WO2011117931A1 - Continuous melt supply system for metal casting - Google Patents

Continuous melt supply system for metal casting Download PDF

Info

Publication number
WO2011117931A1
WO2011117931A1 PCT/JP2010/002910 JP2010002910W WO2011117931A1 WO 2011117931 A1 WO2011117931 A1 WO 2011117931A1 JP 2010002910 W JP2010002910 W JP 2010002910W WO 2011117931 A1 WO2011117931 A1 WO 2011117931A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
holding furnace
molten metal
casting
hot water
Prior art date
Application number
PCT/JP2010/002910
Other languages
French (fr)
Japanese (ja)
Inventor
上妻学而
Original Assignee
ロザイ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロザイ工業株式会社 filed Critical ロザイ工業株式会社
Priority to CN2010800023395A priority Critical patent/CN102292175B/en
Priority to KR1020117000951A priority patent/KR101238994B1/en
Publication of WO2011117931A1 publication Critical patent/WO2011117931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/02Equipment for supplying molten metal in rations having means for controlling the amount of molten metal by volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/04Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants

Definitions

  • the present invention relates to a molten metal continuous supply system in metal casting capable of continuously casting a plurality of batches in one holding furnace by a combined operation of a tilting melting furnace and a tilting holding furnace.
  • a tilting system that tilts the furnace body with the tilting fulcrum shaft as the base point by the operation of two hydraulic cylinders provided at the bottom of the furnace body and discharges the molten metal from the outlet It is known to supply a casting machine using a holding furnace (for example, refer to Patent Document 2).
  • a control system In discharging the molten metal from the tilt-type holding furnace of Patent Document 2 to the casting machine, a control system is used to adjust the tilting speed of the holding furnace using the casting molten metal level as an index in order to keep the amount of the discharged water constant. .
  • both the melting furnace and the holding furnace are batch furnaces
  • casting is inevitably completed when the first batch is discharged, and it is necessary to start over from the start in the next batch.
  • the work at the start of casting is complicated and there are many metal losses, a system capable of continuously casting a plurality of batches has been demanded.
  • the problem can be solved by installing two holding furnaces, but not only a large capital investment is required, but also a large installation area must be secured.
  • An object of the present invention is to provide a continuous supply system for molten metal that can be cast.
  • the present invention comprises a melting furnace and a holding furnace for tilting the furnace body to discharge the molten metal, and transferring the molten metal to the outlet of the melting furnace.
  • the holding furnace is stopped before the ascending limit and descends while continuing the hot water, and the third action is to raise the melting furnace and transfer a constant flow rate to the descending holding furnace via the transfer trough.
  • the holding furnace receives the hot water from the melting furnace while descending and simultaneously discharges a constant flow of hot water, and the holding furnace stops before the lowering limit and rises again while continuing the hot water.
  • the hot water discharged from the holding furnace in the first operation, the second operation, and the fifth operation is detected by detecting the level level of the cast molten metal with a sensor and transferring a constant flow rate.
  • the molten metal continuous supply system in metal casting wherein the molten metal is discharged from the melting furnace and the holding furnace in the third operation and the fourth operation, and the level of the cast hot water and the casting hot water are controlled.
  • the molten metal continuous supply system in metal casting wherein the surface level is detected by a sensor and controlled to transfer a constant flow rate, and the third and fourth operations of the molten metal hot water surface level and casting
  • the hot water level is controlled by two different systems and the hot water level is maintained normally, there is no relation, and if one of the hot water levels is abnormal, Stem not only can the correction operation on the other system side, it developed a melt continuous feed system in a metal casting, characterized in that is controlled by the interlock system complement each other, it was adopted.
  • the combined operation of the tilting type melting furnace and the tilting type holding furnace enables even a single holding furnace to continuously cast a plurality of batches without interrupting the molten metal.
  • the complicated work at the start can be omitted and the metal loss can be reduced, the yield is improved and the work efficiency is improved.
  • the equipment cost is not increased and the installation area does not have to be increased.
  • FIG. 1 is a front view showing a melting furnace and a holding furnace.
  • FIG. 2 is a simplified front view showing a first operation of the melting furnace and the holding furnace.
  • FIG. 3 is a simplified front view showing a second operation of the melting furnace and the holding furnace.
  • FIG. 4 is a simplified front view showing a third operation of the melting furnace and the holding furnace.
  • FIG. 5 is a simplified front view showing a fourth operation of the melting furnace and the holding furnace.
  • FIG. 6 is a simplified front view showing a fifth operation of the melting furnace and the holding furnace.
  • FIG. 7 is an operation flow diagram of the melting furnace and the holding furnace.
  • FIG. 8 is a system flow diagram of one holding furnace.
  • FIG. 9 is a flowchart of the system of two holding furnaces.
  • FIG. 10 is a simplified cross-sectional view showing a tap pin control system.
  • FIG. 11 is a simplified cross-sectional view showing a spout pin control method.
  • 1 is a tilting type melting furnace for melting a metal material
  • 2 is a tilting type holding furnace for maintaining a molten metal M at a constant temperature.
  • the melting furnace 1 and the holding furnace 2 are provided side by side, and a transfer tub 3 protruding in the direction of the holding furnace 2 is provided at the outlet of the melting furnace 1, and the casting machine is cast at the outlet of the holding furnace 2.
  • a casting rod 4 projecting in the direction of the rod 5 is provided, the tip of the transfer kettle 3 reaches the holding furnace 2, the tip of the casting rod 4 reaches the casting machine casting rod 5, and the furnace bodies 1a and 2a are By tilting, the molten metal M in the furnace is discharged through the transfer tub 3 and the casting tub 4.
  • Hydraulic cylinders 6 and 7 are provided at the side portions of the melting furnace 1 and the holding furnace 2, and a tilting shaft hinge (not shown) is pivotally supported on the side of the outlet, so that the cylinders 6 and 7 extend and contract.
  • the molten metal of the melting furnace 1 and the holding furnace 2 is discharged through the transfer tub 3 and the casting tub 4, and the amount of discharged hot water increases or decreases depending on the rising speed (cylinder speed). .
  • the laser sensors 8 and 9 are sensors that continuously monitor the transition of the molten metal level 3a of the transfer tub 3 and the molten metal level 4a of the casting tub 4.
  • the hot water level 4a of the tub 4 is detected, and the rising speed of the melting furnace 1 and the holding furnace 2 is adjusted to discharge a certain amount of hot water. Further, when casting while receiving hot water from the melting furnace 1, the lowering speed is adjusted.
  • the front end portion (holding furnace inlet) of the transfer tub 3 has a closed structure, and the molten metal M is discharged from the spout 10 on the bottom surface of the transfer tub 3 and enters the holding furnace 2. Yes.
  • the spout 10 has a variable effective sectional area structure.
  • the usage aspect of the molten metal continuous supply system in the metal casting thus configured will be described.
  • the melting furnace 1 and the holding furnace 2 are as follows. Complex operations are required.
  • the tilting-type melting furnace 1 is in a stopped vertical state, and the molten metal M is in the hot water tank of the melting furnace 1 and does not discharge.
  • the tilting type holding furnace 2 is raised by the hydraulic cylinder 7, and the furnace body 2 a is slightly tilted by the tilting shaft hinge, so that the molten metal M in the holding furnace 2 is discharged through the casting rod 4.
  • the casting bath surface level 4a is detected by the laser sensor 9, and a constant flow is supplied to the casting machine casting rod 5 in the first operation (FIG. 2).
  • the melting furnace 1 remains in the stopped state of the first operation, and the molten metal M is in the hot water tank of the melting furnace 1 and does not discharge, but the holding furnace 2 rises further than the first operation and stops before the upper limit. To do.
  • the inclination of the furnace body 2a becomes tighter than the inclination of the first operation, and subsequently the molten metal M in the holding furnace 2 tries to enter the descending operation while continuing to discharge the molten metal through the casting rod 4 ( FIG. 3).
  • the melting furnace 1 is lifted by the hydraulic cylinder 6, the furnace body 1 a is tilted via the tilting shaft hinge, and the molten metal M in the hot water tank is discharged through the hot water transfer tub 3 and transferred to the holding furnace 2 that is being lowered. .
  • the molten metal level 3a is detected by the laser sensor 8 to supply a constant flow rate, and the molten metal M in the holding furnace 2 is supplied to the casting machine casting rod 5 through the casting rod 4 at a constant flow rate.
  • the third operation is discharging (FIG. 4).
  • the holding furnace 2 further descends and receives a certain amount of molten metal M discharged from the transfer tub 3 of the melting furnace 1, and at the same time a constant flow rate from the holding furnace 2 through the casting tub 4 to the casting machine casting tub 5.
  • the fourth operation is supplied (FIG. 5).
  • the fifth operation is to stop the holding furnace 2 before reaching the lowering limit and try to enter the rising operation again while continuing the hot water (FIG. 6).
  • the holding furnace 2 needs to control the casting pouring surface level 4a by adjusting the descending tilting speed in order to discharge the molten metal M replenished from the melting furnace 1 even during the descending.
  • the hot water surface levels 3a and 4a of the hot metal transfer cup 3 and the cast iron 4 are set to the two levels. It is controlled by two different systems and is not relevant as long as the hot water surface levels 3a and 4a are maintained normally. In addition to this system, the other system side also requires a correction operation and is controlled by an interlocking system that complements each other.
  • step 21 on the melting furnace side when the molten iron transfer molten metal reaches the upper upper limit (HH), as shown in step 22, It is only necessary to stop the tilting rise, and the holding furnace 2 downstream may continue the control operation. However, when the casting furnace molten metal reaches the upper limit (HH) in step 31 on the holding furnace side while the holding furnace 2 is descending (in the case of the transfer metal level control and cast iron level control), the process goes to step 32. As shown, it is necessary not only to switch the tilting descending speed of the holding furnace to a high speed, but also to stop the supply of the molten metal by lowering the melting furnace being raised at a high speed as shown in Step 33.
  • the high-speed descending operation of the melting furnace 1 and the holding furnace 2 may be stopped if the cast molten metal level drops to DL in steps 34 and 35.
  • step 38 when the casting molten metal reaches the lower level lower limit (LL), as shown in step 36, it is only necessary to stop the tilting descent of the holding furnace, and the melting furnace 1 continues the control operation. Then, the molten metal M must be continuously supplied.
  • LL lower level lower limit
  • FIG. 8 is a block diagram in the case of comprising one melting furnace 1, one holding furnace 2, and one casting machine 5. Continuous casting is possible.
  • FIG. 9 shows a block diagram in the case of a single melting furnace 1, two holding furnaces 2 and 2, and two casting machines 5 and 5. By using this system, two or more kinds of alloys can be continuously cast simultaneously.
  • the furnace tilting speed adjustment method has been described as the molten metal flow rate control method.
  • the present invention is not necessarily limited thereto.
  • FIG. A tap pin control system in which the movable pin 12 moves left and right in the opening 11 of the holding furnace 2 or, as shown in FIG. 11, is movable on the cylinder 13 provided at the bottom of the casting rod 4 disposed on the upper surface of the casting machine casting rod 5.
  • the spout pin control system in which the pin 14 moves up and down is possible, and it is a matter of course that various design changes can be made without departing from the spirit of the invention.
  • the present invention is useful as it is possible to continuously cast a plurality of batches with each one melting furnace and holding furnace, but even when there are two or more holding furnaces, it is useful by using this system. At the same time, it is also effective when two types of alloys are continuously cast simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

The disclosed continuous melt supply system for metal casting is formed from a holding furnace (2) and a melting furnace (1) for tilting the furnace body and discharging molten metal, and is provided with a casting trough (4) and a melt moving trough (3) for discharging melt (M) at melt discharge openings in the holding furnace (2) and the melting furnace (1). The holding furnace (2) is lifted, and a steady flow amount of melt (M) is supplied to a casting machine casting trough (5) via the casting trough (4). After the lifting of the holding furnace (2), said lifting is stopped and the holding furnace is lowered whilst continuing the discharge of melt. The melting furnace (1) is lifted, and a steady flow amount is melt-moved to the holding furnace (2) which is being lowered, via the melt moving trough (3). As the holding furnace (2) is being lowered said furnace receives melt from the melting furnace (1), and simultaneously discharges a constant flow amount of melt. After the lowering of the holding furnace (2), said lowering is stopped and the holding furnace is lifted whilst continuing to discharge melt. This operation is repeated until casting is completed.

Description

金属鋳造における溶湯連続供給システムContinuous supply system for molten metal in metal casting
 本発明は、傾動式溶解炉と傾動式保持炉の複合動作によって、保持炉1基で複数回のバッチを継続して鋳造可能な金属鋳造における溶湯連続供給システムに関するものである。 The present invention relates to a molten metal continuous supply system in metal casting capable of continuously casting a plurality of batches in one holding furnace by a combined operation of a tilting melting furnace and a tilting holding furnace.
 従来、アルミニウム合金などの溶融金属の溶湯をダイカストマシンなどに供給する装置については種々のものが提案されている。例えば、予め溶解された十分な量の金属溶湯を保持する保持炉からレードルにより、一定量の溶湯を汲み取り計量、搬送、注油を行う方法が知られていた(例えば、特許文献1参照)。 Conventionally, various devices for supplying a molten metal such as an aluminum alloy to a die casting machine have been proposed. For example, there has been known a method in which a predetermined amount of molten metal is pumped by a ladle from a holding furnace that holds a sufficient amount of molten metal that has been previously melted, and is measured, conveyed, and lubricated (see, for example, Patent Document 1).
 このレードルによる搬送の場合、搬送距離が長くなり、湯こぼれなどのために搬送速度が上げられないことから、搬送時間がかかり溶融金属が冷却して流動性が低下したり、レードルに付着したり、また外気との接触によって表面に酸化皮膜が生じ良好な製品が得られ難いといった問題点があった。 In the case of transport by this ladle, the transport distance becomes long and the transport speed cannot be increased due to spilled water, etc., so it takes a long time to transport and the molten metal cools down and the fluidity decreases, or it adheres to the ladle. In addition, there is a problem that an oxide film is formed on the surface due to contact with the outside air, and it is difficult to obtain a good product.
 上記のような問題点を解消する供給装置として、炉体の下部に設けた2本の油圧シリンダーの作動により傾動支点軸を基点とし炉本体を傾動させ、出湯口より金属溶湯を出湯する傾動式保持炉を使用して鋳造機へ供給するのが知られている(例えば、特許文献2参照)。 As a supply device that solves the above-mentioned problems, a tilting system that tilts the furnace body with the tilting fulcrum shaft as the base point by the operation of two hydraulic cylinders provided at the bottom of the furnace body and discharges the molten metal from the outlet It is known to supply a casting machine using a holding furnace (for example, refer to Patent Document 2).
特公昭60-25220号公報Japanese Patent Publication No. 60-25220 実開平6-41964号公報Japanese Utility Model Publication No. 6-41964
 上記特許文献2の傾動式保持炉から鋳造機へ出湯するにあたっては、その出湯量を一定に保つために、鋳造樋溶湯レベルを指標に保持炉の傾動速度を調整する制御システムを使用している。 In discharging the molten metal from the tilt-type holding furnace of Patent Document 2 to the casting machine, a control system is used to adjust the tilting speed of the holding furnace using the casting molten metal level as an index in order to keep the amount of the discharged water constant. .
 しかし、溶解炉・保持炉ともにバッチ炉であるため、1バッチを出湯完了すると必然的に鋳造も終了となり、次のバッチでは再度開始からやり直す必要がある。特に連続鋳造プロセスにおいては、鋳造開始時の作業は煩雑であると共に、メタルロスも多いことから、複数回のバッチを継続して鋳造できるシステムが求められていた。そのためには保持炉を2基設置すれば解決するが、高額の設備投資が必要となるばかりでなく、広い設置面積を確保しなければならないといった問題点があった。 However, since both the melting furnace and the holding furnace are batch furnaces, casting is inevitably completed when the first batch is discharged, and it is necessary to start over from the start in the next batch. In particular, in the continuous casting process, since the work at the start of casting is complicated and there are many metal losses, a system capable of continuously casting a plurality of batches has been demanded. For this purpose, the problem can be solved by installing two holding furnaces, but not only a large capital investment is required, but also a large installation area must be secured.
 本発明は、上記のような問題点を解決することを課題として研究開発されたもので、傾動式溶解炉と傾動式保持炉の複合した動作によって、保持炉1基で複数回のバッチを継続して鋳造可能な溶湯連続供給システムを提供することを目的とするものである。 The present invention has been researched and developed to solve the above-mentioned problems, and a plurality of batches can be continued in one holding furnace by a combined operation of a tilting melting furnace and a tilting holding furnace. An object of the present invention is to provide a continuous supply system for molten metal that can be cast.
 上記の課題を解決し、その目的を達成する手段として本発明は、炉体を傾動させて金属溶湯を出湯する溶解炉と保持炉とで構成され、溶解炉の出湯口に溶湯を排出する移湯樋を、保持炉の出湯口に溶湯を排出する鋳造樋を備えており、保持炉を上昇させて鋳造樋を介して一定流量の溶湯を鋳造機鋳造樋に供給する第1動作と、該保持炉は上昇限手前で停止して出湯を継続しながら下降する第2動作と、溶解炉を上昇させて下降中の保持炉へ移湯樋を介して一定流量を移湯する第3動作と、保持炉は下降しながら溶解炉から受湯し、同時に一定流量出湯する第4動作と、保持炉は下降限手前で停止して出湯を継続しながら再度上昇する第5動作からなり、第1動作から第5動作の過程を鋳造完了まで繰り返し行うことを特徴とする金属鋳造における溶湯連続供給システムを開発し、採用した。 As a means for solving the above problems and achieving the object, the present invention comprises a melting furnace and a holding furnace for tilting the furnace body to discharge the molten metal, and transferring the molten metal to the outlet of the melting furnace. A first operation of supplying a molten metal to the outlet of the holding furnace and discharging a molten metal to the outlet of the holding furnace, and raising the holding furnace to supply a constant flow of molten metal to the casting machine through the casting furnace; The holding furnace is stopped before the ascending limit and descends while continuing the hot water, and the third action is to raise the melting furnace and transfer a constant flow rate to the descending holding furnace via the transfer trough. The holding furnace receives the hot water from the melting furnace while descending and simultaneously discharges a constant flow of hot water, and the holding furnace stops before the lowering limit and rises again while continuing the hot water. For metal casting characterized by repeating the process from the operation to the fifth operation until the completion of casting Kicking developed a molten metal continuous supply system, it was adopted.
 上記のように構成した金属鋳造における溶湯連続供給システムにおいて、前記第1動作、第2動作および第5動作の保持炉からの出湯は、鋳造樋湯面レベルをセンサーで検出し一定流量を移湯するように制御されていることを特徴とする金属鋳造における溶湯連続供給システム、および前記第3動作、第4動作の溶解炉と保持炉からの出湯は、移湯樋湯面レベルと鋳造樋湯面レベルをセンサーで検出し一定流量を移湯するように制御されていることを特徴とする金属鋳造における溶湯連続供給システム、および前記第3動作、第4動作の移湯樋湯面レベルと鋳造樋湯面レベルが二つの異なったシステムにより制御され、湯面レベルが正常に維持されている限り関連性はなく、どちらかの湯面レベルに異常が生じた場合に、異常が生じた方のシステムだけでなく、他方のシステム側に補正動作ができ、相互に補完しあうインタロックシステムで制御されていることを特徴とする金属鋳造における溶湯連続供給システムを開発し、採用した。 In the molten metal continuous supply system in the metal casting constructed as described above, the hot water discharged from the holding furnace in the first operation, the second operation, and the fifth operation is detected by detecting the level level of the cast molten metal with a sensor and transferring a constant flow rate. The molten metal continuous supply system in metal casting, wherein the molten metal is discharged from the melting furnace and the holding furnace in the third operation and the fourth operation, and the level of the cast hot water and the casting hot water are controlled. The molten metal continuous supply system in metal casting, wherein the surface level is detected by a sensor and controlled to transfer a constant flow rate, and the third and fourth operations of the molten metal hot water surface level and casting As long as the hot water level is controlled by two different systems and the hot water level is maintained normally, there is no relation, and if one of the hot water levels is abnormal, Stem not only can the correction operation on the other system side, it developed a melt continuous feed system in a metal casting, characterized in that is controlled by the interlock system complement each other, it was adopted.
 本発明によれば、傾動式溶解炉と傾動式保持炉の複合動作によって、1基の保持炉であっても、溶湯を途切れさせることなく、複数回のバッチを継続して鋳造可能となり、鋳造開始時の煩雑な作業が省略できると共にメタルロスを減少でき、歩留まりがよくなって作業効率が良くなる。また酸化され難く良好な鋳造品が得られると共に、保持炉1基で済むことから、設備費が高くならず設置面積を広くとらなくてもよい。 According to the present invention, the combined operation of the tilting type melting furnace and the tilting type holding furnace enables even a single holding furnace to continuously cast a plurality of batches without interrupting the molten metal. The complicated work at the start can be omitted and the metal loss can be reduced, the yield is improved and the work efficiency is improved. Moreover, since it is difficult to oxidize and a good cast product is obtained and only one holding furnace is required, the equipment cost is not increased and the installation area does not have to be increased.
図1は、溶解炉と保持炉を示す正面図である。FIG. 1 is a front view showing a melting furnace and a holding furnace. 図2は、溶解炉と保持炉の第1動作を示す簡略正面図である。FIG. 2 is a simplified front view showing a first operation of the melting furnace and the holding furnace. 図3は、溶解炉と保持炉の第2動作を示す簡略正面図である。FIG. 3 is a simplified front view showing a second operation of the melting furnace and the holding furnace. 図4は、溶解炉と保持炉の第3動作を示す簡略正面図である。FIG. 4 is a simplified front view showing a third operation of the melting furnace and the holding furnace. 図5は、溶解炉と保持炉の第4動作を示す簡略正面図である。FIG. 5 is a simplified front view showing a fourth operation of the melting furnace and the holding furnace. 図6は、溶解炉と保持炉の第5動作を示す簡略正面図である。FIG. 6 is a simplified front view showing a fifth operation of the melting furnace and the holding furnace. 図7は、溶解炉と保持炉のオペレーションフロー図である。FIG. 7 is an operation flow diagram of the melting furnace and the holding furnace. 図8は、保持炉1基のシステムフロー図である。FIG. 8 is a system flow diagram of one holding furnace. 図9は、保持炉2基のシステムのフロー図である。FIG. 9 is a flowchart of the system of two holding furnaces. 図10は、タップピン制御方式を示す簡略断面図である。FIG. 10 is a simplified cross-sectional view showing a tap pin control system. 図11は、スパウトピン制御方式を示す簡略断面図である。FIG. 11 is a simplified cross-sectional view showing a spout pin control method.
 以下に、本発明の実施の形態を添付図面に基づいて説明すると、1は金属材料を溶解させる傾動式の溶解炉、2は溶解された金属溶湯Mを一定温度に保つ傾動式の保持炉2であり、溶解炉1と保持炉2は並設してあり、溶解炉1の出湯口には保持炉2の方向に突出する移湯樋3を、保持炉2の出湯口には鋳造機鋳造樋5の方向に突出する鋳造樋4を備え、移湯樋3の先端部は保持炉2に達し、鋳造樋4の先端部は鋳造機鋳造樋5に達しており、炉体1a,2aを傾動させることにより炉内の溶湯Mを移湯樋3および鋳造樋4を介して出湯するように構成されている。 Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 is a tilting type melting furnace for melting a metal material, 2 is a tilting type holding furnace for maintaining a molten metal M at a constant temperature. The melting furnace 1 and the holding furnace 2 are provided side by side, and a transfer tub 3 protruding in the direction of the holding furnace 2 is provided at the outlet of the melting furnace 1, and the casting machine is cast at the outlet of the holding furnace 2. A casting rod 4 projecting in the direction of the rod 5 is provided, the tip of the transfer kettle 3 reaches the holding furnace 2, the tip of the casting rod 4 reaches the casting machine casting rod 5, and the furnace bodies 1a and 2a are By tilting, the molten metal M in the furnace is discharged through the transfer tub 3 and the casting tub 4.
 溶解炉1と保持炉2の側方部には油圧シリンダー6,7を設けてあり、出湯口側に傾動軸ヒンジ(図示せず)を回動自在に軸支し、シリンダー6,7の伸縮によって上昇、下降すると共に、傾動可能にしてあり、溶解炉1および保持炉2の溶湯Mが移湯樋3および鋳
造樋4を介して排出され、出湯量は上昇速度(シリンダー速度)によって増減する。
Hydraulic cylinders 6 and 7 are provided at the side portions of the melting furnace 1 and the holding furnace 2, and a tilting shaft hinge (not shown) is pivotally supported on the side of the outlet, so that the cylinders 6 and 7 extend and contract. The molten metal of the melting furnace 1 and the holding furnace 2 is discharged through the transfer tub 3 and the casting tub 4, and the amount of discharged hot water increases or decreases depending on the rising speed (cylinder speed). .
 レーザーセンサ8,9は移湯樋3の湯面レべル3aと鋳造樋4の湯面レベル4aの変移を連続的に監視するセンサであり、移湯樋3の湯面レベル3aと、鋳造樋4の湯面レベル4aを検出し、溶解炉1と保持炉2の上昇速度を調整して一定量出湯するようになっている。また、溶解炉1から受湯しながら鋳造する場合は、下降速度を調整する。 The laser sensors 8 and 9 are sensors that continuously monitor the transition of the molten metal level 3a of the transfer tub 3 and the molten metal level 4a of the casting tub 4. The hot water level 4a of the tub 4 is detected, and the rising speed of the melting furnace 1 and the holding furnace 2 is adjusted to discharge a certain amount of hot water. Further, when casting while receiving hot water from the melting furnace 1, the lowering speed is adjusted.
 移湯樋3の先端部(保持炉入湯口部)は閉じた構造になっていて、溶湯Mは移湯樋3の底面の注出口10より排出されて保持炉2に入湯するようになっている。注出口10は有効断面積可変構造になっている。 The front end portion (holding furnace inlet) of the transfer tub 3 has a closed structure, and the molten metal M is discharged from the spout 10 on the bottom surface of the transfer tub 3 and enters the holding furnace 2. Yes. The spout 10 has a variable effective sectional area structure.
 このように構成された金属鋳造における溶湯連続供給システムの使用態様について説明する。継続して連続鋳造を行うためには、保持炉2の溶湯Mが完全出湯する前に溶解炉1から溶湯Mを補充する必要があり、そのためには溶解炉1と保持炉2が以下のような複合した動作が必要になる。 The usage aspect of the molten metal continuous supply system in the metal casting thus configured will be described. In order to perform continuous casting continuously, it is necessary to replenish the molten metal M from the melting furnace 1 before the molten metal M of the holding furnace 2 is completely discharged. For this purpose, the melting furnace 1 and the holding furnace 2 are as follows. Complex operations are required.
 すなわち、傾動式の溶解炉1は停止の垂直状態であり、溶湯Mは溶解炉1の湯槽内にあり出湯することはない。一方、傾動式の保持炉2は、油圧シリンダー7によって上昇し、傾動軸ヒンジによって炉体2aが少し傾斜することから、保持炉2内の溶湯Mが鋳造樋4を介して排出される。この時、鋳造樋湯面レベル4aをレーザーセンサ9にて検出しており一定流量を鋳造機鋳造樋5に供給するのが第1動作である(図2)。 That is, the tilting-type melting furnace 1 is in a stopped vertical state, and the molten metal M is in the hot water tank of the melting furnace 1 and does not discharge. On the other hand, the tilting type holding furnace 2 is raised by the hydraulic cylinder 7, and the furnace body 2 a is slightly tilted by the tilting shaft hinge, so that the molten metal M in the holding furnace 2 is discharged through the casting rod 4. At this time, the casting bath surface level 4a is detected by the laser sensor 9, and a constant flow is supplied to the casting machine casting rod 5 in the first operation (FIG. 2).
 溶解炉1は第1動作の停止状態のままであり、溶湯Mは溶解炉1の湯槽内にあり出湯することはないが、保持炉2は第1動作よりさらに上昇し、上昇限手前で停止する。炉体2aの傾斜が第1動作の傾斜よりきつくなり、引き続いて保持炉2内の溶湯Mが鋳造樋4を介して出湯を継続しながら下降動作に入ろうとするのが第2動作である(図3)。 The melting furnace 1 remains in the stopped state of the first operation, and the molten metal M is in the hot water tank of the melting furnace 1 and does not discharge, but the holding furnace 2 rises further than the first operation and stops before the upper limit. To do. In the second operation, the inclination of the furnace body 2a becomes tighter than the inclination of the first operation, and subsequently the molten metal M in the holding furnace 2 tries to enter the descending operation while continuing to discharge the molten metal through the casting rod 4 ( FIG. 3).
 溶解炉1が油圧シリンダー6によって上昇し、傾動軸ヒンジを介して炉体1aが傾斜し、湯槽内の溶湯Mが移湯樋3を介して排出され下降中の保持炉2に移湯される。この時、移湯樋湯面レベル3aをレーザーセンサ8にて検出していて一定流量を供給すると共に、保持炉2内の溶湯Mが鋳造樋4を介して鋳造機鋳造樋5に一定流量を排出しているのが第3動作である(図4)。 The melting furnace 1 is lifted by the hydraulic cylinder 6, the furnace body 1 a is tilted via the tilting shaft hinge, and the molten metal M in the hot water tank is discharged through the hot water transfer tub 3 and transferred to the holding furnace 2 that is being lowered. . At this time, the molten metal level 3a is detected by the laser sensor 8 to supply a constant flow rate, and the molten metal M in the holding furnace 2 is supplied to the casting machine casting rod 5 through the casting rod 4 at a constant flow rate. The third operation is discharging (FIG. 4).
 保持炉2はさらに下降しつつ、溶解炉1の移湯樋3から排出する一定量の溶湯Mを受湯し、同時に保持炉2から鋳造樋4を介して一定流量を鋳造機鋳造樋5に供給するのが第4動作である(図5)。 The holding furnace 2 further descends and receives a certain amount of molten metal M discharged from the transfer tub 3 of the melting furnace 1, and at the same time a constant flow rate from the holding furnace 2 through the casting tub 4 to the casting machine casting tub 5. The fourth operation is supplied (FIG. 5).
 保持炉2は下降限手前で停止し、出湯を継続しながら再度上昇動作に入ろうとするのが第5動作である(図6)。 The fifth operation is to stop the holding furnace 2 before reaching the lowering limit and try to enter the rising operation again while continuing the hot water (FIG. 6).
 上記第1動作から第5動作の過程を鋳造完了まで繰り返すことにより、保持炉1基でも、溶湯Mが途切れることなく複数回のバッチを継続して鋳造可能となる。 By repeating the processes of the first operation to the fifth operation until the completion of casting, even one holding furnace can continuously cast a plurality of batches without interruption of the molten metal M.
 上記に示すように、複数回のバッチを継続して鋳造するには、保持炉2の溶湯Mが完全出湯する前に溶解炉1から溶湯Mを補充する必要があり、そのためには保持炉2の下降中の補充移湯が要件となる。また補充の間においても、保持炉2は定量の出湯を継続するため、補充移湯も正確に定量出湯しなければならない。したがって、溶解炉1から保持炉2への移湯に際し、移湯樋湯面レベル3aの制御により溶解炉1の傾動速度を調整して行う必要がある。 As described above, in order to continuously cast a plurality of batches, it is necessary to replenish the molten metal M from the melting furnace 1 before the molten metal M in the holding furnace 2 is completely discharged. Replenishment transfer during descent is a requirement. In addition, since the holding furnace 2 continues the fixed amount of hot water during replenishment, the replenished hot water must be accurately discharged in a constant amount. Therefore, when transferring the hot water from the melting furnace 1 to the holding furnace 2, it is necessary to adjust the tilting speed of the melting furnace 1 by controlling the hot water pouring surface level 3a.
 また、同時に保持炉2は下降の間も、溶解炉1より補充された溶湯Mを定量出湯するため、下降傾動速度を調整して鋳造樋湯面レベル4aの制御を行う必要がある。この二つの制御を並行して実行することにより、1台の保持炉2でも途切れることなく複数回のバッチを継続して鋳造可能になる。 At the same time, the holding furnace 2 needs to control the casting pouring surface level 4a by adjusting the descending tilting speed in order to discharge the molten metal M replenished from the melting furnace 1 even during the descending. By executing these two controls in parallel, even one holding furnace 2 can continuously cast a plurality of batches without interruption.
 また、上記第3動作、第4動作の溶解炉1より下降中の保持炉2に補充移湯する際には、移湯樋3および鋳造樋4のそれぞれの湯面レベル3a,4aが前記二つの異なったシステムによって制御され、湯面レベル3a,4aが正常に維持されている限り関連性はないが、どちらかの湯面レベル3a,4aに異常が生じた場合は、異常が生じた方のシステムだけでなく、他方のシステム側にも補正動作が必要となり、相互に補完しあうインタロックシステムで制御されている。 Further, when replenishing and transferring the hot water to the holding furnace 2 that is descending from the melting furnace 1 in the third operation and the fourth operation, the hot water surface levels 3a and 4a of the hot metal transfer cup 3 and the cast iron 4 are set to the two levels. It is controlled by two different systems and is not relevant as long as the hot water surface levels 3a and 4a are maintained normally. In addition to this system, the other system side also requires a correction operation and is controlled by an interlocking system that complements each other.
 すなわち、図7のオペレーションフローに示すように、溶解炉側のステップ21で、溶解炉の移湯樋溶湯がレベル上上限(HH)に達した場合は、ステップ22に示すように、溶解炉の傾動上昇を停止するだけでよく、下流の保持炉2は制御動作を継続してよい。しかし、保持炉2の下降中(移湯樋レベル制御と鋳造樋レベル制御の場合)に保持炉側のステップ31で、鋳造樋溶湯がレベル上上限(HH)に達した場合は、ステップ32に示すように、保持炉の傾動下降速度を高速に切り替えるだけでなく、ステップ33に示すように、上昇中の溶解炉を高速で下降させて、溶湯の供給を止める必要がある。溶解炉1および保持炉2の高速下降動作は、ステップ34,35で鋳造樋溶湯レベルがDLまで下がれば停止してよい。一方で、ステップ38に示すように、鋳造樋溶湯がレベル下下限(LL)に達した場合は、ステップ36に示すように、保持炉傾動下降停止のみでよく、溶解炉1は制御動作を継続して溶湯Mを供給し続けなければならない。 That is, as shown in the operation flow of FIG. 7, in step 21 on the melting furnace side, when the molten iron transfer molten metal reaches the upper upper limit (HH), as shown in step 22, It is only necessary to stop the tilting rise, and the holding furnace 2 downstream may continue the control operation. However, when the casting furnace molten metal reaches the upper limit (HH) in step 31 on the holding furnace side while the holding furnace 2 is descending (in the case of the transfer metal level control and cast iron level control), the process goes to step 32. As shown, it is necessary not only to switch the tilting descending speed of the holding furnace to a high speed, but also to stop the supply of the molten metal by lowering the melting furnace being raised at a high speed as shown in Step 33. The high-speed descending operation of the melting furnace 1 and the holding furnace 2 may be stopped if the cast molten metal level drops to DL in steps 34 and 35. On the other hand, as shown in step 38, when the casting molten metal reaches the lower level lower limit (LL), as shown in step 36, it is only necessary to stop the tilting descent of the holding furnace, and the melting furnace 1 continues the control operation. Then, the molten metal M must be continuously supplied.
 図8に示すのは、1基の溶解炉1と、1基の保持炉2と、1基の鋳造機5で構成する場合のブロック線図であり、矢印方向に流れ、複数回のバッチを継続して鋳造を可能とするものである。また、図9に示すのは、1基の溶解炉1と、2基の保持炉2,2と、2基の鋳造機5,5で構成する場合のブロック線図であり、矢印方向に流れ、本システムを使用することにより、2種類以上の合金を同時に連続鋳造することが可能になる。 FIG. 8 is a block diagram in the case of comprising one melting furnace 1, one holding furnace 2, and one casting machine 5. Continuous casting is possible. FIG. 9 shows a block diagram in the case of a single melting furnace 1, two holding furnaces 2 and 2, and two casting machines 5 and 5. By using this system, two or more kinds of alloys can be continuously cast simultaneously.
 以上、本発明の実施の形態においては、溶湯流量制御方式として、炉傾動速度調整方式で説明したが、必ずしもそれらに限定されるものではなく、例えば、図10に示すように、溶解炉1または保持炉2の開口部11に可動ピン12が左右移動するタップピン制御方式、あるいは図11に示すように、鋳造機鋳造樋5の上面に配する鋳造樋4の底部に設けた筒体13に可動ピン14が上下移動するスパウトピン制御方式で行うこともあり、発明の目的を達成でき、かつ発明の要旨を逸脱しない範囲内において種々の設計変更が可能であることは当然のことである。 As described above, in the embodiment of the present invention, the furnace tilting speed adjustment method has been described as the molten metal flow rate control method. However, the present invention is not necessarily limited thereto. For example, as shown in FIG. A tap pin control system in which the movable pin 12 moves left and right in the opening 11 of the holding furnace 2 or, as shown in FIG. 11, is movable on the cylinder 13 provided at the bottom of the casting rod 4 disposed on the upper surface of the casting machine casting rod 5. Of course, the spout pin control system in which the pin 14 moves up and down is possible, and it is a matter of course that various design changes can be made without departing from the spirit of the invention.
 本発明は、溶解炉と保持炉の各1基で複数回のバッチを継続して鋳造可能として有用であるが、保持炉が2基以上ある場合でも、本システムを使用することにより有用であると共に、2種類の合金を同時に連続鋳造する場合にも有効である。 The present invention is useful as it is possible to continuously cast a plurality of batches with each one melting furnace and holding furnace, but even when there are two or more holding furnaces, it is useful by using this system. At the same time, it is also effective when two types of alloys are continuously cast simultaneously.
1   溶解炉
1a  炉体
2   保持炉
2a  炉体
3   移湯樋
3a   移湯樋湯面
4   鋳造樋
4a   鋳造樋湯面
5   鋳造機鋳造樋
6,7 油圧シリンダー
8,9 レーザーセンサ
DESCRIPTION OF SYMBOLS 1 Melting furnace 1a Furnace body 2 Holding furnace 2a Furnace body 3 Transfer hot metal 3a Transfer hot water surface 4 Cast iron 4a Cast hot water surface 5 Casting machine cast iron 6, 7 Hydraulic cylinder 8, 9 Laser sensor

Claims (4)

  1.  炉体を傾動させて金属溶湯を出湯する溶解炉と保持炉とで構成され、溶解炉の出湯口に溶湯を排出する移湯樋を、保持炉の出湯口に溶湯を排出する鋳造樋を備えており、保持炉を上昇させて鋳造樋を介して一定流量の溶湯を鋳造機鋳造樋に供給する第1動作と、該保持炉は上昇限手前で停止して出湯を継続しながら下降する第2動作と、溶解炉を上昇させて下降中の保持炉へ移湯樋を介して一定流量を移湯する第3動作と、保持炉は下降しながら溶解炉から受湯し、同時に一定流量出湯する第4動作と、保持炉は下降限手前で停止し出湯を継続しながら再度上昇する第5動作からなり、第1動作から第5動作の過程を鋳造完了まで繰り返し行うことを特徴とする金属鋳造における溶湯連続供給システム。 It consists of a melting furnace that tilts the furnace body and discharges the molten metal, and a holding furnace, with a transfer tub that discharges the molten metal to the outlet of the melting furnace, and a casting tub that discharges the molten metal to the outlet of the holding furnace A first operation of raising the holding furnace and supplying a molten metal at a constant flow rate to the casting machine through the casting iron, and the holding furnace is stopped before the rising limit and descending while continuing the hot water out. 2 operations, a third operation in which the melting furnace is raised and a constant flow rate is transferred to a holding furnace that is descending via a transfer trough, and the holding furnace receives hot water from the melting furnace while descending, and at the same time a constant flow rate hot water discharge And the holding furnace is stopped before the lowering limit, and the fifth action is raised again while continuing the hot water, and the process from the first action to the fifth action is repeated until the completion of casting. Continuous supply system for molten metal in casting.
  2.  前記第1動作、第2動作および第5動作の保持炉からの出湯は、鋳造樋湯面レベルをセンサーで検出し一定流量を移湯するように制御されていることを特徴とする請求の範囲第1項に記載の金属鋳造における溶湯連続供給システム。 The hot water discharged from the holding furnace in the first operation, the second operation, and the fifth operation is controlled so as to detect the level of the cast molten metal with a sensor and transfer a constant flow rate. The molten metal continuous supply system in the metal casting according to claim 1.
  3.  前記第3動作、第4動作の溶解炉と保持炉からの出湯は、移湯樋湯面レベルと鋳造樋湯面レベルをセンサーで検出し一定流量を移湯するように制御されていることを特徴とする請求の範囲第1項に記載の金属鋳造における溶湯連続供給システム。 In the third operation and the fourth operation, the hot water discharged from the melting furnace and the holding furnace is controlled so that the level of the molten metal and the level of the cast molten metal are detected by a sensor and a constant flow rate is transferred. The molten metal continuous supply system in metal casting according to claim 1, wherein the system is a metal casting.
  4.  前記第3動作、第4動作の移湯樋湯面レベルと鋳造樋湯面レベルが二つの異なったシステムにより制御され、湯面レベルが正常に維持されている限り関連性はなく、どちらかの湯面レベルに異常が生じた場合に、異常が生じた方のシステムだけでなく、他方のシステム側に補正動作ができ、相互に補完しあうインタロックシステムで制御されていることを特徴とする請求の範囲第1項に記載の金属鋳造における溶湯連続供給システム。 In the third operation and the fourth operation, the transfer hot water surface level and the cast hot water surface level are controlled by two different systems, and there is no relation as long as the hot water surface level is maintained normally. When an abnormality occurs in the hot water surface level, not only the system in which the abnormality has occurred, but also the other system can perform a correction operation and is controlled by an interlocking system that complements each other. The molten metal continuous supply system in metal casting according to claim 1.
PCT/JP2010/002910 2010-03-25 2010-04-22 Continuous melt supply system for metal casting WO2011117931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800023395A CN102292175B (en) 2010-03-25 2010-04-22 Continuous melt supply system for metal casting
KR1020117000951A KR101238994B1 (en) 2010-03-25 2010-04-22 Molten metal continuous supply system in metal casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-069527 2010-03-25
JP2010069527A JP5412349B2 (en) 2010-03-25 2010-03-25 Continuous supply system for molten metal in metal casting

Publications (1)

Publication Number Publication Date
WO2011117931A1 true WO2011117931A1 (en) 2011-09-29

Family

ID=44672530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002910 WO2011117931A1 (en) 2010-03-25 2010-04-22 Continuous melt supply system for metal casting

Country Status (4)

Country Link
JP (1) JP5412349B2 (en)
KR (1) KR101238994B1 (en)
CN (1) CN102292175B (en)
WO (1) WO2011117931A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111590063A (en) * 2020-05-20 2020-08-28 中冶赛迪工程技术股份有限公司 High-speed casting and rolling hydraulic control device, method and equipment
CN113600805A (en) * 2021-08-30 2021-11-05 山东鲁豫阀门有限公司 Emergency monitoring and releasing device for aluminum melting furnace casting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105880543B (en) * 2016-05-17 2019-01-25 洛阳秦汉精工股份有限公司 A kind of quantitative casting method and quantitative pouring apparatus, forming device
CN107745114B (en) * 2017-10-24 2020-02-18 云南云铝涌鑫铝业有限公司 Transfer device and transfer method of alloy solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149326A (en) * 1978-05-16 1979-11-22 Hitachi Metals Ltd Automatic metal pouring and apparatus therefor
JPH06262342A (en) * 1993-03-16 1994-09-20 Hitachi Metals Ltd Automatic molten metal pouring control method
JP2001321924A (en) * 2000-05-18 2001-11-20 Tokyu Kk Automatic molten metal pouring device for casting
JP2002079367A (en) * 2000-09-01 2002-03-19 Showa Denko Kk Automatic continuous casting system and forging system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2706253Y (en) * 2003-10-15 2005-06-29 南昌有色冶金设计研究院 Copper anode plate quantitative casting balance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149326A (en) * 1978-05-16 1979-11-22 Hitachi Metals Ltd Automatic metal pouring and apparatus therefor
JPH06262342A (en) * 1993-03-16 1994-09-20 Hitachi Metals Ltd Automatic molten metal pouring control method
JP2001321924A (en) * 2000-05-18 2001-11-20 Tokyu Kk Automatic molten metal pouring device for casting
JP2002079367A (en) * 2000-09-01 2002-03-19 Showa Denko Kk Automatic continuous casting system and forging system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111590063A (en) * 2020-05-20 2020-08-28 中冶赛迪工程技术股份有限公司 High-speed casting and rolling hydraulic control device, method and equipment
CN113600805A (en) * 2021-08-30 2021-11-05 山东鲁豫阀门有限公司 Emergency monitoring and releasing device for aluminum melting furnace casting system

Also Published As

Publication number Publication date
JP2011200900A (en) 2011-10-13
CN102292175B (en) 2013-11-06
CN102292175A (en) 2011-12-21
KR20110132309A (en) 2011-12-07
JP5412349B2 (en) 2014-02-12
KR101238994B1 (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5957152B1 (en) Pouring device and pouring method
CN100553824C (en) The method that pouring basin, outlet brick and casting copper anode are used
CN107321949B (en) Slag line changing method for thin slab continuous casting machine
US9289825B2 (en) Pouring equipment having melting furnace
WO2011117931A1 (en) Continuous melt supply system for metal casting
CN101516548A (en) Method for pouring melt from a tiltable metallurgic vessel and system for performing the method
JP4678792B2 (en) Automatic pouring method
CN104707984B (en) A kind of automatic control system of vacuum casting stopper rod of tundish
JP6507228B2 (en) Pouring apparatus and pouring method
CN107357953A (en) A kind of method that nozzle blocking is analyzed according to heat flow density
CN111093858B (en) Dynamically positioned diffuser for distributing metal during casting operations
JP5732646B2 (en) Hot water supply apparatus and method
JP7145139B2 (en) Continuous casting method and continuous casting apparatus for copper or copper alloy
CN110976833B (en) Quick-change cooling device and quick-change process for large-shrinkage steel grade hot tundish
JPH09300064A (en) Method for automatically pouring molten metal
CN108543933A (en) The method and system of irregular lump material dynamic continuous production magnesium alloy
JP6350094B2 (en) Plasma heating device
JP2012152794A (en) Twin-roll casting machine
RU2789050C2 (en) Diffuser with dynamic positioning for distribution of metal during casting operation
CN113600774A (en) Tundish quick-changing method
JPH11114658A (en) Method for continuously casting different kinds of steel
JPS6138758Y2 (en)
KR101767938B1 (en) Raw material feeding apparatus and raw material feeding method using the same
KR101686486B1 (en) Melting furnace capable of lifting body of furnace
JPS58110169A (en) Charging method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002339.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 76/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117000951

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848325

Country of ref document: EP

Kind code of ref document: A1