WO2011116651A1 - Procédé et appareil permettant de générer une séquence pilote - Google Patents

Procédé et appareil permettant de générer une séquence pilote Download PDF

Info

Publication number
WO2011116651A1
WO2011116651A1 PCT/CN2011/071492 CN2011071492W WO2011116651A1 WO 2011116651 A1 WO2011116651 A1 WO 2011116651A1 CN 2011071492 W CN2011071492 W CN 2011071492W WO 2011116651 A1 WO2011116651 A1 WO 2011116651A1
Authority
WO
WIPO (PCT)
Prior art keywords
occ
code division
dmrs
division multiplexing
different
Prior art date
Application number
PCT/CN2011/071492
Other languages
English (en)
Chinese (zh)
Inventor
孙云锋
张文峰
姜静
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011116651A1 publication Critical patent/WO2011116651A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to inter-carrier interference processing techniques in the field of wireless communications, and in particular, to a method and apparatus for generating pilot sequences. Background technique
  • High-order multi-antenna technology is one of the key technologies of the LTE-A (Long Term Evolution Advanced) system to increase the system transmission rate.
  • LTE-A systems respectively define two types of pilot symbols: DMRS (Demodulation Reference Signal) and channel quality measurement pilot (CSI-RS, Channel State Information-Reference Signal).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the DMRS is a reference symbol used for demodulation of a Physical Downlink Shared Channel (PDSCH), and is referred to as a demodulation reference symbol
  • CSI-RS is a reference for channel state information (CSI) measurement.
  • the symbol, the cylinder is called a measurement reference symbol, and is used for reporting a channel quality indicator (CQI, Channel Quality Indicator), a precoding matrix indicator (PMI, Precoding Matrix Indicator), and a hierarchical indicator (RI, Rank Indicator).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI hierarchical indicator
  • the common reference symbol (CRS, Common Reference Signal) is used for pilot measurement, that is, all users use common pilots for channel estimation.
  • This common reference signal requires the transmitter to additionally notify the receiver to use the transmitted data.
  • the pre-processing method has a large pilot overhead.
  • MU-MIMO multi-user multiple-input multiple-output
  • pilot orthogonality cannot be achieved, and thus interference cannot be estimated.
  • the measurement reference symbol and the demodulation reference symbol are separately designed, and the demodulation reference symbol and the data adopt the same preprocessing manner, and the demodulation reference symbol is according to the scheduling user corresponding channel.
  • the available rank information maps the reference symbols, so that the overhead can be adaptively adjusted according to the rank information, so that in the case of a lower rank, the overhead can be greatly reduced.
  • FIG. 1 is a schematic diagram of a DMRS pattern corresponding to a normal subframe
  • FIG. 2 is a corresponding downlink pilot slot of 11 or 12.
  • FIG. 3 is a schematic diagram of a DMRS pattern of an OFDM symbol corresponding to a downlink pilot slot of 9 or 10.
  • the shaded countries in the figure represent CRS, and the horizontal representation of the DMRS pattern represents the time domain and the longitudinal direction represents the frequency domain.
  • the number of DMRS layers is 2, and each group of REs is orthogonally scrambled with an OCC of length 2 on two adjacent OFDM symbols in the time domain.
  • the rank number is greater than 4, two sets of REs are used, as shown by the shaded parts ⁇ and E3, respectively, and each group of REs is orthogonally scrambled with an OCC of length 4 in the time domain direction, and each group has the largest RE.
  • the number of DMRS layers that can be orthogonal CDM is 4.
  • the shaded parts in Fig. 2 and Fig. 3 represent the OFDM symbols occupied by the Uplink Pilot Transmission Slot (UpPTI) in the special subframe.
  • UpPTI Uplink Pilot Transmission Slot
  • Hybrid multiplexing DMRS mode if In the case of Doppler shift and timing error, inter-carrier interference is generated.
  • the analysis is as follows: In the DMRS multiplexing mode based on CDM and FDM/TDM hybrid multiplexing, the demodulation reference symbols of some DMRS ports are in CDM mode between different DMRS ports, and FDM is used between some DMRS ports. /TDM way.
  • the DMRS pattern shown in Figures 1, 2, and 3 is shown.
  • the RE shown by the shaded portion ⁇ corresponds to a group of code division multiplexed DMRS ports
  • the RE shown by the shaded portion E3 corresponds to another group of REs that are code division multiplexed.
  • the N ' DL indicates the number of resource blocks (RBs) corresponding to the downlink system bandwidth.
  • the pseudo-random sequence c (0 is generated in the manner defined in section 7.2 of the existing standard 36.211, specifically:
  • cm represents the scrambling sequence ID, which is 0 or 1, and the default is 0; mod represents the modulo operation, and N 11 represents the cell in which the UE is located.
  • ID indicating the current subframe number, c M is used to initialize the intermediate variable of x 2 .
  • the corresponding length of r is intercepted from the scrambling sequence, and multiplied by OCC to generate a pilot sequence, as shown in the following equation:
  • the length of OCC is different when the number of layers is different.
  • the length of OCC is 2; when the number of layers is 5 ⁇ 8, the length of OCC is 4. Therefore, in the process of generating a pilot sequence in the prior art, the scrambling codes of each group of DMRS ports that perform code division multiplexing correspond to the same sequence, (3. + 3. " PRB + m'), and generate a pilot sequence corresponding to each group of code division multiplexed DMRS ports by different OCCs corresponding to each group of DMRS ports.
  • the direction of code division multiplexing is performed according to each group of ports of the DMRS (the code division multiplexing is performed on the corresponding resources in the time domain direction, or the code division is performed on the resources corresponding to the frequency domain direction). Use) to determine the value of ⁇ on each resource.
  • the OCC length is equal to 4
  • the ports corresponding to the DMRS are respectively pe ⁇ 7 ⁇ 14 ⁇ .
  • the DMRS port is in the /th.
  • the OFDM symbol the pilot sequence format at the A-subcarrier position is:
  • N is the number of subcarriers included in one RB in the frequency domain direction
  • PRB indicates the index of the corresponding physical resource block in the frequency domain
  • / ⁇ indicates the slot number.
  • special subframe type 1 is configured as follows: I, 0,1 if n mod2 ⁇ 0, normal subframe
  • FIG. 1, 2, and 3 when there are two sets of code division multiplexed DMRS ports, and if the two sets of ports correspond to the resources shown in the shaded parts ⁇ and ⁇ in FIG. 1, 2, and 3, respectively, if If there is Doppler frequency offset or timing error in the system, interference will occur between the carriers, as shown in Figure 4 (a), 4 (b), Figure 4 (a) is no Doppler frequency offset or timing error Schematic diagram of carrier; Figure 4 (b) is a schematic diagram of inter-carrier interference when there is Doppler frequency offset.
  • the corresponding OCC of ⁇ , ⁇ , ⁇ ) is OCC. , OCC, OCC 2 , OCC, , and the DMRS port of the second code division multiplexing group. , corpse 1 , corpse 2 , ⁇ 3 ⁇ Select occ in the same order. ⁇ Due to the presence of Doppler shift or timing error, the leakage factor between adjacent carriers is, for example, the total number of layers is equal to 5, and for convenience, the definition, , , 2 , y correspond to the port ⁇ 781113 ⁇ , ⁇ 2 ,.
  • the first set of resources (such as the shaded part ⁇ ) multiplexed ports are 7, 8; the second set of resources (such as the shaded part ⁇ 3) multiplexed ports are 9, 10, 12.
  • the channel coefficients corresponding to ports 7, 8, 9, 10, and 12 are: ⁇ ⁇ , ⁇ 9 , ⁇ ⁇ and ⁇ , 2 , and the corresponding sequence set on the two sets of REs is intercepted as? . Take port 7 as an example. If the same OCC is used between the two groups of REs, s 1 OCC 0 s ⁇ OCC,
  • the sequence of the pilot is removed; after that, it is H + + ⁇ . ( i 9S 9 + H l0 s w + ⁇ ⁇ 2 2 , then despreading with the corresponding OCC OCC, due to OCC ; and OCC ; orthogonal, estimated
  • the resulting channel coefficient will be H 7 + ⁇ H 9 , where the part is the interference.
  • the main object of the present invention is to provide a method and apparatus for generating a pilot sequence to reduce the influence of inter-carrier interference on channel estimation in a hybrid multiplexed DMRS mode.
  • the present invention provides a method for generating a pilot sequence, the method comprising:
  • OCC orthogonal mask
  • DMRS demodulation reference symbol
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • the different code division multiplexing groups are aggregated from the OCC in reverse order. ,... ⁇ Select OCC, where A is the number of OCCs in the OCC set, which is an integer greater than 1.
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • the different code division multiplexing groups only part of the OCCs are selected from the OCC set in reverse order, including:
  • the first M DMRS ports are in the same order from the OCC.
  • the first M OCCs are selected in the set, and the last N DMRS ports select the next N OCCs from the OCC set in reverse order, where is the maximum number of multiplexable DMRS ports in each code division multiplexing group.
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • each code division multiplexing group selects OCC according to the step order from the beginning of its own correspondence, where / represents code division multiplexing number group. and 4 "are integers, and 0 l ⁇ A ttp" ⁇
  • the corresponding IOC of the OCC is selected as follows: ( ⁇ + «. step J + a) mod k ,
  • the different code division multiplexing groups generate a scrambling sequence of the DMRS according to different criteria, which are:
  • the different code division multiplexing groups use different initialization methods to generate the scrambling sequence of the DMRS
  • the multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
  • the OCC corresponding to each DMRS port is inversely mapped on the adjacent DMRS carrier.
  • the multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
  • CC t is mo & (SubcarierIndex + £ t , L) , where Subcarierlndex represents a subcarrier index indicating the length of each OCC.
  • the invention also provides a device for generating a pilot sequence, the device comprising:
  • a selection module configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different
  • the code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria
  • a pilot sequence generating module is configured to multiply the selected OCC by a scrambling sequence to generate a final pilot sequence for each DMRS port.
  • the selection module is further configured to collect from the occ [occ] in different orders for different code division multiplexing groups. ,...,6>cc fe — j selects occ, where k represents the number of occ in the occ set, which is an integer greater than 1.
  • the selection module is further configured to, in different code division multiplexing groups, select only a portion of the OCCs from the set of OCCs in reverse order.
  • the selecting module is further configured to separately set different selection start position offsets for the different code division multiplexing groups, and each code division multiplexing group selects OCC according to the step length in order from the corresponding one ;
  • the sequence number indicating the code division multiplexing group, and A ste; are integers, and 0 ⁇ ⁇ l ⁇ A step i ⁇ k.
  • the selecting module is further configured to: for the first DMRS port of the first code division multiplexing group, select an index of the corresponding OCC according to the following manner: ( ⁇ + «. ⁇ 3 ⁇ ; ten a) mod k ,
  • mod is a modulo operation, when it is an odd number, the value is 0; when ...: is an even number,
  • the selecting module is further configured to generate a scrambling sequence of the DMRS by using different initialization modes for different code division multiplexing groups.
  • the pilot sequence generating module is further configured to perform reverse mapping on the adjacent DMRS carrier for the OCC corresponding to each DMRS port when the selected OCC is multiplied by the scrambling sequence.
  • the pilot sequence generating module is further configured to correspond to different code division multiplexing groups, and use different or the same starting position in the OCC mapping. ; Offset, where 0 ⁇ ⁇ ⁇ £ -1, L represents the length of the OCC.
  • a method and apparatus for generating a pilot sequence provided by the present invention in different DMRS ports for performing code division multiplexing, for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria from OCC Selecting an OCC in the set, and/or generating a scrambling sequence of the DMRS according to different criteria for different code division multiplexing groups; multiplying the selected OCC by the scrambling sequence to generate each DMRS The final pilot sequence of the port.
  • the OCC used by the two groups is orthogonal, and there is Doppler frequency offset or timing error, the influence of inter-subcarrier interference on the position of the demodulated pilot reference symbol can be reduced by OCC despreading.
  • FIG. 1 is a schematic diagram 1 of a design drawing of a DMRS in the prior art
  • FIG. 2 is a schematic diagram 2 of a design drawing of a DMRS in the prior art
  • FIG. 3 is a schematic diagram 3 of a design drawing of a DMRS in the prior art
  • FIG. 4( a ) is a schematic diagram of a carrier in the prior art without Doppler frequency offset or timing error
  • FIG. 4 ( b ) is a schematic diagram of inter-carrier interference when Doppler frequency offset exists in the prior art
  • FIG. 6 is a schematic diagram of an OCC allocation manner according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of an OCC allocation manner according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of an OCC allocation manner according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of an OCC allocation manner according to Embodiment 4 of the present invention. detailed description
  • a method for generating a pilot sequence provided by the present invention mainly includes the following steps:
  • Step 501 In each DMRS port that performs code division multiplexing, select an OCC from the OCC set for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria, and/or be a different code division.
  • the multiplexing group generates a scrambling sequence of the DMRS according to different criteria.
  • code division multiplexing groups can be collected from the OCC in reverse order Select occ in [occ ⁇ . ⁇ occ ⁇ ], where k is the number of occ in the occ set, which is an integer greater than ⁇ .
  • the two code division multiplexing groups select OCC from the OCC set in reverse order.
  • the order of the first code division multiplexing group to select the OCC from the OCC set is: According to the first code.
  • the OCC is sequentially selected from the OCC set in the order of the DMRS ports in the group, and corresponds to each port, that is, B occ 0 , s p " ⁇ occ , , s P ⁇ occ 2 , 5 ⁇ ⁇ 3 ⁇ oca , and the second code point
  • the order in which the occ group selects occ from the occ set is:
  • the OCC is selected in reverse order from the OCC set to correspond to each port, that is, s p " OCC 3 , s P OCC 2 , s P2 - 2 OCC x , s OCC 0 .
  • the first DMRS port in the code division multiplexing group is represented.
  • 2 , 3 ⁇ correspond to ports ⁇ 7 8 1 1 13 ⁇ , ⁇ 2 , respectively.
  • ⁇ 2 1 , ⁇ 2 , 2 , ⁇ respectively correspond to the port ⁇ 9 10 12 14 ⁇ as an example.
  • it can also be defined in other forms, for example:
  • the OCC selected in the first code division multiplexing group is: OCC:. ⁇ OCC
  • the OCC selected in the second code division multiplexing group is: OCC 3 , S [0 ⁇ OCC 2 > ⁇ 12 ⁇ OCC, , at this time due to the OCC used by DMRS port 7 (ie occ. )
  • the occ of each port in the second code division multiplexing group is different, so it is used.
  • the specific OCC allocation mode is as shown in FIG. 6, that is, the occ selected in the first code division multiplexing group is : occ. ⁇ occ x . s 11 ⁇ oc . s OCC,;
  • the OCC selected in the second code division multiplexing group is: s 9 H OCC 3 , s 10 H occ 2 , ⁇ 12 OCC, OCC.
  • the DMRS port in the present invention is not limited to Choose from ⁇ 7 ⁇ 14 ⁇ .
  • the present invention may also set different selection start position offsets for different code division multiplexing groups, and each code division multiplexing group starts from its own correspondence and selects according to the step size.
  • OCC where denotes the sequence number of the code division multiplexing group, and ; is an integer, and 0 ⁇ ⁇ t, l ⁇ A ⁇ k.
  • the corresponding OCC index is selected as follows: ( ⁇ , + ⁇ ' ⁇ , + a) mod/t, where mod is a modulo operation,
  • the OCC selected in the first code division multiplexing group is: s 7 occ. , s s ⁇ OCC, , s ll ⁇ 0CC 2 . s u ⁇ OCC,;
  • the OCC selected in the second code division multiplexing group is: OCQ, s 10 ⁇ OCC 2 , s 12 OCC, s 1A ⁇ OCC 0 .
  • the different code division multiplexing groups only part of the OCCs may be selected from the OCC set in reverse order.
  • the first M DMRS ports select the first M OCCs from the OCC set in the same order
  • the last N DMRS ports select the next N OCCs from the OCC set in reverse order
  • M + N is the largest reusable DMRS in each code division multiplexing group
  • the parts in the OCC set can be reversely allocated.
  • the DMRS port corresponding to the first code division multiplexing group is still ⁇ 7811 13 ⁇ .
  • the second code division multiplexing group corresponds to the DMRS port as ⁇ 9101214 ⁇ .
  • the OCC can be selected in order. , OCC, , OCC OCC 3 , and for each port of the second code division multiplexing group, only the part in the OCC set is reversely selected, and the order of each DMRS port of the second code division multiplexing group is separately allocated.
  • occ. occ occ 3 , occ 2 .
  • the specific occ allocation method is shown in Figure 8.
  • the parts of the scrambling sequence of the DMRS are generated according to different criteria.
  • Different code division multiplexing groups may use different initialization methods to generate a scrambling sequence of the DMRS, when there are two sets of code division multiplexing groups.
  • the second group generates a scrambling sequence of the DMRS according to the initialization mode of (iP+l) mod2, and the process of generating the scrambling sequence according to the c imt is the same as the background art.
  • the signals received by port 7 are:
  • the length of the OCC be H , + PW H after despreading. + H ⁇ . It can be seen that the interference is k
  • Step 502 Multiply the selected OCC with the scrambling sequence to generate a final pilot sequence for each DMRS port.
  • the OCC corresponding to each DMRS port of the same code division multiplexing group may be reversed or Cyclic offset mapping.
  • a method of performing cyclic offset mapping on the adjacent carrier according to the OCC corresponding to each DMRS port will be described as an example. The same is true for other OCC options.
  • the OCCs used between the layers of the same code division multiplexing group are respectively OCC. : [1 1 1 1], OC : [1 -1 1 -1], OCC 2 : [1 -1 -1 1], OCC,: [1 1 -1 -1].
  • the scrambling sequences used are sum, oAwA+wA+w, and assumed
  • the precoding weight on the PRB is w : , after the OCC processing, the same wave pair
  • the transmit signals of the different OFDM symbols corresponding to the same DMRS carrier on each antenna port are:
  • the other carriers are exactly the same as the above format, port 3 , because for a certain port, such as DMRS port 0, the power is always the highest on a certain DMRS OFDM symbol (port 0 corresponds to DMRS OFDM symbol 1), and on other symbols There are no signals, resulting in different powers for different DMRS OFDM symbols. Since the code division multiplexing group 2 adopts the same OCC allocation method, it is the same as the case of the code division multiplexing group 1.
  • the present invention can reduce the influence of the inter-carrier inter-channel 4 without channel estimation by performing reverse mapping or S occJ offset mapping on the OCC and combining different OCC allocations in different code division multiplexing groups.
  • the starting position offset ⁇ here is the offset of the OCC for each length of the OCC in the OCC set. ⁇ — ,
  • the specific offset method can be referred to the following embodiment.
  • each code division multiplexing group has a different precoding weight corresponding to the DMRS port, so the role of the reverse mapping or cyclic offset mapping can be explained by a code division multiplexing group.
  • the reverse mapping or cyclic offset mapping of the second code division multiplexing group can be obtained according to the same format in the reverse mapping or cyclic offset mapping manner of the first code division multiplexing group. It should be noted that, in the several OCC selection modes described above, the mapping method is applicable. In the following embodiments, the manner of cyclic offset is taken as an example for explanation.
  • ⁇ is taken as an example here.
  • the scrambling sequences used are still summed in the adjacent DMRS subcarriers.
  • a + U , , 2 , , 3 are examples.
  • the mapping method on the DMRS carrier is At the time of the ⁇ + l
  • mapping mode on the DMRS carrier is abc. Then in the above ⁇ + 1
  • the mapping of the OCC to the respective DMRS ports on the four OFDM symbols is (abc ⁇ ) and (bcda) respectively.
  • the OCC corresponds to each DMRS port on the four OFDM symbols.
  • the mappings are (cda 6) and ( ⁇ / abc). Assuming the precoding weight ⁇ , the power on the adjacent 4 carriers is
  • each DMRS port has a maximum value cyclically on each symbol, thereby avoiding the problem of excessive transmission power of an OFDM symbol on a certain symbol.
  • OCC ( ⁇ , OCC 2 , OCC 3 is allocated for the first code division multiplexing group and OCC OCC 3 and OCC 2 are allocated to the second code division multiplexing group, the corresponding allocation mode is as shown in FIG. .
  • the present invention further provides a pilot sequence generating apparatus, including: a selecting module and a pilot sequence generating module.
  • a selection module configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different
  • the code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria.
  • the selection module may select the OCC from the OCC set [OCC ⁇ OCG_J in different orders for different code division multiplexing groups; in the case of low rank, different code division multiplexing groups, or only
  • the partial OCCs are selected from the OCC set in the reverse order; different pick start position offsets are also set for different code division multiplexing groups, and each code division multiplexing group starts from its own corresponding, according to the step size ;
  • the OCC is selected; the different DMARS scrambling sequences can also be generated by different initialization methods for different code division multiplexing groups.
  • a pilot sequence generating module configured to multiply the selected OCC and the scrambling sequence to generate a final pilot sequence of each DMRS port.
  • the adjacent DMRS carriers may be inversely mapped for the OCC corresponding to each DMRS port; or, when the different code division multiplexing groups are mapped in the OCC, Different or identical starting positions S are used.
  • CCJ offset where 0 ⁇ ⁇ L - L represents the length of the OCC.
  • the present invention can reduce the corresponding layer between different CDM port groups, and reduce The accuracy of channel estimation is improved due to the influence of inter-carrier interference on channel estimation caused by Doppler shift and timing error.

Abstract

La présente invention se rapporte à un procédé permettant de générer une séquence pilote. Le procédé selon l'invention comprend les étapes suivantes : dans chaque port de symboles de référence de démodulation (DMRS) où un multiplexage hybride est exécuté, différents groupes à multiplexage par répartition en code (CDM) sélectionnent des codes de couverture orthogonaux (OCC) à partir d'un ensemble de codes de couverture orthogonaux; et/ou ils génèrent des séquences de brouillage des ports de DMRS sur la base de différentes règles. Selon la présente invention, le multiplexage hybride peut être un multiplexage hybride par répartition en code, par répartition en fréquence et par répartition dans le temps, ou un multiplexage hybride par répartition en code et par répartition en fréquence, ou un multiplexage hybride par répartition en code et par répartition dans le temps. Ensuite, la séquence pilote finale pour chaque port de DMRS est générée en multipliant les codes OCC sélectionnés par la séquence de brouillage. La présente invention se rapporte également à un appareil permettant de générer une séquence pilote. Le procédé et l'appareil décrits dans la présente invention permettent de réduire les couches correspondantes entre différents groupes de ports CDM. Ils permettent également de réduire l'influence d'un brouillage inter-porteuse sur l'estimation de voie, ce brouillage inter-porteuse étant provoqué par un décalage Doppler et une erreur de synchronisation. D'autre part, la précision de l'estimation de voie peut également être améliorée.
PCT/CN2011/071492 2010-03-26 2011-03-03 Procédé et appareil permettant de générer une séquence pilote WO2011116651A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010133375.7 2010-03-26
CN201010133375.7A CN102202027B (zh) 2010-03-26 2010-03-26 一种导频序列的产生方法和装置

Publications (1)

Publication Number Publication Date
WO2011116651A1 true WO2011116651A1 (fr) 2011-09-29

Family

ID=44662427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071492 WO2011116651A1 (fr) 2010-03-26 2011-03-03 Procédé et appareil permettant de générer une séquence pilote

Country Status (2)

Country Link
CN (1) CN102202027B (fr)
WO (1) WO2011116651A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107025A1 (fr) * 2012-01-19 2013-07-25 Panasonic Corporation Procédé de brouillage de signaux de référence, et dispositif et équipement utilisateur utilisant ledit procédé
US10038534B2 (en) 2012-01-19 2018-07-31 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
WO2019222875A1 (fr) * 2018-05-21 2019-11-28 Qualcomm Incorporated Techniques et appareils de configuration de signaux de référence de démodulation dans des systèmes d'accès multiples non orthogonaux de liaison montante sans autorisation

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2575284B1 (fr) 2011-09-30 2019-12-11 Samsung Electronics Co., Ltd Procédé et appareil de transmission et de réception de signal dans un système d'antennes réparties
KR20130035830A (ko) * 2011-09-30 2013-04-09 삼성전자주식회사 분산 안테나 시스템에서 신호 송수신 장치 및 방법
CN103220071B (zh) * 2012-01-20 2018-03-23 中兴通讯股份有限公司 一种上行解调导频控制信令的通知方法及系统
CN103391155B (zh) * 2012-05-11 2016-12-14 华为技术有限公司 参考信号的配置方法、基站和用户设备
CN104995975B (zh) * 2013-06-19 2019-06-28 华为技术有限公司 一种干扰协调的方法和装置
CN106465354B (zh) * 2014-05-29 2020-07-03 华为技术有限公司 解调导频配置方法和装置
CN105790904B (zh) * 2014-12-16 2019-06-21 北京信威通信技术股份有限公司 一种复用相同导频资源的最大天线端口数量的扩展方法
CN106712915B (zh) * 2015-11-16 2020-06-30 中国移动通信集团公司 一种发送解调参考信号的方法、装置、基站及终端
CN107181579A (zh) * 2016-03-11 2017-09-19 北京信威通信技术股份有限公司 一种下行dmrs资源复用方法
CN109150438B (zh) * 2017-06-16 2020-12-25 展讯通信(上海)有限公司 频域位置配置方法、基站、计算机可读介质及系统
CN114710243A (zh) * 2017-08-11 2022-07-05 中兴通讯股份有限公司 参考信号信息的配置方法及装置
CN109391359B (zh) * 2017-08-11 2022-05-10 华为技术有限公司 用于数据传输的方法、网络设备和终端设备
CN109391414B (zh) * 2017-08-11 2020-10-16 电信科学技术研究院 Dmrs的天线端口确定方法、用户终端和网络侧设备
CN109842471B (zh) * 2017-11-24 2021-06-29 维沃移动通信有限公司 解调参考信号dmrs的传输方法、网络设备及终端
WO2019136647A1 (fr) * 2018-01-10 2019-07-18 富士通株式会社 Procédé et dispositif de transmission de données, et système de communication
CN108400829B (zh) * 2018-02-09 2019-12-06 北京松果电子有限公司 Zc序列的生成方法及装置
CN108683624B (zh) * 2018-05-10 2020-04-07 西安电子科技大学 基于干扰自抵消技术的突发ofdm频偏估计方法
KR102654120B1 (ko) * 2018-09-05 2024-04-04 삼성전자주식회사 이동 통신 시스템에서 papr 감소를 위한 기준 신호 시퀀스 생성 방법 및 장치
CN110912666B (zh) * 2018-09-14 2023-12-29 华为技术有限公司 参考信号及序列配置方法和装置
CN115473617A (zh) * 2018-09-14 2022-12-13 华为技术有限公司 参考信号配置方法和装置
CN110535594B (zh) * 2018-10-22 2022-11-01 中兴通讯股份有限公司 导频序列配置方法、装置及电子设备、存储介质
CN111385074B (zh) * 2018-12-28 2023-10-17 中兴通讯股份有限公司 参考信号处理方法及装置
CN112104444B (zh) * 2019-06-17 2022-04-08 中国移动通信有限公司研究院 参考信号的发送方法、终端及网络侧设备
CN112236983B (zh) * 2020-09-11 2023-10-03 北京小米移动软件有限公司 信道估计的方法、装置、通信设备及存储介质
CN112702290B (zh) * 2021-03-23 2021-06-29 新华三技术有限公司 一种信道估计方法和设备
CN113079118B (zh) * 2021-03-23 2023-01-24 展讯通信(上海)有限公司 基于occ序列分组的信道估计方法及装置、存储介质、计算机设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621492A (zh) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 一种专用解调数据参考信号的资源确定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309134B (zh) * 2008-06-23 2013-03-27 中兴通讯股份有限公司 一种下行数据接收状态的通知方法
KR20100017039A (ko) * 2008-08-05 2010-02-16 엘지전자 주식회사 다중 안테나 시스템에서 데이터 전송 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621492A (zh) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 一种专用解调数据参考信号的资源确定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATR.: "Views on layer mapping to DM-RS ports and downlink signalling for rank 3-8", 3GPP TSG-RAN WG1L MEETING #60, RL-101026, 26 February 2010 (2010-02-26), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_60/Docs/R1-101026.zip> *
ERICSSON, ST-ERICSSON: "Layer-to-antenna port mapping for LTE-Advanced", 3GPPTSG-RAN WG1 #60, RL-100848, 26 February 2010 (2010-02-26), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_60/Docs/R1-100848.zip> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107025A1 (fr) * 2012-01-19 2013-07-25 Panasonic Corporation Procédé de brouillage de signaux de référence, et dispositif et équipement utilisateur utilisant ledit procédé
US9712299B2 (en) 2012-01-19 2017-07-18 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US10038534B2 (en) 2012-01-19 2018-07-31 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US10727997B2 (en) 2012-01-19 2020-07-28 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US11552759B2 (en) 2012-01-19 2023-01-10 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
WO2019222875A1 (fr) * 2018-05-21 2019-11-28 Qualcomm Incorporated Techniques et appareils de configuration de signaux de référence de démodulation dans des systèmes d'accès multiples non orthogonaux de liaison montante sans autorisation

Also Published As

Publication number Publication date
CN102202027A (zh) 2011-09-28
CN102202027B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2011116651A1 (fr) Procédé et appareil permettant de générer une séquence pilote
JP5612124B2 (ja) Mimoシステムにおけるチャネル推定及び検出のための方法及び装置
CN102437986B (zh) 参考信号映射方法及装置
KR101690150B1 (ko) 심볼들 간의 전력 분배를 최적화하기 위한 방법 및 장치
US8982834B2 (en) Method and apparatus for transmitting a reference signal in a multi-antenna system
CA2805223C (fr) Procede et systeme de multiplexage de signaux d&#39;accuse de reception et de signaux de reference de sondage
JP5417536B2 (ja) 無線通信システムにおける複数のレイヤを複数のアンテナポートにマッピングする方法及び装置
US8804647B2 (en) Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
US8902849B2 (en) Method and apparatus for transmitting a reference signal in a multi-antenna system
CN102148659B (zh) 解调参考信号的发送功率配置方法及装置
EP2421184B1 (fr) Procédé et appareil pour transmettre des signals de référence dans un système multi-antenne
CN102271109B (zh) 一种解调参考符号的映射方法及系统
TWI423608B (zh) 正交掩碼生成裝置、解調參考信號生成裝置和方法
WO2011097923A1 (fr) Procédé et appareil de précodage basé sur des signaux de démodulation de référence à multiplexage mixte
CN102123013B (zh) 一种解调参考符号的映射方法和装置
JP2013502135A5 (fr)
WO2010106923A1 (fr) Insertion de signaux de référence de démodulation de liaison descendante dans des trames ofdm
WO2012071721A1 (fr) Procédé de transmission de signaux de référence, station de base et terminal mobile
CN102123022B (zh) 一种解调参考符号的映射方法和装置
WO2011160473A1 (fr) Procédé et appareil permettant de transmettre une onde pilote de mesure de canal
WO2010124456A1 (fr) Procédé et appareil de traitement de transmission de données, procédé et appareil de traitement de réception de données
CN102377719A (zh) 数据符号正交处理方法及装置
JP5938073B2 (ja) Mimoシステムにおけるチャネル推定及び検出のための方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758761

Country of ref document: EP

Kind code of ref document: A1