WO2011118043A1 - Fuel element of non-combustion smoking article and method for producing same - Google Patents

Fuel element of non-combustion smoking article and method for producing same Download PDF

Info

Publication number
WO2011118043A1
WO2011118043A1 PCT/JP2010/055461 JP2010055461W WO2011118043A1 WO 2011118043 A1 WO2011118043 A1 WO 2011118043A1 JP 2010055461 W JP2010055461 W JP 2010055461W WO 2011118043 A1 WO2011118043 A1 WO 2011118043A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel element
carbon monoxide
fuel
reducing agent
monoxide reducing
Prior art date
Application number
PCT/JP2010/055461
Other languages
French (fr)
Japanese (ja)
Inventor
康信 井上
学 西村
清弘 笹川
健 秋山
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2010/055461 priority Critical patent/WO2011118043A1/en
Publication of WO2011118043A1 publication Critical patent/WO2011118043A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/165Chemical features of tobacco products or tobacco substitutes of tobacco substitutes comprising as heat source a carbon fuel or an oxidized or thermally degraded carbonaceous fuel, e.g. carbohydrates, cellulosic material

Definitions

  • the present invention relates to a fuel element for a non-combustion smoking article and a method for manufacturing the same.
  • non-burning smoking articles that do not involve burning tobacco leaves.
  • These non-combustion smoking articles are composed of a fuel element containing carbon and an aerosol generating element containing an aerosol generating material in which a flavor component is held on a suitable base material.
  • the fuel element attached to the tip is ignited, and the aerosol (TPM) generated from the fuel element itself or the aerosol generated from the aerosol generating element by the combustion heat of the fuel element is inhaled, and the flavor and taste contained in this aerosol can be tasted it can.
  • the aerosol generated from the smoking article includes carbon monoxide resulting from incomplete combustion of the fuel element as an undesirable component, and it is desirable that the aerosol is removed as much as possible from the aerosol.
  • U.S. Patent No. 6,099,077 discloses a fuel element that includes a catalyst composition that includes metal oxides and / or ultrafine particles of metal to reduce mainstream smoke carbon monoxide.
  • Patent Document 2 discloses a method of reducing carbon monoxide by disposing a CO oxidation catalyst adjacent to a combustion element.
  • Patent Document 3 discloses a heat source containing a mixture of metal carbide, metal nitride, and metal in a fuel element.
  • Patent Document 4 discloses a fuel obtained by coating a carbon fuel with a solid material that is substantially incombustible at a temperature at which the carbon fuel burns as a microporous layer.
  • Patent Document 5 discloses a method of reducing carbon monoxide by changing the ratio of incombustibles (calcium carbonate) contained in carbon fuel.
  • Patent Document 1 discloses a catalyst composition using metal oxide and / or ultrafine metal particles, but the iron oxide described in this document is not suitable for mass use due to high material cost.
  • ultrafine metal particles are difficult to handle in production.
  • it is necessary to knead the material for manufacturing, but if it becomes ultrafine particles, it cannot be kneaded according to the material ratio due to scattering when the fuel element is formed.
  • Patent Document 2 discloses a method in which a catalyst layer is arranged on the end surface on the suction side of the carbon fuel, and an aerosol generation source is further arranged on the end surface on the suction side of the catalyst layer. Not enough heat is provided, aerosol generation is reduced, and it does not function as a smoking article.
  • Patent Document 3 proposes a heat source containing a metal carbide, metal nitride and a mixture of metals as a catalyst in the fuel element.
  • metal carbide and metal nitride are expensive to manufacture and are applied to smoking articles.
  • An increase in manufacturing cost can be considered.
  • Patent Document 5 discloses a method of reducing carbon monoxide by changing the proportion of incombustibles (calcium carbonate) contained in carbon fuel, but this method is practical from the viewpoint of cost. Although it is high, there are problems that the number of puffs is reduced due to a decrease in the duration of combustion and the ignitability of the fuel element is reduced.
  • the present invention includes a carbon monoxide reducing agent that can be produced at a low cost and has excellent handling properties, efficiently removes carbon monoxide in aerosols generated from non-combustion-type smoking articles, and has excellent ignitability.
  • An object is to provide a fuel element for a non-combustible smoking article. It is another object of the present invention to provide a method for producing a fuel element for a non-combustion smoking article that exhibits good carbon monoxide reduction ability during puffing without reducing carbon monoxide reduction ability during the preparation process.
  • the present inventors have come to obtain a fuel element that solves the above problems by blending a carbon monoxide reducing agent containing calcium aluminate particles whose BET specific surface area and particle size are adjusted.
  • the calcium aluminate particles represented by the formula (CaO) m (Al 2 O 3 ) n (where 1/6 ⁇ m / n ⁇ 4/1) are contained.
  • a fuel element for a non-combustible smoking article comprising a carbon oxide reducing agent, carbon powder as a fuel source, and a binder.
  • a fuel element of a non-combustion type smoking article that can be manufactured at low cost and efficiently removes carbon monoxide in the aerosol generated from the smoking article of the non-combustion type smoking article and has excellent ignitability.
  • a method for producing a fuel element that exhibits good carbon monoxide reduction ability in use can be obtained without reducing the carbon monoxide reduction ability in the preparation process.
  • FIG. 1 is a cross-sectional view of a non-combustible smoking article that includes a fuel element of the present invention.
  • FIG. 2 is an enlarged perspective view of a part of FIG.
  • FIG. 3 is a graph showing the results of thermogravimetric analysis of the fuel element of the present invention.
  • FIG. 4 is a graph showing the measurement result of the amount of CO produced in the aerosol with respect to the content of calcium aluminate particles in the fuel element of the present invention.
  • the fuel element of the present invention includes a carbon monoxide reducing agent including calcium aluminate particles having a BET specific surface area adjusted to a desired range, a fuel source, and a binder.
  • the fuel element of the present invention is flammable because it is used, for example, as a combustion heat source for non-combustible smoking articles, is sufficient to sustain combustion for several minutes after ignition, and to generate an aerosol when puffed A characteristic capable of generating heat is required.
  • the carbon monoxide reducing agent is for removing CO generated from smoking articles.
  • the carbon monoxide reducing agent according to the present invention is mixed with 1 mol of calcium carbonate and n mol of aluminum oxide so that 1/6 ⁇ m / n ⁇ 4/1, and fired at 1250 ° C. to 1350 ° C. It is obtained by pulverizing the calcium aluminate obtained.
  • the calcium aluminate particles contained in the carbon monoxide reducing agent of the present invention have a BET specific surface area of 2 m 2 / g or more and less than 20 m 2 / g.
  • the specific surface area is defined as the ratio of the surface area (m 2 ) per weight (g) of the particles.
  • the particle weight decreases as the particle size decreases, the smaller the particle size, the larger the specific surface area.
  • the surface of the carbon monoxide reducing agent (calcium aluminate) particles becomes a release site of radicals that contribute to carbon monoxide reduction, such as superoxide anion radicals. In order to exhibit good radical releasing ability, it is desirable that the carbon monoxide reducing agent (calcium aluminate) particles have a certain large surface area.
  • the calcium aluminate particles preferably have a certain size.
  • the particle size of the carbon monoxide reducing agent is nano-sized, handling becomes difficult, for example, particles rise during production.
  • the BET specific surface area can be determined by, for example, an automatic specific surface area / pore distribution measuring device, and assuming that the calcium aluminate particles (specific gravity 2 g / cm 3 ) are true spheres without surface pores, the specific surface area is The particle size of 2 m 2 / g particles is 750 nm, 20 m 2 / g is 75 nm. Furthermore, since the carbon monoxide reducing agent of the present invention has the BET specific surface area, even if it comes into contact with a combustion gas containing moisture, the carbon monoxide reducing ability is not lowered for a relatively long time. Even if it is once poisoned with water, it is possible to recover the function of reducing carbon monoxide by placing it in an atmosphere of about 500 ° C.
  • the carbon monoxide reducing agent of the present invention may have an iron compound supported on the surface.
  • the amount of the iron compound is more preferably supported in the range of 0.1% by weight to 5.2% by weight in terms of iron element, based on the total weight of the carbon monoxide reducing agent.
  • the powder, solution or suspension of the iron compound is applied to the surface of the calcium aluminate particles obtained as described above by spraying, dipping, etc., and dried. A method of firing is used.
  • the iron compound is preferably added by a wet method using a non-aqueous solvent. That is, the iron compound supported on the particles is used after being dissolved in a non-aqueous solvent.
  • the iron compound is not particularly limited as long as it can be dissolved in a non-aqueous solvent such as an organic solvent, and examples thereof include iron sulfate, iron chloride, and iron nitrate.
  • a non-aqueous solvent such as an organic solvent can be used, and there is no particular limitation as long as the iron compound can be dissolved. In particular, it is preferable to use acetone or ethanol.
  • the amount of the carbon monoxide reducing agent is too small, a sufficient effect of reducing the monoxide is not exerted, and if the amount is too large, the combustibility and the aerosol generation amount are decreased, which is not preferable.
  • the carbon monoxide reducing agent of the present invention is blended in an amount of 10 to 90% by weight, preferably 15 to 60% by weight, based on the total weight of the fuel element.
  • the fuel source is one that burns in the fuel element and generates combustion heat.
  • the fuel source is, for example, carbon powder.
  • the type of carbon powder is not particularly limited, and commercially available carbon powder can be used.
  • the fuel source is blended in a proportion of 10 to 90% by weight, more preferably 40 to 60% by weight of the total weight of the fuel elements.
  • the binder is for binding the raw materials constituting the fuel element. Further, those that can maintain curability even when a non-aqueous solvent is used are preferable.
  • corn starch that is a starch adhesive, roasted dextrin, acetylated / methylated / carboxymethylated starch, or Cellulose adhesive cellulose nitrate, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose polymer or salt thereof, or ammonium alginate, guar gum, locust bean gum, chitansan gum, tamarind seed gum, carrageenan, pectin, agar, pullulan , Thickening polysaccharides such as gum arabic.
  • cellulose nitrate or ethyl cellulose is preferable, and ethyl cellulose is more preferable.
  • the binder can be blended at a ratio of 0.010 to 50% by weight, more preferably 0.1 to 0.75% by weight, with respect to 1% by weight of the fuel source.
  • the aerosol source can generate an aerosol by heat, and specifically, is a polyhydric alcohol such as glycerin, a tobacco component, water, ethanol or the like.
  • the aerosol source is not necessarily blended, but when blended, it can be blended at a ratio of 0.01 to 98% by weight, more preferably 0.01 to 0.1% by weight with respect to 1% by weight of the fuel source.
  • the non-aqueous solvent is for imparting an appropriate viscosity to the raw material of the fuel element and imparting moldability at the time of preparation of the fuel element. Further, it is required to use a solvent other than water so that the calcium aluminate particles of the present invention are not poisoned.
  • a preferable non-aqueous solvent is preferably a low-boiling solvent that can give an appropriate viscosity to the raw material of the fuel element and is easy in drying operation. Specifically, methanol, ethanol, propanol, acetone and the like are preferable, and ethanol is particularly preferable.
  • Non-combustible material Incombustible material is used as an upside down fuel element.
  • the non-combustible material include carbonates such as sodium, potassium, calcium, and magnesium, and oxides, silicate compounds, silicon oxide, talc, barium sulfate, and kaolin.
  • the non-combustible material When blended, the non-combustible material can be blended in a proportion of generally up to 98% by weight, more preferably up to 8% by weight with respect to 1% by weight of the fuel source.
  • the fuel element is, for example, mixed with the above-mentioned carbon monoxide reducing agent, fuel source and binder in powder form, optionally added with non-combustible material and / or aerosol source, mixed and then given a suitable viscosity to formability In order to increase this, it is obtained by adding a non-aqueous solvent and kneading and extruding it.
  • each raw material can be previously dissolved or suspended in a non-aqueous solvent and then mixed, and similarly obtained by extrusion molding.
  • the fuel element is provided with a plurality of air intakes penetrating in the length direction of the fuel element.
  • the air intake can be formed into an arbitrary shape by adjusting the die shape of the extruder during extrusion molding.
  • the final fuel element has a diameter of 2 to 10 mm, a length of 2 to 20 mm, a porosity of 5 to 80 mm, preferably a diameter of 4 to 8 mm, a length of 5 to 10 mm, and a porosity of 20 to 70 mm. It is.
  • the fuel element of the present invention is used as a combustion heat source for non-combustion smoking articles.
  • Non-combustion smoking articles include, for example, a fuel element, an aerosol source element, and an aerosol removal element (filter).
  • the fuel element is loaded in a cylindrical heat insulating element
  • the aerosol source element and the aerosol removing element are loaded in a cylindrical member (cylindrical body).
  • Aerosol source element is capable of generating an aerosol preferred by the user by heat supplied from the fuel element, and is composed of an aerosol source, a binder, and an aerosol source stationary.
  • Aerosol source and binder as can be used for the fuel element described above can be used.
  • Aerosol source fixed materials include tobacco raw materials such as tobacco leaves, tobacco, tobacco leaves / recycled tobacco sheets extracted from tobacco, tobacco materials such as alumina, calcium carbonate, zeolite, and high molecular organic compounds such as cellulose. It is.
  • a typical aerosol source element is composed of glycerin as an aerosol source, tobacco tobacco powder as a fixed aerosol source, and ammonium alginate as a binder.
  • the thermal insulation element of the fuel element is used to prevent the heated fuel element from being exposed to the outside, but the thermal insulation element of the fuel element may or may not be present.
  • Specific thermal insulation elements are composed of glass wool, rock wool, ceramic fiber or calcium silicate.
  • a cylindrical body consists of a wrapper and a heat insulating material, and is loaded with an aerosol element and an aerosol removal element. Further, it is used for efficiently transmitting the combustion heat of the fuel element to the aerosol source element and promoting the generation of the aerosol. It also has a function of providing appropriate heat insulation so that the smoker does not feel heat when holding the non-combustion smoking article.
  • the wrapper wraps the aerosol source element and the aerosol removal element in a cylindrical shape, and the heat insulating material further coats the outside of the wrapper. Further, the wrapper has better heat resistance and better heat reflectivity than the heat insulating material.
  • the wrapper includes a metal such as an aluminum foil.
  • the heat insulating material has a smaller thermal conductivity than the wrapper.
  • the heat insulating material includes, for example, paper.
  • the aerosol removal element is a so-called filter.
  • the aerosol removal element is used to moderately adjust the amount of aerosol inhaled by the smoker.
  • the aerosol removing element is, for example, acetate fiber as a filter medium, paper, pulp, wool, and the like, and may further include additives such as activated carbon, magnesium silicate, silica gel, ion exchange resin, and urethane resin. These additives may be supported on the filter medium when forming the filter, or may be added as a tow material when the filter medium is towed. Further, a fragrance such as menthol or a substance carrying a fragrance may be further added to the filter medium.
  • the aerosol removal element may have a hollow structure that does not substantially have aerosol removal ability, and can be omitted from the elements of the non-combustion smoking article.
  • Non-combustible smoking articles can have openings for taking in air during smoking to dilute mainstream smoke components (eg, carbon dioxide).
  • FIG. 1 shows a cross-sectional view of a non-combustion smoking article in which a fuel element 10 of the present invention is connected to a cylindrical body 50 having an ignition end 50a and a suction end 50b
  • FIG. 2 shows a part of FIG. An enlarged perspective view is shown.
  • the fuel element 10 is loaded in the heat insulation element 20, and the aerosol source element 30 and the aerosol source removal element 40 are loaded in the cylindrical body 50.
  • the fuel element 10 is located on the side of the ignition end 50a of the cylindrical body 50, and the aerosol removal element 40 is located on the side of the suction end 50b of the non-combustion smoking article.
  • the fuel element 10 is provided with a plurality of air intake ports 101 penetrating in the length direction.
  • the cylindrical body 50 includes a wrapper 501 and a heat insulating material 502, and the aerosol source element 30 and the aerosol removing element 40 are wound in a cylindrical shape by the wrapper 501, and the outer side of the wrapper 501 is further covered with the heat insulating material 502. ing.
  • the non-combustion smoking article described above is used as follows. That is, when the fuel element 10 is first ignited, combustion gas is generated. Here, a part of the carbon monoxide generated during combustion is decomposed by the carbon monoxide reducing agent blended in the fuel element 10. Next, the combustion gas flows into the cylindrical body 50 by the user's intake air. When the aerosol source element 30 loaded in the cylindrical body 50 is exposed to the combustion gas, an aerosol containing a flavor is generated from the aerosol source contained in the aerosol source element 30. The aerosol generated in this manner is adjusted to an appropriate amount via the aerosol source removal element 40 and then reaches the user's mouth. In this way, the user can taste an aerosol with a low carbon monoxide content and a flavor.
  • Example 1 Preparation of carbon monoxide reducing agent (sample 1)
  • the calcium carbonate powder and the aluminum oxide powder were mixed using a powder mixer so that the molar ratio of calcium carbonate and aluminum oxide was 12: 7.
  • the mixed powder was put in a crucible and heated at 1350 ° C. for 2 hours, and then cooled to room temperature in an atmosphere in which oxygen was passed to obtain calcium aluminate particles. After the obtained calcium aluminate particles were crushed, the BET specific surface area was adjusted to 10.0 m 2 / g with a dry ball mill and a wet ball mill.
  • iron nitrate was added in the form of an ethanol solution containing 0.9% by weight as an iron element, stirred and mixed, dried, and supported on the surface of the calcium aluminate particles.
  • the obtained particles were further calcined at 600 ° C. for 4 hours under oxygen flow to obtain a carbon monoxide reducing agent (sample 1) in which an iron compound was supported on the particle surface as iron by 0.6% by weight of the particle weight.
  • the qualitative and quantitative test procedures for the obtained sample will be described later.
  • Example 2 Carbon monoxide reducing agent (sample 2) using the same procedure as sample 1 except that the calcium aluminate particles have a BET specific surface area adjusted to 10.1 m 2 / g and the iron compound is loaded on the particle surface as 1.2% by weight. Got.
  • Example 3 Carbon monoxide reducing agent (sample 3) using the same procedure as sample 1 except that the calcium aluminate particles had a BET specific surface area adjusted to 10.0 m 2 / g and the iron compound was supported on the particle surface by 5.2% by weight as iron. Got.
  • Example 4 The calcium carbonate powder and the aluminum oxide powder were mixed using a powder mixer so that the molar ratio of calcium carbonate and aluminum oxide was 12: 7. The mixed powder was put in a crucible and heated at 1350 ° C. for 2 hours, and then cooled to room temperature in an atmosphere in which oxygen was passed to obtain calcium aluminate particles. After the obtained calcium aluminate particles were crushed, the carbon monoxide reducing agent (Sample 4) was obtained by adjusting the BET specific surface area to 2.3 m 2 / g with a dry ball mill and a wet ball mill.
  • Example 5 A carbon monoxide reducing agent (Sample 5) was obtained by the same procedure as Sample 4 except that the BET specific surface area of the calcium aluminate particles was adjusted to 10.6 m 2 / g.
  • Example 6 The carbon monoxide reducing agent (Sample 6) was prepared in the same procedure as Sample 4 except that the BET specific surface area of calcium aluminate particles with a 3: 1 molar ratio of calcium carbonate to aluminum oxide was adjusted to 3.4 m 2 / g. Obtained.
  • Example 7 The carbon monoxide reducing agent (Sample 7) was prepared in the same procedure as Sample 4 except that the BET specific surface area of calcium aluminate particles having a molar ratio of calcium carbonate to aluminum oxide of 1: 6 was adjusted to 3.2 m 2 / g. Obtained.
  • the sample 5 was subjected to X-ray diffraction analysis by XRD (Rigaku RAD RB RU-200), and it was confirmed that (CaO) 12 / (Al 2 O 3 ) 7 was present as a main component. Further, the samples 1 to 3 and 5 were subjected to composition analysis using SEM-EDX (manufactured by JSM-7500FA JEOL). Further, for the elements detected by EDX, the weight composition ratio of Ca and Al in the sample was determined based on the detection peak with the set standard sample.
  • the constituent ratio in the sample was determined for the element obtained by removing C and O from the detected elements, and the amount of element contained in the sample was calculated assuming that Ca is present as CaO and Al as Al 2 O 3 .
  • Table 1 shows the detected element types and composition ratios.
  • the samples 1 to 3 were melted with alkali, dissolved in acid to form a sample solution, and the amount of Fe element was analyzed using an ICP emission analyzer (Seiko SPS5000).
  • Table 2 shows the metal element composition ratio of the obtained Fe.
  • the metal element composition ratio of the obtained Fe was almost the same as the theoretical value (described in Tables 3 and 4) of the weight ratio calculated from the amount used for sample preparation.
  • Sample 50 mg was collected, dispersed uniformly in 80 mg glass wool, and filled between quartz with an inner diameter of ⁇ 8 mm. While circulating a nitrogen-based model gas prepared with carbon monoxide at 4,700 ⁇ ppm and oxygen at 160,000 ppm inside the quartz tube at 600 mL / min, the glass wool filled part was heated from room temperature to 800 ° C by external heating, The gas composition obtained from the quartz tube outlet was measured online using an IR analyzer (manufactured by HORIBA), and the CO concentration at 700 ° C. was measured.
  • the CO outlet concentration at 700 ° C was divided by the CO concentration at the quartz tube inlet to obtain the CO reduction rate in the model gas when heated at 700 ° C. Note that the CO reduction rate was similarly measured for the carbon monoxide reducing agent of Samples 2 to 7 and for the calcium carbonate particles (Comparative Sample 1) instead of the carbon monoxide reducing agent.
  • Comparison of sample 5 and samples 1 to 3 shows that the CO reduction ability improves as the amount of iron compound added increases, but the rate of increase in CO reduction ability relative to the increase in the amount of iron compound blended decreases. That is, the carbon monoxide reducing agent of the present invention exhibits a sufficient CO reduction ability by blending a relatively small amount (about 1.0% by weight) of an iron compound as an iron element, but about 5.2% by weight of the iron compound as an iron element. Even when blended in an amount exceeding%, it became clear that the blending amount-dependent CO-reducing ability was not exhibited.
  • the fuel element of the present invention was prepared using the carbon monoxide reducing agent (sample 1) prepared by the above procedure. The procedure is shown below.
  • Sample 1 carbon monoxide reducing agent 40% by weight, 50% carbon powder as fuel source (Carbon black, acetylene, 100% pressed, 99.5%, Wako Pure Chemical Industries, Ltd.), 7% as binder Granulator (made by DOME GRAN LAB DG-L1 Fuji Powder Co., Ltd.) with 3% ethylcellulose (Wako Pure Chemical Industries, Ltd.) and 3 wt% glycerin as an aerosol source
  • the mixture was kneaded and then extruded using an extruder (Kitakura Co., Ltd.) equipped with an extrusion die having a diameter of 4.3 mm, and the resulting molded product was dried in a dryer at 100 ° C. for 2 hours. This was cut to obtain a fuel element having a diameter of 4.3 mm, a length of 10 mm, and a porosity of 21%.
  • FIG. 3 shows a thermogravimetric curve as an analysis result of the fuel element in which the sample 1 is blended with a thermogravimetric measuring apparatus (TG-DTA2000SR Bruker AXS Co., Ltd.). Since calcium aluminate particles are manufactured by sintering, they do not fluctuate due to heating. On the other hand, the fuel source and the binder are burned by heating and do not remain in the residue. Therefore, the proportion of calcium aluminate in the fuel element can be estimated from the residue weight ratio at 800 ° C., for example. From FIG. 3, the residue weight ratio at 800 ° C. of the fuel element containing Sample 1 is 0.37.
  • Atmosphere In air (50 mL / min), Rate of temperature increase: 10 ° C / min, Temperature range: Room temperature to 1000 ° C.
  • Non-Patent Document 1 Determination of Carbon Monoxide in the Mainstream Smoke of Cigarettes by Non-Dispersive Infrared Analysis” CORESTA RECOMMENDS METHOD No. 5
  • Non-Patent Document 2 Determination of Total Particulate Matter and Preparation for Water” and Nicotine Measurements ”CORESTA RECOMMENDS METHOD No. 23
  • TPM production and CO production were measured.
  • Example 1 The fuel element and the non-reactor were prepared in the same manner as in the case of using Sample 1 in Example 1, except that 40% by weight of calcium carbonate particles (Comparative Sample 1) was mixed instead of 40% by weight of Sample 1 of Example 1. Combustion-type smoking articles were prepared. About the obtained non-combustion type smoking article, the amount of TPM production and the amount of CO production were measured in the same manner as in Example 1.
  • the fuel element containing the carbon monoxide reducing agent compounded with the calcium aluminate particles of the present invention has a better carbon monoxide reducing ability than the fuel element prepared by compounding the calcium carbonate particles. Became clear.
  • the CO reduction rate in the model gas when heated at 700 ° C. represents the speed of the CO oxidation reaction, and the value indicates the magnitude of the catalytic function of the carbon monoxide reducing agent.
  • the magnitude relationship of the catalyst function is not affected by the test method as long as the reaction in which the catalyst functions is the same. That is, the CO reduction rate tested using the previous model gas is also reflected in the CO reduction ability of the carbon monoxide reducing agent in the fuel element. That is, since the carbon monoxide reducing agent of the present invention has a higher CO reduction rate in model gas when heated at 700 ° C. than calcium carbonate (Comparative Sample 1), a carbon monoxide reducing agent other than Sample 1 was added. It can be easily predicted that the CO production amount in the fuel element is significantly lower than that of the comparative example.
  • FIG. 4 shows the relationship between the calcium aluminate particle content in the fuel element and the amount of CO produced in the mainstream smoke.
  • the non-combustion type smoking article using the fuel element containing the calcium aluminate particles of the present invention is higher in the mainstream smoke than the non-combustion type smoking article using the fuel element containing no calcium aluminate particles.
  • Carbon monoxide has been reduced, and the amount of TPM produced has not changed much.
  • carbon monoxide in the mainstream smoke could be reduced by increasing the blending ratio of the calcium aluminate particles described in this patent.
  • Table 6 shows the compositions of the fuel elements obtained by blending Sample 1 in Example 1 and the fuel elements of Comparative Examples 2 to 5 and the evaluation results of these moldability.
  • the fuel element containing the calcium aluminate particles of the present invention can be molded regardless of the binder type, but it was confirmed that the moldability is lost when water is used.
  • a fuel element capable of reducing carbon monoxide in mainstream smoke can be obtained without changing the amount of TPM. Further, by using a non-aqueous solvent such as ethanol, the fuel element can be molded using an extruder.

Abstract

The disclosed fuel element of a non-combustion smoking article is characterized by containing: a carbon-monoxide-reducing agent containing calcium aluminate particles represented by the formula (CaO)m(Al2O3)n (where 1/6 = m/n = 4/1); carbon powder as a fuel source; and a binder.

Description

非燃焼型喫煙物品の燃料要素およびその製造方法Non-combustible smoking article fuel element and method of manufacturing the same
 本発明は、非燃焼型喫煙物品の燃料要素およびその製造方法に関する。 The present invention relates to a fuel element for a non-combustion smoking article and a method for manufacturing the same.
 近年、タバコ葉を燃焼させるシガレットや葉巻などの喫煙物品と異なり、タバコ葉の燃焼を伴わない非燃焼型喫煙物品が開発されている。これらの非燃焼型喫煙物品は、炭素を含む燃料要素と、適当な基材に香喫味成分を保持させたエアロゾル発生材料を含むエアロゾル発生要素から構成されている。先端に取り付けた燃料要素に着火し、燃料要素自体から生じるエアロゾル(TPM)、あるいは燃料要素の燃焼熱によってエアロゾル発生要素から発生するエアロゾルを吸入し、このエアロゾルに含まれる香味や喫味を味わうことができる。ところで、喫煙物品から生じるエアロゾルは、好ましくない成分として燃料要素の不完全燃焼に起因する一酸化炭素があり、エアロゾル中から極力除去されることが望ましい。 In recent years, unlike smoking articles such as cigarettes and cigars that burn tobacco leaves, non-burning smoking articles that do not involve burning tobacco leaves have been developed. These non-combustion smoking articles are composed of a fuel element containing carbon and an aerosol generating element containing an aerosol generating material in which a flavor component is held on a suitable base material. The fuel element attached to the tip is ignited, and the aerosol (TPM) generated from the fuel element itself or the aerosol generated from the aerosol generating element by the combustion heat of the fuel element is inhaled, and the flavor and taste contained in this aerosol can be tasted it can. By the way, the aerosol generated from the smoking article includes carbon monoxide resulting from incomplete combustion of the fuel element as an undesirable component, and it is desirable that the aerosol is removed as much as possible from the aerosol.
 非燃焼型喫煙物品に使用される燃料要素の不完全燃焼を改善するために種々の技術が開発されており、これまでに燃料要素の材料、材料の構成比および形状等について、種々の調査、報告および特許出願がなされている。特許文献1は、主流煙の一酸化炭素を低減するために、金属酸化物および/または金属の超微粒子を含む、触媒組成物を含む燃料要素を開示している。また、特許文献2は、燃焼素子に隣接して、CO酸化触媒を配置して一酸化炭素を低減する方法を開示している。特許文献3は、燃料要素に金属炭化物、金属窒化物および金属の混合物を含有する熱源を開示している。また、特許文献4は炭素燃料が燃焼する温度で実質的に不燃性である固体物を微孔性層として、炭素燃料にコーティングした燃料を開示している。また、特許文献5は、炭素燃料に含まれる不燃物(炭酸カルシウム)の割合を変更することにより、一酸化炭素を低減する方法を開示している。 Various technologies have been developed to improve the incomplete combustion of fuel elements used in non-combustible smoking articles, and various studies have been conducted on the fuel element materials, material composition ratios and shapes, Reports and patent applications have been made. U.S. Patent No. 6,099,077 discloses a fuel element that includes a catalyst composition that includes metal oxides and / or ultrafine particles of metal to reduce mainstream smoke carbon monoxide. Patent Document 2 discloses a method of reducing carbon monoxide by disposing a CO oxidation catalyst adjacent to a combustion element. Patent Document 3 discloses a heat source containing a mixture of metal carbide, metal nitride, and metal in a fuel element. Patent Document 4 discloses a fuel obtained by coating a carbon fuel with a solid material that is substantially incombustible at a temperature at which the carbon fuel burns as a microporous layer. Patent Document 5 discloses a method of reducing carbon monoxide by changing the ratio of incombustibles (calcium carbonate) contained in carbon fuel.
 特許文献1は、金属酸化物および/または金属の超微粒子を使用した触媒組成物を開示しているが、この文献に記載されている酸化鉄は材料コストが高いために大量使用に向かず、また金属の超微粒子は製造上の取り扱いが困難である。また、製造上、材料を混錬する必要があるが、超微粒子になると燃料要素を成形する際に飛散等により材料比のとおりに混錬ができない。 Patent Document 1 discloses a catalyst composition using metal oxide and / or ultrafine metal particles, but the iron oxide described in this document is not suitable for mass use due to high material cost. In addition, ultrafine metal particles are difficult to handle in production. In addition, it is necessary to knead the material for manufacturing, but if it becomes ultrafine particles, it cannot be kneaded according to the material ratio due to scattering when the fuel element is formed.
 特許文献2は、炭素燃料の吸い口側端面に触媒層を配置し、触媒層のさらに吸い口側端面にエアロゾル生成源を配置する方法を開示しているが、この方法では、エアロゾル生成源に充分な熱量が提供されず、エアロゾルの生成が少なくなり、喫煙物品として機能しない。 Patent Document 2 discloses a method in which a catalyst layer is arranged on the end surface on the suction side of the carbon fuel, and an aerosol generation source is further arranged on the end surface on the suction side of the catalyst layer. Not enough heat is provided, aerosol generation is reduced, and it does not function as a smoking article.
 特許文献3は、燃料要素に触媒として、金属炭化物、金属窒化物および金属の混合物を含有する熱源が提示されているが、金属炭化物、金属窒化物は製造コストが高く、喫煙物品へ適用する場合、製造コストの増加が考えられる。特許文献5は、炭素燃料に含まれる不燃物(炭酸カルシウム)の割合を変更することにより、一酸化炭素を低減する方法を開示しているが、この方法は、コストの観点からは実用性が高いが、燃焼の持続時間の低下に起因したパフの回数の減少や、燃料要素の着火性が低下するという問題がある。 Patent Document 3 proposes a heat source containing a metal carbide, metal nitride and a mixture of metals as a catalyst in the fuel element. However, metal carbide and metal nitride are expensive to manufacture and are applied to smoking articles. An increase in manufacturing cost can be considered. Patent Document 5 discloses a method of reducing carbon monoxide by changing the proportion of incombustibles (calcium carbonate) contained in carbon fuel, but this method is practical from the viewpoint of cost. Although it is high, there are problems that the number of puffs is reduced due to a decrease in the duration of combustion and the ignitability of the fuel element is reduced.
特公表2008-505990号公報Special Publication 2008-505990 特開平05-329213号公報Japanese Patent Laid-Open No. 05-329213 特開平06-183871号公報Japanese Patent Laid-Open No. 06-183871 特公表平04-501523号公報Publication No. 04-501523 特再公表WO 06/073065号公報Special republication WO 06/073065
 本発明は、低コストで製造でき、かつハンドリング性に優れる一酸化炭素低減剤を含み、非燃焼型喫煙物品から発生するエアロゾル中の一酸化炭素を効率的に除去し、なおかつ着火性に優れた非燃焼型喫煙物品の燃料要素を提供することを目的とする。また、調製過程で一酸化炭素低減能を減じることなく、パフ時に良好な一酸化炭素低減能を発揮する非燃焼型喫煙物品の燃料要素の製造方法を提供することを目的とする。 The present invention includes a carbon monoxide reducing agent that can be produced at a low cost and has excellent handling properties, efficiently removes carbon monoxide in aerosols generated from non-combustion-type smoking articles, and has excellent ignitability. An object is to provide a fuel element for a non-combustible smoking article. It is another object of the present invention to provide a method for producing a fuel element for a non-combustion smoking article that exhibits good carbon monoxide reduction ability during puffing without reducing carbon monoxide reduction ability during the preparation process.
 本発明者らは、BET比表面積および粒径を調節したカルシウムアルミネート粒子を含む一酸化炭素低減剤を配合することによって、上記課題を解決する燃料要素を得るに至った。 The present inventors have come to obtain a fuel element that solves the above problems by blending a carbon monoxide reducing agent containing calcium aluminate particles whose BET specific surface area and particle size are adjusted.
 また、調製過程で非水系溶媒を用いることにより、上記課題を解決する燃料要素の製造方法を得るに至った。 Also, by using a non-aqueous solvent in the preparation process, a fuel element manufacturing method that solves the above problems has been obtained.
 すなわち本発明の一つの側面によれば、式(CaO)m(Al2O3)n (但し、1/6≦m/n≦4/1)で表されるカルシウムアルミネート粒子を含有する一酸化炭素低減剤と、燃料源としてカーボン粉末と、バインダーとを含むことを特徴とする非燃焼型喫煙物品の燃料要素が提供される。 That is, according to one aspect of the present invention, the calcium aluminate particles represented by the formula (CaO) m (Al 2 O 3 ) n (where 1/6 ≦ m / n ≦ 4/1) are contained. There is provided a fuel element for a non-combustible smoking article, comprising a carbon oxide reducing agent, carbon powder as a fuel source, and a binder.
 本発明の一つの側面によれば、式(CaO)m(Al2O3)n (但し、1/6≦m/n≦4/1)で表され、かつ2 m2/g以上~20 m2/g未満のBET比表面積を有するカルシウムアルミネート粒子を含有する一酸化炭素低減剤と、燃料源としてのカーボン粉末と、バインダーとを非水系溶媒を用いて混練し、押出成形することを特徴とする非燃焼型喫煙物品の燃料要素の製造方法が提供される。 According to one aspect of the present invention, it is represented by the formula (CaO) m (Al 2 O 3 ) n (where 1/6 ≦ m / n ≦ 4/1) and 2 m 2 / g or more to 20 A carbon monoxide reducing agent containing calcium aluminate particles having a BET specific surface area of less than m 2 / g, a carbon powder as a fuel source, and a binder are kneaded using a non-aqueous solvent and extruded. A method of manufacturing a fuel element for a non-combustible smoking article is provided.
 低コストで製造でき、かつ非燃焼型喫煙物品の喫煙物品から発生するエアロゾル中の一酸化炭素を効率的に除去し、なおかつ着火性に優れた非燃焼型喫煙物品の燃料要素が得られる。また、調製過程で一酸化炭素低減能を減じることなく、使用に際して良好な一酸化炭素低減能を発揮する燃料要素の製造方法が得られる。 It is possible to produce a fuel element of a non-combustion type smoking article that can be manufactured at low cost and efficiently removes carbon monoxide in the aerosol generated from the smoking article of the non-combustion type smoking article and has excellent ignitability. In addition, a method for producing a fuel element that exhibits good carbon monoxide reduction ability in use can be obtained without reducing the carbon monoxide reduction ability in the preparation process.
図1は、本発明の燃料要素を含む非燃焼型喫煙物品の断面図である。FIG. 1 is a cross-sectional view of a non-combustible smoking article that includes a fuel element of the present invention. 図2は、図1の一部を拡大して示した斜視図である。FIG. 2 is an enlarged perspective view of a part of FIG. 図3は、本発明の燃料要素の熱重量分析結果を示すグラフである。FIG. 3 is a graph showing the results of thermogravimetric analysis of the fuel element of the present invention. 図4は、本発明の燃料要素中のカルシウムアルミネート粒子の含有量に対する、エアロゾル中のCO生成量の測定結果を示すグラフである。FIG. 4 is a graph showing the measurement result of the amount of CO produced in the aerosol with respect to the content of calcium aluminate particles in the fuel element of the present invention.
 本発明の燃料要素は、BET比表面積を所望の範囲に調節したカルシウムアルミネート粒子を含む一酸化炭素低減剤と、燃料源と、バインダーとを含む。 The fuel element of the present invention includes a carbon monoxide reducing agent including calcium aluminate particles having a BET specific surface area adjusted to a desired range, a fuel source, and a binder.
 本発明の燃料要素には、例えば非燃焼型喫煙物品の燃焼熱供給源として使用されるため、可燃性であり、着火後に数分間燃焼が持続し、かつパフ時にエアロゾルを発生させるために充分な熱量を発生できる特性が求められる。 The fuel element of the present invention is flammable because it is used, for example, as a combustion heat source for non-combustible smoking articles, is sufficient to sustain combustion for several minutes after ignition, and to generate an aerosol when puffed A characteristic capable of generating heat is required.
 以下、本発明の燃料要素を構成する要素毎に説明する。 Hereinafter, each element constituting the fuel element of the present invention will be described.
 [一酸化炭素低減剤]
 一酸化炭素低減剤は、喫煙物品から生じるCOを除去するためのものである。
[Carbon monoxide reducing agent]
The carbon monoxide reducing agent is for removing CO generated from smoking articles.
 本発明に係る一酸化炭素低減剤は、mモルの炭酸カルシウムとnモルの酸化アルミニウムを、1/6≦m/n≦4/1となるように混合し、1250℃から1350℃にて焼成して得られたカルシウムアルミネートを粉砕して得られる。 The carbon monoxide reducing agent according to the present invention is mixed with 1 mol of calcium carbonate and n mol of aluminum oxide so that 1/6 ≦ m / n ≦ 4/1, and fired at 1250 ° C. to 1350 ° C. It is obtained by pulverizing the calcium aluminate obtained.
 本発明の一酸化炭素低減剤に含まれるカルシウムアルミネート粒子は2 m2/g以上~20 m2/g未満のBET比表面積を有する。 The calcium aluminate particles contained in the carbon monoxide reducing agent of the present invention have a BET specific surface area of 2 m 2 / g or more and less than 20 m 2 / g.
 ここで、比表面積は粒子の重量(g)あたりの表面積(m2)の比率として定義される。一般に粒子径の減少に伴って粒子重量も減少するため、粒径の小さい粒子ほど大きな比表面積を持つ傾向がある。一酸化炭素低減剤(カルシウムアルミネート)粒子の表面は一酸化炭素低減に寄与するラジカル、例えばスーパーオキシドアニオンラジカルの放出サイトとなる。良好なラジカル放出能を発揮するために、一酸化炭素低減剤(カルシウムアルミネート)粒子はある程度大きな表面積を持つことが望ましい。例えばBET比表面積が2 m2/g未満であると、ラジカル放出サイトが少ない故に、一酸化炭素低減能を十分に発揮できない傾向がある。他方でカルシウムアルミネート粒子はある程度大きな粒径を持つことが好ましい。一酸化炭素低減剤の粒径がナノサイズとなると、製造中に粒子が舞い上がるなど、ハンドリングが困難となる。 Here, the specific surface area is defined as the ratio of the surface area (m 2 ) per weight (g) of the particles. In general, since the particle weight decreases as the particle size decreases, the smaller the particle size, the larger the specific surface area. The surface of the carbon monoxide reducing agent (calcium aluminate) particles becomes a release site of radicals that contribute to carbon monoxide reduction, such as superoxide anion radicals. In order to exhibit good radical releasing ability, it is desirable that the carbon monoxide reducing agent (calcium aluminate) particles have a certain large surface area. For example, when the BET specific surface area is less than 2 m 2 / g, there is a tendency that the carbon monoxide reducing ability cannot be sufficiently exhibited because there are few radical releasing sites. On the other hand, the calcium aluminate particles preferably have a certain size. When the particle size of the carbon monoxide reducing agent is nano-sized, handling becomes difficult, for example, particles rise during production.
 なお、BET比表面積は、例えば自動比表面積/細孔分布測定装置によって求めることができ、カルシウムアルミネート粒子(比重2 g/cm3)を表面細孔のない真球と仮定すると、比表面積が2 m2/gの粒子の粒径は750 nm、20 m2/gで75 nmである。さらに本発明の一酸化炭素低減剤は、上記BET比表面積を有することにより、水分を含む燃焼ガスと接触しても、比較的長時間にわたって一酸化炭素低減能を低下させることがない。また一度水で被毒されても、500℃程度の温度雰囲気下に置かれることで一酸化炭素の低減機能を回復することが可能である。 Note that the BET specific surface area can be determined by, for example, an automatic specific surface area / pore distribution measuring device, and assuming that the calcium aluminate particles (specific gravity 2 g / cm 3 ) are true spheres without surface pores, the specific surface area is The particle size of 2 m 2 / g particles is 750 nm, 20 m 2 / g is 75 nm. Furthermore, since the carbon monoxide reducing agent of the present invention has the BET specific surface area, even if it comes into contact with a combustion gas containing moisture, the carbon monoxide reducing ability is not lowered for a relatively long time. Even if it is once poisoned with water, it is possible to recover the function of reducing carbon monoxide by placing it in an atmosphere of about 500 ° C.
 本発明の一酸化炭素低減剤は、表面に鉄化合物を担持させたものでもよい。鉄化合物の量は、より好ましくは、合計で一酸化炭素低減剤の重量に基づいて、鉄元素換算で0.1重量%~5.2重量%の範囲で担持させることが好ましい。 The carbon monoxide reducing agent of the present invention may have an iron compound supported on the surface. The amount of the iron compound is more preferably supported in the range of 0.1% by weight to 5.2% by weight in terms of iron element, based on the total weight of the carbon monoxide reducing agent.
 一酸化炭素低減剤に鉄化合物を担持させるためには、上記のとおりに得られたカルシウムアルミネート粒子の表面に、鉄化合物の粉末、溶液または懸濁液を噴霧、浸漬等により適用し、乾燥、焼成する手法を用いる。 In order to support the iron compound on the carbon monoxide reducing agent, the powder, solution or suspension of the iron compound is applied to the surface of the calcium aluminate particles obtained as described above by spraying, dipping, etc., and dried. A method of firing is used.
 鉄化合物は、非水系溶媒を用いた湿式法によって添加することが好ましい。すなわち、粒子に担持させる鉄化合物は、非水系溶媒に溶解させて用いる。鉄化合物としては、非水系溶媒、例えば有機溶媒に溶解することができるものであればよく、例えば硫酸鉄、塩化鉄および硝酸鉄等を挙げることができる。非水系溶媒としては有機溶媒を用いることができ、鉄化合物を溶解させることができれば特に限定されない。特に、アセトンまたはエタノールを用いることが好ましい。非水系溶媒を用いることで、水系溶媒を用いた際に起こり得るカルシウムアルミネートの結晶構造崩壊や凝固を防止することができる。従って、粒子が水によって被毒されることによって一酸化炭素低減能が損なわれることがない。 The iron compound is preferably added by a wet method using a non-aqueous solvent. That is, the iron compound supported on the particles is used after being dissolved in a non-aqueous solvent. The iron compound is not particularly limited as long as it can be dissolved in a non-aqueous solvent such as an organic solvent, and examples thereof include iron sulfate, iron chloride, and iron nitrate. As the non-aqueous solvent, an organic solvent can be used, and there is no particular limitation as long as the iron compound can be dissolved. In particular, it is preferable to use acetone or ethanol. By using a non-aqueous solvent, it is possible to prevent the collapse of the crystal structure and solidification of calcium aluminate that may occur when an aqueous solvent is used. Therefore, the carbon monoxide reducing ability is not impaired by the particles being poisoned by water.
 ところで、鉄化合物を粒子表面に添加する場合、より均一に鉄化合物を分散させ、得られる一酸化炭素低減剤の機能を均一にすることが望ましい。なお、水よりも沸点の低い非水系溶媒を用いれば溶媒の除去が容易となるので、カルシウムアルミネート粒子表面への添加処理が迅速に行えるという利点も有する。非水系溶媒に鉄化合物を溶解させ、焼成後のカルシウムアルミネート粒子と混合した後、アスピレータ等の一般的な手法によって溶媒のみを容易に回収することができるので、鉄化合物が均一に分散した粒子を容易に得ることができる。 By the way, when adding an iron compound to the particle surface, it is desirable to disperse the iron compound more uniformly and to make the function of the resulting carbon monoxide reducing agent uniform. In addition, since the removal of a solvent will become easy if a non-aqueous solvent whose boiling point is lower than water is used, there also exists an advantage that the addition process to the surface of a calcium aluminate particle can be performed rapidly. Particles in which the iron compound is uniformly dispersed because the iron compound is dissolved in a non-aqueous solvent and mixed with the calcined calcium aluminate particles, and then only the solvent can be easily recovered by a general method such as an aspirator. Can be easily obtained.
 一酸化炭素低減剤の配合が少なすぎると十分な一酸化低減効果を発揮できず、配合が多すぎると燃焼性の低下およびエアロゾル生成量の低下が起こり好ましくない。 If the amount of the carbon monoxide reducing agent is too small, a sufficient effect of reducing the monoxide is not exerted, and if the amount is too large, the combustibility and the aerosol generation amount are decreased, which is not preferable.
 そこで本発明の一酸化炭素低減剤は、燃料要素の総重量の10~90重量%、好ましくは15~60重量%で配合される。主流煙中の一酸化炭素を10 %以上低減するには、燃料要素中に一酸化炭素低減剤を20重量%以上配合することが望ましく、20 %以上低減するには、燃料要素中に一酸化炭素低減剤を40重量%以上配合することが望ましい。 Therefore, the carbon monoxide reducing agent of the present invention is blended in an amount of 10 to 90% by weight, preferably 15 to 60% by weight, based on the total weight of the fuel element. In order to reduce carbon monoxide in mainstream smoke by 10% or more, it is desirable to add 20% by weight or more of a carbon monoxide reducing agent in the fuel element, and in order to reduce 20% or more by carbon monoxide, It is desirable to add 40% by weight or more of a carbon reducing agent.
 [燃料源]
 燃料源は、燃料要素中で燃焼して燃焼熱を発生させるものである。燃料源は例えばカーボン粉末である。カーボン粉末の種類については特に限定されず、市販のカーボン粉末を用いることができる。
[Fuel source]
The fuel source is one that burns in the fuel element and generates combustion heat. The fuel source is, for example, carbon powder. The type of carbon powder is not particularly limited, and commercially available carbon powder can be used.
 燃料源は、燃料要素の総重量の10~90重量%、より好ましくは40~60重量%の割合で配合される。 The fuel source is blended in a proportion of 10 to 90% by weight, more preferably 40 to 60% by weight of the total weight of the fuel elements.
 [バインダー]
 バインダーは、燃料要素を構成する原料を結着させるためのものである。また、非水系溶媒を使用した際にも硬化性を持続できるものが好ましく、具体的には、デンプン系接着剤であるコーンスターチ、焙焼デキストリン、アセチル化・メチル化・カルボキシメチル化したデンプン、あるいは、セルロース系接着剤である硝酸セルロースやエチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースの高分子あるいはその塩、あるいは、アルギン酸アンモニウム、グアーガム、ローカストビーンガム、キタンサンガム、タマリンドシードガム、カラギーナン、ペクチン、寒天、プルラン、アラビアガムなどの増粘性多糖類などである。特に、硝酸セルロースまたはエチルセルロースが好ましく、エチルセルロースがより好ましい。
[binder]
The binder is for binding the raw materials constituting the fuel element. Further, those that can maintain curability even when a non-aqueous solvent is used are preferable. Specifically, corn starch that is a starch adhesive, roasted dextrin, acetylated / methylated / carboxymethylated starch, or Cellulose adhesive cellulose nitrate, ethyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose polymer or salt thereof, or ammonium alginate, guar gum, locust bean gum, chitansan gum, tamarind seed gum, carrageenan, pectin, agar, pullulan , Thickening polysaccharides such as gum arabic. In particular, cellulose nitrate or ethyl cellulose is preferable, and ethyl cellulose is more preferable.
 バインダーは、燃料源1重量%に対し0.010~50重量%、より好ましくは0.1~0.75重量%の割合で配合することができる。 The binder can be blended at a ratio of 0.010 to 50% by weight, more preferably 0.1 to 0.75% by weight, with respect to 1% by weight of the fuel source.
 [エアロゾル源]
 エアロゾル源は、熱によりエアロゾルを発生し得るものであって、具体的にはグリセリン等の多価アルコール、タバコ成分、水、エタノール等である。
[Aerosol source]
The aerosol source can generate an aerosol by heat, and specifically, is a polyhydric alcohol such as glycerin, a tobacco component, water, ethanol or the like.
 エアロゾル源は、必ずしも配合しなくともよいが、配合する場合には、燃料源1重量%に対し0.01~98重量%、より好ましくは0.01~0.1重量%の割合で配合することができる。 The aerosol source is not necessarily blended, but when blended, it can be blended at a ratio of 0.01 to 98% by weight, more preferably 0.01 to 0.1% by weight with respect to 1% by weight of the fuel source.
 [非水系溶媒]
 非水系溶媒は、燃料要素の調製時に、燃料要素の原料に適度な粘性を与えて成形性を付与するためのものである。また、本発明のカルシウムアルミネート粒子が被毒されないように水以外の溶媒を使用することが求められる。好ましい非水系溶媒は、燃料要素の原料に適度な粘性を与えることができ、かつ、乾燥操作の容易性を考慮して低沸点のものが好ましい。具体的にはメタノール、エタノール、プロパノール、アセトンなどであり、特にエタノールが好ましい。
[Non-aqueous solvent]
The non-aqueous solvent is for imparting an appropriate viscosity to the raw material of the fuel element and imparting moldability at the time of preparation of the fuel element. Further, it is required to use a solvent other than water so that the calcium aluminate particles of the present invention are not poisoned. A preferable non-aqueous solvent is preferably a low-boiling solvent that can give an appropriate viscosity to the raw material of the fuel element and is easy in drying operation. Specifically, methanol, ethanol, propanol, acetone and the like are preferable, and ethanol is particularly preferable.
 [不燃材]
 不燃材は燃料要素のかさましとして使用されるものである。不燃材は、例えばナトリウム、カリウム、カルシウムまたはマグネシウム等の炭酸塩ならびに酸化物、珪酸化合物、酸化珪素、タルク、硫酸バリウム、カオリンなどである。
[Non-combustible material]
Incombustible material is used as an upside down fuel element. Examples of the non-combustible material include carbonates such as sodium, potassium, calcium, and magnesium, and oxides, silicate compounds, silicon oxide, talc, barium sulfate, and kaolin.
 不燃材は、配合される場合は、燃料源1重量%に対し、一般に98重量%まで、より好ましくは8重量%までの割合で配合することができる。 When blended, the non-combustible material can be blended in a proportion of generally up to 98% by weight, more preferably up to 8% by weight with respect to 1% by weight of the fuel source.
 [燃料要素の成形法]
 燃料要素は、例えば前述の一酸化炭素低減剤、燃料源およびバインダーを粉体状で混合し、任意で不燃材および/またはエアロゾル源を添加して混合した後、適度な粘度を与えて成形性を増すために非水系溶媒を添加して混練し、これを押出成形することによって得られる。なお、各原料を予め非水系溶媒中に溶解または懸濁させた後に混合し、同様に押出成形によって得ることもできる。
[Fuel element molding method]
The fuel element is, for example, mixed with the above-mentioned carbon monoxide reducing agent, fuel source and binder in powder form, optionally added with non-combustible material and / or aerosol source, mixed and then given a suitable viscosity to formability In order to increase this, it is obtained by adding a non-aqueous solvent and kneading and extruding it. In addition, each raw material can be previously dissolved or suspended in a non-aqueous solvent and then mixed, and similarly obtained by extrusion molding.
 なお、通常、燃料要素には燃料要素の長さ方向に貫通する複数の空気取入口が設けられる。この空気取入口は、押出成形時に押出機のダイ形状を調整することによって任意の形状に成形することができる。 Normally, the fuel element is provided with a plurality of air intakes penetrating in the length direction of the fuel element. The air intake can be formed into an arbitrary shape by adjusting the die shape of the extruder during extrusion molding.
 最終的に得られる燃料要素は、径2~10 mm、長さ2~20 mm、空隙率5~80 %、好ましくは径4~8 mm、長さ5~10 mm、空隙率20~70 %である。 The final fuel element has a diameter of 2 to 10 mm, a length of 2 to 20 mm, a porosity of 5 to 80 mm, preferably a diameter of 4 to 8 mm, a length of 5 to 10 mm, and a porosity of 20 to 70 mm. It is.
 [燃料要素の具体的な使用形態]
 本発明の燃料要素は、非燃焼型喫煙物品の燃焼熱供給源として使用される。
[Specific use of fuel elements]
The fuel element of the present invention is used as a combustion heat source for non-combustion smoking articles.
 非燃焼型喫煙物品は、例えば燃料要素、エアロゾル源要素およびエアロゾル除去要素(フィルタ)を含む。ここで、燃料要素は筒状の断熱要素中に装填され、エアロゾル源要素およびエアロゾル除去要素は筒状の部材(筒状体)中に装填されている。 Non-combustion smoking articles include, for example, a fuel element, an aerosol source element, and an aerosol removal element (filter). Here, the fuel element is loaded in a cylindrical heat insulating element, and the aerosol source element and the aerosol removing element are loaded in a cylindrical member (cylindrical body).
 次に、本発明の燃料要素を非燃焼型喫煙物品中で使用する場合における、非燃焼型喫煙物品を構成する各要素を説明する。 Next, each element constituting the non-combustion type smoking article when the fuel element of the present invention is used in the non-combustion type smoking article will be described.
 [エアロゾル源要素]
 エアロゾル源要素は、燃料要素から供給された熱により、使用者が嗜むエアロゾルを発生し得るものであって、エアロゾル源、バインダーおよびエアロゾル源固定物から成る。エアロゾル源およびバインダーは、先述の燃料要素に使用され得るものと同じものを使用することができる。エアロゾル源固定物は、タバコ葉、たばこ、タバコ葉・タバコより成分を抽出した抽残物・再生タバコシートなどのタバコ原料、アルミナ、炭酸カルシウム、ゼオライトなどの無機物、セルロースなどの高分子有機化合物などである。
[Aerosol source element]
The aerosol source element is capable of generating an aerosol preferred by the user by heat supplied from the fuel element, and is composed of an aerosol source, a binder, and an aerosol source stationary. The same aerosol source and binder as can be used for the fuel element described above can be used. Aerosol source fixed materials include tobacco raw materials such as tobacco leaves, tobacco, tobacco leaves / recycled tobacco sheets extracted from tobacco, tobacco materials such as alumina, calcium carbonate, zeolite, and high molecular organic compounds such as cellulose. It is.
 代表的なエアロゾル源要素は、エアロゾル源としてのグリセリン、エアロゾル源固定物としての葉タバコ粉およびバインダーとしてのアルギン酸アンモニウムで構成される。 A typical aerosol source element is composed of glycerin as an aerosol source, tobacco tobacco powder as a fixed aerosol source, and ammonium alginate as a binder.
 [燃料要素の断熱要素]
 燃料要素の断熱要素は、加熱された燃料要素が外部に露出するのを防ぐために用いられるが、燃料要素の断熱要素はあっても無くともよい。具体的な断熱要素は、グラスウール、ロックウール、セラミックファイバーまたはケイ酸カルシウムから構成される。
[Insulation element of fuel element]
The thermal insulation element of the fuel element is used to prevent the heated fuel element from being exposed to the outside, but the thermal insulation element of the fuel element may or may not be present. Specific thermal insulation elements are composed of glass wool, rock wool, ceramic fiber or calcium silicate.
 [筒状体]
 筒状体はラッパーと断熱材とからなり、内部にエアロゾル要素およびエアロゾル除去要素を装填するものである。また、燃料要素の燃焼熱を効率的にエアロゾル源要素に伝え、エアロゾルの発生を促進するために用いられる。また、喫煙者が非燃焼型喫煙物品を手に持った際に熱さを感じないように、適度な断熱性を与える機能も有する。
[Cylindrical body]
A cylindrical body consists of a wrapper and a heat insulating material, and is loaded with an aerosol element and an aerosol removal element. Further, it is used for efficiently transmitting the combustion heat of the fuel element to the aerosol source element and promoting the generation of the aerosol. It also has a function of providing appropriate heat insulation so that the smoker does not feel heat when holding the non-combustion smoking article.
 ラッパーはエアロゾル源要素およびエアロゾル除去要素を筒状に巻装し、断熱材はこのラッパーの外側をさらに被覆する。また、ラッパーは断熱材と比較してより優れた耐熱性、およびより優れた熱反射性を有している。ラッパーは、例えばアルミニウム箔などの金属を含む。 The wrapper wraps the aerosol source element and the aerosol removal element in a cylindrical shape, and the heat insulating material further coats the outside of the wrapper. Further, the wrapper has better heat resistance and better heat reflectivity than the heat insulating material. The wrapper includes a metal such as an aluminum foil.
 一方、断熱材はラッパーと比較してより小さな熱伝導率を有している。断熱材は例えば紙を含む。 On the other hand, the heat insulating material has a smaller thermal conductivity than the wrapper. The heat insulating material includes, for example, paper.
 [エアロゾル除去要素]
 エアロゾル除去要素はいわゆるフィルタである。エアロゾル除去要素は、喫煙者が吸入するエアロゾル量を適度に調節するために用いられる。エアロゾル除去要素は、例えば濾材としてのアセテート繊維、紙、パルプ、羊毛などであり、活性炭、珪酸マグネシウム、シリカゲル、イオン交換樹脂、ウレタン樹脂などの添加物をさらに含み得る。これらの添加物は、フィルタ成形時に濾材上に担持させるか、もしくは濾材をトウ化する際にトウの材料として加えてもよい。また、濾材に対してメンソール等の香料あるいは香料を担持した物質をさらに添加してもよい。
[Aerosol removal element]
The aerosol removal element is a so-called filter. The aerosol removal element is used to moderately adjust the amount of aerosol inhaled by the smoker. The aerosol removing element is, for example, acetate fiber as a filter medium, paper, pulp, wool, and the like, and may further include additives such as activated carbon, magnesium silicate, silica gel, ion exchange resin, and urethane resin. These additives may be supported on the filter medium when forming the filter, or may be added as a tow material when the filter medium is towed. Further, a fragrance such as menthol or a substance carrying a fragrance may be further added to the filter medium.
 なお、エアロゾル除去要素は実質的にエアロゾル除去能を持たない中空構造をとっていてもよく、非燃焼型喫煙物品の要素から省略することもできる。非燃焼型喫煙物品は主流煙成分(例えば二酸化炭素)を希釈するために、喫煙時に空気を取り入れるための開口を有することができる。 In addition, the aerosol removal element may have a hollow structure that does not substantially have aerosol removal ability, and can be omitted from the elements of the non-combustion smoking article. Non-combustible smoking articles can have openings for taking in air during smoking to dilute mainstream smoke components (eg, carbon dioxide).
 次に図を参照して、本発明の燃料要素を非燃焼型喫煙物品に使用した一例を説明する。なお、図に示された形状はあくまで一例を示すものであって、本発明の態様を限定するものではない。 Next, an example in which the fuel element of the present invention is used for a non-combustion smoking article will be described with reference to the drawings. Note that the shapes shown in the drawings are merely examples, and do not limit the aspects of the present invention.
 図1は、本発明の燃料要素10を、着火端部50aおよび吸入端部50bを有する筒状体50に接続した非燃焼型喫煙物品の断面図を示し、図2は図1の一部を拡大した斜視図を示す。ここで、燃料要素10は断熱要素20中に装填されており、筒状体50中にはエアロゾル源要素30およびエアロゾル源除去要素40が装填されている。燃料要素10は筒状体50の着火端部50aの側に位置し、エアロゾル除去要素40は非燃焼型喫煙物品の吸入端部50bの側に位置する。また、燃料要素10には、長さ方向に貫通する複数の空気取入口101が設けられている。さらに、筒状体50はラッパー501および断熱材502からなり、エアロゾル源要素30およびエアロゾル除去要素40はラッパー501によって筒状に巻装されており、ラッパー501の外側を断熱材502でさらに被覆されている。 FIG. 1 shows a cross-sectional view of a non-combustion smoking article in which a fuel element 10 of the present invention is connected to a cylindrical body 50 having an ignition end 50a and a suction end 50b, and FIG. 2 shows a part of FIG. An enlarged perspective view is shown. Here, the fuel element 10 is loaded in the heat insulation element 20, and the aerosol source element 30 and the aerosol source removal element 40 are loaded in the cylindrical body 50. The fuel element 10 is located on the side of the ignition end 50a of the cylindrical body 50, and the aerosol removal element 40 is located on the side of the suction end 50b of the non-combustion smoking article. Further, the fuel element 10 is provided with a plurality of air intake ports 101 penetrating in the length direction. Further, the cylindrical body 50 includes a wrapper 501 and a heat insulating material 502, and the aerosol source element 30 and the aerosol removing element 40 are wound in a cylindrical shape by the wrapper 501, and the outer side of the wrapper 501 is further covered with the heat insulating material 502. ing.
 上記した非燃焼型喫煙物品は、以下のようにして使用される。すなわち、まず燃料要素10が着火されることにより、燃焼ガスが発生する。ここで、燃焼中に生じた一酸化炭素の一部は、燃料要素10に配合された一酸化炭素低減剤によって分解される。次に、この燃焼ガスが、使用者の吸気によって筒状体50内に流入する。筒状体50中に装填されたエアロゾル源要素30がこの燃焼ガスに曝されることにより、エアロゾル源要素30中に含まれるエアロゾル源から香味を含むエアロゾルが生成する。このようにして生成したエアロゾルが、エアロゾル源除去要素40を介して適度な量に調節された後、使用者の口内に至る。このようにして、使用者は、一酸化炭素の含有率が低く、かつ香味を含んだエアロゾルを味わうことができる。 The non-combustion smoking article described above is used as follows. That is, when the fuel element 10 is first ignited, combustion gas is generated. Here, a part of the carbon monoxide generated during combustion is decomposed by the carbon monoxide reducing agent blended in the fuel element 10. Next, the combustion gas flows into the cylindrical body 50 by the user's intake air. When the aerosol source element 30 loaded in the cylindrical body 50 is exposed to the combustion gas, an aerosol containing a flavor is generated from the aerosol source contained in the aerosol source element 30. The aerosol generated in this manner is adjusted to an appropriate amount via the aerosol source removal element 40 and then reaches the user's mouth. In this way, the user can taste an aerosol with a low carbon monoxide content and a flavor.
 次に、本発明の一酸化炭素低減剤および燃料要素の特性を、以下の実施例および比較例で検証する。 Next, the characteristics of the carbon monoxide reducing agent and the fuel element of the present invention will be verified by the following examples and comparative examples.
 [実施例1]
 はじめに、種々の(CaO)m/(Al2O3)nのモル比m/n、BET比表面積を持つカルシウムアルミネート粒子を含む一酸化炭素低減剤を調製した。手順を以下に示す。
[Example 1]
First, carbon monoxide reducing agents containing calcium aluminate particles having various (CaO) m / (Al 2 O 3 ) n molar ratios m / n and BET specific surface areas were prepared. The procedure is shown below.
 [一酸化炭素低減剤(試料1)の調製]
 炭酸カルシウム粉末、酸化アルミニウム粉末を、炭酸カルシウムと酸化アルミニウムのモル比で12:7になるように粉体ミキサーを用いて混合した。混合粉末を坩堝にいれ1350℃で2時間加熱した後、酸素を通気した雰囲気下で室温まで冷却してカルシムアルミネート粒子を得た。得られたカルシウムアルミネート粒子を破砕した後、乾式ボールミルおよび湿式ボールミルにてBET比表面積で10.0 m2/gに調整した。得られたカルシウムアルミネート粒子に対し、硝酸鉄を、鉄元素として0.9重量%含むエタノール溶液の形態で添加し、攪拌混合した後乾燥し、カルシウムアルミネート粒子表面に坦持させた。得られた粒子を更に600℃で4時間酸素通気下にて焼成し、粒子表面に鉄化合物が鉄として粒子重量の0.6重量%担持された一酸化炭素低減剤(試料1)を得た。なお、得られた試料に関する定性、定量試験手順は後述する。
[Preparation of carbon monoxide reducing agent (sample 1)]
The calcium carbonate powder and the aluminum oxide powder were mixed using a powder mixer so that the molar ratio of calcium carbonate and aluminum oxide was 12: 7. The mixed powder was put in a crucible and heated at 1350 ° C. for 2 hours, and then cooled to room temperature in an atmosphere in which oxygen was passed to obtain calcium aluminate particles. After the obtained calcium aluminate particles were crushed, the BET specific surface area was adjusted to 10.0 m 2 / g with a dry ball mill and a wet ball mill. To the obtained calcium aluminate particles, iron nitrate was added in the form of an ethanol solution containing 0.9% by weight as an iron element, stirred and mixed, dried, and supported on the surface of the calcium aluminate particles. The obtained particles were further calcined at 600 ° C. for 4 hours under oxygen flow to obtain a carbon monoxide reducing agent (sample 1) in which an iron compound was supported on the particle surface as iron by 0.6% by weight of the particle weight. The qualitative and quantitative test procedures for the obtained sample will be described later.
 (試料2)
 カルシウムアルミネート粒子のBET比表面積を10.1 m2/gに調整し、鉄化合物を鉄として粒子表面に1.2重量%担持させた以外は、試料1と同じ手順で一酸化炭素低減剤(試料2)を得た。
(Sample 2)
Carbon monoxide reducing agent (sample 2) using the same procedure as sample 1 except that the calcium aluminate particles have a BET specific surface area adjusted to 10.1 m 2 / g and the iron compound is loaded on the particle surface as 1.2% by weight. Got.
 (試料3)
 カルシウムアルミネート粒子のBET比表面積を10.0 m2/gに調整し、鉄化合物を鉄として粒子表面に5.2重量%担持させた以外は、試料1と同じ手順で一酸化炭素低減剤(試料3)を得た。
(Sample 3)
Carbon monoxide reducing agent (sample 3) using the same procedure as sample 1 except that the calcium aluminate particles had a BET specific surface area adjusted to 10.0 m 2 / g and the iron compound was supported on the particle surface by 5.2% by weight as iron. Got.
 (試料4)
 炭酸カルシウム粉末、酸化アルミニウム粉末を、炭酸カルシウムと酸化アルミニウムのモル比で12:7になるように粉体ミキサーを用いて混合した。混合粉末を坩堝にいれ1350℃で2時間加熱した後、酸素を通気した雰囲気下で室温まで冷却してカルシムアルミネート粒子を得た。得られたカルシウムアルミネート粒子を破砕した後、乾式ボールミルおよび湿式ボールミルにてBET比表面積で2.3 m2/gに調整し、一酸化炭素低減剤(試料4)を得た。
(Sample 4)
The calcium carbonate powder and the aluminum oxide powder were mixed using a powder mixer so that the molar ratio of calcium carbonate and aluminum oxide was 12: 7. The mixed powder was put in a crucible and heated at 1350 ° C. for 2 hours, and then cooled to room temperature in an atmosphere in which oxygen was passed to obtain calcium aluminate particles. After the obtained calcium aluminate particles were crushed, the carbon monoxide reducing agent (Sample 4) was obtained by adjusting the BET specific surface area to 2.3 m 2 / g with a dry ball mill and a wet ball mill.
 (試料5)
 カルシウムアルミネート粒子のBET比表面積を10.6 m2/gに調整した以外は、試料4と同じ手順で一酸化炭素低減剤(試料5)を得た。
(Sample 5)
A carbon monoxide reducing agent (Sample 5) was obtained by the same procedure as Sample 4 except that the BET specific surface area of the calcium aluminate particles was adjusted to 10.6 m 2 / g.
 (試料6)
 炭酸カルシウムと酸化アルミニウムのモル比が3:1であるカルシウムアルミネート粒子のBET比表面積を3.4 m2/gに調整した以外は、試料4と同じ手順で一酸化炭素低減剤(試料6)を得た。
(Sample 6)
The carbon monoxide reducing agent (Sample 6) was prepared in the same procedure as Sample 4 except that the BET specific surface area of calcium aluminate particles with a 3: 1 molar ratio of calcium carbonate to aluminum oxide was adjusted to 3.4 m 2 / g. Obtained.
 (試料7)
 炭酸カルシウムと酸化アルミニウムのモル比が1:6であるカルシウムアルミネート粒子のBET比表面積を3.2 m2/gに調整した以外は、試料4と同じ手順で一酸化炭素低減剤(試料7)を得た。
(Sample 7)
The carbon monoxide reducing agent (Sample 7) was prepared in the same procedure as Sample 4 except that the BET specific surface area of calcium aluminate particles having a molar ratio of calcium carbonate to aluminum oxide of 1: 6 was adjusted to 3.2 m 2 / g. Obtained.
 なお、これらの一酸化炭素低減剤(試料1~7)は株式会社Oxy Japanより入手できる。 These carbon monoxide reducing agents (samples 1 to 7) can be obtained from Oxy Japan Co., Ltd.
 [一酸化炭素低減剤の定性および定量試験]
 上記試料1~7および比較試料1のBET比表面積は、自動比表面積/細孔分布測定装置BELSORP-mini(日本BELL)を用いて窒素吸着1点法により求めた。
[Qualitative and quantitative test of carbon monoxide reducing agent]
The BET specific surface areas of Samples 1 to 7 and Comparative Sample 1 were determined by the nitrogen adsorption one-point method using an automatic specific surface area / pore distribution measuring apparatus BELSORP-mini (Nippon BELL).
 上記試料5について、XRD (Rigaku RAD RB RU-200)によるX線回折分析を実施したところ、(CaO)12/(Al2O3)7が主成分として存在することが確認された。さらに、上記試料1~3および5について、SEM-EDX(JSM-7500FA JEOL製)を用いて組成分析を実施した。さらにEDXにて検出された元素について、設定標準試料との検出ピークを元に、試料中のCa、Alの重量構成比を求めた。すなわち、検出された元素からCとOを除いた元素について試料中の構成比を定量し、CaはCaO、AlはAl2O3として存在するものとして、試料に含まれる元素量を算出した。検出された元素種および構成比を表1に示す。 The sample 5 was subjected to X-ray diffraction analysis by XRD (Rigaku RAD RB RU-200), and it was confirmed that (CaO) 12 / (Al 2 O 3 ) 7 was present as a main component. Further, the samples 1 to 3 and 5 were subjected to composition analysis using SEM-EDX (manufactured by JSM-7500FA JEOL). Further, for the elements detected by EDX, the weight composition ratio of Ca and Al in the sample was determined based on the detection peak with the set standard sample. That is, the constituent ratio in the sample was determined for the element obtained by removing C and O from the detected elements, and the amount of element contained in the sample was calculated assuming that Ca is present as CaO and Al as Al 2 O 3 . Table 1 shows the detected element types and composition ratios.
 さらに上記試料1~3についてアルカリ融解後、酸溶解して試料溶液とし、ICP発光分析装置(セイコー製 SPS5000)でFe元素量の分析を行った。得られたFeの金属元素組成比を表2に示す。得られたFeの金属元素組成比は、試料作製に使用した量から算出される重量割合の理論値(表3および4に記載)とほぼ同量であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Further, the samples 1 to 3 were melted with alkali, dissolved in acid to form a sample solution, and the amount of Fe element was analyzed using an ICP emission analyzer (Seiko SPS5000). Table 2 shows the metal element composition ratio of the obtained Fe. The metal element composition ratio of the obtained Fe was almost the same as the theoretical value (described in Tables 3 and 4) of the weight ratio calculated from the amount used for sample preparation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (XRDの測定条件)
 X-Ray Target:Cu K-Alpha、Load:40kV-80mA、Slit Div:1 deg、Rec:0.3 mm、Scatt:1 deg、Filter:Graphite monochro Detector:SC、Scan Speed:4 deg/min、Step Sampling:0.02 deg。
(XRD measurement conditions)
X-Ray Target: Cu K-Alpha, Load: 40kV-80mA, Slit Div: 1 deg, Rec: 0.3 mm, Scatt: 1 deg, Filter: Graphite monochro Detector: SC, Scan Speed: 4 deg / min, Step Sampling : 0.02 deg.
 (SEM-EDX測定条件)
 電圧:15 kV、エミッション電流:10μA、測定時間:100 sec。
(SEM-EDX measurement conditions)
Voltage: 15 kV, emission current: 10 μA, measurement time: 100 sec.
 [一酸化炭素低減剤のCO低減能評価試験]
 次に、COを含有するモデルガスを用いて、上記手順によって得られた一酸化炭素低減剤(試料1~7)のCO低減能を評価した。手順を以下に示す。
[CO reduction ability evaluation test of carbon monoxide reducing agent]
Next, the CO reducing ability of the carbon monoxide reducing agent (samples 1 to 7) obtained by the above procedure was evaluated using a model gas containing CO. The procedure is shown below.
 試料1を50 mg採取し、80 mgのガラスウール中に均一に分散させ、内径φ8 mmの石英間に充填した。石英管内部に一酸化炭素を4,700 ppm、酸素を160,000 ppmに調製した窒素ベースのモデルガスを600 mL/minで流通させながら、ガラスウール充填部分を外部加熱により常温から800℃まで昇温させ、石英管出口から得られるガス組成を、IR分析装置(HORIBA社製)を用いてオンライン計測を行い、700℃でのCO濃度を測定した。 Sample 50 mg was collected, dispersed uniformly in 80 mg glass wool, and filled between quartz with an inner diameter of φ8 mm. While circulating a nitrogen-based model gas prepared with carbon monoxide at 4,700 を ppm and oxygen at 160,000 ppm inside the quartz tube at 600 mL / min, the glass wool filled part was heated from room temperature to 800 ° C by external heating, The gas composition obtained from the quartz tube outlet was measured online using an IR analyzer (manufactured by HORIBA), and the CO concentration at 700 ° C. was measured.
 700℃でのCO出口濃度を石英管入口でのCO濃度で除し、700℃加熱時のモデルガス中のCO低減率とした。なお、試料2~7の一酸化炭素低減剤、および一酸化炭素低減剤の代わりに炭酸カルシウム粒子(比較試料1)についても同様にCO低減率を測定した。 The CO outlet concentration at 700 ° C was divided by the CO concentration at the quartz tube inlet to obtain the CO reduction rate in the model gas when heated at 700 ° C. Note that the CO reduction rate was similarly measured for the carbon monoxide reducing agent of Samples 2 to 7 and for the calcium carbonate particles (Comparative Sample 1) instead of the carbon monoxide reducing agent.
 [CO低減能評価試験の考察]
 上記試料1~7の(CaO)m/(Al2O3)nのモル比m/n、BET比表面積、鉄化合物の含有量、ならびに試料1~7および比較試料1について測定されたCO低減率を以下の表3に示す。
Figure JPOXMLDOC01-appb-T000003
[Consideration of CO reduction evaluation test]
(CaO) m / (Al 2 O 3 ) n molar ratio m / n, BET specific surface area, iron compound content of Samples 1-7, and CO reduction measured for Samples 1-7 and Comparative Sample 1 The rates are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
 結果より、試料1~7のいずれも、比較試料1と比べて高いCO低減能を示すことがわかる。 From the results, it can be seen that any of Samples 1 to 7 shows higher CO reducing ability than Comparative Sample 1.
 試料5と、試料1~3の比較により、鉄化合物の添加量が増加するに従いCO低減能が向上するが、鉄化合物の配合量の増分に対するCO低減能の増加率は逓減している。すなわち、本発明の一酸化炭素低減剤は、鉄化合物を鉄元素として比較的少量(1.0重量%程度)配合することで十分なCO低減能を発揮するが、鉄化合物を鉄元素としておよそ5.2重量%を超える量で配合したとしても、配合量依存的なCO低減能を示さない傾向が明らかとなった。 Comparison of sample 5 and samples 1 to 3 shows that the CO reduction ability improves as the amount of iron compound added increases, but the rate of increase in CO reduction ability relative to the increase in the amount of iron compound blended decreases. That is, the carbon monoxide reducing agent of the present invention exhibits a sufficient CO reduction ability by blending a relatively small amount (about 1.0% by weight) of an iron compound as an iron element, but about 5.2% by weight of the iron compound as an iron element. Even when blended in an amount exceeding%, it became clear that the blending amount-dependent CO-reducing ability was not exhibited.
 さらに、試料4と試料5の比較から、BET比表面積の増大に伴いCO低減能が向上することがわかる。また、試料4と、試料6および7の比較から、同等のBET比表面積を有する場合は、m/n比を12/7とすることによって、より良好なCO低減能を発揮することがわかる。 Furthermore, the comparison between Sample 4 and Sample 5 shows that the CO reduction ability is improved as the BET specific surface area is increased. In addition, from comparison between Sample 4 and Samples 6 and 7, it can be seen that when the BET specific surface area is equivalent, a better CO reduction ability is exhibited by setting the m / n ratio to 12/7.
 [燃料要素の調製]
 次に、上記手順によって調製された一酸化炭素低減剤(試料1)を用いて、本発明燃料要素を調製した。手順を以下に示す。
[Preparation of fuel elements]
Next, the fuel element of the present invention was prepared using the carbon monoxide reducing agent (sample 1) prepared by the above procedure. The procedure is shown below.
 試料1の一酸化炭素低減剤を40重量%、燃料源としての50重量%のカーボン粉末(Carbon black, acetylene, 100 % compressed, 99.5 %, 和光純薬工業(株))、バインダーとしての7重量%のエチルセルロース(和光純薬工業(株))およびエアロゾル源としての3重量%のグリセリン(食添用グリセリン、株式会社花王)を造粒機(DOME GRAN LAB DG-L1 不二パウダル株式会社製)で混錬した後、径4.3 mmの押出ダイを取り付けた押出成形機(キタクラ株式会社製)を用いて押出成形後、得られた成形物を乾燥機にて100℃で2時間乾燥した。これを切断し、径4.3 mm、長さ10 mm、空隙率21 %の燃料要素を得た。 Sample 1 carbon monoxide reducing agent 40% by weight, 50% carbon powder as fuel source (Carbon black, acetylene, 100% pressed, 99.5%, Wako Pure Chemical Industries, Ltd.), 7% as binder Granulator (made by DOME GRAN LAB DG-L1 Fuji Powder Co., Ltd.) with 3% ethylcellulose (Wako Pure Chemical Industries, Ltd.) and 3 wt% glycerin as an aerosol source The mixture was kneaded and then extruded using an extruder (Kitakura Co., Ltd.) equipped with an extrusion die having a diameter of 4.3 mm, and the resulting molded product was dried in a dryer at 100 ° C. for 2 hours. This was cut to obtain a fuel element having a diameter of 4.3 mm, a length of 10 mm, and a porosity of 21%.
 [燃料要素に含まれるカルシウムアルミネートの定性および定量法]
 熱重量測定装置(TG-DTA2000SR ブルカー・エイエックスエス株式会社)にて、試料1を配合した燃料要素の分析結果である熱重量曲線を図3に示す。カルシウムアルミネート粒子は焼結して製造されるため、加熱により変動しない。一方、燃料源およびバインダーは加熱により燃焼し、残渣中には残らない。そのため、例えば800℃での残渣重量割合から燃料要素中のカルシウムアルミネートの割合を推定可能である。図3より、試料1を配合した燃料要素の800℃での残渣重量割合は0.37である。これは、燃料要素に配合したカルシウムアルミネート量とほぼ一致する。また、燃料要素を大気中、1000度で1時間加熱し、得られた残渣をペレット状に成形したのち、XRD(Rigaku RAD RB RU-200) による元素分析を行ったところカルシウムアルミネート((CaO)12(Al2O3)7)が主成分として存在していることが確認された。
[Qualitative and quantitative method for calcium aluminate contained in fuel elements]
FIG. 3 shows a thermogravimetric curve as an analysis result of the fuel element in which the sample 1 is blended with a thermogravimetric measuring apparatus (TG-DTA2000SR Bruker AXS Co., Ltd.). Since calcium aluminate particles are manufactured by sintering, they do not fluctuate due to heating. On the other hand, the fuel source and the binder are burned by heating and do not remain in the residue. Therefore, the proportion of calcium aluminate in the fuel element can be estimated from the residue weight ratio at 800 ° C., for example. From FIG. 3, the residue weight ratio at 800 ° C. of the fuel element containing Sample 1 is 0.37. This almost coincides with the amount of calcium aluminate blended in the fuel element. In addition, the fuel element was heated in the atmosphere at 1000 ° C for 1 hour, and the resulting residue was formed into pellets.After elemental analysis by XRD (Rigaku RAD RB RU-200), calcium aluminate ((CaO ) 12 (Al 2 O 3 ) 7 ) was found to exist as the main component.
 (熱重量分析の測定条件)
 雰囲気:空気中(50 mL/min)、昇温速度:10℃/min、温度範囲:室温~1000℃。
(Measurement conditions for thermogravimetric analysis)
Atmosphere: In air (50 mL / min), Rate of temperature increase: 10 ° C / min, Temperature range: Room temperature to 1000 ° C.
 [非燃焼型喫煙物品の作製]
 上記手順によって得られた種々の燃料要素を、市販製品(スチームホットワン)に用いられている断熱要素中に充填し、これを別の市販製品(スチームホットワン)の燃料要素および断熱要素と取替え、本発明の燃料要素が充填された非燃焼型喫煙物品を得た。
[Production of non-combustible smoking articles]
The various fuel elements obtained by the above procedure are filled in the heat insulation element used in a commercial product (steam hot one), and this is replaced with the fuel element and heat insulation element of another commercial product (steam hot one). A non-combustible smoking article filled with the fuel element of the present invention was obtained.
 [TPM量、CO量の測定試験]
 上記手順によって得られた種々の非燃焼型喫煙物品を、自動喫煙器でパフ容量:1パフについて55 mL、パフ時間:1パフにつき2秒間、パフ頻度:30秒間に1パフの条件で18パフ吸引し、非特許文献1(“Determination of Carbon Monoxide in the Mainstream Smoke of Cigarettes by Non-Dispersive Infrared Analysis” CORESTA RECOMMENDS METHOD No.5)、および非特許文献2(”Determination of Total Particulate Matter and Preparation for Water and Nicotine Measurements” CORESTA RECOMMENDS METHOD No.23)に記載の方法で、TPM生成量、CO生成量を測定した。
[TPM and CO measurement test]
Various non-combustible smoking articles obtained by the above procedure were puffed in an automatic smoker with a puff volume of 55 mL per puff, puff time: 2 seconds per puff, and puff frequency: 18 puffs at a puff frequency of 30 seconds. Non-Patent Document 1 (“Determination of Carbon Monoxide in the Mainstream Smoke of Cigarettes by Non-Dispersive Infrared Analysis” CORESTA RECOMMENDS METHOD No. 5) and Non-Patent Document 2 (“Determination of Total Particulate Matter and Preparation for Water” and Nicotine Measurements ”CORESTA RECOMMENDS METHOD No. 23), TPM production and CO production were measured.
 [比較例1]
 実施例1の試料1を40重量%配合する代わりに40重量%の炭酸カルシウム粒子(比較試料1)を配合した以外は、実施例1で試料1を用いた場合と同じ手順で燃料要素ならびに非燃焼型喫煙物品を作製した。得られた非燃焼型喫煙物品について、実施例1と同じようにTPM生成量、CO生成量を測定した。
[Comparative Example 1]
The fuel element and the non-reactor were prepared in the same manner as in the case of using Sample 1 in Example 1, except that 40% by weight of calcium carbonate particles (Comparative Sample 1) was mixed instead of 40% by weight of Sample 1 of Example 1. Combustion-type smoking articles were prepared. About the obtained non-combustion type smoking article, the amount of TPM production and the amount of CO production were measured in the same manner as in Example 1.
 [TPM量、CO量の測定試験の考察]
 試料1~7の(CaO)m/(Al2O3)nのモル比m/n、BET比表面積、鉄化合物の配合量、700℃加熱時のモデルガス中CO低減率、ならびに試料1を配合した燃料要素を使用した非燃焼型喫煙物品のTPM生成量、CO生成量の分析結果を以下の表4に示す。また、比較のために、カルシウムアルミネート粒子を含まない非燃焼型喫煙物品についてのTPM生成量、CO生成量の分析結果(比較例1)も併せて表4に示す。
Figure JPOXMLDOC01-appb-T000004
[Consideration of test for measuring TPM and CO]
Samples 1-7 (CaO) m / (Al 2 O 3 ) n molar ratio m / n, BET specific surface area, amount of iron compound, CO reduction rate in model gas when heated at 700 ° C., and sample 1 Table 4 below shows the analysis results of the TPM generation amount and CO generation amount of the non-combustion smoking article using the blended fuel element. For comparison, Table 4 also shows analysis results of TPM generation amount and CO generation amount (comparative example 1) for non-combustion-type smoking articles not containing calcium aluminate particles.
Figure JPOXMLDOC01-appb-T000004
 結果より、本発明のカルシウムアルミネート粒子を配合した一酸化炭素低減剤を含む燃料要素は、炭酸カルシウム粒子を配合して作製された燃料要素に比べて、良好な一酸化炭素低減能を持つことが明らかとなった。 As a result, the fuel element containing the carbon monoxide reducing agent compounded with the calcium aluminate particles of the present invention has a better carbon monoxide reducing ability than the fuel element prepared by compounding the calcium carbonate particles. Became clear.
 ここで、700℃加熱時のモデルガス中のCO低減率はCO酸化反応の速度を表しており、その値は一酸化炭素低減剤の触媒機能の大小を示すものである。つまり、CO低減率が高いとCO酸化反応速度が高い、すなわち触媒機能が高いと言える。また、触媒機能の大小関係は、触媒が機能する反応が同じである限り、試験方法に影響されることはない。すなわち、先のモデルガスを用いて試験されたCO低減率が、燃料要素中での一酸化炭素低減剤のCO低減能にも反映されるということである。つまり、本発明の一酸化炭素低減剤は、炭酸カルシウム(比較試料1)と比べて700℃加熱時のモデルガス中CO低減率が高いため、試料1以外の一酸化炭素低減剤をした配合した燃料要素中でのCO生成量についても、比較例に対して有意に低くなることは容易に予測できることである。 Here, the CO reduction rate in the model gas when heated at 700 ° C. represents the speed of the CO oxidation reaction, and the value indicates the magnitude of the catalytic function of the carbon monoxide reducing agent. In other words, it can be said that when the CO reduction rate is high, the CO oxidation reaction rate is high, that is, the catalytic function is high. In addition, the magnitude relationship of the catalyst function is not affected by the test method as long as the reaction in which the catalyst functions is the same. That is, the CO reduction rate tested using the previous model gas is also reflected in the CO reduction ability of the carbon monoxide reducing agent in the fuel element. That is, since the carbon monoxide reducing agent of the present invention has a higher CO reduction rate in model gas when heated at 700 ° C. than calcium carbonate (Comparative Sample 1), a carbon monoxide reducing agent other than Sample 1 was added. It can be easily predicted that the CO production amount in the fuel element is significantly lower than that of the comparative example.
 すなわち、この試験は試料1の一酸化炭素低減剤を配合して作製された燃料要素を備えた非燃焼型喫煙物品についてのみ実施されているが、試料1の代わりに試料2~7を用いて作製された燃料要素も、同様に良好なCO低減能を示す(すなわち、エアロゾル中CO生成量が少ない)ことは容易に予想できる。 In other words, this test was conducted only on non-combustion smoking articles having fuel elements prepared by blending the carbon monoxide reducing agent of sample 1, but using samples 2 to 7 instead of sample 1 It can be easily predicted that the produced fuel element also exhibits a good CO reduction ability (that is, the amount of CO produced in the aerosol is small).
 [実施例2]
 次に、燃料要素に配合するカルシウムアルミネート粒子の量がCO低減能に与える影響を検討した。
[Example 2]
Next, the effect of the amount of calcium aluminate particles added to the fuel element on the CO reduction ability was examined.
 実施例1の試料1を40重量%配合する代わりに、試料1を20重量%と炭酸カルシウム粒子を20重量%使用した以外は、実施例1で試料1を用いた場合と同じ手順で燃料要素ならびに非燃焼型喫煙物品を作製した。得られた非燃焼型喫煙物品について、実施例1と同じようにTPM生成量、CO生成量を測定した。 Instead of blending 40% by weight of Sample 1 of Example 1, 20% by weight of Sample 1 and 20% by weight of calcium carbonate particles were used in the same procedure as in the case of using Sample 1 in Example 1. As well as non-burning smoking articles. About the obtained non-combustion type smoking article, the amount of TPM production and the amount of CO production were measured in the same manner as in Example 1.
 [TPM量、CO量の測定試験の考察]
 実施例1で試料1を配合して作製された燃料要素、実施例2の燃料要素、および比較例1の燃料要素の組成、ならびにこれらの燃料要素を用いてそれぞれ作製された非燃焼型喫煙物品についての主流煙成分を分析した結果を以下の表5に示す。また、燃料要素中のカルシウムアルミネート粒子配合率と主流煙中のCO生成量の関係を図4に示す。
Figure JPOXMLDOC01-appb-T000005
[Consideration of test for measuring TPM and CO]
Composition of fuel element prepared by blending sample 1 in Example 1, fuel element of Example 2, and fuel element of Comparative Example 1, and non-combustion-type smoking articles respectively produced using these fuel elements The results of analyzing the mainstream smoke components for are shown in Table 5 below. FIG. 4 shows the relationship between the calcium aluminate particle content in the fuel element and the amount of CO produced in the mainstream smoke.
Figure JPOXMLDOC01-appb-T000005
 結果より、本発明のカルシウムアルミネート粒子を配合した燃料要素を用いた非燃焼型喫煙物品は、カルシウムアルミネート粒子を含まない燃料要素を用いた非燃焼型喫煙物品と比べて、主流煙中の一酸化炭素が低減しており、かつTPM生成量はあまり変化していない。また、図4からも明らかなように、本特許に記載のカルシウムアルミネート粒子の配合割合を増加することにより、主流煙中の一酸化炭素を低減することができた。 As a result, the non-combustion type smoking article using the fuel element containing the calcium aluminate particles of the present invention is higher in the mainstream smoke than the non-combustion type smoking article using the fuel element containing no calcium aluminate particles. Carbon monoxide has been reduced, and the amount of TPM produced has not changed much. Further, as apparent from FIG. 4, carbon monoxide in the mainstream smoke could be reduced by increasing the blending ratio of the calcium aluminate particles described in this patent.
 [燃料要素の成形性の検討]
 次に、一酸化炭素低減剤の原料および溶媒が燃料要素の成形性に与える影響について検討した。
[Examination of fuel element moldability]
Next, the influence of the raw material and solvent of the carbon monoxide reducing agent on the moldability of the fuel element was examined.
 [比較例2]
 エチルセルロースの代わりに同量のアルギン酸アンモニウムを使用し、かつエタノールの代わりに水を使用した以外は、実施例1と同じ手順で燃料要素の成形を試みた。結果、同様の条件で所望の形状の燃料要素に成形することはできなかった。
[Comparative Example 2]
An attempt was made to mold the fuel element in the same procedure as in Example 1, except that the same amount of ammonium alginate was used instead of ethylcellulose and water was used instead of ethanol. As a result, it was impossible to form a fuel element having a desired shape under the same conditions.
 [比較例3]
 エタノールの代わりに水を使用した以外は、実施例1と同じ手順で燃料要素の成形を試みた。結果、同様の条件で所望の形状の燃料要素に成形することはできなかった。
[Comparative Example 3]
Molding of the fuel element was attempted in the same procedure as in Example 1 except that water was used instead of ethanol. As a result, it was impossible to form a fuel element having a desired shape under the same conditions.
 [比較例4]
 カルシウムアルミネート粒子の代わりに炭酸カルシウム粒子を使用し、かつエタノールの代わりに水を使用した以外は、実施例1と同じ手順で燃料要素の成形を試みた。結果、同様の条件で所望の形状の燃料要素に成形することができた。
[Comparative Example 4]
Attempts were made to form fuel elements in the same procedure as Example 1 except that calcium carbonate particles were used instead of calcium aluminate particles and water was used instead of ethanol. As a result, it was possible to form a fuel element having a desired shape under the same conditions.
 [比較例5]
 カルシウムアルミネート粒子の代わりに炭酸カルシウム粒子を使用し、エチルセルロースの代わりにアルギン酸アンモニウムを使用し、かつエタノールの代わりに水を使用した以外は、実施例1と同じ手順で燃料要素の成形を試みた。結果、同様の条件で所望の形状の燃料要素に成形することができた。
[Comparative Example 5]
An attempt was made to mold the fuel element in the same procedure as Example 1, except that calcium carbonate particles were used instead of calcium aluminate particles, ammonium alginate was used instead of ethyl cellulose, and water was used instead of ethanol. . As a result, it was possible to form a fuel element having a desired shape under the same conditions.
 [成形性の考察]
 実施例1で試料1を配合して得られた燃料要素および比較例2~5の燃料要素の組成、ならびにこれらの成形性の評価結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
[Consideration of formability]
Table 6 below shows the compositions of the fuel elements obtained by blending Sample 1 in Example 1 and the fuel elements of Comparative Examples 2 to 5 and the evaluation results of these moldability.
Figure JPOXMLDOC01-appb-T000006
 比較例2、3のように、燃料要素の調製過程で水を使用した場合、一酸化炭素低減剤に含まれるカルシウムアルミネートが水和して凝固し、燃料要素の押出成形ができなかった。また、比較例4、5より、カルシウムアルミネートの代わりに炭酸カルシウムを使用した場合は、バインダー種に依らず蒸留水を用いても燃料要素を成形可能であることが確認された。 As in Comparative Examples 2 and 3, when water was used in the fuel element preparation process, the calcium aluminate contained in the carbon monoxide reducing agent was hydrated and solidified, and the fuel element could not be extruded. Further, from Comparative Examples 4 and 5, it was confirmed that when calcium carbonate was used instead of calcium aluminate, the fuel element could be molded using distilled water regardless of the binder type.
 したがって、本発明のカルシウムアルミネート粒子を含む燃料要素は、バインダー種に拠らず成形可能であるが、水を使用した場合は成形性が失われることが確認できた。 Therefore, the fuel element containing the calcium aluminate particles of the present invention can be molded regardless of the binder type, but it was confirmed that the moldability is lost when water is used.
 以上より、本発明によれば、本発明の一酸化炭素低減剤を配合することにより、TPM量は変化せずに、主流煙中の一酸化炭素を低減可能な燃料要素を得ることができる。さらに、エタノールなどの非水系溶媒を用いることで、押出機を用いた燃料要素の成形が可能となる。 As described above, according to the present invention, by adding the carbon monoxide reducing agent of the present invention, a fuel element capable of reducing carbon monoxide in mainstream smoke can be obtained without changing the amount of TPM. Further, by using a non-aqueous solvent such as ethanol, the fuel element can be molded using an extruder.
 10:燃料要素、101:空気取入口、20:断熱要素、30:エアロゾル源要素、40: エアロゾル除去要素、50:筒状体、50a:着火端部、50b吸入端部、:501:ラッパー、502:断熱材 10: fuel element, 101: air intake, 20: heat insulation element, 30: aerosol source element, 40: soot aerosol removal element, 50: cylindrical body, 50a: ignition end, 50b suction end,: 501: wrapper 502: Insulation

Claims (7)

  1.  式(CaO)m(Al2O3)n (但し、1/6≦m/n≦4/1)で表されるカルシウムアルミネート粒子を含有する一酸化炭素低減剤と、燃料源としてカーボン粉末と、バインダーとを含むことを特徴とする非燃焼型喫煙物品の燃料要素。 Carbon monoxide reducing agent containing calcium aluminate particles represented by the formula (CaO) m (Al 2 O 3 ) n (where 1/6 ≦ m / n ≦ 4/1), and carbon powder as a fuel source And a binder, a fuel element of a non-combustion smoking article.
  2.  前記一酸化炭素低減剤が2 m2/g以上~20 m2/g未満のBET比表面積を有することを特徴とする請求項1に記載の燃料要素。 The fuel element according to claim 1, wherein the carbon monoxide reducing agent has a BET specific surface area of 2 m 2 / g or more and less than 20 m 2 / g.
  3.  前記一酸化炭素低減剤の表面に鉄化合物が担持されていることを特徴とする請求項1に記載の燃料要素。 The fuel element according to claim 1, wherein an iron compound is supported on the surface of the carbon monoxide reducing agent.
  4.  前記一酸化炭素低減剤の総重量に対して鉄化合物が鉄として5.2重量%以下の割合で配合されていることを特徴とする請求項1に記載の燃料要素。 2. The fuel element according to claim 1, wherein the iron compound is blended in an amount of 5.2 wt% or less as iron with respect to the total weight of the carbon monoxide reducing agent.
  5.  前記一酸化炭素低減剤が、前記燃料要素の総重量に対して10~90重量%の割合で配合されていることを特徴とする請求項1~4のいずれか1項に記載の燃料要素。 The fuel element according to any one of claims 1 to 4, wherein the carbon monoxide reducing agent is blended at a ratio of 10 to 90% by weight with respect to the total weight of the fuel element.
  6.  式(CaO)m(Al2O3)n (但し、1/6≦m/n≦4/1)で表され、かつ2 m2/g以上~20 m2/g未満のBET比表面積を有するカルシウムアルミネート粒子を含有する一酸化炭素低減剤と、燃料源としてのカーボン粉末と、バインダーとを非水系溶媒を用いて混練し、押出成形することを特徴とする非燃焼型喫煙物品の燃料要素の製造方法。 Equation (CaO) m (Al 2 O 3) n ( where, 1/6 ≦ m / n ≦ 4/1) is represented by, and the BET specific surface area of less than ~ 2 m 2 / g or more 20 m 2 / g A fuel for a non-combustion smoking article characterized by kneading a carbon monoxide reducing agent containing calcium aluminate particles, a carbon powder as a fuel source, and a binder using a non-aqueous solvent and extruding the mixture. Element manufacturing method.
  7.  前記バインダーが硝酸セルロースまたはエチルセルロースであり、前記非水系溶媒がエタノールであることを特徴とする請求項6に記載の燃料要素の製造方法。 The method for producing a fuel element according to claim 6, wherein the binder is cellulose nitrate or ethyl cellulose, and the non-aqueous solvent is ethanol.
PCT/JP2010/055461 2010-03-26 2010-03-26 Fuel element of non-combustion smoking article and method for producing same WO2011118043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055461 WO2011118043A1 (en) 2010-03-26 2010-03-26 Fuel element of non-combustion smoking article and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055461 WO2011118043A1 (en) 2010-03-26 2010-03-26 Fuel element of non-combustion smoking article and method for producing same

Publications (1)

Publication Number Publication Date
WO2011118043A1 true WO2011118043A1 (en) 2011-09-29

Family

ID=44672632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055461 WO2011118043A1 (en) 2010-03-26 2010-03-26 Fuel element of non-combustion smoking article and method for producing same

Country Status (1)

Country Link
WO (1) WO2011118043A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162028A1 (en) * 2012-04-27 2013-10-31 日本たばこ産業株式会社 Flavor inhalation tool and carbon heat source
WO2019148517A1 (en) * 2018-02-02 2019-08-08 深圳市乐瑞达科技有限公司 Smart pipe
CN113693261A (en) * 2021-09-01 2021-11-26 深圳市真味生物科技有限公司 Atomizing agent, preparation method thereof and application of atomizing agent in heating non-combustion smoking set

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501523A (en) * 1988-11-01 1992-03-19 カタリティカ,インコーポレイティド Optimization of carbon monoxide oxidation
JPH05329213A (en) * 1991-10-03 1993-12-14 Phillips Petroleum Co Smoking goods with oxidizing catalyst for carbon monoxide
JPH06183871A (en) * 1991-05-13 1994-07-05 Philip Morris Prod Inc Combined heat source
JPH06311877A (en) * 1993-04-07 1994-11-08 R J Reynolds Tobacco Co Fuel element composition
JPH10179112A (en) * 1996-12-19 1998-07-07 Japan Tobacco Inc Heat source composition for noncombustible type of aerosol generating article
JP2006122793A (en) * 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
WO2006073065A1 (en) * 2005-01-06 2006-07-13 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustion smoking article
WO2007119678A1 (en) * 2006-04-11 2007-10-25 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustible smoking article and non-combustible smoking article
JP2008502343A (en) * 2004-06-16 2008-01-31 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Catalyst for oxidizing carbon monoxide in cigarette smoke
JP2008505990A (en) * 2004-06-15 2008-02-28 アール・ジエイ・レイノルズ・タバコ・カンパニー Ultrafine particle catalysts for carbonaceous fuel elements
WO2010053132A1 (en) * 2008-11-06 2010-05-14 日本たばこ産業株式会社 Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501523A (en) * 1988-11-01 1992-03-19 カタリティカ,インコーポレイティド Optimization of carbon monoxide oxidation
JPH06183871A (en) * 1991-05-13 1994-07-05 Philip Morris Prod Inc Combined heat source
JPH05329213A (en) * 1991-10-03 1993-12-14 Phillips Petroleum Co Smoking goods with oxidizing catalyst for carbon monoxide
JPH06311877A (en) * 1993-04-07 1994-11-08 R J Reynolds Tobacco Co Fuel element composition
JPH10179112A (en) * 1996-12-19 1998-07-07 Japan Tobacco Inc Heat source composition for noncombustible type of aerosol generating article
JP2008505990A (en) * 2004-06-15 2008-02-28 アール・ジエイ・レイノルズ・タバコ・カンパニー Ultrafine particle catalysts for carbonaceous fuel elements
JP2008502343A (en) * 2004-06-16 2008-01-31 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム Catalyst for oxidizing carbon monoxide in cigarette smoke
JP2006122793A (en) * 2004-10-28 2006-05-18 Toda Kogyo Corp Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
WO2006073065A1 (en) * 2005-01-06 2006-07-13 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustion smoking article
WO2007119678A1 (en) * 2006-04-11 2007-10-25 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustible smoking article and non-combustible smoking article
WO2010053132A1 (en) * 2008-11-06 2010-05-14 日本たばこ産業株式会社 Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162028A1 (en) * 2012-04-27 2013-10-31 日本たばこ産業株式会社 Flavor inhalation tool and carbon heat source
JP5816360B2 (en) * 2012-04-27 2015-11-18 日本たばこ産業株式会社 Flavor suction device and carbon heat source
JPWO2013162028A1 (en) * 2012-04-27 2015-12-24 日本たばこ産業株式会社 Flavor suction device and carbon heat source
WO2019148517A1 (en) * 2018-02-02 2019-08-08 深圳市乐瑞达科技有限公司 Smart pipe
CN113693261A (en) * 2021-09-01 2021-11-26 深圳市真味生物科技有限公司 Atomizing agent, preparation method thereof and application of atomizing agent in heating non-combustion smoking set
CN113693261B (en) * 2021-09-01 2023-06-27 深圳市真味生物科技有限公司 Atomizing agent, preparation method thereof and application of atomizing agent in heating non-combustible smoking set

Similar Documents

Publication Publication Date Title
JP7470658B2 (en) Heat-generating segment for an aerosol generating system of a smoking article - Patents.com
JP5372151B2 (en) Non-combustible smoking article with carbonaceous heat source
AU2017223265B2 (en) Smoking article comprising aerogel
JP5015269B2 (en) Non-combustible smoking article with carbonaceous heating source
TWI592101B (en) Smoking article comprising a combustible heat source with a rear barrier coating
US9332784B2 (en) Method for preparing fuel element for smoking article
KR102103706B1 (en) Smoking article with improved airflow
EP2869721B1 (en) Combustible heat source with improved binding agent
US5178167A (en) Carbonaceous composition for fuel elements of smoking articles and method of modifying the burning characteristics thereof
JP4970252B2 (en) Smoking goods and materials
JP2012502658A (en) Method for preparing fuel elements for smoking articles
US7744846B2 (en) Method for forming activated copper oxide catalysts
WO2010053132A1 (en) Smoking article and method for manufacturing same, and method for manufacturing carbon monoxide reducing agent
WO2011118043A1 (en) Fuel element of non-combustion smoking article and method for producing same
TW201132299A (en) Combustion element for a non-combustion type smoking article and method for making the same
KR102660703B1 (en) Heating elements for aerosol-generating systems in smoking articles
CA3015463C (en) Smoking article comprising aerogel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP