WO2011117431A1 - Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau - Google Patents

Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau Download PDF

Info

Publication number
WO2011117431A1
WO2011117431A1 PCT/ES2010/070176 ES2010070176W WO2011117431A1 WO 2011117431 A1 WO2011117431 A1 WO 2011117431A1 ES 2010070176 W ES2010070176 W ES 2010070176W WO 2011117431 A1 WO2011117431 A1 WO 2011117431A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
converter
additional impedance
certain threshold
current
Prior art date
Application number
PCT/ES2010/070176
Other languages
English (en)
Spanish (es)
Inventor
Carlos GIRONÉS REMÍREZ
Iker Esandi Uriz
Jesús LOPEZ TABERNA
Xabier Juankorena Saldias
Luis Maria Marroyo Palomo
Ainhoa CÁRCAR MAYOR
Original Assignee
Ingeteam Energy, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Energy, S.A. filed Critical Ingeteam Energy, S.A.
Priority to PCT/ES2010/070176 priority Critical patent/WO2011117431A1/fr
Publication of WO2011117431A1 publication Critical patent/WO2011117431A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/026Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being a power fluctuation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines

Definitions

  • the invention relates to a method and system of operation of a power converter, applicable for example to a wind turbine, in case of an event in the network, so that the injection of reactive current into the network is allowed throughout the entire time that said network event occurs.
  • the most common solution to protect the rotor converter is to include a protection system in the rotor windings.
  • This conventional solution is within the state of the art ('Siemens - Energytechnik 5 (1983) vol.6 pages 364-367') and consists of an impedance that, in case of a network event, is connected in parallel between The rotor and the rotor converter.
  • the objective is to give an alternative path to the current coming from the rotor, preventing destructive currents from flowing into the rotor converter.
  • the impedance is activated it is necessary to deactivate the rotor converter to prevent the circulation of destructive currents.
  • the impedance Once the asynchronous generator is stabilized in the new network situation, it is possible to deactivate the impedance and activate the rotor converter. This allows, from that moment on, to introduce reactive current in order to accelerate the recovery of the network.
  • the invention proposes a method of protecting a power generation installation against network events, applicable to installations with at least:
  • a power converter electrically connected to the generator rotor winding.
  • control of the asynchronous generator is maintained at all times, as the rotor converter is connected to the generator rotor when the additional impedance is activated and, also, when the additional impedance is deactivated.
  • a decoupling unit connected to the rotor converter input is included. This avoids excessive overcurrents in the semiconductors of the rotor converter, so it is not necessary to deactivate it at any time.
  • the decoupling unit comprises at least one inductance sized to avoid excessive currents in the semiconductors of the rotor converter.
  • the dimensioning takes into account different characteristics of the converter, such as the output voltage of the converter, the semiconductors and the switching frequency.
  • the decoupling unit is formed by at least one passive element (for example, inductances, resistors and / or capacitors).
  • the additional impedance is activated when a network event occurs. The network event can be detected when any of the system variables deviates from its default value. An example of these variables is the DC bus (Direct Current) voltage of the converter, the rotor current, the stator current, the grid voltage, the voltage at the input of the additional impedance, or any combination of them.
  • DC bus Direct Current
  • the additional impedance once the additional impedance has been activated, it can remain active while the network event lasts, not deactivating until at least one of the following conditions occurs:
  • the grid voltage has recovered the level prior to the grid event (for example, its nominal voltage range).
  • the rotor current is less than a certain threshold.
  • the current of the additional impedance is less than a certain threshold.
  • the DC bus voltage of the converter is less than a certain threshold.
  • the voltage of the additional impedance is less than a certain threshold.
  • the stator current is less than a certain threshold.
  • the possibility of connecting an inductance between the rotor and the additional impedance is contemplated.
  • the additional impedance can be inductive, which allows the rotor converter to switch more easily by reducing the current peaks through the semiconductors of the converter.
  • the method of the invention also contemplates the control of the currents measured in at least one of the following points:
  • the proposed system and method can be applied to a generator wind (wind turbine).
  • Maintaining control of the current at all times is increasingly important, due to the tightening of the network connection requirements.
  • Different regulations require a certain behavior (injection of current into the network) in increasingly short times once a network event occurs.
  • Conventional protection systems do not allow you to regain control until the transient caused by the network event in the generator is extinguished.
  • the possibility of increasing the switching frequency of the rotor converter by activating the additional impedance is especially useful. This increase in frequency makes it possible to reduce the size of the decoupling unit.
  • FIG. 1 Schematic representation of a conventional wind installation that incorporates an additional impedance.
  • FIG. 2 Schematic representation of a wind installation according to the invention.
  • Figs. 3a - 3f Graphs of the evolution of the main electrical variables that are given in the generator of Fig. 1 according to the current state of the art before a three-phase voltage gap.
  • Figs. 4a - 4f Graphs of the evolution of the main electrical variables that occur in the generator of Fig. 2 according to the invention proposed before a three-phase voltage gap.
  • Fig. 1 schematically represents a wind installation comprising a conventional system (100).
  • the system (100) comprises a wind generator (102) connected to an electrical network (103).
  • the wind generator (102) is a doubly fed asynchronous generator (102) comprising two windings, one winding in the rotor and another winding in the stator.
  • the rotor winding is connected to a unit (104) back to back.
  • This unit consists of a rotor converter (104a) and a converter connected to the network.
  • the rotor converter (104a) controls the current so that the asynchronous generator stator (102) delivers the desired power to the network (103).
  • Fig. 1 The installation of Fig. 1 employs a conventional additional impedance protection system (105), intended to avoid high currents in the rotor converter (104a) when a network event occurs (for example, voltage gap, overvoltage, etc). While the additional impedance (105) remains activated, the rotor converter (104a) is deactivated, losing control of the asynchronous generator (102).
  • the system (1) of the invention which is depicted in Fig. 2, is characterized in that the rotor converter (4a) remains activated during the actuation of the additional impedance (5).
  • the invention contemplates the insertion of a decoupling unit (6) between the additional impedance (5) and the rotor converter (4a).
  • the asynchronous generator (2) is controlled at all times, thus accelerating the injection of reactive current to the network (3).
  • the decoupling unit (6) is formed by an inductance.
  • an inductance between the rotor and the additional impedance (5) is included in order to accelerate the transient of the asynchronous generator (2).
  • Fig. 3a - 3f the typical behavior is represented using the current technique system before a three-phase voltage gap.
  • the evolution of the main electrical variables in values per unit (pu) is shown.
  • Fig. 3b and 3c the current of the stator and rotor is shown, respectively, where it is observed how when the hole is produced they begin to grow rapidly.
  • the rotor converter is deactivated and the additional impedance is activated by short-circuiting the rotor and absorbing all the rotary current. While the rotor converter is deactivated, the current flowing through it is zero (Fig.
  • Figs. 3e and 3f represents the effective active and direct reactive current that the generator stator delivers to the network. As shown in Fig. 3f, while the rotor converter is deactivated, no reactive current is injected into the network, control of the asynchronous generator is lost, it being impossible to inject reactive current that accelerates the recovery of the network failure. In Figs. 4a-4f the behavior is represented using a system based on the invention in the same three-phase voltage gap (Fig 4a).
  • the decoupling unit is formed by an inductance of 200 ⁇ .
  • Figures 4b and 4c show the current of the stator and rotor respectively, where it is observed how when the hole is produced they begin to grow rapidly.
  • the additional impedance is activated. It can be seen in Fig. 4d how the rotor converter is activated at all times by controlling the asynchronous generator in order to accelerate the injection of reactive current to the network. In Fig. 4f it can be seen how in approximately 10ms it is possible to inject reactive current into the network. The results obtained show that the proposed invention maintains control of the asynchronous generator at all times allowing the rotor converter to inject reactive current into the network almost immediately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

La présente invention porte sur un procédé de fonctionnement d'un convertisseur de puissance connecté au rotor d'un générateur à alimentation double qui comprend: au moins un convertisseur de rotor; au moins une impédance additionnelle connectée en parallèle entre le rotor et le convertisseur de rotor; et au moins une unité de découplage, connectée à l'entrée du convertisseur de rotor, lequel, en cas d'événements de réseau, reste actif tandis que l'impédance additionnelle est active.
PCT/ES2010/070176 2010-03-25 2010-03-25 Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau WO2011117431A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070176 WO2011117431A1 (fr) 2010-03-25 2010-03-25 Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2010/070176 WO2011117431A1 (fr) 2010-03-25 2010-03-25 Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau

Publications (1)

Publication Number Publication Date
WO2011117431A1 true WO2011117431A1 (fr) 2011-09-29

Family

ID=43501369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070176 WO2011117431A1 (fr) 2010-03-25 2010-03-25 Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau

Country Status (1)

Country Link
WO (1) WO2011117431A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352304B2 (en) 2013-12-18 2019-07-16 Ingeteam Power Technology, S.A. Variable impedance device for a wind turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028203A1 (fr) * 2001-09-27 2003-04-03 Alexander Stoev Cascade avec mise hors circuit electronique et presentant une plage de vitesse de rotation elargie
EP1705793A2 (fr) * 2005-03-19 2006-09-27 Alstom Installation électrique pour fournir de l'énergie à un réseau électrique et ainsi que sa méthode de fonctionnement
WO2007077002A2 (fr) * 2005-12-30 2007-07-12 Universidad Publica De Navarra Procede et systeme pour proteger une installation de production d'electricite utilise reliee a un reseau electrique en presence de baisses de tension dans le reseau

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028203A1 (fr) * 2001-09-27 2003-04-03 Alexander Stoev Cascade avec mise hors circuit electronique et presentant une plage de vitesse de rotation elargie
EP1705793A2 (fr) * 2005-03-19 2006-09-27 Alstom Installation électrique pour fournir de l'énergie à un réseau électrique et ainsi que sa méthode de fonctionnement
WO2007077002A2 (fr) * 2005-12-30 2007-07-12 Universidad Publica De Navarra Procede et systeme pour proteger une installation de production d'electricite utilise reliee a un reseau electrique en presence de baisses de tension dans le reseau

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIEMENS - ENERGIETECHNIK 5, vol. 6, 1983, pages 364 - 367

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352304B2 (en) 2013-12-18 2019-07-16 Ingeteam Power Technology, S.A. Variable impedance device for a wind turbine

Similar Documents

Publication Publication Date Title
Guo et al. LVRT capability enhancement of DFIG with switch-type fault current limiter
Zou et al. Integrated protection of DFIG-based wind turbine with a resistive-type SFCL under symmetrical and asymmetrical faults
ES2950289T3 (es) Dispositivo de impedancia variable para una turbina eólica
ES2296483B1 (es) Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono.
US20110101927A1 (en) Power generation system and method with voltage fault ride-through capability
CN101917156B (zh) 应对电网电压短时间跌落的风力发电机组防护方法及装置
Xu et al. A novel DC chopper with MOV-based modular solid-state switch and concentrated dissipation resistor for±400 kV/1100 MW offshore wind VSC-HVDC system
WO2011135112A1 (fr) Système et procédé de commande de générateur électrique
Zheng et al. Response mechanism of DFIG to transient voltage disturbance under commutation failure of LCC-HVDC system
ES2298014B1 (es) Metodo y sistema para la proteccion de una instalacion de generacion electrica conectada a una red electrica ante la presencia de huecos de tension en dicha red.
Zou et al. Postfault LVRT performance enhancement of DFIG using a stage-controlled SSFCL-RSDR
Xie et al. Coordinated fault ride through method for PMSG-based wind turbine using SFCL and modified control strategy
WO2011117431A1 (fr) Procédé et système de fonctionnement d'un convertisseur de puissance en cas d'événements sur le réseau
Zou et al. Efficient HVRT Scheme of DFIG Using a SSFCL-Chopper Considering Grid Voltage Recovery
Hu et al. A novel optimal design of DFIG crowbar resistor during grid faults
Kim et al. Fault response of a DFIG-based offshore wind power plant taking into account the wake effect
ES2360167B1 (es) Método para el control de un sistema de conversión de energia
CN102522730A (zh) 直流系统参与稳定控制的电力系统安全防御方法和构架
Xiang et al. System simulation of a doubly fed induction generator ride-through control for symmetrical grid fault.
CN103259252A (zh) 一种用于保护永磁电机的方法及永磁风力发电机组
Islam et al. Fault ride through capability improvement of DFIG based wind farms using active power controlled bridge type fault current limiter
ES2907818T3 (es) Método para manejar un evento de sobretensión y generador de inducción doblemente alimentado
Soliman et al. Analysis of the dynamic behavior of a DFIG during grid disturbances using active crowbar protection
Qu et al. Conjoint analysis of crowbar switching scheme and its resistance based on statistical sampling for LVRT of DFIG
ES2327021A1 (es) Sistema y procedimiento para evitar la desconexion de un parque de generadores de energia electrica debida a huecos de tension en la red.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10717180

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10717180

Country of ref document: EP

Kind code of ref document: A1