒子群(BX)としての、透過型電子顕微鏡より算出された数平均粒径が100nm以下である粒子群(BX-1)とを含み、
     かつ、
     全粒子に占める、粒子群(A-1)の体積含有率が20vol%以上であり、粒子群(BX-1)の体積含有率が30vol%以上である請求項8又は9に記載の化合物半導体粒子組成物。
    The particle group (A) is calculated from a particle group (A-1) having a particle size mode value of 250 nm or more calculated by the laser diffraction scattering method, and a transmission electron microscope as the particle group (BX). A particle group (BX-1) having a number average particle diameter of 100 nm or less,
    And,
    10. The compound semiconductor according to claim 8, wherein the volume content of the particle group (A-1) in all particles is 20 vol% or more, and the volume content of the particle group (BX-1) is 30 vol% or more. Particle composition.
  11.  前記一般式(i)で表される少なくとも1種のカルコパイライト系化合物半導体を含む化合物半導体膜であって、
     請求項1~10のいずれかに記載の化合物半導体粒子組成物を用意する工程(1)と、
     基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有する製造方法により製造された膜厚が0.5μm以上10μm以下の化合物半導体膜。
    A compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i),
    A step (1) of preparing the compound semiconductor particle composition according to any one of claims 1 to 10;
    A compound semiconductor film having a thickness of 0.5 μm or more and 10 μm or less manufactured by a manufacturing method that sequentially includes a step (2) of applying the compound semiconductor particle composition on a substrate to form a coating film.
  12.  下記一般式で表される少なくとも1種のカルコパイライト系化合物半導体(ii)を含む請求項11に記載の化合物半導体膜。
     (L1)(M1)(X1)(ここで、L1はCu,Ag,及びAuからなる群より選ばれた少なくとも1種のIB族元素、M1はAl,Ga,及びInからなる群より選ばれた少なくとも1種のIIIB族、X1はS,Se,及びTeからなる群より選ばれた少なくとも1種のVIB族を各々示す。)・・・(ii)
    The compound semiconductor film according to claim 11, comprising at least one chalcopyrite compound semiconductor (ii) represented by the following general formula.
    (L1) (M1) (X1) 2 (where L1 is at least one IB group element selected from the group consisting of Cu, Ag, and Au, and M1 is selected from the group consisting of Al, Ga, and In) At least one group IIIB, X1 represents at least one group VIB selected from the group consisting of S, Se, and Te.) (Ii)
  13.  下記一般式で表される少なくとも1種のカルコパイライト系化合物半導体(iii)を含む請求項12に記載の化合物半導体膜。
     (L2)(M2)(X2)(ここで、L2はCuを含む少なくとも1種のIB族元素、M2はGa及び/又はInを含む少なくとも1種のIIIB族、X2はSeを含む少なくとも1種のVIB族を各々示す。)・・・(iii)
    The compound semiconductor film according to claim 12, comprising at least one chalcopyrite compound semiconductor (iii) represented by the following general formula.
    (L2) (M2) (X2) 2 (where L2 is at least one group IB element containing Cu, M2 is at least one group IIIB containing Ga and / or In, and X2 is at least one containing Se) Each represents a VIB family of species.) ... (iii)
  14.  前記一般式(i)で表される少なくとも1種のカルコパイライト系化合物半導体を含む化合物半導体膜の製造方法であって、
     請求項1~10のいずれかに記載の化合物半導体粒子組成物を用意する工程(1)と、
     基板上に、前記化合物半導体粒子組成物を塗布して塗布膜を形成する工程(2)とを順次有する化合物半導体膜の製造方法。
    A method for producing a compound semiconductor film comprising at least one chalcopyrite compound semiconductor represented by the general formula (i),
    A step (1) of preparing the compound semiconductor particle composition according to any one of claims 1 to 10;
    A method for producing a compound semiconductor film, comprising sequentially applying (2) a coating film by applying the compound semiconductor particle composition on a substrate.
  15.  工程(2)後に、前記塗布膜を焼成する工程(3)を有する請求項14に記載の化合物半導体膜の製造方法。 The manufacturing method of the compound semiconductor film of Claim 14 which has the process (3) which bakes the said coating film after a process (2).
  16.  工程(3)の焼成温度が400~800℃の範囲内である請求項15に記載の化合物半導体膜の製造方法。 The method for producing a compound semiconductor film according to claim 15, wherein the firing temperature in the step (3) is in the range of 400 to 800 ° C.
  17.  工程(3)の焼成雰囲気が不活性気体雰囲気又はVI族元素含有ガス雰囲気である請求項15又は16に記載の化合物半導体膜の製造方法。 The method for producing a compound semiconductor film according to claim 15 or 16, wherein the firing atmosphere in step (3) is an inert gas atmosphere or a group VI element-containing gas atmosphere.
  18.  請求項11~13のいずれかに記載の化合物半導体膜からなる光吸収層と一対の電極とを備えた光電変換素子。 A photoelectric conversion element comprising a light absorption layer comprising the compound semiconductor film according to any one of claims 11 to 13 and a pair of electrodes.
  19.  請求項18に記載の光電変換素子を備えた太陽電池。 A solar cell comprising the photoelectric conversion element according to claim 18.
PCT/JP2011/001687 2010-03-23 2011-03-23 Compound semiconductor particle composition, compound semiconductor film and method for same, photoelectric conversion element, and solar cell WO2011118203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012506845A JPWO2011118203A1 (en) 2010-03-23 2011-03-23 Compound semiconductor particle composition, compound semiconductor film and manufacturing method thereof, photoelectric conversion element, and solar cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-065467 2010-03-23
JP2010065467 2010-03-23
JP2011055789 2011-03-14
JP2011-055789 2011-03-14

Publications (1)

Publication Number Publication Date
WO2011118203A1 true WO2011118203A1 (en) 2011-09-29

Family

ID=44672781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001687 WO2011118203A1 (en) 2010-03-23 2011-03-23 Compound semiconductor particle composition, compound semiconductor film and method for same, photoelectric conversion element, and solar cell

Country Status (3)

Country Link
JP (1) JPWO2011118203A1 (en)
TW (1) TW201201373A (en)
WO (1) WO2011118203A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129537A1 (en) * 2012-02-28 2013-09-06 Tdk株式会社 Compound semiconductor solar cell
WO2013180137A1 (en) * 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
JP2015107899A (en) * 2013-12-05 2015-06-11 旭化成株式会社 Crystal growth promoter and method of producing chalcogenide compound using the same
JP2015193513A (en) * 2014-03-31 2015-11-05 旭化成株式会社 Crystal growth promoter and method of producing metallic chalcogenide compound using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040445B2 (en) 2016-07-20 2022-03-23 ソニーグループ株式会社 Semiconductor film and its manufacturing method, as well as photoelectric conversion element, solid-state image sensor and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140646A (en) * 1992-07-14 1994-05-20 Canon Inc Photosensor
JPH0730138A (en) * 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of cds sintered film
JP2009146578A (en) * 2007-12-11 2009-07-02 Noritake Co Ltd Solar cell and solar cell aluminum paste
JP2010129642A (en) * 2008-11-26 2010-06-10 Kyocera Corp Manufacturing method for thin-film solar cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127483A (en) * 1990-06-21 1992-04-28 Fuji Electric Co Ltd Manufacture of cuinse2 solar cell
JP3244408B2 (en) * 1995-09-13 2002-01-07 松下電器産業株式会社 Thin film solar cell and method of manufacturing the same
JP2005117012A (en) * 2003-09-17 2005-04-28 Matsushita Electric Ind Co Ltd Semiconductor film, its manufacturing method, solar cell using the same, and its manufacturing method
US7736940B2 (en) * 2004-03-15 2010-06-15 Solopower, Inc. Technique and apparatus for depositing layers of semiconductors for solar cell and module fabrication
JP4131965B2 (en) * 2004-12-28 2008-08-13 昭和シェル石油株式会社 Method for producing light absorption layer of CIS thin film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140646A (en) * 1992-07-14 1994-05-20 Canon Inc Photosensor
JPH0730138A (en) * 1993-06-25 1995-01-31 Matsushita Electric Ind Co Ltd Manufacture of cds sintered film
JP2009146578A (en) * 2007-12-11 2009-07-02 Noritake Co Ltd Solar cell and solar cell aluminum paste
JP2010129642A (en) * 2008-11-26 2010-06-10 Kyocera Corp Manufacturing method for thin-film solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T.WADA ET AL.: "Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes", PHYSICA STATUS SOLIDI(A), vol. 203, no. 11, 2006, pages 2593 - 2597, XP055154224, DOI: doi:10.1002/pssa.200669652 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129537A1 (en) * 2012-02-28 2013-09-06 Tdk株式会社 Compound semiconductor solar cell
JPWO2013129537A1 (en) * 2012-02-28 2015-07-30 Tdk株式会社 Compound semiconductor solar cell
WO2013180137A1 (en) * 2012-05-30 2013-12-05 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
CN104350611A (en) * 2012-05-30 2015-02-11 凸版印刷株式会社 Production method for compound semiconductor thin film, and solar cell provided with the compound semiconductor thin film
JPWO2013180137A1 (en) * 2012-05-30 2016-01-21 凸版印刷株式会社 Method for producing compound semiconductor thin film and solar cell including the compound semiconductor thin film
JP2015107899A (en) * 2013-12-05 2015-06-11 旭化成株式会社 Crystal growth promoter and method of producing chalcogenide compound using the same
JP2015193513A (en) * 2014-03-31 2015-11-05 旭化成株式会社 Crystal growth promoter and method of producing metallic chalcogenide compound using the same

Also Published As

Publication number Publication date
TW201201373A (en) 2012-01-01
JPWO2011118203A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
TWI687369B (en) Core-shell nanoparticles for photovoltaic absorber films
US20180287006A1 (en) Inorganic Salt-Nanoparticle Ink for Thin Film Photovoltaic Devices and Related Methods
US20180366599A1 (en) Metal-doped Cu(In,Ga)(S,Se)2 Nanoparticles
US9893220B2 (en) CIGS nanoparticle ink formulation having a high crack-free limit
WO2011118203A1 (en) Compound semiconductor particle composition, compound semiconductor film and method for same, photoelectric conversion element, and solar cell
JP5278778B2 (en) Chalcogenite compound semiconductor and method for producing the same
US20180248057A1 (en) Preparation of Copper-Rich Copper Indium (Gallium) Diselenide/Disulphide Nanoparticles
JP2012191147A (en) Coating agent for film forming, manufacturing method therefor, compound semiconductor film, manufacturing method therefor, photoelectric conversion element, and solar cell
JP2013051224A (en) Compound semiconductor particle and method for producing the same, compound semiconductor film, photoelectric conversion element, and solar cell
US20180355201A1 (en) CIGS Nanoparticle Ink Formulation with a High Crack-Free Limit
Watt et al. Copper-based Multinary Materials for Solar Cells
JP2014203864A (en) Inorganic film, method for manufacturing the same, base material for manufacturing inorganic film, photoelectric conversion device, and solar battery
JP2014167998A (en) Compound semiconductor thin film, process of manufacturing the same, and solar cell module
JP2014086527A (en) Compound semiconductor thin film, manufacturing method of the same and solar cell
JP2014183144A (en) Compound semiconductor film, method for manufacturing the same, photoelectric conversion device, and solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759013

Country of ref document: EP

Kind code of ref document: A1