WO2011118163A1 - Method of manufacture for plasma display panel - Google Patents

Method of manufacture for plasma display panel Download PDF

Info

Publication number
WO2011118163A1
WO2011118163A1 PCT/JP2011/001572 JP2011001572W WO2011118163A1 WO 2011118163 A1 WO2011118163 A1 WO 2011118163A1 JP 2011001572 W JP2011001572 W JP 2011001572W WO 2011118163 A1 WO2011118163 A1 WO 2011118163A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
temperature
gas
protective layer
discharge
Prior art date
Application number
PCT/JP2011/001572
Other languages
French (fr)
Japanese (ja)
Inventor
土居 由佳子
憲輝 前田
正範 三浦
後藤 真志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011118163A1 publication Critical patent/WO2011118163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention relates to a method for manufacturing a plasma display panel used for a display device or the like.
  • PDPs Plasma display panels
  • 100-inch class televisions have been commercialized.
  • PDP has been applied to high-definition televisions that have more than twice the number of scanning lines compared to the conventional NTSC system.
  • efforts to further reduce power consumption and environmental issues There is also a growing demand for PDPs that do not contain lead components in consideration of the above.
  • the PDP is basically composed of a front plate and a back plate.
  • the front plate is a glass substrate of sodium borosilicate glass produced by the float process, a display electrode composed of a striped transparent electrode and a bus electrode formed on one main surface of the glass substrate, A dielectric layer that covers the display electrode and functions as a capacitor, and a protective layer made of magnesium oxide (MgO) formed on the dielectric layer.
  • MgO magnesium oxide
  • the back plate is a glass substrate, stripe-shaped address electrodes formed on one main surface thereof, a base dielectric layer covering the address electrodes, a partition formed on the base dielectric layer, The phosphor layer is formed between the barrier ribs and emits red, green and blue light.
  • the front plate and the back plate are hermetically sealed with their electrode forming surfaces facing each other, and a discharge gas of neon (Ne) -xenon (Xe) is 400 Torr to 600 Torr (5.3 ⁇ ) in a discharge space partitioned by a partition wall. 10 4 Pa to 8.0 ⁇ 10 4 Pa).
  • PDP discharges by selectively applying a video signal voltage to the display electrodes, and the ultraviolet rays generated by the discharge excite each color phosphor layer to emit red, green, and blue light, thereby realizing color image display is doing.
  • such a PDP driving method includes an initialization period in which wall charges are adjusted so that writing is easy, a writing period in which writing discharge is performed according to an input image signal, and a discharge space in which writing is performed.
  • a driving method having a sustain period in which display is performed by generating a sustain discharge is generally used.
  • a period (subfield) obtained by combining these periods is repeated a plurality of times within a period (one field) corresponding to one frame of an image, thereby performing PDP gradation display.
  • the role of the protective layer formed on the dielectric layer of the front plate is to protect the dielectric layer from ion bombardment due to discharge and to emit initial electrons for generating address discharge.
  • Etc. Protecting the dielectric layer from ion bombardment is an important role to prevent an increase in discharge voltage.
  • the emission of initial electrons for generating an address discharge is an important role for preventing an address discharge error that causes image flickering.
  • the pulse applied to the address electrode It is necessary to reduce the width.
  • discharge delay there is a time lag called “discharge delay” from the rise of the voltage pulse to the occurrence of discharge in the discharge space, so if the pulse width is narrowed, the probability that the discharge can be completed within the writing period is low. End up. As a result, lighting failure occurs, and the problem of deterioration in image quality performance such as flickering occurs.
  • FIG. 12 is a flowchart showing a manufacturing process of a conventional PDP.
  • the PDP manufacturing process includes a “front plate creating process” for creating a front plate, a “drying / baking step” for drying and firing the front plate, and a “back plate creating step” for creating the back plate.
  • the glass frit as a sealing member is applied to the outside of the image display area of the back plate, and a “frit coating process” is performed at a temperature of about 350 ° C.
  • the metal oxide that forms the protective layer of the front plate Since the above-mentioned metal oxide that forms the protective layer of the front plate is active, it easily adsorbs impurity gases in the air. For this reason, lighting failure is likely to occur, and the tendency is remarkable as the pressure of the discharge gas and the Xe partial pressure increase.
  • the impurity gas is adsorbed on the partially complexed metal oxide. This complicates the chemical state of gas adsorption compared to the case where an impurity gas is adsorbed on a single metal oxide. For this reason, it is difficult to remove the impurity gas, and the characteristic improvement is insufficient only by baking at a high temperature.
  • the front plate was baked in vacuum, improvement in characteristics was observed.
  • the vacuum baked resulted in an increase in equipment cost and a reduction in production tact, resulting in lack of mass productivity.
  • JP 2002-260535 A Japanese Patent Laid-Open No. 11-339665 JP 2006-59779 A JP-A-8-236028 JP-A-10-334809
  • a front plate having a dielectric layer and a protective layer covering the dielectric layer, and a back plate having a base dielectric layer and a plurality of barrier ribs formed on the base dielectric layer are opposed to each other.
  • an exhausting step of exhausting the gas in the discharge space at a temperature equal to or higher than the softening point of the sealing member includes nitrogen or A temperature raising step in which the temperature is maintained multiple times while the gas containing oxygen is introduced, and a gas inflow step in which the dry gas is introduced so that the discharge space is in a positive pressure state. It is a waste.
  • This configuration improves the secondary electron emission characteristics in the protective layer. Therefore, even when the Xe gas partial pressure of the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge starting voltage, and display performance and mass productivity that enable high-intensity and low-voltage driving even in high-definition images. An excellent PDP can be realized.
  • the reaction between the protective layer and the impurity gas during the panel manufacturing process can be suppressed, and a PDP in which variation in discharge characteristics among discharge cells is suppressed can be realized.
  • FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment.
  • FIG. 2 is a cross-sectional view of the front plate of the PDP.
  • FIG. 3 is a flowchart showing a manufacturing method of the PDP.
  • FIG. 4 is a view showing an X-ray diffraction result of the underlayer of the PDP.
  • FIG. 5 is a diagram showing an X-ray diffraction result in the base layer having another configuration of the PDP.
  • FIG. 6 is an enlarged view for explaining the aggregated particles of the PDP.
  • FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer.
  • FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment.
  • FIG. 2 is a cross-sectional view of the front plate of the PDP.
  • FIG. 3 is a flowchart showing a manufacturing method of the PDP.
  • FIG. 4 is
  • FIG. 8A is a characteristic diagram showing a desorption gas analysis result with respect to a temperature change of the protective layer of the PDP.
  • FIG. 8B is a characteristic diagram showing the desorption gas analysis result with respect to the processing time of the protective layer of the PDP.
  • FIG. 9A is a characteristic diagram showing a desorption gas analysis result of the front plate when the impurity gas is water in the manufacturing process of the PDP.
  • FIG. 9B is a characteristic diagram showing a desorption gas analysis result of the front plate when the impurity gas is carbon dioxide in the manufacturing process of the PDP.
  • FIG. 10 is a characteristic diagram showing an example of a temperature profile from the sealing step to the discharge gas supply step of the PDP.
  • FIG. 11A is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 11B is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 11C is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 11D is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 11E is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 11F is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP.
  • FIG. 12 is a flowchart showing a conventional method for manufacturing a PDP.
  • FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment.
  • the basic structure of the PDP is the same as that of a general AC surface discharge type PDP.
  • the PDP 1 has a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 facing each other, and the periphery of the front plate 2 and the back plate 10 is a sealing member. It is comprised by airtightly wearing by.
  • the discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Xe and Ne at a pressure of 400 Torr to 600 Torr (5.3 ⁇ 10 4 Pa to 8.0 ⁇ 10 4 Pa).
  • a pair of strip-shaped display electrodes 6 composed of scanning electrodes 4 and sustaining electrodes 5 and light shielding layers 7 which are black stripes are arranged in a plurality of rows in parallel.
  • a dielectric layer 8 is formed so as to cover the display electrodes 6 and the light-shielding layer 7 and retain a charge to act as a capacitor, and a protective layer 9 is further formed thereon.
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5 of the front plate 2.
  • Layer 13 is covering.
  • a partition wall 14 having a predetermined height is formed on the base dielectric layer 13 between the address electrodes 12 to divide the discharge space 16.
  • a phosphor layer 15 that emits red, green, and blue light by ultraviolet rays is sequentially applied.
  • a discharge space 16 is formed at a position where the scan electrode 4 and the sustain electrode 5 and the address electrode 12 intersect, and the discharge space 16 having the red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 is used for color display. It becomes a pixel for.
  • FIG. 2 is a cross-sectional view of the front plate of the PDP in one embodiment, and FIG. 2 shows FIG. 1 upside down.
  • a display electrode 6 including a scanning electrode 4 and a sustain electrode 5 and a light shielding layer 7 are patterned on a front glass substrate 3 manufactured by a float method or the like.
  • Scan electrode 4 and sustain electrode 5 are made of transparent electrodes 4a and 5a made of indium tin oxide (ITO), tin oxide (SnO 2 ), etc., and metal bus electrodes 4b and 5b formed on transparent electrodes 4a and 5a, respectively. It is comprised by.
  • the metal bus electrodes 4b and 5b are used for the purpose of imparting conductivity in the longitudinal direction of the transparent electrodes 4a and 5a, and are formed of a conductive material mainly composed of silver (Ag).
  • the dielectric layer 8 includes a first dielectric layer 81 provided on the front glass substrate 3 so as to cover the transparent electrodes 4a and 5a, the metal bus electrodes 4b and 5b, and the light shielding layer 7, and a first dielectric.
  • the second dielectric layer 82 formed on the layer 81 has at least two layers, and the protective layer 9 is formed on the second dielectric layer 82.
  • the protective layer 9 includes a base layer 91 formed on the dielectric layer 8 and aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a are aggregated on the base layer 91.
  • the underlayer 91 is a metal oxide composed of at least two kinds of oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
  • FIG. 3 is a flowchart showing the manufacturing process of the PDP in the present embodiment.
  • the PDP manufacturing process includes a “front plate creating process” for creating the front plate 2, a “back plate creating step” for creating the back plate 10, and a sealing member outside the image display area of the back plate 10.
  • a “sealing material application process” in which the resin component and the like are temporarily baked at a temperature of about 350 ° C., and the front panel 2 and the back panel 10 that has completed the “sealing material application process”.
  • the sealing member is preferably a frit mainly composed of bismuth oxide or vanadium oxide.
  • the frit mainly composed of bismuth oxide include a Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca, and Mg, and M is Any of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used.
  • a frit containing vanadium oxide as a main component for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 or cordierite is added to a V 2 O 5 —BaO—TeO—WO glass material. Things can be used.
  • the “front plate creation process” will be described.
  • the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed.
  • Transparent electrodes 4a and 5a and metal bus electrodes 4b and 5b constituting scan electrode 4 and sustain electrode 5 are formed by patterning using a photolithography method or the like.
  • the transparent electrodes 4a and 5a are formed using a thin film process or the like, and the metal bus electrodes 4b and 5b are solidified by baking a paste containing a silver (Ag) material at a predetermined temperature.
  • the light shielding layer 7 is also formed by screen printing a paste containing a black pigment, or by patterning and baking using a photolithography method after forming a black pigment on the entire surface of the glass substrate.
  • a dielectric paste (dielectric material) layer is formed by applying a dielectric paste on the front glass substrate 3 by a die coating method or the like so as to cover the scanning electrode 4, the sustain electrode 5 and the light shielding layer 7.
  • the surface of the applied dielectric paste is leveled by leaving it to stand for a predetermined time, so that a flat surface is obtained.
  • the dielectric paste layer is formed by baking and solidifying the dielectric paste layer to cover the scan electrode 4, the sustain electrode 5, and the light shielding layer 7.
  • the dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
  • the base layer 91 is formed of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the underlayer 91 is prepared by mixing pellets of single materials of magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO), or by mixing these materials in advance. It is formed by a thin film forming method such as using pellets.
  • a thin film forming method a known method such as an electron beam evaporation method, a sputtering method, or an ion plating method can be applied.
  • 1 Pa is considered as the upper limit of the pressure that can actually be taken in the sputtering method and 0.1 Pa in the electron beam evaporation method, which is an example of the evaporation method.
  • predetermined electron emission can be achieved by adjusting the atmosphere during film formation in a sealed state shut off from the outside in order to prevent moisture adhesion and impurity gas adsorption.
  • a base layer 91 made of a metal oxide having characteristics can be formed.
  • the agglomerated particles 92 of the magnesium oxide (MgO) crystal particles 92a deposited on the base layer 91 will be described.
  • These crystal particles 92a can be manufactured by any one of the following vapor phase synthesis method or precursor baking method.
  • a magnesium metal material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas, and a small amount of oxygen is introduced into the atmosphere to directly oxidize magnesium, thereby oxidizing the material.
  • Magnesium (MgO) crystal particles 92a can be produced.
  • a magnesium oxide (MgO) precursor is uniformly fired at a high temperature of 700 ° C. or higher, and this is gradually cooled to obtain magnesium oxide (MgO) crystal particles 92a.
  • the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (C 5 H 7 O 2 ) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ),
  • One or more compounds selected from magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), magnesium nitrate (Mg (NO 3 ) 2 ), and magnesium oxalate (MgC 2 O 4 ) can be selected. Depending on the selected compound, it may usually take the form of a hydrate, which may be used.
  • MgO magnesium oxide
  • these compounds are adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or more, preferably 99.98% or more. If these compounds contain a certain amount or more of various impurity elements such as alkali metals, B, Si, Fe, and Al, unnecessary interparticle adhesion and sintering occur during heat treatment, and highly crystalline magnesium oxide ( This is because it is difficult to obtain MgO) crystal particles. For this reason, it is necessary to adjust the precursor in advance by removing the impurity element.
  • impurity elements such as alkali metals, B, Si, Fe, and Al
  • the magnesium oxide (MgO) crystal particles 92a obtained by any of the above methods are dispersed in a solvent, and the dispersion is dispersed and dispersed on the surface of the underlayer 91 by spraying, screen printing, electrostatic coating, or the like.
  • magnesium oxide (MgO) crystal particles 92 a are fixed to the surface of the underlayer 91 on the protective layer 9.
  • predetermined components scanning electrode 4, sustaining electrode 5, light shielding layer 7, dielectric layer 8, and protective layer 9 are formed on front glass substrate 3, and front plate 2 is completed.
  • the back plate 10 is formed as follows. First, the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at a predetermined temperature. Next, a dielectric paste layer is formed on the rear glass substrate 11 on which the address electrodes 12 are formed by applying a dielectric paste so as to cover the address electrodes 12 by a die coating method or the like. Thereafter, the base dielectric layer 13 is formed by firing the dielectric paste layer.
  • the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at
  • a barrier rib forming paste containing barrier rib material is applied on the underlying dielectric layer 13 and patterned into a predetermined shape to form a barrier rib material layer.
  • the partition 14 is formed by baking at a predetermined temperature.
  • a photolithography method or a sand blast method can be used as a method of patterning the partition wall paste applied on the base dielectric layer 13.
  • the phosphor layer 15 is formed by applying and baking a phosphor paste containing a phosphor material on the base dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14.
  • the dielectric material of the first dielectric layer 81 is composed of the following material composition. That is, 20% by weight to 40% by weight of bismuth oxide (Bi 2 O 3 ), 0.5% by weight to 12% of at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Contains 0.1% by weight to 7% by weight of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese dioxide (MnO 2 ). .
  • molybdenum oxide MoO 3
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • manganese dioxide MnO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide At least one selected from (Co 2 O 3 ), vanadium oxide (V 2 O 7 ), and antimony oxide (Sb 2 O 3 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • a dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to paste for the first dielectric layer 81 for die coating or printing. Is made.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate and tributyl phosphate are added to the paste as needed, and glycerol monooleate, sorbitan sesquioleate, homogenol (Kao Corporation) as a dispersant.
  • the printing property may be improved as a paste by adding a phosphate ester of an alkyl allyl group, etc.
  • the front glass substrate 3 is printed by a die coat method or a screen printing method so as to cover the display electrode 6 and dried, and then slightly higher than the softening point of the dielectric material.
  • the first dielectric layer 81 is formed by baking at a temperature of 575 ° C. to 590 ° C.
  • the dielectric material of the second dielectric layer 82 is composed of the following material composition. That is, bismuth oxide (Bi 2 O 3 ) is 11 wt% to 20 wt%, and at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) is 1.6 wt%. It contains ⁇ 21 wt%, and contains 0.1 wt% ⁇ 7 wt% of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ).
  • MoO 3 molybdenum oxide
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide Co 2 O 3
  • vanadium oxide At least one selected from (V 2 O 7 ), antimony oxide (Sb 2 O 3 ), and manganese oxide (MnO 2 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • Dielectric material powders having these compositions are pulverized with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m to produce a dielectric material powder.
  • 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to form a second dielectric layer paste for die coating or printing.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate are added as plasticizers as needed, and glycerol monooleate, sorbitan sesquioleate, and homogenol (Kao Corporation) as dispersants.
  • the printability may be improved by adding a phosphoric ester of an alkyl allyl group or the like.
  • the film thickness of the dielectric layer 8 is preferably set to 41 ⁇ m or less in combination with the first dielectric layer 81 and the second dielectric layer 82 in order to ensure visible light transmittance.
  • the first dielectric layer 81 has a bismuth oxide (Bi 2 O 3 ) content of the second dielectric layer 82 in order to suppress the reaction of the metal bus electrodes 4b and 5b with silver (Ag). More than the content of (Bi 2 O 3 ), the content is 20 wt% to 40 wt%. Therefore, since the visible light transmittance of the first dielectric layer 81 is lower than the visible light transmittance of the second dielectric layer 82, the film thickness of the first dielectric layer 81 is set to the film thickness of the second dielectric layer 82. It is thinner.
  • the second dielectric layer 82 is less likely to be colored when the content of bismuth oxide (Bi 2 O 3 ) is 11% by weight or less, but is preferable because bubbles are easily generated in the second dielectric layer 82. Absent. Moreover, since it will become easy to color when content rate exceeds 40 weight%, the transmittance
  • the thickness of the dielectric layer 8 is set to 41 ⁇ m or less, the first dielectric layer 81 is set to 5 ⁇ m to 15 ⁇ m, and the second dielectric layer 82 is set to 20 ⁇ m to 36 ⁇ m.
  • the dielectric layer 8 having excellent withstand voltage performance can be realized.
  • the protective layer 9 of the PDP 1 in this embodiment will be described.
  • the protective layer 9 includes an underlayer 91 formed on the dielectric layer 8 and magnesium oxide (MgO) crystal particles 92 a attached on the underlayer 91.
  • a plurality of aggregated particles 92 are formed.
  • the underlayer 91 is formed of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO).
  • the metal oxide has a peak between the minimum diffraction angle and the maximum diffraction angle generated from a single oxide constituting the metal oxide having a specific orientation plane. .
  • the base layer 91 of the protective layer 9 includes at least two metal oxides selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and the specific orientation of the base layer 91 of the protective layer 9
  • the diffraction angle peak of the X-ray diffraction analysis on the plane is the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the underlayer 91 of the protective layer 9; It exists between the diffraction angle peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
  • FIG. 4 is a diagram showing an X-ray diffraction result of the base layer constituting the protective layer of the PDP.
  • FIG. 4 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the horizontal axis represents the Bragg diffraction angle (2 ⁇ ), and the vertical axis represents the intensity of the X-ray diffraction wave.
  • the unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit).
  • the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 4, in the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and strontium oxide (SrO) alone. Shows a peak at a diffraction angle of 30.0 degrees, and barium oxide (BaO) alone has a peak at a diffraction angle of 27.9 degrees.
  • At least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are used as base layer 91 of protective layer 9. It is made of a metal oxide made of a material.
  • FIG. 4 shows the X-ray diffraction results when the single component constituting the underlayer 91 is two components. That is, the X-ray diffraction result of the base layer 91 formed using magnesium oxide (MgO) and calcium oxide (CaO) alone was formed using point A, magnesium oxide (MgO) and strontium oxide (SrO) alone.
  • the X-ray diffraction result of the underlayer 91 is indicated by point B, and further, the X-ray diffraction result of the underlayer 91 formed using a simple substance of magnesium oxide (MgO) and barium oxide (BaO) is indicated by C point.
  • the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone.
  • peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • FIG. 5 shows the X-ray diffraction result in the case where the single component constituting the base layer 91 is three or more components, as in FIG. That is, FIG. 5 shows the results when magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO), and oxidation.
  • the results when barium (BaO) is used are indicated by point E
  • the results when calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) are used are indicated by point F.
  • the point D corresponds to the diffraction angle of 36.9 degrees of magnesium oxide (MgO) as the maximum diffraction angle of a single oxide and the strontium oxide as the minimum diffraction angle in (111) of the crystal orientation plane as the specific orientation plane.
  • MgO magnesium oxide
  • strontium oxide as the minimum diffraction angle in (111) of the crystal orientation plane as the specific orientation plane.
  • peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the base layer 91 of the PDP 1 in this embodiment has a specific orientation plane in the X-ray diffraction analysis of the base layer 91 surface of the metal oxide constituting the base layer 91, whether it is a single component or a three component.
  • a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the metal oxide.
  • the base layer 91 of the protective layer 9 includes at least two metal oxides selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and the specific orientation of the base layer 91 of the protective layer 9
  • the diffraction angle peak of the X-ray diffraction analysis on the plane is the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the underlayer 91 of the protective layer 9; It exists between the diffraction angle peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
  • (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
  • the depth from the vacuum level of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) exists in a shallow region as compared with magnesium oxide (MgO). Therefore, when the PDP 1 is driven, when electrons existing in the energy levels of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) transition to the ground state of the xenon (Xe) ion, Auger It is considered that the number of electrons emitted due to the effect increases as compared with the case of transition from the energy level of magnesium oxide (MgO).
  • the base layer 91 in the present embodiment is configured such that a peak exists between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. Yes.
  • the metal oxide having the characteristics shown in FIGS. 4 and 5 has its energy level between the single oxides constituting them. Therefore, the energy level of the base layer 91 also exists between the single oxides, and the amount of energy acquired by other electrons due to the Auger effect can be set to a sufficient amount to be released beyond the vacuum level. .
  • the base layer 91 can exhibit better secondary electron emission characteristics than the magnesium oxide (MgO) alone, and the discharge sustaining voltage can be reduced. Therefore, in particular, when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP1.
  • Xe xenon
  • Table 1 shows the structure of the underlying layer 91 as a result of the discharge sustaining voltage when a mixed gas (Xe, 15%) of 450 Torr of xenon (Xe) and neon (Ne) is sealed in the PDP 1 of the present embodiment. The result of PDP1 when changing is shown.
  • the discharge sustaining voltage in Table 1 is expressed as a relative value when the comparative example is 100.
  • the base layer 91 of sample A is a metal oxide made of magnesium oxide (MgO) and calcium oxide (CaO).
  • the base layer 91 of sample B is a metal oxide made of magnesium oxide (MgO) and strontium oxide (SrO).
  • the underlayer 91 is a metal oxide made of magnesium oxide (MgO) and barium oxide (BaO).
  • the underlayer 91 of the sample D is a metal oxide made of magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO).
  • the underlayer 91 of sample E is composed of a metal oxide made of magnesium oxide (MgO), calcium oxide (CaO), and barium oxide (BaO). Further, the comparative example shows a case where the base layer 91 is made of magnesium oxide (MgO) alone.
  • the partial pressure of the discharge gas xenon (Xe) is increased from 10% to 15%, the luminance increases by about 30%.
  • the underlying layer 91 is made of magnesium oxide (MgO) alone, the discharge is maintained. The voltage increases about 10%.
  • the discharge sustain voltage can be reduced by about 10% to 20% in all of the sample A, the sample B, the sample C, the sample D, and the sample E as compared with the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP 1 can be realized.
  • Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are particularly reactive as a single substance, so that they easily react with impurities such as water and carbon dioxide. As a result, electron emission performance is improved. It tends to decline.
  • the agglomerated particles 92 provided on the underlayer 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail.
  • Aggregated particles 92 of magnesium oxide (MgO) have been confirmed to have an effect of mainly suppressing “discharge delay” in write discharge and improving temperature dependency of “discharge delay”. Therefore, in the present embodiment, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to those of the base layer 91.
  • the “discharge delay” is considered to be mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the underlayer 91 into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the underlayer 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition.
  • MgO magnesium oxide
  • the metal oxide aggregated particles 92 are disposed on the surface of the underlayer 91, in addition to the effect of mainly suppressing the “discharge delay” in the write discharge, the effect of improving the temperature dependency of the “discharge delay” is also achieved. can get.
  • the PDP 1 includes the base layer 91 capable of achieving both low voltage driving and charge retention, and the magnesium oxide (MgO) aggregated particles 92 effective in preventing discharge delay.
  • MgO magnesium oxide
  • agglomerated particles 92 in which several crystal particles 92a are agglomerated are dispersed on base layer 91, and a plurality of particles are adhered so as to be distributed almost uniformly over the entire surface.
  • FIG. 6 is an enlarged view for explaining the agglomerated particles 92.
  • the agglomerated particles 92 are in a state where crystal particles 92a having a predetermined primary particle diameter are aggregated or necked as shown in the figure. In other words, it is not a solid that has a large binding force, but a plurality of primary particles that are aggregated by static electricity or van der Waals force. Some or all of them are bonded to such a degree that they become primary particles.
  • the particle size of the agglomerated particles 92 is about 1 ⁇ m to several ⁇ m, and the crystal particles 92 a preferably have a polyhedral shape having seven or more surfaces such as a tetrahedron and a dodecahedron.
  • the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a.
  • the particle size can be controlled by controlling the calcining temperature and the calcining atmosphere.
  • the firing temperature can be selected in the range of 700 ° C. to 1500 ° C., but by setting the firing temperature to a relatively high 1000 ° C. or higher, the particle size can be controlled to about 0.3 to 2 ⁇ m. is there.
  • agglomeration or necking in the production process to obtain agglomerated particles 92.
  • FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer in the present embodiment. Specifically, the relationship between the discharge delay and the calcium (Ca) concentration in the protective layer 9 in the case of using the base layer 91 composed of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO) is shown. ing.
  • the base layer 91 is composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO), and the metal oxide has a peak of magnesium oxide (MgO) in the X-ray diffraction analysis on the surface of the base layer 91.
  • FIG. 7 shows the case where only the underlayer 91 is used as the protective layer 9 and the case where the aggregated particles 92 are arranged on the underlayer 91, and the discharge delay is caused by calcium (Ca) contained in the underlayer 91. The case where it is not done is shown as a standard.
  • the electron emission performance is a numerical value indicating that the larger the electron emission amount, the greater the amount of electron emission.
  • the initial electron emission amount can be measured by a method of measuring the amount of electron current emitted from the surface by irradiating the surface with ions or an electron beam.
  • the evaluation of the surface of the front plate 2 of the PDP 1 can be performed nondestructively. With difficulty. Therefore, evaluation was performed using the method described in JP-A-2007-48733. That is, among the delay times at the time of discharge, a numerical value called a statistical delay time, which is a measure of the likelihood of occurrence of discharge, is measured, and the reciprocal is integrated to obtain a numerical value linearly corresponding to the initial electron emission amount.
  • the delay time at the time of discharge means a discharge delay time in which the discharge is delayed from the rising edge of the pulse. It is considered that the discharge delay is mainly caused by the fact that initial electrons that become a trigger when the discharge is started are not easily released from the surface of the protective layer 9 into the discharge space 16.
  • the discharge delay increases as the calcium (Ca) concentration increases in the case of only the underlayer 91.
  • the discharge delay can be significantly reduced, and the discharge delay hardly increases even when the calcium (Ca) concentration is increased.
  • the magnesium oxide (MgO) particles are used as the crystal particles 92a of the agglomerated particles 92.
  • the particle type is not limited to magnesium oxide (MgO).
  • the protective layer 9 is formed of at least two kinds of metal oxides selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide as described above, a plurality of metal oxides are included. Therefore, since the desorption temperatures of the impurity gases in the respective metal oxides are different, the desorption temperature range of the impurity gases extends over a wide range. For this reason, the discharge characteristics deteriorate due to adsorption of impurity gases such as water and carbon dioxide due to the state left before the “sealing process”, and the discharge characteristics vary from discharge cell to discharge cell, resulting in reduced mass production stability. It's easy to do.
  • a temperature raising step in which the temperature is maintained in a temperature range where the impurity gas adsorbed on the protective layer 9 is desorbed and the temperature is raised stepwise is provided.
  • a sealing process including a gas inflow process for allowing a dry gas to flow into the discharge space 16 through a through-hole opened in the discharge space 16 and a temperature equal to or higher than the softening point of the sealing member.
  • An exhaust process for exhausting the gas inside.
  • the reason why the temperature is raised stepwise in the temperature region where the impurity gas adsorbed on the protective layer 9 is desorbed is that the impurity gas adsorbed on the protective layer 9 and the residual components of the solvent used for forming the aggregated particles 92 are This is for efficient removal in a short time.
  • the desorption temperatures of the impurity gases adsorbed on each metal oxide are different, so that gas desorption occurs in a plurality of temperature regions, resulting in impurities in a wide temperature region.
  • the gas will continue to desorb.
  • the temperature is raised stepwise at the temperature at which each impurity gas is desorbed, and the temperature is maintained until the desorption of the impurity gas is completed in each temperature region, whereby a clean protective layer 9 can be obtained.
  • maintain is higher than the temperature hold
  • the reason why the dry gas is allowed to flow during the above temperature rise is that the impurity gas once desorbed from the protective layer 9 and the back plate 10 due to the temperature rise in the panel is not again adsorbed to the protective layer 9. It is something that is physically extruded from. This is because moisture is reduced in a high-temperature firing atmosphere, so that carbon dioxide is particularly easily resorbed among impurity gases, and a part of the metal oxide constituting the protective layer 9 is carbonated. As a result, due to the temperature distribution in the baking furnace and the concentration distribution of the impurity gas, the resorption of the impurity gas becomes uneven within the substrate surface, which is one of the factors that cause variations in discharge characteristics.
  • the temperature raising step if the temperature is maintained in a temperature range where the impurity gas adsorbed on the protective layer 9 is desorbed and the temperature is maintained while the nitrogen gas containing nitrogen or oxygen is introduced, the temperature is raised stepwise. The re-adsorption of the impurity gas once removed can be suppressed.
  • the gas to be introduced is preferably dry gas, and nitrogen gas is relatively inexpensive and desirable.
  • a nitrogen gas containing oxygen may be introduced to promote thermal decomposition of the hydrocarbon gas.
  • an inert gas such as argon may be included.
  • the initial holding (lower limit) temperature depends on the boiling point of the organic solvent used, but is preferably at least 200 ° C. or more, more preferably 300 ° C. or more for thermal decomposition. .
  • the upper limit temperature may be equal to or lower than the softening point of the dielectric layer material (approximately 500 ° C. to 600 ° C.).
  • the desorption temperature of the impurity gas from the protective layer 9 may be confirmed.
  • the front plate 2 before firing can be cut into small pieces, and the type and amount of desorption gas when heated in vacuum using a temperature programmed desorption analysis method (TDS analysis) can be confirmed.
  • TDS analysis temperature programmed desorption analysis method
  • FIG. 8A is a characteristic diagram showing the desorption gas analysis result with respect to the temperature change of the protective layer
  • FIG. 8B is a characteristic diagram showing the desorption gas analysis result with respect to the processing time of the protective layer.
  • the aggregated particles 92 are formed on the sample A described above (the base layer 91 is a metal oxide made of magnesium oxide (MgO) and calcium oxide (CaO)).
  • the solvent is removed by vacuum drying, and then the front plate 2 from which the solvent has been removed by baking at 320 ° C. in the air is heated at 10 ° C./min and held at 500 ° C. for 30 min. Indicates the type of gas and the amount of desorption.
  • desorption spectra with respect to temperature and treatment time are shown for water having a mass number of 18 and carbon dioxide having a mass number of 44 as main impurity gases.
  • the sample A is generated from two types of metal oxides in the desorbed gas as shown in FIGS. 8A and 8B.
  • the desorption of water is divided into three stages of temperature ranges of (1) 380 ° C. to 400 ° C., (2) 420 to 450 ° C., and (3) 480 to 500 ° C. Yes, the desorption of carbon dioxide is in the temperature range of (1) and (3), and the desorption time should be several minutes or more, and the gas desorption is almost completed after holding for the final 30 minutes. ing.
  • the existence of the plurality of desorption temperature regions is considered to be because the protective layer 9 is made of a plurality of metal oxides.
  • FIGS. 9A and 9B the results of examining the firing conditions of the front plate 2 using the front plate 2 in which the protective layer 9 is made of the sample A are shown in FIGS. 9A and 9B.
  • FIG. 9A is a characteristic diagram showing the desorption gas analysis result of the front plate when the impurity gas is water
  • FIG. 9B is a characteristic diagram showing the desorption gas analysis result of the front plate when the impurity gas is carbon dioxide. It is.
  • the “step firing” of the conditions 2), 3) and 4) is firing under the conditions of holding the temperature at 380 ° C., 420 ° C., 450 ° C. and 480 ° C. for 10 minutes each , condition 2), 5), the N 2 as an atmosphere gas during firing has 1L / min flowing, condition 3) is flowed in 20% O 2 added to the N 2. 5) and 6) are TDS analysis results after firing at 500 ° C. In all cases, the temperature was raised at 10 ° C./min.
  • the condition 4) in which no gas flows in is that there is almost no water, the carbon dioxide desorption peak is 500 ° C. or higher, and the carbonation of the metal oxide is remarkable. found.
  • the amount of carbon dioxide is small, but the desorption of water is also small. This indicates that the water has not been cleaned enough to re-adsorb.
  • FIG. 10 shows an example of a temperature profile from the sealing step to the discharge gas supply step in the present embodiment.
  • 11A to 11F are schematic views showing one process from the sealing process to the discharge gas supply process in the present embodiment.
  • 11A to 11F show the gas inside the panel and the flow thereof in the period 1 to the period 5 in FIG. 10, respectively.
  • the process from the sealing process to the discharge gas supply process is divided into the following five periods from the viewpoint of temperature. That is, a period for raising from the room temperature to the softening point (period 1), a period for raising from the softening point to the sealing temperature (period 2), a period for holding for a certain time at a temperature equal to or higher than the sealing temperature, and a period for lowering to the softening point ( Period 3) (above, sealing process), a period during which the temperature is held for a certain period of time near or slightly below the softening point temperature and then decreased to room temperature (period 4: exhausting process), and a period after the temperature has decreased to room temperature (Period 5: discharge gas supply step).
  • the softening point refers to the temperature at which the glass frit 21 softens.
  • the softening point of the glass frit used in this embodiment is about 430 ° C.
  • the sealing temperature is a temperature at which the front plate 2 and the back plate 10 are sealed by a frit as a sealing member.
  • the sealing temperature in the present embodiment is about 490 ° C.
  • reference numeral 21 denotes a glass frit which is a sealing member applied to the peripheral portion of the back plate 10, and 22a and 22b are through holes provided in the back glass substrate 11 of the back plate 10, and the through holes 22a, 22 b is provided on the back glass substrate 11 so as to open to the discharge space 16.
  • 23 to 28 are valves, and 29 is a gas relief valve.
  • the front plate 2 and the rear plate 10 are positioned and overlapped so that the display electrode 6 and the address electrode 12 are orthogonally opposed to each other, and then the valve 23 and the valve 24 are opened as shown in FIG. 11A.
  • the heater is turned on and the temperature inside the heating furnace is raised to the softening point temperature of the sealing glass frit 21 while flowing the dry gas into the panel from both the through hole 22a and the through hole 22b.
  • the dry gas that flows into the panel flows into the outside of the panel through the gap between the front plate 2 and the glass frit 21 formed on the back plate 10.
  • dry nitrogen gas having a dew point of ⁇ 45 ° C. or lower is used as the dry gas, and the flow rate thereof is approximately 2 L / min (period 1).
  • the valve 24 is closed and the valve 23 is adjusted so that the flow rate of the dry nitrogen gas is less than half of the period 1.
  • the gas relief valve 29 is opened, and the temperature inside the heating furnace is raised to the sealing temperature so that the pressure inside the panel becomes slightly positive than the pressure inside the heating furnace for sealing and discharging (period). 2).
  • the glass frit 21 is melted, and the front plate 2 and the rear plate 10 are sealed, as shown in FIG.
  • the exhaust device is operated, and the valve 25 is adjusted to exhaust.
  • dry nitrogen gas is allowed to flow through the panel at a rate of about 13 cc / min from the through hole 22a toward the through hole 22b while keeping the pressure inside the panel at a slightly negative pressure, for example, 8.0 ⁇ 10 4 Pa.
  • the heater is controlled to keep the temperature inside the heating furnace at a temperature equal to or higher than the sealing temperature for about 30 minutes.
  • what is necessary is just to set the time which flows dry nitrogen gas inside a panel toward the through-hole 22b from the through-hole 22a according to specifications, such as a magnitude
  • valves 23 and 25 are closed, the valve 26 is opened, the gas relief valve 29 is opened, and the valve 24 is adjusted to maintain the internal pressure of the panel at a slightly negative pressure.
  • a dry nitrogen gas causes a dry nitrogen gas to flow from the through hole 22b toward the through hole 22a. In this way, the flow of the dry nitrogen gas in the panel is changed to the direction opposite to the above, and the dry nitrogen gas continues to flow inside the panel while keeping the pressure inside the panel slightly negative.
  • the time for flowing the dry nitrogen gas into the panel from the through hole 22b toward the through hole 22a is also set according to the specifications of the panel, but in order to equalize the flow rate of the dry nitrogen gas to the panel, the through hole 22b is changed from the through hole 22a to the through hole 22b. It is desirable to set the time equal to the time for flowing the dry nitrogen gas toward
  • the heater is controlled to keep the temperature inside the heating furnace at a temperature equal to or higher than the sealing temperature for about 15 minutes or longer.
  • the molten glass frit 21 flows slightly and the pressure inside the panel is kept at a slightly negative pressure, so that the front plate 2 and the back plate 10 are sealed.
  • the heater is turned off and the temperature of the heating furnace is lowered to a temperature below the softening point (period 3).
  • the exhaust process is a process of exhausting the gas inside the panel.
  • the valve 24 is closed, the valve 26 and the valve 25 are opened, and the inside of the panel is passed through the glass tube from the two through holes 22a and 22b. Exhaust. Then, the exhaust is continuously performed while maintaining the temperature inside the heating furnace for a predetermined time by controlling the heater.
  • the discharge gas supply step is a step of supplying a discharge gas mainly composed of Ne and Xe into the evacuated panel. After the temperature inside the heating furnace has dropped to room temperature, as shown in FIG. 11F, the valves 26 and 25 are closed, the valves 27 and 28 are opened, and the discharge gas is supplied to a predetermined pressure through the two through holes 22a and 22b. Supply to be.
  • the discharge gas is, for example, a mixed gas of Xe: 10% and Ne: 90%, and the predetermined atmospheric pressure is 60 kPa.
  • the discharge gas is not limited to this, and may be, for example, a gas of Xe: 100%.
  • the glass tubes 43 and 44 are heat-sealed (period 5). As described above, the front plate 2 and the back plate 10 are bonded together, and the discharge gas is filled between them to complete the panel.
  • a panel was prepared by changing the temperature rise / gas inflow conditions for raising the temperature to the softening temperature of the glass frit 21 in the sealing step.
  • a panel was prepared by raising the temperature and flowing in gas under the conditions 2) to 6) shown in FIGS. 9A and 9B.
  • the conditions 6) 500 ° C. vacuum and 380 ° C., 420 ° C., 450 ° C., and 480 ° C. were maintained for 10 minutes each and the temperature was raised stepwise to flow in gas.
  • the discharge voltage of the panel could be further reduced by about 5% to 10% compared to the present embodiment.
  • condition 4 where the temperature was raised stepwise without gas inflow (atmosphere), the voltage increased by about 7% compared to the present embodiment. This is presumably because, under condition 4), the amount of carbon dioxide remaining in the panel is large, so that the electron emission characteristics of the protective layer 9 are lowered and the discharge voltage is increased.
  • the present invention is useful in realizing a high-quality display performance and a low power consumption PDP.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

Disclosed is a method of manufacture for a plasma display panel comprising a sealing step wherein a front panel (2) and a rear panel (10) are disposed facing each other and sealed with a sealing material, and a venting step wherein a gas is vented in an electrical discharge space at a temperature at or above the softening point of the sealing material. The sealing step includes a heating step wherein heat is applied repeatedly and incrementally with a temperature maintained for a time period in a temperature range wherein a gas containing impurities adsorbed by a protective layer (9) detaches therefrom, and a gas influx step wherein a drying gas is flowed into the discharge space (16) such that positive pressure results therein.

Description

プラズマディスプレイパネルの製造方法Method for manufacturing plasma display panel
 本発明は、表示デバイスなどに用いるプラズマディスプレイパネルの製造方法に関する。 The present invention relates to a method for manufacturing a plasma display panel used for a display device or the like.
 プラズマディスプレイパネル(以下、PDPと称す)は、高精細化、大画面化の実現が可能であることから、100インチクラスのテレビなどが製品化されている。近年、PDPにおいては、従来のNTSC方式に比べて走査線数が2倍以上の高精細テレビへの適用が進められており、エネルギー問題に対応してさらなる消費電力低減への取り組みや、環境問題に配慮した鉛成分を含まないPDPへの要求なども高まっている。 Plasma display panels (hereinafter referred to as PDPs) are capable of achieving high definition and large screens, so 100-inch class televisions have been commercialized. In recent years, PDP has been applied to high-definition televisions that have more than twice the number of scanning lines compared to the conventional NTSC system. In response to energy problems, efforts to further reduce power consumption and environmental issues There is also a growing demand for PDPs that do not contain lead components in consideration of the above.
 PDPは、基本的には、前面板と背面板とで構成されている。前面板は、フロート法により製造された硼硅酸ナトリウム系ガラスのガラス基板と、ガラス基板の一方の主面上に形成されたストライプ状の透明電極とバス電極とで構成される表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。 The PDP is basically composed of a front plate and a back plate. The front plate is a glass substrate of sodium borosilicate glass produced by the float process, a display electrode composed of a striped transparent electrode and a bus electrode formed on one main surface of the glass substrate, A dielectric layer that covers the display electrode and functions as a capacitor, and a protective layer made of magnesium oxide (MgO) formed on the dielectric layer.
 一方、背面板は、ガラス基板と、その一方の主面上に形成されたストライプ状のアドレス電極と、アドレス電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色及び青色それぞれに発光する蛍光体層とで構成されている。 On the other hand, the back plate is a glass substrate, stripe-shaped address electrodes formed on one main surface thereof, a base dielectric layer covering the address electrodes, a partition formed on the base dielectric layer, The phosphor layer is formed between the barrier ribs and emits red, green and blue light.
 前面板と背面板とはその電極形成面側を対向させて気密封着され、隔壁によって仕切られた放電空間にネオン(Ne)-キセノン(Xe)の放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。PDPは、表示電極に映像信号電圧を選択的に印加することによって放電させ、その放電によって発生した紫外線が各色蛍光体層を励起して赤色、緑色、青色の発光をさせてカラー画像表示を実現している。 The front plate and the back plate are hermetically sealed with their electrode forming surfaces facing each other, and a discharge gas of neon (Ne) -xenon (Xe) is 400 Torr to 600 Torr (5.3 ×) in a discharge space partitioned by a partition wall. 10 4 Pa to 8.0 × 10 4 Pa). PDP discharges by selectively applying a video signal voltage to the display electrodes, and the ultraviolet rays generated by the discharge excite each color phosphor layer to emit red, green, and blue light, thereby realizing color image display is doing.
 また、このようなPDPの駆動方法としては、書き込みをしやすい状態に壁電荷を調整する初期化期間と、入力画像信号に応じて書き込み放電を行う書き込み期間と、書き込みが行われた放電空間で維持放電を生じさせることによって表示を行う維持期間を有する駆動方法が一般的に用いられている。これらの各期間を組み合わせた期間(サブフィールド)が、画像の1コマに相当する期間(1フィールド)内で複数回繰り返されることによってPDPの階調表示を行っている。 In addition, such a PDP driving method includes an initialization period in which wall charges are adjusted so that writing is easy, a writing period in which writing discharge is performed according to an input image signal, and a discharge space in which writing is performed. A driving method having a sustain period in which display is performed by generating a sustain discharge is generally used. A period (subfield) obtained by combining these periods is repeated a plurality of times within a period (one field) corresponding to one frame of an image, thereby performing PDP gradation display.
 このようなPDPにおいて、前面板の誘電体層上に形成される保護層の役割としては、放電によるイオン衝撃から誘電体層を保護すること、アドレス放電を発生させるための初期電子を放出することなどがあげられる。イオン衝撃から誘電体層を保護することは、放電電圧の上昇を防ぐ重要な役割である。またアドレス放電を発生させるための初期電子を放出することは、画像のちらつきの原因となるアドレス放電ミスを防ぐ重要な役割である。 In such a PDP, the role of the protective layer formed on the dielectric layer of the front plate is to protect the dielectric layer from ion bombardment due to discharge and to emit initial electrons for generating address discharge. Etc. Protecting the dielectric layer from ion bombardment is an important role to prevent an increase in discharge voltage. In addition, the emission of initial electrons for generating an address discharge is an important role for preventing an address discharge error that causes image flickering.
 保護層からの初期電子の放出数を増加させて画像のちらつきを低減するために、例えば、MgO保護層に不純物を添加する例や、MgO粒子をMgO保護層上に形成した例が開示されている(例えば、特許文献1、2、3、4、5など参照)。 In order to increase the number of initial electrons emitted from the protective layer and reduce image flickering, for example, examples of adding impurities to the MgO protective layer and examples of forming MgO particles on the MgO protective layer are disclosed. (For example, see Patent Documents 1, 2, 3, 4, 5, etc.).
 近年、テレビは高精細化が進んでおり、市場では低コスト・低消費電力・高輝度のフルHD(ハイ・ディフィニション)(1920×1080画素:プログレッシブ表示)PDPが要求されている。保護層からの電子放出特性はPDPの画質を決定するため、電子放出特性を制御することが非常に重要である。 In recent years, the definition of television has been increased, and the market demands a full HD (high definition) (1920 × 1080 pixels: progressive display) PDP with low cost, low power consumption, and high brightness. Since the electron emission characteristics from the protective layer determine the image quality of the PDP, it is very important to control the electron emission characteristics.
 すなわち、高精細化された画像を表示するためには、1フィールドの時間が一定にもかかわらず書き込みを行う画素の数が増えるため、サブフィールド中の書き込み期間において、アドレス電極へ印加するパルスの幅を狭くする必要が生じる。しかしながら、電圧パルスの立ち上がりから放電空間内で放電が発生するまでには「放電遅れ」と呼ばれるタイムラグの存在があるため、パルスの幅が狭くなれば書き込み期間内で放電が終了できる確率が低くなってしまう。その結果、点灯不良が生じ、ちらつきといった画質性能の低下という問題も生じてしまう。 That is, in order to display a high-definition image, the number of pixels to be written increases even though the time of one field is constant. Therefore, in the writing period in the subfield, the pulse applied to the address electrode It is necessary to reduce the width. However, there is a time lag called “discharge delay” from the rise of the voltage pulse to the occurrence of discharge in the discharge space, so if the pulse width is narrowed, the probability that the discharge can be completed within the writing period is low. End up. As a result, lighting failure occurs, and the problem of deterioration in image quality performance such as flickering occurs.
 図12は、従来のPDPの製造工程を示すフローチャートである。図12において、PDPの製造工程は、前面板を作成する「前面板作成工程」と、前面板を乾燥、焼成する「乾燥・焼成工程」と、背面板を作成する「背面板作成工程」と、背面板の画像表示領域外部に封着部材であるガラスフリットを塗布し、その樹脂成分等を除去するために350℃程度の温度で仮焼成する「フリット塗布工程」と、「乾燥・焼成工程」を終了した前面板と「フリット塗布工程」を終了した背面板とを封着する「封着工程」と、放電空間内のガスを排気する「排気工程」と、真空排気されたパネル内部にNeおよびXeを主成分とする放電ガスを供給する「放電ガス供給工程」とを含む。これらの工程を経てパネルが完成される。 FIG. 12 is a flowchart showing a manufacturing process of a conventional PDP. In FIG. 12, the PDP manufacturing process includes a “front plate creating process” for creating a front plate, a “drying / baking step” for drying and firing the front plate, and a “back plate creating step” for creating the back plate. The glass frit as a sealing member is applied to the outside of the image display area of the back plate, and a “frit coating process” is performed at a temperature of about 350 ° C. in order to remove the resin component and the like, and a “drying and baking process” "The sealing process" that seals the front plate that has finished "the frit application process" and the "exhaust process" that exhausts the gas in the discharge space, and the inside of the vacuum-evacuated panel A “discharge gas supply step” of supplying a discharge gas mainly composed of Ne and Xe. A panel is completed through these steps.
 前面板の保護層を形成する上述の金属酸化物が活性であるため、空気中の不純物ガスを吸着しやすい。そのため、点灯不良が生じやすく、また、放電ガスの圧力やXe分圧の増加に伴い、その傾向が顕著であった。 Since the above-mentioned metal oxide that forms the protective layer of the front plate is active, it easily adsorbs impurity gases in the air. For this reason, lighting failure is likely to occur, and the tendency is remarkable as the pressure of the discharge gas and the Xe partial pressure increase.
 そこで、「封着工程」の前に前面板を高温で焼成して、不純物ガスを除去することが必要となる。しかしながら、保護層を2種類以上の金属酸化物で形成するとき、一部複合化した金属酸化物に不純物ガスが吸着される。これは、金属酸化物単体に不純物ガスが吸着するのに比べ、ガス吸着の化学状態が複雑になる。そのため、不純物ガスを除去するのが難しくなり、高温で焼成しただけでは特性改善が不十分であった。前面板を真空焼成すると、特性改善が認められたが、真空焼成は、設備コストの増大と生産タクトの低下を招き、量産性に欠けるものであった。 Therefore, it is necessary to remove the impurity gas by baking the front plate at a high temperature before the “sealing step”. However, when the protective layer is formed of two or more kinds of metal oxides, the impurity gas is adsorbed on the partially complexed metal oxide. This complicates the chemical state of gas adsorption compared to the case where an impurity gas is adsorbed on a single metal oxide. For this reason, it is difficult to remove the impurity gas, and the characteristic improvement is insufficient only by baking at a high temperature. When the front plate was baked in vacuum, improvement in characteristics was observed. However, the vacuum baked resulted in an increase in equipment cost and a reduction in production tact, resulting in lack of mass productivity.
特開2002-260535号公報JP 2002-260535 A 特開平11-339665号公報Japanese Patent Laid-Open No. 11-339665 特開2006-59779号公報JP 2006-59779 A 特開平8-236028号公報JP-A-8-236028 特開平10-334809号公報JP-A-10-334809
 本発明は、誘電体層と前記誘電体層を被覆する保護層とを有する前面板と、下地誘電体層と下地誘電体層上に形成された複数の隔壁とを有する背面板とを対向配置し、前面板と背面板との間に隔壁で仕切られた放電空間を備えたプラズマディスプレイパネルの製造方法であって、対向配置させた前面板と背面板とを封着部材で封着する封着工程と、封着部材の軟化点以上の温度で放電空間内のガスを排気する排気工程とを有し、封着工程は、保護層に吸着した不純物ガスが脱離する温度領域で窒素もしくは酸素を含むガスを流入しながら温度を保持する期間を複数回設けて段階的に昇温する昇温工程と、放電空間が陽圧状態となるように乾燥ガスを流入させるガス流入工程とを含むものである。 According to the present invention, a front plate having a dielectric layer and a protective layer covering the dielectric layer, and a back plate having a base dielectric layer and a plurality of barrier ribs formed on the base dielectric layer are opposed to each other. And a method of manufacturing a plasma display panel having a discharge space partitioned by a partition wall between a front plate and a back plate, wherein the front plate and the back plate arranged opposite to each other are sealed with a sealing member. And an exhausting step of exhausting the gas in the discharge space at a temperature equal to or higher than the softening point of the sealing member, and the sealing step includes nitrogen or A temperature raising step in which the temperature is maintained multiple times while the gas containing oxygen is introduced, and a gas inflow step in which the dry gas is introduced so that the discharge space is in a positive pressure state. It is a waste.
 この構成によれば、保護層における二次電子放出特性を向上させる。よって、輝度を高めるために放電ガスのXeガス分圧を大きくした場合でも、放電開始電圧を低減することが可能で、高精細画像でも高輝度で低電圧駆動が可能な表示性能と量産性に優れたPDPを実現することができる。 This configuration improves the secondary electron emission characteristics in the protective layer. Therefore, even when the Xe gas partial pressure of the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge starting voltage, and display performance and mass productivity that enable high-intensity and low-voltage driving even in high-definition images. An excellent PDP can be realized.
 また、パネルの製造工程中における保護層と不純物ガスとの反応を抑制することができ、放電セル毎の放電特性のばらつきを抑制したPDPを実現することができる。 Also, the reaction between the protective layer and the impurity gas during the panel manufacturing process can be suppressed, and a PDP in which variation in discharge characteristics among discharge cells is suppressed can be realized.
図1は、一実施の形態におけるPDPの構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment. 図2は、同PDPの前面板の断面図である。FIG. 2 is a cross-sectional view of the front plate of the PDP. 図3は、同PDPの製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a manufacturing method of the PDP. 図4は、同PDPの下地層のX線回折結果を示す図である。FIG. 4 is a view showing an X-ray diffraction result of the underlayer of the PDP. 図5は、同PDPの他の構成の下地層におけるX線回折結果を示す図である。FIG. 5 is a diagram showing an X-ray diffraction result in the base layer having another configuration of the PDP. 図6は、同PDPの凝集粒子を説明するための拡大図である。FIG. 6 is an enlarged view for explaining the aggregated particles of the PDP. 図7は、同PDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図である。FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer. 図8Aは、同PDPの保護層の温度変化に対する脱離ガス分析結果を示す特性図である。FIG. 8A is a characteristic diagram showing a desorption gas analysis result with respect to a temperature change of the protective layer of the PDP. 図8Bは、同PDPの保護層の処理時間に対する脱離ガス分析結果を示す特性図である。FIG. 8B is a characteristic diagram showing the desorption gas analysis result with respect to the processing time of the protective layer of the PDP. 図9Aは、同PDPの製造工程において不純物ガスを水とした場合における前面板の脱離ガス分析結果を示す特性図である。FIG. 9A is a characteristic diagram showing a desorption gas analysis result of the front plate when the impurity gas is water in the manufacturing process of the PDP. 図9Bは、同PDPの製造工程において不純物ガスを二酸化炭素とした場合における前面板の脱離ガス分析結果を示す特性図である。FIG. 9B is a characteristic diagram showing a desorption gas analysis result of the front plate when the impurity gas is carbon dioxide in the manufacturing process of the PDP. 図10は、同PDPの封着工程~放電ガス供給工程までの温度プロファイルの一例を示す特性図である。FIG. 10 is a characteristic diagram showing an example of a temperature profile from the sealing step to the discharge gas supply step of the PDP. 図11Aは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11A is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図11Bは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11B is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図11Cは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11C is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図11Dは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11D is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図11Eは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11E is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図11Fは、同PDPの封着工程~放電ガス供給工程までの一工程を示す模式図である。FIG. 11F is a schematic diagram showing one process from a sealing process to a discharge gas supply process of the PDP. 図12は、従来のPDPの製造方法を示すフローチャートである。FIG. 12 is a flowchart showing a conventional method for manufacturing a PDP.
 以下、一実施の形態について、図面を参照しながら説明する。 Hereinafter, an embodiment will be described with reference to the drawings.
 図1は、一実施の形態におけるPDPの構造を示す斜視図である。PDPの基本構造は、一般的な交流面放電型PDPと同様である。図示の通り、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置され、前面板2と背面板10の周辺部を封着部材によって気密封着することにより構成されている。封着されたPDP1内部の放電空間16には、XeとNeなどの放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。 FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment. The basic structure of the PDP is the same as that of a general AC surface discharge type PDP. As shown in the figure, the PDP 1 has a front plate 2 made of a front glass substrate 3 and the like and a back plate 10 made of a back glass substrate 11 facing each other, and the periphery of the front plate 2 and the back plate 10 is a sealing member. It is comprised by airtightly wearing by. The discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Xe and Ne at a pressure of 400 Torr to 600 Torr (5.3 × 10 4 Pa to 8.0 × 10 4 Pa).
 前面板2の前面ガラス基板3上には、走査電極4及び維持電極5よりなる一対の帯状の表示電極6とブラックストライプである遮光層7が互いに平行に複数列配置されている。それら表示電極6と遮光層7とを覆うように電荷を保持してコンデンサとしての働きをする誘電体層8が形成され、さらにその上に保護層9が形成されている。 On the front glass substrate 3 of the front plate 2, a pair of strip-shaped display electrodes 6 composed of scanning electrodes 4 and sustaining electrodes 5 and light shielding layers 7 which are black stripes are arranged in a plurality of rows in parallel. A dielectric layer 8 is formed so as to cover the display electrodes 6 and the light-shielding layer 7 and retain a charge to act as a capacitor, and a protective layer 9 is further formed thereon.
 また、背面板10の背面ガラス基板11上には、前面板2の走査電極4及び維持電極5と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置され、これを下地誘電体層13が被覆している。さらに、アドレス電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝ごとに、紫外線によって赤色、緑色及び青色にそれぞれ発光する蛍光体層15が順次塗布して形成されている。走査電極4及び維持電極5とアドレス電極12とが交差する位置に放電空間16が形成され、表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電空間16がカラー表示のための画素になる。 On the back glass substrate 11 of the back plate 10, a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5 of the front plate 2. Layer 13 is covering. Further, a partition wall 14 having a predetermined height is formed on the base dielectric layer 13 between the address electrodes 12 to divide the discharge space 16. In each groove between the barrier ribs 14, a phosphor layer 15 that emits red, green, and blue light by ultraviolet rays is sequentially applied. A discharge space 16 is formed at a position where the scan electrode 4 and the sustain electrode 5 and the address electrode 12 intersect, and the discharge space 16 having the red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 is used for color display. It becomes a pixel for.
 図2は、一実施の形態におけるPDPの前面板の断面図であり、図2は図1を上下反転させて示している。図示の通り、フロート法などにより製造された前面ガラス基板3に、走査電極4と維持電極5よりなる表示電極6と遮光層7がパターン形成されている。走査電極4と維持電極5はそれぞれインジウムスズ酸化物(ITO)や酸化スズ(SnO2)などからなる透明電極4a、5aと、透明電極4a、5a上に形成された金属バス電極4b、5bとにより構成されている。金属バス電極4b、5bは透明電極4a、5aの長手方向に導電性を付与する目的として用いられ、銀(Ag)を主成分とする導電性材料によって形成されている。 FIG. 2 is a cross-sectional view of the front plate of the PDP in one embodiment, and FIG. 2 shows FIG. 1 upside down. As shown in the figure, a display electrode 6 including a scanning electrode 4 and a sustain electrode 5 and a light shielding layer 7 are patterned on a front glass substrate 3 manufactured by a float method or the like. Scan electrode 4 and sustain electrode 5 are made of transparent electrodes 4a and 5a made of indium tin oxide (ITO), tin oxide (SnO 2 ), etc., and metal bus electrodes 4b and 5b formed on transparent electrodes 4a and 5a, respectively. It is comprised by. The metal bus electrodes 4b and 5b are used for the purpose of imparting conductivity in the longitudinal direction of the transparent electrodes 4a and 5a, and are formed of a conductive material mainly composed of silver (Ag).
 誘電体層8は、前面ガラス基板3上に形成されたこれらの透明電極4a、5aと金属バス電極4b、5bと遮光層7を覆って設けた第1誘電体層81と、第1誘電体層81上に形成された第2誘電体層82の少なくとも2層構成とし、さらに第2誘電体層82上に保護層9が形成されている。 The dielectric layer 8 includes a first dielectric layer 81 provided on the front glass substrate 3 so as to cover the transparent electrodes 4a and 5a, the metal bus electrodes 4b and 5b, and the light shielding layer 7, and a first dielectric. The second dielectric layer 82 formed on the layer 81 has at least two layers, and the protective layer 9 is formed on the second dielectric layer 82.
 保護層9は、誘電体層8上に形成した下地層91と、下地層91上に酸化マグネシウム(MgO)の結晶粒子92aを複数個凝集させた凝集粒子92とにより構成している。また、保護層9において、下地層91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2種類以上の酸化物からなる金属酸化物により形成されている。 The protective layer 9 includes a base layer 91 formed on the dielectric layer 8 and aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a are aggregated on the base layer 91. In the protective layer 9, the underlayer 91 is a metal oxide composed of at least two kinds of oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
 図3は、本実施の形態におけるPDPの製造工程を示すフローチャートである。図示の通り、PDPの製造工程は、前面板2を作成する「前面板作成工程」と、背面板10を作成する「背面板作成工程」と、背面板10の画像表示領域外部に封着部材を塗布し、その樹脂成分等を除去するために350℃程度の温度で仮焼成する「封着材塗布工程」と、前面板2と「封着材塗布工程」を終了した背面板10とを封着する「封着工程」と、放電空間16内のガスを排気する「排気工程」と、真空排気されたパネル内部にNeおよびXeを主成分とする放電ガスを供給する「放電ガス供給工程」とを含む。これらの工程を経てパネルが完成される。 FIG. 3 is a flowchart showing the manufacturing process of the PDP in the present embodiment. As shown in the figure, the PDP manufacturing process includes a “front plate creating process” for creating the front plate 2, a “back plate creating step” for creating the back plate 10, and a sealing member outside the image display area of the back plate 10. A “sealing material application process” in which the resin component and the like are temporarily baked at a temperature of about 350 ° C., and the front panel 2 and the back panel 10 that has completed the “sealing material application process”. “Sealing process” for sealing, “exhaust process” for exhausting the gas in the discharge space 16, and “discharge gas supply process for supplying a discharge gas mainly composed of Ne and Xe into the evacuated panel” Is included. A panel is completed through these steps.
 ここで、封着部材としては、酸化ビスマスや酸化バナジウムを主成分としたフリットが望ましい。この酸化ビスマスを主成分とするフリットとしては、例えば、Bi23-B23-RO-MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V25-BaO-TeO-WO系のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。 Here, the sealing member is preferably a frit mainly composed of bismuth oxide or vanadium oxide. Examples of the frit mainly composed of bismuth oxide include a Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca, and Mg, and M is Any of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used. Further, as a frit containing vanadium oxide as a main component, for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 or cordierite is added to a V 2 O 5 —BaO—TeO—WO glass material. Things can be used.
 まず、「前面板作成工程」について説明する。前面ガラス基板3上に、走査電極4及び維持電極5と遮光層7とを形成する。走査電極4と維持電極5とを構成する透明電極4a、5aと金属バス電極4b、5bは、フォトリソグラフィ法などを用いてパターニングして形成される。透明電極4a、5aは薄膜プロセスなどを用いて形成され、金属バス電極4b、5bは銀(Ag)材料を含むペーストを所定の温度で焼成して固化している。また、遮光層7も同様に、黒色顔料を含むペーストをスクリーン印刷する方法や、黒色顔料をガラス基板の全面に形成した後にフォトリソグラフィ法を用いてパターニングし、焼成することにより形成される。 First, the “front plate creation process” will be described. On the front glass substrate 3, the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed. Transparent electrodes 4a and 5a and metal bus electrodes 4b and 5b constituting scan electrode 4 and sustain electrode 5 are formed by patterning using a photolithography method or the like. The transparent electrodes 4a and 5a are formed using a thin film process or the like, and the metal bus electrodes 4b and 5b are solidified by baking a paste containing a silver (Ag) material at a predetermined temperature. Similarly, the light shielding layer 7 is also formed by screen printing a paste containing a black pigment, or by patterning and baking using a photolithography method after forming a black pigment on the entire surface of the glass substrate.
 次に、走査電極4、維持電極5及び遮光層7を覆うように前面ガラス基板3上に誘電体ペーストをダイコート法などにより塗布して誘電体ペースト(誘電体材料)層を形成する。誘電体ペーストを塗布した後、所定の時間放置することによって塗布された誘電体ペースト表面がレベリングされて平坦な表面になる。その後、誘電体ペースト層を焼成固化することにより、走査電極4、維持電極5及び遮光層7を覆う誘電体層8が形成される。なお、誘電体ペーストはガラス粉末などの誘電体材料、バインダ及び溶剤を含む塗料である。 Next, a dielectric paste (dielectric material) layer is formed by applying a dielectric paste on the front glass substrate 3 by a die coating method or the like so as to cover the scanning electrode 4, the sustain electrode 5 and the light shielding layer 7. After the dielectric paste is applied, the surface of the applied dielectric paste is leveled by leaving it to stand for a predetermined time, so that a flat surface is obtained. Thereafter, the dielectric paste layer is formed by baking and solidifying the dielectric paste layer to cover the scan electrode 4, the sustain electrode 5, and the light shielding layer 7. The dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
 次に、誘電体層8上に下地層91を形成する。本実施の形態においては、下地層91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。 Next, a base layer 91 is formed on the dielectric layer 8. In the present embodiment, the base layer 91 is formed of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
 この下地層91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の単独材料のペレットを混合するか、それらの材料を予め混合して作製したペレットを用いる等で、薄膜成膜方法により形成される。薄膜成膜方法としては、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法など公知の方法が適用できる。一例として、スパッタリング法では1Pa、蒸着法の一例である電子ビーム蒸着法では0.1Paが実際上取り得る圧力の上限と考えられる。また、下地層91の成膜時の雰囲気としては、水分付着や不純物ガスの吸着を防止するために外部と遮断された密閉状態で、成膜時の雰囲気を調整することにより、所定の電子放出特性を有する金属酸化物よりなる下地層91を形成することができる。 The underlayer 91 is prepared by mixing pellets of single materials of magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO), or by mixing these materials in advance. It is formed by a thin film forming method such as using pellets. As a thin film forming method, a known method such as an electron beam evaporation method, a sputtering method, or an ion plating method can be applied. As an example, 1 Pa is considered as the upper limit of the pressure that can actually be taken in the sputtering method and 0.1 Pa in the electron beam evaporation method, which is an example of the evaporation method. In addition, as an atmosphere during film formation of the underlayer 91, predetermined electron emission can be achieved by adjusting the atmosphere during film formation in a sealed state shut off from the outside in order to prevent moisture adhesion and impurity gas adsorption. A base layer 91 made of a metal oxide having characteristics can be formed.
 次に、下地層91上に付着形成する酸化マグネシウム(MgO)の結晶粒子92aの凝集粒子92について述べる。これらの結晶粒子92aは、以下に示す気相合成法または前駆体焼成法のいずれかで製造することができる。気相合成法では、不活性ガスが満たされた雰囲気下で純度が99.9%以上のマグネシウム金属材料を加熱し、さらに、雰囲気に酸素を少量導入することによって、マグネシウムを直接酸化させ、酸化マグネシウム(MgO)の結晶粒子92aを作製することができる。 Next, the agglomerated particles 92 of the magnesium oxide (MgO) crystal particles 92a deposited on the base layer 91 will be described. These crystal particles 92a can be manufactured by any one of the following vapor phase synthesis method or precursor baking method. In the gas phase synthesis method, a magnesium metal material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas, and a small amount of oxygen is introduced into the atmosphere to directly oxidize magnesium, thereby oxidizing the material. Magnesium (MgO) crystal particles 92a can be produced.
 前駆体焼成法では、酸化マグネシウム(MgO)の前駆体を700℃以上の高温で均一に焼成し、これを徐冷して酸化マグネシウム(MgO)の結晶粒子92aを得ることができる。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(C5722)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO3)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO32)、シュウ酸マグネシウム(MgC24)の内のいずれか1種以上の化合物を選ぶことができる。尚、選択した化合物によっては、通常、水和物の形態をとることもあり、それを用いてもよい。 In the precursor firing method, a magnesium oxide (MgO) precursor is uniformly fired at a high temperature of 700 ° C. or higher, and this is gradually cooled to obtain magnesium oxide (MgO) crystal particles 92a. Examples of the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (C 5 H 7 O 2 ) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 3 ), One or more compounds selected from magnesium chloride (MgCl 2 ), magnesium sulfate (MgSO 4 ), magnesium nitrate (Mg (NO 3 ) 2 ), and magnesium oxalate (MgC 2 O 4 ) can be selected. Depending on the selected compound, it may usually take the form of a hydrate, which may be used.
 これらの化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整する。これらの化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結を生じ、高結晶性の酸化マグネシウム(MgO)の結晶粒子を得にくいためである。このため、不純物元素を除去するなどにより予め前駆体を調整することが必要となる。 These compounds are adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or more, preferably 99.98% or more. If these compounds contain a certain amount or more of various impurity elements such as alkali metals, B, Si, Fe, and Al, unnecessary interparticle adhesion and sintering occur during heat treatment, and highly crystalline magnesium oxide ( This is because it is difficult to obtain MgO) crystal particles. For this reason, it is necessary to adjust the precursor in advance by removing the impurity element.
 上記いずれかの方法で得られた酸化マグネシウム(MgO)の結晶粒子92aを、溶媒に分散させ、その分散液をスプレー法やスクリーン印刷法、静電塗布法などによって下地層91の表面に分散散布させる。 The magnesium oxide (MgO) crystal particles 92a obtained by any of the above methods are dispersed in a solvent, and the dispersion is dispersed and dispersed on the surface of the underlayer 91 by spraying, screen printing, electrostatic coating, or the like. Let
 次に、保護層9に酸化マグネシウム(MgO)の結晶粒子92aを下地層91の表面に定着させる。このような一連の工程により前面ガラス基板3上に所定の構成物(走査電極4、維持電極5、遮光層7、誘電体層8、保護層9)が形成されて前面板2が完成する。 Next, magnesium oxide (MgO) crystal particles 92 a are fixed to the surface of the underlayer 91 on the protective layer 9. Through such a series of steps, predetermined components (scanning electrode 4, sustaining electrode 5, light shielding layer 7, dielectric layer 8, and protective layer 9) are formed on front glass substrate 3, and front plate 2 is completed.
 一方、「背面板作成工程」において、背面板10は次のようにして形成される。まず、背面ガラス基板11上に、銀(Ag)材料を含むペーストをスクリーン印刷する方法や、金属膜を全面に形成した後、フォトリソグラフィ法を用いてパターニングする方法などによりアドレス電極12用の構成物となる材料層を形成する。その後、所定の温度で焼成することによりアドレス電極12を形成する。次に、アドレス電極12が形成された背面ガラス基板11上に、ダイコート法などによりアドレス電極12を覆うように誘電体ペーストを塗布して誘電体ペースト層を形成する。その後、誘電体ペースト層を焼成することにより下地誘電体層13を形成する。 On the other hand, in the “back plate making process”, the back plate 10 is formed as follows. First, the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at a predetermined temperature. Next, a dielectric paste layer is formed on the rear glass substrate 11 on which the address electrodes 12 are formed by applying a dielectric paste so as to cover the address electrodes 12 by a die coating method or the like. Thereafter, the base dielectric layer 13 is formed by firing the dielectric paste layer.
 次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストを塗布し、所定の形状にパターニングすることにより隔壁材料層を形成する。その後、所定の温度で焼成することにより隔壁14を形成する。ここで、下地誘電体層13上に塗布した隔壁用ペーストをパターニングする方法としては、フォトリソグラフィ法やサンドブラスト法を用いることができる。そして、隣接する隔壁14間の下地誘電体層13上及び隔壁14の側面に蛍光体材料を含む蛍光体ペーストを塗布し、焼成することにより蛍光体層15が形成される。以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。 Next, a barrier rib forming paste containing barrier rib material is applied on the underlying dielectric layer 13 and patterned into a predetermined shape to form a barrier rib material layer. Then, the partition 14 is formed by baking at a predetermined temperature. Here, as a method of patterning the partition wall paste applied on the base dielectric layer 13, a photolithography method or a sand blast method can be used. Then, the phosphor layer 15 is formed by applying and baking a phosphor paste containing a phosphor material on the base dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14. Through the above steps, the back plate 10 having predetermined components on the back glass substrate 11 is completed.
 ここで、前面板2の誘電体層8を構成する第1誘電体層81と第2誘電体層82について詳細に説明する。第1誘電体層81の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を20重量%~40重量%、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を0.5重量%~12重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。 Here, the first dielectric layer 81 and the second dielectric layer 82 constituting the dielectric layer 8 of the front plate 2 will be described in detail. The dielectric material of the first dielectric layer 81 is composed of the following material composition. That is, 20% by weight to 40% by weight of bismuth oxide (Bi 2 O 3 ), 0.5% by weight to 12% of at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Contains 0.1% by weight to 7% by weight of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese dioxide (MnO 2 ). .
 なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。 In place of molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), manganese dioxide (MnO 2 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), cobalt oxide At least one selected from (Co 2 O 3 ), vanadium oxide (V 2 O 7 ), and antimony oxide (Sb 2 O 3 ) may be contained in an amount of 0.1 wt% to 7 wt%.
 また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。 In addition to the above components, zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight. A material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
 これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第1誘電体層81用ペーストを作製する。 A dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 μm to 2.5 μm. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to paste for the first dielectric layer 81 for die coating or printing. Is made.
 バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。 The binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate. In addition, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate and tributyl phosphate are added to the paste as needed, and glycerol monooleate, sorbitan sesquioleate, homogenol (Kao Corporation) as a dispersant. The printing property may be improved as a paste by adding a phosphate ester of an alkyl allyl group, etc.
 次に、この第1誘電体層用ペーストを用い、表示電極6を覆うように前面ガラス基板3にダイコート法あるいはスクリーン印刷法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の575℃~590℃で焼成して第1誘電体層81を形成する。 Next, using this first dielectric layer paste, the front glass substrate 3 is printed by a die coat method or a screen printing method so as to cover the display electrode 6 and dried, and then slightly higher than the softening point of the dielectric material. The first dielectric layer 81 is formed by baking at a temperature of 575 ° C. to 590 ° C.
 第2誘電体層82の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を11重量%~20重量%、さらに、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を1.6重量%~21重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。 The dielectric material of the second dielectric layer 82 is composed of the following material composition. That is, bismuth oxide (Bi 2 O 3 ) is 11 wt% to 20 wt%, and at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) is 1.6 wt%. It contains ˜21 wt%, and contains 0.1 wt% ˜7 wt% of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ).
 酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)、酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。 Instead of molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), cobalt oxide (Co 2 O 3 ), vanadium oxide At least one selected from (V 2 O 7 ), antimony oxide (Sb 2 O 3 ), and manganese oxide (MnO 2 ) may be contained in an amount of 0.1 wt% to 7 wt%. In addition to the above components, zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight. A material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
 これらの組成からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第2誘電体層用ペーストを作製する。バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。 Dielectric material powders having these compositions are pulverized with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 μm to 2.5 μm to produce a dielectric material powder. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to form a second dielectric layer paste for die coating or printing. Make it. The binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate. In the paste, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate are added as plasticizers as needed, and glycerol monooleate, sorbitan sesquioleate, and homogenol (Kao Corporation) as dispersants. The printability may be improved by adding a phosphoric ester of an alkyl allyl group or the like.
 次にこの第2誘電体層用ペーストを用いて第1誘電体層81上にスクリーン印刷法あるいはダイコート法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の550℃~590℃で焼成する。 Next, using this second dielectric layer paste, printing is performed on the first dielectric layer 81 by screen printing or die coating, followed by drying. Thereafter, a temperature slightly higher than the softening point of the dielectric material is 550 ° C. Bake at 590 ° C.
 誘電体層8の膜厚は、可視光透過率を確保するために第1誘電体層81と第2誘電体層82とを合わせ41μm以下とすることが好ましい。また、第1誘電体層81は、金属バス電極4b、5bの銀(Ag)との反応を抑制するために酸化ビスマス(Bi23)の含有量を第2誘電体層82の酸化ビスマス(Bi23)の含有量よりも多くして20重量%~40重量%としている。そのため、第1誘電体層81の可視光透過率が第2誘電体層82の可視光透過率よりも低くなるので、第1誘電体層81の膜厚を第2誘電体層82の膜厚よりも薄くしている。 The film thickness of the dielectric layer 8 is preferably set to 41 μm or less in combination with the first dielectric layer 81 and the second dielectric layer 82 in order to ensure visible light transmittance. The first dielectric layer 81 has a bismuth oxide (Bi 2 O 3 ) content of the second dielectric layer 82 in order to suppress the reaction of the metal bus electrodes 4b and 5b with silver (Ag). More than the content of (Bi 2 O 3 ), the content is 20 wt% to 40 wt%. Therefore, since the visible light transmittance of the first dielectric layer 81 is lower than the visible light transmittance of the second dielectric layer 82, the film thickness of the first dielectric layer 81 is set to the film thickness of the second dielectric layer 82. It is thinner.
 第2誘電体層82は、酸化ビスマス(Bi23)の含有量が11重量%以下であると着色は生じにくくなるが、第2誘電体層82中に気泡が発生しやすくなるため好ましくない。また、含有率が40重量%を超えると着色しやすくなるために透過率が低下する。また、誘電体層8の膜厚が小さいほど輝度の向上と放電電圧を低減するという効果は顕著になるので、絶縁耐圧が低下しない範囲内であればできるだけ膜厚を薄く設定するのが望ましい。このような観点から、本実施の形態では、誘電体層8の膜厚を41μm以下に設定し、第1誘電体層81を5μm~15μm、第2誘電体層82を20μm~36μmとしている。 The second dielectric layer 82 is less likely to be colored when the content of bismuth oxide (Bi 2 O 3 ) is 11% by weight or less, but is preferable because bubbles are easily generated in the second dielectric layer 82. Absent. Moreover, since it will become easy to color when content rate exceeds 40 weight%, the transmittance | permeability falls. In addition, the smaller the film thickness of the dielectric layer 8, the more remarkable is the effect of improving the luminance and reducing the discharge voltage. Therefore, it is desirable to set the film thickness as thin as possible within the range where the withstand voltage does not decrease. From this point of view, in the present embodiment, the thickness of the dielectric layer 8 is set to 41 μm or less, the first dielectric layer 81 is set to 5 μm to 15 μm, and the second dielectric layer 82 is set to 20 μm to 36 μm.
 このようにして製造されたPDP1は、表示電極6に銀(Ag)材料を用いても、前面ガラス基板3の着色現象(黄変)が少なく、かつ、誘電体層8中に気泡の発生などがなく、絶縁耐圧性能に優れた誘電体層8を実現することができる。 In the PDP 1 manufactured in this way, even when a silver (Ag) material is used for the display electrode 6, the front glass substrate 3 is less colored (yellowing), and bubbles are generated in the dielectric layer 8. Therefore, the dielectric layer 8 having excellent withstand voltage performance can be realized.
 次に、本実施の形態におけるPDP1の保護層9について説明する。本実施の形態におけるPDP1では、図2に示すように、保護層9は、誘電体層8に形成した下地層91と、下地層91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92とにより構成されている。また、下地層91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物は下地層91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。 Next, the protective layer 9 of the PDP 1 in this embodiment will be described. In the PDP 1 in the present embodiment, as shown in FIG. 2, the protective layer 9 includes an underlayer 91 formed on the dielectric layer 8 and magnesium oxide (MgO) crystal particles 92 a attached on the underlayer 91. A plurality of aggregated particles 92 are formed. The underlayer 91 is formed of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). In the X-ray diffraction analysis of the surface of the base layer 91, the metal oxide has a peak between the minimum diffraction angle and the maximum diffraction angle generated from a single oxide constituting the metal oxide having a specific orientation plane. .
 すなわち、保護層9の下地層91は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、保護層9の下地層91の特定方位面におけるX線回折分析の回折角ピークが、保護層9の下地層91に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。 That is, the base layer 91 of the protective layer 9 includes at least two metal oxides selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and the specific orientation of the base layer 91 of the protective layer 9 The diffraction angle peak of the X-ray diffraction analysis on the plane is the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the underlayer 91 of the protective layer 9; It exists between the diffraction angle peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
 図4は、PDPの保護層を構成する下地層のX線回折結果を示す図である。また、図4中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示している。 FIG. 4 is a diagram showing an X-ray diffraction result of the base layer constituting the protective layer of the PDP. FIG. 4 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
 図4において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図中には特定方位面である結晶方位面を括弧付けで示している。図4に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム(SrO)単体では回折角30.0度、酸化バリウム(BaO)単体では回折角27.9度にピークを有していることがわかる。 4, the horizontal axis represents the Bragg diffraction angle (2θ), and the vertical axis represents the intensity of the X-ray diffraction wave. The unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit). In the figure, the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 4, in the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and strontium oxide (SrO) alone. Shows a peak at a diffraction angle of 30.0 degrees, and barium oxide (BaO) alone has a peak at a diffraction angle of 27.9 degrees.
 本実施の形態におけるPDP1では、保護層9の下地層91として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。 In PDP 1 in the present embodiment, at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are used as base layer 91 of protective layer 9. It is made of a metal oxide made of a material.
 図4には、下地層91を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した下地層91のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した下地層91のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した下地層91のX線回折結果をC点で示している。 FIG. 4 shows the X-ray diffraction results when the single component constituting the underlayer 91 is two components. That is, the X-ray diffraction result of the base layer 91 formed using magnesium oxide (MgO) and calcium oxide (CaO) alone was formed using point A, magnesium oxide (MgO) and strontium oxide (SrO) alone. The X-ray diffraction result of the underlayer 91 is indicated by point B, and further, the X-ray diffraction result of the underlayer 91 formed using a simple substance of magnesium oxide (MgO) and barium oxide (BaO) is indicated by C point.
 すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。 That is, the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle. A peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone. Similarly, peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
 また、図5には、図4と同様に、下地層91を構成する単体成分が3成分以上の場合のX線回折結果を示している。すなわち、図5には、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。 Further, FIG. 5 shows the X-ray diffraction result in the case where the single component constituting the base layer 91 is three or more components, as in FIG. That is, FIG. 5 shows the results when magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO), and oxidation. The results when barium (BaO) is used are indicated by point E, and the results when calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) are used are indicated by point F.
 D点は、特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。 The point D corresponds to the diffraction angle of 36.9 degrees of magnesium oxide (MgO) as the maximum diffraction angle of a single oxide and the strontium oxide as the minimum diffraction angle in (111) of the crystal orientation plane as the specific orientation plane. There is a peak at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of (SrO) alone. Similarly, peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
 したがって、本実施の形態におけるPDP1の下地層91は、単体として2成分であれ、3成分であれ、下地層91を構成する金属酸化物の下地層91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。 Therefore, the base layer 91 of the PDP 1 in this embodiment has a specific orientation plane in the X-ray diffraction analysis of the base layer 91 surface of the metal oxide constituting the base layer 91, whether it is a single component or a three component. A peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the metal oxide.
 すなわち、保護層9の下地層91は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、保護層9の下地層91の特定方位面におけるX線回折分析の回折角ピークが、保護層9の下地層91に含まれる2つの金属酸化物の内、一方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間に存在するものである。 That is, the base layer 91 of the protective layer 9 includes at least two metal oxides selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and the specific orientation of the base layer 91 of the protective layer 9 The diffraction angle peak of the X-ray diffraction analysis on the plane is the diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the underlayer 91 of the protective layer 9; It exists between the diffraction angle peak of the X-ray diffraction analysis in the specific orientation plane of the other metal oxide.
 なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。 In the above description, (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
 酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の真空準位からの深さは、酸化マグネシウム(MgO)と比較して浅い領域に存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。 The depth from the vacuum level of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) exists in a shallow region as compared with magnesium oxide (MgO). Therefore, when the PDP 1 is driven, when electrons existing in the energy levels of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) transition to the ground state of the xenon (Xe) ion, Auger It is considered that the number of electrons emitted due to the effect increases as compared with the case of transition from the energy level of magnesium oxide (MgO).
 また、上述のように、本実施の形態における下地層91は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図4及び図5に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、下地層91のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により他の電子が獲得するエネルギー量が真空準位を超えて放出されるに十分な量とすることができる。 In addition, as described above, the base layer 91 in the present embodiment is configured such that a peak exists between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. Yes. As a result of the X-ray diffraction analysis, the metal oxide having the characteristics shown in FIGS. 4 and 5 has its energy level between the single oxides constituting them. Therefore, the energy level of the base layer 91 also exists between the single oxides, and the amount of energy acquired by other electrons due to the Auger effect can be set to a sufficient amount to be released beyond the vacuum level. .
 その結果、下地層91では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDP1を実現することができる。 As a result, the base layer 91 can exhibit better secondary electron emission characteristics than the magnesium oxide (MgO) alone, and the discharge sustaining voltage can be reduced. Therefore, in particular, when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP1.
 表1には、本実施の形態におけるPDP1において、450Torrのキセノン(Xe)及びネオン(Ne)の混合ガス(Xe、15%)を封入した場合の放電維持電圧の結果で、下地層91の構成を変えた場合の、PDP1の結果を示す。 Table 1 shows the structure of the underlying layer 91 as a result of the discharge sustaining voltage when a mixed gas (Xe, 15%) of 450 Torr of xenon (Xe) and neon (Ne) is sealed in the PDP 1 of the present embodiment. The result of PDP1 when changing is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の放電維持電圧は比較例を100とした場合の相対値で表している。サンプルAの下地層91は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物、サンプルBの下地層91は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物、サンプルCの下地層91は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物、サンプルDの下地層91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物、サンプルEの下地層91は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物によって構成されている。また、比較例は、下地層91が酸化マグネシウム(MgO)単体である場合について示している。 The discharge sustaining voltage in Table 1 is expressed as a relative value when the comparative example is 100. The base layer 91 of sample A is a metal oxide made of magnesium oxide (MgO) and calcium oxide (CaO). The base layer 91 of sample B is a metal oxide made of magnesium oxide (MgO) and strontium oxide (SrO). The underlayer 91 is a metal oxide made of magnesium oxide (MgO) and barium oxide (BaO). The underlayer 91 of the sample D is a metal oxide made of magnesium oxide (MgO), calcium oxide (CaO), and strontium oxide (SrO). The underlayer 91 of sample E is composed of a metal oxide made of magnesium oxide (MgO), calcium oxide (CaO), and barium oxide (BaO). Further, the comparative example shows a case where the base layer 91 is made of magnesium oxide (MgO) alone.
 放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、下地層91が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。 When the partial pressure of the discharge gas xenon (Xe) is increased from 10% to 15%, the luminance increases by about 30%. However, in the comparative example in which the underlying layer 91 is made of magnesium oxide (MgO) alone, the discharge is maintained. The voltage increases about 10%.
 一方、本実施の形態におけるPDP1では、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEいずれも、放電維持電圧を比較例に比較して約10%~20%低減することができる。そのため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDP1を実現することができる。 On the other hand, in the PDP 1 in the present embodiment, the discharge sustain voltage can be reduced by about 10% to 20% in all of the sample A, the sample B, the sample C, the sample D, and the sample E as compared with the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP 1 can be realized.
 なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体で特に反応性が高いために、水や二酸化炭素などの不純物と反応しやすく、その結果、電子放出性能が低下しやすい。 Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are particularly reactive as a single substance, so that they easily react with impurities such as water and carbon dioxide. As a result, electron emission performance is improved. It tends to decline.
 しかしながら、それらの金属酸化物の構成とすることにより、反応性が抑制され、不純物の混入や酸素欠損の少ない結晶構造で形成される。その結果、PDP1の駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立に加えて、適度な電子保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書込期間において書込不良を防止して確実な書込放電を行う上で有効である。 However, by using such a metal oxide structure, the reactivity is suppressed, and a crystal structure with few impurities and oxygen vacancies is formed. As a result, excessive emission of electrons during driving of the PDP 1 is suppressed, and in addition to the compatibility between low voltage driving and secondary electron emission performance, the effect of moderate electron retention characteristics is also exhibited. This charge retention characteristic is particularly effective for retaining wall charges stored during the initialization period and preventing write defects during the write period to perform reliable write discharge.
 次に、本実施の形態における下地層91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、主として書込放電における「放電遅れ」を抑制する効果と、「放電遅れ」の温度依存性を改善する効果が確認されている。そこで本実施の形態では、凝集粒子92が下地層91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。 Next, the agglomerated particles 92 provided on the underlayer 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail. Aggregated particles 92 of magnesium oxide (MgO) have been confirmed to have an effect of mainly suppressing “discharge delay” in write discharge and improving temperature dependency of “discharge delay”. Therefore, in the present embodiment, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to those of the base layer 91.
 「放電遅れ」は、放電開始時において、トリガーとなる初期電子が下地層91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地層91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地層91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書込放電における「放電遅れ」を抑制する効果に加え、「放電遅れ」の温度依存性を改善する効果も得られる。 The “discharge delay” is considered to be mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the underlayer 91 into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the underlayer 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition. In the configuration in which the metal oxide aggregated particles 92 are disposed on the surface of the underlayer 91, in addition to the effect of mainly suppressing the “discharge delay” in the write discharge, the effect of improving the temperature dependency of the “discharge delay” is also achieved. can get.
 以上のように、本実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果が得られる下地層91と、放電遅れの防止に効果のある酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDP1でも高速駆動を低電圧で駆動でき、且つ、点灯不良を抑制した高品位な画像表示性能を実現できる。 As described above, the PDP 1 according to the present embodiment includes the base layer 91 capable of achieving both low voltage driving and charge retention, and the magnesium oxide (MgO) aggregated particles 92 effective in preventing discharge delay. Thus, as a whole PDP 1, high-definition PDP 1 can be driven at a high voltage with a low voltage, and high-quality image display performance with reduced lighting defects can be realized.
 本実施の形態では、下地層91上に、結晶粒子92aが数個凝集した凝集粒子92を散布させ、全面ほぼ均一に分布するように複数個を付着させて構成している。図6は凝集粒子92を説明する拡大図である。 In the present embodiment, agglomerated particles 92 in which several crystal particles 92a are agglomerated are dispersed on base layer 91, and a plurality of particles are adhered so as to be distributed almost uniformly over the entire surface. FIG. 6 is an enlarged view for explaining the agglomerated particles 92.
 凝集粒子92は、図示の通り、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度に結合しているものである。凝集粒子92の粒径は、約1μm~数μm程度で、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有することが望ましい。 The agglomerated particles 92 are in a state where crystal particles 92a having a predetermined primary particle diameter are aggregated or necked as shown in the figure. In other words, it is not a solid that has a large binding force, but a plurality of primary particles that are aggregated by static electricity or van der Waals force. Some or all of them are bonded to such a degree that they become primary particles. The particle size of the agglomerated particles 92 is about 1 μm to several μm, and the crystal particles 92 a preferably have a polyhedral shape having seven or more surfaces such as a tetrahedron and a dodecahedron.
 また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御することができる。一般的に、焼成温度は700℃から1500℃の範囲で選択できるが、焼成温度を比較的高い1000℃以上にすることで、その粒径を0.3~2μm程度に制御することが可能である。さらに、結晶粒子92aとしてMgO前駆体を加熱して得ることにより、その生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合して凝集粒子92を得ることができる。 Further, the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a. For example, when an MgO precursor such as magnesium carbonate or magnesium hydroxide is calcined and produced, the particle size can be controlled by controlling the calcining temperature and the calcining atmosphere. Generally, the firing temperature can be selected in the range of 700 ° C. to 1500 ° C., but by setting the firing temperature to a relatively high 1000 ° C. or higher, the particle size can be controlled to about 0.3 to 2 μm. is there. Furthermore, by heating the MgO precursor as the crystal particles 92a, a plurality of primary particles are bonded together by a phenomenon called agglomeration or necking in the production process to obtain agglomerated particles 92.
 図7は、本実施の形態におけるPDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図である。具体的には、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地層91を用いた場合の放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示している。下地層91として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、下地層91面におけるX線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。なお、図7には、保護層9として下地層91のみの場合と、下地層91上に凝集粒子92を配置した場合とについて示し、放電遅れは、下地層91中にカルシウム(Ca)が含有されていない場合を基準として示している。 FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer in the present embodiment. Specifically, the relationship between the discharge delay and the calcium (Ca) concentration in the protective layer 9 in the case of using the base layer 91 composed of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO) is shown. ing. The base layer 91 is composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO), and the metal oxide has a peak of magnesium oxide (MgO) in the X-ray diffraction analysis on the surface of the base layer 91. A peak exists between the diffraction angle at which the peak is generated and the diffraction angle at which the peak of calcium oxide (CaO) is generated. FIG. 7 shows the case where only the underlayer 91 is used as the protective layer 9 and the case where the aggregated particles 92 are arranged on the underlayer 91, and the discharge delay is caused by calcium (Ca) contained in the underlayer 91. The case where it is not done is shown as a standard.
 電子放出性能は、大きいほど電子放出量が多いことを示す数値で、表面状態及びガス種とその状態によって定まる初期電子放出量によって表わされる。初期電子放出量については表面にイオン、あるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できるが、PDP1の前面板2表面の評価を非破壊で実施することは困難を伴う。そこで、特開2007-48733号公報に記載されている方法を用いて評価した。すなわち、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値を測定し、その逆数を積分すると、初期電子の放出量と線形に対応する数値になる。放電時の遅れ時間とは、パルスの立ち上がりから放電が遅れて行われる放電遅れの時間を意味する。放電遅れは、放電が開始される際にトリガーとなる初期電子が保護層9表面から放電空間16中に放出されにくいことが主要な要因として考えられている。 The electron emission performance is a numerical value indicating that the larger the electron emission amount, the greater the amount of electron emission. The initial electron emission amount can be measured by a method of measuring the amount of electron current emitted from the surface by irradiating the surface with ions or an electron beam. However, the evaluation of the surface of the front plate 2 of the PDP 1 can be performed nondestructively. With difficulty. Therefore, evaluation was performed using the method described in JP-A-2007-48733. That is, among the delay times at the time of discharge, a numerical value called a statistical delay time, which is a measure of the likelihood of occurrence of discharge, is measured, and the reciprocal is integrated to obtain a numerical value linearly corresponding to the initial electron emission amount. The delay time at the time of discharge means a discharge delay time in which the discharge is delayed from the rising edge of the pulse. It is considered that the discharge delay is mainly caused by the fact that initial electrons that become a trigger when the discharge is started are not easily released from the surface of the protective layer 9 into the discharge space 16.
 図7より明らかなように、下地層91のみの場合と、下地層91上に凝集粒子92を配置した場合とにおいて、下地層91のみの場合はカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地層91上に凝集粒子92を配置することによって放電遅れを大幅に小さくすることができ、カルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。 As apparent from FIG. 7, in the case of only the underlayer 91 and in the case where the aggregated particles 92 are arranged on the underlayer 91, the discharge delay increases as the calcium (Ca) concentration increases in the case of only the underlayer 91. On the other hand, it can be seen that by disposing the agglomerated particles 92 on the base layer 91, the discharge delay can be significantly reduced, and the discharge delay hardly increases even when the calcium (Ca) concentration is increased.
 上記では、凝集粒子92の結晶粒子92aとして酸化マグネシウム(MgO)粒子を用いて説明したが、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子92aを用いても同様の効果を得ることができ、粒子種としては酸化マグネシウム(MgO)に限定されるものではない。 In the above description, the magnesium oxide (MgO) particles are used as the crystal particles 92a of the agglomerated particles 92. The same effect can be obtained even if the crystal particles 92a are used, and the particle type is not limited to magnesium oxide (MgO).
 本実施の形態において、保護層9を、上記のように酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2種類以上の金属酸化物により形成するとき、複数の金属酸化物を含むため、各金属酸化物における不純物ガスの脱離温度が異なるため、不純物ガスの脱離温度領域が広い範囲にわたることになる。このため、「封着工程」前の放置状態によって、水、炭酸ガス等の不純物ガスを吸着することにより放電特性が劣化し、放電セル毎の放電特性にばらつきが発生し、量産安定性が低下しやすい。 In the present embodiment, when the protective layer 9 is formed of at least two kinds of metal oxides selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide as described above, a plurality of metal oxides are included. Therefore, since the desorption temperatures of the impurity gases in the respective metal oxides are different, the desorption temperature range of the impurity gases extends over a wide range. For this reason, the discharge characteristics deteriorate due to adsorption of impurity gases such as water and carbon dioxide due to the state left before the “sealing process”, and the discharge characteristics vary from discharge cell to discharge cell, resulting in reduced mass production stability. It's easy to do.
 そこで、本実施の形態では、図3に示すように、保護層9に吸着した不純物ガスが脱離する温度領域で温度を保持する期間を複数回設けて段階的に昇温する昇温工程と、放電空間16に開口する貫通孔を通して放電空間16内が陽圧状態となるように乾燥ガスを流入させるガス流入工程を含む封着工程と、封着部材の軟化点以上の温度で放電空間16内のガスを排気する排気工程を有する。この工程によって、保護層9に吸着された不純物ガスや凝集粒子92の形成に用いた溶媒の残留成分や不純物ガスを除去できる。すなわち、放電空間16内の不純物ガスを低減し、放電特性の劣化やばらつきを抑制できる。 Therefore, in the present embodiment, as shown in FIG. 3, a temperature raising step in which the temperature is maintained in a temperature range where the impurity gas adsorbed on the protective layer 9 is desorbed and the temperature is raised stepwise is provided. A sealing process including a gas inflow process for allowing a dry gas to flow into the discharge space 16 through a through-hole opened in the discharge space 16 and a temperature equal to or higher than the softening point of the sealing member. An exhaust process for exhausting the gas inside. By this step, the impurity gas adsorbed on the protective layer 9 and the residual components of the solvent used for forming the aggregated particles 92 and the impurity gas can be removed. That is, the impurity gas in the discharge space 16 can be reduced, and deterioration and variation in discharge characteristics can be suppressed.
 ここで、保護層9に吸着した不純物ガスが脱離する温度領域で段階的に昇温する理由は、保護層9に吸着した不純物ガスと、凝集粒子92の形成に使用する溶媒の残留成分を短時間に効率よく除去するためである。 Here, the reason why the temperature is raised stepwise in the temperature region where the impurity gas adsorbed on the protective layer 9 is desorbed is that the impurity gas adsorbed on the protective layer 9 and the residual components of the solvent used for forming the aggregated particles 92 are This is for efficient removal in a short time.
 保護層9を構成する金属酸化物が複数の場合、各金属酸化物に吸着した不純物ガスの脱離温度が異なるために、複数の温度領域でガス脱離が生じ、結果として広い温度領域で不純物ガスが脱離し続けることになる。このとき、一番高い温度の脱離温度で焼成すると、保護層9内部まで十分に不純物ガスを分解しきれない。そこで、各不純物ガスが脱離する温度で段階的に昇温し、各温度領域で不純物ガスの脱離が完了するまで温度を保持することにより、清浄な保護層9が得られるのである。また、保持する温度は、その前に保持した温度よりも高く、段階的に昇温して焼成することが望ましい。さらに、最初に保持する温度は、300℃以上が望ましい。 When there are a plurality of metal oxides constituting the protective layer 9, the desorption temperatures of the impurity gases adsorbed on each metal oxide are different, so that gas desorption occurs in a plurality of temperature regions, resulting in impurities in a wide temperature region. The gas will continue to desorb. At this time, if baking is performed at the highest desorption temperature, the impurity gas cannot be sufficiently decomposed into the protective layer 9. Accordingly, the temperature is raised stepwise at the temperature at which each impurity gas is desorbed, and the temperature is maintained until the desorption of the impurity gas is completed in each temperature region, whereby a clean protective layer 9 can be obtained. Moreover, the temperature to hold | maintain is higher than the temperature hold | maintained before that, It is desirable to heat up in steps and to bake. Furthermore, it is desirable that the temperature held first is 300 ° C. or higher.
 また、上述の昇温中に乾燥ガスを流入させる理由は、パネル内の昇温により保護層9や背面板10からの一旦脱離した不純物ガスを再び保護層9に吸着させないように、炉内から物理的に押し出すものである。これは、高温の焼成雰囲気では水分が減少しているため、不純物ガスのうち、特に二酸化炭素が再吸着しやすく、保護層9を構成する金属酸化物の一部が炭酸化される。その結果、焼成炉内の温度分布と不純物ガスの濃度分布により、不純物ガスの再吸着が基板面内でムラになり、放電特性のバラツキが生じる要因の一つとなる。 The reason why the dry gas is allowed to flow during the above temperature rise is that the impurity gas once desorbed from the protective layer 9 and the back plate 10 due to the temperature rise in the panel is not again adsorbed to the protective layer 9. It is something that is physically extruded from. This is because moisture is reduced in a high-temperature firing atmosphere, so that carbon dioxide is particularly easily resorbed among impurity gases, and a part of the metal oxide constituting the protective layer 9 is carbonated. As a result, due to the temperature distribution in the baking furnace and the concentration distribution of the impurity gas, the resorption of the impurity gas becomes uneven within the substrate surface, which is one of the factors that cause variations in discharge characteristics.
 なお、昇温工程において、保護層9に吸着した不純物ガスが脱離する温度領域で窒素もしくは酸素を含む窒素ガスを流入しながら温度を保持する期間を複数回設けて段階的に昇温すれば、一旦除去した不純物ガスの再吸着を抑制できる。 In the temperature raising step, if the temperature is maintained in a temperature range where the impurity gas adsorbed on the protective layer 9 is desorbed and the temperature is maintained while the nitrogen gas containing nitrogen or oxygen is introduced, the temperature is raised stepwise. The re-adsorption of the impurity gas once removed can be suppressed.
 流入させるガスは、乾燥ガスが好ましく、窒素ガスが比較的安価で望ましい。また、不純物ガスに炭化水素系ガスが含まれる場合は、炭化水素系ガスの熱分解が促進されるために酸素を含む窒素ガスを流入してもよい。また、アルゴンなど不活性ガスを含んでいてもよい。 The gas to be introduced is preferably dry gas, and nitrogen gas is relatively inexpensive and desirable. In addition, when the hydrocarbon gas is included in the impurity gas, a nitrogen gas containing oxygen may be introduced to promote thermal decomposition of the hydrocarbon gas. Further, an inert gas such as argon may be included.
 段階的に温度を保持する上で、最初の保持(下限)温度は、使用される有機溶剤の沸点にもよるが、熱分解には少なくとも200℃以上が好ましく、さらには300℃以上がより好ましい。その上限温度は、誘電体層材料の軟化点以下(概ね500℃~600℃)であればよい。 In maintaining the temperature stepwise, the initial holding (lower limit) temperature depends on the boiling point of the organic solvent used, but is preferably at least 200 ° C. or more, more preferably 300 ° C. or more for thermal decomposition. . The upper limit temperature may be equal to or lower than the softening point of the dielectric layer material (approximately 500 ° C. to 600 ° C.).
 温度を保持する領域を見極めるには、保護層9からの不純物ガスの脱離温度を確認すればよい。例えば、焼成前の前面板2を小片に切り出し、昇温脱離分析法(TDS分析)を用いて真空中で昇温したときの脱離ガスの種類と脱離量を測定して確認できる。 In order to determine the region where the temperature is maintained, the desorption temperature of the impurity gas from the protective layer 9 may be confirmed. For example, the front plate 2 before firing can be cut into small pieces, and the type and amount of desorption gas when heated in vacuum using a temperature programmed desorption analysis method (TDS analysis) can be confirmed.
 図8Aは、保護層の温度変化に対する脱離ガス分析結果を示す特性図、図8Bは、保護層の処理時間に対する脱離ガス分析結果を示す特性図である。具体的には、電子科学製TDS分析装置EMD-WA1000S/Wを用いて、上述したサンプルA(下地層91は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物)に凝集粒子92を塗布して溶剤を真空乾燥した後、320℃で大気焼成して溶剤を除去した前面板2を、10℃/分で昇温し500℃、30分保持したときの保護層9の脱離ガスの種類と脱離量を示す。ここでは、主な不純物ガスとして、質量数18の水と質量数44の二酸化炭素において、温度や処理時間に対する脱離スペクトルを示す。 FIG. 8A is a characteristic diagram showing the desorption gas analysis result with respect to the temperature change of the protective layer, and FIG. 8B is a characteristic diagram showing the desorption gas analysis result with respect to the processing time of the protective layer. Specifically, using a TDS analyzer EMD-WA1000S / W manufactured by Electronic Science, the aggregated particles 92 are formed on the sample A described above (the base layer 91 is a metal oxide made of magnesium oxide (MgO) and calcium oxide (CaO)). And the solvent is removed by vacuum drying, and then the front plate 2 from which the solvent has been removed by baking at 320 ° C. in the air is heated at 10 ° C./min and held at 500 ° C. for 30 min. Indicates the type of gas and the amount of desorption. Here, desorption spectra with respect to temperature and treatment time are shown for water having a mass number of 18 and carbon dioxide having a mass number of 44 as main impurity gases.
 凝集粒子92の形成に用いた溶剤は、320℃大気焼成でほぼ除去されるので、図8A、図8Bに示すような脱離ガスにおいて、サンプルAは2種類の金属酸化物から発生していることがわかる。図8A、図8Bに示すように、水の脱離は、(1)380℃~400℃、(2)420~450℃、(3)480~500℃の3段階で3段階の温度領域にあり、二酸化炭素の脱離は(1)と(3)の2段階の温度領域にあり、その脱離時間は、数分以上あればよく、最終30分保持後に、ガス脱離がほぼ完了している。この複数の脱離温度領域が存在するのは、保護層9が、複数の金属酸化物からなることに因ると考えられる。 Since the solvent used to form the agglomerated particles 92 is substantially removed by baking at 320 ° C. in the atmosphere, the sample A is generated from two types of metal oxides in the desorbed gas as shown in FIGS. 8A and 8B. I understand that. As shown in FIG. 8A and FIG. 8B, the desorption of water is divided into three stages of temperature ranges of (1) 380 ° C. to 400 ° C., (2) 420 to 450 ° C., and (3) 480 to 500 ° C. Yes, the desorption of carbon dioxide is in the temperature range of (1) and (3), and the desorption time should be several minutes or more, and the gas desorption is almost completed after holding for the final 30 minutes. ing. The existence of the plurality of desorption temperature regions is considered to be because the protective layer 9 is made of a plurality of metal oxides.
 そこで、上述の保護層9がサンプルAからなる前面板2を用いて、前面板2の焼成条件を検討した結果を図9A、図9Bに示す。 Therefore, the results of examining the firing conditions of the front plate 2 using the front plate 2 in which the protective layer 9 is made of the sample A are shown in FIGS. 9A and 9B.
 図9Aは、不純物ガスを水とした場合における前面板の脱離ガス分析結果を示す特性図、図9Bは、不純物ガスを二酸化炭素とした場合における前面板の脱離ガス分析結果を示す特性図である。 FIG. 9A is a characteristic diagram showing the desorption gas analysis result of the front plate when the impurity gas is water, and FIG. 9B is a characteristic diagram showing the desorption gas analysis result of the front plate when the impurity gas is carbon dioxide. It is.
 図9A、図9Bにおいて、条件2),3),4)の「段階焼成」とは、380℃,420℃,450℃,480℃で各10分間温度を保持する条件で焼成するものであり、条件2),5)は、焼成時の雰囲気ガスとしてN2を1L/分流入しており、条件3)は、N2に20%O2添加して流入している。5),6)は、500℃で焼成した後のTDS分析結果である。なお、いずれも、昇温は10℃/分で行った。 In FIG. 9A and FIG. 9B, the “step firing” of the conditions 2), 3) and 4) is firing under the conditions of holding the temperature at 380 ° C., 420 ° C., 450 ° C. and 480 ° C. for 10 minutes each , condition 2), 5), the N 2 as an atmosphere gas during firing has 1L / min flowing, condition 3) is flowed in 20% O 2 added to the N 2. 5) and 6) are TDS analysis results after firing at 500 ° C. In all cases, the temperature was raised at 10 ° C./min.
 図9A、図9Bに示すように、6)500℃真空焼成後は、二酸化炭素の脱離が少なく、200~300℃で脱離する水が多い。焼成温度より低温で脱離するガスは、焼成後に大気中に基板を取り出したとき再吸着したガスと考えられ、これが多いということは、それだけ保護層9が清浄化されていることを示すものである。条件6)の真空焼成と同様に、「段階焼成」でガスを流入した条件2),3)についても、条件6)と同様に二酸化炭素が少なく、再吸着した水の脱離ピークが認められ、真空焼成とほぼ同等の清浄化がなされていると考えられる。 9) As shown in FIGS. 9A and 9B, 6) After vacuum baking at 500 ° C., there is little desorption of carbon dioxide, and much water is desorbed at 200 to 300 ° C. The gas desorbed at a temperature lower than the firing temperature is considered to be a gas that has been re-adsorbed when the substrate is taken out into the atmosphere after firing, and the fact that this amount is large indicates that the protective layer 9 has been cleaned accordingly. is there. As in the condition 6), the conditions 2) and 3) in which the gas was introduced in the “step calcination” were the same as in the condition 6), and the desorption peak of resorbed water was observed as in the condition 6). It is considered that the cleaning is almost equivalent to the vacuum firing.
 一方、同じ「段階焼成」にあって、ガスを流入しない条件4)は、水はほとんどなく、二酸化炭素の脱離ピークが500℃以上になり、金属酸化物の炭酸化が顕著であることが判明した。また、条件5)の「段階焼成」ではなく「単純な昇温焼成」によれば、二酸化炭素は少ないが水の脱離も少ない。これは、水が再吸着するほどの清浄化には至っていないことがわかる。 On the other hand, in the same “step calcination”, the condition 4) in which no gas flows in is that there is almost no water, the carbon dioxide desorption peak is 500 ° C. or higher, and the carbonation of the metal oxide is remarkable. found. In addition, according to “simple temperature firing” instead of “step firing” in condition 5), the amount of carbon dioxide is small, but the desorption of water is also small. This indicates that the water has not been cleaned enough to re-adsorb.
 次に、本実施の形態における封排工程について、図10~図11を用いて説明する。 Next, the sealing process in the present embodiment will be described with reference to FIGS.
 図10は本実施の形態における封着工程~放電ガス供給工程までの温度プロファイルの一例を示す。図11A~図11Fは、本実施の形態における封着工程~放電ガス供給工程までの一工程を示す模式図である。図11A~図11Fは、それぞれ図10の期間1~期間5におけるパネル内部のガスおよびその流れを示す。 FIG. 10 shows an example of a temperature profile from the sealing step to the discharge gas supply step in the present embodiment. 11A to 11F are schematic views showing one process from the sealing process to the discharge gas supply process in the present embodiment. 11A to 11F show the gas inside the panel and the flow thereof in the period 1 to the period 5 in FIG. 10, respectively.
 図10に示すように、封着工程~放電ガス供給工程までを温度の観点から次の5つの期間に分割する。すなわち、室温から軟化点まで上昇させる期間(期間1)、軟化点から封着温度まで上昇させる期間(期間2)、封着温度以上の温度で一定時間保持した後、軟化点まで低下させる期間(期間3)(以上、封着工程)、軟化点温度付近またはそれよりやや低い温度で一定時間保持した後、室温まで低下させる期間(期間4:排気工程)、および、室温まで低下した後の期間(期間5:放電ガス供給工程)である。 As shown in FIG. 10, the process from the sealing process to the discharge gas supply process is divided into the following five periods from the viewpoint of temperature. That is, a period for raising from the room temperature to the softening point (period 1), a period for raising from the softening point to the sealing temperature (period 2), a period for holding for a certain time at a temperature equal to or higher than the sealing temperature, and a period for lowering to the softening point ( Period 3) (above, sealing process), a period during which the temperature is held for a certain period of time near or slightly below the softening point temperature and then decreased to room temperature (period 4: exhausting process), and a period after the temperature has decreased to room temperature (Period 5: discharge gas supply step).
 ここで、軟化点とは、ガラスフリット21が軟化する温度を指す。例えば、本実施の形態に用いたガラスフリットの軟化点は、430℃程度である。また、封着温度とは、前面板2と背面板10とが封着部材であるフリットにより密閉状態となる温度であり、例えば、本実施の形態における封着温度は、490℃程度である。 Here, the softening point refers to the temperature at which the glass frit 21 softens. For example, the softening point of the glass frit used in this embodiment is about 430 ° C. The sealing temperature is a temperature at which the front plate 2 and the back plate 10 are sealed by a frit as a sealing member. For example, the sealing temperature in the present embodiment is about 490 ° C.
 図11A~図11Fにおいて、21は背面板10の周辺部に塗布した封着部材であるガラスフリット、22a、22bは背面板10の背面ガラス基板11に設けた貫通孔で、この貫通孔22a、22bは、放電空間16に開口するように背面ガラス基板11に設けられている。23~28はバルブ、29はガス逃がし弁である。 11A to 11F, reference numeral 21 denotes a glass frit which is a sealing member applied to the peripheral portion of the back plate 10, and 22a and 22b are through holes provided in the back glass substrate 11 of the back plate 10, and the through holes 22a, 22 b is provided on the back glass substrate 11 so as to open to the discharge space 16. 23 to 28 are valves, and 29 is a gas relief valve.
 まず、表示電極6とアドレス電極12とが直交して対向するように前面板2と背面板10とを位置決めして重ね合わせた後、図11Aに示すように、バルブ23とバルブ24とを開いて、乾燥ガスを貫通孔22aおよび貫通孔22bの両方からパネルの内部に流し込みながら、ヒータをオンにして加熱炉内部の温度を封着用のガラスフリット21の軟化点温度まで上昇させる。 First, the front plate 2 and the rear plate 10 are positioned and overlapped so that the display electrode 6 and the address electrode 12 are orthogonally opposed to each other, and then the valve 23 and the valve 24 are opened as shown in FIG. 11A. The heater is turned on and the temperature inside the heating furnace is raised to the softening point temperature of the sealing glass frit 21 while flowing the dry gas into the panel from both the through hole 22a and the through hole 22b.
 このとき、パネル内部に流し込まれる乾燥ガスは、符号Aで示すように、前面板2と背面板10上に形成されたガラスフリット21との隙間からパネルの外部へ漏れ出るように流し込まれている。例えば、本実施の形態は、乾燥ガスとして、露点が-45℃以下の乾燥窒素ガスを用い、その流量は2L/min程度である(期間1)。 At this time, as shown by the symbol A, the dry gas that flows into the panel flows into the outside of the panel through the gap between the front plate 2 and the glass frit 21 formed on the back plate 10. . For example, in this embodiment, dry nitrogen gas having a dew point of −45 ° C. or lower is used as the dry gas, and the flow rate thereof is approximately 2 L / min (period 1).
 次に、加熱炉内部の温度がガラスフリット21の軟化点温度以上になると、図11Bに示すように、バルブ24を閉じるとともにバルブ23を調節して乾燥窒素ガスの流量を期間1の半分以下にする。そしてガス逃がし弁29を開いて、パネル内部の圧力が、封排用の加熱炉内部の圧力よりも僅かに陽圧となるようにして、加熱炉内部の温度を封着温度まで上昇させる(期間2)。 Next, when the temperature inside the heating furnace becomes equal to or higher than the softening point temperature of the glass frit 21, as shown in FIG. 11B, the valve 24 is closed and the valve 23 is adjusted so that the flow rate of the dry nitrogen gas is less than half of the period 1. To do. Then, the gas relief valve 29 is opened, and the temperature inside the heating furnace is raised to the sealing temperature so that the pressure inside the panel becomes slightly positive than the pressure inside the heating furnace for sealing and discharging (period). 2).
 次に、加熱炉内部の温度が封着温度以上の温度に到達して、ガラスフリット21が溶融し、前面板2と背面板10との封着が行われると、図11Cに示すように、排気装置を動作させるとともに、バルブ25を調整して排気する。このようにして、パネル内部の圧力を僅かに陰圧、例えば8.0×104Paに保ちつつ貫通孔22aから貫通孔22bに向かって約13cc/minでパネル内部に乾燥窒素ガスを流す。この間、ヒータを制御して加熱炉内部の温度を封着温度以上の温度に約30分保持する。尚、貫通孔22aから貫通孔22bに向かってパネル内部に乾燥窒素ガスを流す時間はパネルの大きさ等の仕様に応じて設定すればよい。 Next, when the temperature inside the heating furnace reaches a temperature equal to or higher than the sealing temperature, the glass frit 21 is melted, and the front plate 2 and the rear plate 10 are sealed, as shown in FIG. The exhaust device is operated, and the valve 25 is adjusted to exhaust. In this way, dry nitrogen gas is allowed to flow through the panel at a rate of about 13 cc / min from the through hole 22a toward the through hole 22b while keeping the pressure inside the panel at a slightly negative pressure, for example, 8.0 × 10 4 Pa. During this time, the heater is controlled to keep the temperature inside the heating furnace at a temperature equal to or higher than the sealing temperature for about 30 minutes. In addition, what is necessary is just to set the time which flows dry nitrogen gas inside a panel toward the through-hole 22b from the through-hole 22a according to specifications, such as a magnitude | size of a panel.
 次に、図11Dに示すように、バルブ23、25を閉じ、バルブ26を開き、ガス逃がし弁29を開くとともにバルブ24を調節して、パネルの内部圧力を僅かに陰圧に保ちつつ、今度は貫通孔22bから貫通孔22aに向かって乾燥窒素ガスを流す。このようにして、パネル内の乾燥窒素ガスの流れる方向を上記とは反対方向にして、パネル内部の圧力を僅かに陰圧に保ちつつパネル内部に乾燥窒素ガスを流し続ける。 Next, as shown in FIG. 11D, the valves 23 and 25 are closed, the valve 26 is opened, the gas relief valve 29 is opened, and the valve 24 is adjusted to maintain the internal pressure of the panel at a slightly negative pressure. Causes a dry nitrogen gas to flow from the through hole 22b toward the through hole 22a. In this way, the flow of the dry nitrogen gas in the panel is changed to the direction opposite to the above, and the dry nitrogen gas continues to flow inside the panel while keeping the pressure inside the panel slightly negative.
 貫通孔22bから貫通孔22aに向かってパネル内部に乾燥窒素ガスを流す時間もパネルの仕様等により設定するが、パネルへの乾燥窒素ガス流量を均一化するために、貫通孔22aから貫通孔22bに向かって乾燥窒素ガスを流す時間と等しく設定することが望ましい。 The time for flowing the dry nitrogen gas into the panel from the through hole 22b toward the through hole 22a is also set according to the specifications of the panel, but in order to equalize the flow rate of the dry nitrogen gas to the panel, the through hole 22b is changed from the through hole 22a to the through hole 22b. It is desirable to set the time equal to the time for flowing the dry nitrogen gas toward
 そして、この間も、ヒータを制御して加熱炉内部の温度を封着温度以上の温度に約15分以上保持する。この間に溶融したガラスフリット21が僅かに流動し、パネル内部の圧力が僅かに陰圧に保たれていることから、前面板2と背面板10との封着が行われる。 During this time, the heater is controlled to keep the temperature inside the heating furnace at a temperature equal to or higher than the sealing temperature for about 15 minutes or longer. During this time, the molten glass frit 21 flows slightly and the pressure inside the panel is kept at a slightly negative pressure, so that the front plate 2 and the back plate 10 are sealed.
 その後、ヒータをオフにして加熱炉の温度を軟化点以下の温度まで下げる(期間3)。 After that, the heater is turned off and the temperature of the heating furnace is lowered to a temperature below the softening point (period 3).
 排気工程は、パネル内部のガスを排気する工程である。加熱炉52内部の温度が軟化点温度以下になると、図11Eに示すように、バルブ24を閉じ、バルブ26及びバルブ25を開いて、2つの貫通孔22a、22bからガラス管を通してパネルの内部を排気する。そしてヒータを制御して加熱炉内部の温度を所定の時間保持しながら、排気を継続して行う。 The exhaust process is a process of exhausting the gas inside the panel. When the temperature inside the heating furnace 52 becomes lower than the softening point temperature, as shown in FIG. 11E, the valve 24 is closed, the valve 26 and the valve 25 are opened, and the inside of the panel is passed through the glass tube from the two through holes 22a and 22b. Exhaust. Then, the exhaust is continuously performed while maintaining the temperature inside the heating furnace for a predetermined time by controlling the heater.
 その後、ヒータをオフにして加熱炉内部の温度を室温まで低下させる。この間も排気を継続する(期間4)。 After that, the heater is turned off and the temperature inside the heating furnace is lowered to room temperature. During this time, exhaustion is continued (period 4).
 放電ガス供給工程は、真空排気されたパネル内部にNeおよびXeを主成分とする放電ガスを供給する工程である。加熱炉内部の温度が室温まで低下した後、図11Fに示すように、バルブ26、25を閉じ、バルブ27及びバルブ28を開いて、2つの貫通孔22a、22bを通して放電ガスを所定の圧力となるように供給する。 The discharge gas supply step is a step of supplying a discharge gas mainly composed of Ne and Xe into the evacuated panel. After the temperature inside the heating furnace has dropped to room temperature, as shown in FIG. 11F, the valves 26 and 25 are closed, the valves 27 and 28 are opened, and the discharge gas is supplied to a predetermined pressure through the two through holes 22a and 22b. Supply to be.
 本実施の形態においては、放電ガスは、例えば、Xe:10%、Ne:90%の混合ガスであり、所定の気圧は60kPaである。しかし、放電ガスはこれに限定されるものではなく、例えば、Xe:100%のガスであってもよい。 In the present embodiment, the discharge gas is, for example, a mixed gas of Xe: 10% and Ne: 90%, and the predetermined atmospheric pressure is 60 kPa. However, the discharge gas is not limited to this, and may be, for example, a gas of Xe: 100%.
 その後、ガラス管43、44を加熱封止する(期間5)。以上のように、前面板2と背面板10とを貼り合わせ、その間に放電ガスを充填してパネルが完成する。 Thereafter, the glass tubes 43 and 44 are heat-sealed (period 5). As described above, the front plate 2 and the back plate 10 are bonded together, and the discharge gas is filled between them to complete the panel.
 なお、図9A、図9Bの結果をもとに、封着工程において、ガラスフリット21の軟化温度まで温度を上昇させる昇温・ガス流入条件を変えて、パネルを作成した。具体的には、サンプルAからなる保護層9を有する前面板2を用いて、図9A、図9Bに示す2)~6)の条件で昇温・ガス流入してパネルを作成した。その結果、条件6)の500℃真空と、380℃,420℃,450℃,480℃で各10分間温度を保持して段階的に昇温しガスを流入した条件2),3)では、パネルの放電電圧を本実施の形態に比べてさらに約5%~10%低減することができた。一方、ガス流入なし(大気雰囲気)で段階的に昇温した条件4)では、本実施の形態に比べて、約7%電圧が上昇した。これは、条件4)ではパネル内に残留する二酸化炭素が多いため、保護層9の電子放出特性が低下し、放電電圧が増加したためと考えられる。 In addition, based on the results of FIGS. 9A and 9B, a panel was prepared by changing the temperature rise / gas inflow conditions for raising the temperature to the softening temperature of the glass frit 21 in the sealing step. Specifically, using the front plate 2 having the protective layer 9 made of Sample A, a panel was prepared by raising the temperature and flowing in gas under the conditions 2) to 6) shown in FIGS. 9A and 9B. As a result, in conditions 2) and 3), the conditions 6) of 500 ° C. vacuum and 380 ° C., 420 ° C., 450 ° C., and 480 ° C. were maintained for 10 minutes each and the temperature was raised stepwise to flow in gas. The discharge voltage of the panel could be further reduced by about 5% to 10% compared to the present embodiment. On the other hand, under condition 4) where the temperature was raised stepwise without gas inflow (atmosphere), the voltage increased by about 7% compared to the present embodiment. This is presumably because, under condition 4), the amount of carbon dioxide remaining in the panel is large, so that the electron emission characteristics of the protective layer 9 are lowered and the discharge voltage is increased.
 以上のように本発明は、高画質の表示性能と、かつ低消費電力のPDPを実現する上で有用である。 As described above, the present invention is useful in realizing a high-quality display performance and a low power consumption PDP.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  透明電極
 4b,5b  金属バス電極
 5  維持電極
 6  表示電極
 7  遮光層
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 21  ガラスフリット
 22a,22b  貫通孔
 81  第1誘電体層
 82  第2誘電体層
 91  下地層
 92  凝集粒子
 92a  結晶粒子
1 PDP
DESCRIPTION OF SYMBOLS 2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Transparent electrode 4b, 5b Metal bus electrode 5 Sustain electrode 6 Display electrode 7 Light-shielding layer 8 Dielectric layer 9 Protective layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric Body layer 14 Partition 15 Phosphor layer 16 Discharge space 21 Glass frit 22a, 22b Through-hole 81 First dielectric layer 82 Second dielectric layer 91 Underlayer 92 Aggregated particle 92a Crystal particle

Claims (4)

  1. 誘電体層と前記誘電体層を被覆する保護層とを有する前面板と、
    下地誘電体層と前記下地誘電体層上に形成された複数の隔壁とを有する背面板とを対向配置し、前記前面板と前記背面板との間に前記隔壁で仕切られた放電空間を備えたプラズマディスプレイパネルの製造方法であって、
    対向配置させた前記前面板と前記背面板とを封着部材で封着する封着工程と、
    前記封着部材の軟化点以上の温度で前記放電空間内のガスを排気する排気工程とを有し、
    前記封着工程は、
    前記保護層に吸着した不純物ガスが脱離する温度領域で窒素もしくは酸素を含むガスを流入しながら温度を保持する期間を複数回設けて段階的に昇温する昇温工程と、
    前記放電空間が陽圧状態となるように乾燥ガスを流入させるガス流入工程とを含む
    プラズマディスプレイパネルの製造方法。
    A front plate having a dielectric layer and a protective layer covering the dielectric layer;
    A back plate having a base dielectric layer and a plurality of barrier ribs formed on the base dielectric layer is disposed opposite to each other, and a discharge space partitioned by the barrier ribs is provided between the front plate and the back plate. A method of manufacturing a plasma display panel,
    A sealing step of sealing the front plate and the back plate arranged opposite to each other with a sealing member;
    An exhaust step of exhausting the gas in the discharge space at a temperature equal to or higher than the softening point of the sealing member;
    The sealing step includes
    A temperature raising step for gradually raising the temperature by providing a plurality of periods of holding the temperature while flowing a gas containing nitrogen or oxygen in a temperature region where the impurity gas adsorbed on the protective layer is desorbed;
    A method for manufacturing a plasma display panel, comprising: a gas inflow step for allowing a dry gas to flow in such a manner that the discharge space is in a positive pressure state.
  2. 前記ガス流入工程は、300℃以上で保持される期間を複数回設けて段階的に昇温し、1段階の保持時間を数分~30分とした
    請求項1に記載のプラズマディスプレイパネルの製造方法。
    2. The plasma display panel manufacturing method according to claim 1, wherein in the gas inflow step, the period of time of holding at 300 ° C. or more is provided a plurality of times and the temperature is increased stepwise, and the holding time of one step is set to several minutes to 30 minutes. Method.
  3. 前記ガス流入工程は、前記封着部材の軟化点未満では、前記前面板と前記背面板との間から前記乾燥ガスが漏れ出るように前記乾燥ガスを流入させる
    請求項1に記載のプラズマディスプレイパネルの製造方法。
    2. The plasma display panel according to claim 1, wherein, in the gas inflow step, the dry gas is caused to flow so that the dry gas leaks from between the front plate and the back plate below the softening point of the sealing member. Manufacturing method.
  4. 前記保護層は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムからなる群の中から選ばれる少なくとも2つの金属酸化物を含み、
    前記保護層の特定方位面におけるX線回折分析の回折角ピークが、前記保護層に含まれる2つの前記金属酸化物の内、一方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークと、他方の前記金属酸化物の特定方位面におけるX線回折分析の回折角ピークとの間にある
    請求項1に記載のプラズマディスプレイパネルの製造方法。
    The protective layer includes at least two metal oxides selected from the group consisting of magnesium oxide, calcium oxide, strontium oxide, and barium oxide,
    The diffraction angle peak of the X-ray diffraction analysis on the specific orientation plane of the protective layer shows the X-ray diffraction analysis on the specific orientation plane of one of the two metal oxides included in the protective layer. The method for producing a plasma display panel according to claim 1, wherein the method is between the folding angle peak and a diffraction angle peak of X-ray diffraction analysis in a specific orientation plane of the other metal oxide.
PCT/JP2011/001572 2010-03-26 2011-03-17 Method of manufacture for plasma display panel WO2011118163A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-071984 2010-03-26
JP2010071984 2010-03-26
JP2010071985 2010-03-26
JP2010-071985 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118163A1 true WO2011118163A1 (en) 2011-09-29

Family

ID=44672735

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/001529 WO2011118155A1 (en) 2010-03-26 2011-03-16 Method of manufacture for plasma display panel
PCT/JP2011/001572 WO2011118163A1 (en) 2010-03-26 2011-03-17 Method of manufacture for plasma display panel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001529 WO2011118155A1 (en) 2010-03-26 2011-03-16 Method of manufacture for plasma display panel

Country Status (1)

Country Link
WO (2) WO2011118155A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098139A (en) * 2006-10-10 2008-04-24 Ce & Chem Inc Pdp protective film material and its manufacturing method
JP2009099436A (en) * 2007-10-18 2009-05-07 Hitachi Ltd Plasma display panel and manufacturing method therefor
JP2009224092A (en) * 2008-03-14 2009-10-01 Panasonic Corp Manufacturing method of plasma display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098139A (en) * 2006-10-10 2008-04-24 Ce & Chem Inc Pdp protective film material and its manufacturing method
JP2009099436A (en) * 2007-10-18 2009-05-07 Hitachi Ltd Plasma display panel and manufacturing method therefor
JP2009224092A (en) * 2008-03-14 2009-10-01 Panasonic Corp Manufacturing method of plasma display panel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y YAMAMOTO ET AL.: "SrCaO Protective Layer for High-Efficiency PDPs", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 54, no. 6, 2007, pages 1308 - 1314 *

Also Published As

Publication number Publication date
WO2011118155A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP2010080388A (en) Plasma display panel
JP2010192356A (en) Method of manufacturing plasma display panel
JP2010192358A (en) Method of manufacturing plasma display panel
WO2010070861A1 (en) Plasma display panel
WO2010035493A1 (en) Plasma display panel
WO2011118163A1 (en) Method of manufacture for plasma display panel
JP2012064423A (en) Manufacturing method of plasma display panel
JP2010186665A (en) Plasma display panel
JP2010192355A (en) Method of manufacturing plasma display panel
JP2010103077A (en) Plasma display panel
JP5126452B2 (en) Plasma display panel
WO2011102145A1 (en) Production method for plasma display panel
JP2010192357A (en) Method of manufacturing plasma display panel
WO2011114662A1 (en) Plasma display panel
JP2011204537A (en) Manufacturing method of plasma display panel
JP2011181317A (en) Plasma display device
WO2011108260A1 (en) Process for producing plasma display panel
JP2011181371A (en) Method of manufacturing plasma display panel
WO2010070848A1 (en) Plasma display panel
WO2010070847A1 (en) Plasma display panel
JP2011204536A (en) Method of manufacturing plasma display panel
JP2010182559A (en) Manufacturing method for plasma display panel
JP2011192573A (en) Plasma display panel
JP2011198481A (en) Plasma display panel
JP2011192569A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP