WO2011118167A1 - Terminal apparatus, base station apparatus and signal transmission control method - Google Patents

Terminal apparatus, base station apparatus and signal transmission control method Download PDF

Info

Publication number
WO2011118167A1
WO2011118167A1 PCT/JP2011/001591 JP2011001591W WO2011118167A1 WO 2011118167 A1 WO2011118167 A1 WO 2011118167A1 JP 2011001591 W JP2011001591 W JP 2011001591W WO 2011118167 A1 WO2011118167 A1 WO 2011118167A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal
resource
unit
nack
Prior art date
Application number
PCT/JP2011/001591
Other languages
French (fr)
Japanese (ja)
Inventor
中尾正悟
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011118167A1 publication Critical patent/WO2011118167A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a terminal device, a base station device, and a signal transmission control method.
  • a base station device uses a predetermined communication resource to synchronize (Synchronization Channel: SCH) and broadcast signal (Broadcast Channel: BCH). ).
  • a terminal device (hereinafter abbreviated as “terminal”) first secures synchronization with the base station by capturing the SCH. After that, the terminal acquires parameters (for example, frequency bandwidth) unique to the base station by reading the BCH information (see Non-Patent Documents 1, 2, and 3).
  • the terminal establishes communication with the base station by making a connection request to the base station after the acquisition of the parameters unique to the base station is completed.
  • the base station transmits control information via a PDCCH (Physical ⁇ Downlink Control CHannel) as necessary to a terminal with which communication has been established.
  • PDCCH Physical ⁇ Downlink Control CHannel
  • the terminal performs “blind determination” for each of the plurality of control information included in the received PDCCH signal. That is, the control information includes a CRC (Cyclic Redundancy Check) part, and this CRC part is masked by the terminal ID of the transmission target terminal in the base station. Therefore, the terminal cannot determine whether or not the received control information is control information destined for the own apparatus until the CRC portion of the received control information is demasked with the terminal ID of the own apparatus. In this blind determination, if the CRC calculation is OK as a result of demasking, it is determined that the control information is addressed to the own apparatus.
  • CRC Cyclic Redundancy Check
  • ARQ Automatic Repeat Request
  • the terminal feeds back a response signal indicating an error detection result of downlink data to the base station.
  • BPSK Binary Phase Shift Shift Keying
  • PUCCH Physical-Uplink-Control-Channel
  • the base station transmits retransmission data to the terminal.
  • the control information (that is, downlink allocation control information) transmitted from the base station includes resource allocation information including resource information allocated to the terminal by the base station.
  • the PDCCH is used for transmitting the control information.
  • This PDCCH is composed of one or a plurality of L1 / L2 CCHs (L1 / L2 Control Channel).
  • Each L1 / L2CCH is composed of one or a plurality of CCEs (Control Channel Element). That is, CCE is a basic unit for mapping control information to PDCCH.
  • a plurality of CCEs having consecutive identification numbers (Index) are assigned to the L1 / L2CCH.
  • the base station allocates L1 / L2 CCH to the resource allocation target terminal according to the number of CCEs required for reporting control information to the resource allocation target terminal. Then, the base station maps the physical resource corresponding to the CCE of this L1 / L2CCH and transmits control information.
  • each CCE is associated with the PUCCH configuration resource on a one-to-one basis. Therefore, the terminal that has received the L1 / L2CCH can implicitly specify the configuration resource of the PUCCH corresponding to the CCE that configures the L1 / L2CCH, and uses this specified resource to transmit a response signal. Transmit to the base station.
  • the terminal may use one of a plurality of PUCCH configuration resources corresponding to the plurality of CCEs (for example, a PUCCH configuration corresponding to the CCE having the smallest Index). Resource) is used to transmit a response signal to the base station.
  • downlink communication resources are efficiently used.
  • a plurality of response signals and reference signals transmitted from a plurality of terminals are a ZAC (Zero Auto-correlation) sequence (Base sequence) having a Zero Auto-correlation characteristic on a time axis (Time domain). And is spread by a Walsh sequence or a DFT (Discrete-Fourier-Transform) sequence and code-multiplexed in a PUCCH (however, a ZAC sequence having a sequence length of 12 is itself a reference signal sequence (Reference sequence) )).
  • ZAC Zero Auto-correlation
  • Base sequence Base sequence
  • DFT Discrete-Fourier-Transform
  • (W 0 , W 1 , W 2 , W 3 ) represents a Walsh code sequence (Walsh Code Sequence), and (F 0 , F 1 , F 2 ) has a sequence length of 3.
  • an ACK or NACK response signal is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis.
  • the response signal after the first spreading is associated with each of W 0 to W 3 and subjected to IFFT (Inverse Fast Fourier Transform).
  • a ZAC sequence having a sequence length of 12 as a reference signal is IFFT associated with each of F 0 to F 2 .
  • the response signal and the reference signal spread by the ZAC sequence having a sequence length of 12 on the frequency axis (Frequency domain) are converted into a ZAC sequence having a sequence length of 12 on the time axis by IFFT.
  • Response signals from different terminals are spread using ZAC sequences corresponding to different cyclic shift amounts (Cyclic shift Index) or orthogonal code sequences corresponding to different sequence numbers (Orthogonal cover Index: OC index).
  • the orthogonal code sequence is a set of a Walsh sequence and a DFT sequence.
  • the orthogonal code sequence may also be referred to as a block-wise spreading code sequence. Therefore, the base station can separate these response signals that have been code-multiplexed by using conventional despreading and correlation processing (see Non-Patent Document 4).
  • each terminal blindly determines downlink allocation control information addressed to itself in each subframe (transmission unit time)
  • the terminal side does not necessarily successfully receive downlink allocation control information.
  • a terminal fails to receive downlink allocation control information addressed to itself in a certain downlink unit band
  • the terminal cannot even know whether downlink data destined for itself exists in the downlink unit band. Therefore, when the terminal fails to receive downlink allocation control information in a certain downlink unit band, the terminal does not generate a response signal for downlink data in the downlink unit band.
  • This error case is defined as DTX (DTX (Discontinuous transmission) of ACK / NACK s signals) of the response signal in the sense that the response signal is not transmitted on the terminal side.
  • the above-described uplink control channel (PUCCH) is used for indicating the generation of uplink data to be transmitted from the terminal side (that is, for requesting resource allocation for uplink data transmission to the base station). ) It is also used for notification of SR (Scheduling Request: Scheduling Request) (which may be expressed as SRI: Scheduling Request).
  • SR Service Request: Scheduling Request
  • SRI Scheduling Request
  • OOK On-Off-Keying
  • the base station side determines the SR from the terminal based on whether or not the terminal transmits an arbitrary signal using the SR resource. Is detected.
  • spreading using a ZAC sequence, a Walsh sequence, and a DFT sequence is applied to SR similarly to the response signal described above.
  • SR and response signal may occur within the same subframe.
  • the PAPR Peak-to-Average-Power-Ratio
  • the terminal since the amplifier efficiency of the terminal is regarded as important, when the SR and the response signal are generated in the same subframe on the terminal side, the terminal should use the resource (hereinafter, referred to as the resource to be transmitted). Without using "ACK / NACK resource"), a response signal is transmitted using SR resources individually allocated in advance for each terminal.
  • the base station side detects the SR from the terminal side based on whether or not the SR resource is used. Further, on the base station side, based on the phase of the signal transmitted with the SR resource (or the ACK / NACK resource when SR resource is not used) (that is, the BPSK demodulation result), the terminal performs ACK or NACK. It is determined which one has been notified.
  • ACK / NACK resources and SR resources are allocated to different code resources.
  • the base station uses the L1 / L2CCH (channel constituted by one or a plurality of CCEs) included in the PDCCH to indicate downlink allocation control indicating resources for transmitting downlink data. Send information.
  • the base station allocates in advance one arbitrary PUCCH resource included in the PUCCH of the uplink unit band as a PUCCH resource (SR resource) for SR.
  • the terminal uses one PUCCH resource associated with the CCE (PDCCH) occupied by the downlink allocation control information in the downlink unit band as a PUCCH resource (ACK / NACK resource) for response signals.
  • the terminal transmits the downlink data channel (PDSCH) shown in FIG. :
  • a response signal (“A / N") for downlink data (DL data) received by Physical Downlink Shared Channel) is allocated to one SR resource included in the PUCCH of the uplink unit band shown in FIG. 3A.
  • a terminal determines the phase of the signal transmitted using SR resource according to whether a response signal is ACK or NACK.
  • the terminal when the terminal transmits only a response signal within a certain subframe (that is, when only ACK or NACK is transmitted), the terminal receives the downlink received on the PDSCH shown in FIG.
  • a response signal ("A / N") for data (DL data) is allocated to one ACK / NACK resource included in the PUCCH of the uplink unit band shown in FIG. 3B.
  • a terminal determines the phase of the signal transmitted using an ACK / NACK resource according to whether a response signal is ACK or NACK.
  • the terminal when the terminal notifies only of the SR within a certain subframe, the terminal allocates the SR to one SR resource included in the PUCCH of the uplink unit band illustrated in FIG. 3C. Then, the terminal sets a NACK phase point for the SR resource.
  • the terminal side since the terminal side does not always succeed in receiving downlink allocation control information, there is a difference in recognition regarding the success or failure of downlink signal reception at the terminal side between the base station side and the terminal side. there is a possibility.
  • the base station transmits downlink allocation control information (and downlink data) to the terminal
  • the terminal transmits an uplink response signal using the SR resource
  • the base station not only performs SR detection.
  • reception of downlink allocation control information has failed on the terminal side (that is, when DTX occurs)
  • the terminal does not include the response signal information in the uplink response signal, and only uses the SR resource to transmit the SR.
  • LTE-A system 3GPP LTE-advanced system
  • LTE system 3GPP LTE system
  • the LTE- The band for the A system is divided into “unit bands” of 20 MHz or less, which is the support bandwidth of the LTE system. That is, the “unit band” is a band having a maximum width of 20 MHz, and is defined as a basic unit of the communication band. Furthermore, the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” hereinafter referred to as “downlink unit band” in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” in the uplink is a band delimited by uplink frequency band information in the BCH broadcast from the base station, or a PUSCH (Physical-Uplink) near the center. In some cases, it is defined as a basic unit of a communication band of 20 MHz or less that includes a (Shared CHannel) region and includes PUCCH for LTE at both ends.
  • the “unit band” may be expressed in English as “Component Carrier (s)” in 3GPP LTE-Advanced.
  • a “unit band” may be defined by a physical cell number and a carrier frequency number, and may be called a “cell”.
  • the LTE-A system supports communication using a band obtained by bundling several unit bands, so-called Carrier Aggregation.
  • Carrier Aggregation In general, an uplink throughput request and a downlink throughput request are different from each other. Therefore, in the LTE-A system, an arbitrary LTE-A system compatible terminal (hereinafter referred to as “LTE-A terminal”) is set.
  • LTE-A terminal an arbitrary LTE-A system compatible terminal
  • Asymmetric Carrier-aggregation is also being studied. Furthermore, the case where the number of unit bands is asymmetric between upstream and downstream and the frequency bandwidth of each unit band is different is also supported.
  • FIG. 4 is a diagram for explaining an asymmetric carrier aggregation applied to individual terminals and a control sequence thereof.
  • FIG. 4 shows an example in which the uplink and downlink bandwidths and the number of unit bands of the base station are symmetric.
  • the terminal 1 is configured to perform carrier-aggregation using two downlink unit bands and one uplink unit band on the left side. In spite of the setting that uses the same two downlink unit bands as those of the terminal 1, the setting that uses the right uplink unit band is performed in the uplink communication.
  • Terminal 1 When attention is paid to the terminal 1, signals are transmitted and received between the LTE-A base station and the LTE-A terminal constituting the LTE-A system according to the sequence diagram shown in FIG. 4A.
  • Terminal 1 synchronizes with the left downlink unit band at the start of communication with the base station, and transmits information on the uplink unit band paired with the left downlink unit band to SIB2 Read from a notification signal called (System Information Block Type 2).
  • SIB2 System Information Block Type 2
  • the terminal 1 starts communication with the base station, for example, by transmitting a connection request to the base station.
  • the base station instructs the terminal to add a downlink unit band.
  • the number of uplink unit bands does not increase, and asymmetric carrier aggregation is started in terminal 1, which is an individual terminal.
  • a terminal may receive a plurality of downlink data in a plurality of downlink unit bands at a time.
  • the response signals for the plurality of downlink data are collectively encoded (Joint coding), and the encoded data is converted into DFT.
  • S-OFDMA Discrete-Fourier-Transform-spread-Orthogonal-Frequency-Division-Multiple-Access
  • Each of the error detection results for each downlink unit band is included as individual data in the encoded data in which response signals for a plurality of downlink data are collectively encoded (Joint coding).
  • the response signals for the plurality of downlink data are collectively encoded (Joint coding), and the encoded data including each error detection result for each downlink unit band is hereinafter referred to as a “bundled ACK / NACK signal” or This is called a “bundle response signal”.
  • a “ZAC sequence (Base sequence) having a sequence length of 12” similar to the reference signal in LTE is used. Specifically, a ZAC sequence having a sequence length of 12 is arranged in the third, fourth, and fifth SC-FDMA symbols, and is spread in correspondence with each DFT sequence (sequence length 3: F 0 , F 1 , F 2 ). The Further, the spread signal is converted into a signal on the time axis by IFFT. In these processes, the ZAC sequence is converted into a signal on the time axis by IFFT and then spread by a DFT sequence having a sequence length of 3 and equalization.
  • Reference signals from different terminals are spread using sequences corresponding to different cyclic shift amounts (Cyclic shift Index) or different DFT sequences, as in the case of reference signals for ACK / NACK in LTE.
  • Cyclic shift Index Cyclic shift Index
  • a “ZAC sequence having a sequence length of 12” is used as a reference signal.
  • a signal composed of 12 symbols is first DFTed and first spread in one SC-FDMA symbol.
  • a 1-symbol response signal subjected to BPSK modulation is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis.
  • a bundle ACK / NACK signal when a bundle ACK / NACK signal is notified using DFT-S-OFDMA, a “ZAC sequence having a sequence length of 12” is used as a reference signal.
  • a bundle ACK / NACK signal composed of 12 symbols is DFT and first spread in one SC-FDMA symbol.
  • the bundle ACK / NACK signal composed of 12 symbols includes each error detection result for each downlink unit band as individual data.
  • the bundle ACK / NACK signal after DFT is arranged in the first , second , sixth, and seventh SC-FDMA symbols, and is made to correspond to each Walsh sequence (sequence length 4: W 0 , W 1 , W 2 , W 3 ). Diffuse. Further, the spread signal is converted into a signal on the time axis by IFFT. These processes are equalization, in which each element component of a Walsh sequence having a sequence length of 4 is multiplied by a signal after being converted into a signal on the time axis by IFFT.
  • bundled ACK / NACK signals from different terminals are code-multiplexed by spreading bundled ACK / NACK signals using different Walsh sequences. That is, since bundle ACK / NACK signals are spread by a Walsh sequence having a sequence length of 4, it is possible to code-multiplex bundle ACK / NACK signals from a maximum of four terminals.
  • a CP Cyclic Prefix
  • a bundle ACK / NACK signal is a data portion (in the example of FIG. 5, the first ACK / NACK signal is a first portion in the case where downlink data is transmitted using the DFT-S-OFDMA format. , 2, 6, 7 SC-FDMA symbols).
  • a reference signal for demodulating the bundle ACK / NACK signal is time-multiplexed with the bundle ACK / NACK signal.
  • the base station individually notifies the terminal of SR resources (the same format as LTE) and bundled ACK / NACK resources. Then, the terminal identifies the SR resource and the bundle ACK / NACK resource.
  • FIG. 7 shows an SR resource (see FIG. 7A) in an LTE-A system to which Carrier-aggregation is applied, and a bundle ACK / NACK resource when a bundle ACK / NACK signal is reported using the DFT-S-OFDM format (FIG. 7).
  • FIG. 7B is a diagram showing an example.
  • the SR resource in the LTE-A system has the same format configuration as the SR resource or the ACK / NACK resource in the LTE system.
  • the bundle ACK / NACK resource in the LTE-A system has a format configuration different from that of the SR resource in the LTE-A system.
  • a terminal when a terminal notifies only SR, it notifies SR using the SR resource notified from the base station beforehand (refer FIG. 7A), and when a terminal notifies only bundle ACK / NACK signal, it is a terminal. Notifies bundle ACK / NACK using bundle ACK / NACK resources (see FIG. 7B).
  • 3GPP TS 36.211 V8.7.0 “Physical Channels and Modulation (Release 8),” May 2009 3GPP TS 36.212 V8.7.0, “Multiplexing and channel coding (Release 8),” May 2009 3GPP TS 36.213 V8.7.0, “Physical layer procedures (Release 8),” May 2009 Seigo Nakao, Tomofumi Takata, Daichi Imamura, and Katsuhiko Hiramatsu, “Performance enhancement of E-UTRA uplink control channel in fast fading environments,” Proceeding of IEEE VTC 2009 spring, April. 2009 Ericsson and ST-Ericsson, “A / N transmission in the uplink for carrier aggregation,” R1-100909, 3GPP TSG-RAN WG1 # 60, Feb. 2010
  • An object of the present invention is when a SR requesting resource allocation for uplink data transmission and a bundle response signal occur in the same subframe in a communication system to which Carrier Aggregation using a plurality of downlink unit bands is applied. And providing a terminal apparatus, a base station apparatus and a signal transmission control method capable of maintaining the quality of the bundle response signal.
  • the terminal device includes a receiving unit that receives downlink data allocated to a plurality of downlink unit bands, a generating unit that generates a bundle response signal including each error detection result for each downlink unit band, and the bundle. And a transmission unit that multiplexes and transmits a reference signal to the response signal, and the transmission unit notifies the scheduling request using a reference signal resource in which the reference signal is arranged.
  • a bundle response signal including a plurality of error detection results for each of a plurality of downlink unit bands, a receiving unit that receives a reference signal multiplexed on the bundle response signal, and the reference signal are arranged.
  • detecting means for detecting the presence / absence of a scheduling request by using the reference signal resource are arranged.
  • the signal transmission control method of the present invention receives downlink data assigned to a plurality of downlink unit bands, generates a bundle response signal including each error detection result for each downlink unit band, and refers to the bundle response signal A signal is multiplexed and transmitted, and a scheduling request is notified by a reference signal resource in which the reference signal is arranged.
  • the quality of the bundle response signal can be maintained.
  • diffusion method of a response signal and a reference signal The figure which shows the operation
  • diffusion method of ACK / NACK (symbol) (bundled ACK / NACK signal after error correction encoding) with respect to several downlink unit band The figure with which it uses for description of the signal transmission control method which concerns on this Embodiment
  • Method 1 Similar to the LTE system, a bundle ACK / NACK signal is placed in the SR resource. However, since the number of symbols constituting the bundle ACK / NACK signal is larger than that of the ACK / NACK signal in the LTE system, only part of the information of the bundle ACK / NACK signal is arranged in the SR resource.
  • Method 2 (response pattern 02): SR and bundle ACK / NACK signals are arranged in SR resource and bundle ACK / NACK resource, respectively.
  • Method 3 (response pattern 03): A bundle ACK / NACK signal is always encoded together with an SR, and the obtained encoded data is arranged in a bundle ACK / NACK resource.
  • the SR and the bundle ACK / NACK signal can be notified in the same subframe.
  • Method 1 since a part of the bundled ACK / NACK signal is lost, the retransmission efficiency of downlink data decreases.
  • the ACK / NACK signal is composed of one symbol, all of the ACK / NACK information can be notified using the SR resource (the transmission of information of one symbol is possible).
  • the bundle ACK / NACK signal uses a bundle ACK / NACK resource having a DFT-S-OFDM format configuration, each of the error detection results for each downlink unit band is individually included in the bundle ACK / NACK signal. Included as data.
  • the bundle ACK / NACK signal is composed of 12 symbols. Therefore, when a bundle ACK / NACK signal is notified using SR resources, a part of the bundle ACK / NACK signal is lost. Also, in Method 2, the single carrier characteristics of the transmission signal waveform transmitted from the terminal are lost, so the PAPR increases and the power efficiency of the terminal is greatly degraded. In Method 3, the coding rate of the bundled ACK / NACK signal decreases due to the presence of the SR, so that the transmission quality of the bundled ACK / NACK signal deteriorates.
  • a transmission transmitted from a terminal when notifying an SR and a bundled ACK / NACK signal in the same subframe While maintaining the single-carrier characteristics of the signal waveform (while keeping the PAPR low) and without reducing the coding rate of the bundled ACK / NACK signal, all ACK / NACK information (that is, for each of multiple downlink unit bands)
  • a base station, a terminal, and a signal transmission control method capable of transmitting all of the error detection results) to the base station and maintaining the transmission quality of the bundled ACK / NACK signal will be described.
  • FIG. 9 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • the base station 100 includes a control unit 101, a control information generation unit 102, an encoding unit 103, a modulation unit 104, an encoding unit 105, a data transmission control unit 106, a modulation unit 107, Mapping unit 108, IFFT (Inverse Fast Fourier Transform) unit 109, CP adding unit 110, radio transmitting unit 111, radio receiving unit 112, CP removing unit 113, PUCCH extracting unit 114, and despreading unit 115
  • IFFT Inverse Fast Fourier Transform
  • the control unit 101 transmits, to a resource allocation target terminal (hereinafter also referred to as “destination terminal” or simply “terminal”) 200, downlink resources for transmitting control information (that is, downlink control information allocation resources), and downlink A downlink resource (that is, a downlink data allocation resource) for transmitting line data is allocated (assigned).
  • This resource allocation is performed in the downlink unit band included in the unit band group set in the resource allocation target terminal 200.
  • the downlink control information allocation resource is selected in a resource corresponding to a downlink control channel (PDCCH) in each downlink unit band.
  • the downlink data allocation resource is selected in a resource corresponding to a downlink data channel (PDSCH) in each downlink unit band.
  • the control unit 101 allocates different resources to each of the resource allocation target terminals 200.
  • the downlink control information allocation resource is equivalent to the above-mentioned L1 / L2CCH. That is, the downlink control information allocation resource is composed of one or a plurality of CCEs.
  • control unit 101 determines a coding rate used when transmitting control information to the resource allocation target terminal 200. Since the data amount of control information differs according to the coding rate, downlink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped are allocated by the control unit 101.
  • control part 101 outputs the information regarding a downlink data allocation resource with respect to the control information generation part 102.
  • FIG. the control unit 101 outputs information on the coding rate to the coding unit 103.
  • Control section 101 also determines the coding rate of transmission data (that is, downlink data) and outputs the coding rate to coding section 105.
  • the control unit 101 outputs information on the downlink data allocation resource and the downlink control information allocation resource to the mapping unit 108.
  • the control unit 101 controls the downlink data and the downlink control information for the downlink data to be mapped to the same downlink unit band.
  • the control information generation unit 102 generates control information including information on downlink data allocation resources and outputs the control information to the encoding unit 103. This control information is generated for each downlink unit band. Further, when there are a plurality of resource allocation target terminals 200, the control information includes the terminal ID of the destination terminal 200 in order to distinguish the resource allocation target terminals 200 from each other. For example, a CRC bit masked with the terminal ID of the destination terminal 200 is included in the control information. This control information may be referred to as “downlink assignment control information (Control information carrying downlink assignment)”.
  • the encoding unit 103 encodes the control information according to the encoding rate received from the control unit 101, and outputs the encoded control information to the modulation unit 104.
  • Modulation section 104 modulates the encoded control information and outputs the obtained modulated signal to mapping section 108.
  • the encoding unit 105 receives the transmission data (that is, downlink data) for each destination terminal 200 and the coding rate information from the control unit 101 as input, encodes the transmission data, and outputs the transmission data to the data transmission control unit 106. However, when a plurality of downlink unit bands are allocated to destination terminal 200, the transmission data transmitted in each downlink unit band is encoded, and the encoded transmission data is output to data transmission control section 106. .
  • the data transmission control unit 106 holds the encoded transmission data and outputs it to the modulation unit 107 during the initial transmission.
  • the encoded transmission data is held for each destination terminal 200.
  • Transmission data to one destination terminal 200 is held for each downlink unit band to be transmitted. As a result, not only retransmission control of the entire data transmitted to the destination terminal 200 but also retransmission control for each downlink unit band is possible.
  • data transmission control section 106 when data transmission control section 106 receives NACK or DTX for downlink data transmitted in a certain downlink unit band from retransmission control signal generation section 122, data transmission control section 106 outputs retained data corresponding to this downlink unit band to modulation section 107. To do. When data transmission control section 106 receives ACK for downlink data transmitted in a certain downlink unit band from retransmission control signal generation section 122, data transmission control section 106 deletes the retained data corresponding to this downlink unit band.
  • Modulation section 107 modulates the encoded transmission data received from data transmission control section 106 and outputs the modulated signal to mapping section 108.
  • the mapping unit 108 maps the modulation signal of the control information received from the modulation unit 104 to the resource indicated by the downlink control information allocation resource received from the control unit 101, and outputs it to the IFFT unit 109.
  • mapping unit 108 maps the modulation signal of the transmission data received from the modulation unit 107 to the resource indicated by the downlink data allocation resource received from the control unit 101, and outputs it to the IFFT unit 109.
  • Control information and transmission data mapped to a plurality of subcarriers in a plurality of downlink unit bands by mapping section 108 are converted from a frequency domain signal to a time domain signal by IFFT section 109, and a CP is added by CP adding section 110.
  • transmission processing such as D / A (Digital-to-Analog) conversion, amplification, and up-conversion is performed in the wireless transmission unit 111 and transmitted to the terminal 200 via the antenna.
  • the radio reception unit 112 receives an uplink response signal or a reference signal transmitted from the terminal 200 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the uplink response signal or the reference signal.
  • the CP removal unit 113 removes the CP added to the uplink response signal or the reference signal after reception processing.
  • the PUCCH extraction unit 114 extracts a PUCCH region signal corresponding to a bundle ACK / NACK resource that has been previously notified to the terminal 200 from the PUCCH signal included in the received signal.
  • the bundle ACK / NACK resource is a resource to which a bundle ACK / NACK signal is to be transmitted, and is a resource that adopts a DFT-S-OFDMA format configuration.
  • the PUCCH extraction unit 114 performs the data portion of the PUCCH region corresponding to the bundle ACK / NACK resource (that is, the SC-FDMA symbol in which the bundle ACK / NACK signal is arranged) and the reference signal portion (that is, the bundle).
  • PUCCH extraction section 114 outputs the extracted data portion to bundle A / N despreading section 119 and outputs the reference signal portion to despreading section 115-1.
  • the PUCCH extraction unit 114 extracts a PUCCH region corresponding to one SR resource that has been notified to the terminal 200 in advance from the PUCCH signal included in the received signal.
  • the PUCCH extraction unit 114 includes a data part (SC-FDMA symbol in which an uplink control signal is allocated) and a reference signal part (a reference signal for demodulating the uplink control signal) corresponding to the SR resource. SC-FDMA symbols) are extracted. Then, PUCCH extraction section 114 outputs both the extracted data portion and reference signal portion to despreading section 115-2.
  • Sequence control section 116 may use Base sequence (that is, ZAC having a sequence length of 12) that may be used for spreading of the SR, the reference signal for SR notified from terminal 200, and the reference signal for bundled ACK / NACK signal. Series). Also, sequence control section 116 specifies correlation windows corresponding to resources (hereinafter referred to as “reference signal resources”) in which reference signals can be arranged in PUCCH resources that terminal 200 may use. Then, sequence control section 116 outputs information indicating the correlation window corresponding to the reference signal resource in which the reference signal can be arranged in the bundle ACK / NACK resource and Base sequence to correlation processing section 117-1.
  • Base sequence that is, ZAC having a sequence length of 12
  • terminal 200 reserves at least two reference signal resources (hereinafter referred to as “first and second reference signal resources”) as reference signal resources in which reference signals for bundled ACK / NACK signals can be arranged.
  • first and second reference signal resources reference signal resources in which reference signals for bundled ACK / NACK signals can be arranged.
  • Sequence control section 116 outputs information indicating the correlation window (first and second correlation windows) corresponding to each reference signal resource and Base sequence to correlation processing section 117-1.
  • sequence control section 116 outputs information indicating the correlation window (third correlation window) corresponding to the SR resource in which the SR and the reference signal for SR are arranged and the Base sequence to correlation processing section 117-2.
  • the despreading unit 115-1 and the correlation processing unit 117-1 perform processing of the reference signal extracted from the PUCCH region corresponding to the bundle ACK / NACK resource.
  • despreading section 115-1 despreads the reference signal portion with the DFT sequence that terminal 200 should use for secondary spreading in the reference signal of the bundle ACK / NACK resource, and correlates the signal after despreading Output to the unit 117-1.
  • the correlation processing unit 117-1 uses the information indicating the first and second correlation windows and the base sequence corresponding to the first and second reference signal resources, the signal input from the despreading unit 115-1, and the terminal At 200, correlation values (first and second correlation values) with the base sequence that may be used for the first spreading are obtained. Correlation processing section 117-1 then outputs the first and second correlation values to SR detection section 118.
  • the despreading unit 115-2 and the correlation processing unit 117-2 perform processing of the reference signal and SR extracted from the PUCCH region corresponding to the SR resource.
  • despreading section 115-2 despreads the data portion and the reference signal portion with the Walsh sequence and DFT sequence that terminal 200 should use for secondary spreading in the data portion and reference signal portion of SR resource, and performs despreading.
  • the spread signal is output to correlation processing section 117-2.
  • Correlation processing section 117-2 can be used for primary spreading in terminal 200 and the signal input from despreading section 115-2 using information indicating the third correlation window corresponding to the SR resource and Base sequence. A correlation value (third correlation value) with a characteristic Base sequence is obtained. Correlation processing section 117-2 then outputs the third correlation value to SR detection section 118.
  • SR detecting section 118 detects a reference signal resource in which a reference signal transmitted from terminal 200 is arranged based on the first to third correlation values input from correlation processing sections 117-1 and 117-2, The generation status (notification status) of the SR and bundle ACK / NACK signal is determined according to the detected reference signal resource. Details of the method of determining the occurrence status (notification status) in the SR detection unit 118 will be described later.
  • the bundle ACK / NACK resource is determined. Is output to the bundle A / N determination unit 121.
  • the SR detection unit 118 when it is determined that only SR occurs in the same subframe, notifies the bundle A / N determination unit 121 that the use of the bundle ACK / NACK resource has not been detected. If the SR detection unit 118 determines that only SR occurs in the same subframe, the SR detection unit 118 outputs “DTX” information regarding all downlink unit bands to the retransmission control signal generation unit 122.
  • the SR detection unit 118 determines that only the SR and the bundled ACK / NACK signal are generated in the same subframe, and determines that only the SR is generated in the same subframe, the SR detection unit 118 transmits information on the SR. Output to a resource allocation control unit (not shown).
  • the base station 100 When the uplink resource allocation control unit (not shown) receives the SR, the base station 100 transmits uplink allocation control information (Uplink Grant and the uplink data allocation resource) so that the terminal 200 can transmit uplink data. To the terminal 200. In this way, base station 100 determines whether it is necessary to allocate resources for uplink data to terminal 200 based on the uplink control channel. Details of operations in the uplink resource allocation control unit and details of resource allocation operations for uplink data for terminal 200 in base station 100 are omitted.
  • uplink allocation control information Uplink Grant and the uplink data allocation resource
  • the bundle A / N despreading section 119 despreads the bundle ACK / NACK signal corresponding to the data portion of the bundle ACK / NACK resource input from the PUCCH extraction section 114 using a Walsh sequence, and outputs the signal to the IDFT section 120 To do.
  • the IDFT unit 120 converts the bundle ACK / NACK signal on the frequency domain input from the bundle A / N despreading unit 119 into a signal on the time domain by IDFT processing, and converts the bundle ACK / NACK signal on the time domain to The data is output to the bundle A / N determination unit 121.
  • the bundle A / N determination unit 121 uses the bundle ACK / NACK signal corresponding to the data portion of the bundle ACK / NACK resource input from the IDFT unit 120 as a reference signal for the bundle ACK / NACK signal input from the SR detection unit 118. Demodulate using information. Further, the bundle A / N determination unit 121 decodes the demodulated bundle ACK / NACK signal and outputs the decoded result to the retransmission control signal generation unit 122 as bundle A / N information.
  • the retransmission control signal generation unit 122 transmits data transmitted in the downlink unit band (downlink). Whether or not (line data) should be retransmitted, and a retransmission control signal is generated based on the determination result. Specifically, when receiving a NACK or DTX for downlink data transmitted in a certain downlink unit band, the retransmission control signal generation unit 122 retransmits a retransmission command indicating a retransmission instruction for the downlink data transmitted in the downlink unit band. A control signal is generated, and the retransmission control signal is output to the data transmission control unit 106.
  • retransmission control signal generation section 122 when receiving a response signal indicating ACK for downlink data transmitted in a certain downlink unit band, retransmission control signal generation section 122 is a retransmission indicating that the downlink data transmitted in the downlink unit band is not retransmitted. A control signal is generated, and the retransmission control signal is output to the data transmission control unit 106.
  • FIG. 10 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • terminal 200 includes radio reception section 201, CP removal section 202, FFT (Fast Fourier Transform) section 203, extraction section 204, demodulation section 205, decoding section 206, determination section 207, Control unit 208, demodulation unit 209, decoding unit 210, CRC unit 211, response signal generation unit 212, encoding / modulation unit 213, primary spreading units 214-1, 214-2, secondary Spreading units 215-1 and 215-2, DFT unit 216, spreading unit 217, IFFT units 218-1, 182-2, and 218-3, CP adding units 219-1, 219-2, and 219-3 A time multiplexing unit 220, a selection unit 221, and a wireless transmission unit 222.
  • FFT Fast Fourier Transform
  • the radio reception unit 201 receives an OFDM signal transmitted from the base station 100 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the received OFDM signal.
  • the received OFDM signal includes a PDSCH signal (downlink data) assigned to a resource in PDSCH or a PDCCH signal (downlink assignment control information) assigned to a resource in PDCCH.
  • CP removing section 202 removes the CP added to the OFDM signal after reception processing.
  • the FFT unit 203 performs FFT on the received OFDM signal and converts it into a frequency domain signal, and outputs the obtained received signal to the extracting unit 204.
  • the extraction unit 204 extracts a downlink control channel signal (PDCCH signal) from the received signal received from the FFT unit 203 according to the input coding rate information. That is, since the number of CCEs constituting the downlink control information allocation resource changes according to the coding rate, the extraction unit 204 extracts the downlink control channel signal using the number of CCEs corresponding to the coding rate as an extraction unit. . Further, the downlink control channel signal is extracted for each downlink unit band. The extracted downlink control channel signal is output to demodulation section 205.
  • PDCCH signal downlink control channel signal
  • the extraction unit 204 extracts downlink data (downlink data channel signal (PDSCH signal)) from the received signal based on the information on the downlink data allocation resource addressed to the own device received from the determination unit 207 described later, and the demodulation unit To 209.
  • PDSCH signal downlink data channel signal
  • the demodulation unit 205 demodulates the downlink control channel signal received from the extraction unit 204 and outputs the obtained demodulation result to the decoding unit 206.
  • the decoding unit 206 decodes the demodulation result received from the demodulation unit 205 according to the input coding rate information, and outputs the obtained decoding result to the determination unit 207.
  • the determination unit 207 detects control information addressed to itself (that is, downlink allocation control information), the determination unit 207 notifies the control unit 208 that a bundled ACK / NACK signal is generated (exists).
  • the control unit 208 outputs the Base sequence and cyclic shift amount corresponding to the SR resource notified from the base station 100 in advance to the primary spreading unit 214-1 and outputs the Walsh sequence and DFT sequence corresponding to the SR resource to 2 Output to the next diffusion unit 215-1. Control unit 208 also outputs the frequency resource information of the SR resource to IFFT unit 218-1.
  • control unit 208 arranges the reference signal in the bundled ACK / NACK resource based on the generation status of the SR that requests the resource allocation for uplink data transmission and the bundled ACK / NACK signal in the same subframe. Control resources. Then, the control unit 208 outputs the Base sequence and the cyclic shift amount corresponding to the reference signal portion (reference signal resource) of the bundled ACK / NACK resource previously notified from the base station 100 to the primary spreading unit 214-2. The DFT sequence is output to the secondary spreading section 215-2. Further, control unit 208 outputs the frequency resource information of the bundled ACK / NACK resource to IFFT unit 218-2.
  • control unit 208 outputs the Walsh sequence used for spreading the data portion of the bundled ACK / NACK resource to the spreading unit 217, and outputs the frequency resource information of the bundled ACK / NACK resource to the IFFT unit 218-3.
  • the control unit 208 sends a NACK to the response signal generation unit 212.
  • a signal corresponding to the phase point is output, and the selection unit 221 is instructed to select the SR resource (that is, the signal input from 219-1) and to output to the wireless transmission unit 222.
  • the control unit 208 notifies the selection unit 221 of the bundled ACK / NACK resource (that is, when downlink allocation control information is detected) when notifying the bundled ACK / NACK signal in the subframe that has received the SR.
  • a signal input from the time multiplexing unit 220 is selected, and the wireless transmission unit 222 is instructed to output.
  • control unit 208 controls the reference signal resource for arranging the reference signal in the bundled ACK / NACK resource based on the generation status of the SR and the bundled ACK / NACK signal in the same subframe. Details of the control method of the reference signal resource in the control unit 208 will be described later.
  • Demodulation section 209 demodulates the downlink data received from extraction section 204, and outputs the demodulated downlink data to decoding section 210.
  • Decoding section 210 decodes the downlink data received from demodulation section 209 and outputs the decoded downlink data to CRC section 211.
  • Response signal generation section 212 is input from CRC section 211 based on the reception status of downlink data in each downlink unit band (downlink data error detection result) and the phase point indicated by control section 208.
  • the device generates a bundle ACK / NACK signal (bundle response signal) to be transmitted to the base station 100.
  • each bundled ACK / NACK signal includes each error detection result for each downlink unit band as individual data.
  • the response signal generation unit 212 outputs the generated bundle ACK / NACK signal to the encoding / modulation unit 213.
  • the encoding / modulation unit 213 encodes and modulates the input bundle ACK / NACK signal, generates a modulated signal of 12 symbols, and outputs the modulated signal to the DFT unit 216.
  • the DFT unit 216 obtains 12 signal components on the frequency axis by collecting 12 input time-series bundle ACK / NACK signals and performing DFT processing. Then, the DFT unit 216 outputs the 12 signal components to the spreading unit 217.
  • Spreading section 217 spreads the 12 signal components input from DFT section 216 using the Walsh sequence specified by control section 208, and outputs the result to IFFT section 218-3.
  • the primary spreading sections 214-1 and 214-2 corresponding to the SR resource and the first and second reference signal resources of the bundled ACK / NACK resource receive the uplink control signal (ie, NACK) according to the instruction of the control section 208.
  • the reference signal is spread by the Base sequence corresponding to the resource, and the spread signal is output to the secondary spreading sections 215-1 and 215-2.
  • Secondary spreading sections 215-1 and 215-2 based on an instruction from control section 208, spread the input primary spread signal using a Walsh sequence or a DFT sequence, and send it to IFFT sections 218-1 and 181-2. Output.
  • the IFFT units 218-1, 218-2, and 218-3 perform IFFT processing in accordance with the instruction from the control unit 208 in association with the input signal to the frequency position to be arranged.
  • signals input to IFFT sections 218-1, 182-2, and 218-3 that is, SR signal, SR resource reference signal, bundle ACK / NACK resource reference signal, bundle ACK / NACK signal
  • SR signal, SR resource reference signal, bundle ACK / NACK resource reference signal, bundle ACK / NACK signal are Converted to time domain signal.
  • CP adding sections 219-1, 219-2, and 219-3 add the same signal as the tail part of the signal after IFFT to the head of the signal as a CP.
  • the time multiplexing unit 220 receives the bundle ACK / NACK signal input from the CP addition unit 219-3 (that is, the signal transmitted using the data portion of the bundle ACK / NACK resource) and the CP addition unit 219-2.
  • the bundled ACK / NACK resource reference signal is time-multiplexed with the bundled ACK / NACK resource, and the obtained signal is output to the selection unit 221.
  • the selection unit 221 selects either a bundled ACK / NACK resource input from the time multiplexing unit 220 or an SR resource input from the CP addition unit 219-1 according to an instruction from the control unit 208, and assigns it to the selected resource
  • the received signal is output to the wireless transmission unit 222.
  • the radio transmission unit 222 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal received from the selection unit 221, and transmits the signal from the antenna to the base station 100.
  • the determination unit 207, the control unit 208, the time multiplexing unit 220, the selection unit 221, and the wireless transmission unit 222 function as a transmission unit that notifies the SR.
  • SR resources are set in PUCCH1 (PUCCH region 1) for terminal 200, and bundled ACK / NACK resources are set in PUCCH2 (PUCCH region 2).
  • each bundled ACK / NACK signal includes each error detection result for each downlink unit band as individual data.
  • the control unit 208 performs transmission control of the uplink response signal based on the generation status of the uplink response signal (SR and bundle ACK / NACK signal requesting resource allocation for uplink data transmission) in the same subframe.
  • FIGS. 11A to 11C are diagrams for explaining a signal transmission control method of an uplink response signal by terminal 200.
  • the control unit 208 arranges the SR, the bundle ACK / NACK signal, and the reference signal in any one of response patterns in FIGS. 11A to 11C to be described later based on the generation status of the SR and the bundle ACK / NACK signal in the same subframe. To do.
  • control unit 208 selects response pattern 1 in FIG. 11A when only SR occurs in the same subframe (occurrence situation 1), and only bundle ACK / NACK signals are generated in the same subframe.
  • response pattern 1 in FIG. 11A when only SR occurs in the same subframe (occurrence situation 1), and only bundle ACK / NACK signals are generated in the same subframe.
  • the response pattern 2 in FIG. 11B is selected, and when the SR and the bundle ACK / NACK signal are generated in the same subframe (occurrence situation 3), the response pattern 3 in FIG. 11C is selected.
  • ⁇ Occurrence situation 1 When terminal 200 notifies only SR (see FIG. 11A)> When terminal 200 notifies only SR in the same subframe, terminal 200 arranges SR in the SR resource set in PUCCH region 1 according to response pattern 1 in FIG. 11A.
  • control unit 208 provides a sequence (Base sequence) corresponding to the cyclic shift amount of the SR resource to primary spreading unit 214-1, secondary spreading unit 215-1 and IFFT unit 218-1. ), Orthogonal sequence (Orthogonal sequence: that is, a set of Walsh sequence and DFT sequence), and frequency information. Further, the control unit 208 instructs the selection unit 221 to output the signal assigned to the SR resource input from the CP adding unit 219-1 to the wireless transmission unit 222.
  • Base sequence Basic sequence
  • Orthogonal sequence Orthogonal sequence: that is, a set of Walsh sequence and DFT sequence
  • ⁇ Occurrence situation 2 When terminal 200 notifies only bundle ACK / NACK (see FIG. 11B)> When terminal 200 notifies only bundled ACK / NACK in the same subframe, terminal 200 performs first control of bundled ACK / NACK resources set in PUCCH region 2 according to response pattern 2 in FIG. 11B. A reference signal for demodulating the bundle ACK / NACK signal is arranged in the signal resource.
  • control section 208 gives a sequence (Base sequence) corresponding to the first cyclic shift amount and a first orthogonality to primary spreading section 214-2 and secondary spreading section 215-2.
  • a sequence (that is, a DFT sequence) is output.
  • the control unit 208 instructs the selection unit 221 to output the signal assigned to the bundle ACK / NACK resource input from the time multiplexing unit 220 to the radio transmission unit 222.
  • the reference signal for the bundle ACK / NACK signal is arranged in the first reference signal resource configured by the sequence corresponding to the first cyclic shift amount and the first orthogonal sequence (that is, the DFT sequence).
  • ⁇ Occurrence situation 3 When terminal 200 notifies bundle ACK / NACK and SR in the same subframe (see FIG. 11C)> When terminal 200 notifies bundled ACK / NACK and SR in the same subframe, terminal 200 determines the number of bundled ACK / NACK resources set in PUCCH region 2 according to response pattern 3 of FIG. 11C. A reference signal for demodulating a bundle ACK / NACK signal is arranged in 2 reference signal resources.
  • control section 208 provides a sequence corresponding to the second cyclic shift amount (Base sequence) and second orthogonality to primary spreading section 214-2 and secondary spreading section 215-2.
  • a sequence (that is, a DFT sequence) is output.
  • the control unit 208 instructs the selection unit 221 to output the signal assigned to the bundle ACK / NACK resource input from the time multiplexing unit 220 to the radio transmission unit 222.
  • the reference signal for the bundled ACK / NACK signal is arranged in the second reference signal resource configured by the sequence corresponding to the second cyclic shift amount and the second orthogonal sequence (that is, the DFT sequence).
  • the same bundle ACK / NACK resource is used.
  • the reference signals for the bundle ACK / NACK signals are arranged in different code resources. That is, in the occurrence situation 2, the reference signal is arranged in the first reference signal resource, and in the occurrence situation 3, the reference signal is arranged in the second reference signal resource.
  • the first and second reference signal resources are each defined by a pair of a cyclic shift amount and an orthogonal code sequence, and the first and second reference signal resources are the cyclic shift amount and the orthogonality constituting the pair. At least one of the code sequences is made different.
  • the base station 100 determines the pair of the sequence and the orthogonal sequence corresponding to the cyclic shift amount constituting the reference signal resource in which the reference signal is arranged in the bundle ACK / NACK resource, so that the terminal 200 bundles the bundle. It can be distinguished whether only the ACK / NACK signal is notified or whether the SR and the bundled ACK / NACK signal are notified in the same subframe.
  • the SR detection unit 118 detects the response pattern of the uplink response signal notified from the terminal 200 based on the first to third correlation values input from the correlation processing units 117-1 and 117-2, and the response pattern The occurrence status of the uplink response signal associated with is detected.
  • terminal 200 configures a reference signal resource depending on whether an SR and a bundle ACK / NACK signal are generated in the same subframe or only a bundle ACK / NACK signal is generated in its own device. At least one of the sequence corresponding to the shift amount and the DFT sequence is changed. At this time, when the base station 100 and the terminal 200 notify only the bundle ACK / NACK signal in advance, the first reference signal resource in which the reference signal is arranged, and the SR and the bundle ACK / NACK signal are the same. Information regarding the second reference signal resource in which the reference signal is arranged when notifying in the subframe is shared.
  • sequence control section 116 may use Base sequence (that is, a reference signal for SR, SR transmitted from terminal 200, and a reference signal for bundled ACK / NACK signal that may be used for spreading). , A ZAC sequence having a sequence length of 12), and the generated Base sequence is output to the correlation processing unit 117-1. Also, sequence control section 116 specifies correlation windows corresponding to resources in which reference signals are arranged in PUCCH resources that terminal 200 may use, and shows information indicating the specified correlation windows as correlation processing section 117- 1 and 117-2. Specifically, sequence control section 116 includes first and second reference signals corresponding to first and second reference signal resources in which reference signals are arranged in bundle ACK / NACK resources of PUCCH resources that terminal 200 may use.
  • Each of the two correlation windows is specified, and information indicating the specified first and second correlation windows is output to the correlation processing unit 117-1.
  • sequence control section 116 specifies a correlation window corresponding to the reference signal resource in which the reference signal is arranged in the SR resources of the PUCCH resource that terminal 200 may use, and correlates information indicating the specified correlation window. The data is output to the processing unit 117-2.
  • the correlation processing unit 117-1 uses the information indicating the first and second correlation windows and the base sequence corresponding to the first and second reference signal resources, the signal input from the despreading unit 115-1, and the terminal At 200, correlation values (first and second correlation values) with the base sequence that may be used for the first spreading are obtained. Correlation processing section 117-1 then outputs the first and second correlation values to SR detection section 118.
  • Correlation processing section 117-2 can be used for primary spreading in terminal 200 and the signal input from despreading section 115-2 using information indicating the third correlation window corresponding to the SR resource and Base sequence. A correlation value (third correlation value) with a characteristic Base sequence is obtained. Correlation processing section 117-2 then outputs the third correlation value to SR detection section 118.
  • the SR detection unit 118 receives the first correlation value corresponding to the first reference signal resource and the second correlation value corresponding to the second reference signal resource from the correlation processing unit 117-1 and performs correlation processing.
  • the third correlation value corresponding to the SR resource is input from unit 117-2.
  • SR detection section 118 determines that the reference signal is arranged in the first reference signal resource if the magnitude of the first correlation value input from correlation processing section 117-1 is greater than or equal to the threshold value. In addition, if the magnitude of the second correlation value input from correlation processing section 117-1 is equal to or greater than the threshold value, SR detection section 118 determines that the reference signal is allocated to the second reference signal resource. If the magnitude of the first and second correlation values input from the correlation processing unit 117-1 is less than the threshold value, the SR detection unit 118 places the reference signal in the first and second reference signal resources. Judge that there is no.
  • the SR detection unit 118 determines that the reference signal is allocated to the SR resource. In addition, the SR detection unit 118 determines that the SR resource is not used if the magnitude of the third correlation value input from the correlation processing unit 117-2 is less than the threshold value.
  • the SR detection unit 118 determines whether only SR is generated in the same subframe (occurrence state 1) or only bundle ACK / NACK signal is generated ( Occurrence situation 2), whether SR and bundled ACK / NACK resource signals have occurred (occurrence situation 3) is determined.
  • the reference signal when the reference signal is arranged in the first reference signal resource in the bundle ACK / NACK resource, it is determined that only the bundle ACK / NACK signal is generated in the same subframe (occurrence state 2).
  • the reference signal is arranged in the second reference signal resource in the bundle ACK / NACK resource, it is determined that only the SR and bundle ACK / NACK signal are generated in the same subframe (occurrence state 3).
  • the reference signal is arranged in the SR resource, it is determined that only SR has occurred (occurrence situation 1).
  • the response signal generation unit 212 generates a bundle ACK / NACK signal that individually includes each error detection result for each downlink unit band.
  • the transmission means comprised from the determination part 207, the control part 208, the time multiplexing part 220, the selection part 221, and the radio
  • the control unit 208 uses the reference signal as a reference signal based on the occurrence status of the SR that requests resource allocation for the bundle ACK / NACK signal and uplink data transmission in the same subframe (transmission unit time). Place in resources.
  • the control unit 208 when transmitting the bundled AKC / NACK signal, places the reference signal in the first reference signal resource, and refers to the case when notifying the SR together with the transmission of the bundled ACK / NAACK signal.
  • the signal is arranged in a second reference signal resource different from the first reference signal resource. That is, when only a bundle ACK / NACK signal is generated in the same subframe, the control unit 208 places a reference signal for the bundle ACK / NACK signal in the first reference signal resource, and SR and bundle ACK in the same subframe.
  • the reference signal for the bundled ACK / NACK signal is arranged in a second reference signal resource different from the first reference signal resource.
  • both SR and bundle ACK / NACK signals are arranged and notified in bundle ACK / NACK resources.
  • the transmission signal waveform of the terminal 200 maintains the single-carrier characteristic, and the PAPR can be kept low.
  • the SR and the bundle ACK / NACK signal are individually coded instead of being coded together, all the ACK / NACK information can be obtained without reducing the coding rate of the bundle ACK / NACK signal. It can be transmitted to the base station.
  • terminal 200 demodulates a bundle ACK / NACK signal depending on whether an SR and a bundle ACK / NACK signal are generated in the same subframe or only a bundle ACK / NACK signal is generated.
  • the reference signals used in the above are arranged in different reference signal resources (first reference signal resource or second reference signal resource).
  • sequence control section 116 changes at least one of the sequence corresponding to the cyclic shift amount constituting the first and second reference signal resources and the DFT sequence.
  • sequence control section 116 changes at least one of the sequence corresponding to the cyclic shift amount constituting the first and second reference signal resources and the DFT sequence.
  • FIG. 12 is a diagram for explaining a first setting example of reference signal resources.
  • FIG. 12 shows a case where the data part is composed of 4SC-FDMA symbols and the reference signal part is composed of 3SC-FDMA symbols in a bundled ACK / NACK resource adopting the DFT-S-OFDM format structure, as in FIG. An example is shown.
  • the orthogonal sequence used for spreading the data portion of the bundled ACK / NACK resource is a Walsh sequence with a sequence length of 4
  • the orthogonal sequence used for spreading the reference signal portion of the bundled ACK / NACK resource is of sequence length 3. It becomes a DFT series.
  • bundled ACK / NACK signals from a plurality of terminals are spread by a Walsh sequence having a sequence length of 4. Therefore, by using different Walsh sequences at different terminals, bundled ACK / NACK from up to four terminals is used.
  • the signal can be code-multiplexed to the same time frequency resource (Resource Block: RB).
  • Resource Block Resource Block
  • code-multiplexing bundled ACK / NACK signals from four terminals it is necessary to define eight reference signal resources that can be separated from each other as shown in FIG. This is because it is necessary to use different reference signal resources (that is, code resources) when each terminal notifies only the bundle ACK / NACK signal and when it notifies the SR and bundle ACK / NACK signal in the same subframe. Because.
  • reference signals of bundled ACK / NACK resources to be used by four mobile stations are, for example, as shown in FIG. 12, a cyclic shift amount (Cycliccshift index) or an orthogonal sequence (OC Index), in order to avoid mutual interference. ) are arranged differently.
  • FIG. 13 is a diagram for explaining a second setting example of reference signal resources.
  • FIG. 13 differs from FIG. 5 in the case of a bundle ACK / NACK resource adopting a DFT-S-OFDM format configuration in which the data portion is composed of 5SC-FDMA symbols and the reference signal portion is composed of 2SC-FDMA symbols.
  • An example is shown.
  • a Walsh sequence having a sequence length of 4 cannot be used for the data portion.
  • a DFT sequence having a sequence length of 5 is used for the data portion
  • a Walsh sequence having a sequence length of 2 is used for the reference signal portion.
  • FIG. 14 is a diagram illustrating a method of spreading bundle ACK / NACK signals and reference signals using the reference signal resources of FIG.
  • (F ′ 0 , F ′ 1 , F ′ 2 , F ′ 3 , F ′ 4 ) represents a DFT sequence having a sequence length of 5
  • (W ′ 0 , W ′ 1 ) is a Walsh sequence having a sequence length of 2. Represents.
  • bundled ACK / NACK signals from a plurality of terminals can be multiplexed by five different DFT sequences. Therefore, bundled ACK / NACK signals from a maximum of five terminals are assigned to the same time frequency resource (Resource Block: RB). Can be code-multiplexed. Therefore, in this case, it is necessary to define ten reference signal resources that can be separated from each other as shown in FIG.
  • the first reference signal resource used when the same terminal notifies only the bundle ACK / NACK signal
  • the second reference signal used when notifying the SR and bundle ACK / NACK signal in the same subframe Both the cyclic shift amount corresponding to the resource and the Walsh sequence (sequence length 2) are set to be different.
  • the determination accuracy when determining whether or not the terminal has notified the SR in the same subframe on the base station side is increased. improves.
  • a GCL Generalized Chirp like
  • a CAZAC Constant Amplitude Zero Auto Correlation
  • a ZC Zero Auto Correlation
  • a PN sequence such as an M sequence or an orthogonal gold code sequence
  • a time randomly generated by a computer A sequence having a sharp autocorrelation characteristic on the axis may be used for the first spreading.
  • any sequence may be used as the orthogonal code sequence as long as the sequences are orthogonal to each other or sequences that can be regarded as being substantially orthogonal to each other.
  • the response signal resource (for example, PUCCH resource) is defined by the cyclic shift amount of the ZAC sequence and the sequence number of the orthogonal code sequence.
  • the control unit 101 of the base station 100 controls the downlink data and the downlink allocation control information for the downlink data to be mapped to the same downlink unit band, but is not limited thereto. . That is, even if the downlink data and the downlink allocation control information for the downlink data are mapped to different downlink unit bands, if the correspondence between the downlink allocation control information and the downlink data is clear, each implementation The technology described in the form can be applied.
  • IFFT conversion is performed after primary spreading and secondary spreading as the order of processing on the terminal side.
  • the order of these processes is not limited to this. As long as there is IFFT processing after the primary diffusion processing, an equivalent result can be obtained regardless of the location of the secondary diffusion processing.
  • the antenna is described as an antenna.
  • the present invention can be similarly applied to an antenna port.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a mobile communication system or the like.

Abstract

Disclosed are a terminal apparatus, a base station apparatus and a signal transmission control method whereby in a communication system to which a carrier aggregation using a plurality of downstream unit bands is applied, when SR, which requests a resource allocation used for upstream channel data transmission, and bulk response signals occur in the same subframe, the transmission qualities of the bulk response signals can be secured. In a terminal (200), a control unit (208) places a reference signal on a reference signal resource on the basis of the occurrence status of bulk ACK/NACK signals and the SR, which requests a resource allocation used for upstream channel data transmission, in the same subframe (transmission unit time). Specifically, when only the bulk ACK/NACK signals occur in the same subframe, the control unit (208) places reference signals for the bulk ACK/NACK signals onto a first reference signal resource. When the SR and the bulk ACK/NACK signals occur in the same subframe, the control unit (208) places the reference signals for the bulk ACK/NACK signals onto a second reference signal resource different from the first reference signal resource.

Description

端末装置、基地局装置及び信号送信制御方法Terminal apparatus, base station apparatus, and signal transmission control method
 本発明は、端末装置、基地局装置及び信号送信制御方法に関する。 The present invention relates to a terminal device, a base station device, and a signal transmission control method.
 3GPP LTEでは、下り回線の通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用されている。3GPP LTEが適用された無線通信システムでは、基地局装置(以下「基地局」と略記する)が予め定められた通信リソースを用いて同期信号(Synchronization Channel:SCH)及び報知信号(Broadcast Channel:BCH)を送信する。そして、端末装置(以下「端末」と略記する)は、まず、SCHを捕まえることによって基地局との同期を確保する。その後、端末は、BCH情報を読むことにより基地局独自のパラメータ(例えば、周波数帯域幅など)を取得する(非特許文献1、2、3参照)。 In 3GPP LTE, OFDMA (Orthogonal Frequency Division Multiple Access) is adopted as a downlink communication method. In a wireless communication system to which 3GPP LTE is applied, a base station device (hereinafter abbreviated as “base station”) uses a predetermined communication resource to synchronize (Synchronization Channel: SCH) and broadcast signal (Broadcast Channel: BCH). ). A terminal device (hereinafter abbreviated as “terminal”) first secures synchronization with the base station by capturing the SCH. After that, the terminal acquires parameters (for example, frequency bandwidth) unique to the base station by reading the BCH information (see Non-Patent Documents 1, 2, and 3).
 また、端末は、基地局独自のパラメータの取得が完了した後、基地局に対して接続要求を行うことにより、基地局との通信を確立する。基地局は、通信が確立された端末に対して、必要に応じてPDCCH(Physical Downlink Control CHannel)を介して制御情報を送信する。 The terminal establishes communication with the base station by making a connection request to the base station after the acquisition of the parameters unique to the base station is completed. The base station transmits control information via a PDCCH (Physical 確立 Downlink Control CHannel) as necessary to a terminal with which communication has been established.
 そして、端末は、受信したPDCCH信号に含まれる複数の制御情報をそれぞれ「ブラインド判定」する。すなわち、制御情報は、CRC(Cyclic Redundancy Check)部分を含み、このCRC部分は、基地局において、送信対象端末の端末IDによってマスクされる。従って、端末は、受信した制御情報のCRC部分を自装置の端末IDでデマスクしてみるまでは、自装置宛の制御情報であるか否かを判定できない。このブラインド判定では、デマスクした結果、CRC演算がOKとなれば、その制御情報が自装置宛であると判定される。 Then, the terminal performs “blind determination” for each of the plurality of control information included in the received PDCCH signal. That is, the control information includes a CRC (Cyclic Redundancy Check) part, and this CRC part is masked by the terminal ID of the transmission target terminal in the base station. Therefore, the terminal cannot determine whether or not the received control information is control information destined for the own apparatus until the CRC portion of the received control information is demasked with the terminal ID of the own apparatus. In this blind determination, if the CRC calculation is OK as a result of demasking, it is determined that the control information is addressed to the own apparatus.
 また、3GPP LTEでは、基地局から端末への下り回線データに対してARQ(Automatic Repeat Request)が適用される。つまり、端末は下り回線データの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は下り回線データに対しCRCを行って、CRC=OK(誤り無し)であればACK(Acknowledgment)を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)を応答信号として基地局へフィードバックする。ただし、この応答信号(つまり、ACK/NACK信号)の変調にはBPSK(Binary Phase Shift Keying)が用いられている。また、この応答信号のフィードバックには、PUCCH(Physical Uplink Control Channel)等の上り回線制御チャネルが用いられる。そして、受信した応答信号がNACKを示す場合には、基地局は、端末に対して再送データを送信する。 In 3GPP LTE, ARQ (Automatic Repeat Request) is applied to downlink data from the base station to the terminal. That is, the terminal feeds back a response signal indicating an error detection result of downlink data to the base station. The terminal performs CRC on the downlink data, and if CRC = OK (no error), ACK (Acknowledgment) is sent to the base station as a response signal, and if CRC = NG (error is found), NACK (Negative Acknowledgment) is sent to the base station as a response signal. provide feedback. However, BPSK (Binary Phase Shift Shift Keying) is used to modulate the response signal (that is, ACK / NACK signal). Further, an uplink control channel such as PUCCH (Physical-Uplink-Control-Channel) is used for feedback of the response signal. If the received response signal indicates NACK, the base station transmits retransmission data to the terminal.
 ここで、基地局から送信される上記制御情報(すなわち、下り割当制御情報)には、基地局が端末に対して割り当てたリソース情報等を含むリソース割当情報が含まれる。この制御情報の送信には、前述の通りPDCCHが用いられる。このPDCCHは、1つ又は複数のL1/L2CCH(L1/L2 Control Channel)から構成される。各L1/L2CCHは、1つ又は複数のCCE(Control Channel Element)から構成される。すなわち、CCEは、制御情報をPDCCHにマッピングするときの基本単位である。また、1つのL1/L2CCHが複数のCCEから構成される場合には、そのL1/L2CCHには識別番号(Index)が連続する複数のCCEが割り当てられる。基地局は、リソース割当対象端末に対する制御情報の通知に必要なCCE数に従って、そのリソース割当対象端末に対してL1/L2CCHを割り当てる。そして、基地局は、このL1/L2CCHのCCEに対応する物理リソースにマッピングして制御情報を送信する。 Here, the control information (that is, downlink allocation control information) transmitted from the base station includes resource allocation information including resource information allocated to the terminal by the base station. As described above, the PDCCH is used for transmitting the control information. This PDCCH is composed of one or a plurality of L1 / L2 CCHs (L1 / L2 Control Channel). Each L1 / L2CCH is composed of one or a plurality of CCEs (Control Channel Element). That is, CCE is a basic unit for mapping control information to PDCCH. When one L1 / L2CCH is composed of a plurality of CCEs, a plurality of CCEs having consecutive identification numbers (Index) are assigned to the L1 / L2CCH. The base station allocates L1 / L2 CCH to the resource allocation target terminal according to the number of CCEs required for reporting control information to the resource allocation target terminal. Then, the base station maps the physical resource corresponding to the CCE of this L1 / L2CCH and transmits control information.
 またここで、各CCEは、PUCCHの構成リソースと1対1に対応付けられている。従って、L1/L2CCHを受信した端末は、このL1/L2CCHを構成するCCEに対応するPUCCHの構成リソースを暗黙的(Implicit)に特定することができ、この特定されたリソースを用いて応答信号を基地局へ送信する。ただし、L1/L2CCHが連続する複数のCCEを占有する場合には、端末は、複数のCCEにそれぞれ対応する複数のPUCCH構成リソースのうち1つ(例えば、Indexが最も小さいCCEに対応するPUCCH構成リソース)を利用して、応答信号を基地局へ送信する。こうして下り回線の通信リソースが効率良く使用される。 Also, here, each CCE is associated with the PUCCH configuration resource on a one-to-one basis. Therefore, the terminal that has received the L1 / L2CCH can implicitly specify the configuration resource of the PUCCH corresponding to the CCE that configures the L1 / L2CCH, and uses this specified resource to transmit a response signal. Transmit to the base station. However, when the L1 / L2 CCH occupies a plurality of continuous CCEs, the terminal may use one of a plurality of PUCCH configuration resources corresponding to the plurality of CCEs (for example, a PUCCH configuration corresponding to the CCE having the smallest Index). Resource) is used to transmit a response signal to the base station. Thus, downlink communication resources are efficiently used.
 複数の端末から送信される複数の応答信号及び参照信号は、図1に示すように、時間軸上(Time domain)でZero Auto-correlation特性を持つZAC(Zero Auto-correlation)系列(Base sequenceと呼ばれることもある)、及び、ウォルシュ(Walsh)系列又はDFT(Discrete Fourier Transform)系列によって拡散され、PUCCH内でコード多重されている(ただし、系列長12のZAC系列そのものを参照信号系列(Reference sequence)と呼ぶこともある)。 As shown in FIG. 1, a plurality of response signals and reference signals transmitted from a plurality of terminals are a ZAC (Zero Auto-correlation) sequence (Base sequence) having a Zero Auto-correlation characteristic on a time axis (Time domain). And is spread by a Walsh sequence or a DFT (Discrete-Fourier-Transform) sequence and code-multiplexed in a PUCCH (however, a ZAC sequence having a sequence length of 12 is itself a reference signal sequence (Reference sequence) )).
 図1において(W,W,W,W)は系列長4のウォルシュ系列(ウォルシュ符号系列:Walsh Code Sequence)を表わし、(F,F,F)は系列長3のDFT系列を表す。図1に示すように、端末では、ACK又はNACKの応答信号が、まず周波数軸上でZAC系列(系列長12)によって1SC-FDMAシンボル内に1次拡散される。次いで1次拡散後の応答信号がW~Wそれぞれに対応させられてIFFT(Inverse Fast Fourier Transform)される。また、端末では、参照信号としての系列長12のZAC系列がF~Fそれぞれに対応させられてIFFTされる。このようにして、周波数軸上(Frequency domain)で系列長12のZAC系列によって拡散された応答信号、及び参照信号は、IFFTにより時間軸上の系列長12のZAC系列に変換される。これは、1次拡散後の応答信号、及び参照信号がIFFT後にさらにウォルシュ系列(系列長4)、DFT系列(系列長3)を用いて2次拡散されることと等化である。 In FIG. 1, (W 0 , W 1 , W 2 , W 3 ) represents a Walsh code sequence (Walsh Code Sequence), and (F 0 , F 1 , F 2 ) has a sequence length of 3. Represents a DFT sequence. As shown in FIG. 1, in the terminal, an ACK or NACK response signal is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis. Next, the response signal after the first spreading is associated with each of W 0 to W 3 and subjected to IFFT (Inverse Fast Fourier Transform). Also, in the terminal, a ZAC sequence having a sequence length of 12 as a reference signal is IFFT associated with each of F 0 to F 2 . In this manner, the response signal and the reference signal spread by the ZAC sequence having a sequence length of 12 on the frequency axis (Frequency domain) are converted into a ZAC sequence having a sequence length of 12 on the time axis by IFFT. This is equalization, in which the response signal after the first spreading and the reference signal are further subjected to the second spreading using the Walsh sequence (sequence length 4) and the DFT sequence (sequence length 3) after the IFFT.
 異なる端末からの応答信号同士は、異なる巡回シフト量(Cyclic shift Index)に対応するZAC系列、または、異なる系列番号(Orthogonal cover Index : OC index)に対応する直交符号系列を用いて拡散されている。直交符号系列は、ウォルシュ系列とDFT系列との組である。また、直交符号系列はブロックワイズ拡散コード系列(Block-wise spreading code)と称されることもある。従って、基地局は、従来の逆拡散及び相関処理を用いることにより、これらコード多重された複数の応答信号を分離することができる(非特許文献4参照)。 Response signals from different terminals are spread using ZAC sequences corresponding to different cyclic shift amounts (Cyclic shift Index) or orthogonal code sequences corresponding to different sequence numbers (Orthogonal cover Index: OC index). . The orthogonal code sequence is a set of a Walsh sequence and a DFT sequence. The orthogonal code sequence may also be referred to as a block-wise spreading code sequence. Therefore, the base station can separate these response signals that have been code-multiplexed by using conventional despreading and correlation processing (see Non-Patent Document 4).
 ただし、各端末は各サブフレーム(送信単位時間)において自装置宛の下り割当制御情報をブラインド判定するので、端末側では、必ずしも下り割当制御情報の受信が成功するとは限らない。端末が或る下り単位バンドにおける自装置宛の下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおいて自装置宛の下り回線データが存在するか否かさえも知り得ない。従って、端末が或る下り単位バンドにおける下り割当制御情報の受信に失敗した場合、端末は、当該下り単位バンドにおける下り回線データに対する応答信号も生成しない。このエラーケースは、端末側で応答信号の送信が行われないという意味で、応答信号のDTX(DTX(Discontinuous transmission) of ACK/NACK signals)として定義されている。 However, since each terminal blindly determines downlink allocation control information addressed to itself in each subframe (transmission unit time), the terminal side does not necessarily successfully receive downlink allocation control information. When a terminal fails to receive downlink allocation control information addressed to itself in a certain downlink unit band, the terminal cannot even know whether downlink data destined for itself exists in the downlink unit band. Therefore, when the terminal fails to receive downlink allocation control information in a certain downlink unit band, the terminal does not generate a response signal for downlink data in the downlink unit band. This error case is defined as DTX (DTX (Discontinuous transmission) of ACK / NACK s signals) of the response signal in the sense that the response signal is not transmitted on the terminal side.
 ところで、前述した上り回線制御チャネル(PUCCH)は、端末側から送信すべき上り回線データの発生を示すための(すなわち、基地局に対して上り回線データ送信のためのリソース割当を要求するための)上り制御信号であるSR(Scheduling Request:スケジューリング・リクエスト)(SRI:Scheduling Request Indicatorと表現されることもある。)の通知にも用いられる。基地局は、端末との間で接続を確立した際、SRの通知に用いるべきリソース(以下、SRリソースという)を各端末に対して個別に割り当てる。また、このSRにはOOK(On-Off-Keying)が適用されており、基地局側では、端末がSRリソースを用いて任意の信号を送信しているか否かに基づいて、端末からのSRを検出する。また、SRには前述した応答信号と同様にして、ZAC系列、ウォルシュ系列及びDFT系列を用いた拡散が適用される。 By the way, the above-described uplink control channel (PUCCH) is used for indicating the generation of uplink data to be transmitted from the terminal side (that is, for requesting resource allocation for uplink data transmission to the base station). ) It is also used for notification of SR (Scheduling Request: Scheduling Request) (which may be expressed as SRI: Scheduling Request). When a base station establishes a connection with a terminal, the base station individually allocates a resource to be used for SR notification (hereinafter referred to as an SR resource) to each terminal. Moreover, OOK (On-Off-Keying) is applied to this SR, and the base station side determines the SR from the terminal based on whether or not the terminal transmits an arbitrary signal using the SR resource. Is detected. In addition, spreading using a ZAC sequence, a Walsh sequence, and a DFT sequence is applied to SR similarly to the response signal described above.
 LTEシステムでは、SRと応答信号とが同一サブフレーム内で発生する場合がある。この場合、一つの端末が、同一サブフレーム内においてSRと応答信号とをコード多重して同時に送信すると、端末が送信する信号の合成波形のPAPR(Peak to Average Power Ratio)が大きく劣化してしまう。しかし、LTEシステムでは、端末のアンプ効率を重要視するため、端末側でSRと応答信号とが同一サブフレーム内で発生した場合には、端末は、応答信号の送信に用いるべきリソース(以下、「ACK/NACKリソース」という)を用いずに、端末毎に予め個別に割り当てられたSRリソースを用いて応答信号を送信する。これにより、端末が送信する信号の合成波形のPAPRを低く抑えることができる。このとき、基地局側では、SRリソースが用いられているか否かに基づいて、端末側からのSRを検出する。さらに、基地局側では、SRリソース(SRリソースが用いられていない場合にはACK/NACKリソース)で送信された信号の位相(すなわち、BPSKの復調結果)に基づいて、端末がACK又はNACKのいずれを通知したかを判定する。 In the LTE system, SR and response signal may occur within the same subframe. In this case, if one terminal code-multiplexes the SR and the response signal in the same subframe and transmits them simultaneously, the PAPR (Peak-to-Average-Power-Ratio) of the composite waveform of the signal transmitted by the terminal greatly deteriorates. . However, in the LTE system, since the amplifier efficiency of the terminal is regarded as important, when the SR and the response signal are generated in the same subframe on the terminal side, the terminal should use the resource (hereinafter, referred to as the resource to be transmitted). Without using "ACK / NACK resource"), a response signal is transmitted using SR resources individually allocated in advance for each terminal. As a result, the PAPR of the composite waveform of the signal transmitted by the terminal can be kept low. At this time, the base station side detects the SR from the terminal side based on whether or not the SR resource is used. Further, on the base station side, based on the phase of the signal transmitted with the SR resource (or the ACK / NACK resource when SR resource is not used) (that is, the BPSK demodulation result), the terminal performs ACK or NACK. It is determined which one has been notified.
 ここで、上述した、LTEシステムにおける端末側でのSR及び応答信号の通知に関わる動作について、図2及び図3を用いて説明する。図2では、ACK/NACKリソース及びSRリソースがそれぞれ異なる符号リソースに割り当てられている。基地局は、図2に示す下り単位バンドにおいて、PDCCHに含まれるL1/L2CCH(1つ又は複数のCCEによって構成されるチャネル)を用いて、下り回線データが送信されるリソースを示す下り割当制御情報を送信する。また、基地局は、図2に示すように、上り単位バンドのPUCCHに含まれる任意の1つのPUCCHリソースを、SR向けのPUCCHリソース(SRリソース)として予め割り当てる。また、端末は、下り単位バンドで下り割当制御情報が占有していたCCE(PDCCH)に関連付けられた1つのPUCCHリソースを、応答信号向けのPUCCHリソース(ACK/NACKリソース)として用いる。 Here, the operation related to the notification of the SR and the response signal on the terminal side in the LTE system described above will be described with reference to FIGS. In FIG. 2, ACK / NACK resources and SR resources are allocated to different code resources. In the downlink unit band shown in FIG. 2, the base station uses the L1 / L2CCH (channel constituted by one or a plurality of CCEs) included in the PDCCH to indicate downlink allocation control indicating resources for transmitting downlink data. Send information. Further, as shown in FIG. 2, the base station allocates in advance one arbitrary PUCCH resource included in the PUCCH of the uplink unit band as a PUCCH resource (SR resource) for SR. Also, the terminal uses one PUCCH resource associated with the CCE (PDCCH) occupied by the downlink allocation control information in the downlink unit band as a PUCCH resource (ACK / NACK resource) for response signals.
 まず、図3Aに示すように、端末が或るサブフレーム内でSRと応答信号とを通知する場合(すなわち、SR+ACK又はSR+NACKを通知する場合)、端末は、図2に示す下りデータチャネル(PDSCH:Physical Downlink Shared Channel)で受信した下り回線データ(DL data)に対する応答信号(「A/N」)を、図3Aに示す上り単位バンドのPUCCHに含まれる1つのSRリソースに割り当てる。そして、端末は、応答信号がACKであるかNACKであるかに応じて、SRリソースを用いて送信する信号の位相を決定する。 First, as shown in FIG. 3A, when the terminal notifies the SR and the response signal within a certain subframe (that is, when SR + ACK or SR + NACK is notified), the terminal transmits the downlink data channel (PDSCH) shown in FIG. : A response signal ("A / N") for downlink data (DL data) received by Physical Downlink Shared Channel) is allocated to one SR resource included in the PUCCH of the uplink unit band shown in FIG. 3A. And a terminal determines the phase of the signal transmitted using SR resource according to whether a response signal is ACK or NACK.
 次いで、図3Bに示すように、端末が或るサブフレーム内で応答信号のみを送信する場合(すなわち、ACK又はNACKのみを送信する場合)、端末は、図2に示すPDSCHで受信した下り回線データ(DL data)に対する応答信号(「A/N」)を、図3Bに示す上り単位バンドのPUCCHに含まれる1つのACK/NACKリソースに割り当てる。そして、端末は、応答信号がACKであるかNACKであるかに応じて、ACK/NACKリソースを用いて送信する信号の位相を決定する。 Next, as shown in FIG. 3B, when the terminal transmits only a response signal within a certain subframe (that is, when only ACK or NACK is transmitted), the terminal receives the downlink received on the PDSCH shown in FIG. A response signal ("A / N") for data (DL data) is allocated to one ACK / NACK resource included in the PUCCH of the uplink unit band shown in FIG. 3B. And a terminal determines the phase of the signal transmitted using an ACK / NACK resource according to whether a response signal is ACK or NACK.
 次いで、図3Cに示すように、端末が或るサブフレーム内でSRのみを通知する場合、端末は、SRを、図3Cに示す上り単位バンドのPUCCHに含まれる1つのSRリソースに割り当てる。そして、端末は、SRリソースに対してNACKの位相点を設定する。 Next, as illustrated in FIG. 3C, when the terminal notifies only of the SR within a certain subframe, the terminal allocates the SR to one SR resource included in the PUCCH of the uplink unit band illustrated in FIG. 3C. Then, the terminal sets a NACK phase point for the SR resource.
 ただし、前述の通り、端末側では下り割当制御情報の受信に常に成功するわけではないので、基地局側と端末側との間で、端末での下り信号の受信成否に関する認識の違いが発生する可能性がある。具体的には、基地局が下り割当制御情報(及び、下り回線データ)を端末に送信した際に端末がSRリソースを用いて上り応答信号を送信した場合、基地局側ではSR検出だけではなく、SRリソースに割り当てられた信号の位相がACK又はNACKのいずれの情報を示しているかを判定する。しかしながら、端末側で下り割当制御情報の受信に失敗していた場合(すなわち、DTX発生時)には、端末は、上り応答信号に応答信号の情報を含まずにSRリソースを用いてSRのみを通知している。そこで、LTEシステムでは、これらの認識違いが大きな問題とならないように、図3に示すように、端末がSRのみを基地局に通知する場合(図3C)と、SR及びNACK情報を同一サブフレームで基地局に通知する場合(図3A)とで、同一の信号点(すなわち、NACKの位相点)が用いられる。こうすることで、仮に端末が下り割当制御情報の受信に失敗し、SRのみを通知した場合(すなわち、SR+DTX通信時)であっても、基地局側では当該信号をSR及びNACK情報が同一サブフレームで通知されている(すなわち、SR+NACK)と判定するため、下り回線データの再送制御は大きな問題なく実行できる。 However, as described above, since the terminal side does not always succeed in receiving downlink allocation control information, there is a difference in recognition regarding the success or failure of downlink signal reception at the terminal side between the base station side and the terminal side. there is a possibility. Specifically, when the base station transmits downlink allocation control information (and downlink data) to the terminal, when the terminal transmits an uplink response signal using the SR resource, the base station not only performs SR detection. , It is determined whether the phase of the signal allocated to the SR resource indicates ACK or NACK information. However, if reception of downlink allocation control information has failed on the terminal side (that is, when DTX occurs), the terminal does not include the response signal information in the uplink response signal, and only uses the SR resource to transmit the SR. Notify. Therefore, in the LTE system, as shown in FIG. 3, when the terminal notifies only the SR to the base station (FIG. 3C), the SR and NACK information are transmitted in the same subframe so that these recognition differences do not become a big problem. The same signal point (that is, the phase point of NACK) is used in the case of notifying the base station in FIG. 3A (FIG. 3A). In this way, even if the terminal fails to receive the downlink allocation control information and notifies only the SR (that is, during SR + DTX communication), the base station side uses the same sub-signal for SR and NACK information. Since it is determined that the frame is notified (that is, SR + NACK), the downlink data retransmission control can be executed without any major problem.
 また、3GPP LTEよりも更なる通信の高速化を実現する3GPP LTE-advancedの標準化が開始された。3GPP LTE-advancedシステム(以下、「LTE-Aシステム」と呼ばれることがある)は、3GPP LTEシステム(以下、「LTEシステム」と呼ばれることがある)を踏襲する。3GPP LTE-advancedでは、最大1Gbps以上の下り伝送速度を実現するために、40MHz以上の広帯域周波数で通信可能な基地局及び端末が導入される見込みである。 Also, standardization of 3GPP LTE-advanced, which realizes higher communication speed than 3GPP LTE, has started. The 3GPP LTE-advanced system (hereinafter sometimes referred to as “LTE-A system”) follows the 3GPP LTE system (hereinafter sometimes referred to as “LTE system”). In 3GPP LTE-advanced, it is expected that base stations and terminals capable of communicating at a wideband frequency of 40 MHz or more will be introduced in order to realize a downlink transmission speed of 1 Gbps or more at the maximum.
 LTE-Aシステムにおいては、LTEシステムにおける伝送速度の数倍もの超高速伝送速度による通信、及び、LTEシステムに対する後方互換性(バックワードコンパチビリティー:Backward Compatibility)を同時に実現するために、LTE-Aシステム向けの帯域が、LTEシステムのサポート帯域幅である20MHz以下の「単位バンド」に区切られる。すなわち、「単位バンド」は、ここでは、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位として定義される。さらに、下り回線における「単位バンド」(以下、「下り単位バンド」という)は基地局から報知されるBCHの中の下り周波数帯域情報によって区切られた帯域、又は、下り制御チャネル(PDCCH)が周波数領域に分散配置される場合の分散幅によって定義される帯域として定義されることもある。また、上り回線における「単位バンド」(以下、「上り単位バンド」という)は、基地局から報知されるBCHの中の上り周波数帯域情報によって区切られた帯域、又は、中心付近にPUSCH(Physical Uplink Shared CHannel)領域を含み、両端部にLTE向けのPUCCHを含む20MHz以下の通信帯域の基本単位として定義されることもある。なお、「単位バンド」は、3GPP LTE-Advancedにおいて、英語でComponent Carrier(s)と表記されることがある。また、「単位バンド」は、物理セル番号とキャリア周波数番号で定義されてもよく、「セル(Cell)」と呼ばれることもある。 In the LTE-A system, in order to simultaneously realize communication at an ultra-high speed transmission speed several times the transmission speed in the LTE system and backward compatibility with the LTE system (Backward Compatibility), the LTE- The band for the A system is divided into “unit bands” of 20 MHz or less, which is the support bandwidth of the LTE system. That is, the “unit band” is a band having a maximum width of 20 MHz, and is defined as a basic unit of the communication band. Furthermore, the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency. It may be defined as a band defined by a dispersion width when distributed in a region. Also, the “unit band” (hereinafter referred to as “uplink unit band”) in the uplink is a band delimited by uplink frequency band information in the BCH broadcast from the base station, or a PUSCH (Physical-Uplink) near the center. In some cases, it is defined as a basic unit of a communication band of 20 MHz or less that includes a (Shared CHannel) region and includes PUCCH for LTE at both ends. The “unit band” may be expressed in English as “Component Carrier (s)” in 3GPP LTE-Advanced. A “unit band” may be defined by a physical cell number and a carrier frequency number, and may be called a “cell”.
 そして、LTE-Aシステムでは、その単位バンドを幾つか束ねた帯域を用いた通信、所謂Carrier aggregationがサポートされる。そして、一般的に上りに対するスループット要求と下りに対するスループット要求とは異なるので、LTE-Aシステムでは、任意のLTE-Aシステム対応の端末(以下、「LTE-A端末」という)に対して設定される単位バンドの数が上りと下りで異なるCarrier aggregation、所謂Asymmetric Carrier aggregationも検討されている。さらに、上りと下りで単位バンド数が非対称であり、且つ、各単位バンドの周波数帯域幅がそれぞれ異なる場合も、サポートされる。 The LTE-A system supports communication using a band obtained by bundling several unit bands, so-called Carrier Aggregation. In general, an uplink throughput request and a downlink throughput request are different from each other. Therefore, in the LTE-A system, an arbitrary LTE-A system compatible terminal (hereinafter referred to as “LTE-A terminal”) is set. Carrier-aggregation, in which the number of unit bands to be used differs between upstream and downstream, so-called Asymmetric Carrier-aggregation is also being studied. Furthermore, the case where the number of unit bands is asymmetric between upstream and downstream and the frequency bandwidth of each unit band is different is also supported.
 図4は、個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図である。図4には、基地局の上りと下りの帯域幅及び単位バンド数が対称である例が示されている。 FIG. 4 is a diagram for explaining an asymmetric carrier aggregation applied to individual terminals and a control sequence thereof. FIG. 4 shows an example in which the uplink and downlink bandwidths and the number of unit bands of the base station are symmetric.
 図4Bにおいて、端末1に対しては、2つの下り単位バンドと左側の1つの上り単位バンドを用いてCarrier aggregationを行うような設定(Configuration)が為される一方、端末2に対しては、端末1と同一の2つの下り単位バンドを用いるような設定が為されるにも拘らず、上り通信では右側の上り単位バンドを利用するような設定が為される。 In FIG. 4B, the terminal 1 is configured to perform carrier-aggregation using two downlink unit bands and one uplink unit band on the left side. In spite of the setting that uses the same two downlink unit bands as those of the terminal 1, the setting that uses the right uplink unit band is performed in the uplink communication.
 そして、端末1に着目すると、LTE-Aシステムを構成するLTE-A基地局とLTE-A端末との間では、図4Aに示すシーケンス図に従って、信号の送受信が行われる。図4Aに示すように、(1)端末1は、基地局との通信開始時に、左側の下り単位バンドと同期を取り、左側の下り単位バンドとペアになっている上り単位バンドの情報をSIB2(System Information Block Type 2)と呼ばれる報知信号から読み取る。(2)端末1は、この上り単位バンドを用いて、例えば、接続要求を基地局に送信することによって基地局との通信を開始する。(3)端末に対し複数の下り単位バンドを割り当てる必要があると判断した場合には、基地局は、端末に下り単位バンドの追加を指示する。ただし、この場合、上り単位バンド数は増えず、個別の端末である端末1において非対称Carrier aggregationが開始される。 When attention is paid to the terminal 1, signals are transmitted and received between the LTE-A base station and the LTE-A terminal constituting the LTE-A system according to the sequence diagram shown in FIG. 4A. As shown in FIG. 4A, (1) Terminal 1 synchronizes with the left downlink unit band at the start of communication with the base station, and transmits information on the uplink unit band paired with the left downlink unit band to SIB2 Read from a notification signal called (System Information Block Type 2). (2) Using this uplink unit band, the terminal 1 starts communication with the base station, for example, by transmitting a connection request to the base station. (3) When determining that it is necessary to assign a plurality of downlink unit bands to the terminal, the base station instructs the terminal to add a downlink unit band. However, in this case, the number of uplink unit bands does not increase, and asymmetric carrier aggregation is started in terminal 1, which is an individual terminal.
 また、前述のCarrier aggregationが適用されるLTE-Aシステムでは、端末が一度に複数の下り単位バンドにおいて複数の下り回線データを受信することがある。LTE-Aシステムでは、この複数の下り回線データに対する複数の応答信号の送信方法の1つとして、複数の下り回線データに対する応答信号を纏めて符号化(Joint coding)し、その符号化データをDFT-S-OFDMA(Discrete Fourier Transform spread Orthogonal Frequency Division Multiple Access)フォーマットを用いて基地局へ送信する手法が検討されている(非特許文献5参照)。複数の下り回線データに対する応答信号を纏めて符号化(Joint coding)された符号化データには、下り単位バンド毎の誤り検出結果の各々が個別データとして含まれている。この複数の下り回線データに対する応答信号が纏めて符号化(Joint coding)され、下り単位バンド毎の誤り検出結果の各々が含まれている符号化データを、以降、「束ACK/NACK信号」又は「束応答信号」と呼ぶ。 In addition, in the LTE-A system to which the above-described Carrier Aggregation is applied, a terminal may receive a plurality of downlink data in a plurality of downlink unit bands at a time. In the LTE-A system, as one method of transmitting a plurality of response signals for the plurality of downlink data, the response signals for the plurality of downlink data are collectively encoded (Joint coding), and the encoded data is converted into DFT. A method of transmitting to a base station using an S-OFDMA (Discrete-Fourier-Transform-spread-Orthogonal-Frequency-Division-Multiple-Access) format has been studied (see Non-Patent Document 5). Each of the error detection results for each downlink unit band is included as individual data in the encoded data in which response signals for a plurality of downlink data are collectively encoded (Joint coding). The response signals for the plurality of downlink data are collectively encoded (Joint coding), and the encoded data including each error detection result for each downlink unit band is hereinafter referred to as a “bundled ACK / NACK signal” or This is called a “bundle response signal”.
 DFT-S-OFDMAフォーマットを用いて束ACK/NACK信号を送信する方法について図5を用いて説明する。 A method for transmitting a bundled ACK / NACK signal using the DFT-S-OFDMA format will be described with reference to FIG.
 束ACK/NACK信号を復調するために用いられる参照信号として、LTEにおける参照信号と同様の「系列長12のZAC系列(Base sequence)」が用いられる。具体的には、系列長12のZAC系列が、第3,4,5SC-FDMAシンボルに配置され、DFT系列(系列長3:F,F,F)それぞれに対応させられて拡散される。さらに、拡散された信号がIFFTによって時間軸上の信号に変換される。これら処理は、ZAC系列がIFFTにより時間軸上の信号に変換された後、系列長3のDFT系列によって拡散されることと等化である。 As a reference signal used for demodulating the bundle ACK / NACK signal, a “ZAC sequence (Base sequence) having a sequence length of 12” similar to the reference signal in LTE is used. Specifically, a ZAC sequence having a sequence length of 12 is arranged in the third, fourth, and fifth SC-FDMA symbols, and is spread in correspondence with each DFT sequence (sequence length 3: F 0 , F 1 , F 2 ). The Further, the spread signal is converted into a signal on the time axis by IFFT. In these processes, the ZAC sequence is converted into a signal on the time axis by IFFT and then spread by a DFT sequence having a sequence length of 3 and equalization.
 異なる端末からの参照信号同士は、LTEにおけるACK/NACKに対する参照信号と同様に、異なる巡回シフト量(Cyclic shift Index)に対応する系列又は異なるDFT系列を用いて拡散されており、基地局では、従来の逆拡散処理及び相関処理を用いることにより、これらのコード多重された複数の参照信号を分離することができる。 Reference signals from different terminals are spread using sequences corresponding to different cyclic shift amounts (Cyclic shift Index) or different DFT sequences, as in the case of reference signals for ACK / NACK in LTE. By using conventional despreading processing and correlation processing, it is possible to separate a plurality of these code-multiplexed reference signals.
 図5に示すDFT-S-OFDMAフォーマットでは、前述したように参照信号として「系列長12のZAC系列」が用いられる。この場合、束ACK/NACK信号として、12シンボルから構成される信号がまずDFTされて1SC-FDMAシンボル内に1次拡散される。前述したように、LTEシステムでは、BPSK変調された1シンボルの応答信号が周波数軸上でZAC系列(系列長12)によって1SC-FDMAシンボル内に1次拡散される。これに対し、Carrier aggregationが適用されるLTE-Aシステムにおいて、DFT-S-OFDMAを用いて束ACK/NACK信号を通知する場合に、参照信号として「系列長12のZAC系列」が用いられる場合には、12シンボルから構成される束ACK/NACK信号がDFTされて1SC-FDMAシンボル内に1次拡散される。なお、前述したように、12シンボルから構成される束ACK/NACK信号には、下り単位バンド毎の誤り検出結果の各々が個別データとして含まれている。 In the DFT-S-OFDMA format shown in FIG. 5, as described above, a “ZAC sequence having a sequence length of 12” is used as a reference signal. In this case, as a bundled ACK / NACK signal, a signal composed of 12 symbols is first DFTed and first spread in one SC-FDMA symbol. As described above, in the LTE system, a 1-symbol response signal subjected to BPSK modulation is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis. On the other hand, in the LTE-A system to which Carriergregaggregation is applied, when a bundle ACK / NACK signal is notified using DFT-S-OFDMA, a “ZAC sequence having a sequence length of 12” is used as a reference signal. In this case, a bundle ACK / NACK signal composed of 12 symbols is DFT and first spread in one SC-FDMA symbol. As described above, the bundle ACK / NACK signal composed of 12 symbols includes each error detection result for each downlink unit band as individual data.
 次いで、DFT後の束ACK/NACK信号は、第1,2,6,7SC-FDMAシンボルに配置され、ウォルシュ系列(系列長4:W,W,W,W)それぞれに対応させらせて拡散される。さらに、拡散された信号がIFFTによって時間軸上の信号に変換される。これら処理は、IFFTにより時間軸上の信号に変換された後、系列長4のウォルシュ系列の各要素成分が信号に乗算されることと等化である。 Next, the bundle ACK / NACK signal after DFT is arranged in the first , second , sixth, and seventh SC-FDMA symbols, and is made to correspond to each Walsh sequence (sequence length 4: W 0 , W 1 , W 2 , W 3 ). Diffuse. Further, the spread signal is converted into a signal on the time axis by IFFT. These processes are equalization, in which each element component of a Walsh sequence having a sequence length of 4 is multiplied by a signal after being converted into a signal on the time axis by IFFT.
 ここで、異なる端末からの束ACK/NACK信号同士は、異なるウォルシュ系列を用いて束ACK/NACK信号を拡散することによって符号多重される。すなわち、系列長4のウォルシュ系列によって束ACK/NACK信号が拡散されているため、最大4端末からの束ACK/NACK信号同士を符号多重することができる。 Here, bundled ACK / NACK signals from different terminals are code-multiplexed by spreading bundled ACK / NACK signals using different Walsh sequences. That is, since bundle ACK / NACK signals are spread by a Walsh sequence having a sequence length of 4, it is possible to code-multiplex bundle ACK / NACK signals from a maximum of four terminals.
 そして、IFFT後の信号それぞれに対してCP(Cyclic Prefix)が付加されて、7つのSC-FDMAシンボルからなる1スロットの信号が形成される。 Then, a CP (Cyclic Prefix) is added to each signal after IFFT to form a one-slot signal composed of seven SC-FDMA symbols.
 以降、OFT-S-OFDMフォーマット構成を採り、束ACK/NACK信号を送信するリソースを「束ACK/NACKリソース」と呼ぶ。図5に示すように、束ACK/NACK信号は、DFT-S-OFDMAフォーマットを用いて下り回線データを送信する場合において、下り回線データが配置されるデータ部分(図5の例では、第1,2,6,7SC-FDMAシンボル)に配置される。そして、束ACK/NACK信号を復調するための参照信号は、束ACK/NACK信号と時間多重される。 Hereinafter, a resource that adopts the OFT-S-OFDM format configuration and transmits a bundled ACK / NACK signal is referred to as a “bundle ACK / NACK resource”. As shown in FIG. 5, a bundle ACK / NACK signal is a data portion (in the example of FIG. 5, the first ACK / NACK signal is a first portion in the case where downlink data is transmitted using the DFT-S-OFDMA format. , 2, 6, 7 SC-FDMA symbols). A reference signal for demodulating the bundle ACK / NACK signal is time-multiplexed with the bundle ACK / NACK signal.
 なお、LTE-Aシステムにおいても、図6に示すように、基地局は、SR向けのリソース(LTEと同一フォーマット)及び束ACK/NACKリソースを端末に個別に通知しているとする。そして、端末は、SRリソース及び束ACK/NACKリソースを識別する。 In the LTE-A system, as shown in FIG. 6, it is assumed that the base station individually notifies the terminal of SR resources (the same format as LTE) and bundled ACK / NACK resources. Then, the terminal identifies the SR resource and the bundle ACK / NACK resource.
 図7は、Carrier aggregationが適用されるLTE-AシステムにおけるSRリソース(図7A参照)と、束ACK/NACK信号をDFT-S-OFDMフォーマットを用いて通知する場合の束ACK/NACKリソース(図7B参照)の一例を示す図である。LTE-AシステムにおけるSRリソースは、LTEシステムにおけるSRリソース又はACK/NACKリソースと同一フォーマット構成を採る。これに対し、LTE-Aシステムにおける束ACK/NACKリソースは、LTE-AシステムにおけるSRリソースとはフォーマット構成が異なる。 FIG. 7 shows an SR resource (see FIG. 7A) in an LTE-A system to which Carrier-aggregation is applied, and a bundle ACK / NACK resource when a bundle ACK / NACK signal is reported using the DFT-S-OFDM format (FIG. 7). FIG. 7B) is a diagram showing an example. The SR resource in the LTE-A system has the same format configuration as the SR resource or the ACK / NACK resource in the LTE system. On the other hand, the bundle ACK / NACK resource in the LTE-A system has a format configuration different from that of the SR resource in the LTE-A system.
 そして、端末がSRのみを通知する場合には、予め基地局から通知されたSRリソースを用いてSRを通知し(図7A参照)、端末が束ACK/NACK信号のみを通知する場合には端末は束ACK/NACKリソースを用いて束ACK/NACKを通知する(図7B参照)。 And when a terminal notifies only SR, it notifies SR using the SR resource notified from the base station beforehand (refer FIG. 7A), and when a terminal notifies only bundle ACK / NACK signal, it is a terminal. Notifies bundle ACK / NACK using bundle ACK / NACK resources (see FIG. 7B).
 しかしながら、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE-Aシステムにおいて、図7に示すようにSRリソースと束ACK/NACKリソースとのフォーマット構成が異なる場合に、束ACK/NACK信号の品質を維持しつつ、SRと束ACK/NACK信号とを同一サブフレーム内で通知する方法については、これまで十分な検討がなされていない。 However, in the LTE-A system to which Carrier-aggregation using a plurality of downlink unit bands is applied, when the format configuration of the SR resource and the bundle ACK / NACK resource is different as shown in FIG. 7, the bundle ACK / NACK signal A method for notifying the SR and the bundled ACK / NACK signal in the same subframe while maintaining the quality of the above has not been sufficiently studied so far.
 本発明の目的は、複数の下り単位バンドを用いたCarrier aggregationが適用される通信システムにおいて、上り回線データ送信のためのリソース割当を要求するSRと束応答信号とが同一サブフレームにおいて発生した場合に、束応答信号の品質を維持することができる端末装置、基地局装置及び信号送信制御方法を提供することである。 An object of the present invention is when a SR requesting resource allocation for uplink data transmission and a bundle response signal occur in the same subframe in a communication system to which Carrier Aggregation using a plurality of downlink unit bands is applied. And providing a terminal apparatus, a base station apparatus and a signal transmission control method capable of maintaining the quality of the bundle response signal.
 本発明の端末装置は、複数の下り単位バンドに割り当てられた下りデータを受信する受信手段と、前記下り単位バンド毎の誤り検出結果の各々を含む束応答信号を生成する生成手段と、前記束応答信号に参照信号を多重して送信する送信手段と、を具備し、前記送信手段は、前記参照信号を配置する参照信号リソースによって、スケジューリング・リクエストを通知する構成を採る。 The terminal device according to the present invention includes a receiving unit that receives downlink data allocated to a plurality of downlink unit bands, a generating unit that generates a bundle response signal including each error detection result for each downlink unit band, and the bundle. And a transmission unit that multiplexes and transmits a reference signal to the response signal, and the transmission unit notifies the scheduling request using a reference signal resource in which the reference signal is arranged.
 本発明の基地局装置は、複数の下り単位バンド毎の複数の誤り検出結果を含む束応答信号と、前記束応答信号に多重された参照信号を受信する受信手段と、前記参照信号が配置された参照信号リソースによって、スケジューリング・リクエストの有無を検出する検出手段と、を具備する構成を採る。 In the base station apparatus of the present invention, a bundle response signal including a plurality of error detection results for each of a plurality of downlink unit bands, a receiving unit that receives a reference signal multiplexed on the bundle response signal, and the reference signal are arranged. And detecting means for detecting the presence / absence of a scheduling request by using the reference signal resource.
 本発明の信号送信制御方法は、複数の下り単位バンドに割り当てられた下りデータを受信し、前記下り単位バンド毎の誤り検出結果の各々を含む束応答信号を生成し、前記束応答信号に参照信号を多重して送信し、前記参照信号を配置する参照信号リソースによって、スケジューリング・リクエストを通知する。 The signal transmission control method of the present invention receives downlink data assigned to a plurality of downlink unit bands, generates a bundle response signal including each error detection result for each downlink unit band, and refers to the bundle response signal A signal is multiplexed and transmitted, and a scheduling request is notified by a reference signal resource in which the reference signal is arranged.
 本発明によれば、複数の下り単位バンドを用いたCarrier aggregationが適用される通信システムにおいて、上り回線データ送信のためのリソース割当を要求するSRと束応答信号とが同一サブフレームにおいて発生した場合に、束応答信号の品質を維持することができる。 According to the present invention, in a communication system to which carrier aggregation using a plurality of downlink unit bands is applied, when an SR requesting resource allocation for uplink data transmission and a bundle response signal occur in the same subframe In addition, the quality of the bundle response signal can be maintained.
応答信号及び参照信号の拡散方法を示す図The figure which shows the spreading | diffusion method of a response signal and a reference signal 端末側でのSR及び応答信号の送信に関わる動作を示す図The figure which shows the operation | movement regarding transmission of SR and a response signal by the terminal side SRの発生状況及び応答信号の発生状況に応じた端末の送信制御処理を示す図The figure which shows the transmission control process of the terminal according to the generation condition of SR, and the generation condition of a response signal 個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図Diagram for explaining asymmetric Carrier Car aggregation and its control sequence applied to individual terminals 複数の下り単位バンドに対するACK/NACK symbol(誤り訂正符号化後の束ACK/NACK信号)の拡散方法を示す図The figure which shows the spreading | diffusion method of ACK / NACK (symbol) (bundled ACK / NACK signal after error correction encoding) with respect to several downlink unit band 本実施の形態に係る信号送信制御方法の説明に供する図The figure with which it uses for description of the signal transmission control method which concerns on this Embodiment LTE-AにおけるSR向リソース及び束ACK/NACKリソースを示す図The figure which shows the resource for SR and bundle ACK / NACK resource in LTE-A 実施の形態に係る信号送信制御方法(応答パターン)の説明に供する図The figure which uses for description of the signal transmission control method (response pattern) which concerns on embodiment 本発明の実施の形態に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on embodiment of this invention 実施の形態に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on embodiment 実施の形態に係る別の信号送信制御方法(応答パターン)の説明に供する図The figure which uses for description of another signal transmission control method (response pattern) which concerns on embodiment 実施の形態に係る参照信号リソースの第1の設定例の説明に供する図The figure where it uses for description of the 1st example of a setting of the reference signal resource which concerns on embodiment 実施の形態に係る参照信号リソースの第2の設定例の説明に供する図The figure which uses for description of the 2nd setting example of the reference signal resource which concerns on embodiment 応答信号及び参照信号の別の拡散方法を示す図The figure which shows another spreading | diffusion method of a response signal and a reference signal
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 先ず、実施の形態の具体的な構成及び動作を説明する前に、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE-Aシステムにおいて、SRと束ACK/NACK信号とを同一サブフレームで通知する方法として、本発明者らが着目した方法について説明する。 First, before describing the specific configuration and operation of the embodiment, in the LTE-A system to which Carrier Aggregation using a plurality of downlink unit bands is applied, SR and bundled ACK / NACK signals are assigned to the same subframe. As a notification method, a method focused on by the present inventors will be described.
 同一サブフレーム内にSRと束ACK/NACK信号とが発生した場合のこれらの通知方法(すなわちこれら応答信号の応答パターン(配置パターン))としては、図8に示すような方法1~3の3つの方法(応答パターン01~03)が考えられる。 As notification methods when SR and bundled ACK / NACK signals are generated in the same subframe (that is, response patterns (arrangement patterns) of these response signals), methods 1 to 3 shown in FIG. 8 are used. Two methods (response patterns 01 to 03) are conceivable.
 方法1(応答パターン01):LTEシステムと同様に、束ACK/NACK信号をSRリソースに配置する。ただし、LTEシステムにおけるACK/NACK信号に比べ束ACK/NACK信号を構成するシンボル数が多いため、束ACK/NACK信号の一部の情報のみをSRリソースに配置する。 Method 1 (response pattern 01): Similar to the LTE system, a bundle ACK / NACK signal is placed in the SR resource. However, since the number of symbols constituting the bundle ACK / NACK signal is larger than that of the ACK / NACK signal in the LTE system, only part of the information of the bundle ACK / NACK signal is arranged in the SR resource.
 方法2(応答パターン02):SR及び束ACK/NACK信号を、SRリソース及び束ACK/NACKリソースにそれぞれ配置する。 Method 2 (response pattern 02): SR and bundle ACK / NACK signals are arranged in SR resource and bundle ACK / NACK resource, respectively.
 方法3(応答パターン03):束ACK/NACK信号を常にSRと纏めて符号化して、得られた符号化データを束ACK/NACKリソースに配置する。 Method 3 (response pattern 03): A bundle ACK / NACK signal is always encoded together with an SR, and the obtained encoded data is arranged in a bundle ACK / NACK resource.
 上記方法1~3を用いることにより、同一サブフレーム内においてSRと束ACK/NACK信号とを通知することができる。ただし、方法1では、束ACK/NACK信号の一部が欠落してしまうため、下り回線データの再送効率が低下してしまう。LTEシステムでは、ACK/NACK信号が1シンボルから構成されるので、SRリソース(1シンボルの情報の伝送が可能)を用いてACK/NACK情報の全てを通知することができた。これに対し、束ACK/NACK信号がDFT-S-OFDMフォーマット構成を採る束ACK/NACKリソースを用いる場合には、束ACK/NACK信号には、下り単位バンド毎の誤り検出結果の各々が個別データとして含まれる。例えば、図5に示すDFT-S-OFDMフォーマット構成を採る束ACK/NACKリソースを用いる場合には、束ACK/NACK信号は12シンボルから構成される。そのため、SRリソースを用いて束ACK/NACK信号を通知すると、束ACK/NACK信号の一部が欠落してしまう。また、方法2では、端末から送信される送信信号波形のSingle carrier特性が崩れるためPAPRが増加し、端末の電力効率が大幅に劣化してしまう。また、方法3では、SRの存在により束ACK/NACK信号の符号化率が低下するため、束ACK/NACK信号の伝送品質が劣化してしまう。 By using the above methods 1 to 3, the SR and the bundle ACK / NACK signal can be notified in the same subframe. However, in Method 1, since a part of the bundled ACK / NACK signal is lost, the retransmission efficiency of downlink data decreases. In the LTE system, since the ACK / NACK signal is composed of one symbol, all of the ACK / NACK information can be notified using the SR resource (the transmission of information of one symbol is possible). On the other hand, when the bundle ACK / NACK signal uses a bundle ACK / NACK resource having a DFT-S-OFDM format configuration, each of the error detection results for each downlink unit band is individually included in the bundle ACK / NACK signal. Included as data. For example, when a bundle ACK / NACK resource adopting the DFT-S-OFDM format configuration shown in FIG. 5 is used, the bundle ACK / NACK signal is composed of 12 symbols. Therefore, when a bundle ACK / NACK signal is notified using SR resources, a part of the bundle ACK / NACK signal is lost. Also, in Method 2, the single carrier characteristics of the transmission signal waveform transmitted from the terminal are lost, so the PAPR increases and the power efficiency of the terminal is greatly degraded. In Method 3, the coding rate of the bundled ACK / NACK signal decreases due to the presence of the SR, so that the transmission quality of the bundled ACK / NACK signal deteriorates.
 そこで、以下では、複数の下り単位バンドを用いたCarrier aggregationが適用されるLTE-Aシステムにおいて、同一サブフレーム内においてSRと束ACK/NACK信号とを通知する場合に、端末から送信される送信信号波形のSingle carrier特性を維持しつつ(PAPRを低く抑えつつ)、かつ、束ACK/NACK信号の符号化率を落とさずに、全てのACK/NACK情報(すなわち、複数の下り単位バンド毎の誤り検出結果の各々の全て)を基地局に伝送して、束ACK/NACK信号の伝送品質を維持することができる基地局、端末及び信号送信制御方法について説明する。 Therefore, in the following, in the LTE-A system to which carrier-aggregation using a plurality of downlink unit bands is applied, a transmission transmitted from a terminal when notifying an SR and a bundled ACK / NACK signal in the same subframe While maintaining the single-carrier characteristics of the signal waveform (while keeping the PAPR low) and without reducing the coding rate of the bundled ACK / NACK signal, all ACK / NACK information (that is, for each of multiple downlink unit bands) A base station, a terminal, and a signal transmission control method capable of transmitting all of the error detection results) to the base station and maintaining the transmission quality of the bundled ACK / NACK signal will be described.
 [基地局の構成]
 図9は、本実施の形態に係る基地局100の構成を示すブロック図である。図9において、基地局100は、制御部101と、制御情報生成部102と、符号化部103と、変調部104と、符号化部105と、データ送信制御部106と、変調部107と、マッピング部108と、IFFT(Inverse Fast Fourier Transform)部109と、CP付加部110と、無線送信部111と、無線受信部112と、CP除去部113と、PUCCH抽出部114と、逆拡散部115と、系列制御部116と、相関処理部117と、SR検出部118と、束A/N逆拡散部119と、IDFT(Inverse Discrete Fourier Transform)部120と、束A/N判定部121と、再送制御信号生成部122とを有する。
[Base station configuration]
FIG. 9 is a block diagram showing a configuration of base station 100 according to the present embodiment. 9, the base station 100 includes a control unit 101, a control information generation unit 102, an encoding unit 103, a modulation unit 104, an encoding unit 105, a data transmission control unit 106, a modulation unit 107, Mapping unit 108, IFFT (Inverse Fast Fourier Transform) unit 109, CP adding unit 110, radio transmitting unit 111, radio receiving unit 112, CP removing unit 113, PUCCH extracting unit 114, and despreading unit 115 A sequence control unit 116, a correlation processing unit 117, an SR detection unit 118, a bundle A / N despreading unit 119, an IDFT (Inverse Discrete Fourier Transform) unit 120, a bundle A / N determination unit 121, A retransmission control signal generation unit 122.
 制御部101は、リソース割当対象端末(以下「宛先端末」又は単に「端末」ともいう)200に対して、制御情報を送信するための下りリソース(つまり、下り制御情報割当リソース)、及び、下り回線データを送信するための下りリソース(つまり、下りデータ割当リソース)を割り当てる(Assignする)。このリソース割当は、リソース割当対象端末200に設定される単位バンドグループに含まれる下り単位バンドにおいて行われる。また、下り制御情報割当リソースは、各下り単位バンドにおける下り制御チャネル(PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、各下り単位バンドにおける下りデータチャネル(PDSCH)に対応するリソース内で選択される。また、リソース割当対象端末200が複数有る場合には、制御部101は、リソース割当対象端末200のそれぞれに異なるリソースを割り当てる。 The control unit 101 transmits, to a resource allocation target terminal (hereinafter also referred to as “destination terminal” or simply “terminal”) 200, downlink resources for transmitting control information (that is, downlink control information allocation resources), and downlink A downlink resource (that is, a downlink data allocation resource) for transmitting line data is allocated (assigned). This resource allocation is performed in the downlink unit band included in the unit band group set in the resource allocation target terminal 200. Further, the downlink control information allocation resource is selected in a resource corresponding to a downlink control channel (PDCCH) in each downlink unit band. Further, the downlink data allocation resource is selected in a resource corresponding to a downlink data channel (PDSCH) in each downlink unit band. When there are a plurality of resource allocation target terminals 200, the control unit 101 allocates different resources to each of the resource allocation target terminals 200.
 下り制御情報割当リソースは、上記したL1/L2CCHと同等である。すなわち、下り制御情報割当リソースは、1つ又は複数のCCEから構成される。 The downlink control information allocation resource is equivalent to the above-mentioned L1 / L2CCH. That is, the downlink control information allocation resource is composed of one or a plurality of CCEs.
 また、制御部101は、リソース割当対象端末200に対して制御情報を送信する際に用いる符号化率を決定する。この符号化率に応じて制御情報のデータ量が異なるので、このデータ量の制御情報をマッピング可能な数のCCEを持つ下り制御情報割当リソースが、制御部101によって割り当てられる。 Also, the control unit 101 determines a coding rate used when transmitting control information to the resource allocation target terminal 200. Since the data amount of control information differs according to the coding rate, downlink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped are allocated by the control unit 101.
 そして、制御部101は、制御情報生成部102に対して、下りデータ割当リソースに関する情報を出力する。また、制御部101は、符号化部103に対して、符号化率に関する情報を出力する。また、制御部101は、送信データ(つまり、下り回線データ)の符号化率を決定し、符号化部105に出力する。また、制御部101は、下りデータ割当リソース及び下り制御情報割当リソースに関する情報をマッピング部108に対して出力する。ただし、制御部101は下り回線データと当該下り回線データに対する下り制御情報を同一の下り単位バンドにマッピングするよう制御する。 And the control part 101 outputs the information regarding a downlink data allocation resource with respect to the control information generation part 102. FIG. In addition, the control unit 101 outputs information on the coding rate to the coding unit 103. Control section 101 also determines the coding rate of transmission data (that is, downlink data) and outputs the coding rate to coding section 105. In addition, the control unit 101 outputs information on the downlink data allocation resource and the downlink control information allocation resource to the mapping unit 108. However, the control unit 101 controls the downlink data and the downlink control information for the downlink data to be mapped to the same downlink unit band.
 制御情報生成部102は、下りデータ割当リソースに関する情報を含む制御情報を生成して符号化部103へ出力する。この制御情報は下り単位バンド毎に生成される。また、リソース割当対象端末200が複数有る場合に、リソース割当対象端末200同士を区別するために、制御情報には、宛先端末200の端末IDが含まれる。例えば、宛先端末200の端末IDでマスキングされたCRCビットが制御情報に含まれる。この制御情報は、「下り割当制御情報(Control information carrying downlink assignment)」と呼ばれることがある。 The control information generation unit 102 generates control information including information on downlink data allocation resources and outputs the control information to the encoding unit 103. This control information is generated for each downlink unit band. Further, when there are a plurality of resource allocation target terminals 200, the control information includes the terminal ID of the destination terminal 200 in order to distinguish the resource allocation target terminals 200 from each other. For example, a CRC bit masked with the terminal ID of the destination terminal 200 is included in the control information. This control information may be referred to as “downlink assignment control information (Control information carrying downlink assignment)”.
 符号化部103は、制御部101から受け取る符号化率に従って、制御情報を符号化し、符号化された制御情報を変調部104へ出力する。 The encoding unit 103 encodes the control information according to the encoding rate received from the control unit 101, and outputs the encoded control information to the modulation unit 104.
 変調部104は、符号化後の制御情報を変調し、得られた変調信号をマッピング部108へ出力する。 Modulation section 104 modulates the encoded control information and outputs the obtained modulated signal to mapping section 108.
 符号化部105は、宛先端末200毎の送信データ(つまり、下り回線データ)及び制御部101からの符号化率情報を入力として送信データを符号化し、データ送信制御部106に出力する。ただし、宛先端末200に対して複数の下り単位バンドが割り当てられる場合には、各下り単位バンドで送信される送信データをそれぞれ符号化し、符号化後の送信データをデータ送信制御部106へ出力する。 The encoding unit 105 receives the transmission data (that is, downlink data) for each destination terminal 200 and the coding rate information from the control unit 101 as input, encodes the transmission data, and outputs the transmission data to the data transmission control unit 106. However, when a plurality of downlink unit bands are allocated to destination terminal 200, the transmission data transmitted in each downlink unit band is encoded, and the encoded transmission data is output to data transmission control section 106. .
 データ送信制御部106は、初回送信時には、符号化後の送信データを保持すると共に変調部107へ出力する。符号化後の送信データは、宛先端末200毎に保持される。また、1つの宛先端末200への送信データは、送信される下り単位バンド毎に保持される。これにより、宛先端末200に送信されるデータ全体の再送制御だけでなく、下り単位バンド毎の再送制御も可能になる。 The data transmission control unit 106 holds the encoded transmission data and outputs it to the modulation unit 107 during the initial transmission. The encoded transmission data is held for each destination terminal 200. Transmission data to one destination terminal 200 is held for each downlink unit band to be transmitted. As a result, not only retransmission control of the entire data transmitted to the destination terminal 200 but also retransmission control for each downlink unit band is possible.
 また、データ送信制御部106は、再送制御信号生成部122から或る下り単位バンドで送信した下り回線データに対するNACK又はDTXを受け取ると、この下り単位バンドに対応する保持データを変調部107へ出力する。データ送信制御部106は、再送制御信号生成部122から或る下り単位バンドで送信した下り回線データに対するACKを受け取ると、この下り単位バンドに対応する保持データを削除する。 In addition, when data transmission control section 106 receives NACK or DTX for downlink data transmitted in a certain downlink unit band from retransmission control signal generation section 122, data transmission control section 106 outputs retained data corresponding to this downlink unit band to modulation section 107. To do. When data transmission control section 106 receives ACK for downlink data transmitted in a certain downlink unit band from retransmission control signal generation section 122, data transmission control section 106 deletes the retained data corresponding to this downlink unit band.
 変調部107は、データ送信制御部106から受け取る符号化後の送信データを変調し、変調信号をマッピング部108へ出力する。 Modulation section 107 modulates the encoded transmission data received from data transmission control section 106 and outputs the modulated signal to mapping section 108.
 マッピング部108は、制御部101から受け取る下り制御情報割当リソースの示すリソースに、変調部104から受け取る制御情報の変調信号をマッピングし、IFFT部109へ出力する。 The mapping unit 108 maps the modulation signal of the control information received from the modulation unit 104 to the resource indicated by the downlink control information allocation resource received from the control unit 101, and outputs it to the IFFT unit 109.
 また、マッピング部108は、制御部101から受け取る下りデータ割当リソースの示すリソースに、変調部107から受け取る送信データの変調信号をマッピングし、IFFT部109へ出力する。 Also, the mapping unit 108 maps the modulation signal of the transmission data received from the modulation unit 107 to the resource indicated by the downlink data allocation resource received from the control unit 101, and outputs it to the IFFT unit 109.
 マッピング部108にて複数の下り単位バンドにおける複数のサブキャリアにマッピングされた制御情報及び送信データは、IFFT部109で周波数領域信号から時間領域信号に変換され、CP付加部110にてCPが付加されてOFDM信号とされた後に、無線送信部111にてD/A(Digital to Analog)変換、増幅及びアップコンバート等の送信処理が施され、アンテナを介して端末200へ送信される。 Control information and transmission data mapped to a plurality of subcarriers in a plurality of downlink unit bands by mapping section 108 are converted from a frequency domain signal to a time domain signal by IFFT section 109, and a CP is added by CP adding section 110. After being converted into an OFDM signal, transmission processing such as D / A (Digital-to-Analog) conversion, amplification, and up-conversion is performed in the wireless transmission unit 111 and transmitted to the terminal 200 via the antenna.
 無線受信部112は、端末200から送信された上り応答信号又は参照信号をアンテナを介して受信し、上り応答信号又は参照信号に対しダウンコンバート、A/D変換等の受信処理を行う。 The radio reception unit 112 receives an uplink response signal or a reference signal transmitted from the terminal 200 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the uplink response signal or the reference signal.
 CP除去部113は、受信処理後の上り応答信号又は参照信号に付加されているCPを除去する。 The CP removal unit 113 removes the CP added to the uplink response signal or the reference signal after reception processing.
 PUCCH抽出部114は、受信信号に含まれるPUCCH信号から、予め端末200に通知してある束ACK/NACKリソースに対応するPUCCH領域の信号を抽出する。ここで、束ACK/NACKリソースとは、前述したように、束ACK/NACK信号が送信されるべきリソースであり、DFT-S-OFDMAフォーマット構成を採るリソースである。具体的には、PUCCH抽出部114は、束ACK/NACKリソースに対応するPUCCH領域のデータ部分(すなわち、束ACK/NACK信号が配置されているSC-FDMAシンボル)と参照信号部分(すなわち、束ACK/NACK信号を復調するための参照信号が配置されているSC-FDMAシンボル)を抽出する。PUCCH抽出部114は、抽出したデータ部分を束A/N逆拡散部119に出力し、参照信号部分を逆拡散部115-1に出力する。 The PUCCH extraction unit 114 extracts a PUCCH region signal corresponding to a bundle ACK / NACK resource that has been previously notified to the terminal 200 from the PUCCH signal included in the received signal. Here, as described above, the bundle ACK / NACK resource is a resource to which a bundle ACK / NACK signal is to be transmitted, and is a resource that adopts a DFT-S-OFDMA format configuration. Specifically, the PUCCH extraction unit 114 performs the data portion of the PUCCH region corresponding to the bundle ACK / NACK resource (that is, the SC-FDMA symbol in which the bundle ACK / NACK signal is arranged) and the reference signal portion (that is, the bundle). (SC-FDMA symbol in which a reference signal for demodulating the ACK / NACK signal is arranged) is extracted. PUCCH extraction section 114 outputs the extracted data portion to bundle A / N despreading section 119 and outputs the reference signal portion to despreading section 115-1.
 また、PUCCH抽出部114は、受信信号に含まれるPUCCH信号から、予め端末200に通知してある、1個のSRリソースに対応するPUCCH領域を抽出する。具体的には、PUCCH抽出部114は、SRリソースに対応するPUCCH領域のデータ部分(上り制御信号が配置されているSC-FDMAシンボル)と参照信号部分(上り制御信号を復調するための参照信号が配置されているSC-FDMAシンボル)を抽出する。そして、PUCCH抽出部114は、抽出したデータ部分及び参照信号部分の両方を、逆拡散部115-2に出力する。 Also, the PUCCH extraction unit 114 extracts a PUCCH region corresponding to one SR resource that has been notified to the terminal 200 in advance from the PUCCH signal included in the received signal. Specifically, the PUCCH extraction unit 114 includes a data part (SC-FDMA symbol in which an uplink control signal is allocated) and a reference signal part (a reference signal for demodulating the uplink control signal) corresponding to the SR resource. SC-FDMA symbols) are extracted. Then, PUCCH extraction section 114 outputs both the extracted data portion and reference signal portion to despreading section 115-2.
 系列制御部116は、端末200から通知されるSR、SRに対する参照信号、及び、束ACK/NACK信号に対する参照信号のそれぞれの拡散に用いられる可能性があるBase sequence(すなわち、系列長12のZAC系列)を生成する。また、系列制御部116は、端末200が用いる可能性のあるPUCCHリソースにおいて、参照信号が配置され得るリソース(以下「参照信号リソース」という)に対応する相関窓をそれぞれ特定する。そして、系列制御部116は、束ACK/NACKリソースにおいて参照信号が配置され得る参照信号リソースに対応する相関窓を示す情報及びBase sequenceを相関処理部117-1に出力する。なお、後述するように束ACK/NACK信号に対する参照信号が配置され得る参照信号リソースとして、端末200には、少なくとも2つの参照信号リソース(以下「第1及び第2参照信号リソース」という)が確保されている。系列制御部116は、各参照信号リソースに対応する相関窓(第1及び第2相関窓)を示す情報及びBase sequenceを、相関処理部117-1に出力する。また、系列制御部116は、SR及びSRに対する参照信号が配置されるSRリソースに対応する相関窓(第3相関窓)を示す情報及びBase sequenceを相関処理部117-2に出力する。 Sequence control section 116 may use Base sequence (that is, ZAC having a sequence length of 12) that may be used for spreading of the SR, the reference signal for SR notified from terminal 200, and the reference signal for bundled ACK / NACK signal. Series). Also, sequence control section 116 specifies correlation windows corresponding to resources (hereinafter referred to as “reference signal resources”) in which reference signals can be arranged in PUCCH resources that terminal 200 may use. Then, sequence control section 116 outputs information indicating the correlation window corresponding to the reference signal resource in which the reference signal can be arranged in the bundle ACK / NACK resource and Base sequence to correlation processing section 117-1. As will be described later, terminal 200 reserves at least two reference signal resources (hereinafter referred to as “first and second reference signal resources”) as reference signal resources in which reference signals for bundled ACK / NACK signals can be arranged. Has been. Sequence control section 116 outputs information indicating the correlation window (first and second correlation windows) corresponding to each reference signal resource and Base sequence to correlation processing section 117-1. In addition, sequence control section 116 outputs information indicating the correlation window (third correlation window) corresponding to the SR resource in which the SR and the reference signal for SR are arranged and the Base sequence to correlation processing section 117-2.
 逆拡散部115-1及び相関処理部117-1は、束ACK/NACKリソースに対応するPUCCH領域から抽出された参照信号の処理を行う。 The despreading unit 115-1 and the correlation processing unit 117-1 perform processing of the reference signal extracted from the PUCCH region corresponding to the bundle ACK / NACK resource.
 具体的には、逆拡散部115-1は、端末200が束ACK/NACKリソースの参照信号において2次拡散に用いるべきDFT系列で参照信号部分を逆拡散し、逆拡散後の信号を相関処理部117-1に出力する。 Specifically, despreading section 115-1 despreads the reference signal portion with the DFT sequence that terminal 200 should use for secondary spreading in the reference signal of the bundle ACK / NACK resource, and correlates the signal after despreading Output to the unit 117-1.
 相関処理部117-1は、第1及び第2参照信号リソースに対応する第1及び第2相関窓を示す情報及びBase sequenceを用いて、逆拡散部115-1から入力される信号と、端末200において1次拡散に用いられる可能性のあるBase sequenceとの相関値(第1及び第2相関値)を求める。そして、相関処理部117-1は、第1及び第2相関値をSR検出部118に出力する。 The correlation processing unit 117-1 uses the information indicating the first and second correlation windows and the base sequence corresponding to the first and second reference signal resources, the signal input from the despreading unit 115-1, and the terminal At 200, correlation values (first and second correlation values) with the base sequence that may be used for the first spreading are obtained. Correlation processing section 117-1 then outputs the first and second correlation values to SR detection section 118.
 逆拡散部115-2及び相関処理部117-2は、SRリソースに対応するPUCCH領域から抽出された参照信号及びSRの処理を行う。 The despreading unit 115-2 and the correlation processing unit 117-2 perform processing of the reference signal and SR extracted from the PUCCH region corresponding to the SR resource.
 具体的には、逆拡散部115-2は、端末200がSRリソースのデータ部分及び参照信号部分において2次拡散に用いるべきウォルシュ系列及びDFT系列でデータ部分及び参照信号部分を逆拡散し、逆拡散後の信号を相関処理部117-2に出力する。 Specifically, despreading section 115-2 despreads the data portion and the reference signal portion with the Walsh sequence and DFT sequence that terminal 200 should use for secondary spreading in the data portion and reference signal portion of SR resource, and performs despreading. The spread signal is output to correlation processing section 117-2.
 相関処理部117-2は、SRリソースに対応する第3相関窓を示す情報及びBase sequenceを用いて、逆拡散部115-2から入力される信号と、端末200において1次拡散に用いられる可能性のあるBase sequenceとの相関値(第3相関値)を求める。そして、相関処理部117-2は、第3相関値をSR検出部118に出力する。 Correlation processing section 117-2 can be used for primary spreading in terminal 200 and the signal input from despreading section 115-2 using information indicating the third correlation window corresponding to the SR resource and Base sequence. A correlation value (third correlation value) with a characteristic Base sequence is obtained. Correlation processing section 117-2 then outputs the third correlation value to SR detection section 118.
 SR検出部118は、相関処理部117-1,117-2から入力される第1~第3相関値に基づいて、端末200から送信される参照信号が配置される参照信号リソースを検出し、検出した参照信号リソースに応じて、SR及び束ACK/NACK信号の発生状況(通知状況)を判定する。なお、SR検出部118における発生状況(通知状況)の判定方法の詳細については後述する。 SR detecting section 118 detects a reference signal resource in which a reference signal transmitted from terminal 200 is arranged based on the first to third correlation values input from correlation processing sections 117-1 and 117-2, The generation status (notification status) of the SR and bundle ACK / NACK signal is determined according to the detected reference signal resource. Details of the method of determining the occurrence status (notification status) in the SR detection unit 118 will be described later.
 そして、SR検出部118は、同一サブフレーム内に束ACK/NACK信号のみが発生する、又は、同一サブフレーム内にSR及び束ACK/NACK信号のみが発生すると判定した場合、束ACK/NACKリソースにおける参照信号情報を束A/N判定部121に出力する。 When the SR detection unit 118 determines that only the bundle ACK / NACK signal is generated in the same subframe, or only the SR and the bundle ACK / NACK signal are generated in the same subframe, the bundle ACK / NACK resource is determined. Is output to the bundle A / N determination unit 121.
 また、SR検出部118は、同一サブフレーム内にSRのみが発生すると判定した場合、束A/N判定部121に対して束ACK/NACKリソースの使用が検出されなかった旨通知する。また、SR検出部118は、同一サブフレーム内にSRのみが発生すると判定した場合、再送制御信号生成部122に対して全ての下り単位バンドに関する「DTX」情報を出力する。 Also, when it is determined that only SR occurs in the same subframe, the SR detection unit 118 notifies the bundle A / N determination unit 121 that the use of the bundle ACK / NACK resource has not been detected. If the SR detection unit 118 determines that only SR occurs in the same subframe, the SR detection unit 118 outputs “DTX” information regarding all downlink unit bands to the retransmission control signal generation unit 122.
 更に、SR検出部118は、同一サブフレーム内にSR及び束ACK/NACK信号のみが発生すると判定した場合、及び、同一サブフレーム内にSRのみが発生すると判定した場合、SRに関する情報を上り回線リソース割当制御部(図示せず)に出力する。 Furthermore, when the SR detection unit 118 determines that only the SR and the bundled ACK / NACK signal are generated in the same subframe, and determines that only the SR is generated in the same subframe, the SR detection unit 118 transmits information on the SR. Output to a resource allocation control unit (not shown).
 上り回線リソース割当制御部(図示せず)がSRを受け取ると、当該端末200が上り回線データを送信できるように、基地局100は、上りデータ割当リソースを通知する上り割当制御情報(Uplink Grantと称されることもある)を端末200へ送信する。このようにして、基地局100は、上り制御チャネルに基づいて、端末200への上り回線データ向けのリソース割当の要否を判断する。なお、上り回線リソース割当制御部における動作の詳細、及び、基地局100における、端末200に対する上り回線データ向けのリソース割当動作の詳細については省略する。 When the uplink resource allocation control unit (not shown) receives the SR, the base station 100 transmits uplink allocation control information (Uplink Grant and the uplink data allocation resource) so that the terminal 200 can transmit uplink data. To the terminal 200. In this way, base station 100 determines whether it is necessary to allocate resources for uplink data to terminal 200 based on the uplink control channel. Details of operations in the uplink resource allocation control unit and details of resource allocation operations for uplink data for terminal 200 in base station 100 are omitted.
 束A/N逆拡散部119は、PUCCH抽出部114から入力される束ACK/NACKリソースのデータ部分に対応する束ACK/NACK信号をウォルシュ系列によって逆拡散し、その信号をIDFT部120に出力する。 The bundle A / N despreading section 119 despreads the bundle ACK / NACK signal corresponding to the data portion of the bundle ACK / NACK resource input from the PUCCH extraction section 114 using a Walsh sequence, and outputs the signal to the IDFT section 120 To do.
 IDFT部120は、束A/N逆拡散部119から入力される周波数領域上の束ACK/NACK信号を、IDFT処理によって時間領域上の信号に変換し、時間領域上の束ACK/NACK信号を束A/N判定部121に出力する。 The IDFT unit 120 converts the bundle ACK / NACK signal on the frequency domain input from the bundle A / N despreading unit 119 into a signal on the time domain by IDFT processing, and converts the bundle ACK / NACK signal on the time domain to The data is output to the bundle A / N determination unit 121.
 束A/N判定部121は、IDFT部120から入力される束ACK/NACKリソースのデータ部分に対応する束ACK/NACK信号を、SR検出部118から入力される束ACK/NACK信号の参照信号情報を用いて復調する。また、束A/N判定部121は、復調後の束ACK/NACK信号を復号し、復号結果を束A/N情報として再送制御信号生成部122に出力する。 The bundle A / N determination unit 121 uses the bundle ACK / NACK signal corresponding to the data portion of the bundle ACK / NACK resource input from the IDFT unit 120 as a reference signal for the bundle ACK / NACK signal input from the SR detection unit 118. Demodulate using information. Further, the bundle A / N determination unit 121 decodes the demodulated bundle ACK / NACK signal and outputs the decoded result to the retransmission control signal generation unit 122 as bundle A / N information.
 再送制御信号生成部122は、束A/N判定部121から入力される束A/N情報、又は、SR検出部118から入力されるDTX情報に基づいて、下り単位バンドで送信したデータ(下り回線データ)を再送すべきか否かを判定し、判定結果に基づいて再送制御信号を生成する。具体的には、再送制御信号生成部122は、或る下り単位バンドで送信した下り回線データに対するNACK又はDTXを受け取る場合には、当該下り単位バンドで送信した下り回線データの再送命令を示す再送制御信号を生成して、再送制御信号をデータ送信制御部106へ出力する。また、再送制御信号生成部122は、或る下り単位バンドで送信した下り回線データに対するACKを示す応答信号を受け取る場合には、当該下り単位バンドで送信した下り回線データを再送しないことを示す再送制御信号を生成して、再送制御信号をデータ送信制御部106へ出力する。 Based on the bundle A / N information input from the bundle A / N determination unit 121 or the DTX information input from the SR detection unit 118, the retransmission control signal generation unit 122 transmits data transmitted in the downlink unit band (downlink). Whether or not (line data) should be retransmitted, and a retransmission control signal is generated based on the determination result. Specifically, when receiving a NACK or DTX for downlink data transmitted in a certain downlink unit band, the retransmission control signal generation unit 122 retransmits a retransmission command indicating a retransmission instruction for the downlink data transmitted in the downlink unit band. A control signal is generated, and the retransmission control signal is output to the data transmission control unit 106. In addition, when receiving a response signal indicating ACK for downlink data transmitted in a certain downlink unit band, retransmission control signal generation section 122 is a retransmission indicating that the downlink data transmitted in the downlink unit band is not retransmitted. A control signal is generated, and the retransmission control signal is output to the data transmission control unit 106.
 [端末の構成]
 図10は、本実施の形態に係る端末200の構成を示すブロック図である。図10において、端末200は、無線受信部201と、CP除去部202と、FFT(Fast Fourier Transform)部203と、抽出部204と、復調部205と、復号部206と、判定部207と、制御部208と、復調部209と、復号部210と、CRC部211と、応答信号生成部212と、符号化・変調部213と、1次拡散部214-1,214-2と、2次拡散部215-1,215-2と、DFT部216と、拡散部217と、IFFT部218-1,218-2,218-3と、CP付加部219-1,219-2,219-3と、時間多重部220と、選択部221と、無線送信部222とを有する。
[Terminal configuration]
FIG. 10 is a block diagram showing a configuration of terminal 200 according to the present embodiment. In FIG. 10, terminal 200 includes radio reception section 201, CP removal section 202, FFT (Fast Fourier Transform) section 203, extraction section 204, demodulation section 205, decoding section 206, determination section 207, Control unit 208, demodulation unit 209, decoding unit 210, CRC unit 211, response signal generation unit 212, encoding / modulation unit 213, primary spreading units 214-1, 214-2, secondary Spreading units 215-1 and 215-2, DFT unit 216, spreading unit 217, IFFT units 218-1, 182-2, and 218-3, CP adding units 219-1, 219-2, and 219-3 A time multiplexing unit 220, a selection unit 221, and a wireless transmission unit 222.
 無線受信部201は、基地局100から送信されたOFDM信号をアンテナを介して受信し、受信OFDM信号に対しダウンコンバート、A/D変換等の受信処理を行う。なお、受信OFDM信号には、PDSCH内のリソースに割り当てられたPDSCH信号(下り回線データ)又はPDCCH内のリソースに割り当てられたPDCCH信号(下り割当制御情報)が含まれる。 The radio reception unit 201 receives an OFDM signal transmitted from the base station 100 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the received OFDM signal. The received OFDM signal includes a PDSCH signal (downlink data) assigned to a resource in PDSCH or a PDCCH signal (downlink assignment control information) assigned to a resource in PDCCH.
 CP除去部202は、受信処理後のOFDM信号に付加されているCPを除去する。 CP removing section 202 removes the CP added to the OFDM signal after reception processing.
 FFT部203は、受信OFDM信号をFFTして周波数領域信号に変換し、得られた受信信号を抽出部204へ出力する。 The FFT unit 203 performs FFT on the received OFDM signal and converts it into a frequency domain signal, and outputs the obtained received signal to the extracting unit 204.
 抽出部204は、入力される符号化率情報に従って、FFT部203から受け取る受信信号から下り制御チャネル信号(PDCCH信号)を抽出する。すなわち、符号化率に応じて下り制御情報割当リソースを構成するCCEの数が変わるので、抽出部204は、その符号化率に対応する個数のCCEを抽出単位として、下り制御チャネル信号を抽出する。また、下り制御チャネル信号は、下り単位バンドごとに抽出される。抽出された下り制御チャネル信号は、復調部205へ出力される。 The extraction unit 204 extracts a downlink control channel signal (PDCCH signal) from the received signal received from the FFT unit 203 according to the input coding rate information. That is, since the number of CCEs constituting the downlink control information allocation resource changes according to the coding rate, the extraction unit 204 extracts the downlink control channel signal using the number of CCEs corresponding to the coding rate as an extraction unit. . Further, the downlink control channel signal is extracted for each downlink unit band. The extracted downlink control channel signal is output to demodulation section 205.
 また、抽出部204は、後述する判定部207から受け取る自装置宛の下りデータ割当リソースに関する情報に基づいて、受信信号から下り回線データ(下りデータチャネル信号(PDSCH信号))を抽出し、復調部209へ出力する。 Further, the extraction unit 204 extracts downlink data (downlink data channel signal (PDSCH signal)) from the received signal based on the information on the downlink data allocation resource addressed to the own device received from the determination unit 207 described later, and the demodulation unit To 209.
 復調部205は、抽出部204から受け取る下り制御チャネル信号を復調し、得られた復調結果を復号部206に出力する。 The demodulation unit 205 demodulates the downlink control channel signal received from the extraction unit 204 and outputs the obtained demodulation result to the decoding unit 206.
 復号部206は、入力される符号化率情報に従って、復調部205から受け取る復調結果を復号して、得られた復号結果を判定部207に出力する。 The decoding unit 206 decodes the demodulation result received from the demodulation unit 205 according to the input coding rate information, and outputs the obtained decoding result to the determination unit 207.
 判定部207は、復号部206から受け取る復号結果に含まれる制御情報が自装置宛の制御情報であるか否かをブラインド判定する。この判定は、上記した抽出単位に対応する復号結果を単位として行われる。例えば、判定部207は、自装置の端末IDでCRCビットをデマスキングし、CRC=OK(誤り無し)となった制御情報を自装置宛の制御情報であると判定する。そして、判定部207は、自装置宛の制御情報に含まれる、自装置に対する下りデータ割当リソースに関する情報を抽出部204へ出力する。 The determination unit 207 blindly determines whether or not the control information included in the decoding result received from the decoding unit 206 is control information addressed to the own device. This determination is performed in units of decoding results corresponding to the above extraction units. For example, the determination unit 207 demasks the CRC bits with the terminal ID of the own device, and determines that the control information in which CRC = OK (no error) is the control information addressed to the own device. Then, the determination unit 207 outputs, to the extraction unit 204, information related to downlink data allocation resources for the own device, which is included in the control information addressed to the own device.
 また、判定部207は、自装置宛の制御情報(すなわち、下り割当制御情報)を検出した場合、束ACK/NACK信号が発生(存在)する旨を制御部208に通知する。 In addition, when the determination unit 207 detects control information addressed to itself (that is, downlink allocation control information), the determination unit 207 notifies the control unit 208 that a bundled ACK / NACK signal is generated (exists).
 制御部208は、予め基地局100から通知されているSRリソースに対応するBase sequence及び循環シフト量を、1次拡散部214-1へ出力し、SRリソースに対応するウォルシュ系列及びDFT系列を2次拡散部215-1へ出力する。また、制御部208は、SRリソースの周波数リソース情報をIFFT部218-1に出力する。 The control unit 208 outputs the Base sequence and cyclic shift amount corresponding to the SR resource notified from the base station 100 in advance to the primary spreading unit 214-1 and outputs the Walsh sequence and DFT sequence corresponding to the SR resource to 2 Output to the next diffusion unit 215-1. Control unit 208 also outputs the frequency resource information of the SR resource to IFFT unit 218-1.
 また、制御部208は、同一サブフレームにおける束ACK/NACK信号及び上り回線データ送信のためのリソース割当を要求するSRの発生状況に基づいて、束ACK/NACKリソースにおいて参照信号を配置する参照信号リソースを制御する。そして、制御部208は、予め基地局100から通知されている束ACK/NACKリソースの参照信号部分(参照信号リソース)に対応するBase sequence及び循環シフト量を、1次拡散部214-2へ出力し、DFT系列を2次拡散部215-2へ出力する。また、制御部208は、束ACK/NACKリソースの周波数リソース情報をIFFT部218-2に出力する。 Further, the control unit 208 arranges the reference signal in the bundled ACK / NACK resource based on the generation status of the SR that requests the resource allocation for uplink data transmission and the bundled ACK / NACK signal in the same subframe. Control resources. Then, the control unit 208 outputs the Base sequence and the cyclic shift amount corresponding to the reference signal portion (reference signal resource) of the bundled ACK / NACK resource previously notified from the base station 100 to the primary spreading unit 214-2. The DFT sequence is output to the secondary spreading section 215-2. Further, control unit 208 outputs the frequency resource information of the bundled ACK / NACK resource to IFFT unit 218-2.
 また、制御部208は、束ACK/NACKリソースのデータ部分の拡散に用いるウォルシュ系列を拡散部217に出力し、束ACK/NACKリソースの周波数リソース情報をIFFT部218-3に出力する。 Also, the control unit 208 outputs the Walsh sequence used for spreading the data portion of the bundled ACK / NACK resource to the spreading unit 217, and outputs the frequency resource information of the bundled ACK / NACK resource to the IFFT unit 218-3.
 また、制御部208は、SRを受け取ったサブフレームで通知すべき束ACK/NACK信号が存在しない場合(すなわち、下り割当制御情報を1つも検出しなかった場合)、応答信号生成部212にNACKの位相点に相当する信号を出力すると共に、選択部221に対してSRリソース(すなわち、219-1から入力される信号)を選択し、無線送信部222に出力するよう指示する。また、制御部208は、SRを受け取ったサブフレームで束ACK/NACK信号を通知する場合(すなわち、下り割当制御情報を検出した場合)、選択部221に対して束ACK/NACKリソース(すなわち、時間多重部220から入力される信号)を選択し、無線送信部222に出力するよう指示する。 Further, when there is no bundled ACK / NACK signal to be notified in the subframe that has received the SR (that is, when no downlink allocation control information is detected), the control unit 208 sends a NACK to the response signal generation unit 212. A signal corresponding to the phase point is output, and the selection unit 221 is instructed to select the SR resource (that is, the signal input from 219-1) and to output to the wireless transmission unit 222. Further, the control unit 208 notifies the selection unit 221 of the bundled ACK / NACK resource (that is, when downlink allocation control information is detected) when notifying the bundled ACK / NACK signal in the subframe that has received the SR. A signal input from the time multiplexing unit 220 is selected, and the wireless transmission unit 222 is instructed to output.
 このようにして、制御部208は、同一のサブフレーム内におけるSR及び束ACK/NACK信号の発生状況に基づいて、束ACK/NACKリソースにおいて参照信号を配置する参照信号リソースを制御する。制御部208における参照信号リソースの制御方法の詳細については後述する。 In this way, the control unit 208 controls the reference signal resource for arranging the reference signal in the bundled ACK / NACK resource based on the generation status of the SR and the bundled ACK / NACK signal in the same subframe. Details of the control method of the reference signal resource in the control unit 208 will be described later.
 復調部209は、抽出部204から受け取る下り回線データを復調し、復調後の下り回線データを復号部210へ出力する。 Demodulation section 209 demodulates the downlink data received from extraction section 204, and outputs the demodulated downlink data to decoding section 210.
 復号部210は、復調部209から受け取る下り回線データを復号し、復号後の下り回線データをCRC部211へ出力する。 Decoding section 210 decodes the downlink data received from demodulation section 209 and outputs the decoded downlink data to CRC section 211.
 CRC部211は、復号部210から受け取る復号後の下り回線データを生成し、CRCを用いて下り単位バンド毎に誤り検出し、CRC=OK(誤り無し)の場合にはACKを、CRC=NG(誤り有り)の場合にはNACKを、応答信号生成部212へそれぞれ出力する。また、CRC部211は、CRC=OK(誤り無し)の場合には、復号後の下り回線データを受信データとして出力する。 The CRC unit 211 generates the decoded downlink data received from the decoding unit 210, detects an error for each downlink unit band using the CRC, and if CRC = OK (no error), the ACK and CRC = NG In the case of (there is an error), NACK is output to the response signal generation unit 212. Also, CRC section 211 outputs the decoded downlink data as received data when CRC = OK (no error).
 応答信号生成部212は、CRC部211から入力される、各下り単位バンドにおける下り回線データの受信状況(下り回線データの誤り検出結果)、及び、制御部208から指示される位相点に基づいて、自装置が基地局100へ送信すべき束ACK/NACK信号(束応答信号)を生成する。ここで、束ACK/NACK信号には、下り単位バンド毎の誤り検出結果の各々が個別データとして含まれている。応答信号生成部212は生成した束ACK/NACK信号を符号化・変調部213に出力する。 Response signal generation section 212 is input from CRC section 211 based on the reception status of downlink data in each downlink unit band (downlink data error detection result) and the phase point indicated by control section 208. The device generates a bundle ACK / NACK signal (bundle response signal) to be transmitted to the base station 100. Here, each bundled ACK / NACK signal includes each error detection result for each downlink unit band as individual data. The response signal generation unit 212 outputs the generated bundle ACK / NACK signal to the encoding / modulation unit 213.
 符号化・変調部213は、入力された束ACK/NACK信号を符号化・変調し、12シンボルの変調信号を生成し、DFT部216へ出力する。 The encoding / modulation unit 213 encodes and modulates the input bundle ACK / NACK signal, generates a modulated signal of 12 symbols, and outputs the modulated signal to the DFT unit 216.
 DFT部216は、入力される時系列の束ACK/NACK信号を12個纏めてDFT処理を行うことにより、12個の周波数軸上の信号成分を得る。そして、DFT部216は12個の信号成分を拡散部217に出力する。 The DFT unit 216 obtains 12 signal components on the frequency axis by collecting 12 input time-series bundle ACK / NACK signals and performing DFT processing. Then, the DFT unit 216 outputs the 12 signal components to the spreading unit 217.
 拡散部217は、制御部208から指示されたウォルシュ系列を用いて、DFT部216から入力された12個の信号成分を拡散し、IFFT部218-3に出力する。 Spreading section 217 spreads the 12 signal components input from DFT section 216 using the Walsh sequence specified by control section 208, and outputs the result to IFFT section 218-3.
 また、SRリソース、及び、束ACK/NACKリソースの第1及び第2参照信号リソースに対応する1次拡散部214-1及び214-2は、制御部208の指示に従って上り制御信号(すなわち、NACKの位相点を持つ信号)又は参照信号をリソースに対応するBase sequenceによって拡散し、拡散した信号を2次拡散部215-1,215-2へ出力する。 Also, the primary spreading sections 214-1 and 214-2 corresponding to the SR resource and the first and second reference signal resources of the bundled ACK / NACK resource receive the uplink control signal (ie, NACK) according to the instruction of the control section 208. Or the reference signal is spread by the Base sequence corresponding to the resource, and the spread signal is output to the secondary spreading sections 215-1 and 215-2.
 2次拡散部215-1,215-2は、制御部208の指示により、入力された1次拡散後の信号をウォルシュ系列又はDFT系列を用いて拡散しIFFT部218-1,218-2に出力する。 Secondary spreading sections 215-1 and 215-2, based on an instruction from control section 208, spread the input primary spread signal using a Walsh sequence or a DFT sequence, and send it to IFFT sections 218-1 and 181-2. Output.
 IFFT部218-1,218-2,218-3は、制御部208の指示により、入力された信号を、配置されるべき周波数位置に対応付けてIFFT処理を行う。これにより、IFFT部218-1,218-2,218-3に入力された信号(すなわち、SR信号、及びSRリソースの参照信号、束ACK/NACKリソースの参照信号、束ACK/NACK信号)は時間領域の信号に変換される。 The IFFT units 218-1, 218-2, and 218-3 perform IFFT processing in accordance with the instruction from the control unit 208 in association with the input signal to the frequency position to be arranged. As a result, signals input to IFFT sections 218-1, 182-2, and 218-3 (that is, SR signal, SR resource reference signal, bundle ACK / NACK resource reference signal, bundle ACK / NACK signal) are Converted to time domain signal.
 CP付加部219-1,219-2,219-3は、IFFT後の信号の後尾部分と同じ信号をCPとしてその信号の先頭に付加する。 CP adding sections 219-1, 219-2, and 219-3 add the same signal as the tail part of the signal after IFFT to the head of the signal as a CP.
 時間多重部220は、CP付加部219-3から入力される束ACK/NACK信号(すなわち、束ACK/NACKリソースのデータ部分を用いて送信される信号)と、CP付加部219-2から入力される束ACK/NACKリソースの参照信号とを、束ACK/NACKリソースに時間多重し、得られた信号を選択部221へ出力する。 The time multiplexing unit 220 receives the bundle ACK / NACK signal input from the CP addition unit 219-3 (that is, the signal transmitted using the data portion of the bundle ACK / NACK resource) and the CP addition unit 219-2. The bundled ACK / NACK resource reference signal is time-multiplexed with the bundled ACK / NACK resource, and the obtained signal is output to the selection unit 221.
 選択部221は、制御部208の指示に従って、時間多重部220から入力される束ACK/NACKリソースとCP付加部219-1から入力されるSRリソースのいずれかを選択し、選択したリソースに割り当てられた信号を無線送信部222へ出力する。 The selection unit 221 selects either a bundled ACK / NACK resource input from the time multiplexing unit 220 or an SR resource input from the CP addition unit 219-1 according to an instruction from the control unit 208, and assigns it to the selected resource The received signal is output to the wireless transmission unit 222.
 無線送信部222は、選択部221から受け取る信号に対しD/A変換、増幅及びアップコンバート等の送信処理を行い、アンテナから基地局100へ送信する。 The radio transmission unit 222 performs transmission processing such as D / A conversion, amplification, and up-conversion on the signal received from the selection unit 221, and transmits the signal from the antenna to the base station 100.
 以上のように、判定部207、制御部208、時間多重部220、選択部221、及び無線送信部222は、SRを通知する送信手段として機能する。 As described above, the determination unit 207, the control unit 208, the time multiplexing unit 220, the selection unit 221, and the wireless transmission unit 222 function as a transmission unit that notifies the SR.
 [基地局100及び端末200の動作]
 上述のように構成された基地局100及び端末200の動作について説明する。以下の説明では、LTE-Aシステムにおいて、SRリソース及び束ACK/NACKリソースの双方のリソースが、基地局100から端末200に対して設定(Configure)されるものとする。そして、端末200はSRの発生状況及び下り割当制御情報の受信状況(すなわち、送信すべき上り応答信号の発生状況)に応じて、SRリソース又は束ACK/NACKリソースのいずれかを選択して、基地局に信号を送信する。
[Operations of base station 100 and terminal 200]
Operations of base station 100 and terminal 200 configured as described above will be described. In the following description, it is assumed that both the SR resource and the bundled ACK / NACK resource are configured from the base station 100 to the terminal 200 in the LTE-A system. Terminal 200 selects either SR resource or bundled ACK / NACK resource according to the SR occurrence status and the reception status of downlink allocation control information (that is, the occurrence status of the uplink response signal to be transmitted), Send a signal to the base station.
 ここで、先の図7に示したように、端末200に対してPUCCH1(PUCCH領域1)内にSRリソースが設定されており、PUCCH2(PUCCH領域2)内に束ACK/NACKリソースが設定されているとする。 Here, as shown in FIG. 7 above, SR resources are set in PUCCH1 (PUCCH region 1) for terminal 200, and bundled ACK / NACK resources are set in PUCCH2 (PUCCH region 2). Suppose that
 [端末200による応答]
 判定部207は、自装置宛の制御情報(すなわち、下り割当制御情報)を検出した場合、束ACK/NACK信号が発生(存在)する旨(束ACK/NACK信号の発生状況)を制御部208に通知する。また、CRC部211は、各下り単位バンドにおける受信成否状況を応答信号生成部212に通知し、応答信号生成部212はCRC部211から入力される情報に基づいて束ACK/NACK信号を生成する。ここで、束ACK/NACK信号には、下り単位バンド毎の誤り検出結果の各々が個別データとして含まれている。
[Response by terminal 200]
When the determination unit 207 detects control information addressed to itself (that is, downlink allocation control information), the control unit 208 indicates that a bundle ACK / NACK signal is generated (exists) (occurrence state of bundle ACK / NACK signal). Notify Also, the CRC unit 211 notifies the response signal generation unit 212 of the reception success / failure status in each downlink unit band, and the response signal generation unit 212 generates a bundle ACK / NACK signal based on information input from the CRC unit 211. . Here, each bundled ACK / NACK signal includes each error detection result for each downlink unit band as individual data.
 制御部208は、同一サブフレーム内における上り応答信号(上り回線データ送信のためのリソース割当を要求するSR及び束ACK/NACK信号)の発生状況に基づいて、上り応答信号の送信制御を行う。図11A~図11Cは、端末200による上り応答信号の信号送信制御方法の説明に供する図である。制御部208は、同一サブフレーム内におけるSR及び束ACK/NACK信号の発生状況に基づいて、後述する図11A~図11Cの応答パターンのいずれかにSR、束ACK/NACK信号及び参照信号を配置する。 The control unit 208 performs transmission control of the uplink response signal based on the generation status of the uplink response signal (SR and bundle ACK / NACK signal requesting resource allocation for uplink data transmission) in the same subframe. FIGS. 11A to 11C are diagrams for explaining a signal transmission control method of an uplink response signal by terminal 200. FIG. The control unit 208 arranges the SR, the bundle ACK / NACK signal, and the reference signal in any one of response patterns in FIGS. 11A to 11C to be described later based on the generation status of the SR and the bundle ACK / NACK signal in the same subframe. To do.
 具体的には、制御部208は、同一サブフレーム内にSRのみが発生した場合(発生状況1)、図11Aの応答パターン1を選択し、同一サブフレーム内に束ACK/NACK信号のみが発生した場合(発生状況2)、図11Bの応答パターン2を選択し、同一サブフレーム内にSRと束ACK/NACK信号とが発生した場合(発生状況3)、図11Cの応答パターン3を選択する。 Specifically, control unit 208 selects response pattern 1 in FIG. 11A when only SR occurs in the same subframe (occurrence situation 1), and only bundle ACK / NACK signals are generated in the same subframe. In the case (occurrence situation 2), the response pattern 2 in FIG. 11B is selected, and when the SR and the bundle ACK / NACK signal are generated in the same subframe (occurrence situation 3), the response pattern 3 in FIG. 11C is selected. .
 <発生状況1:端末200がSRのみを通知する場合(図11A参照)>
 端末200が同一サブフレーム内でSRのみを通知する場合には、端末200は、図11Aの応答パターン1に従って、PUCCH領域1内に設定されているSRリソースにSRを配置する。
<Occurrence situation 1: When terminal 200 notifies only SR (see FIG. 11A)>
When terminal 200 notifies only SR in the same subframe, terminal 200 arranges SR in the SR resource set in PUCCH region 1 according to response pattern 1 in FIG. 11A.
 この場合、端末200において、制御部208は、1次拡散部214-1、2次拡散部215-1、IFFT部218-1に対して、SRリソースの循環シフト量に対応する系列(Base sequence)、直交系列(Orthogonal sequence : すなわち、ウォルシュ系列とDFT系列の組)、周波数情報を出力する。さらに、制御部208は、選択部221に対して、CP付加部219-1から入力されるSRリソースに割り当てられた信号を無線送信部222に出力するよう指示を出す。 In this case, in terminal 200, control unit 208 provides a sequence (Base sequence) corresponding to the cyclic shift amount of the SR resource to primary spreading unit 214-1, secondary spreading unit 215-1 and IFFT unit 218-1. ), Orthogonal sequence (Orthogonal sequence: that is, a set of Walsh sequence and DFT sequence), and frequency information. Further, the control unit 208 instructs the selection unit 221 to output the signal assigned to the SR resource input from the CP adding unit 219-1 to the wireless transmission unit 222.
 <発生状況2:端末200が束ACK/NACKのみを通知する場合(図11B参照)>
 端末200が同一サブフレーム内で束ACK/NACKのみを通知する場合には、端末200は、図11Bの応答パターン2に従って、PUCCH領域2内に設定されている束ACK/NACKリソースの第1制御信号リソースに、束ACK/NACK信号を復調するための参照信号を配置する。
<Occurrence situation 2: When terminal 200 notifies only bundle ACK / NACK (see FIG. 11B)>
When terminal 200 notifies only bundled ACK / NACK in the same subframe, terminal 200 performs first control of bundled ACK / NACK resources set in PUCCH region 2 according to response pattern 2 in FIG. 11B. A reference signal for demodulating the bundle ACK / NACK signal is arranged in the signal resource.
 この場合、端末200において、制御部208は、1次拡散部214-2、2次拡散部215-2に対して、第1の循環シフト量に対応する系列(Base sequence)及び第1の直交系列(すなわち、DFT系列)を出力する。さらに、制御部208は、選択部221に対して、時間多重部220から入力される束ACK/NACKリソースに割り当てられた信号を無線送信部222に出力するよう指示を出す。 In this case, in terminal 200, control section 208 gives a sequence (Base sequence) corresponding to the first cyclic shift amount and a first orthogonality to primary spreading section 214-2 and secondary spreading section 215-2. A sequence (that is, a DFT sequence) is output. Further, the control unit 208 instructs the selection unit 221 to output the signal assigned to the bundle ACK / NACK resource input from the time multiplexing unit 220 to the radio transmission unit 222.
 このようにして、束ACK/NACK信号に対する参照信号が、第1の循環シフト量に対応する系列及び第1の直交系列(すなわち、DFT系列)から構成される第1参照信号リソースに配置される。 In this way, the reference signal for the bundle ACK / NACK signal is arranged in the first reference signal resource configured by the sequence corresponding to the first cyclic shift amount and the first orthogonal sequence (that is, the DFT sequence). .
 <発生状況3:端末200が束ACK/NACKとSRとを同一サブフレームで通知する場合(図11C参照)>
 端末200が同一サブフレーム内で束ACK/NACKとSRとを通知する場合には、端末200は、図11Cの応答パターン3に従って、PUCCH領域2内に設定されている束ACK/NACKリソースの第2参照信号リソースに、束ACK/NACK信号を復調するための参照信号を配置する。
<Occurrence situation 3: When terminal 200 notifies bundle ACK / NACK and SR in the same subframe (see FIG. 11C)>
When terminal 200 notifies bundled ACK / NACK and SR in the same subframe, terminal 200 determines the number of bundled ACK / NACK resources set in PUCCH region 2 according to response pattern 3 of FIG. 11C. A reference signal for demodulating a bundle ACK / NACK signal is arranged in 2 reference signal resources.
 この場合、端末200において、制御部208は、1次拡散部214-2、2次拡散部215-2に対して、第2の循環シフト量に対応する系列(Base sequence)及び第2の直交系列(すなわち、DFT系列)を出力する。さらに、制御部208は、選択部221に対して、時間多重部220から入力される束ACK/NACKリソースに割り当てられた信号を無線送信部222に出力するよう指示を出す。 In this case, in terminal 200, control section 208 provides a sequence corresponding to the second cyclic shift amount (Base sequence) and second orthogonality to primary spreading section 214-2 and secondary spreading section 215-2. A sequence (that is, a DFT sequence) is output. Further, the control unit 208 instructs the selection unit 221 to output the signal assigned to the bundle ACK / NACK resource input from the time multiplexing unit 220 to the radio transmission unit 222.
 このようにして、束ACK/NACK信号に対する参照信号が、第2の循環シフト量に対応する系列及び第2の直交系列(すなわち、DFT系列)から構成される第2参照信号リソースに配置される。 In this way, the reference signal for the bundled ACK / NACK signal is arranged in the second reference signal resource configured by the sequence corresponding to the second cyclic shift amount and the second orthogonal sequence (that is, the DFT sequence). .
 このように、発生状況2及び発生状況3では、同一の束ACK/NACKリソースが用いられる。ただし、発生状況2と発生状況3とでは、束ACK/NACK信号に対する参照信号が異なる符号リソースに配置される。すなわち、発生状況2では、参照信号は、第1参照信号リソースに配置され、発生状況3では、参照信号は、第2参照信号リソースに配置される。 Thus, in the occurrence situation 2 and the occurrence situation 3, the same bundle ACK / NACK resource is used. However, in the occurrence situation 2 and the occurrence situation 3, the reference signals for the bundle ACK / NACK signals are arranged in different code resources. That is, in the occurrence situation 2, the reference signal is arranged in the first reference signal resource, and in the occurrence situation 3, the reference signal is arranged in the second reference signal resource.
 このとき、第1及び第2の参照信号リソースは、それぞれ巡回シフト量と直交符号系列とのペアで定義され、第1及び第2の参照信号リソースは、ペアを構成する巡回シフト量及び前記直交符号系列のうち、少なくとも一方が異なるようにする。これにより、基地局100は、束ACK/NACKリソースにおいて参照信号が配置されている参照信号リソースを構成する循環シフト量に対応する系列と直交系列とのペアを判定することによって、端末200が束ACK/NACK信号のみを通知しているか、SRと束ACK/NACK信号とを同一サブフレームで通知しているかを区別することができる。 At this time, the first and second reference signal resources are each defined by a pair of a cyclic shift amount and an orthogonal code sequence, and the first and second reference signal resources are the cyclic shift amount and the orthogonality constituting the pair. At least one of the code sequences is made different. Thereby, the base station 100 determines the pair of the sequence and the orthogonal sequence corresponding to the cyclic shift amount constituting the reference signal resource in which the reference signal is arranged in the bundle ACK / NACK resource, so that the terminal 200 bundles the bundle. It can be distinguished whether only the ACK / NACK signal is notified or whether the SR and the bundled ACK / NACK signal are notified in the same subframe.
 [基地局100における応答検出]
 SR検出部118は、相関処理部117-1,117-2から入力される第1~第3相関値に基づいて、端末200から通知される上り応答信号の応答パターンを検出し、当該応答パターンに対応付けられた上り応答信号の発生状況を検出する。
[Response detection in base station 100]
The SR detection unit 118 detects the response pattern of the uplink response signal notified from the terminal 200 based on the first to third correlation values input from the correlation processing units 117-1 and 117-2, and the response pattern The occurrence status of the uplink response signal associated with is detected.
 前述の通り、端末200は、自装置で同一サブフレーム内にSRと束ACK/NACK信号とが発生したか、若しくは、束ACK/NACK信号のみが発生したかによって、参照信号リソースを構成する循環シフト量に対応する系列及びDFT系列の少なくともいずれか一方を変更する。このとき、基地局100と端末200とは、予め、束ACK/NACK信号のみを通知する場合に、参照信号が配置される第1参照信号リソース、及び、SRと束ACK/NACK信号とを同一サブフレームで通知する場合に参照信号が配置される第2参照信号リソースに関する情報を共有している。 As described above, terminal 200 configures a reference signal resource depending on whether an SR and a bundle ACK / NACK signal are generated in the same subframe or only a bundle ACK / NACK signal is generated in its own device. At least one of the sequence corresponding to the shift amount and the DFT sequence is changed. At this time, when the base station 100 and the terminal 200 notify only the bundle ACK / NACK signal in advance, the first reference signal resource in which the reference signal is arranged, and the SR and the bundle ACK / NACK signal are the same. Information regarding the second reference signal resource in which the reference signal is arranged when notifying in the subframe is shared.
 そして、系列制御部116は、これら情報に基づいて、端末200から送信されるSR、SRに対する参照信号、及び、束ACK/NACK信号に対する参照信号の拡散に用いられる可能性があるBase sequence(すなわち、系列長12のZAC系列)を生成し、生成したBase sequenceを相関処理部117-1に出力する。また、系列制御部116は、端末200が用いる可能性のあるPUCCHリソースにおいて、参照信号が配置されるリソースに対応する相関窓をそれぞれ特定し、特定した相関窓を示す情報を相関処理部117-1,117-2に出力する。具体的には、系列制御部116は、端末200が用いる可能性のあるPUCCHリソースの束ACK/NACKリソースにおいて、参照信号が配置される第1及び第2参照信号リソースに対応する第1及び第2相関窓をそれぞれ特定し、特定した第1及び第2相関窓を示す情報を相関処理部117-1に出力する。また、系列制御部116は、端末200が用いる可能性のあるPUCCHリソースのSRリソースにおいて、参照信号が配置される参照信号リソースに対応する相関窓を特定し、特定した相関窓を示す情報を相関処理部117-2に出力する。 Based on these pieces of information, sequence control section 116 may use Base sequence (that is, a reference signal for SR, SR transmitted from terminal 200, and a reference signal for bundled ACK / NACK signal that may be used for spreading). , A ZAC sequence having a sequence length of 12), and the generated Base sequence is output to the correlation processing unit 117-1. Also, sequence control section 116 specifies correlation windows corresponding to resources in which reference signals are arranged in PUCCH resources that terminal 200 may use, and shows information indicating the specified correlation windows as correlation processing section 117- 1 and 117-2. Specifically, sequence control section 116 includes first and second reference signals corresponding to first and second reference signal resources in which reference signals are arranged in bundle ACK / NACK resources of PUCCH resources that terminal 200 may use. Each of the two correlation windows is specified, and information indicating the specified first and second correlation windows is output to the correlation processing unit 117-1. Also, sequence control section 116 specifies a correlation window corresponding to the reference signal resource in which the reference signal is arranged in the SR resources of the PUCCH resource that terminal 200 may use, and correlates information indicating the specified correlation window. The data is output to the processing unit 117-2.
 相関処理部117-1は、第1及び第2参照信号リソースに対応する第1及び第2相関窓を示す情報及びBase sequenceを用いて、逆拡散部115-1から入力される信号と、端末200において1次拡散に用いられる可能性のあるBase sequenceとの相関値(第1及び第2相関値)を求める。そして、相関処理部117-1は、第1及び第2相関値をSR検出部118に出力する。 The correlation processing unit 117-1 uses the information indicating the first and second correlation windows and the base sequence corresponding to the first and second reference signal resources, the signal input from the despreading unit 115-1, and the terminal At 200, correlation values (first and second correlation values) with the base sequence that may be used for the first spreading are obtained. Correlation processing section 117-1 then outputs the first and second correlation values to SR detection section 118.
 相関処理部117-2は、SRリソースに対応する第3相関窓を示す情報及びBase sequenceを用いて、逆拡散部115-2から入力される信号と、端末200において1次拡散に用いられる可能性のあるBase sequenceとの相関値(第3相関値)を求める。そして、相関処理部117-2は、第3相関値をSR検出部118に出力する。 Correlation processing section 117-2 can be used for primary spreading in terminal 200 and the signal input from despreading section 115-2 using information indicating the third correlation window corresponding to the SR resource and Base sequence. A correlation value (third correlation value) with a characteristic Base sequence is obtained. Correlation processing section 117-2 then outputs the third correlation value to SR detection section 118.
 SR検出部118には、相関処理部117-1から、第1参照信号リソースに対応する第1の相関値と、第2参照信号リソースに対応する第2の相関値とが入力され、相関処理部117-2から、SRリソースに対応する第3相関値が入力される。 The SR detection unit 118 receives the first correlation value corresponding to the first reference signal resource and the second correlation value corresponding to the second reference signal resource from the correlation processing unit 117-1 and performs correlation processing. The third correlation value corresponding to the SR resource is input from unit 117-2.
 SR検出部118は、相関処理部117-1から入力される第1相関値の大きさが閾値以上であれば、参照信号が第1参照信号リソースに配置されていると判定する。また、SR検出部118は、相関処理部117-1から入力される第2相関値の大きさが閾値以上であれば、参照信号が第2参照信号リソースに配置されていると判定する。SR検出部118は、相関処理部117-1から入力される第1及び第2の相関値の大きさが閾値未満であれば、参照信号が第1及び第2参照信号リソースには配置されていないと判定する。 SR detection section 118 determines that the reference signal is arranged in the first reference signal resource if the magnitude of the first correlation value input from correlation processing section 117-1 is greater than or equal to the threshold value. In addition, if the magnitude of the second correlation value input from correlation processing section 117-1 is equal to or greater than the threshold value, SR detection section 118 determines that the reference signal is allocated to the second reference signal resource. If the magnitude of the first and second correlation values input from the correlation processing unit 117-1 is less than the threshold value, the SR detection unit 118 places the reference signal in the first and second reference signal resources. Judge that there is no.
 また、SR検出部118は、相関処理部117-2から入力される第3相関値の大きさが閾値以上であれば、参照信号がSRリソースに配置されていると判定する。また、SR検出部118は、相関処理部117-2から入力される第3相関値の大きさが閾値未満であれば、SRリソースが用いられていないと判定する。 In addition, if the magnitude of the third correlation value input from the correlation processing unit 117-2 is equal to or greater than the threshold, the SR detection unit 118 determines that the reference signal is allocated to the SR resource. In addition, the SR detection unit 118 determines that the SR resource is not used if the magnitude of the third correlation value input from the correlation processing unit 117-2 is less than the threshold value.
 そして、SR検出部118は、参照信号が配置される参照信号リソースに基づいて、同一サブフレーム内に、SRのみが発生したのか(発生状況1)、束ACK/NACK信号のみが発生したのか(発生状況2)、SR及び束ACK/NACKリソース信号が発生したのか(発生状況3)を判定する。 Then, based on the reference signal resource in which the reference signal is arranged, the SR detection unit 118 determines whether only SR is generated in the same subframe (occurrence state 1) or only bundle ACK / NACK signal is generated ( Occurrence situation 2), whether SR and bundled ACK / NACK resource signals have occurred (occurrence situation 3) is determined.
 具体的には、参照信号が束ACK/NACKリソースにおける第1参照信号リソースに配置される場合、同一サブフレーム内に束ACK/NACK信号のみが発生した(発生状況2)と判定する。また、参照信号が束ACK/NACKリソースにおける第2参照信号リソースに配置される場合、同一サブフレーム内にSR及び束ACK/NACK信号のみが発生した(発生状況3)と判定する。また、参照信号がSRリソースに配置される場合、SRのみが発生した(発生状況1)と判定する。 Specifically, when the reference signal is arranged in the first reference signal resource in the bundle ACK / NACK resource, it is determined that only the bundle ACK / NACK signal is generated in the same subframe (occurrence state 2). When the reference signal is arranged in the second reference signal resource in the bundle ACK / NACK resource, it is determined that only the SR and bundle ACK / NACK signal are generated in the same subframe (occurrence state 3). When the reference signal is arranged in the SR resource, it is determined that only SR has occurred (occurrence situation 1).
 以上のように、応答信号生成部212は、下り単位バンド毎の誤り検出結果の各々を個別に含む束ACK/NACK信号を生成する。そして、判定部207、制御部208、時間多重部220、選択部221、及び無線送信部222から構成される送信手段は、参照信号を配置する参照信号リソースに応じて、SRを通知する。具体的には、制御部208は、同一サブフレーム(送信単位時間)における束ACK/NACK信号及び上り回線データ送信のためのリソース割当を要求するSRの発生状況に基づいて、参照信号を参照信号リソースに配置する。具体的には、制御部208は、束AKC/NACK信号を送信する場合に、参照信号を第1の参照信号リソースに配置し、束ACK/NAACK信号の送信とともにSRを通知する場合に、参照信号を第1の参照信号リソースとは異なる第2の参照信号リソースに配置する。つまり、制御部208は同一サブフレーム内に束ACK/NACK信号のみが発生した場合に、束ACK/NACK信号に対する参照信号を第1参照信号リソースに配置し、同一サブフレーム内にSRと束ACK/NACK信号とが発生した場合に、束ACK/NACK信号に対する参照信号を第1参照信号リソースとは異なる第2参照信号リソースに配置する。 As described above, the response signal generation unit 212 generates a bundle ACK / NACK signal that individually includes each error detection result for each downlink unit band. And the transmission means comprised from the determination part 207, the control part 208, the time multiplexing part 220, the selection part 221, and the radio | wireless transmission part 222 notifies SR according to the reference signal resource which arrange | positions a reference signal. Specifically, the control unit 208 uses the reference signal as a reference signal based on the occurrence status of the SR that requests resource allocation for the bundle ACK / NACK signal and uplink data transmission in the same subframe (transmission unit time). Place in resources. Specifically, when transmitting the bundled AKC / NACK signal, the control unit 208 places the reference signal in the first reference signal resource, and refers to the case when notifying the SR together with the transmission of the bundled ACK / NAACK signal. The signal is arranged in a second reference signal resource different from the first reference signal resource. That is, when only a bundle ACK / NACK signal is generated in the same subframe, the control unit 208 places a reference signal for the bundle ACK / NACK signal in the first reference signal resource, and SR and bundle ACK in the same subframe. When the / NACK signal is generated, the reference signal for the bundled ACK / NACK signal is arranged in a second reference signal resource different from the first reference signal resource.
 これにより、同一サブフレーム内に構成ビット数が異なるSRと束ACK/NACK信号とが発生した場合に、SR及び束ACK/NACK信号は共に束ACK/NACKリソースに配置されて通知されるため、端末200の送信信号波形は、Single carrier特性が維持され、PAPRを低く抑えることができる。また、SRと束ACK/NACK信号とは、纏めて符号化されるのではなく個別に符号化されるので、束ACK/NACK信号の符号化率を落とさずに、全てのACK/NACK情報を基地局に伝送することができる。 As a result, when SR and bundle ACK / NACK signals having different numbers of constituent bits are generated in the same subframe, both SR and bundle ACK / NACK signals are arranged and notified in bundle ACK / NACK resources. The transmission signal waveform of the terminal 200 maintains the single-carrier characteristic, and the PAPR can be kept low. In addition, since the SR and the bundle ACK / NACK signal are individually coded instead of being coded together, all the ACK / NACK information can be obtained without reducing the coding rate of the bundle ACK / NACK signal. It can be transmitted to the base station.
 <第1及び第2参照信号リソースの設定例>
 前述の通り、端末200は、自装置で同一サブフレーム内においてSRと束ACK/NACK信号とが発生したか、若しくは、束ACK/NACK信号のみが発生したかによって、束ACK/NACK信号の復調に用いる参照信号を異なる参照信号リソース(第1参照信号リソース又は第2参照信号リソース)に配置する。
<Setting example of first and second reference signal resources>
As described above, terminal 200 demodulates a bundle ACK / NACK signal depending on whether an SR and a bundle ACK / NACK signal are generated in the same subframe or only a bundle ACK / NACK signal is generated. The reference signals used in the above are arranged in different reference signal resources (first reference signal resource or second reference signal resource).
 具体的には、端末200において、系列制御部116は、第1及び第2参照信号リソースを構成する循環シフト量に対応する系列及びDFT系列の少なくともいずれか一方を変更する。以下では、第1及び第2参照信号リソースを構成する「循環シフト量に対応する系列及び直交系列」の設定方法について述べる。 Specifically, in terminal 200, sequence control section 116 changes at least one of the sequence corresponding to the cyclic shift amount constituting the first and second reference signal resources and the DFT sequence. Hereinafter, a method of setting “sequences corresponding to cyclic shift amounts and orthogonal sequences” constituting the first and second reference signal resources will be described.
 <設定例1>
 図12は、参照信号リソースの第1の設定例の説明に供する図である。図12は、図5と同様に、DFT-S-OFDMフォーマット構成を採る束ACK/NACKリソースにおいて、データ部分が4SC-FDMAシンボルにより構成され、参照信号部分が3SC-FDMAシンボルにより構成される場合の例を示している。この場合、束ACK/NACKリソースのデータ部分の拡散に用いられる直交系列は、系列長4のウォルシュ系列となり、束ACK/NACKリソースの参照信号部分の拡散に用いられる直交系列は、系列長3のDFT系列となる。
<Setting example 1>
FIG. 12 is a diagram for explaining a first setting example of reference signal resources. FIG. 12 shows a case where the data part is composed of 4SC-FDMA symbols and the reference signal part is composed of 3SC-FDMA symbols in a bundled ACK / NACK resource adopting the DFT-S-OFDM format structure, as in FIG. An example is shown. In this case, the orthogonal sequence used for spreading the data portion of the bundled ACK / NACK resource is a Walsh sequence with a sequence length of 4, and the orthogonal sequence used for spreading the reference signal portion of the bundled ACK / NACK resource is of sequence length 3. It becomes a DFT series.
 前述の通り、複数の端末からの束ACK/NACK信号は、系列長4のウォルシュ系列によって拡散されているため、異なる端末で異なるウォルシュ系列を用いることにより、最大4つの端末からの束ACK/NACK信号を同一時間周波数リソース(Resource Block:RB)に符号多重することができる。ただし、4つの端末からの束ACK/NACK信号を符号多重する場合には、図12に示すように、互いに分離可能な8つの参照信号リソースの定義が必要となる。これは、それぞれの端末が束ACK/NACK信号のみを通知する場合と、SRと束ACK/NACK信号を同一サブフレームで通知する場合において異なる参照信号リソース(すなわち、符号リソース)を用いる必要があるためである。 As described above, bundled ACK / NACK signals from a plurality of terminals are spread by a Walsh sequence having a sequence length of 4. Therefore, by using different Walsh sequences at different terminals, bundled ACK / NACK from up to four terminals is used. The signal can be code-multiplexed to the same time frequency resource (Resource Block: RB). However, when code-multiplexing bundled ACK / NACK signals from four terminals, it is necessary to define eight reference signal resources that can be separated from each other as shown in FIG. This is because it is necessary to use different reference signal resources (that is, code resources) when each terminal notifies only the bundle ACK / NACK signal and when it notifies the SR and bundle ACK / NACK signal in the same subframe. Because.
 図12を用いてより詳細に説明する。図12では、参照信号部分に用いられる符号(すなわち、循環シフト量に対応した系列(Cyclic shift index)と直交系列(OC index)の組合せ)が36個存在している。これは、系列長12のBase sequenceと系列長3の直交系列を用いて参照信号を拡散しているため、循環シフト量は12個、直交系列は3個定義できるためである。 This will be described in more detail with reference to FIG. In FIG. 12, there are 36 codes (that is, combinations of sequences (Cyclic shift index) and orthogonal sequences (OC index) corresponding to the cyclic shift amount) used for the reference signal portion. This is because the base signal having a sequence length of 12 and the orthogonal sequence having a sequence length of 3 are used to spread the reference signal, so that 12 cyclic shift amounts and 3 orthogonal sequences can be defined.
 一般的に、4つの移動局が用いるべき束ACK/NACKリソースの参照信号は、互いの干渉を避けるために、例えば図12のように、循環シフト量(Cyclic shift index)若しくは直交系列(OC Index)の少なくとも一方が異なるように配置される。 In general, reference signals of bundled ACK / NACK resources to be used by four mobile stations are, for example, as shown in FIG. 12, a cyclic shift amount (Cycliccshift index) or an orthogonal sequence (OC Index), in order to avoid mutual interference. ) Are arranged differently.
 しかしながら、伝搬路の遅延波の発生状況によっては隣接する循環シフト量に対応する系列同士の符号間干渉が発生し、端末の高速移動の状況によっては直交系列間の干渉が発生する。ここで、本実施の形態では、同一の端末がいずれの符号リソースを用いて参照信号を送信しているかを精度良く判別しなければならないため、設定例1では、同一の端末が束ACK/NACK信号のみ通知する場合に用いる第1参照信号リソースと、SRと束ACK/NACK信号とを同一サブフレームで通知する場合に用いる第2参照信号リソースとに対応する循環シフト量と直交系列の双方が異なるように設定している。 However, intersymbol interference between sequences corresponding to adjacent cyclic shift amounts occurs depending on the state of propagation of delayed waves in the propagation path, and interference between orthogonal sequences occurs depending on the state of high-speed movement of the terminal. Here, in the present embodiment, since it is necessary to accurately determine which code resource is used to transmit the reference signal by the same terminal, in the setting example 1, the same terminal transmits a bundle ACK / NACK. Both the cyclic shift amount and the orthogonal sequence corresponding to the first reference signal resource used when notifying only the signal and the second reference signal resource used when notifying the SR and the bundled ACK / NACK signal in the same subframe are provided. Set differently.
 こうすることで、第1参照信号リソースと、第2参照信号リソースとの直交性が高まるため、基地局側で端末がSRを束ACK/NACK信号と同一のサブフレーム内において通知したか否かを判定する際の判定精度が向上する。 By doing so, since the orthogonality between the first reference signal resource and the second reference signal resource is increased, whether or not the terminal has notified the SR in the same subframe as the bundled ACK / NACK signal on the base station side. The determination accuracy when determining is improved.
 <設定例2>
 図13は、参照信号リソースの第2の設定例の説明に供する図である。図13は図5とは異なり、DFT-S-OFDMフォーマット構成を採る束ACK/NACKリソースにおいて、データ部分が5SC-FDMAシンボルにより構成され、参照信号部分が2SC-FDMAシンボルにより構成される場合の例を示している。この場合、データ部分には系列長4のウォルシュ系列を用いることが出来ない。図13に示す例では、データ部分には系列長5のDFT系列が用いられ、参照信号部分には系列長2のウォルシュ系列が用いられる例が示されている。図14は、図13の参照信号リソースを用いて束ACK/NACK信号及び参照信号の拡散方法を示す図である。図14において(F’,F’,F’,F’,F’)は系列長5のDFT系列を表わし、(W’,W’)は系列長2のウォルシュ系列を表す。
<Setting example 2>
FIG. 13 is a diagram for explaining a second setting example of reference signal resources. FIG. 13 differs from FIG. 5 in the case of a bundle ACK / NACK resource adopting a DFT-S-OFDM format configuration in which the data portion is composed of 5SC-FDMA symbols and the reference signal portion is composed of 2SC-FDMA symbols. An example is shown. In this case, a Walsh sequence having a sequence length of 4 cannot be used for the data portion. In the example shown in FIG. 13, a DFT sequence having a sequence length of 5 is used for the data portion, and a Walsh sequence having a sequence length of 2 is used for the reference signal portion. FIG. 14 is a diagram illustrating a method of spreading bundle ACK / NACK signals and reference signals using the reference signal resources of FIG. In FIG. 14, (F ′ 0 , F ′ 1 , F ′ 2 , F ′ 3 , F ′ 4 ) represents a DFT sequence having a sequence length of 5, and (W ′ 0 , W ′ 1 ) is a Walsh sequence having a sequence length of 2. Represents.
 この場合、複数の端末からの束ACK/NACK信号は、5つの異なるDFT系列によって多重が可能となるため、最大5つの端末からの束ACK/NACK信号を同一時間周波数リソース(Resource Block:RB)に符号多重することができる。従って、この場合は、図13に示すように互いに分離可能な10個の参照信号リソースの定義が必要となる。 In this case, bundled ACK / NACK signals from a plurality of terminals can be multiplexed by five different DFT sequences. Therefore, bundled ACK / NACK signals from a maximum of five terminals are assigned to the same time frequency resource (Resource Block: RB). Can be code-multiplexed. Therefore, in this case, it is necessary to define ten reference signal resources that can be separated from each other as shown in FIG.
 設定例2においても、同一の端末が束ACK/NACK信号のみ通知する場合に用いる第1参照信号リソースと、SRと束ACK/NACK信号とを同一サブフレームで通知する場合に用いる第2参照信号リソースに対応する循環シフト量とウォルシュ系列(系列長2)の双方が異なるように設定されている。 Also in setting example 2, the first reference signal resource used when the same terminal notifies only the bundle ACK / NACK signal, and the second reference signal used when notifying the SR and bundle ACK / NACK signal in the same subframe. Both the cyclic shift amount corresponding to the resource and the Walsh sequence (sequence length 2) are set to be different.
 こうすることで、第1参照信号リソースと、第2参照信号リソースとの直交性が高まるため、基地局側で端末がSRを同一サブフレームで通知したか否かを判定する際の判定精度が向上する。 By doing so, since the orthogonality between the first reference signal resource and the second reference signal resource is increased, the determination accuracy when determining whether or not the terminal has notified the SR in the same subframe on the base station side is increased. improves.
 以上、本発明の各実施の形態について説明した。 The embodiments of the present invention have been described above.
 なお、上記実施の形態では、PUCCHリソースにおける1次拡散にZAC系列を用い、2次拡散に直交符号系列としてウォルシュ系列とDFT系列の組を用いる場合について説明した。しかし、本発明では、1次拡散には、ZAC系列以外の、互いに異なる循環シフト量により互いに分離可能な系列を用いてもよい。例えば、GCL(Generalized Chirp like)系列、CAZAC(Constant Amplitude Zero Auto Correlation)系列、ZC(Zadoff-Chu)系列、M系列や直交ゴールド符号系列等のPN系列、又は、コンピュータによってランダムに生成された時間軸上での自己相関特性が急峻な系列等を1次拡散に用いてもよい。また、2次拡散には、互いに直交する系列、又は、互いにほぼ直交すると見なせる系列であればいかなる系列を直交符号系列として用いてもよい。以上の説明では、ZAC系列の循環シフト量と直交符号系列の系列番号とによって応答信号のリソース(例えば、PUCCHリソース)が定義されている。 In the above embodiment, a case has been described in which a ZAC sequence is used for primary spreading in a PUCCH resource, and a pair of Walsh sequence and DFT sequence is used as an orthogonal code sequence for secondary spreading. However, in the present invention, sequences that can be separated from each other by different cyclic shift amounts other than ZAC sequences may be used for the first spreading. For example, a GCL (Generalized Chirp like) sequence, a CAZAC (Constant Amplitude Zero Auto Correlation) sequence, a ZC (Zadoff-Chu) sequence, a PN sequence such as an M sequence or an orthogonal gold code sequence, or a time randomly generated by a computer A sequence having a sharp autocorrelation characteristic on the axis may be used for the first spreading. For secondary spreading, any sequence may be used as the orthogonal code sequence as long as the sequences are orthogonal to each other or sequences that can be regarded as being substantially orthogonal to each other. In the above description, the response signal resource (for example, PUCCH resource) is defined by the cyclic shift amount of the ZAC sequence and the sequence number of the orthogonal code sequence.
 また、上記実施の形態では、基地局100の制御部101は、下り回線データと当該下り回線データに対する下り割当制御情報とを同一の下り単位バンドにマッピングするよう制御するとしたが、これに限定されない。すなわち、下り回線データと当該下り回線データに対する下り割当制御情報とが別の下り単位バンドにマッピングされていても、下り割当制御情報と下り回線データとの対応関係が明確であれば、各実施の形態で説明した技術を適用できる。 In the above embodiment, the control unit 101 of the base station 100 controls the downlink data and the downlink allocation control information for the downlink data to be mapped to the same downlink unit band, but is not limited thereto. . That is, even if the downlink data and the downlink allocation control information for the downlink data are mapped to different downlink unit bands, if the correspondence between the downlink allocation control information and the downlink data is clear, each implementation The technology described in the form can be applied.
 また、本実施の形態では、端末側の処理の順番として、1次拡散、2次拡散の後に、IFFT変換を行う場合について説明した。しかし、これらの処理の順番はこれに限定されない。1次拡散処理の後段にIFFT処理がある限り、2次拡散処理の場所はどこにあっても等価な結果が得られる。 Also, in the present embodiment, a case has been described in which IFFT conversion is performed after primary spreading and secondary spreading as the order of processing on the terminal side. However, the order of these processes is not limited to this. As long as there is IFFT processing after the primary diffusion processing, an equivalent result can be obtained regardless of the location of the secondary diffusion processing.
 また、上記実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。 In the above embodiment, the antenna is described as an antenna. However, the present invention can be similarly applied to an antenna port.
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。 An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。 For example, in 3GPP LTE, it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。 Also, the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software in cooperation with hardware.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2010年3月26日出願の特願2010-072766に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings, and abstract contained in Japanese Patent Application No. 2010-072766 filed on March 26, 2010 is incorporated herein by reference.
 本発明は、移動体通信システム等に適用することができる。 The present invention can be applied to a mobile communication system or the like.
 100 基地局
 101,208 制御部
 102 制御情報生成部
 103 符号化部
 104 変調部
 105 符号化部
 106 データ送信制御部
 107 変調部
 108 マッピング部
 109,218-1,218-2,218-3 IFFT部
 110,219-1,219-2,219-3 CP付加部
 111,222 無線送信部
 112,201 無線受信部
 113,202 CP除去部
 114 PUCCH抽出部
 115 逆拡散部
 116 系列制御部
 117 相関処理部
 118 SR検出部
 119 束A/N逆拡散部
 120 IDFT部
 121 束A/N判定部
 122 再送制御信号生成部
 200 端末
 203 FFT部
 204 抽出部
 205,209 復調部
 206,210 復号部
 207 判定部
 211 CRC部
 212 応答信号生成部
 213 符号化・変調部
 214-1,214-2 1次拡散部
 215-1,215-2 2次拡散部
 216 DFT部
 217 拡散部
 220 時間多重部
 221 選択部
DESCRIPTION OF SYMBOLS 100 Base station 101,208 Control part 102 Control information generation part 103 Coding part 104 Modulation part 105 Coding part 106 Data transmission control part 107 Modulation part 108 Mapping part 109,218-1,218-2,218-3 IFFT part 110, 219-1, 219-2, 219-3 CP addition unit 111, 222 Radio transmission unit 112, 201 Radio reception unit 113, 202 CP removal unit 114 PUCCH extraction unit 115 Despreading unit 116 Sequence control unit 117 Correlation processing unit 118 SR Detection Unit 119 Bundle A / N Despreading Unit 120 IDFT Unit 121 Bundle A / N Determination Unit 122 Retransmission Control Signal Generation Unit 200 Terminal 203 FFT Unit 204 Extraction Unit 205, 209 Demodulation Unit 206, 210 Decoding Unit 207 Determination Unit 211 CRC unit 212 Response signal generation unit 213 Encoding / modification Part 214-1 and 214-2 first spreading section 215-1,215-2 second spreading section 216 DFT unit 217 spreading unit 220 hours multiplexing unit 221 selecting unit

Claims (7)

  1.  複数の下り単位バンドに割り当てられた下りデータを受信する受信手段と、
     前記下り単位バンド毎の誤り検出結果の各々を含む束応答信号を生成する生成手段と、
     前記束応答信号に参照信号を多重して送信する送信手段と、
     を具備し、
     前記送信手段は、前記参照信号を配置する参照信号リソースによって、スケジューリング・リクエストを通知する、
     端末装置。
    Receiving means for receiving downlink data allocated to a plurality of downlink unit bands;
    Generating means for generating a bundle response signal including each of the error detection results for each downlink unit band;
    Transmitting means for multiplexing and transmitting a reference signal to the bundle response signal;
    Comprising
    The transmission means notifies a scheduling request by a reference signal resource in which the reference signal is arranged.
    Terminal device.
  2.  前記送信手段は、前記束応答信号を送信する場合に、前記参照信号を第1の参照信号リソースに配置し、前記束応答信号の送信とともに前記スケジューリング・リクエストを通知する場合に、前記参照信号を前記第1の参照信号リソースとは異なる第2の参照信号リソースに配置する、
     請求項1に記載の端末装置。
    The transmission means arranges the reference signal in a first reference signal resource when transmitting the bundle response signal, and notifies the scheduling request together with the transmission of the bundle response signal. Arranged in a second reference signal resource different from the first reference signal resource,
    The terminal device according to claim 1.
  3.  前記第1及び第2の参照信号リソースは、それぞれ巡回シフト量と直交符号系列とのペアで定義され、
     前記第1及び第2の参照信号リソースは、ペアを構成する前記巡回シフト量及び前記直交符号系列のうち、少なくとも一方が異なる、
     請求項1に記載の端末装置。
    The first and second reference signal resources are each defined by a pair of a cyclic shift amount and an orthogonal code sequence,
    The first and second reference signal resources are different in at least one of the cyclic shift amount and the orthogonal code sequence constituting the pair.
    The terminal device according to claim 1.
  4.  前記第1及び第2の参照信号リソースは、それぞれ巡回シフト量と直交符号系列とのペアで定義され、
     前記第1及び第2の参照信号リソースは、ペアを構成する前記巡回シフト量及び前記直交符号系列の双方が異なる、
     請求項1に記載の端末装置。
    The first and second reference signal resources are each defined by a pair of a cyclic shift amount and an orthogonal code sequence,
    The first and second reference signal resources are different in both the cyclic shift amount and the orthogonal code sequence constituting the pair.
    The terminal device according to claim 1.
  5.  複数の下り単位バンド毎の複数の誤り検出結果を含む束応答信号と、前記束応答信号に多重された参照信号を受信する受信手段と、
     前記参照信号が配置された参照信号リソースによって、スケジューリング・リクエストの有無を検出する検出手段と、
     を具備する基地局装置。
    A bundle response signal including a plurality of error detection results for each of a plurality of downlink unit bands, and a receiving means for receiving a reference signal multiplexed on the bundle response signal;
    Detecting means for detecting the presence or absence of a scheduling request according to a reference signal resource in which the reference signal is arranged;
    A base station apparatus comprising:
  6.  前記検出手段は、前記参照信号リソースが第1の参照信号リソースの場合、前記スケジューリング・リクエストが無しと判定し、前記参照信号リソースが前記第1の参照信号リソースとは異なる第2の参照信号リソースの場合、前記スケジューリング・リクエストが有りと判定する、
     請求項5に記載の基地局装置。
    When the reference signal resource is a first reference signal resource, the detection unit determines that there is no scheduling request, and the reference signal resource is different from the first reference signal resource. In the case of determining that there is the scheduling request,
    The base station apparatus according to claim 5.
  7.  複数の下り単位バンドに割り当てられた下りデータを受信し、
     前記下り単位バンド毎の誤り検出結果の各々を含む束応答信号を生成し、
     前記束応答信号に参照信号を多重して送信し、
     前記参照信号を配置する参照信号リソースによって、スケジューリング・リクエストを通知する、
     信号送信制御方法。
    Receive downlink data assigned to multiple downlink unit bands,
    Generating a bundle response signal including each error detection result for each downlink unit band;
    A reference signal is multiplexed and transmitted to the bundle response signal,
    A scheduling request is notified by a reference signal resource in which the reference signal is arranged.
    Signal transmission control method.
PCT/JP2011/001591 2010-03-26 2011-03-17 Terminal apparatus, base station apparatus and signal transmission control method WO2011118167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010072766 2010-03-26
JP2010-072766 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118167A1 true WO2011118167A1 (en) 2011-09-29

Family

ID=44672746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001591 WO2011118167A1 (en) 2010-03-26 2011-03-17 Terminal apparatus, base station apparatus and signal transmission control method

Country Status (1)

Country Link
WO (1) WO2011118167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143393A1 (en) * 2017-02-02 2018-08-09 株式会社Nttドコモ User terminal and wireless communications method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057283A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Wireless communication base station apparatus, and wireless communication mobile station apparatus and control channel allocation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057283A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Wireless communication base station apparatus, and wireless communication mobile station apparatus and control channel allocation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON ET AL.: "A/N transmission in the uplink for carrier aggregation", 3GPP TSG-RAN WG1 #59BIS R1-100044, 18 January 2010 (2010-01-18) *
NOKIA SIEMENS NETWORKS ET AL.: "Detection and DTX Performance of CQI+ACK/NACK transmitted on PUCCH", 3GPP TSG RAN WG1 MEETING #50 R1-073653, 20 August 2007 (2007-08-20) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143393A1 (en) * 2017-02-02 2018-08-09 株式会社Nttドコモ User terminal and wireless communications method
JPWO2018143393A1 (en) * 2017-02-02 2019-12-12 株式会社Nttドコモ Terminal and wireless communication method
JP7078554B2 (en) 2017-02-02 2022-05-31 株式会社Nttドコモ Terminal and wireless communication method
US11374701B2 (en) 2017-02-02 2022-06-28 Ntt Docomo, Inc. User terminal and radio communication method

Similar Documents

Publication Publication Date Title
JP6569119B2 (en) Terminal device, transmission method, and integrated circuit
US20200128532A1 (en) Base station and related communication method
JP5647745B2 (en) Base station, receiving method, and integrated circuit
JP5759049B2 (en) Base station, receiving method and integrated circuit
WO2010122808A1 (en) Base station apparatus and terminal apparatus
WO2011145284A1 (en) Terminal apparatus and response signal transmitting method
WO2011021380A1 (en) Terminal device and signal transmission control method
JP2012104874A (en) Terminal device and retransmission control method
WO2010146880A1 (en) Terminal device and retransmission control method
WO2011118167A1 (en) Terminal apparatus, base station apparatus and signal transmission control method
WO2011040033A1 (en) Terminal device and re-transmission control method
WO2011099300A1 (en) Terminal apparatus and signal transmission control method
WO2011052235A1 (en) Terminal device and retransmission control method
WO2010146855A1 (en) Terminal device and signal transmission control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP