WO2011117990A1 - Pet装置における同時計数判定方法及び装置 - Google Patents

Pet装置における同時計数判定方法及び装置 Download PDF

Info

Publication number
WO2011117990A1
WO2011117990A1 PCT/JP2010/055185 JP2010055185W WO2011117990A1 WO 2011117990 A1 WO2011117990 A1 WO 2011117990A1 JP 2010055185 W JP2010055185 W JP 2010055185W WO 2011117990 A1 WO2011117990 A1 WO 2011117990A1
Authority
WO
WIPO (PCT)
Prior art keywords
coincidence
true
pet
pet apparatus
counts
Prior art date
Application number
PCT/JP2010/055185
Other languages
English (en)
French (fr)
Inventor
吉田 英治
山谷 泰賀
Original Assignee
独立行政法人放射線医学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人放射線医学総合研究所 filed Critical 独立行政法人放射線医学総合研究所
Priority to US13/635,753 priority Critical patent/US20130009064A1/en
Priority to JP2012506711A priority patent/JP5339561B2/ja
Priority to PCT/JP2010/055185 priority patent/WO2011117990A1/ja
Publication of WO2011117990A1 publication Critical patent/WO2011117990A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • the present invention relates to a coincidence determination method and apparatus in a PET apparatus, which extracts a true coincidence from previously discarded multiple coincidences, improves detection sensitivity when the radioactivity concentration is high, and also has a dynamic range.
  • the present invention relates to a method and an apparatus for determining the timepiece in a PET apparatus that can be improved.
  • the coincidence counting method (Non-Patent Documents 1 and 2) used in the PET apparatus is used to convert a pair of annihilation radiations 14 detected within a very short time of several nanoseconds into the same positron nuclide. This is a detection method that considers the true coincidence generated from 12.
  • 10 is a subject to be examined such as a patient
  • 20 is a detector ring in which a plurality of radiation detectors (hereinafter also simply referred to as detectors) 22 constituting a PET apparatus are arranged on the circumference, for example.
  • a coincidence circuit 28 for determining coincidence at a certain time is a data storage device for storing coincidence count data.
  • the time width (simultaneous counting time width) for determining the positron nuclide is determined from the temporal resolution and visual field size of the PET apparatus.
  • the coincidence time width is also limited by the position where the positron nuclide exists and the ring diameter of the detected detector, and if it is about 4 nanoseconds or less, it limits the field of view that can be imaged by existing clinical PET devices. .
  • the sensitivity of the device is limited by limiting the position on the coincidence line using information by the time-of-flight difference (Time-of-Flight, hereinafter referred to as TOF) of a pair of annihilation radiations.
  • TOF time-of-Flight
  • a TOF-PET apparatus that can improve the above has been developed.
  • the current time resolution of about 500 picoseconds has not dramatically improved the sensitivity of the apparatus.
  • the coincidence method determines positron nuclides within a finite time, in addition to the true coincidence shown in FIG. 1, annihilation radiation from different positron nuclides as shown in FIG. 2A is simultaneously detected. Coincidental coincidence or scattering coincidence as exemplified in FIG. 2B occurs. The higher the radioactivity concentration is, the higher the proportion of coincidence coincidence is. However, as illustrated in FIG. In FIG. 3A, two pairs of annihilation radiations (T 1 , T 2 ) and (T 3 , T 4 ) are generated from two positron nuclides, and three detectors detect within the coincidence time width. For example, FIG.
  • FIG. 3B shows three pairs of annihilation radiations (T 1 , T 2 ), (T 3 , T 4 ), and (T 5 , T 6 ) generated from three positron nuclides, and the simultaneous counting time width
  • FIG. 3C shows an example in which three detectors detect, two pairs of annihilation radiations (T 1 , T 2 ) and (T 3 , T 4 ) generated from two positron nuclides
  • FIG. 3D shows an example in which four detectors detect within the time width
  • FIG. 3D shows three pairs of annihilation radiations (T 1 , T 2 ), (T 3 , T 4 ), (T 5 ) from three positron nuclides.
  • T 6 occurs, and four detectors detect within the coincidence time width.
  • the PET apparatus sets a field of view at the center of the detector ring and does not collect coincidence lines that pass outside the field of view. Therefore, in FIG. 3, coincidence between neighboring detectors is invalidated. 3 is 2 in FIG. 3A, 2 in FIG. 3B, 4 in FIG. 3C, and 3 in FIG. 3D.
  • Patent Document 1 Non-Patent Document 3
  • a true coincidence can be analytically extracted in principle, but a CZT detector or the like is not yet in practical use as a PET detector, and only the event that is Compton scattered in the detector. Since it is not available, the events that can be used are considerably limited, that is, the sensitivity of the detector is low.
  • the multiple coincidence that detects a plurality of coincidences within the coincidence time width has not been effectively used. Discarding all the multiple coincidence results in a reduction in detection sensitivity when the radioactivity concentration is high, causing a reduction in image quality. In addition, if the radioactivity concentration becomes very high, the rate of multiple coincidence increases, which causes the dynamic range of the PET apparatus to be narrowed. Further, the multiple coincidence is composed of only the noise components of the scattered coincidence and the accidental coincidence, or three or more coincidence counts are detected as illustrated in FIG. 3, and variations thereof are very complicated.
  • the present invention has been made to solve the above-mentioned conventional problems.
  • the true simultaneous count is extracted from the multiple simultaneous count that has been discarded in the past, and the detection sensitivity when the radioactivity concentration is high is improved and the dynamic count is increased.
  • the challenge is to contribute to improving the range.
  • priority is set by a very simple method from radioactivity distribution and information at the time of detection, and coincidence lines to be collected are determined.
  • coincidence determination method in a PET apparatus that counts a pair of annihilation radiations detected within a predetermined time period as if they were generated from the same nuclide.
  • the priorities of the coincidence lines to be collected are set using information relating to the detection time difference, and the true coincidence count is extracted from the multiple coincidence counts, thereby solving the above problem. It is a thing.
  • the coincidence count having the smallest detection time difference can be determined as a true coincidence count and extracted.
  • a simultaneous count having a detection time difference smaller than a threshold value can be determined as a true simultaneous count and extracted.
  • the threshold value can be made variable.
  • one coincidence line closest to the center of the visual field can be selected.
  • one coincidence line with the highest total detected energy can be selected.
  • the present invention also includes a plurality of radiation detectors for detecting radiation generated from the nuclide, Means for detecting the detection time of radiation in each radiation detector; Means for determining coincidence when a difference in detection time by a plurality of radiation detectors is within a predetermined time; When a plurality of coincidence counts are detected within the predetermined time, using the information on the detection time difference, setting the priority of the coincidence line to be collected, and means for extracting the true coincidence from the multiple coincidence,
  • a coincidence determination apparatus in a PET apparatus characterized by comprising:
  • the true coincidence count is extracted from the previously discarded multiple coincidence count, thereby improving the detection sensitivity when the radioactivity concentration is high and contributing to the improvement of the dynamic range.
  • the present invention can be applied as it is to the current PET device having a high degree of time resolution, but is particularly effective in an ultrasensitive PET device (such as a whole body simultaneous imaging PET device) having a long ring length and a short ring diameter. It is considered to be appropriate.
  • the figure which shows the conventional simultaneous counting judgment method The figure which shows the example of (A) incidental coincidence and (B) scattering coincidence Diagram showing an example of multiple coincidence Flow chart showing conventional coincidence determination processing
  • Time chart showing an example of multiple coincidence determination according to the first and second embodiments The flowchart which shows the simultaneous count determination processing by 3rd Embodiment of this invention.
  • the figure which shows the result of having simulated the relation between the ratio of the radioactivity concentration and the multiple coincidence count for every detector ring length The figure which shows the result of simulating the relation between the radioactivity concentration and the ratio of the true coincidence included in the multiple coincidence for each detector ring length
  • the figure which shows the result of having simulated the relation between radioactivity concentration and true coincidence rate for every multiple coincidence judgment method The figure which shows the result of having simulated the relation between the radioactivity concentration and the coincidence coincidence rate for each multiple coincidence judgment method
  • the true coincidence tends to be distributed near the center of the visual field, and the accidental coincidence is uniformly distributed in the visual field.
  • most of the noise components in the multiple coincidence are considered to be accidental coincidences. Therefore, if a coincidence count with a small detection time difference is selected, it is considered that the probability of a true coincidence is high.
  • the first embodiment of the present invention has been made paying attention to such points, and as shown in FIG. 5, when it is determined that multiple simultaneous counting is performed in step 110 similar to the conventional method of FIG.
  • the coincidence event is sent to step 120, and the difference in detection time is calculated.
  • the coincidence count having the shortest time difference is determined as a true coincidence count and extracted.
  • the processing is relatively simple.
  • the process proceeds to step 140 and a coincidence line whose detection time difference is smaller than a predetermined threshold is extracted.
  • the predetermined threshold needs to be shorter than the simultaneous counting time width of step 110, for example, set to 1/3 (2 nanoseconds) of the simultaneous counting time width (for example, 6 nanoseconds), or the counting rate It can be made variable according to. For example, when the count rate is high, the threshold is made shorter than when the count rate is low. Note that reducing the coincidence time width of step 110 from the beginning to about the threshold value of step 140 makes it impossible to detect annihilation radiation generated from a position away from the center of the detector ring, and narrows the field of view. This is not desirable.
  • FIG. 7 shows an example in which the first embodiment and the second embodiment are applied to the multiplex coincidence in FIG.
  • FIG. 3A that includes one true coincidence and one coincidence coincidence (before performing the out-of-field determination)
  • the first embodiment always selects one coincidence line
  • the determination is incorrect in the case of FIG. 3B that does not include true coincidence or the case of FIG. 3C that includes many true coincidences.
  • the second embodiment there is a possibility that a true coincidence can be calculated even in the patterns of FIGS. 3B and 3C.
  • the number of events to be determined is not limited to one, but it is considered that there is a low probability that a plurality of true coincidence counts are detected within multiple coincidence counts in practical radioactivity intensity.
  • an accidental coincidence count that is a detection time difference comparable to a true coincidence detection time difference cannot be identified.
  • the true coincidence has a higher probability that the detected energy is higher than the scattering coincidence shown in FIG. 2B, as in the fourth embodiment shown in FIG. If a plurality of coincidence lines are calculated by the threshold determination, the energy is calculated for each coincidence line in step 160, and one coincidence line with the highest detected energy is selected in step 170, whereby true It can be considered that the probability of extracting the coincidence count of can be increased.
  • This device constitutes a detector ring having a ring diameter of 84 cm using a block detector in which LSO scintillators having a thickness of 2.9 ⁇ 2.9 ⁇ 20 mm are arrayed.
  • a cylindrical phantom having a diameter of 20 cm and a length of 1 m was installed in the center of the ring.
  • the time resolution of the detector was 600 picoseconds, and the coincidence time width was 6 nanoseconds.
  • FIG. 10 is a ratio of multiple coincidence counts for each radioactivity intensity by three types of PET devices having a ring length of 64 cm, 15 cm, and 130 cm. The ratio of multiple coincidence increases as the radioactivity intensity and the ring length increase.
  • FIG. 11 shows the ratio of true coincidence included in multiple coincidence. It does not depend much on the ring length, and the proportion of true coincidence is reduced depending on the radioactivity intensity.
  • the threshold in the second embodiment that is, the second simultaneous counting time width is 2 nanoseconds.
  • the random selection mentioned here as a comparison method is a case where one coincidence line is selected at random from multiple coincidence events.
  • FIG. 14 shows noise equivalent counts (NECR) when several multiple coincidence determination methods are applied.
  • NECR is a guideline for evaluating effective counting characteristics in consideration of the ratio of components that can be regarded as noise such as coincidence coincidence in a cylindrical phantom, and is frequently used when evaluating the performance of a PET apparatus. (See SC Strother, ME Casey, EJ Hoffman,, IEEE Trans. Nucl. Sci., Vol. 37, 783-788, 1990).
  • T is the true coincidence rate
  • S is the scattering coincidence rate
  • R is the random coincidence rate
  • the multiple coincidence determination method can be a major elemental technology for realizing an ultra-sensitive PET apparatus.

Abstract

 所定時間内に検出された一対の消滅放射線を、同一の核種から発生したとみなして計数するPET装置における同時計数判定処理において、前記所定時間内に同時計数を複数検出した時は、検出時間差に関する情報を用いて、収集すべき同時計数線の優先度を設定し、多重同時計数から真の同時計数を抽出する。これにより、従来は捨てていた多重同時計数から真の同時計数を抽出し、放射能濃度が高い場合における検出感度を向上すると共に、ダイナミックレンジも改善する。

Description

PET装置における同時計数判定方法及び装置
 本発明は、PET装置における同時計数判定方法及び装置に係り、従来は捨てていた多重同時計数から真の同時計数を抽出し、放射能濃度が高い場合における検出感度を向上すると共に、ダイナミックレンジも改善することが可能な、PET装置における同時計判定方法及び装置に関する。
 PET装置で用いられる同時計数法(非特許文献1、2)は、図1に示す如く、数ナノ秒程度の非常に短い時間内に検出された1対の消滅放射線14を、同一のポジトロン核種12から発生した真の同時計数であるとみなす検出法である。図1において、10は患者等の検査対象、20は、PET装置を構成する、複数の放射線検出器(以下、単に検出器とも称する)22が例えば円周上に配設された検出器リング(以下、単にリングとも称する)、24は、各検出器22による放射線の検出位置や時間情報を検出する回路、26は、複数の検出器22による検出時刻の差が所定の同時計数時間幅内であるときに同時計数と判定する同時計数回路、28は、同時計数データを保存するデータ保存装置である。
 ポジトロン核種を判定する時間幅(同時計数時間幅)は、PET装置の持つ時間的な分解能と視野サイズから決定される。現在、PET装置の持つ時間的な分解能を500ピコ秒程度にまで高めた装置が開発されている。また、同時計数時間幅は、ポジトロン核種の存在する位置、検出される検出器のリング径によっても制限され、4ナノ秒程度以下では既存の臨床用PET装置の画像化できる視野を制限してしまう。
 非常に高い時間分解能を持つPET装置では、1対の消滅放射線の飛行時間差(Time-of-Flight、以下TOFと略す)による情報を利用して同時計数線上の位置を制限することで装置の感度を改善できるTOF-PET装置が開発されている。しかしながら現状の500ピコ秒程度の時間分解能では装置の感度を劇的に改善するまでには至っていない。
 同時計数法は有限の時間内でポジトロン核種の判定を行うため、図1に示した真の同時計数の他、図2(A)に例示するような、異なるポジトロン核種からの消滅放射線を同時に検出する偶発同時計数や、図2(B)に例示するような散乱同時計数が発生する。放射能濃度が高いほど偶発同時計数の割合も高くなるが、図3に例示する如く、同時計数時間幅内に複数の同時計数を検出する多重同時計数も発生する。図3(A)は、2つのポジトロン核種から2対の消滅放射線(T、T)、(T、T)が発生し、同時計数時間幅内に3個の検出器が検出した例、図3(B)は、3つのポジトロン核種から3対の消滅放射線(T、T)、(T、T)、(T、T)が発生し、同時計数時間幅内に3個の検出器が検出した例、図3(C)は、2つのポジトロン核種から2対の消滅放射線(T、T)、(T、T)が発生し、同時計数時間幅内に4個の検出器が検出した例、図3(D)は、3つのポジトロン核種から3対の消滅放射線(T、T)、(T、T)、(T、T)が発生し、同時計数時間幅内に4個の検出器が検出した例である。一般にPET装置は検出器リング中心部に視野を設定し、視野よりも外を通過する同時計数線は収集しないので、図3においても近傍の検出器同士の同時計数は無効にしてある。すなわち、図3の例における同時計数事象の検出数は、図3(A)では2、図3(B)では2、図3(C)では4、図3(D)では3である。
 従来のPET装置において、多重同時計数は、事象の一部に真の同時計数を含んでいるにもかかわらず、判別する手法が確立していないため、図4に示す如く、同時計数判定(ステップ100)後、検出器が3個以上の多重同時計数と判定(ステップ110)された時は、すべての事象を捨てていた。
 近年ではPET装置の感度を高めるためにリング長を長くし、リング径を短くして近接撮像を行う装置も開発されているが、これらの装置においては従来のPET装置より多重同時計数が発生する確率が高くなる。
 なお、非常に高いエネルギー分解能を持つCZT検出器等を用い、コンプトンカメラの原理を利用して、それぞれの消滅放射線の入射方向を特定することで、多重同時計数から真の同時計数を特定する技術も研究されている(特許文献1、非特許文献3)。
 この方法によれば、原理的には真の同時計数を解析的に抽出することができるが、PET用検出器としてCZT検出器等はまだ実用段階でなく、検出器内でコンプトン散乱した事象しか利用できないため、利用可能な事象がかなり制限される、すなわち検出器の感度が低いという問題点を有していた。
特表2008-522168号公報
H.M. Dent, W.F. Jones, and M.E. Casey, "A real time digital coincidence processor for positron emission tomography", IEEE Trans. Nucl. Sci. Vol. 33, 556-559, 1986 D. F. Newport, H. M. Dent, M. E. Casey, and D. W. Bouldin, "Coincidence Detection and Selection in Positron Emission Tomography Using VLSI", IEEE Trans. Nucl. Sci. Vol. 36, 1052-1055, 1989 G. Chinn, C.S. Levin, "A method to reject random coincidences and extract true from multiple coincidences in PET using 3-D detectors", Nuclear Science Symposium Conference Record, 5249-5254, 2008.
 図4に示す従来のPET装置の同時計数判定方法においては、同時計数時間幅内に複数の同時計数を検出する多重同時計数を有効利用してこなかった。多重同時計数をすべて捨てることは、放射能濃度が高い場合に検出感度を低減することになり、画質の低下を引き起こす。また放射能濃度が非常に高くなると多重同時計数の割合が増えPET装置のダイナミックレンジを狭める原因にもなる。また、多重同時計数は散乱同時計数と偶発同時計数のノイズ成分のみで構成されたり、図3に例示したように3本以上の同時計数が検出されたり、そのバリエーションは非常に複雑である。
 本発明は、前記従来の問題点を解消するべくなされたもので、従来は捨てていた多重同時計数から真の同時計数を抽出し、放射能濃度が高い場合における検出感度を向上すると共に、ダイナミックレンジの改善にも寄与することを課題とする。
 本発明は、多重同時計数として検出された同時計数線においても、放射能分布や検出された際の情報から、非常に簡便な方法で優先度を設定し、収集すべき同時計数線を判定することが可能なことに着目してなされたもので、所定時間内に検出された一対の消滅放射線を、同一の核種から発生したとみなして計数するPET装置における同時計数判定方法において、前記所定時間内に同時計数を複数検出した時は、検出時間差に関する情報を用いて、収集すべき同時計数線の優先度を設定し、多重同時計数から真の同時計数を抽出することにより、前記課題を解決したものである。
 ここで、多重同時計数の内、検出時間差が最も小さい同時計数を真の同時計数と判定して抽出することができる。
 あるいは、多重同時計数の内、検出時間差が閾値よりも小さい同時計数を真の同時計数と判定して抽出することができる。
 又、前記閾値を可変とすることができる。
 又、前記閾値よりも小さい同時計数が複数ある時は、視野中心に最も近い同時計数線を1つ選択することができる。
 あるいは、前記閾値よりも小さい同時計数が複数ある時は、検出されたエネルギーの合計が最も高い同時計数線を1つ選択することができる。
 本発明は、又、核種から発生した放射線を検出するための複数の放射線検出器と、
 各放射線検出器における放射線の検出時刻を検出するための手段と、
 複数の放射線検出器による検出時刻の差が所定時間内であるときに同時計数と判定する手段と、
 前記所定時間内に同時計数を複数検出した時は、検出時間差に関する情報を用いて、収集すべき同時計数線の優先度を設定し、多重同時計数から真の同時計数を抽出する手段と、
 を備えたことを特徴とするPET装置における同時計数判定装置を提供するものである。
 本発明によれば、従来は捨てていた多重同時計数から真の同時計数を抽出することによって、放射能濃度が高い場合における検出感度を向上すると共に、ダイナミックレンジの改善にも寄与する。本発明は、現状の時間分解度の高いPET装置に対して、そのまま適用可能であるが、リング長が長くリング径が短いような超高感度PET装置(全身同時撮像PET装置等)において特に効果的であると考えられる。
従来の同時計数判定方法を示す図 (A)偶発同時計数及び(B)散乱同時計数の例を示す図 多重同時計数の例を示す図 従来の同時計数判定処理を示す流れ図 本発明の第1実施形態による同時計数判定処理を示す流れ図 本発明の第2実施形態による同時計数判定処理を示す流れ図 第1及び第2実施形態による多重同時計数判定の例を示すタイムチャート 本発明の第3実施形態による同時計数判定処理を示す流れ図 本発明の第4実施形態による同時計数判定処理を示す流れ図 検出器リング長毎に放射能濃度と多重同時計数の割合の関係をシミュレーションした結果を示す図 検出器リング長毎に放射能濃度と多重同時計数に含まれる真の同時計数の割合の関係をシミュレーションした結果を示す図 多重同時計数判定手法毎に放射能濃度と真の同時計数率の関係をシミュレーションした結果を示す図 多重同時計数判定手法毎に放射能濃度と偶発同時計数率の関係をシミュレーションした結果を示す図 多重同時計数判定手法毎に放射能濃度と雑音等価計数NECRの関係をシミュレーションした結果を示す図
 以下図面を参照して、本発明の実施形態を詳細に説明する。
 一般的にPET装置において、被験者は視野の中心で撮像されることから、真の同時計数は視野中心付近に分布する傾向があり、偶発同時計数は視野内に一様に分布する。また、多重同時計数におけるノイズ成分の大部分は偶発同時計数であると考えられる。従って、検出時間差が小さい同時計数を選べば、真の同時計数である確率が高いと考えられる。
 本発明の第1実施形態は、このような点に着目してなされたもので、図5に示す如く、図4の従来法と同様のステップ110で多重同時計数と判定されたときは、全ての同時計数の事象をステップ120に送り、検出時間差を算出する。次いでステップ130で、時間差が最も短い同時計数を、真の同時計数と判定して抽出するようにしたものである。
 本実施形態においては、処理が比較的単純である。
 なお、多重同時計数において常に真の同時計数が含まれているとは限らないため、第1実施形態のように、多重同時計数から必ず1つの事象を抽出することは、高放射能時においてノイズ成分を増加させる要因になる可能性もある。
 そこで、本発明の第2実施形態では、図6に示すように、ステップ110で多重同時計数と判定されたときは、ステップ140に進み、検出時間差が所定の閾値より小さい同時計数線を抽出することで、真の同時計数を抽出する。この際、所定の閾値は、ステップ110の同時計数時間幅よりも短くする必要があり、例えば同時計数時間幅(例えば6ナノ秒)の1/3(2ナノ秒)に設定したり、計数率に応じて可変としたりすることができる。例えば、計数率が高い場合は、低い場合より閾値を短くする。なお、ステップ110の同時計数時間幅を最初からステップ140の閾値程度まで小さくしてしまうことは、検出器リング中央部から離れた位置から生じる消滅放射線を検出できなくなることになり、視野が狭くなってしまうため望ましくない。
 図7に、第1実施形態と第2実施形態を図3の多重同時計数に適用した例を示す。(視野外判定を行う前とする)真の同時計数と偶発同時計数を1つずつ含む図3(A)の場合、どちらの方法でも正解を導ける可能性は高い。しかしながら、第1実施形態は必ず1つの同時計数線を選択するため、真の同時計数を含まない図3(B)や、真の同時計数を多数含む図3(C)の場合において判断を誤る。一方、第2実施形態においては図3(B)及び(C)のパターンにおいても真の同時計数を算出できる可能性を有している。
 第2実施形態においては判別する事象は1つに限らないが、実用的な放射能強度において多重同時計数内に複数の真の同時計数が検出される確率は低いと考えられる。また、図3(D)に示すように、真の同時計数の検出時間差と同程度の検出時間差である偶発同時計数は識別できない。
 従って、図8に示す第3実施形態のように、ステップ140の閾値判定によって複数の同時計数線が算出された場合、ステップ150で視野中心に対して最も近い同時計数線を1つ選択することで、より真の同時計数を抽出する確率を上げることができると考えられる。
 また、真の同時計数は、図2(B)に示した散乱同時計数に比べて、検出されるエネルギーが高い確率が大きいことから、図9に示す第4実施形態のように、ステップ140の閾値判定によって複数の同時計数線が算出された場合、ステップ160で同時計数線ごとにエネルギーを算出し、ステップ170で、最も検出されたエネルギーが高い同時計数線を1つ選択することによって、真の同時計数を抽出する確率を上げることができると考えられる。
 全身同時撮像PET装置を想定したシミュレーションを実施した。本装置は2.9x2.9x20mm厚のLSOシンチレータをアレイ状にしたブロック検出器を用いて、84cmのリング径を持つ検出器リングを構成する。検出器リングの体軸方向の長さは、リング長64cm、15cm、130cmの3種類をシミュレートした。リング中央に直径20cm長さ1mの円柱ファントムを設置した。検出器の時間分解能は600ピコ秒、同時計数時間幅は6ナノ秒とした。
 図10は、3種類のリング長64cm、15cm、130cmのPET装置による放射能強度ごとの多重同時計数の割合である。放射能強度及びリング長が大きくなるにつれて多重同時計数の割合が大きくなる。
 図11に、多重同時計数に含まれる真の同時計数の割合を示す。リング長にはあまり依存せず、放射能強度に依存して真の同時計数が含まれる割合が減少している。
 図12と図13に、64cmのリング長の装置において、いくつかの多重同時計数判定手法を適用した際の真の同時計数率と偶発同時計数率を示す。第2実施形態における閾値、即ち、2回目の同時計数時間幅は2ナノ秒とした。ここで比較法として挙げたランダム選択は、多重同時計数の事象から無作為に1つの同時計数線を選択した場合である。
 図14に、いくつかの多重同時計数判定手法を適用した際の雑音等価計数(NECR)を示す。
 NECRは円筒ファントムにおいて、偶発同時計数などノイズとみなせる成分の割合を考慮して実効的な計数特性を評価するための指針であり、PET装置の性能を評価する際に多用され、以下の式で表される(S.C. Strother, M.E. Casey, E.J. Hoffman, , IEEE Trans. Nucl. Sci., vol. 37, 783-788, 1990参照)。
Figure JPOXMLDOC01-appb-I000001
 ここでTは真の同時計数率、Sは散乱同時計数率、Rは偶発同時計数率である。得られた結果から、本発明を適用することで2割程度の画質の改善が示唆された。また、無作為に真の同時計数を抽出した場合(ランダム選択)に対しても優位な改善効果が見られた。
 現在、近接撮像によるPET装置等によるPET装置の高感度化が進んでいるが、同時計数時間幅は検出器配置によって制限されるため、多重同時計数の影響が大きくなると考えられる。したがって、多重同時計数の判定方法は超高感度PET装置の実現に向けて主要な要素技術になりうる。
 10…測定対象
 12…ポジトロン核種
 20…検出器リング
 22…放射線検出器
 24…位置・時間情報検出回路
 26…同時計数回路
 28…データ保存回路

Claims (12)

  1.  所定時間内に検出された一対の消滅放射線を、同一の核種から発生したとみなして計数するPET装置における同時計数判定方法において、
     前記所定時間内に同時計数を複数検出した時は、検出時間差に関する情報を用いて、収集すべき同時計数線の優先度を設定し、多重同時計数から真の同時計数を抽出することを特徴とするPET装置における同時計数判定方法。
  2.  多重同時計数の内、検出時間差が最も小さい同時計数を真の同時計数と判定して抽出することを特徴とする請求項1に記載のPET装置における同時計数判定方法。
  3.  多重同時計数の内、検出時間差が閾値よりも小さい同時計数を真の同時計数と判定して抽出することを特徴とする請求項1に記載のPET装置における同時計数判定方法。
  4.  前記閾値が可変であることを特徴とする請求項3に記載のPET装置における同時計数判定方法。
  5.  前記閾値よりも小さい同時計数が複数ある時は、視野中心に最も近い同時計数線を1つ選択することを特徴とする請求項3又は4に記載のPET装置における同時計数判定方法。
  6.  前記閾値よりも小さい同時計数が複数ある時は、検出された1対の消滅放射線のエネルギーの合計が最も高い同時計数線を1つ選択することを特徴とする請求項3又は4に記載のPET装置における同時計数判定方法。
  7.  核種から発生した放射線を検出するための複数の放射線検出器と、
     各放射線検出器における放射線の検出時刻を検出するための手段と、
     複数の放射線検出器による検出時刻の差が所定時間内であるときに同時計数と判定する手段と、
     前記所定時間内に同時計数を複数検出した時は、検出時間差に関する情報を用いて、収集すべき同時計数線の優先度を設定し、多重同時計数から真の同時計数を抽出する手段と、
     を備えたことを特徴とするPET装置における同時計数判定装置。
  8.  多重同時計数の内、検出時間差が最も小さい同時計数を真の同時計数と判定して抽出するようにされていることを特徴とする請求項7に記載のPET装置における同時計数判定装置。
  9.  多重同時計数の内、検出時間差が閾値よりも小さい同時計数を真の同時計数と判定して抽出するようにされていることを特徴とする請求項8に記載のPET装置における同時計数判定装置。
  10.  前記閾値が可変とされていることを特徴とする請求項9に記載のPET装置における同時計数判定装置。
  11.  前記閾値よりも小さい同時計数が複数ある時は、視野中心に最も近い同時計数線を1つ選択するようにされていることを特徴とする請求項9又は10に記載のPET装置における同時計数判定装置。
  12.  前記閾値よりも小さい同時計数が複数ある時は、検出された1対の消滅放射線のエネルギーの合計が最も高い同時計数線を1つ選択するようにされていることを特徴とする請求項9又は10に記載のPET装置における同時計数判定装置。
PCT/JP2010/055185 2010-03-25 2010-03-25 Pet装置における同時計数判定方法及び装置 WO2011117990A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/635,753 US20130009064A1 (en) 2010-03-25 2010-03-25 Coincidence determination method and apparatus of pet device
JP2012506711A JP5339561B2 (ja) 2010-03-25 2010-03-25 Pet装置における同時計数判定方法及び装置
PCT/JP2010/055185 WO2011117990A1 (ja) 2010-03-25 2010-03-25 Pet装置における同時計数判定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055185 WO2011117990A1 (ja) 2010-03-25 2010-03-25 Pet装置における同時計数判定方法及び装置

Publications (1)

Publication Number Publication Date
WO2011117990A1 true WO2011117990A1 (ja) 2011-09-29

Family

ID=44672581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055185 WO2011117990A1 (ja) 2010-03-25 2010-03-25 Pet装置における同時計数判定方法及び装置

Country Status (3)

Country Link
US (1) US20130009064A1 (ja)
JP (1) JP5339561B2 (ja)
WO (1) WO2011117990A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168778A1 (ja) * 2012-05-09 2013-11-14 株式会社東芝 偶発同時計数推定方法及び偶発同時計数推定装置
JP2013234995A (ja) * 2012-05-09 2013-11-21 Toshiba Corp 偶発同時計数推定方法及び偶発同時計数推定装置
US9176237B2 (en) 2012-09-04 2015-11-03 National Institute Of Radiological Sciences Coincidence determination method and apparatus of PET device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150123003A1 (en) * 2013-11-06 2015-05-07 University Of Kentucky Research Foundation High resolution absorption imaging using annihilation radiation from an external positron source
CN108109182B (zh) * 2016-11-24 2021-08-24 上海东软医疗科技有限公司 一种pet图像重建方法和装置
JP6842694B2 (ja) 2017-02-20 2021-03-17 国立研究開発法人量子科学技術研究開発機構 部分リングpet装置及びpet装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113873A (ja) * 1993-10-14 1995-05-02 Univ Tohoku 陽電子断層撮影装置におけるγ線吸収体による散乱同時計数測定法及び陽電子断層撮影装置
JP2007071858A (ja) * 2005-08-11 2007-03-22 Shimadzu Corp 放射線同時計数処理方法、放射線同時計数処理プログラムおよび放射線同時計数処理記憶媒体、並びに放射線同時計数装置およびそれを用いた核医学診断装置、記憶媒体
JP2009544973A (ja) * 2006-07-28 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 陽電子放出型断層撮影における飛行時間測定法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241181A (en) * 1992-07-27 1993-08-31 General Electric Company Coincidence detector for a PET scanner
JPH07113843A (ja) * 1993-10-15 1995-05-02 Ricoh Co Ltd 信号状態確認装置及びそれを含むicソケット
US5841140A (en) * 1997-01-08 1998-11-24 Smv America, Inc. Gamma camera for pet and spect studies
US8183531B2 (en) * 2007-05-21 2012-05-22 The Board Of Trustees Of The Leland Stanford Junior University System and method for tomography combining single and paired photons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113873A (ja) * 1993-10-14 1995-05-02 Univ Tohoku 陽電子断層撮影装置におけるγ線吸収体による散乱同時計数測定法及び陽電子断層撮影装置
JP2007071858A (ja) * 2005-08-11 2007-03-22 Shimadzu Corp 放射線同時計数処理方法、放射線同時計数処理プログラムおよび放射線同時計数処理記憶媒体、並びに放射線同時計数装置およびそれを用いた核医学診断装置、記憶媒体
JP2009544973A (ja) * 2006-07-28 2009-12-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 陽電子放出型断層撮影における飛行時間測定法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168778A1 (ja) * 2012-05-09 2013-11-14 株式会社東芝 偶発同時計数推定方法及び偶発同時計数推定装置
JP2013234995A (ja) * 2012-05-09 2013-11-21 Toshiba Corp 偶発同時計数推定方法及び偶発同時計数推定装置
CN103890609A (zh) * 2012-05-09 2014-06-25 株式会社东芝 偶发同时计数推定方法以及偶发同时计数推定装置
US9241678B2 (en) 2012-05-09 2016-01-26 Kabushiki Kaisha Toshiba Random estimation in positron emission tomography with tangential time-of-flight mask
CN103890609B (zh) * 2012-05-09 2016-03-23 株式会社东芝 偶发同时计数推定方法以及偶发同时计数推定装置
US9176237B2 (en) 2012-09-04 2015-11-03 National Institute Of Radiological Sciences Coincidence determination method and apparatus of PET device

Also Published As

Publication number Publication date
JP5339561B2 (ja) 2013-11-13
US20130009064A1 (en) 2013-01-10
JPWO2011117990A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
Zhang et al. Performance evaluation of the next generation solid-state digital photon counting PET/CT system
US7045789B2 (en) Radiation detection device for nuclear medicine diagnosis device and detecting method therefor
JP5339561B2 (ja) Pet装置における同時計数判定方法及び装置
JP4660706B2 (ja) エネルギーと位置情報を利用した放射線検出方法及び装置
JP5526435B2 (ja) Pet装置およびそのイメージング方法
JP2010513860A (ja) X線光子を計数する装置、撮像デバイス及び方法
US9176237B2 (en) Coincidence determination method and apparatus of PET device
WO2013172402A1 (ja) 偶発イベント削減方法、偶発イベント削減装置及び非一時的コンピュータ可読記憶媒体
JP6125309B2 (ja) 偶発同時計数推定方法及び偶発同時計数推定装置
Polack et al. Dual-particle imager for standoff detection of special nuclear material
Stortz et al. Characterization of a new MR compatible small animal PET scanner using Monte-Carlo simulations
JPWO2017209059A1 (ja) ガンマ線画像取得装置およびガンマ線画像取得方法
JP5254076B2 (ja) ポジトロンct装置
WO2011125181A1 (ja) Pet装置における同時計数判定方法及び装置
WO2005091989A3 (en) A method and apparatus for vetoing random coincidences in positron emission tomographs
JP2018105648A (ja) 放射線位置検出方法、放射線位置検出器及びpet装置
JP4984963B2 (ja) 核医学診断装置
KR102182317B1 (ko) 광전흡수현상 및 컴프턴 산란반응을 이용한 부호화구경 기반 이중입자 영상 융합장치의 노이즈 저감 방법
JP2007218769A (ja) 核医学イメージング装置
Durko Anamorphic preclinical SPECT imaging with high-resolution silicon double-sided strip detectors
Park et al. Effects of positron range and annihilation photon acolinearity on image resolution of a Compton PET
Champley et al. DOI‐based reconstruction algorithms for a compact breast PET scanner
JP7247782B2 (ja) 吸収係数画像推定方法、吸収係数画像推定プログラム、および、ポジトロンct装置
WO2023026958A1 (ja) 断層画像作成装置、断層画像作成方法およびtof-pet装置
Schmidtlein et al. Modified sensitivity, noise equivalent count rate performance, and scatter fraction measurements of asymmetrical and dedicated brain positron emission tomographs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848383

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506711

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848383

Country of ref document: EP

Kind code of ref document: A1