WO2011102145A1 - Production method for plasma display panel - Google Patents

Production method for plasma display panel Download PDF

Info

Publication number
WO2011102145A1
WO2011102145A1 PCT/JP2011/000939 JP2011000939W WO2011102145A1 WO 2011102145 A1 WO2011102145 A1 WO 2011102145A1 JP 2011000939 W JP2011000939 W JP 2011000939W WO 2011102145 A1 WO2011102145 A1 WO 2011102145A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
discharge
pdp
protective layer
base film
Prior art date
Application number
PCT/JP2011/000939
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 真志
土居 由佳子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011102145A1 publication Critical patent/WO2011102145A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • H01J9/261Sealing together parts of vessels the vessel being for a flat panel display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/52Means for absorbing or adsorbing the gas mixture, e.g. by gettering

Definitions

  • the present invention relates to a method for manufacturing a plasma display panel used for a display device or the like.
  • PDPs Plasma display panels
  • 100-inch class televisions have been commercialized.
  • PDP has been applied to high-definition televisions that have more than twice the number of scanning lines compared to the conventional NTSC system.
  • efforts to further reduce power consumption and environmental issues There is also a growing demand for PDPs that do not contain lead components in consideration of the above.
  • the PDP is basically composed of a front plate and a back plate.
  • the front plate is a glass substrate of sodium borosilicate glass produced by the float process, a display electrode composed of a striped transparent electrode and a bus electrode formed on one main surface of the glass substrate, A dielectric layer that covers the display electrode and functions as a capacitor, and a protective layer made of magnesium oxide (MgO) formed on the dielectric layer.
  • MgO magnesium oxide
  • the back plate is a glass substrate, stripe-shaped address electrodes formed on one main surface thereof, a base dielectric layer covering the address electrodes, a partition formed on the base dielectric layer, The phosphor layer is formed between the barrier ribs and emits red, green and blue light.
  • the front plate and the back plate are hermetically sealed with their electrode forming surfaces facing each other, and a discharge gas of neon (Ne) -xenon (Xe) is 400 Torr to 600 Torr (5.3 ⁇ ) in a discharge space partitioned by a partition wall. 10 4 Pa to 8.0 ⁇ 10 4 Pa).
  • PDP discharges by selectively applying a video signal voltage to the display electrodes, and the ultraviolet rays generated by the discharge excite each color phosphor layer to emit red, green, and blue light, thereby realizing color image display is doing.
  • such a PDP driving method includes an initialization period in which wall charges are adjusted so that writing is easy, a writing period in which writing discharge is performed according to an input image signal, and a discharge space in which writing is performed.
  • a driving method having a sustain period in which display is performed by generating a sustain discharge is generally used.
  • a period (subfield) obtained by combining these periods is repeated a plurality of times within a period (one field) corresponding to one frame of an image, thereby performing PDP gradation display.
  • the role of the protective layer formed on the dielectric layer of the front plate is to protect the dielectric layer from ion bombardment due to discharge and to emit initial electrons for generating address discharge.
  • Etc. Protecting the dielectric layer from ion bombardment plays an important role in preventing an increase in discharge voltage, and emitting initial electrons for generating an address discharge is an address discharge error that causes image flickering. It is an important role to prevent.
  • the pulse applied to the address electrode It is necessary to reduce the width.
  • discharge delay there is a time lag called “discharge delay” from the rise of the voltage pulse to the occurrence of discharge in the discharge space, so if the pulse width is narrowed, the probability that the discharge can be completed within the writing period is low. End up. As a result, lighting failure occurs, and the problem of deterioration in image quality performance such as flickering occurs.
  • JP 2002-260535 A Japanese Patent Laid-Open No. 11-339665 JP 2006-59779 A JP-A-8-236028 JP-A-10-334809
  • the PDP of the present invention includes a first substrate in which a dielectric layer is formed so as to cover a display electrode formed on the substrate and a protective layer is formed on the dielectric layer, and a discharge in which the first substrate is filled with a discharge gas. And a second substrate which is disposed so as to be opposed to each other and forms an address electrode in a direction intersecting with the display electrode of the first substrate and which has a partition wall which partitions the discharge space.
  • a method for manufacturing a plasma display panel comprising a sealing step in which a substrate is disposed oppositely and a peripheral portion is sealed with a sealing member, wherein the protective layer of the first substrate includes magnesium oxide, calcium oxide, strontium oxide, and It is formed of a metal oxide composed of at least two oxides selected from barium oxide, and the metal oxide is a simple substance of an oxide constituting a metal oxide having a specific orientation plane in X-ray diffraction analysis. Is intended to present a peak between the minimum diffraction angle and a maximum diffraction angle of more generated, and the protective layer has a heating step in the reduced pressure atmosphere prior to the sealing step.
  • the present invention it is possible to reduce the discharge start voltage even when the Xe gas partial pressure of the discharge gas is increased in order to improve the secondary electron emission characteristics in the protective layer and increase the luminance.
  • a PDP excellent in display performance capable of being driven with high brightness and low voltage can be realized.
  • the reaction between the protective film and the impurity gas during the panel manufacturing process can be suppressed, and a PDP in which variation in discharge characteristics for each discharge cell is suppressed can be realized.
  • FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate of the PDP.
  • FIG. 3 is a flowchart showing a method for manufacturing the panel.
  • FIG. 4 is a diagram showing an X-ray diffraction result in the base film of the PDP.
  • FIG. 5 is a diagram showing an X-ray diffraction result in the base film having another configuration of the PDP.
  • FIG. 6 is an enlarged view for explaining the aggregated particles of the PDP.
  • FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer.
  • FIG. 8 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP.
  • FIG. 9 is a characteristic diagram showing the relationship between the particle size of the crystal particles used in the PDP and the electron emission performance.
  • FIG. 1 is a perspective view showing a structure of a PDP in one embodiment.
  • the basic structure of the PDP 1 is the same as that of a general AC surface discharge type PDP.
  • a front plate 2 as a first substrate made of a front glass substrate 3 and the like and a back plate 10 as a second substrate made of a back glass substrate 11 and the like are arranged to face each other.
  • the peripheral part of the front plate 2 and the back plate 10 is hermetically sealed by a sealing member made of glass frit or the like.
  • the discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Xe and Ne at a pressure of 400 Torr to 600 Torr (5.3 ⁇ 10 4 Pa to 8.0 ⁇ 10 4 Pa).
  • a pair of strip-shaped display electrodes 6 each composed of a scanning electrode 4 and a sustain electrode 5 and a plurality of black stripes (light shielding layers) 7 are arranged in parallel to each other.
  • a dielectric layer 8 is formed on the front glass substrate 3 so as to cover the display electrodes 6 and the light-shielding layer 7 so as to hold charges and function as a capacitor.
  • a protective layer 9 is further formed thereon. .
  • a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5 of the front plate 2.
  • Layer 13 is covering.
  • a partition wall 14 having a predetermined height is formed on the base dielectric layer 13 between the address electrodes 12 to divide the discharge space 16.
  • a phosphor layer 15 that emits red, green, and blue light by ultraviolet rays is sequentially applied.
  • a discharge space 16 is formed at a position where the scan electrode 4 and the sustain electrode 5 and the address electrode 12 intersect, and the discharge space 16 having the red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 is used for color display. It becomes a pixel for.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the front plate of the PDP according to one embodiment. 2 is shown upside down from FIG.
  • a display electrode 6 and a light shielding layer 7 including scanning electrodes 4 and sustain electrodes 5 are formed in a pattern on a front glass substrate 3 manufactured by a float method or the like.
  • Scan electrode 4 and sustain electrode 5 are made of transparent electrodes 4a and 5a made of indium tin oxide (ITO), tin oxide (SnO 2 ), and the like, and metal bus electrodes 4b and 5b formed on transparent electrodes 4a and 5a, respectively. It is comprised by.
  • the metal bus electrodes 4b and 5b are used for the purpose of imparting conductivity in the longitudinal direction of the transparent electrodes 4a and 5a, and are formed of a conductive material whose main component is a silver (Ag) material.
  • the dielectric layer 8 includes a first dielectric layer 81 provided on the front glass substrate 3 so as to cover the transparent electrodes 4a and 5a, the metal bus electrodes 4b and 5b, and the light shielding layer 7, and a first dielectric.
  • the second dielectric layer 82 formed on the layer 81 has at least two layers, and the protective layer 9 is formed on the second dielectric layer 82.
  • the protective layer 9 includes a base film 91 formed on the dielectric layer 8 and aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a are aggregated on the base film 91.
  • the base film 91 is formed of a metal oxide selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO).
  • the base film 91 of the protective layer 9 is made of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is desirable to form.
  • FIG. 3 is a flowchart showing the manufacturing process of the PDP.
  • the PDP 1 was created by a front plate creating process and a back plate creating process, a reduced pressure heating process in which the front plate 2 created by the front plate creating process is heated in a vacuum atmosphere, and a back plate creating process.
  • the sealing member is preferably a frit mainly composed of bismuth oxide or vanadium oxide.
  • the frit mainly composed of bismuth oxide include a Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca, and Mg, and M is Any of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used.
  • a frit containing vanadium oxide as a main component for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 or cordierite is added to a V 2 O 5 —BaO—TeO—WO glass material. Things can be used.
  • the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed on the front glass substrate 3.
  • Transparent electrodes 4a and 5a and metal bus electrodes 4b and 5b constituting scan electrode 4 and sustain electrode 5 are formed by patterning using a photolithography method or the like.
  • the transparent electrodes 4a and 5a are formed using a thin film process or the like, and the metal bus electrodes 4b and 5b are solidified by baking a paste containing a silver (Ag) material at a predetermined temperature.
  • the light shielding layer 7 is also formed by screen printing a paste containing a black pigment or by forming a black pigment on the entire surface of the glass substrate and then patterning and baking using a photolithography method.
  • a dielectric paste (dielectric material) layer is formed by applying a dielectric paste on the front glass substrate 3 by a die coating method or the like so as to cover the scanning electrode 4, the sustain electrode 5 and the light shielding layer 7.
  • the surface of the applied dielectric paste is leveled by leaving it to stand for a predetermined time, so that a flat surface is obtained.
  • the dielectric paste layer is formed by baking and solidifying the dielectric paste layer to cover the scan electrode 4, the sustain electrode 5, and the light shielding layer 7.
  • the dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
  • the base film 91 is made of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the base film 91 is formed into a thin film using a pellet made of a single material of magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO), or a pellet obtained by mixing these materials. Formed by the method.
  • a known method such as an electron beam evaporation method, a sputtering method, or an ion plating method can be applied.
  • 1 Pa is considered as the upper limit of the pressure that can actually be taken in the sputtering method and 0.1 Pa in the electron beam evaporation method, which is an example of the evaporation method.
  • a base film 91 made of a metal oxide having the above can be formed.
  • the agglomerated particles 92 of the magnesium oxide (MgO) crystal particles 92a deposited on the base film 91 will be described.
  • These crystal particles 92a can be manufactured by any one of the following vapor phase synthesis method or precursor baking method.
  • a magnesium metal material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas, and a small amount of oxygen is introduced into the atmosphere to directly oxidize magnesium, thereby oxidizing the material.
  • Magnesium (MgO) crystal particles 92a can be produced.
  • the crystal particles 92a can be produced by the following method.
  • a magnesium oxide (MgO) precursor is uniformly fired at a high temperature of 700 ° C. or higher, and this is gradually cooled to obtain magnesium oxide (MgO) crystal particles 92a.
  • the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (acac) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 2 ), magnesium chloride (MgCl 2 ).
  • MgSO 4 Magnesium sulfate
  • Mg (NO 3 ) 2 magnesium nitrate
  • MgC 2 O 4 magnesium oxalate
  • it may usually take the form of a hydrate, but such a hydrate may be used.
  • MgO magnesium oxide
  • these compounds are adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or more, preferably 99.98% or more. If these compounds contain a certain amount or more of various impurity elements such as alkali metals, B, Si, Fe, and Al, unnecessary interparticle adhesion and sintering occur during heat treatment, and highly crystalline magnesium oxide ( This is because it is difficult to obtain MgO) crystal particles 92a. For this reason, it is necessary to adjust the precursor in advance by removing the impurity element.
  • impurity elements such as alkali metals, B, Si, Fe, and Al
  • the magnesium oxide (MgO) crystal particles 92a obtained by any of the above methods are dispersed in a solvent, and the dispersion is dispersed and dispersed on the surface of the base film 91 by spraying, screen printing, electrostatic coating, or the like. Let Thereafter, the solvent is removed through a drying / firing process, and the magnesium oxide (MgO) crystal particles 92 a can be fixed on the surface of the base film 91.
  • predetermined components scanning electrode 4, sustaining electrode 5, light shielding layer 7, dielectric layer 8, and protective layer 9 are formed on front glass substrate 3 to complete front plate 2.
  • the back plate 10 is formed as follows. First, the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at a predetermined temperature. Next, a dielectric paste is applied on the rear glass substrate 11 on which the address electrodes 12 are formed by a die coating method or the like so as to cover the address electrodes 12 to form a dielectric paste layer. Thereafter, the base dielectric layer 13 is formed by firing the dielectric paste layer.
  • the dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
  • a barrier rib forming paste containing barrier rib material is applied on the underlying dielectric layer 13 and patterned into a predetermined shape to form a barrier rib material layer.
  • the partition 14 is formed by baking at a predetermined temperature.
  • a photolithography method or a sand blast method can be used as a method of patterning the partition wall paste applied on the base dielectric layer 13.
  • the phosphor layer 15 is formed by applying and baking a phosphor paste containing a phosphor material on the base dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14.
  • the dielectric material of the first dielectric layer 81 is composed of the following material composition. That is, 20% by weight to 40% by weight of bismuth oxide (Bi 2 O 3 ), 0.5% by weight to 12% of at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Contains 0.1% by weight to 7% by weight of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese dioxide (MnO 2 ). .
  • molybdenum oxide MoO 3
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • manganese dioxide MnO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide At least one selected from (Co 2 O 3 ), vanadium oxide (V 2 O 7 ), and antimony oxide (Sb 2 O 3 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • a dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to paste for the first dielectric layer 81 for die coating or printing. Is made.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate and tributyl phosphate are added to the paste as needed, and glycerol monooleate, sorbitan sesquioleate, homogenol (Kao Corporation) as a dispersant.
  • the printing property may be improved as a paste by adding a phosphate ester of an alkyl allyl group, etc.
  • the front glass substrate 3 is printed by a die coat method or a screen printing method so as to cover the display electrode 6 and dried, and then slightly higher than the softening point of the dielectric material.
  • the first dielectric layer 81 is formed by baking at a temperature of 575 ° C. to 590 ° C.
  • the dielectric material of the second dielectric layer 82 is composed of the following material composition. That is, bismuth oxide (Bi 2 O 3 ) is 11 wt% to 20 wt%, and at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) is 1.6 wt%. It contains ⁇ 21 wt%, and contains 0.1 wt% ⁇ 7 wt% of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ).
  • MoO 3 molybdenum oxide
  • WO 3 tungsten oxide
  • CeO 2 cerium oxide
  • MoO 3 molybdenum oxide
  • tungsten oxide WO 3
  • cerium oxide CeO 2
  • copper oxide CuO
  • chromium oxide Cr 2 O 3
  • cobalt oxide Co 2 O 3
  • At least one selected from vanadium oxide (V 2 O 7 ), antimony oxide (Sb 2 O 3 ), and manganese oxide (MnO 2 ) may be contained in an amount of 0.1 wt% to 7 wt%.
  • zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight.
  • a material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
  • a dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 ⁇ m to 2.5 ⁇ m. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to form a second dielectric layer paste for die coating or printing. Make it.
  • the binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate.
  • dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate are added as plasticizers as needed, and glycerol monooleate, sorbitan sesquioleate, and homogenol (Kao Corporation) as dispersants.
  • the printability may be improved by adding a phosphoric ester of an alkyl allyl group or the like.
  • the film thickness of the dielectric layer 8 is preferably set to 41 ⁇ m or less in total of the first dielectric layer 81 and the second dielectric layer 82 in order to ensure visible light transmittance.
  • the first dielectric layer 81 has a bismuth oxide (Bi 2 O 3 ) content of the second dielectric layer 82 in order to suppress the reaction of the metal bus electrodes 4b and 5b with silver (Ag). More than the content of (Bi 2 O 3 ), the content is 20 wt% to 40 wt%. Therefore, since the visible light transmittance of the first dielectric layer 81 is lower than the visible light transmittance of the second dielectric layer 82, the film thickness of the first dielectric layer 81 is set to the film thickness of the second dielectric layer 82. It is thinner.
  • the second dielectric layer 82 is less likely to be colored when the content of bismuth oxide (Bi 2 O 3 ) is 11 wt% or less, but bubbles are likely to be generated in the second dielectric layer 82. Therefore, it is not preferable. On the other hand, if the content exceeds 40% by weight, coloration tends to occur, and the transmittance decreases.
  • the thickness of the dielectric layer 8 is set to 41 ⁇ m or less, the first dielectric layer 81 is set to 5 ⁇ m to 15 ⁇ m, and the second dielectric layer 82 is set to 20 ⁇ m to 36 ⁇ m. Yes.
  • the dielectric layer 8 having excellent withstand voltage performance can be realized.
  • the protective layer 9 includes a base film 91 formed on the dielectric layer 8 and magnesium oxide (MgO) crystal particles 92 a deposited on the base film 91. A plurality of aggregated particles 92 are formed.
  • MgO magnesium oxide
  • the base film 91 is formed of a metal oxide made of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO),
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • FIG. 4 is a diagram showing an X-ray diffraction result on the surface of the base film 91 of the PDP in one embodiment.
  • FIG. 4 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • the horizontal axis represents the Bragg diffraction angle (2 ⁇ ), and the vertical axis represents the intensity of the X-ray diffraction wave.
  • the unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit).
  • the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 4, with respect to the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and the diffraction angle for strontium oxide alone. It can be seen that 30.0 degrees and barium oxide (BaO) alone has a peak at a diffraction angle of 27.9 degrees.
  • PDP 1 in the present embodiment at least two or more oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are used as base film 91 of protective layer 9. It is made of a metal oxide made of a material.
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO strontium oxide
  • BaO barium oxide
  • FIG. 4 shows an X-ray diffraction result when the single component constituting the base film 91 is two components. That is, the X-ray diffraction result of the base film 91 formed using magnesium oxide (MgO) and calcium oxide (CaO) alone was formed using point A, magnesium oxide (MgO) and strontium oxide (SrO) alone.
  • the X-ray diffraction result of the base film 91 is indicated by B point, and further, the X-ray diffraction result of the base film 91 formed using magnesium oxide (MgO) and barium oxide (BaO) alone is indicated by C point.
  • the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone.
  • peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • FIG. 5 shows the X-ray diffraction result when the single component constituting the base film 91 is three or more components, as in FIG. That is, FIG. 5 shows the results when magnesium oxide (MgO), calcium oxide (CaO) and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO) and barium oxide.
  • MgO magnesium oxide
  • MgO magnesium oxide
  • CaO calcium oxide
  • SrO barium oxide
  • the point D is a crystal orientation plane (111) as a specific orientation plane, and a diffraction angle of 36.9 degrees of magnesium oxide (MgO) as a maximum diffraction angle of a single oxide and an oxidation level as a minimum diffraction angle.
  • MgO magnesium oxide
  • a peak exists at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of strontium (SrO) alone.
  • peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the base film 91 of the PDP 1 has a specific orientation in the X-ray diffraction analysis of the surface of the base film 91 of the metal oxide constituting the base film 91, whether it is a single component or two components.
  • a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the surface metal oxide.
  • (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
  • the depth from the vacuum level of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) exists in a shallow region as compared with magnesium oxide (MgO). Therefore, when the PDP 1 is driven, when electrons existing in the energy levels of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) transition to the ground state of the xenon (Xe) ion, Auger It is considered that the number of electrons emitted due to the effect increases as compared with the case of transition from the energy level of magnesium oxide (MgO).
  • the base film 91 in the present embodiment is configured such that a peak exists between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. Yes.
  • the metal oxide having the characteristics shown in FIGS. 4 and 5 has its energy level between the single oxides constituting them. Accordingly, the energy level of the base film 91 is also present between the single oxides, and the amount of energy acquired by other electrons due to the Auger effect can be set to an amount sufficient to be released beyond the vacuum level. .
  • the base film 91 can exhibit better secondary electron emission characteristics compared to magnesium oxide (MgO) alone, and as a result, the discharge sustaining voltage can be reduced. Therefore, particularly when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP1.
  • sample A underlying film 91 is a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO)
  • sample B underlying film 91 is magnesium oxide (MgO) and strontium oxide (SrO).
  • Sample C (the base film 91 is a metal oxide of magnesium oxide (MgO) and barium oxide (BaO))
  • sample D (the base film 91 is magnesium oxide (MgO), calcium oxide (CaO)) And metal oxide by strontium oxide (SrO))
  • sample E (underlying film 91 is a metal oxide by magnesium oxide (MgO), calcium oxide (CaO) and barium oxide (BaO)), and as a comparative example, Prepared the base film 91 composed of magnesium oxide (MgO) alone It was.
  • sample A is 90
  • sample B is 87
  • sample C is 85
  • sample D is 81
  • sample E is 82. The value is shown.
  • the discharge sustaining voltage can be reduced by about 10% to 20% in all of the samples A, B, C, D, and E compared to the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP 1 can be realized.
  • Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are highly reactive as a single substance, and thus easily react with impurities, and as a result, the electron emission performance tends to decrease.
  • the structure of the material reduces the reactivity, and is formed with a crystal structure with few impurities and oxygen vacancies. Therefore, it is possible to suppress excessive emission of electrons when the PDP 1 is driven.
  • the effect of moderate electron retention characteristics is also exhibited. This charge retention characteristic is particularly effective for retaining wall charges stored during the initialization period and preventing write defects during the write period to perform reliable write discharge.
  • the agglomerated particles 92 formed on the base film 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail.
  • Aggregated particles 92 of magnesium oxide (MgO) have been confirmed by experiments of the present inventor mainly to suppress the “discharge delay” in the write discharge and to improve the temperature dependence of the “discharge delay”. . Therefore, in the embodiment of the present invention, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to the base film 91.
  • the “discharge delay” is considered to be mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the base film 91 being discharged into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the base film 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition.
  • MgO magnesium oxide
  • the metal oxide aggregated particles 92 are disposed on the surface of the base film 91, in addition to the effect of mainly suppressing the “discharge delay” in the write discharge, the effect of improving the temperature dependency of the “discharge delay” is also achieved. can get.
  • the PDP 1 includes the base film 91 that achieves both the low voltage driving and the charge retention effect, and the magnesium oxide (MgO) aggregated particles 92 that have the effect of preventing discharge delay.
  • MgO magnesium oxide
  • the aggregated particles 92 in which several crystal particles 92a are aggregated are discretely dispersed on the base film 91, and a plurality of particles are adhered so as to be distributed almost uniformly over the entire surface.
  • FIG. 6 is an enlarged view for explaining the agglomerated particles 92.
  • the agglomerated particles 92 are those in which crystal particles 92a having a predetermined primary particle size are aggregated or necked as shown in FIG. In other words, it is not bonded as a solid with a large bonding force, but a plurality of primary particles form an aggregate body due to static electricity, van der Waals force, etc., and due to external stimuli such as ultrasound , Part or all of them are bonded to such a degree that they become primary particles.
  • the particle size of the agglomerated particles 92 is about 1 ⁇ m, and the crystal particles 92a preferably have a polyhedral shape having seven or more surfaces such as a tetrahedron and a dodecahedron.
  • the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a.
  • the particle size can be controlled by controlling the calcining temperature and the calcining atmosphere.
  • the firing temperature can be selected in the range of 700 ° C. to 1500 ° C., but by setting the firing temperature to a relatively high 1000 ° C. or higher, the particle size can be controlled to about 0.3 to 2 ⁇ m. is there.
  • the crystal particles 92a by heating the MgO precursor, a plurality of primary particles are bonded to each other by a phenomenon called agglomeration or necking in the production process, whereby the agglomerated particles 92 can be obtained.
  • FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer in one embodiment.
  • the discharge delay and the calcium (Ca) concentration in the protective layer 9 when using the base film 91 composed of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO) Shows the relationship.
  • the base film 91 is composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO), and the metal oxide has a magnesium oxide (MgO) peak in the X-ray diffraction analysis on the surface of the base film 91.
  • FIG. 7 shows the case where only the base film 91 is used as the protective layer 9 and the case where the aggregated particles 92 are arranged on the base film 91, and the discharge delay is caused by calcium (Ca) contained in the base film 91. The case where it is not done is shown as a standard.
  • the electron emission performance is a numerical value indicating that the larger the electron emission performance is, the more electron emission performance is expressed by the initial electron emission amount determined by the surface state, the gas type and its state.
  • the initial electron emission amount can be measured by a method of measuring the amount of electron current emitted from the surface by irradiating the surface with ions or an electron beam.
  • the evaluation of the surface of the front plate 2 of the PDP 1 can be performed nondestructively. With difficulty. Therefore, the method described in JP 2007-48733 A was used.
  • a numerical value called a statistical delay time which is a measure of the likelihood of occurrence of discharge, is measured, and when the reciprocal is integrated, a numerical value corresponding to the initial electron emission amount is obtained.
  • the delay time at the time of discharge means the time of discharge delay when the discharge is delayed from the rising edge of the pulse, and the discharge delay is the time when the initial electrons that trigger when the discharge is started are discharged from the surface of the protective layer 9 to the discharge space. 16 is considered to be a major factor that is difficult to release.
  • the discharge delay increases as the calcium (Ca) concentration increases in the case of the base film 91 alone.
  • the discharge delay can be significantly reduced, and the discharge delay hardly increases even when the calcium (Ca) concentration is increased.
  • Prototype 1 is a PDP 1 in which a protective layer 9 made only of a magnesium oxide (MgO) base film 91 is formed.
  • Prototype 2 is a protective layer 9 made only of a base film 91 in which impurities such as Al and Si are doped in magnesium oxide (MgO).
  • the prototype 3 is a PDP 1 in which a protective layer 9 is formed by spraying and adhering only primary particles of magnesium oxide (MgO) crystal particles 92a on a base film 91 made of magnesium oxide (MgO).
  • the prototype 4 is the PDP 1 in the present embodiment, and the above-described sample A is used as the protective layer 9.
  • the protective layer 9 includes a base film 91 made of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO), and aggregated particles 92 obtained by aggregating crystal particles 92a on the base film 91 over the entire surface. So that it is distributed almost uniformly.
  • the base film 91 is set so that a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the base film 91. ing.
  • the minimum diffraction angle in this case is 32.2 degrees for calcium oxide (CaO)
  • the maximum diffraction angle is 36.9 degrees for magnesium oxide (MgO)
  • the peak of the diffraction angle of the base film 91 is 36.1 degrees.
  • an element having a withstand voltage of about 150 V is used as a semiconductor switching element such as a MOSFET for sequentially applying a scanning voltage to the panel, and the Vscn lighting voltage is 120 V or less in consideration of variation due to temperature. It is desirable to keep it at a minimum.
  • FIG. 8 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP in one embodiment.
  • prototype 4 in which aggregated particles 92 obtained by aggregating single crystal particles 92a of magnesium oxide (MgO) are dispersed on base film 91 in the present embodiment and uniformly distributed over the entire surface.
  • the Vscn lighting voltage can be reduced to 120 V or less, and the electron emission performance is much better than that of the prototype 1 in the case of a protective layer made only of magnesium oxide (MgO). Obtainable.
  • the electron emission capability and the charge retention capability of the protective layer of PDP 1 are contradictory.
  • the Vscn lighting voltage also increases.
  • the electron emission capability is more than eight times that of the prototype 1 using the protective layer of only magnesium oxide (MgO).
  • MgO magnesium oxide
  • the particle size of the crystal particles 92a used for the protective layer 9 of the PDP 1 in the present embodiment will be described in detail.
  • the particle diameter means an average particle diameter
  • the average particle diameter means a volume cumulative average diameter (D50).
  • FIG. 9 is a characteristic diagram showing the relationship between the particle size of the crystal particles used in the PDP and the electron emission performance in one embodiment. Specifically, the experimental results of examining the electron emission performance by changing the particle size of the crystal particles 92a in the prototype 4 in the present embodiment described with reference to FIG. 8 are shown. In FIG. 9, the particle diameter of the crystal particle 92 a was measured by observing the crystal particle 92 a with an SEM. As shown in FIG. 8, it can be seen that when the particle size is reduced to about 0.3 ⁇ m, the electron emission performance is lowered, and when it is approximately 0.9 ⁇ m or more, high electron emission performance is obtained.
  • the number of crystal particles 92a per unit area on the base film 91 is larger.
  • the protective layer 9 of the front plate 2 is observed.
  • the crystal particles 92a are present in the portion corresponding to the top of the partition wall 14 of the back plate 10 that is in close contact with the substrate, and the top of the partition wall 14 is damaged, and the material is placed on the phosphor layer 15. It has been found that a phenomenon occurs in which a cell that is normally turned on and off does not occur.
  • the phenomenon of the partition wall breakage is unlikely to occur unless the crystal particles 92a are present at the portion corresponding to the top of the partition wall 14, and therefore, the probability of breakage of the partition wall 14 increases as the number of attached crystal particles 92a increases. . From this point of view, when the crystal particle diameter is increased to about 2.5 ⁇ m, the probability of partition wall breakage increases rapidly, and when the crystal particle diameter is smaller than 2.5 ⁇ m, the probability of partition wall breakage is kept relatively small. be able to.
  • the aggregated particles 92 having a particle size in the range of 0.9 ⁇ m to 2 ⁇ m are used as the aggregated particles 92, the above-described effects of the present invention can be stably obtained.
  • grains as a crystal particle
  • the particle type is not limited to magnesium oxide (MgO).
  • the protective layer 9 is formed of a metal oxide selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide having the above-described characteristics, the discharge start voltage of the panel is lowered. Therefore, the discharge delay can be reduced and the discharge can be stabilized.
  • these materials are highly reactive with impurity gases such as water and carbon dioxide, and in particular, the discharge characteristics are likely to deteriorate due to reaction with water and carbon dioxide, resulting in variations in the discharge characteristics of each discharge cell. Cheap.
  • the front plate 2 is heated under reduced pressure before the sealing step of the manufacturing process shown in FIG.
  • the reduced pressure heating process in the present embodiment will be described in detail.
  • the front plate 2 created in the front plate creation step is introduced into a vacuum apparatus connected to an exhaust pump, and after the pressure is reduced to a predetermined pressure, heat treatment is performed.
  • the pressure is reduced until the degree of vacuum becomes 10 ⁇ 2 Pa, and heating is performed.
  • the heating temperature is kept at 500 ° C. for 30 minutes. Thereafter, cooling is performed, and after returning to atmospheric pressure with nitrogen gas, removal is performed.
  • Table 1 shows the presence or absence of the effect of reducing the discharge voltage when the reduced pressure heating step is provided and when the heating step is provided without reducing the pressure.
  • the pressure in the reduced pressure heating step is effective even at a pressure of about 10 Pa, but it has been found that heating at atmospheric pressure has no effect. This is thought to be due to the influence of the vapor pressure of impure gas and the ease of re-adsorption. For this reason, it seems that an effect is reliably acquired, so that pressure is low.
  • the pressure in the reduced pressure heating process is optimally 1 ⁇ 10 ⁇ 2 Pa to 50 Pa. It turned out to be. If it is lower than 1 ⁇ 10 ⁇ 2 Pa, a change in the shape of the sealing layer appears, resulting in a problem with the airtightness of the PDP.
  • the pressure is higher than 50 Pa, there is a phenomenon that the discharge voltage of the PDP becomes abnormally high particularly in the protective layer containing calcium oxide. This is considered because the effect by a pressure reduction heating process is not acquired.
  • the heating temperature is effective at 450 ° C. or higher.
  • the upper limit temperature for heating was 600 ° C. because a glass substrate was used.
  • PDP sealing sealing
  • pressure reduction is started during the temperature holding period.
  • the temperature at that time is in the range of 450 ° C. to 600 ° C.
  • it is desirable that the temperature is 5 min to 10 min from the start of temperature holding to the start of pressure reduction. This is because the PDP sealing is insufficient when it is shorter than 5 minutes, and the decompression period is shortened when it is longer than 10 minutes.
  • the protective layer 9 is formed of a metal oxide selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and includes a reduced-pressure heating step before the sealing step. Therefore, it is possible to suppress discharge deterioration due to adsorption of impure gas and to suppress variation in discharge characteristics. Thereby, a low discharge voltage and a reduction in lighting failure can be realized at the same time.
  • the present invention is useful for realizing a PDP having high image quality display performance and low power consumption.

Abstract

Disclosed is a production method for plasma display panels involving a sealing step for arranging a front plate (2) and a back plate (10) in a facing manner and sealing the periphery thereof with a sealing member, wherein the protective layer (9) of the front plate (2) is formed from a metal oxide comprising at least two or more oxides selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide. The method involves a step for low-pressure heating the protective layer (9) prior to the sealing step, and the metal oxide, in X-ray diffraction analysis, has a peak that occurs between a minimum angle of diffraction and a maximum angle of diffraction generated by the simple oxide substances forming the metal oxide on a surface with a specified orientation.

Description

プラズマディスプレイパネルの製造方法Method for manufacturing plasma display panel
 本発明は、表示デバイスなどに用いるプラズマディスプレイパネルの製造方法に関する。 The present invention relates to a method for manufacturing a plasma display panel used for a display device or the like.
 プラズマディスプレイパネル(以下、PDPと呼ぶ)は、高精細化、大画面化の実現が可能であることから、100インチクラスのテレビなどが製品化されている。近年、PDPにおいては、従来のNTSC方式に比べて走査線数が2倍以上の高精細テレビへの適用が進められており、エネルギー問題に対応してさらなる消費電力低減への取り組みや、環境問題に配慮した鉛成分を含まないPDPへの要求なども高まっている。 Plasma display panels (hereinafter referred to as PDPs) are capable of realizing high definition and large screens, so 100-inch class televisions have been commercialized. In recent years, PDP has been applied to high-definition televisions that have more than twice the number of scanning lines compared to the conventional NTSC system. In response to energy problems, efforts to further reduce power consumption and environmental issues There is also a growing demand for PDPs that do not contain lead components in consideration of the above.
 PDPは、基本的には、前面板と背面板とで構成されている。前面板は、フロート法により製造された硼硅酸ナトリウム系ガラスのガラス基板と、ガラス基板の一方の主面上に形成されたストライプ状の透明電極とバス電極とで構成される表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。 The PDP is basically composed of a front plate and a back plate. The front plate is a glass substrate of sodium borosilicate glass produced by the float process, a display electrode composed of a striped transparent electrode and a bus electrode formed on one main surface of the glass substrate, A dielectric layer that covers the display electrode and functions as a capacitor, and a protective layer made of magnesium oxide (MgO) formed on the dielectric layer.
 一方、背面板は、ガラス基板と、その一方の主面上に形成されたストライプ状のアドレス電極と、アドレス電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色及び青色それぞれに発光する蛍光体層とで構成されている。 On the other hand, the back plate is a glass substrate, stripe-shaped address electrodes formed on one main surface thereof, a base dielectric layer covering the address electrodes, a partition formed on the base dielectric layer, The phosphor layer is formed between the barrier ribs and emits red, green and blue light.
 前面板と背面板とはその電極形成面側を対向させて気密封着され、隔壁によって仕切られた放電空間にネオン(Ne)-キセノン(Xe)の放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。PDPは、表示電極に映像信号電圧を選択的に印加することによって放電させ、その放電によって発生した紫外線が各色蛍光体層を励起して赤色、緑色、青色の発光をさせてカラー画像表示を実現している。 The front plate and the back plate are hermetically sealed with their electrode forming surfaces facing each other, and a discharge gas of neon (Ne) -xenon (Xe) is 400 Torr to 600 Torr (5.3 ×) in a discharge space partitioned by a partition wall. 10 4 Pa to 8.0 × 10 4 Pa). PDP discharges by selectively applying a video signal voltage to the display electrodes, and the ultraviolet rays generated by the discharge excite each color phosphor layer to emit red, green, and blue light, thereby realizing color image display is doing.
 また、このようなPDPの駆動方法としては、書き込みをしやすい状態に壁電荷を調整する初期化期間と、入力画像信号に応じて書き込み放電を行う書き込み期間と、書き込みが行われた放電空間で維持放電を生じさせることによって表示を行う維持期間を有する駆動方法が一般的に用いられている。これらの各期間を組み合わせた期間(サブフィールド)が、画像の1コマに相当する期間(1フィールド)内で複数回繰り返されることによってPDPの階調表示を行っている。 In addition, such a PDP driving method includes an initialization period in which wall charges are adjusted so that writing is easy, a writing period in which writing discharge is performed according to an input image signal, and a discharge space in which writing is performed. A driving method having a sustain period in which display is performed by generating a sustain discharge is generally used. A period (subfield) obtained by combining these periods is repeated a plurality of times within a period (one field) corresponding to one frame of an image, thereby performing PDP gradation display.
 このようなPDPにおいて、前面板の誘電体層上に形成される保護層の役割としては、放電によるイオン衝撃から誘電体層を保護すること、アドレス放電を発生させるための初期電子を放出することなどがあげられる。イオン衝撃から誘電体層を保護することは、放電電圧の上昇を防ぐ重要な役割であり、またアドレス放電を発生させるための初期電子を放出することは、画像のちらつきの原因となるアドレス放電ミスを防ぐ重要な役割である。 In such a PDP, the role of the protective layer formed on the dielectric layer of the front plate is to protect the dielectric layer from ion bombardment due to discharge and to emit initial electrons for generating address discharge. Etc. Protecting the dielectric layer from ion bombardment plays an important role in preventing an increase in discharge voltage, and emitting initial electrons for generating an address discharge is an address discharge error that causes image flickering. It is an important role to prevent.
 保護層からの初期電子の放出数を増加させて画像のちらつきを低減するために、例えば、MgO保護層に不純物を添加する例や、MgO粒子をMgO保護層上に形成した例が開示されている(例えば、特許文献1、2、3、4、5など参照)。 In order to increase the number of initial electrons emitted from the protective layer and reduce image flickering, for example, examples of adding impurities to the MgO protective layer and examples of forming MgO particles on the MgO protective layer are disclosed. (For example, see Patent Documents 1, 2, 3, 4, 5, etc.).
 近年、テレビは高精細化が進んでおり、市場では低コスト・低消費電力・高輝度のフルHD(ハイ・ディフィニション)(1920×1080画素:プログレッシブ表示)PDPが要求されている。保護層からの電子放出特性はPDPの画質を決定するため、電子放出特性を制御することが非常に重要である。 In recent years, the definition of television has been increased, and the market demands a full HD (high definition) (1920 × 1080 pixels: progressive display) PDP with low cost, low power consumption, and high brightness. Since the electron emission characteristics from the protective layer determine the image quality of the PDP, it is very important to control the electron emission characteristics.
 すなわち、高精細化された画像を表示するためには、1フィールドの時間が一定にもかかわらず書き込みを行う画素の数が増えるため、サブフィールド中の書き込み期間において、アドレス電極へ印加するパルスの幅を狭くする必要が生じる。しかしながら、電圧パルスの立ち上がりから放電空間内で放電が発生するまでには「放電遅れ」と呼ばれるタイムラグの存在があるため、パルスの幅が狭くなれば書き込み期間内で放電が終了できる確率が低くなってしまう。その結果、点灯不良が生じ、ちらつきといった画質性能の低下という問題も生じてしまう。 That is, in order to display a high-definition image, the number of pixels to be written increases even though the time of one field is constant. Therefore, in the writing period in the subfield, the pulse applied to the address electrode It is necessary to reduce the width. However, there is a time lag called “discharge delay” from the rise of the voltage pulse to the occurrence of discharge in the discharge space, so if the pulse width is narrowed, the probability that the discharge can be completed within the writing period is low. End up. As a result, lighting failure occurs, and the problem of deterioration in image quality performance such as flickering occurs.
 このようにPDPの高精細化や低消費電力化を進めるにあたっては、放電電圧が高くならないようにすることと、さらに、点灯不良を低減して画質を向上させることを、同時に実現させなければならないという課題があった。 As described above, in order to advance the high definition and low power consumption of the PDP, it is necessary to simultaneously realize that the discharge voltage is not increased and that the image quality is improved by reducing defective lighting. There was a problem.
特開2002-260535号公報JP 2002-260535 A 特開平11-339665号公報Japanese Patent Laid-Open No. 11-339665 特開2006-59779号公報JP 2006-59779 A 特開平8-236028号公報JP-A-8-236028 特開平10-334809号公報JP-A-10-334809
 本発明のPDPは、基板上に形成した表示電極を覆うように誘電体層を形成するとともに誘電体層上に保護層を形成した第1基板と、第1基板に放電ガスが充填された放電空間を形成するように対向配置されかつ第1基板の表示電極と交差する方向にアドレス電極を形成するとともに放電空間を区画する隔壁を設けた第2基板とを有し、第1基板と第2基板とを対向配置して周辺部を封着部材により封着する封着工程を有するプラズマディスプレイパネルの製造方法であって、第1基板の保護層は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物はX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、かつ保護層は、封着工程の前に減圧雰囲気での加熱工程を有する。 The PDP of the present invention includes a first substrate in which a dielectric layer is formed so as to cover a display electrode formed on the substrate and a protective layer is formed on the dielectric layer, and a discharge in which the first substrate is filled with a discharge gas. And a second substrate which is disposed so as to be opposed to each other and forms an address electrode in a direction intersecting with the display electrode of the first substrate and which has a partition wall which partitions the discharge space. A method for manufacturing a plasma display panel comprising a sealing step in which a substrate is disposed oppositely and a peripheral portion is sealed with a sealing member, wherein the protective layer of the first substrate includes magnesium oxide, calcium oxide, strontium oxide, and It is formed of a metal oxide composed of at least two oxides selected from barium oxide, and the metal oxide is a simple substance of an oxide constituting a metal oxide having a specific orientation plane in X-ray diffraction analysis. Is intended to present a peak between the minimum diffraction angle and a maximum diffraction angle of more generated, and the protective layer has a heating step in the reduced pressure atmosphere prior to the sealing step.
 本発明によれば、保護層における二次電子放出特性を向上させ、輝度を高めるために放電ガスのXeガス分圧を大きくした場合でも放電開始電圧を低減することが可能で、高精細画像でも高輝度で低電圧駆動が可能な表示性能に優れたPDPを実現することができる。また、パネルの製造工程中での保護膜と不純物ガスとの反応を抑制することができ、放電セル毎の放電特性のばらつきを抑制したPDPを実現することができる。 According to the present invention, it is possible to reduce the discharge start voltage even when the Xe gas partial pressure of the discharge gas is increased in order to improve the secondary electron emission characteristics in the protective layer and increase the luminance. A PDP excellent in display performance capable of being driven with high brightness and low voltage can be realized. In addition, the reaction between the protective film and the impurity gas during the panel manufacturing process can be suppressed, and a PDP in which variation in discharge characteristics for each discharge cell is suppressed can be realized.
図1は、一実施の形態におけるPDPの構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of a PDP according to an embodiment. 図2は、同PDPの前面板の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the front plate of the PDP. 図3は、同パネルの製造方法を示すフローチャートである。FIG. 3 is a flowchart showing a method for manufacturing the panel. 図4は、同PDPの下地膜におけるX線回折結果を示す図である。FIG. 4 is a diagram showing an X-ray diffraction result in the base film of the PDP. 図5は、同PDPの他の構成の下地膜におけるX線回折結果を示す図である。FIG. 5 is a diagram showing an X-ray diffraction result in the base film having another configuration of the PDP. 図6は、同PDPの凝集粒子を説明するための拡大図である。FIG. 6 is an enlarged view for explaining the aggregated particles of the PDP. 図7は、同PDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図である。FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer. 図8は、同PDPの電子放出性能と点灯電圧について調べた結果を示す図である。FIG. 8 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP. 図9は、同PDPに用いた結晶粒子の粒径と電子放出性能の関係を示す特性図である。FIG. 9 is a characteristic diagram showing the relationship between the particle size of the crystal particles used in the PDP and the electron emission performance.
 以下、一実施の形態におけるPDPについて図面を用いて説明する。 Hereinafter, a PDP according to an embodiment will be described with reference to the drawings.
 図1は一実施の形態におけるPDPの構造を示す斜視図である。PDP1の基本構造は、一般的な交流面放電型PDPと同様である。図1に示すように、PDP1は前面ガラス基板3などよりなる第1基板としての前面板2と、背面ガラス基板11などよりなる第2基板としての背面板10とが対向して配置され、その前面板2と背面板10の周辺部をガラスフリットなどからなる封着部材によって気密封着することにより構成されている。封着されたPDP1内部の放電空間16には、XeとNeなどの放電ガスが400Torr~600Torr(5.3×10Pa~8.0×10Pa)の圧力で封入されている。 FIG. 1 is a perspective view showing a structure of a PDP in one embodiment. The basic structure of the PDP 1 is the same as that of a general AC surface discharge type PDP. As shown in FIG. 1, in the PDP 1, a front plate 2 as a first substrate made of a front glass substrate 3 and the like and a back plate 10 as a second substrate made of a back glass substrate 11 and the like are arranged to face each other. The peripheral part of the front plate 2 and the back plate 10 is hermetically sealed by a sealing member made of glass frit or the like. The discharge space 16 inside the sealed PDP 1 is filled with a discharge gas such as Xe and Ne at a pressure of 400 Torr to 600 Torr (5.3 × 10 4 Pa to 8.0 × 10 4 Pa).
 前面板2の前面ガラス基板3上には、走査電極4及び維持電極5よりなる一対の帯状の表示電極6とブラックストライプ(遮光層)7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6と遮光層7とを覆うように電荷を保持してコンデンサとしての働きをする誘電体層8が形成され、さらにその上に保護層9が形成されている。 On the front glass substrate 3 of the front plate 2, a pair of strip-shaped display electrodes 6 each composed of a scanning electrode 4 and a sustain electrode 5 and a plurality of black stripes (light shielding layers) 7 are arranged in parallel to each other. A dielectric layer 8 is formed on the front glass substrate 3 so as to cover the display electrodes 6 and the light-shielding layer 7 so as to hold charges and function as a capacitor. A protective layer 9 is further formed thereon. .
 また、背面板10の背面ガラス基板11上には、前面板2の走査電極4及び維持電極5と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置され、これを下地誘電体層13が被覆している。さらに、アドレス電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝ごとに、紫外線によって赤色、緑色及び青色にそれぞれ発光する蛍光体層15が順次塗布して形成されている。走査電極4及び維持電極5とアドレス電極12とが交差する位置に放電空間16が形成され、表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電空間16がカラー表示のための画素になる。 On the back glass substrate 11 of the back plate 10, a plurality of strip-like address electrodes 12 are arranged in parallel to each other in a direction orthogonal to the scanning electrodes 4 and the sustain electrodes 5 of the front plate 2. Layer 13 is covering. Further, a partition wall 14 having a predetermined height is formed on the base dielectric layer 13 between the address electrodes 12 to divide the discharge space 16. In each groove between the barrier ribs 14, a phosphor layer 15 that emits red, green, and blue light by ultraviolet rays is sequentially applied. A discharge space 16 is formed at a position where the scan electrode 4 and the sustain electrode 5 and the address electrode 12 intersect, and the discharge space 16 having the red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 is used for color display. It becomes a pixel for.
 図2は、一実施の形態におけるPDPの前面板の詳細な構成を示す断面図である。図2は図1と上下反転させて示している。図2に示すように、フロート法などにより製造された前面ガラス基板3に、走査電極4と維持電極5よりなる表示電極6と遮光層7がパターン形成されている。走査電極4と維持電極5はそれぞれインジウムスズ酸化物(ITO)や酸化スズ(SnO)などからなる透明電極4a、5aと、透明電極4a、5a上に形成された金属バス電極4b、5bとにより構成されている。金属バス電極4b、5bは透明電極4a、5aの長手方向に導電性を付与する目的として用いられ、銀(Ag)材料を主成分とする導電性材料によって形成されている。 FIG. 2 is a cross-sectional view showing a detailed configuration of the front plate of the PDP according to one embodiment. 2 is shown upside down from FIG. As shown in FIG. 2, a display electrode 6 and a light shielding layer 7 including scanning electrodes 4 and sustain electrodes 5 are formed in a pattern on a front glass substrate 3 manufactured by a float method or the like. Scan electrode 4 and sustain electrode 5 are made of transparent electrodes 4a and 5a made of indium tin oxide (ITO), tin oxide (SnO 2 ), and the like, and metal bus electrodes 4b and 5b formed on transparent electrodes 4a and 5a, respectively. It is comprised by. The metal bus electrodes 4b and 5b are used for the purpose of imparting conductivity in the longitudinal direction of the transparent electrodes 4a and 5a, and are formed of a conductive material whose main component is a silver (Ag) material.
 誘電体層8は、前面ガラス基板3上に形成されたこれらの透明電極4a、5aと金属バス電極4b、5bと遮光層7を覆って設けた第1誘電体層81と、第1誘電体層81上に形成された第2誘電体層82の少なくとも2層構成とし、さらに第2誘電体層82上に保護層9が形成されている。 The dielectric layer 8 includes a first dielectric layer 81 provided on the front glass substrate 3 so as to cover the transparent electrodes 4a and 5a, the metal bus electrodes 4b and 5b, and the light shielding layer 7, and a first dielectric. The second dielectric layer 82 formed on the layer 81 has at least two layers, and the protective layer 9 is formed on the second dielectric layer 82.
 保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集させた凝集粒子92とにより構成している。また、保護層9において、下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる金属酸化物により形成されており、さらにはこの保護層9の下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成するのが望ましい。 The protective layer 9 includes a base film 91 formed on the dielectric layer 8 and aggregated particles 92 in which a plurality of magnesium oxide (MgO) crystal particles 92 a are aggregated on the base film 91. In the protective layer 9, the base film 91 is formed of a metal oxide selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). The base film 91 of the protective layer 9 is made of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is desirable to form.
 図3はPDPの製造工程を示すフローチャートである。図3に示すように、PDP1は、前面板作成工程及び背面板作成工程と、前面板作成工程により作成された前面板2を真空雰囲気で加熱する減圧加熱工程と、背面板作成工程により作成した背面板10の画像表示領域外部に封着部材であるガラスフリットを塗布し、その後ガラスフリットの樹脂成分等を除去するために350℃程度の温度で仮焼成するフリット塗布工程と、減圧加熱工程を終了した前面板2とフリット塗布工程を終了した背面板10とを貼付けて封着する封着工程と、この後放電空間16内のガスを排気する排気工程と、この後真空排気されたパネル内部にNeおよびXeを主成分とする放電ガスを供給する放電ガス供給工程とを備えている。これらの工程を経てパネルが完成される。 FIG. 3 is a flowchart showing the manufacturing process of the PDP. As shown in FIG. 3, the PDP 1 was created by a front plate creating process and a back plate creating process, a reduced pressure heating process in which the front plate 2 created by the front plate creating process is heated in a vacuum atmosphere, and a back plate creating process. A frit coating step of applying a glass frit as a sealing member outside the image display area of the back plate 10 and then pre-baking at a temperature of about 350 ° C. to remove a resin component of the glass frit and a reduced pressure heating step A sealing process in which the finished front plate 2 and the back plate 10 in which the frit application process is finished are pasted and sealed, an exhausting process in which the gas in the discharge space 16 is exhausted thereafter, and the interior of the panel that has been evacuated thereafter And a discharge gas supply step for supplying a discharge gas mainly composed of Ne and Xe. A panel is completed through these steps.
 ここで、封着部材としては、酸化ビスマスや酸化バナジウムを主成分としたフリットが望ましい。この酸化ビスマスを主成分とするフリットとしては、例えば、Bi23-B23-RO-MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V25-BaO-TeO-WO系のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。 Here, the sealing member is preferably a frit mainly composed of bismuth oxide or vanadium oxide. Examples of the frit mainly composed of bismuth oxide include a Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca, and Mg, and M is Any of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used. Further, as a frit containing vanadium oxide as a main component, for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 or cordierite is added to a V 2 O 5 —BaO—TeO—WO glass material. Things can be used.
 次に、前面板作成工程について説明する。まず、前面ガラス基板3上に、走査電極4及び維持電極5と遮光層7とを形成する。走査電極4と維持電極5とを構成する透明電極4a、5aと金属バス電極4b、5bは、フォトリソグラフィ法などを用いてパターニングして形成される。透明電極4a、5aは薄膜プロセスなどを用いて形成され、金属バス電極4b、5bは銀(Ag)材料を含むペーストを所定の温度で焼成して固化している。また、遮光層7も同様に、黒色顔料を含むペーストをスクリーン印刷する方法や黒色顔料をガラス基板の全面に形成した後、フォトリソグラフィ法を用いてパターニングし、焼成することにより形成される。 Next, the front plate creation process will be described. First, the scan electrode 4, the sustain electrode 5, and the light shielding layer 7 are formed on the front glass substrate 3. Transparent electrodes 4a and 5a and metal bus electrodes 4b and 5b constituting scan electrode 4 and sustain electrode 5 are formed by patterning using a photolithography method or the like. The transparent electrodes 4a and 5a are formed using a thin film process or the like, and the metal bus electrodes 4b and 5b are solidified by baking a paste containing a silver (Ag) material at a predetermined temperature. Similarly, the light shielding layer 7 is also formed by screen printing a paste containing a black pigment or by forming a black pigment on the entire surface of the glass substrate and then patterning and baking using a photolithography method.
 次に、走査電極4、維持電極5及び遮光層7を覆うように前面ガラス基板3上に誘電体ペーストをダイコート法などにより塗布して誘電体ペースト(誘電体材料)層を形成する。誘電体ペーストを塗布した後、所定の時間放置することによって塗布された誘電体ペースト表面がレベリングされて平坦な表面になる。その後、誘電体ペースト層を焼成固化することにより、走査電極4、維持電極5及び遮光層7を覆う誘電体層8が形成される。なお、誘電体ペーストはガラス粉末などの誘電体材料、バインダ及び溶剤を含む塗料である。 Next, a dielectric paste (dielectric material) layer is formed by applying a dielectric paste on the front glass substrate 3 by a die coating method or the like so as to cover the scanning electrode 4, the sustain electrode 5 and the light shielding layer 7. After the dielectric paste is applied, the surface of the applied dielectric paste is leveled by leaving it to stand for a predetermined time, so that a flat surface is obtained. Thereafter, the dielectric paste layer is formed by baking and solidifying the dielectric paste layer to cover the scan electrode 4, the sustain electrode 5, and the light shielding layer 7. The dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
 次に、誘電体層8上に下地膜91を形成する。本実施の形態においては、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。 Next, a base film 91 is formed on the dielectric layer 8. In the present embodiment, the base film 91 is made of a metal oxide composed of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). It is formed by things.
 この下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の単独材料のペレットや、それらの材料を混合したペレットを用いて薄膜成膜方法によって形成される。薄膜成膜方法としては、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などの公知の方法が適用できる。一例として、スパッタリング法では1Pa、蒸着法の一例である電子ビーム蒸着法では0.1Paが実際上取り得る圧力の上限と考えられる。また、下地膜91の成膜時の雰囲気としては、水分付着や不純物の吸着を防止するために外部と遮断された密閉状態で、成膜時の雰囲気を調整することにより、所定の電子放出特性を有する金属酸化物よりなる下地膜91を形成することができる。 The base film 91 is formed into a thin film using a pellet made of a single material of magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO), or a pellet obtained by mixing these materials. Formed by the method. As a thin film forming method, a known method such as an electron beam evaporation method, a sputtering method, or an ion plating method can be applied. As an example, 1 Pa is considered as the upper limit of the pressure that can actually be taken in the sputtering method and 0.1 Pa in the electron beam evaporation method, which is an example of the evaporation method. In addition, as an atmosphere during film formation of the base film 91, a predetermined electron emission characteristic is obtained by adjusting the atmosphere during film formation in a sealed state that is shut off from the outside in order to prevent moisture adhesion and adsorption of impurities. A base film 91 made of a metal oxide having the above can be formed.
 次に、下地膜91上に付着形成する酸化マグネシウム(MgO)の結晶粒子92aの凝集粒子92について述べる。これらの結晶粒子92aは、以下に示す気相合成法または前駆体焼成法のいずれかで製造することができる。気相合成法では、不活性ガスが満たされた雰囲気下で純度が99.9%以上のマグネシウム金属材料を加熱し、さらに、雰囲気に酸素を少量導入することによって、マグネシウムを直接酸化させ、酸化マグネシウム(MgO)の結晶粒子92aを作製することができる。 Next, the agglomerated particles 92 of the magnesium oxide (MgO) crystal particles 92a deposited on the base film 91 will be described. These crystal particles 92a can be manufactured by any one of the following vapor phase synthesis method or precursor baking method. In the gas phase synthesis method, a magnesium metal material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas, and a small amount of oxygen is introduced into the atmosphere to directly oxidize magnesium, thereby oxidizing the material. Magnesium (MgO) crystal particles 92a can be produced.
 一方、前駆体焼成法では、以下の方法によって結晶粒子92aを作製することができる。前駆体焼成法では、酸化マグネシウム(MgO)の前駆体を700℃以上の高温で均一に焼成し、これを徐冷して酸化マグネシウム(MgO)の結晶粒子92aを得ることができる。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac))、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO3)2)、シュウ酸マグネシウム(MgC24)の内のいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもあるがこのような水和物を用いてもよい。 On the other hand, in the precursor firing method, the crystal particles 92a can be produced by the following method. In the precursor firing method, a magnesium oxide (MgO) precursor is uniformly fired at a high temperature of 700 ° C. or higher, and this is gradually cooled to obtain magnesium oxide (MgO) crystal particles 92a. Examples of the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (acac) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 2 ), magnesium chloride (MgCl 2 ). ), Magnesium sulfate (MgSO 4 ), magnesium nitrate (Mg (NO 3 ) 2 ), or magnesium oxalate (MgC 2 O 4 ). Depending on the selected compound, it may usually take the form of a hydrate, but such a hydrate may be used.
 これらの化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整する。これらの化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結を生じ、高結晶性の酸化マグネシウム(MgO)の結晶粒子92aを得にくいためである。このため、不純物元素を除去するなどにより予め前駆体を調整することが必要となる。 These compounds are adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or more, preferably 99.98% or more. If these compounds contain a certain amount or more of various impurity elements such as alkali metals, B, Si, Fe, and Al, unnecessary interparticle adhesion and sintering occur during heat treatment, and highly crystalline magnesium oxide ( This is because it is difficult to obtain MgO) crystal particles 92a. For this reason, it is necessary to adjust the precursor in advance by removing the impurity element.
 上記いずれかの方法で得られた酸化マグネシウム(MgO)の結晶粒子92aを、溶媒に分散させ、その分散液をスプレー法やスクリーン印刷法、静電塗布法などによって下地膜91の表面に分散散布させる。その後、乾燥・焼成工程を経て溶媒除去を図り、酸化マグネシウム(MgO)の結晶粒子92aを下地膜91の表面に定着させることができる。 The magnesium oxide (MgO) crystal particles 92a obtained by any of the above methods are dispersed in a solvent, and the dispersion is dispersed and dispersed on the surface of the base film 91 by spraying, screen printing, electrostatic coating, or the like. Let Thereafter, the solvent is removed through a drying / firing process, and the magnesium oxide (MgO) crystal particles 92 a can be fixed on the surface of the base film 91.
 このような一連の工程により前面ガラス基板3上に所定の構成物(走査電極4、維持電極5、遮光層7、誘電体層8、保護層9が形成されて前面板2が完成する。 By such a series of steps, predetermined components (scanning electrode 4, sustaining electrode 5, light shielding layer 7, dielectric layer 8, and protective layer 9 are formed on front glass substrate 3 to complete front plate 2.
 一方、背面板作成工程において、背面板10は次のようにして形成される。まず、背面ガラス基板11上に、銀(Ag)材料を含むペーストをスクリーン印刷する方法や、金属膜を全面に形成した後、フォトリソグラフィ法を用いてパターニングする方法などによりアドレス電極12用の構成物となる材料層を形成する。その後、所定の温度で焼成することによりアドレス電極12を形成する。次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などにより、アドレス電極12を覆うように誘電体ペーストを塗布して誘電体ペースト層を形成する。その後、誘電体ペースト層を焼成することにより下地誘電体層13を形成する。なお、誘電体ペーストはガラス粉末などの誘電体材料とバインダ及び溶剤を含んだ塗料である。 On the other hand, in the back plate making process, the back plate 10 is formed as follows. First, the structure for the address electrode 12 is formed by a method of screen printing a paste containing silver (Ag) material on the rear glass substrate 11 or a method of patterning using a photolithography method after forming a metal film on the entire surface. A material layer to be a material is formed. Thereafter, the address electrode 12 is formed by firing at a predetermined temperature. Next, a dielectric paste is applied on the rear glass substrate 11 on which the address electrodes 12 are formed by a die coating method or the like so as to cover the address electrodes 12 to form a dielectric paste layer. Thereafter, the base dielectric layer 13 is formed by firing the dielectric paste layer. The dielectric paste is a paint containing a dielectric material such as glass powder, a binder and a solvent.
 次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストを塗布し、所定の形状にパターニングすることにより隔壁材料層を形成する。その後、所定の温度で焼成することにより隔壁14を形成する。ここで、下地誘電体層13上に塗布した隔壁用ペーストをパターニングする方法としては、フォトリソグラフィ法やサンドブラスト法を用いることができる。そして、隣接する隔壁14間の下地誘電体層13上及び隔壁14の側面に蛍光体材料を含む蛍光体ペーストを塗布し、焼成することにより蛍光体層15が形成される。以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。 Next, a barrier rib forming paste containing barrier rib material is applied on the underlying dielectric layer 13 and patterned into a predetermined shape to form a barrier rib material layer. Then, the partition 14 is formed by baking at a predetermined temperature. Here, as a method of patterning the partition wall paste applied on the base dielectric layer 13, a photolithography method or a sand blast method can be used. Then, the phosphor layer 15 is formed by applying and baking a phosphor paste containing a phosphor material on the base dielectric layer 13 between the adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14. Through the above steps, the back plate 10 having predetermined components on the back glass substrate 11 is completed.
 ここで、前面板2の誘電体層8を構成する第1誘電体層81と第2誘電体層82について詳細に説明する。第1誘電体層81の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を20重量%~40重量%、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を0.5重量%~12重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。 Here, the first dielectric layer 81 and the second dielectric layer 82 constituting the dielectric layer 8 of the front plate 2 will be described in detail. The dielectric material of the first dielectric layer 81 is composed of the following material composition. That is, 20% by weight to 40% by weight of bismuth oxide (Bi 2 O 3 ), 0.5% by weight to 12% of at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO). Contains 0.1% by weight to 7% by weight of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), and manganese dioxide (MnO 2 ). .
 なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。 In place of molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), cerium oxide (CeO 2 ), manganese dioxide (MnO 2 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), cobalt oxide At least one selected from (Co 2 O 3 ), vanadium oxide (V 2 O 7 ), and antimony oxide (Sb 2 O 3 ) may be contained in an amount of 0.1 wt% to 7 wt%.
 また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。 In addition to the above components, zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight. A material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
 これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第1誘電体層81用ペーストを作製する。 A dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 μm to 2.5 μm. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to paste for the first dielectric layer 81 for die coating or printing. Is made.
 バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。 The binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate. In addition, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate and tributyl phosphate are added to the paste as needed, and glycerol monooleate, sorbitan sesquioleate, homogenol (Kao Corporation) as a dispersant. The printing property may be improved as a paste by adding a phosphate ester of an alkyl allyl group, etc.
 次に、この第1誘電体層用ペーストを用い、表示電極6を覆うように前面ガラス基板3にダイコート法あるいはスクリーン印刷法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の575℃~590℃で焼成して第1誘電体層81を形成する。 Next, using this first dielectric layer paste, the front glass substrate 3 is printed by a die coat method or a screen printing method so as to cover the display electrode 6 and dried, and then slightly higher than the softening point of the dielectric material. The first dielectric layer 81 is formed by baking at a temperature of 575 ° C. to 590 ° C.
 次に、第2誘電体層82について説明する。第2誘電体層82の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を11重量%~20重量%、さらに、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を1.6重量%~21重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)から選ばれる少なくとも1種を0.1重量%~7重量%含んでいる。 Next, the second dielectric layer 82 will be described. The dielectric material of the second dielectric layer 82 is composed of the following material composition. That is, bismuth oxide (Bi 2 O 3 ) is 11 wt% to 20 wt%, and at least one selected from calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) is 1.6 wt%. It contains ˜21 wt%, and contains 0.1 wt% ˜7 wt% of at least one selected from molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ).
 なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)、酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%~7重量%含ませてもよい。 In place of molybdenum oxide (MoO 3 ), tungsten oxide (WO 3 ), and cerium oxide (CeO 2 ), copper oxide (CuO), chromium oxide (Cr 2 O 3 ), cobalt oxide (Co 2 O 3 ), At least one selected from vanadium oxide (V 2 O 7 ), antimony oxide (Sb 2 O 3 ), and manganese oxide (MnO 2 ) may be contained in an amount of 0.1 wt% to 7 wt%.
 また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%~40重量%、酸化硼素(B23)を0重量%~35重量%、酸化硅素(SiO2)を0重量%~15重量%、酸化アルミニウム(Al23)を0重量%~10重量%など、鉛成分を含まない材料組成が含まれていてもよい。 In addition to the above components, zinc oxide (ZnO) is contained in an amount of 0 to 40% by weight, boron oxide (B 2 O 3 ) in an amount of 0 to 35% by weight, and silicon oxide (SiO 2 ) in an amount of 0 to 4% by weight. A material composition that does not contain a lead component, such as 15 wt% and aluminum oxide (Al 2 O 3 ) 0 wt% to 10 wt% may be included.
 これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm~2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%~70重量%と、バインダ成分30重量%~45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第2誘電体層用ペーストを作製する。バインダ成分はエチルセルロース、またはアクリル樹脂1重量%~20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。 A dielectric material powder is prepared by pulverizing a dielectric material composed of these composition components with a wet jet mill or a ball mill so that the particle diameter becomes 0.5 μm to 2.5 μm. Next, 55 wt% to 70 wt% of the dielectric material powder and 30 wt% to 45 wt% of the binder component are well kneaded with three rolls to form a second dielectric layer paste for die coating or printing. Make it. The binder component is ethyl cellulose, terpineol containing 1% to 20% by weight of acrylic resin, or butyl carbitol acetate. In the paste, dioctyl phthalate, dibutyl phthalate, triphenyl phosphate, and tributyl phosphate are added as plasticizers as needed, and glycerol monooleate, sorbitan sesquioleate, and homogenol (Kao Corporation) as dispersants. The printability may be improved by adding a phosphoric ester of an alkyl allyl group or the like.
 次にこの第2誘電体層用ペーストを用いて第1誘電体層81上にスクリーン印刷法あるいはダイコート法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の550℃~590℃で焼成する。 Next, using this second dielectric layer paste, printing is performed on the first dielectric layer 81 by screen printing or die coating, followed by drying. Thereafter, a temperature slightly higher than the softening point of the dielectric material is 550 ° C. Bake at 590 ° C.
 なお、誘電体層8の膜厚としては、可視光透過率を確保するために第1誘電体層81と第2誘電体層82とを合わせ41μm以下とすることが好ましい。また、第1誘電体層81は、金属バス電極4b、5bの銀(Ag)との反応を抑制するために酸化ビスマス(Bi23)の含有量を第2誘電体層82の酸化ビスマス(Bi23)の含有量よりも多くして20重量%~40重量%としている。そのため、第1誘電体層81の可視光透過率が第2誘電体層82の可視光透過率よりも低くなるので、第1誘電体層81の膜厚を第2誘電体層82の膜厚よりも薄くしている。 The film thickness of the dielectric layer 8 is preferably set to 41 μm or less in total of the first dielectric layer 81 and the second dielectric layer 82 in order to ensure visible light transmittance. The first dielectric layer 81 has a bismuth oxide (Bi 2 O 3 ) content of the second dielectric layer 82 in order to suppress the reaction of the metal bus electrodes 4b and 5b with silver (Ag). More than the content of (Bi 2 O 3 ), the content is 20 wt% to 40 wt%. Therefore, since the visible light transmittance of the first dielectric layer 81 is lower than the visible light transmittance of the second dielectric layer 82, the film thickness of the first dielectric layer 81 is set to the film thickness of the second dielectric layer 82. It is thinner.
 なお、第2誘電体層82においては、酸化ビスマス(Bi23)の含有量が11重量%以下であると着色は生じにくくなるが、第2誘電体層82中に気泡が発生しやすくなるため好ましくない。一方、含有率が40重量%を超えると着色が生じやすくなるために透過率が低下する。 The second dielectric layer 82 is less likely to be colored when the content of bismuth oxide (Bi 2 O 3 ) is 11 wt% or less, but bubbles are likely to be generated in the second dielectric layer 82. Therefore, it is not preferable. On the other hand, if the content exceeds 40% by weight, coloration tends to occur, and the transmittance decreases.
 また、誘電体層8の膜厚が小さいほど輝度の向上と放電電圧を低減するという効果は顕著になるので、絶縁耐圧が低下しない範囲内であればできるだけ膜厚を小さく設定するのが望ましい。このような観点から、本発明の実施の形態では、誘電体層8の膜厚を41μm以下に設定し、第1誘電体層81を5μm~15μm、第2誘電体層82を20μm~36μmとしている。 Also, as the thickness of the dielectric layer 8 is smaller, the effect of improving the luminance and reducing the discharge voltage becomes more prominent. Therefore, it is desirable to set the thickness as small as possible within the range where the withstand voltage does not decrease. From this point of view, in the embodiment of the present invention, the thickness of the dielectric layer 8 is set to 41 μm or less, the first dielectric layer 81 is set to 5 μm to 15 μm, and the second dielectric layer 82 is set to 20 μm to 36 μm. Yes.
 このようにして製造されたPDP1は、表示電極6に銀(Ag)材料を用いても、前面ガラス基板3の着色現象(黄変)が少なくて、なおかつ、誘電体層8中に気泡の発生などがなく、絶縁耐圧性能に優れた誘電体層8を実現することができる。 In the PDP 1 manufactured in this way, even when a silver (Ag) material is used for the display electrode 6, the front glass substrate 3 has little coloring phenomenon (yellowing), and bubbles are generated in the dielectric layer 8. Thus, the dielectric layer 8 having excellent withstand voltage performance can be realized.
 次に、本実施の形態における保護層9の詳細について説明する。本実施の形態におけるPDP1では、図2に示すように、保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92とにより構成されている。また、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物は下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。 Next, details of the protective layer 9 in the present embodiment will be described. In the PDP 1 according to the present embodiment, as shown in FIG. 2, the protective layer 9 includes a base film 91 formed on the dielectric layer 8 and magnesium oxide (MgO) crystal particles 92 a deposited on the base film 91. A plurality of aggregated particles 92 are formed. Further, the base film 91 is formed of a metal oxide made of at least two oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO), In the X-ray diffraction analysis of the surface of the base film 91, the metal oxide has a peak between the minimum diffraction angle and the maximum diffraction angle generated from a single oxide constituting the metal oxide of a specific orientation plane. Yes.
 図4は、一実施の形態におけるPDPの下地膜91面におけるX線回折結果を示す図である。また、図4中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示す。 FIG. 4 is a diagram showing an X-ray diffraction result on the surface of the base film 91 of the PDP in one embodiment. FIG. 4 also shows the results of X-ray diffraction analysis of magnesium oxide (MgO) alone, calcium oxide (CaO) alone, strontium oxide (SrO) alone, and barium oxide (BaO) alone.
 図4において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図中には特定方位面である結晶方位面を括弧付けで示している。図4に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム単体では回折角30.0度、酸化バリウム(BaO)単体では回折角27.9度にピークを有していることがわかる。 4, the horizontal axis represents the Bragg diffraction angle (2θ), and the vertical axis represents the intensity of the X-ray diffraction wave. The unit of the diffraction angle is shown in degrees when one round is 360 degrees, and the intensity is shown in an arbitrary unit (arbitrary unit). In the figure, the crystal orientation plane which is a specific orientation plane is shown in parentheses. As shown in FIG. 4, with respect to the crystal orientation plane (111), the diffraction angle is 32.2 degrees for calcium oxide (CaO) alone, the diffraction angle is 36.9 degrees for magnesium oxide (MgO) alone, and the diffraction angle for strontium oxide alone. It can be seen that 30.0 degrees and barium oxide (BaO) alone has a peak at a diffraction angle of 27.9 degrees.
 本実施の形態におけるPDP1では、保護層9の下地膜91として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。 In PDP 1 in the present embodiment, at least two or more oxides selected from magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are used as base film 91 of protective layer 9. It is made of a metal oxide made of a material.
 図4は、下地膜91を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した下地膜91のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した下地膜91のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した下地膜91のX線回折結果をC点で示している。 FIG. 4 shows an X-ray diffraction result when the single component constituting the base film 91 is two components. That is, the X-ray diffraction result of the base film 91 formed using magnesium oxide (MgO) and calcium oxide (CaO) alone was formed using point A, magnesium oxide (MgO) and strontium oxide (SrO) alone. The X-ray diffraction result of the base film 91 is indicated by B point, and further, the X-ray diffraction result of the base film 91 formed using magnesium oxide (MgO) and barium oxide (BaO) alone is indicated by C point.
 すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。 That is, the point A is a diffraction angle of 36.9 degrees of the magnesium oxide (MgO) alone, which is the maximum diffraction angle of the single oxide, in the crystal orientation plane (111) as the specific orientation plane, and the oxidation which is the minimum diffraction angle. A peak exists at a diffraction angle of 36.1 degrees, which is between the diffraction angle of 32.2 degrees of calcium (CaO) alone. Similarly, peaks at points B and C exist at 35.7 degrees and 35.4 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
 また、図5は、図4と同様に、下地膜91を構成する単体成分が3成分以上の場合のX線回折結果を示している。すなわち、図5は、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。 Further, FIG. 5 shows the X-ray diffraction result when the single component constituting the base film 91 is three or more components, as in FIG. That is, FIG. 5 shows the results when magnesium oxide (MgO), calcium oxide (CaO) and strontium oxide (SrO) are used as the single component, point D, magnesium oxide (MgO), calcium oxide (CaO) and barium oxide. The results when (BaO) is used are indicated by point E, and the results when calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) are used are indicated by point F.
 すなわち、D点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。 That is, the point D is a crystal orientation plane (111) as a specific orientation plane, and a diffraction angle of 36.9 degrees of magnesium oxide (MgO) as a maximum diffraction angle of a single oxide and an oxidation level as a minimum diffraction angle. A peak exists at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of strontium (SrO) alone. Similarly, peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
 したがって、本実施の形態におけるPDP1の下地膜91は、単体成分として2成分であれ、3成分であれ、下地膜91を構成する金属酸化物の下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。 Therefore, the base film 91 of the PDP 1 according to the present embodiment has a specific orientation in the X-ray diffraction analysis of the surface of the base film 91 of the metal oxide constituting the base film 91, whether it is a single component or two components. A peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the surface metal oxide.
 なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。 In the above description, (111) has been described as the crystal orientation plane as the specific orientation plane, but the peak position of the metal oxide is the same as described above even when other crystal orientation planes are targeted.
 酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の真空準位からの深さは酸化マグネシウム(MgO)と比較して浅い領域に存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。 The depth from the vacuum level of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) exists in a shallow region as compared with magnesium oxide (MgO). Therefore, when the PDP 1 is driven, when electrons existing in the energy levels of calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) transition to the ground state of the xenon (Xe) ion, Auger It is considered that the number of electrons emitted due to the effect increases as compared with the case of transition from the energy level of magnesium oxide (MgO).
 また、上述のように、本実施の形態における下地膜91は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図4及び図5に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、下地膜91のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により他の電子が獲得するエネルギー量が真空準位を超えて放出されるに十分な量とすることができる。 Further, as described above, the base film 91 in the present embodiment is configured such that a peak exists between the minimum diffraction angle and the maximum diffraction angle of the peak generated from a single oxide constituting the metal oxide. Yes. As a result of the X-ray diffraction analysis, the metal oxide having the characteristics shown in FIGS. 4 and 5 has its energy level between the single oxides constituting them. Accordingly, the energy level of the base film 91 is also present between the single oxides, and the amount of energy acquired by other electrons due to the Auger effect can be set to an amount sufficient to be released beyond the vacuum level. .
 その結果、下地膜91では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、結果として、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)の分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDP1を実現することが可能となる。 As a result, the base film 91 can exhibit better secondary electron emission characteristics compared to magnesium oxide (MgO) alone, and as a result, the discharge sustaining voltage can be reduced. Therefore, particularly when the partial pressure of xenon (Xe) as the discharge gas is increased in order to increase the luminance, it is possible to reduce the discharge voltage and realize a low-voltage and high-luminance PDP1.
 ここで、本実施の形態におけるPDP1において、下地膜91の構成を変えた場合のPDP1の放電維持電圧について説明する。まず、本発明によるサンプルとして、サンプルA(下地膜91は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物)、サンプルB(下地膜91は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物)、サンプルC(下地膜91は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物)、サンプルD(下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物)、サンプルE(下地膜91は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物)を準備し、また比較例として、下地膜91を酸化マグネシウム(MgO)単体で構成したものを準備した。 Here, in the PDP 1 in the present embodiment, the discharge sustaining voltage of the PDP 1 when the configuration of the base film 91 is changed will be described. First, as a sample according to the present invention, sample A (underlying film 91 is a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO)), and sample B (underlying film 91 is magnesium oxide (MgO) and strontium oxide (SrO). ), Sample C (the base film 91 is a metal oxide of magnesium oxide (MgO) and barium oxide (BaO)), sample D (the base film 91 is magnesium oxide (MgO), calcium oxide (CaO)) And metal oxide by strontium oxide (SrO)), sample E (underlying film 91 is a metal oxide by magnesium oxide (MgO), calcium oxide (CaO) and barium oxide (BaO)), and as a comparative example, Prepared the base film 91 composed of magnesium oxide (MgO) alone It was.
 そして、これらのサンプルAからEについて、放電維持電圧を測定すると、比較例を100とした場合、サンプルAは90、サンプルBは87、サンプルCは85、サンプルDは81、サンプルEは82の値を示した。 When the sustaining voltage is measured for these samples A to E, when the comparative example is 100, sample A is 90, sample B is 87, sample C is 85, sample D is 81, and sample E is 82. The value is shown.
 放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、下地膜91が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。一方、本発明の実施の形態におけるPDP1では、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEともに、放電維持電圧を比較例に比較して約10%~20%低減することができるため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDP1を実現することができる。 When the partial pressure of the discharge gas xenon (Xe) is increased from 10% to 15%, the luminance increases by about 30%. However, in the comparative example in which the base film 91 is made of magnesium oxide (MgO) alone, the discharge is maintained. The voltage increases about 10%. On the other hand, in the PDP 1 in the embodiment of the present invention, the discharge sustaining voltage can be reduced by about 10% to 20% in all of the samples A, B, C, D, and E compared to the comparative example. Therefore, the discharge start voltage can be set within the normal operation range, and a high-luminance and low-voltage drive PDP 1 can be realized.
 なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体では反応性が高いために不純物と反応しやすく、そのために電子放出性能が低下しやすいが、それらの金属酸化物の構成とすることにより、反応性を低減し、不純物の混入や酸素欠損の少ない結晶構造で形成されることから、PDP1の駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立効果に加えて、適度な電子保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書込期間において書込不良を防止して確実な書込放電を行う上で有効である。 Calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are highly reactive as a single substance, and thus easily react with impurities, and as a result, the electron emission performance tends to decrease. The structure of the material reduces the reactivity, and is formed with a crystal structure with few impurities and oxygen vacancies. Therefore, it is possible to suppress excessive emission of electrons when the PDP 1 is driven. In addition to the coexistence effect of secondary electron emission performance, the effect of moderate electron retention characteristics is also exhibited. This charge retention characteristic is particularly effective for retaining wall charges stored during the initialization period and preventing write defects during the write period to perform reliable write discharge.
 次に、本実施の形態における下地膜91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、本願発明者の実験により、主として書込放電における「放電遅れ」を抑制する効果と、「放電遅れ」の温度依存性を改善する効果が確認されている。そこで本発明の実施の形態では、凝集粒子92が下地膜91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。 Next, the agglomerated particles 92 formed on the base film 91 in the present embodiment and agglomerated a plurality of magnesium oxide (MgO) crystal particles 92a will be described in detail. Aggregated particles 92 of magnesium oxide (MgO) have been confirmed by experiments of the present inventor mainly to suppress the “discharge delay” in the write discharge and to improve the temperature dependence of the “discharge delay”. . Therefore, in the embodiment of the present invention, the aggregated particles 92 are arranged as an initial electron supply unit required at the time of rising of the discharge pulse by utilizing the property that the advanced initial electron emission characteristics are superior to the base film 91.
 「放電遅れ」は、放電開始時において、トリガーとなる初期電子が下地膜91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地膜91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地膜91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書込放電における「放電遅れ」を抑制する効果に加え、「放電遅れ」の温度依存性を改善する効果も得られる。 The “discharge delay” is considered to be mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the base film 91 being discharged into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the aggregated particles 92 of magnesium oxide (MgO) are dispersedly arranged on the surface of the base film 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition. In the configuration in which the metal oxide aggregated particles 92 are disposed on the surface of the base film 91, in addition to the effect of mainly suppressing the “discharge delay” in the write discharge, the effect of improving the temperature dependency of the “discharge delay” is also achieved. can get.
 以上のように、本実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地膜91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDP1でも高速駆動を低電圧で駆動でき、且つ、点灯不良を抑制した高品位な画像表示性能を実現できる。 As described above, the PDP 1 according to the present embodiment includes the base film 91 that achieves both the low voltage driving and the charge retention effect, and the magnesium oxide (MgO) aggregated particles 92 that have the effect of preventing discharge delay. Thus, as a whole PDP 1, high-definition PDP 1 can be driven at a high speed with a low voltage, and high-quality image display performance with reduced lighting defects can be realized.
 本実施の形態では、下地膜91上に、結晶粒子92aが数個凝集した凝集粒子92を離散的に散布させ、全面に亘ってほぼ均一に分布するように複数個付着させることにより構成している。図6は凝集粒子92を説明する拡大図である。 In the present embodiment, the aggregated particles 92 in which several crystal particles 92a are aggregated are discretely dispersed on the base film 91, and a plurality of particles are adhered so as to be distributed almost uniformly over the entire surface. Yes. FIG. 6 is an enlarged view for explaining the agglomerated particles 92.
 凝集粒子92とは、図6に示すように、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。 The agglomerated particles 92 are those in which crystal particles 92a having a predetermined primary particle size are aggregated or necked as shown in FIG. In other words, it is not bonded as a solid with a large bonding force, but a plurality of primary particles form an aggregate body due to static electricity, van der Waals force, etc., and due to external stimuli such as ultrasound , Part or all of them are bonded to such a degree that they become primary particles. The particle size of the agglomerated particles 92 is about 1 μm, and the crystal particles 92a preferably have a polyhedral shape having seven or more surfaces such as a tetrahedron and a dodecahedron.
 また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御することができる。一般的に、焼成温度は700℃から1500℃の範囲で選択できるが、焼成温度を比較的高い1000℃以上にすることで、その粒径を0.3~2μm程度に制御することが可能である。さらに、結晶粒子92aをMgO前駆体を加熱して得ることにより、その生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合して凝集粒子92を得ることができる。 Further, the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a. For example, when an MgO precursor such as magnesium carbonate or magnesium hydroxide is calcined and produced, the particle size can be controlled by controlling the calcining temperature and the calcining atmosphere. Generally, the firing temperature can be selected in the range of 700 ° C. to 1500 ° C., but by setting the firing temperature to a relatively high 1000 ° C. or higher, the particle size can be controlled to about 0.3 to 2 μm. is there. Furthermore, by obtaining the crystal particles 92a by heating the MgO precursor, a plurality of primary particles are bonded to each other by a phenomenon called agglomeration or necking in the production process, whereby the agglomerated particles 92 can be obtained.
 図7は、一実施の形態におけるPDPの放電遅れと保護層中のカルシウム(Ca)濃度の関係を示す図である。具体的には、PDP1のうち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91を用いた場合の放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示している。下地膜91として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、下地膜91面におけるX線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。なお、図7には、保護層9として下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とについて示し、放電遅れは、下地膜91中にカルシウム(Ca)が含有されていない場合を基準として示している。 FIG. 7 is a diagram showing the relationship between the discharge delay of the PDP and the calcium (Ca) concentration in the protective layer in one embodiment. Specifically, among the PDP 1, the discharge delay and the calcium (Ca) concentration in the protective layer 9 when using the base film 91 composed of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO) Shows the relationship. The base film 91 is composed of a metal oxide composed of magnesium oxide (MgO) and calcium oxide (CaO), and the metal oxide has a magnesium oxide (MgO) peak in the X-ray diffraction analysis on the surface of the base film 91. A peak exists between the diffraction angle at which the peak is generated and the diffraction angle at which the peak of calcium oxide (CaO) is generated. FIG. 7 shows the case where only the base film 91 is used as the protective layer 9 and the case where the aggregated particles 92 are arranged on the base film 91, and the discharge delay is caused by calcium (Ca) contained in the base film 91. The case where it is not done is shown as a standard.
 また、電子放出性能は、大きいほど電子放出量が多いことを示す数値で、表面状態及びガス種とその状態によって定まる初期電子放出量によって表現する。初期電子放出量については表面にイオン、あるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できるが、PDP1の前面板2表面の評価を非破壊で実施することは困難を伴う。そこで、特開2007-48733号公報に記載されている方法を用いた。すなわち、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値を測定し、その逆数を積分すると初期電子の放出量と線形に対応する数値になる。 Also, the electron emission performance is a numerical value indicating that the larger the electron emission performance is, the more electron emission performance is expressed by the initial electron emission amount determined by the surface state, the gas type and its state. The initial electron emission amount can be measured by a method of measuring the amount of electron current emitted from the surface by irradiating the surface with ions or an electron beam. However, the evaluation of the surface of the front plate 2 of the PDP 1 can be performed nondestructively. With difficulty. Therefore, the method described in JP 2007-48733 A was used. That is, among the delay times at the time of discharge, a numerical value called a statistical delay time, which is a measure of the likelihood of occurrence of discharge, is measured, and when the reciprocal is integrated, a numerical value corresponding to the initial electron emission amount is obtained.
 そこで、この数値を用いて評価している。放電時の遅れ時間とは、パルスの立ち上がりから放電が遅れて行われる放電遅れの時間を意味し、放電遅れは、放電が開始される際にトリガーとなる初期電子が保護層9表面から放電空間16中に放出されにくいことが主要な要因として考えられている。 Therefore, this numerical value is used for evaluation. The delay time at the time of discharge means the time of discharge delay when the discharge is delayed from the rising edge of the pulse, and the discharge delay is the time when the initial electrons that trigger when the discharge is started are discharged from the surface of the protective layer 9 to the discharge space. 16 is considered to be a major factor that is difficult to release.
 図7より明らかなように、下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とにおいて、下地膜91のみの場合はカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地膜91上に凝集粒子92を配置することによって放電遅れを大幅に小さくすることができ、カルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。 As is apparent from FIG. 7, in the case of only the base film 91 and in the case where the aggregated particles 92 are arranged on the base film 91, the discharge delay increases as the calcium (Ca) concentration increases in the case of the base film 91 alone. On the other hand, it can be seen that by disposing the agglomerated particles 92 on the base film 91, the discharge delay can be significantly reduced, and the discharge delay hardly increases even when the calcium (Ca) concentration is increased.
 次に、本実施の形態における凝集粒子92を有する保護層9の効果を確認するために行った実験結果について説明する。まず、構成の異なる下地膜91と下地膜91上に設けた凝集粒子92を有するPDP1を試作した。試作品1は酸化マグネシウム(MgO)の下地膜91のみの保護層9を形成したPDP1、試作品2は酸化マグネシウム(MgO)にAl、Siなどの不純物をドープした下地膜91のみの保護層9を形成したPDP1、試作品3は酸化マグネシウム(MgO)による下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aの一次粒子のみを散布し付着させた保護層9を形成したPDP1である。 Next, the results of experiments conducted to confirm the effect of the protective layer 9 having the aggregated particles 92 in the present embodiment will be described. First, a PDP 1 having a base film 91 having a different configuration and aggregated particles 92 provided on the base film 91 was made as a prototype. Prototype 1 is a PDP 1 in which a protective layer 9 made only of a magnesium oxide (MgO) base film 91 is formed. Prototype 2 is a protective layer 9 made only of a base film 91 in which impurities such as Al and Si are doped in magnesium oxide (MgO). The prototype 3 is a PDP 1 in which a protective layer 9 is formed by spraying and adhering only primary particles of magnesium oxide (MgO) crystal particles 92a on a base film 91 made of magnesium oxide (MgO).
 一方、試作品4は本実施の形態におけるPDP1であり、保護層9として、前述のサンプルAを用いている。すなわち、保護層9は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91と、下地膜91上に結晶粒子92aを凝集させた凝集粒子92を全面に亘ってほぼ均一に分布するように付着させている。なお、下地膜91は、下地膜91面のX線回折分析において、下地膜91を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、この場合の最小回折角は酸化カルシウム(CaO)の32.2度、最大回折角は酸化マグネシウム(MgO)の36.9度であり、下地膜91の回折角のピークが36.1度に存在するようにしている。 On the other hand, the prototype 4 is the PDP 1 in the present embodiment, and the above-described sample A is used as the protective layer 9. That is, the protective layer 9 includes a base film 91 made of a metal oxide of magnesium oxide (MgO) and calcium oxide (CaO), and aggregated particles 92 obtained by aggregating crystal particles 92a on the base film 91 over the entire surface. So that it is distributed almost uniformly. In the X-ray diffraction analysis of the surface of the base film 91, the base film 91 is set so that a peak exists between the minimum diffraction angle and the maximum diffraction angle of a peak generated from a single oxide constituting the base film 91. ing. That is, the minimum diffraction angle in this case is 32.2 degrees for calcium oxide (CaO), the maximum diffraction angle is 36.9 degrees for magnesium oxide (MgO), and the peak of the diffraction angle of the base film 91 is 36.1 degrees. To exist.
 これらのPDP1について、その電子放出性能と電荷保持性能を調べ、その結果を図8に示す。電子放出性能は上述の方法で評価し、電荷保持性能は、その指標として、PDP1として作製した場合に電荷放出現象を抑えるために必要とする走査電極4に印加する電圧(以下Vscn点灯電圧と呼称する)の電圧値を用いた。すなわち、Vscn点灯電圧の低い方が電荷保持能力の高いことを示す。このことは、PDP1を設計する上で、電源や各電気部品として、耐圧及び容量の小さい部品を使用することが可能となる。現状の製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されており、Vscn点灯電圧としては、温度による変動を考慮して120V以下に抑えるのが望ましい。 These PDPs 1 were examined for their electron emission performance and charge retention performance, and the results are shown in FIG. The electron emission performance is evaluated by the above-described method, and the charge retention performance is measured by the voltage applied to the scan electrode 4 (hereinafter referred to as Vscn lighting voltage) necessary for suppressing the charge emission phenomenon when the PDP 1 is manufactured. Voltage value) was used. That is, a lower Vscn lighting voltage indicates a higher charge retention capability. This makes it possible to use components having a low withstand voltage and a small capacity as the power source and each electrical component when designing the PDP 1. In the current product, an element having a withstand voltage of about 150 V is used as a semiconductor switching element such as a MOSFET for sequentially applying a scanning voltage to the panel, and the Vscn lighting voltage is 120 V or less in consideration of variation due to temperature. It is desirable to keep it at a minimum.
 図8は一実施の形態におけるPDPの電子放出性能と点灯電圧について調べた結果を示す図である。図8から明らかなように、本実施の形態における下地膜91に酸化マグネシウム(MgO)の単結晶粒子92aを凝集させた凝集粒子92を散布して全面に亘って均一に分布させた試作品4は、電荷保持性能の評価において、Vscn点灯電圧を120V以下にすることができ、なおかつ電子放出性能が酸化マグネシウム(MgO)のみの保護層の場合の試作品1に比べて格段に良好な特性を得ることができる。 FIG. 8 is a diagram showing the results of examining the electron emission performance and the lighting voltage of the PDP in one embodiment. As is apparent from FIG. 8, prototype 4 in which aggregated particles 92 obtained by aggregating single crystal particles 92a of magnesium oxide (MgO) are dispersed on base film 91 in the present embodiment and uniformly distributed over the entire surface. In the evaluation of the charge retention performance, the Vscn lighting voltage can be reduced to 120 V or less, and the electron emission performance is much better than that of the prototype 1 in the case of a protective layer made only of magnesium oxide (MgO). Obtainable.
 一般的にはPDP1の保護層の電子放出能力と電荷保持能力は相反する。例えば、保護層の製膜条件を変更することや、保護層中にAlやSi、Baなどの不純物をドーピングして製膜することにより電子放出性能を向上することは可能であるが、副作用としてVscn点灯電圧も上昇してしまう。 In general, the electron emission capability and the charge retention capability of the protective layer of PDP 1 are contradictory. For example, it is possible to improve the electron emission performance by changing the film forming conditions of the protective layer, or by forming a film by doping impurities such as Al, Si, and Ba in the protective layer. The Vscn lighting voltage also increases.
 本実施の形態における保護層9を形成した試作品4のPDP1においては、電子放出能力としては、酸化マグネシウム(MgO)のみの保護層を用いた試作品1の場合に比べて8倍以上の特性を有し、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。したがって、高精細化により走査線数が増加し、かつセルサイズが小さいPDP1に対しては有用で、電子放出能力と電荷保持能力の両方を満足させて、放電遅れを低減して良好な画像表示を実現することができる。 In the PDP 1 of the prototype 4 in which the protective layer 9 is formed in the present embodiment, the electron emission capability is more than eight times that of the prototype 1 using the protective layer of only magnesium oxide (MgO). As the charge retention capability, a Vscn lighting voltage of 120 V or less can be obtained. Therefore, it is useful for the PDP1 with the increased number of scanning lines and the small cell size due to the high definition, satisfying both the electron emission ability and the charge retention ability, and reducing the discharge delay and good image display. Can be realized.
 次に、本実施の形態におけるPDP1の保護層9に用いた結晶粒子92aの粒径について詳細に説明する。なお、以下の説明において、粒径とは平均粒径を意味し、平均粒径とは、体積累積平均径(D50)のことを意味している。 Next, the particle size of the crystal particles 92a used for the protective layer 9 of the PDP 1 in the present embodiment will be described in detail. In the following description, the particle diameter means an average particle diameter, and the average particle diameter means a volume cumulative average diameter (D50).
 図9は、一実施の形態におけるPDPに用いた結晶粒子の粒径と電子放出性能の関係を示す特性図である。具体的には、上記図8で説明した本実施の形態における試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示すものである。なお、図9において、結晶粒子92aの粒径は、結晶粒子92aをSEM観察することで測長した。図8に示すように、粒径が0.3μm程度に小さくなると、電子放出性能が低くなり、ほぼ0.9μm以上であれば、高い電子放出性能が得られることがわかる。 FIG. 9 is a characteristic diagram showing the relationship between the particle size of the crystal particles used in the PDP and the electron emission performance in one embodiment. Specifically, the experimental results of examining the electron emission performance by changing the particle size of the crystal particles 92a in the prototype 4 in the present embodiment described with reference to FIG. 8 are shown. In FIG. 9, the particle diameter of the crystal particle 92 a was measured by observing the crystal particle 92 a with an SEM. As shown in FIG. 8, it can be seen that when the particle size is reduced to about 0.3 μm, the electron emission performance is lowered, and when it is approximately 0.9 μm or more, high electron emission performance is obtained.
 ところで、放電セル内での電子放出数を増加させるためには、下地膜91上の単位面積あたりの結晶粒子92aの数は多い方が望ましいが、実験によれば、前面板2の保護層9と密接に接触する背面板10の隔壁14の頂部に相当する部分に結晶粒子92aが存在することで、隔壁14の頂部を破損させ、その材料が蛍光体層15の上に乗るなどによって、該当するセルが正常に点灯消灯しなくなる現象が発生することがわかった。この隔壁破損の現象は、結晶粒子92aが隔壁14の頂部に対応する部分に存在しなければ発生しにくいことから、付着させる結晶粒子92aの数が多くなれば隔壁14の破損発生確率が高くなる。このような観点からは、結晶粒子径が2.5μm程度に大きくなると、隔壁破損の確率が急激に高くなり、2.5μmより小さい結晶粒子径であれば、隔壁破損の確率は比較的小さく抑えることができる。 By the way, in order to increase the number of emitted electrons in the discharge cell, it is desirable that the number of crystal particles 92a per unit area on the base film 91 is larger. However, according to experiments, the protective layer 9 of the front plate 2 is observed. The crystal particles 92a are present in the portion corresponding to the top of the partition wall 14 of the back plate 10 that is in close contact with the substrate, and the top of the partition wall 14 is damaged, and the material is placed on the phosphor layer 15. It has been found that a phenomenon occurs in which a cell that is normally turned on and off does not occur. The phenomenon of the partition wall breakage is unlikely to occur unless the crystal particles 92a are present at the portion corresponding to the top of the partition wall 14, and therefore, the probability of breakage of the partition wall 14 increases as the number of attached crystal particles 92a increases. . From this point of view, when the crystal particle diameter is increased to about 2.5 μm, the probability of partition wall breakage increases rapidly, and when the crystal particle diameter is smaller than 2.5 μm, the probability of partition wall breakage is kept relatively small. be able to.
 以上の結果より、本実施の形態におけるPDP1においては、凝集粒子92として、粒径が0.9μm~2μmの範囲にある凝集粒子92を使用すれば、上述した本発明の効果を安定的に得られることがわかった。なお、結晶粒子として酸化マグネシウム(MgO)粒子を用いて説明したが、この他の単結晶粒子でも、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができる。粒子種としては酸化マグネシウム(MgO)に限定されるものではない。 From the above results, in the PDP 1 according to the present embodiment, if the aggregated particles 92 having a particle size in the range of 0.9 μm to 2 μm are used as the aggregated particles 92, the above-described effects of the present invention can be stably obtained. I found out that In addition, although it demonstrated using the magnesium oxide (MgO) particle | grains as a crystal particle, metal oxides, such as Sr, Ca, Ba, Al, etc. which have high electron emission performance similarly to magnesium oxide (MgO) also in this other single crystal particle. The same effect can be obtained even when crystal grains made of a material are used. The particle type is not limited to magnesium oxide (MgO).
 ところで、本実施の形態において、保護層9を、上述したような特徴を有する酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる金属酸化物により形成した場合、パネルの放電開始電圧を低下させ、放電遅れを小さくして放電を安定させることができる。しかし、これらの材料は、水、炭酸ガス等の不純物ガスとの反応性が高く、特に水、二酸化炭素と反応することにより放電特性が劣化しやすく、放電セル毎の放電特性にばらつきが発生しやすい。 By the way, in this embodiment, when the protective layer 9 is formed of a metal oxide selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide having the above-described characteristics, the discharge start voltage of the panel is lowered. Therefore, the discharge delay can be reduced and the discharge can be stabilized. However, these materials are highly reactive with impurity gases such as water and carbon dioxide, and in particular, the discharge characteristics are likely to deteriorate due to reaction with water and carbon dioxide, resulting in variations in the discharge characteristics of each discharge cell. Cheap.
 そこで、本実施の形態においては、図3に示す製造工程の封着工程の前に前面板2の減圧加熱を行なっている。以下、本実施の形態における減圧加熱工程について詳細に説明する。 Therefore, in the present embodiment, the front plate 2 is heated under reduced pressure before the sealing step of the manufacturing process shown in FIG. Hereinafter, the reduced pressure heating process in the present embodiment will be described in detail.
 減圧加熱工程においては、前面板作成工程において作成された前面板2を排気ポンプの接続された真空装置内に導入し、所定の圧力に減圧した後に加熱処理を行なう。本実施の形態においては、前面板2を真空装置内に導入後、真空度が10-2Paになるまで減圧し、加熱を行なった。加熱温度は500℃で30分保持を行なっている。その後、冷却を行ない、窒素ガスで大気圧まで復圧した後、取り出しを行なう。 In the reduced pressure heating step, the front plate 2 created in the front plate creation step is introduced into a vacuum apparatus connected to an exhaust pump, and after the pressure is reduced to a predetermined pressure, heat treatment is performed. In the present embodiment, after the front plate 2 is introduced into the vacuum apparatus, the pressure is reduced until the degree of vacuum becomes 10 −2 Pa, and heating is performed. The heating temperature is kept at 500 ° C. for 30 minutes. Thereafter, cooling is performed, and after returning to atmospheric pressure with nitrogen gas, removal is performed.
 表1に減圧加熱工程を設けた場合と、減圧せずに加熱工程を設けた場合の放電電圧低減効果の有無を比較して示している。 Table 1 shows the presence or absence of the effect of reducing the discharge voltage when the reduced pressure heating step is provided and when the heating step is provided without reducing the pressure.
Figure JPOXMLDOC01-appb-T000001
 この表1に示すように減圧加熱工程の圧力としては、10Pa程度の圧力でも効果が得られているが、大気圧での加熱では効果がないことがわかっている。これは不純ガスの蒸気圧や再吸着のしやすさが影響しているためであると考えられる。このため、圧力が低いほど確実に効果が得られると思われる。
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, the pressure in the reduced pressure heating step is effective even at a pressure of about 10 Pa, but it has been found that heating at atmospheric pressure has no effect. This is thought to be due to the influence of the vapor pressure of impure gas and the ease of re-adsorption. For this reason, it seems that an effect is reliably acquired, so that pressure is low.
 さらに検討した結果、保護層9として酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる金属酸化物により形成した場合、減圧加熱工程の圧力としては、1×10-2Pa~50Paが最適であることが判明した。1×10-2Paより低い場合、封着層の形状の変化が現れてしまいPDPの気密性に不具合が生じる。また50Paより大きい場合、特に酸化カルシウムを含む保護層においてPDPの放電電圧が異常に高くなる現象が見られる。これは減圧加熱工程による効果が得られていないためと考えられる。 As a result of further investigation, when the protective layer 9 is formed of a metal oxide selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide, the pressure in the reduced pressure heating process is optimally 1 × 10 −2 Pa to 50 Pa. It turned out to be. If it is lower than 1 × 10 −2 Pa, a change in the shape of the sealing layer appears, resulting in a problem with the airtightness of the PDP. When the pressure is higher than 50 Pa, there is a phenomenon that the discharge voltage of the PDP becomes abnormally high particularly in the protective layer containing calcium oxide. This is considered because the effect by a pressure reduction heating process is not acquired.
 また、加熱温度については、450℃以上で効果が得られている。加熱の上限温度はガラス基板を用いているため、600℃とした。 Also, the heating temperature is effective at 450 ° C. or higher. The upper limit temperature for heating was 600 ° C. because a glass substrate was used.
 そして減圧加熱工程の開始時期としては、上記封着部材の組成によって判断するのが望ましい。封着工程において温度上昇に伴い、封着部材によるPDPのシーリング(封着)が開始し、ある温度において保持され、封着が進行する。本実施の形態ではその温度保持期間に減圧を開始する。そのときの温度を450℃~600℃の範囲としている。また温度保持開始から、減圧開始までは5min~10minが望ましい。5minより短い場合はPDPのシーリングが不十分であり、10minより長くなれば減圧期間が短くなってしまうからである。 It is desirable to determine the start time of the reduced pressure heating process based on the composition of the sealing member. As the temperature rises in the sealing step, PDP sealing (sealing) by the sealing member starts, and is maintained at a certain temperature, and the sealing proceeds. In the present embodiment, pressure reduction is started during the temperature holding period. The temperature at that time is in the range of 450 ° C. to 600 ° C. Further, it is desirable that the temperature is 5 min to 10 min from the start of temperature holding to the start of pressure reduction. This is because the PDP sealing is insufficient when it is shorter than 5 minutes, and the decompression period is shortened when it is longer than 10 minutes.
 このように本実施の形態においては、保護層9として酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる金属酸化物により形成し、封着工程の前に減圧加熱工程を具備しているため、不純ガスの吸着による放電劣化を抑制でき、放電特性のばらつきを抑えることが可能となる。これにより低い放電電圧と点灯不良の低減を同時に実現させることができる。 As described above, in the present embodiment, the protective layer 9 is formed of a metal oxide selected from magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and includes a reduced-pressure heating step before the sealing step. Therefore, it is possible to suppress discharge deterioration due to adsorption of impure gas and to suppress variation in discharge characteristics. Thereby, a low discharge voltage and a reduction in lighting failure can be realized at the same time.
 以上のように本発明は、高画質の表示性能を備え、かつ低消費電力のPDPを実現する上で有用な発明である。 As described above, the present invention is useful for realizing a PDP having high image quality display performance and low power consumption.
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  透明電極
 4b,5b  金属バス電極
 5  維持電極
 6  表示電極
 7  ブラックストライプ(遮光層)
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  アドレス電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 81  第1誘電体層
 82  第2誘電体層
 91  下地膜
 92  凝集粒子
 92a  結晶粒子
1 PDP
2 Front plate 3 Front glass substrate 4 Scan electrode 4a, 5a Transparent electrode 4b, 5b Metal bus electrode 5 Sustain electrode 6 Display electrode 7 Black stripe (light shielding layer)
8 Dielectric layer 9 Protective layer 10 Back plate 11 Back glass substrate 12 Address electrode 13 Base dielectric layer 14 Partition 15 Phosphor layer 16 Discharge space 81 First dielectric layer 82 Second dielectric layer 91 Base film 92 Aggregated particles 92a Crystal particles

Claims (3)

  1. 基板上に形成した表示電極を覆うように誘電体層を形成するとともに前記誘電体層上に保護層を形成した第1基板と、前記第1基板に放電ガスが充填された放電空間を形成するように対向配置されかつ前記第1基板の前記表示電極と交差する方向にアドレス電極を形成するとともに前記放電空間を区画する隔壁を設けた第2基板とを有し、前記第1基板と前記第2基板とを対向配置して周辺部を封着部材により封着する封着工程を有するプラズマディスプレイパネルの製造方法であって、前記第1基板の前記保護層は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物はX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、かつ前記保護層は、封着工程の前に減圧雰囲気での加熱工程を有するプラズマディスプレイパネルの製造方法。 A dielectric layer is formed so as to cover the display electrode formed on the substrate, and a first substrate having a protective layer formed on the dielectric layer, and a discharge space filled with a discharge gas in the first substrate are formed. And a second substrate having an address electrode formed in a direction intersecting the display electrode of the first substrate and provided with a partition wall that partitions the discharge space, and the first substrate and the first substrate A plasma display panel manufacturing method comprising a sealing step in which two substrates are arranged opposite to each other and a peripheral portion is sealed with a sealing member, wherein the protective layer of the first substrate is made of magnesium oxide, calcium oxide, oxidized The metal oxide is formed of a metal oxide composed of at least two oxides selected from strontium and barium oxide, and the metal oxide has a specific orientation plane in the metal oxide. There is a peak between the minimum diffraction angle and the maximum diffraction angle generated from the simple substance of the oxide constituting the object, and the protective layer is subjected to a heating step in a reduced-pressure atmosphere before the sealing step. A method for manufacturing a plasma display panel.
  2. 前記減圧雰囲気での加熱工程における圧力は、10Pa以下である請求項1に記載のプラズマディスプレイパネルの製造方法。 The method for manufacturing a plasma display panel according to claim 1, wherein the pressure in the heating step in the reduced-pressure atmosphere is 10 Pa or less.
  3. 前記減圧雰囲気での加熱工程における加熱温度は、450℃以上、600℃以下である請求項1に記載のプラズマディスプレイパネルの製造方法。 The method for manufacturing a plasma display panel according to claim 1, wherein a heating temperature in the heating step in the reduced-pressure atmosphere is 450 ° C. or more and 600 ° C. or less.
PCT/JP2011/000939 2010-02-22 2011-02-21 Production method for plasma display panel WO2011102145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010035566A JP2011171199A (en) 2010-02-22 2010-02-22 Method of manufacturing plasma display panel
JP2010-035566 2010-02-22

Publications (1)

Publication Number Publication Date
WO2011102145A1 true WO2011102145A1 (en) 2011-08-25

Family

ID=44482750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000939 WO2011102145A1 (en) 2010-02-22 2011-02-21 Production method for plasma display panel

Country Status (2)

Country Link
JP (1) JP2011171199A (en)
WO (1) WO2011102145A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117757A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2006260992A (en) * 2005-03-17 2006-09-28 Ube Material Industries Ltd Reforming method for magnesium oxide thin film
JP2008112745A (en) * 2006-04-28 2008-05-15 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2008130407A (en) * 2006-11-22 2008-06-05 Ulvac Japan Ltd Plasma display panel, method of manufacturing plasma display panel, and film forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117757A (en) * 2000-10-11 2002-04-19 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2006260992A (en) * 2005-03-17 2006-09-28 Ube Material Industries Ltd Reforming method for magnesium oxide thin film
JP2008112745A (en) * 2006-04-28 2008-05-15 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2008130407A (en) * 2006-11-22 2008-06-05 Ulvac Japan Ltd Plasma display panel, method of manufacturing plasma display panel, and film forming device

Also Published As

Publication number Publication date
JP2011171199A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2010035488A1 (en) Plasma display panel
WO2010035493A1 (en) Plasma display panel
WO2010070861A1 (en) Plasma display panel
WO2010035487A1 (en) Plasma display panel
JP2010192356A (en) Method of manufacturing plasma display panel
JP2010192358A (en) Method of manufacturing plasma display panel
JP2010186665A (en) Plasma display panel
WO2011102145A1 (en) Production method for plasma display panel
JP5126451B2 (en) Plasma display panel
JP2010192355A (en) Method of manufacturing plasma display panel
JP2011181317A (en) Plasma display device
KR101074982B1 (en) Plasma display panel
WO2011114662A1 (en) Plasma display panel
WO2011108260A1 (en) Process for producing plasma display panel
JP2011204537A (en) Manufacturing method of plasma display panel
JP2011181371A (en) Method of manufacturing plasma display panel
JP2011192573A (en) Plasma display panel
JP2011204536A (en) Method of manufacturing plasma display panel
JP2010182559A (en) Manufacturing method for plasma display panel
JP2011181320A (en) Plasma display panel
JP2011192510A (en) Plasma display panel
JP2011192571A (en) Plasma display panel
JP2011180333A (en) Plasma display device
JP2011192437A (en) Plasma display panel
JP2011192570A (en) Plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744436

Country of ref document: EP

Kind code of ref document: A1