WO2011116651A1 - Method and apparatus for generating pilot sequence - Google Patents

Method and apparatus for generating pilot sequence Download PDF

Info

Publication number
WO2011116651A1
WO2011116651A1 PCT/CN2011/071492 CN2011071492W WO2011116651A1 WO 2011116651 A1 WO2011116651 A1 WO 2011116651A1 CN 2011071492 W CN2011071492 W CN 2011071492W WO 2011116651 A1 WO2011116651 A1 WO 2011116651A1
Authority
WO
WIPO (PCT)
Prior art keywords
occ
code division
dmrs
division multiplexing
different
Prior art date
Application number
PCT/CN2011/071492
Other languages
French (fr)
Chinese (zh)
Inventor
孙云锋
张文峰
姜静
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011116651A1 publication Critical patent/WO2011116651A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to inter-carrier interference processing techniques in the field of wireless communications, and in particular, to a method and apparatus for generating pilot sequences. Background technique
  • High-order multi-antenna technology is one of the key technologies of the LTE-A (Long Term Evolution Advanced) system to increase the system transmission rate.
  • LTE-A systems respectively define two types of pilot symbols: DMRS (Demodulation Reference Signal) and channel quality measurement pilot (CSI-RS, Channel State Information-Reference Signal).
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the DMRS is a reference symbol used for demodulation of a Physical Downlink Shared Channel (PDSCH), and is referred to as a demodulation reference symbol
  • CSI-RS is a reference for channel state information (CSI) measurement.
  • the symbol, the cylinder is called a measurement reference symbol, and is used for reporting a channel quality indicator (CQI, Channel Quality Indicator), a precoding matrix indicator (PMI, Precoding Matrix Indicator), and a hierarchical indicator (RI, Rank Indicator).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI hierarchical indicator
  • the common reference symbol (CRS, Common Reference Signal) is used for pilot measurement, that is, all users use common pilots for channel estimation.
  • This common reference signal requires the transmitter to additionally notify the receiver to use the transmitted data.
  • the pre-processing method has a large pilot overhead.
  • MU-MIMO multi-user multiple-input multiple-output
  • pilot orthogonality cannot be achieved, and thus interference cannot be estimated.
  • the measurement reference symbol and the demodulation reference symbol are separately designed, and the demodulation reference symbol and the data adopt the same preprocessing manner, and the demodulation reference symbol is according to the scheduling user corresponding channel.
  • the available rank information maps the reference symbols, so that the overhead can be adaptively adjusted according to the rank information, so that in the case of a lower rank, the overhead can be greatly reduced.
  • FIG. 1 is a schematic diagram of a DMRS pattern corresponding to a normal subframe
  • FIG. 2 is a corresponding downlink pilot slot of 11 or 12.
  • FIG. 3 is a schematic diagram of a DMRS pattern of an OFDM symbol corresponding to a downlink pilot slot of 9 or 10.
  • the shaded countries in the figure represent CRS, and the horizontal representation of the DMRS pattern represents the time domain and the longitudinal direction represents the frequency domain.
  • the number of DMRS layers is 2, and each group of REs is orthogonally scrambled with an OCC of length 2 on two adjacent OFDM symbols in the time domain.
  • the rank number is greater than 4, two sets of REs are used, as shown by the shaded parts ⁇ and E3, respectively, and each group of REs is orthogonally scrambled with an OCC of length 4 in the time domain direction, and each group has the largest RE.
  • the number of DMRS layers that can be orthogonal CDM is 4.
  • the shaded parts in Fig. 2 and Fig. 3 represent the OFDM symbols occupied by the Uplink Pilot Transmission Slot (UpPTI) in the special subframe.
  • UpPTI Uplink Pilot Transmission Slot
  • Hybrid multiplexing DMRS mode if In the case of Doppler shift and timing error, inter-carrier interference is generated.
  • the analysis is as follows: In the DMRS multiplexing mode based on CDM and FDM/TDM hybrid multiplexing, the demodulation reference symbols of some DMRS ports are in CDM mode between different DMRS ports, and FDM is used between some DMRS ports. /TDM way.
  • the DMRS pattern shown in Figures 1, 2, and 3 is shown.
  • the RE shown by the shaded portion ⁇ corresponds to a group of code division multiplexed DMRS ports
  • the RE shown by the shaded portion E3 corresponds to another group of REs that are code division multiplexed.
  • the N ' DL indicates the number of resource blocks (RBs) corresponding to the downlink system bandwidth.
  • the pseudo-random sequence c (0 is generated in the manner defined in section 7.2 of the existing standard 36.211, specifically:
  • cm represents the scrambling sequence ID, which is 0 or 1, and the default is 0; mod represents the modulo operation, and N 11 represents the cell in which the UE is located.
  • ID indicating the current subframe number, c M is used to initialize the intermediate variable of x 2 .
  • the corresponding length of r is intercepted from the scrambling sequence, and multiplied by OCC to generate a pilot sequence, as shown in the following equation:
  • the length of OCC is different when the number of layers is different.
  • the length of OCC is 2; when the number of layers is 5 ⁇ 8, the length of OCC is 4. Therefore, in the process of generating a pilot sequence in the prior art, the scrambling codes of each group of DMRS ports that perform code division multiplexing correspond to the same sequence, (3. + 3. " PRB + m'), and generate a pilot sequence corresponding to each group of code division multiplexed DMRS ports by different OCCs corresponding to each group of DMRS ports.
  • the direction of code division multiplexing is performed according to each group of ports of the DMRS (the code division multiplexing is performed on the corresponding resources in the time domain direction, or the code division is performed on the resources corresponding to the frequency domain direction). Use) to determine the value of ⁇ on each resource.
  • the OCC length is equal to 4
  • the ports corresponding to the DMRS are respectively pe ⁇ 7 ⁇ 14 ⁇ .
  • the DMRS port is in the /th.
  • the OFDM symbol the pilot sequence format at the A-subcarrier position is:
  • N is the number of subcarriers included in one RB in the frequency domain direction
  • PRB indicates the index of the corresponding physical resource block in the frequency domain
  • / ⁇ indicates the slot number.
  • special subframe type 1 is configured as follows: I, 0,1 if n mod2 ⁇ 0, normal subframe
  • FIG. 1, 2, and 3 when there are two sets of code division multiplexed DMRS ports, and if the two sets of ports correspond to the resources shown in the shaded parts ⁇ and ⁇ in FIG. 1, 2, and 3, respectively, if If there is Doppler frequency offset or timing error in the system, interference will occur between the carriers, as shown in Figure 4 (a), 4 (b), Figure 4 (a) is no Doppler frequency offset or timing error Schematic diagram of carrier; Figure 4 (b) is a schematic diagram of inter-carrier interference when there is Doppler frequency offset.
  • the corresponding OCC of ⁇ , ⁇ , ⁇ ) is OCC. , OCC, OCC 2 , OCC, , and the DMRS port of the second code division multiplexing group. , corpse 1 , corpse 2 , ⁇ 3 ⁇ Select occ in the same order. ⁇ Due to the presence of Doppler shift or timing error, the leakage factor between adjacent carriers is, for example, the total number of layers is equal to 5, and for convenience, the definition, , , 2 , y correspond to the port ⁇ 781113 ⁇ , ⁇ 2 ,.
  • the first set of resources (such as the shaded part ⁇ ) multiplexed ports are 7, 8; the second set of resources (such as the shaded part ⁇ 3) multiplexed ports are 9, 10, 12.
  • the channel coefficients corresponding to ports 7, 8, 9, 10, and 12 are: ⁇ ⁇ , ⁇ 9 , ⁇ ⁇ and ⁇ , 2 , and the corresponding sequence set on the two sets of REs is intercepted as? . Take port 7 as an example. If the same OCC is used between the two groups of REs, s 1 OCC 0 s ⁇ OCC,
  • the sequence of the pilot is removed; after that, it is H + + ⁇ . ( i 9S 9 + H l0 s w + ⁇ ⁇ 2 2 , then despreading with the corresponding OCC OCC, due to OCC ; and OCC ; orthogonal, estimated
  • the resulting channel coefficient will be H 7 + ⁇ H 9 , where the part is the interference.
  • the main object of the present invention is to provide a method and apparatus for generating a pilot sequence to reduce the influence of inter-carrier interference on channel estimation in a hybrid multiplexed DMRS mode.
  • the present invention provides a method for generating a pilot sequence, the method comprising:
  • OCC orthogonal mask
  • DMRS demodulation reference symbol
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • the different code division multiplexing groups are aggregated from the OCC in reverse order. ,... ⁇ Select OCC, where A is the number of OCCs in the OCC set, which is an integer greater than 1.
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • the different code division multiplexing groups only part of the OCCs are selected from the OCC set in reverse order, including:
  • the first M DMRS ports are in the same order from the OCC.
  • the first M OCCs are selected in the set, and the last N DMRS ports select the next N OCCs from the OCC set in reverse order, where is the maximum number of multiplexable DMRS ports in each code division multiplexing group.
  • the selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
  • each code division multiplexing group selects OCC according to the step order from the beginning of its own correspondence, where / represents code division multiplexing number group. and 4 "are integers, and 0 l ⁇ A ttp" ⁇
  • the corresponding IOC of the OCC is selected as follows: ( ⁇ + «. step J + a) mod k ,
  • the different code division multiplexing groups generate a scrambling sequence of the DMRS according to different criteria, which are:
  • the different code division multiplexing groups use different initialization methods to generate the scrambling sequence of the DMRS
  • the multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
  • the OCC corresponding to each DMRS port is inversely mapped on the adjacent DMRS carrier.
  • the multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
  • CC t is mo & (SubcarierIndex + £ t , L) , where Subcarierlndex represents a subcarrier index indicating the length of each OCC.
  • the invention also provides a device for generating a pilot sequence, the device comprising:
  • a selection module configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different
  • the code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria
  • a pilot sequence generating module is configured to multiply the selected OCC by a scrambling sequence to generate a final pilot sequence for each DMRS port.
  • the selection module is further configured to collect from the occ [occ] in different orders for different code division multiplexing groups. ,...,6>cc fe — j selects occ, where k represents the number of occ in the occ set, which is an integer greater than 1.
  • the selection module is further configured to, in different code division multiplexing groups, select only a portion of the OCCs from the set of OCCs in reverse order.
  • the selecting module is further configured to separately set different selection start position offsets for the different code division multiplexing groups, and each code division multiplexing group selects OCC according to the step length in order from the corresponding one ;
  • the sequence number indicating the code division multiplexing group, and A ste; are integers, and 0 ⁇ ⁇ l ⁇ A step i ⁇ k.
  • the selecting module is further configured to: for the first DMRS port of the first code division multiplexing group, select an index of the corresponding OCC according to the following manner: ( ⁇ + «. ⁇ 3 ⁇ ; ten a) mod k ,
  • mod is a modulo operation, when it is an odd number, the value is 0; when ...: is an even number,
  • the selecting module is further configured to generate a scrambling sequence of the DMRS by using different initialization modes for different code division multiplexing groups.
  • the pilot sequence generating module is further configured to perform reverse mapping on the adjacent DMRS carrier for the OCC corresponding to each DMRS port when the selected OCC is multiplied by the scrambling sequence.
  • the pilot sequence generating module is further configured to correspond to different code division multiplexing groups, and use different or the same starting position in the OCC mapping. ; Offset, where 0 ⁇ ⁇ ⁇ £ -1, L represents the length of the OCC.
  • a method and apparatus for generating a pilot sequence provided by the present invention in different DMRS ports for performing code division multiplexing, for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria from OCC Selecting an OCC in the set, and/or generating a scrambling sequence of the DMRS according to different criteria for different code division multiplexing groups; multiplying the selected OCC by the scrambling sequence to generate each DMRS The final pilot sequence of the port.
  • the OCC used by the two groups is orthogonal, and there is Doppler frequency offset or timing error, the influence of inter-subcarrier interference on the position of the demodulated pilot reference symbol can be reduced by OCC despreading.
  • FIG. 1 is a schematic diagram 1 of a design drawing of a DMRS in the prior art
  • FIG. 2 is a schematic diagram 2 of a design drawing of a DMRS in the prior art
  • FIG. 3 is a schematic diagram 3 of a design drawing of a DMRS in the prior art
  • FIG. 4( a ) is a schematic diagram of a carrier in the prior art without Doppler frequency offset or timing error
  • FIG. 4 ( b ) is a schematic diagram of inter-carrier interference when Doppler frequency offset exists in the prior art
  • FIG. 6 is a schematic diagram of an OCC allocation manner according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of an OCC allocation manner according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of an OCC allocation manner according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of an OCC allocation manner according to Embodiment 4 of the present invention. detailed description
  • a method for generating a pilot sequence provided by the present invention mainly includes the following steps:
  • Step 501 In each DMRS port that performs code division multiplexing, select an OCC from the OCC set for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria, and/or be a different code division.
  • the multiplexing group generates a scrambling sequence of the DMRS according to different criteria.
  • code division multiplexing groups can be collected from the OCC in reverse order Select occ in [occ ⁇ . ⁇ occ ⁇ ], where k is the number of occ in the occ set, which is an integer greater than ⁇ .
  • the two code division multiplexing groups select OCC from the OCC set in reverse order.
  • the order of the first code division multiplexing group to select the OCC from the OCC set is: According to the first code.
  • the OCC is sequentially selected from the OCC set in the order of the DMRS ports in the group, and corresponds to each port, that is, B occ 0 , s p " ⁇ occ , , s P ⁇ occ 2 , 5 ⁇ ⁇ 3 ⁇ oca , and the second code point
  • the order in which the occ group selects occ from the occ set is:
  • the OCC is selected in reverse order from the OCC set to correspond to each port, that is, s p " OCC 3 , s P OCC 2 , s P2 - 2 OCC x , s OCC 0 .
  • the first DMRS port in the code division multiplexing group is represented.
  • 2 , 3 ⁇ correspond to ports ⁇ 7 8 1 1 13 ⁇ , ⁇ 2 , respectively.
  • ⁇ 2 1 , ⁇ 2 , 2 , ⁇ respectively correspond to the port ⁇ 9 10 12 14 ⁇ as an example.
  • it can also be defined in other forms, for example:
  • the OCC selected in the first code division multiplexing group is: OCC:. ⁇ OCC
  • the OCC selected in the second code division multiplexing group is: OCC 3 , S [0 ⁇ OCC 2 > ⁇ 12 ⁇ OCC, , at this time due to the OCC used by DMRS port 7 (ie occ. )
  • the occ of each port in the second code division multiplexing group is different, so it is used.
  • the specific OCC allocation mode is as shown in FIG. 6, that is, the occ selected in the first code division multiplexing group is : occ. ⁇ occ x . s 11 ⁇ oc . s OCC,;
  • the OCC selected in the second code division multiplexing group is: s 9 H OCC 3 , s 10 H occ 2 , ⁇ 12 OCC, OCC.
  • the DMRS port in the present invention is not limited to Choose from ⁇ 7 ⁇ 14 ⁇ .
  • the present invention may also set different selection start position offsets for different code division multiplexing groups, and each code division multiplexing group starts from its own correspondence and selects according to the step size.
  • OCC where denotes the sequence number of the code division multiplexing group, and ; is an integer, and 0 ⁇ ⁇ t, l ⁇ A ⁇ k.
  • the corresponding OCC index is selected as follows: ( ⁇ , + ⁇ ' ⁇ , + a) mod/t, where mod is a modulo operation,
  • the OCC selected in the first code division multiplexing group is: s 7 occ. , s s ⁇ OCC, , s ll ⁇ 0CC 2 . s u ⁇ OCC,;
  • the OCC selected in the second code division multiplexing group is: OCQ, s 10 ⁇ OCC 2 , s 12 OCC, s 1A ⁇ OCC 0 .
  • the different code division multiplexing groups only part of the OCCs may be selected from the OCC set in reverse order.
  • the first M DMRS ports select the first M OCCs from the OCC set in the same order
  • the last N DMRS ports select the next N OCCs from the OCC set in reverse order
  • M + N is the largest reusable DMRS in each code division multiplexing group
  • the parts in the OCC set can be reversely allocated.
  • the DMRS port corresponding to the first code division multiplexing group is still ⁇ 7811 13 ⁇ .
  • the second code division multiplexing group corresponds to the DMRS port as ⁇ 9101214 ⁇ .
  • the OCC can be selected in order. , OCC, , OCC OCC 3 , and for each port of the second code division multiplexing group, only the part in the OCC set is reversely selected, and the order of each DMRS port of the second code division multiplexing group is separately allocated.
  • occ. occ occ 3 , occ 2 .
  • the specific occ allocation method is shown in Figure 8.
  • the parts of the scrambling sequence of the DMRS are generated according to different criteria.
  • Different code division multiplexing groups may use different initialization methods to generate a scrambling sequence of the DMRS, when there are two sets of code division multiplexing groups.
  • the second group generates a scrambling sequence of the DMRS according to the initialization mode of (iP+l) mod2, and the process of generating the scrambling sequence according to the c imt is the same as the background art.
  • the signals received by port 7 are:
  • the length of the OCC be H , + PW H after despreading. + H ⁇ . It can be seen that the interference is k
  • Step 502 Multiply the selected OCC with the scrambling sequence to generate a final pilot sequence for each DMRS port.
  • the OCC corresponding to each DMRS port of the same code division multiplexing group may be reversed or Cyclic offset mapping.
  • a method of performing cyclic offset mapping on the adjacent carrier according to the OCC corresponding to each DMRS port will be described as an example. The same is true for other OCC options.
  • the OCCs used between the layers of the same code division multiplexing group are respectively OCC. : [1 1 1 1], OC : [1 -1 1 -1], OCC 2 : [1 -1 -1 1], OCC,: [1 1 -1 -1].
  • the scrambling sequences used are sum, oAwA+wA+w, and assumed
  • the precoding weight on the PRB is w : , after the OCC processing, the same wave pair
  • the transmit signals of the different OFDM symbols corresponding to the same DMRS carrier on each antenna port are:
  • the other carriers are exactly the same as the above format, port 3 , because for a certain port, such as DMRS port 0, the power is always the highest on a certain DMRS OFDM symbol (port 0 corresponds to DMRS OFDM symbol 1), and on other symbols There are no signals, resulting in different powers for different DMRS OFDM symbols. Since the code division multiplexing group 2 adopts the same OCC allocation method, it is the same as the case of the code division multiplexing group 1.
  • the present invention can reduce the influence of the inter-carrier inter-channel 4 without channel estimation by performing reverse mapping or S occJ offset mapping on the OCC and combining different OCC allocations in different code division multiplexing groups.
  • the starting position offset ⁇ here is the offset of the OCC for each length of the OCC in the OCC set. ⁇ — ,
  • the specific offset method can be referred to the following embodiment.
  • each code division multiplexing group has a different precoding weight corresponding to the DMRS port, so the role of the reverse mapping or cyclic offset mapping can be explained by a code division multiplexing group.
  • the reverse mapping or cyclic offset mapping of the second code division multiplexing group can be obtained according to the same format in the reverse mapping or cyclic offset mapping manner of the first code division multiplexing group. It should be noted that, in the several OCC selection modes described above, the mapping method is applicable. In the following embodiments, the manner of cyclic offset is taken as an example for explanation.
  • ⁇ is taken as an example here.
  • the scrambling sequences used are still summed in the adjacent DMRS subcarriers.
  • a + U , , 2 , , 3 are examples.
  • the mapping method on the DMRS carrier is At the time of the ⁇ + l
  • mapping mode on the DMRS carrier is abc. Then in the above ⁇ + 1
  • the mapping of the OCC to the respective DMRS ports on the four OFDM symbols is (abc ⁇ ) and (bcda) respectively.
  • the OCC corresponds to each DMRS port on the four OFDM symbols.
  • the mappings are (cda 6) and ( ⁇ / abc). Assuming the precoding weight ⁇ , the power on the adjacent 4 carriers is
  • each DMRS port has a maximum value cyclically on each symbol, thereby avoiding the problem of excessive transmission power of an OFDM symbol on a certain symbol.
  • OCC ( ⁇ , OCC 2 , OCC 3 is allocated for the first code division multiplexing group and OCC OCC 3 and OCC 2 are allocated to the second code division multiplexing group, the corresponding allocation mode is as shown in FIG. .
  • the present invention further provides a pilot sequence generating apparatus, including: a selecting module and a pilot sequence generating module.
  • a selection module configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different
  • the code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria.
  • the selection module may select the OCC from the OCC set [OCC ⁇ OCG_J in different orders for different code division multiplexing groups; in the case of low rank, different code division multiplexing groups, or only
  • the partial OCCs are selected from the OCC set in the reverse order; different pick start position offsets are also set for different code division multiplexing groups, and each code division multiplexing group starts from its own corresponding, according to the step size ;
  • the OCC is selected; the different DMARS scrambling sequences can also be generated by different initialization methods for different code division multiplexing groups.
  • a pilot sequence generating module configured to multiply the selected OCC and the scrambling sequence to generate a final pilot sequence of each DMRS port.
  • the adjacent DMRS carriers may be inversely mapped for the OCC corresponding to each DMRS port; or, when the different code division multiplexing groups are mapped in the OCC, Different or identical starting positions S are used.
  • CCJ offset where 0 ⁇ ⁇ L - L represents the length of the OCC.
  • the present invention can reduce the corresponding layer between different CDM port groups, and reduce The accuracy of channel estimation is improved due to the influence of inter-carrier interference on channel estimation caused by Doppler shift and timing error.

Abstract

The present invention discloses a method for generating a pilot sequence. The method includes that: in each demodulation reference symbol (DMRS) port where hybrid multiplexing is performed, different code division multiplexing (CDM) groups select orthogonal cover codes (OCCs) from an orthogonal cover code set and/or generate scrambling sequences of the DMRS according to different rules,wherein the hybrid multiplexing can be hybrid multiplexing of code division, frequency division and time division, hybrid multiplexing of code division and frequency division, or hybrid multiplexing of code division and time division; the final pilot sequence for each DMRS port is generated by multiplying the selected OCC by the scrambling sequence. The present invention also discloses an apparatus for generating the pilot sequence. With the method and apparatus of the present invention, corresponding layers among different CDM port groups can be reduced, the influence of inter-carrier interference on channel estimation can be reduced, wherein the inter-carrier interference is caused by Doppler shift and timing error, and the precision of the channel estimation can also be improved.

Description

一种导频序列的产生方法和装置 技术领域  Method and device for generating pilot sequence
本发明涉及无线通信领域的载波间干扰处理技术, 尤其涉及一种导频 序列的产生方法和装置。 背景技术  The present invention relates to inter-carrier interference processing techniques in the field of wireless communications, and in particular, to a method and apparatus for generating pilot sequences. Background technique
高阶多天线技术是高级长期演进 ( LTE-A, Long Term Evolution Advanced ) 系统的关键技术之一, 用以提高系统传输速率。 为了实现引入 高阶多天线技术后的信道质量测量及数据解调, LTE-A 系统分别定义了两 类导频符号: 数据解调导频(DMRS, Demodulation Reference Signal )和信 道质量测量导频(CSI-RS, Channel State Information-Reference Signal )。 其 中, DMRS是用于物理下行共享信道(PDSCH, Physical Downlink Shared Channel )解调的参考符号, 筒称解调参考符号; CSI-RS是用于信道状态信 息(CSI, Channel State Information )测量的参考符号, 筒称测量参考符号, 用于信道质量指示( CQI, Channel Quality Indicator )、预编码矩阵指示( PMI, Precoding Matrix Indicator ), 阶层指示(RI, Rank Indicator )等信息的上报。 这两类参考符号的结构可以用于支持如多点协作 (CoMP , Coordinated Multi-Point )、 空间复用等 LTE-A的新技术特征。  High-order multi-antenna technology is one of the key technologies of the LTE-A (Long Term Evolution Advanced) system to increase the system transmission rate. In order to implement channel quality measurement and data demodulation after introducing high-order multi-antenna technology, LTE-A systems respectively define two types of pilot symbols: DMRS (Demodulation Reference Signal) and channel quality measurement pilot ( CSI-RS, Channel State Information-Reference Signal). The DMRS is a reference symbol used for demodulation of a Physical Downlink Shared Channel (PDSCH), and is referred to as a demodulation reference symbol; CSI-RS is a reference for channel state information (CSI) measurement. The symbol, the cylinder is called a measurement reference symbol, and is used for reporting a channel quality indicator (CQI, Channel Quality Indicator), a precoding matrix indicator (PMI, Precoding Matrix Indicator), and a hierarchical indicator (RI, Rank Indicator). The structure of these two types of reference symbols can be used to support new technical features of LTE-A such as CoMP (Coordinated Multi-Point), spatial multiplexing, and the like.
在 LTE系统中, 采用公共参考符号 ( CRS , Common Reference Signal ) 进行导频测量, 即所有用户都使用公共导频进行信道估计, 这种公共参考 信号需要发射端额外通知接收端对发射的数据采用了何种预处理方式, 导 频开销较大。 另外, 在多用户多输入多输出 ( MU-MIMO , Multiuser Multiple-Input Multiple-Output )技术中, 由于多个 UE使用相同的 CRS, 无 法实现导频的正交, 因此无法估计干扰。 在 LTE-A系统中, 为了降低导频的开销, 将测量参考符号和解调参考 符号分开进行设计, 解调参考符号和数据采用相同的预处理方式, 同时解 调参考符号根据调度用户对应信道的可用秩(rank )信息映射参考符号, 从 而可以自适应的根据秩信息调整开销, 这样在秩较低的情况下, 可以大大 降低开销。 In the LTE system, the common reference symbol (CRS, Common Reference Signal) is used for pilot measurement, that is, all users use common pilots for channel estimation. This common reference signal requires the transmitter to additionally notify the receiver to use the transmitted data. The pre-processing method has a large pilot overhead. In addition, in the multi-user multiple-input multiple-output (MU-MIMO) technology, since multiple UEs use the same CRS, pilot orthogonality cannot be achieved, and thus interference cannot be estimated. In the LTE-A system, in order to reduce the overhead of the pilot, the measurement reference symbol and the demodulation reference symbol are separately designed, and the demodulation reference symbol and the data adopt the same preprocessing manner, and the demodulation reference symbol is according to the scheduling user corresponding channel. The available rank information maps the reference symbols, so that the overhead can be adaptively adjusted according to the rank information, so that in the case of a lower rank, the overhead can be greatly reduced.
LTE-A中确定的解调参考符号的设计图样, 如图 1、 2、 3所示, 图 1 是对应正常子帧的 DMRS图样示意图, 图 2是对应下行导频时隙为 11或 12的 OFDM符号的 DMRS图样示意图, 图 3是对应下行导频时隙为 9或 10的 OFDM符号的 DMRS图样示意图。 图中阴影部分國表示 CRS, 所示 DMRS图样的横向代表时域, 纵向代表频域。 当下行传输所使用的 rank数 小于或等于 2 时, 仅仅使用阴影部分 Ξ所示的资源单元(RE, Resources Element )用于 DMRS的传输,并采用长度为 2的正交掩码( OCC, Orthogonal Cover Code ) 在时域上相邻的两个正交频分复用 ( OFDM, Orthogonal Frequency Division Multiplexing )符号上进行力口扰。 当 rank数大于或等于 3 且小于或等于 4时, 使用两组 RE, 分别如阴影部分 Ξ和 Ξ所示, 其中每组 RE上最大可正交码分复用 (CDM, Code Division Multiplexing ) 的 DMRS 层数为 2,每组 RE在时域上相邻的两个 OFDM符号上釆用长度为 2的 OCC 进行正交加扰。 而当 rank数大于 4时, 使用两组 RE, 分别如阴影部分 Ξ和 E3所示, 每组 RE在时域方向上釆用长度为 4的 OCC进行正交加扰, 且每 组 RE上最大可正交 CDM的 DMRS层数为 4。图 2、图 3中的阴影部分 表 示在特殊子帧中上行链路导频时隙( UpPTS , Uplink Polit Transmission Slot ) 占用的 OFDM符号。  The design of the demodulation reference symbol determined in LTE-A is as shown in FIG. 1, 2, and 3, FIG. 1 is a schematic diagram of a DMRS pattern corresponding to a normal subframe, and FIG. 2 is a corresponding downlink pilot slot of 11 or 12. A schematic diagram of a DMRS pattern of an OFDM symbol, and FIG. 3 is a schematic diagram of a DMRS pattern of an OFDM symbol corresponding to a downlink pilot slot of 9 or 10. The shaded countries in the figure represent CRS, and the horizontal representation of the DMRS pattern represents the time domain and the longitudinal direction represents the frequency domain. When the number of ranks used for downlink transmission is less than or equal to 2, only the resource unit (RE, Resources Element) shown by the shaded part 用于 is used for DMRS transmission, and an orthogonal mask of length 2 (OCC, Orthogonal) is used. Cover Code) Performs power interference on two adjacent Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain. When the rank number is greater than or equal to 3 and less than or equal to 4, two sets of REs are used, as shown by the shaded parts Ξ and 分别, respectively, where the maximum orthogonal code division multiplexing (CDM) of each group of REs is used. The number of DMRS layers is 2, and each group of REs is orthogonally scrambled with an OCC of length 2 on two adjacent OFDM symbols in the time domain. When the rank number is greater than 4, two sets of REs are used, as shown by the shaded parts Ξ and E3, respectively, and each group of REs is orthogonally scrambled with an OCC of length 4 in the time domain direction, and each group has the largest RE. The number of DMRS layers that can be orthogonal CDM is 4. The shaded parts in Fig. 2 and Fig. 3 represent the OFDM symbols occupied by the Uplink Pilot Transmission Slot (UpPTI) in the special subframe.
基于图 1、 2、 3所示的 DMRS图样, 在混合复用 DMRS方式下, 如基 于 CDM与频分复用 ( FDM, Frequency Division Multiplexing )和 /或时分复 用 (TDM, Time Division Multiplexing )的混合复用 DMRS方式下, 如果存 在多普勒频移及定时误差的问题, 则会产生载波间千扰。 分析如下: 在基于 CDM与 FDM/TDM混合复用的 DMRS复用方式下, 各个不同 的 DMRS端口之间 , 部分 DMRS端口的解调参考符号采用 CDM的方式, 而部分 DMRS端口之间釆用 FDM/TDM的方式。如图 1、 2、 3所示的 DMRS 图样所示。 阴影部分 Ξ所示的 RE对应一组码分复用的 DMRS端口, 阴影 部分 E3所示的 RE对应另外一组进行码分复用的 RE。 Based on the DMRS patterns shown in Figures 1, 2, and 3, in the hybrid multiplexed DMRS mode, such as based on CDM and Frequency Division Multiplexing (FDM), and/or Time Division Multiplexing (TDM). Hybrid multiplexing DMRS mode, if In the case of Doppler shift and timing error, inter-carrier interference is generated. The analysis is as follows: In the DMRS multiplexing mode based on CDM and FDM/TDM hybrid multiplexing, the demodulation reference symbols of some DMRS ports are in CDM mode between different DMRS ports, and FDM is used between some DMRS ports. /TDM way. The DMRS pattern shown in Figures 1, 2, and 3 is shown. The RE shown by the shaded portion 对应 corresponds to a group of code division multiplexed DMRS ports, and the RE shown by the shaded portion E3 corresponds to another group of REs that are code division multiplexed.
现有技术在产生 DMRS导频序列时,两组 DMRS首先按照相同的方式 产生加扰序列 r( ), 即: r(m) c(2m + 1)), = 0,l,.."12N^pL— 1 ( 1 )
Figure imgf000005_0001
In the prior art, when generating a DMRS pilot sequence, the two sets of DMRS first generate the scrambling sequence r( ) in the same manner, namely: r(m) c(2m + 1)), = 0, l, .. "12N ^ pL — 1 ( 1 )
Figure imgf000005_0001
其中, N 'DL表示下行系统带宽对应的资源块(RB, Resource Block ) 数目。 伪随机序列 c(0按照现有标准 36.211中 7.2节定义的方式产生, 具体 为: The N ' DL indicates the number of resource blocks (RBs) corresponding to the downlink system bandwidth. The pseudo-random sequence c (0 is generated in the manner defined in section 7.2 of the existing standard 36.211, specifically:
c{n) = (xl (n + Nc) + x2 (n + Nc))mod2 c{n) = (x l (n + N c ) + x 2 (n + N c )) mod2
x {n + 3\) = ( [ (n + 3) + xl («))mod2 (2) χ2(η + 3ϊ) = (x2 (n + 3) + x2 (n + 2) + x2 (η + ϊ) + x2 («))mod 2 x {n + 3\) = ( [ (n + 3) + x l («)) mod2 (2) χ 2 (η + 3ϊ) = (x 2 (n + 3) + x 2 (n + 2) + x 2 (η + ϊ) + x 2 («)) mod 2
其中, ^(0) = 1,^(«) = 0,« = 1,2,...,30, (0可以通过以下两式计算得到:  Where ^(0) = 1,^(«) = 0,« = 1,2,...,30, (0 can be calculated by the following two formulas:
cfflit-(k 2j + l)-(2 1+l)-216 +¾ro (3 ) c fflit -(k 2j + l)-(2 1 +l)-2 16 +3⁄4ro (3 )
^it=∑; 2( -2i (4) 上式中, cm表示扰码序列 ID, 取值为 0或 1, 默认情况为 0; mod表 示取模运算, N 11表示 UE所处小区的 ID, 表示当前的子帧序号, cM用 于初始化 x2的中间变量。 ^ it =∑; 2 ( -2 i (4) where cm represents the scrambling sequence ID, which is 0 or 1, and the default is 0; mod represents the modulo operation, and N 11 represents the cell in which the UE is located. ID, indicating the current subframe number, c M is used to initialize the intermediate variable of x 2 .
在正常循环前缀时, 根据被调度用户的资源位置, 从加扰序列 中 截取 r的对应长度, 并用 OCC与之相乘产生导频序列, 如下式所示:  In the normal cyclic prefix, according to the resource location of the scheduled user, the corresponding length of r is intercepted from the scrambling sequence, and multiplied by OCC to generate a pilot sequence, as shown in the following equation:
5p -r(3-/'-N™ +3- PRB +m') (5 ) 其中, 对应 DMRS端口 p的 OCC的生成公式, "PRB 示物理资源块 在频域的索引; /'和 m'用于指示截取的序列的位置, 由帧结构的配置关系确 定。 5 p -r(3-/'-NTM +3- PRB +m') (5 ) Wherein, the formula for generating the OCC corresponding to the DMRS port p, " PRB indicates the index of the physical resource block in the frequency domain; /' and m' are used to indicate the position of the intercepted sequence, which is determined by the configuration relationship of the frame structure.
根据 DMRS的图样,在不同层数目时, OCC的长度不同,当层数为 3〜4 时, OCC长度为 2; 当层数为 5~8时, OCC长度为 4。 由此可见, 现有技 术在产生导频序列的过程中, 进行码分复用的各组 DMRS端口的扰码对应 一个相同的序列 ,(3.
Figure imgf000006_0001
+ 3. "PRB + m') , 并通过各组 DMRS端口对应的 不同 OCC产生各组码分复用的 DMRS端口对应的导频序列。
According to the pattern of DMRS, the length of OCC is different when the number of layers is different. When the number of layers is 3~4, the length of OCC is 2; when the number of layers is 5~8, the length of OCC is 4. Therefore, in the process of generating a pilot sequence in the prior art, the scrambling codes of each group of DMRS ports that perform code division multiplexing correspond to the same sequence, (3.
Figure imgf000006_0001
+ 3. " PRB + m'), and generate a pilot sequence corresponding to each group of code division multiplexed DMRS ports by different OCCs corresponding to each group of DMRS ports.
当用 OCC对序列加扰时,根据 DMRS各组端口进行码分复用的方向(在 时域方向上对应的资源上进行码分复用、 或在频域方向对应的资源上进行 码分复用)确定 ^在每个资源上的取值。 以 LTE-A中 OCC长度等于 4为 例, 并 4艮设 DMRS对应的端口分別为 p e {7 ~ 14} , 在正常循环前缀的子帧 中, 经过 OCC处理后对各个 DMRS端口在第 /个 OFDM符号、 第 A个子载 波位置上的导频序列格式为:  When the sequence is scrambled by the OCC, the direction of code division multiplexing is performed according to each group of ports of the DMRS (the code division multiplexing is performed on the corresponding resources in the time domain direction, or the code division is performed on the resources corresponding to the frequency domain direction). Use) to determine the value of ^ on each resource. For example, in the LTE-A, the OCC length is equal to 4, and the ports corresponding to the DMRS are respectively pe {7 ~ 14}. In the subframe of the normal cyclic prefix, after the OCC processing, the DMRS port is in the /th. The OFDM symbol, the pilot sequence format at the A-subcarrier position is:
、 = sp - r(3 - P-N PL + 3-«PRB+m') (6) k_ (5- m'+N™ · ^ + 1 ρ = Ί, 8,11, orl3 , = s p - r(3 - PN PL + 3-« PRB +m') (6) k_ (5- m'+NTM · ^ + 1 ρ = Ί, 8,11, orl3
5. '+Ns M . p = 9,10,12,orl4 5. '+N s M . p = 9,10,12,orl4
, , , , l二 /'mod2 + 5  , , , , l 2 /'mod2 + 5
上式中,
Figure imgf000006_0002
In the above formula,
Figure imgf000006_0002
m'= 0,1,2  m'= 0,1,2
其中, N 表示在频域方向上一个 RB包含的子载波个数, 《PRB表示对 应的物理资源块在频域的索引, /^表示时隙序号。 当考虑特殊子帧时, /可 /'mod2 + 2 Where N is the number of subcarriers included in one RB in the frequency domain direction, " PRB " indicates the index of the corresponding physical resource block in the frequency domain, and /^ indicates the slot number. When considering special sub-frames, / can /'mod2 + 2
/ = /'mod2 + 2 + 3.L/'/2」  / = /'mod2 + 2 + 3.L/'/2"
/'mod2 + 5  /'mod2 + 5
0,1,2,3 if ns mod2 = 0, 特殊子帧类型 1 以配置为如下取值: I, 0,1 if n mod2^0, 正常子帧 0,1,2,3 if n s mod2 = 0, special subframe type 1 is configured as follows: I, 0,1 if n mod2^0, normal subframe
2,3 if ns mod2=l ,正常子帧 2,3 if n s mod2=l , normal subframe
m'= 0,1,2  m'= 0,1,2
在用 OCC对序列进行处理时, 必须考虑 DMRS 序列与码分复用资源 的位置关系, 因此 OCC对序列运算时, 必须与之对应。例如: OCC[l 111] 对应 DMRS端口 7, 则 =1; 而 OCC [1 -1 1 1] 对应 DMRS端口 8, 并且 端口 8 在时域方向上与其所在組的其他端口复用, 则 可以表示为 When the sequence is processed by OCC, the positional relationship between the DMRS sequence and the code division multiplexing resource must be considered. Therefore, the OCC must correspond to the sequence operation. For example: OCC[l 111] corresponds to DMRS port 7, then =1; while OCC [1 -1 1 1] corresponds to DMRS port 8, and port 8 is multiplexed with other ports of the group in the time domain direction, it can represent for
58 = (-i)ffl,+r+H™。 这里仅仅为了说明 s p与 occ的对应关系, 在实际应用中, 可以根据 OCC与天线端口的对应关系, 以及基于混合复用方式下的图样映 射关系, 用对应的公式表示出 在对应资源位置上的公式表示。 5 8 = (-i) ffl, +r+H TM. This is only for the purpose of illustrating the correspondence between s p and occ. In practical applications, according to the correspondence between the OCC and the antenna port, and the mapping relationship based on the mixed multiplexing mode, the corresponding formula is used to represent the corresponding resource location. The formula is expressed.
按照图 1、 2、 3所示, 当存在两组码分复用的 DMRS端口时, 且在两 组端口分别对应图 1、 2、 3 中阴影部分 Ξ和 Ξ所示资源的情况下, 如果系 统中存在多普勒频偏或定时误差, 则载波之间会产生干扰, 如图 4 (a)、 4 (b)所示, 图 4 (a)为无多普勒频偏或定时误差时的载波示意图; 图 4(b) 为存在多普勒频偏时的载波间千扰示意图。  According to FIG. 1, 2, and 3, when there are two sets of code division multiplexed DMRS ports, and if the two sets of ports correspond to the resources shown in the shaded parts 图 and 图 in FIG. 1, 2, and 3, respectively, if If there is Doppler frequency offset or timing error in the system, interference will occur between the carriers, as shown in Figure 4 (a), 4 (b), Figure 4 (a) is no Doppler frequency offset or timing error Schematic diagram of carrier; Figure 4 (b) is a schematic diagram of inter-carrier interference when there is Doppler frequency offset.
例如: 以图 1、 2、 3所示的码分复用的 DMRS端口所映射的资源位置, 第一个码分复用组的 DMRS端口 。, ^,^,^)对应的 OCC依次为 OCC。、 OCC,、 OCC2、 OCC, , 且第二个码分复用组的 DMRS端口 ½,。,尸1,尸2,^3}按 照相同的顺序选择 occ。 殳由于多普勒频移或定时误差的存在, 相邻载 波之间的泄露因子为 , 以总的层数目等于 5 为例, 同时为了方便, 定义 , , ,2,y分别对应端口 {781113}, { 2,。,尸21,尸 22,尸23}分别对应端口 {910 1214}。 第一组资源 (如阴影部分 Ξ所示位置) 复用的端口为 7、 8; 第二组资 源 (如阴影部分 Ε3所示位置)复用的端口为 9、 10、 12。 同时设端口 7、 8、 9、 10、 12对应的信道系数分别为: ΗΊ、 Η9、 Ηιο和 Η、2 , 设在两组 RE 上的对应序列截取为?。以端口 7为例,如果两组 RE之间釆用相同的 OCC, s1 OCC0 ss ^ OCC, For example: the resource location mapped by the code division multiplexed DMRS port shown in Figures 1, 2, and 3, and the DMRS port of the first code division multiplexing group. The corresponding OCC of ^, ^, ^) is OCC. , OCC, OCC 2 , OCC, , and the DMRS port of the second code division multiplexing group. , corpse 1 , corpse 2 , ^ 3 } Select occ in the same order.殳 Due to the presence of Doppler shift or timing error, the leakage factor between adjacent carriers is, for example, the total number of layers is equal to 5, and for convenience, the definition, , , 2 , y correspond to the port {781113} , { 2 ,. , corpse 21 , corpse 22 , corpse 23 } correspond to the port {910 1214}. The first set of resources (such as the shaded part Ξ) multiplexed ports are 7, 8; the second set of resources (such as the shaded part Ε 3) multiplexed ports are 9, 10, 12. At the same time, the channel coefficients corresponding to ports 7, 8, 9, 10, and 12 are: Η Ί , Η 9 , Η ιο and Η , 2 , and the corresponding sequence set on the two sets of REs is intercepted as? . Take port 7 as an example. If the same OCC is used between the two groups of REs, s 1 OCC 0 s s ^ OCC,
s9 OCC0 sw ^ OCC, s11 OCC2 s 9 OCC 0 s w ^ OCC, s 11 OCC 2
其中 oc 和 oc 正交, i≠j。 当载波间存在干扰时 (这里仅仅以两个 载波的情况为例), 端口 7接收到的信号为:  Where oc and oc are orthogonal, i≠j. When there is interference between carriers (here only in the case of two carriers), the signal received by port 7 is:
H rc+H8 c +fi-(H9s9rc+H swrc+
Figure imgf000008_0001
H r c +H 8 c +fi-(H 9 s 9 r c +H s w r c +
Figure imgf000008_0001
去除导频的序列;后,为 H + + β . ( i9S 9 + Hl0sw + Ηί2 2 ,之后用 对 应的 OCC OCC。进行解扩时, 由于 OCC;和 OCC;正交, 估计得到的信道系数 将为 H7 + ^H9 , 其中 . 部分即为干扰。 The sequence of the pilot is removed; after that, it is H + + β . ( i 9S 9 + H l0 s w + Η ί2 2 , then despreading with the corresponding OCC OCC, due to OCC ; and OCC ; orthogonal, estimated The resulting channel coefficient will be H 7 + ^H 9 , where the part is the interference.
基于上述的分析, 如何降低载波间千扰对信道估计的影响, 现有技术 还无法提供有效的解决方案。 发明内容  Based on the above analysis, how to reduce the influence of inter-carrier interference on channel estimation, the prior art cannot provide an effective solution. Summary of the invention
有鉴于此, 本发明的主要目的在于提供一种导频序列的产生方法和装 置, 以降低在混合复用 DMRS方式下, 载波间千扰对信道估计的影响。  In view of this, the main object of the present invention is to provide a method and apparatus for generating a pilot sequence to reduce the influence of inter-carrier interference on channel estimation in a hybrid multiplexed DMRS mode.
为达到上述目的, 本发明的技术方案是这样实现的:  In order to achieve the above object, the technical solution of the present invention is achieved as follows:
本发明提供了一种导频序列的产生方法, 该方法包括:  The present invention provides a method for generating a pilot sequence, the method comprising:
在各个进行码分与频分和 /或时分混合复用的解调参考符号( DMRS ) 端口中, 为不同的码分复用组按照不同的准则从正交掩码 ( OCC ) 集合中 选择 OCC, 和 /或为不同的码分复用组按照不同的准则产生 DMRS的加扰 序列;  Selecting an OCC from an orthogonal mask (OCC) set for different code division multiplexing groups in different demodulation reference symbol (DMRS) ports for performing code division and frequency division and/or time division hybrid multiplexing. And/or generating a scrambling sequence of the DMRS according to different criteria for different code division multiplexing groups;
将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导频序 列。 Multiplying the selected OCC with the scrambling sequence to generate the final pilot sequence for each DMRS port Column.
所述为不同的码分复用组按照不同的准则从 OCC集合中选择 OCC, 具体为:  The selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
所述不同的码分复用组按照相反的顺序从 OCC集合^^^。,...^^^ 中 选择 OCC, 其中 A表示 OCC集合中 OCC的个数, 为大于 1的整数。  The different code division multiplexing groups are aggregated from the OCC in reverse order. ,...^^^ Select OCC, where A is the number of OCCs in the OCC set, which is an integer greater than 1.
所述为不同的码分复用组按照不同的准则从 OCC集合中选择 OCC, 具体为:  The selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
所述不同的码分复用组中, 只有部分 OCC按照相反的顺序从 OCC集 合中选择, 具体包括: 在两个不同的码分复用组中, 前 M个 DMRS端口按 照相同的顺序从 OCC集合中选择前 M个 OCC, 后 N个 DMRS端口按照相 反的顺序从 OCC集合中选择后 N个 OCC, 其中, 为每个码分复用组 中最大可复用的 DMRS端口数量。  In the different code division multiplexing groups, only part of the OCCs are selected from the OCC set in reverse order, including: In two different code division multiplexing groups, the first M DMRS ports are in the same order from the OCC. The first M OCCs are selected in the set, and the last N DMRS ports select the next N OCCs from the OCC set in reverse order, where is the maximum number of multiplexable DMRS ports in each code division multiplexing group.
所述为不同的码分复用组按照不同的准则从 OCC集合中选择 OCC, 具体为:  The selecting the OCC from the OCC set according to different criteria for the different code division multiplexing groups is specifically:
为所述不同的码分复用组分别设置不同的选取起始位置偏移 δί , 各个 码分复用组从自身对应的 开始, 按照步长 顺序选择 OCC, 其中, /表 示码分复用组的序号, .和 4」为整数, 且 0 l≤Attp」< Setting different selection starting position offsets δ ί for the different code division multiplexing groups, each code division multiplexing group selects OCC according to the step order from the beginning of its own correspondence, where / represents code division multiplexing number group. and 4 "are integers, and 0 l≤A ttp" <
所述对于第 个码分复用组的第《个 DMRS端口, 其所对应的 OCC的 索 I按照以下方式选取: ( · + «. step J + a) mod k , For the first DMRS port of the first code division multiplexing group, the corresponding IOC of the OCC is selected as follows: (· + «. step J + a) mod k ,
其中, mod为取模运算, 当 4 ^为奇数时, 的取值为 0; 当 4^.为偶
Figure imgf000009_0001
Where mod is the modulo operation, when 4^ is odd, the value is 0; when 4^. is even
Figure imgf000009_0001
所述为不同的码分复用组按照不同的准则产生 DMRS的加扰序列, 具 体为:  The different code division multiplexing groups generate a scrambling sequence of the DMRS according to different criteria, which are:
所述不同的码分复用组采用不同的初始化方式产生 DMRS 的加扰序 列 , 当 有 两 组 码 分 复 用 组 时 , 第 一 组 按 照 ci it = ([n /2j + l)-(2N^u + 1)·216 + nscro的初始化方式产生 DMRS的加扰序列, 其中默认";^ = ^ = 0或 1; 第二组按照; ¾cro=( +l)mod2的初始化方式产 生 DMRS的加扰序列。 The different code division multiplexing groups use different initialization methods to generate the scrambling sequence of the DMRS Column, when there are two sets of code division multiplexing groups, the first group generates DMRS according to the initialization method of c i it = ([n /2j + l)-(2N^ u + 1)·2 16 + n scro The scrambling sequence, where default is ";^ = ^ = 0 or 1; the second group generates a scrambling sequence of DMRS according to the initialization mode of 3⁄4 cro = ( +l) mod2.
所述将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导 频序列, 具体为:  The multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
在将选择的 OCC与加扰序列相乘时,相邻 DMRS载波上,各个 DMRS 端口对应的 OCC进行反向映射。  When the selected OCC is multiplied by the scrambling sequence, the OCC corresponding to each DMRS port is inversely mapped on the adjacent DMRS carrier.
所述将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导 频序列, 具体为:  The multiplying the selected OCC by the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
对应不同的码分复用组 , 在 OCC映射时, 采用不同或相同的起始位 置 S。」偏移, 其中 0≤ S0∞J <L-1 , L表示 OCC的长度。 Corresponding to different code division multiplexing groups, different or identical starting positions S are used in OCC mapping. ”offset, where 0≤S 0∞J <L-1 , L represents the length of the OCC.
所述 <J。CC t的取值为 mo&(SubcarierIndex + £t,L) , 其中, Subcarierlndex表示子 载波索引, 表示每个 OCC的长度。 Said <J. The value of CC t is mo & (SubcarierIndex + £ t , L) , where Subcarierlndex represents a subcarrier index indicating the length of each OCC.
本发明还提供了一种导频序列的产生装置, 该装置包括:  The invention also provides a device for generating a pilot sequence, the device comprising:
选择模块,用于在各个进行码分与频分和 /或时分混合复用的 DMRS端 口中, 为不同的码分复用组按照不同的准则从 OCC集合中选择 OCC, 和 / 或为不同的码分复用组按照不同的准则产生 DMRS的加扰序列;  a selection module, configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different The code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria;
导频序列产生模块, 用于将所选择的 OCC 与加扰序列相乘产生各个 DMRS端口最终的导频序列。  A pilot sequence generating module is configured to multiply the selected OCC by a scrambling sequence to generate a final pilot sequence for each DMRS port.
所述选择模块进一步用于, 对不同的码分复用组按照相反的顺序从 occ集合 [occ。,...,6>ccfe— j中选择 occ, 其中 k表示 occ集合中 occ的个 数, 为大于 1的整数。 The selection module is further configured to collect from the occ [occ] in different orders for different code division multiplexing groups. ,...,6>cc fe — j selects occ, where k represents the number of occ in the occ set, which is an integer greater than 1.
所述选择模块进一步用于, 在不同的码分复用组中, 只对部分 OCC按 照相反的顺序从 OCC集合中选择。 所述选择模块进一步用于, 为所述不同的码分复用组分别设置不同的 选取起始位置偏移 ,各个码分复用組从自身对应的 开始,按照步长 ^ ; 顺序选择 OCC, 其中, 表示码分复用组的序号, 和 Aste;) ;为整数, 且 0≤ < l≤Astep i <k。 The selection module is further configured to, in different code division multiplexing groups, select only a portion of the OCCs from the set of OCCs in reverse order. The selecting module is further configured to separately set different selection start position offsets for the different code division multiplexing groups, and each code division multiplexing group selects OCC according to the step length in order from the corresponding one ; Wherein, the sequence number indicating the code division multiplexing group, and A ste;) are integers, and 0 ≤ < l ≤ A step i < k.
所述选择模块进一步用于,对于第 ,·个码分复用组的第《个 DMRS端口, 按照以下方式选取其所对应的 OCC的索引: ( · + «. λ3ίψ ;十 a) mod k , The selecting module is further configured to: for the first DMRS port of the first code division multiplexing group, select an index of the corresponding OCC according to the following manner: (· + «. λ 3ίψ ; ten a) mod k ,
其中, mod为取模运算, 当 为奇数时, 的取值为 0; 当 …:为偶 数时, Where mod is a modulo operation, when it is an odd number, the value is 0; when ...: is an even number,
Figure imgf000011_0001
Figure imgf000011_0001
所述选择模块进一步用于, 对不同的码分复用组采用不同的初始化方 式产生 DMRS 的加扰序列, 当有两组码分复用组时, 第一组按照 cMt = ([n /2j + l)-(2N^u + 1)·216 + nscro的初始化方式产生 DMRS的加扰序列, 其中默认" scro = , = 0或 1; 第二組按照《scro=(p+l)mod2的初始化方式产 生 DMRS的加扰序列。 The selecting module is further configured to generate a scrambling sequence of the DMRS by using different initialization modes for different code division multiplexing groups. When there are two sets of code division multiplexing groups, the first group according to c Mt = ([n / The initialization mode of 2j + l)-(2N^ u + 1)·2 16 + n scro generates a scrambling sequence of DMRS, where the default is " scro = , = 0 or 1; the second group follows " scro = (p + l The initialization mode of mod2 generates a scrambling sequence of DMRS.
所述导频序列产生模块进一步用于,在将选择的 OCC与加扰序列相乘 时, 相邻 DMRS载波上, 为各个 DMRS端口对应的 OCC进行反向映射。  The pilot sequence generating module is further configured to perform reverse mapping on the adjacent DMRS carrier for the OCC corresponding to each DMRS port when the selected OCC is multiplied by the scrambling sequence.
所述导频序列产生模块进一步用于,对应不同的码分复用组 ,在 OCC 映射时, 釆用不同或相同的起始位置 。 ;偏移, 其中 0≤ <£-1, L表示 OCC的长度。 The pilot sequence generating module is further configured to correspond to different code division multiplexing groups, and use different or the same starting position in the OCC mapping. ; Offset, where 0≤ <£ -1, L represents the length of the OCC.
所述 ^„co 的取值为 mod(SwbcarierIndex十 . , , 其中, Subcarierlndex表示子 载波索引, Z表示每个 OCC的长度。  The value of ^„co is mod(SwbcarierIndex 十 . , where Subcarierlndex represents the subcarrier index, and Z represents the length of each OCC.
本发明所提供的一种导频序列的产生方法和装置, 在各个进行码分复 用的 DMRS端口中,为不同的码分与频分和 /或时分混合复用组按照不同的 准则从 OCC集合中选择 OCC, 和 /或为不同的码分复用组按照不同的准则 产生 DMRS的加扰序列;将所选择的 OCC与加扰序列相乘产生各个 DMRS 端口最终的导频序列。 通过本发明, 当两组使用的 OCC正交, 且存在多普 勒频偏或定时误差的情况下, 通过 OCC解扩, 可以降低子载波间干扰对解 调导频参考符号位置上的影响, 从而提高信道估计的精度; 而通过本发明 的处理方式, 在 OCC有限的情况下, 可以尽量保证两组之间的 OCC正交, 从而在 OCC有限的情况下, 降低对信道估计的影响。 附图说明 A method and apparatus for generating a pilot sequence provided by the present invention, in different DMRS ports for performing code division multiplexing, for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria from OCC Selecting an OCC in the set, and/or generating a scrambling sequence of the DMRS according to different criteria for different code division multiplexing groups; multiplying the selected OCC by the scrambling sequence to generate each DMRS The final pilot sequence of the port. According to the present invention, when the OCC used by the two groups is orthogonal, and there is Doppler frequency offset or timing error, the influence of inter-subcarrier interference on the position of the demodulated pilot reference symbol can be reduced by OCC despreading. Thereby, the accuracy of the channel estimation is improved; and by the processing method of the present invention, in the case of limited OCC, the OCC orthogonality between the two groups can be ensured as much as possible, thereby reducing the influence on the channel estimation in the case of limited OCC. DRAWINGS
图 1为现有技术中 DMRS的设计图样示意图一;  1 is a schematic diagram 1 of a design drawing of a DMRS in the prior art;
图 2为现有技术中 DMRS的设计图样示意图二;  2 is a schematic diagram 2 of a design drawing of a DMRS in the prior art;
图 3为现有技术中 DMRS的设计图样示意图三;  3 is a schematic diagram 3 of a design drawing of a DMRS in the prior art;
图 4 ( a )为现有技术中无多普勒频偏或定时误差时的载波示意图; 图 4 ( b )为现有技术中存在多普勒频偏时的载波间干扰示意图; 图 5为本发明一种导频序列的产生方法的流程图;  4( a ) is a schematic diagram of a carrier in the prior art without Doppler frequency offset or timing error; FIG. 4 ( b ) is a schematic diagram of inter-carrier interference when Doppler frequency offset exists in the prior art; FIG. A flowchart of a method for generating a pilot sequence of the present invention;
图 6为本发明实施例一的 OCC分配方式示意图;  6 is a schematic diagram of an OCC allocation manner according to Embodiment 1 of the present invention;
图 7为本发明实施例二的 OCC分配方式示意图;  7 is a schematic diagram of an OCC allocation manner according to Embodiment 2 of the present invention;
图 8为本发明实施例三的 OCC分配方式示意图;  8 is a schematic diagram of an OCC allocation manner according to Embodiment 3 of the present invention;
图 9为本发明实施例四的 OCC分配方式示意图。 具体实施方式  FIG. 9 is a schematic diagram of an OCC allocation manner according to Embodiment 4 of the present invention. detailed description
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明所提供的一种导频序列的产生方法, 如图 5 所示, 主要包括以 下步驟:  The technical solutions of the present invention are further elaborated below in conjunction with the accompanying drawings and specific embodiments. A method for generating a pilot sequence provided by the present invention, as shown in FIG. 5, mainly includes the following steps:
步骤 501 , 在各个进行码分复用的 DMRS端口中, 为不同的码分与频 分和 /或时分混合复用组按照不同的准则从 OCC集合中选择 OCC, 和 /或为 不同的码分复用组按照不同的准则产生 DMRS的加扰序列。  Step 501: In each DMRS port that performs code division multiplexing, select an OCC from the OCC set for different code division and frequency division and/or time division hybrid multiplexing groups according to different criteria, and/or be a different code division. The multiplexing group generates a scrambling sequence of the DMRS according to different criteria.
其中, 不同的码分复用組可以按照相反的顺序从 OCC 集合 [occ^.^occ^]中选择 occ, k表示 occ集合中 occ的个数, 为大于 ι 的整数。 下面举例进行说明, 两个码分复用組之间按照相反的顺序从 OCC 集合中选择 OCC , 第一个码分复用組从 OCC集合中选择 OCC的顺序为: 按照第一个码分复用组中 DMRS端口的顺序,从 OCC集合中顺序选择 OCC 与各端口对应, 即 B occ0、 sp" ^ occ,、 sP ^ occ2、 5Λ·3 ^ oca , 第 二个码分复用組从 occ集合中选择 occ的顺序为: 按照第二个码分复用 组中 DMRS端口的顺序, 从 OCC集合中逆序选择 OCC与各端口对应, 即 sp" OCC3、 sP OCC2、 sP2-2 OCCx、 s OCC0。 其中, 表示码分复 用组 中的第 ·个 DMRS端口。 Where different code division multiplexing groups can be collected from the OCC in reverse order Select occ in [occ^.^occ^], where k is the number of occ in the occ set, which is an integer greater than ι. In the following example, the two code division multiplexing groups select OCC from the OCC set in reverse order. The order of the first code division multiplexing group to select the OCC from the OCC set is: According to the first code. The OCC is sequentially selected from the OCC set in the order of the DMRS ports in the group, and corresponds to each port, that is, B occ 0 , s p " ^ occ , , s P ^ occ 2 , 5 Λ · 3 ^ oca , and the second code point The order in which the occ group selects occ from the occ set is: According to the order of the DMRS ports in the second code division multiplexing group, the OCC is selected in reverse order from the OCC set to correspond to each port, that is, s p " OCC 3 , s P OCC 2 , s P2 - 2 OCC x , s OCC 0 . Wherein, the first DMRS port in the code division multiplexing group is represented.
为了分析方便, 下面的实施例中以 2, 3}分别对应端口 {7 8 1 1 13 } , {Ρ2,。, Ρ2 1 , Ρ2,2 , }分别对应端口 {9 10 12 14}为例, 值得说明的是, 在实 际应用时, 也可以定义为其他形式, 例如: 最大为 8个 DMRS端口时, 定 义 DMRS 端口序号 {0〜7} , {χ^Ά}分另1 J对应端口 {0 1 4 6} , {/>。,/> 1, > 2,尸3}分别对应端口 {2 3 5 7}。 For the convenience of analysis, in the following embodiments, 2 , 3 } correspond to ports {7 8 1 1 13 }, {Ρ 2 , respectively. , Ρ 2 1 , Ρ 2 , 2 , } respectively correspond to the port {9 10 12 14} as an example. It is worth noting that, in practical applications, it can also be defined in other forms, for example: When the maximum is 8 DMRS ports, Define the DMRS port number {0~7}, {χ^Ά} to another 1 J corresponding to the port {0 1 4 6} , {/>. , /> 1 , > 2 , corpse 3 } correspond to port {2 3 5 7}.
基于上述的端口对应方式, 在层数目为 5 时, 如果在第一个码分复用 组中选择的 OCC 为: OCC:。、 ^ OCC, , 则在第二个码分复用组中选 择的 OCC为: OCC3、 S[0 ^ OCC2 > ^12 ^ OCC, , 此时由于 DMRS端口 7 所用的 OCC (即 occ。 )与第二个码分复用组中各个端口的 occ均不相同, 因此当用 。进行解扩时, 第二个码分复用组对应的 RE上泄露过来的千 扰将会完全消除。 当最大支持 8 层, 且各个 DMRS 端口的映射釆用 CDM+FDM的混合复用方式时, 具体的 OCC分配方式如图 6所示, 即在第 一个码分复用组中选择的 occ 为: occ。、 ^ occx . s11 ^ oc . s OCC,;在第二个码分复用组中选择的 OCC为: s9 H OCC3、 s10 H occ2、 ^12 OCC,、 OCC,。 需要说明的是, 本发明中的 DMRS端口并非仅限 于在 {7〜14}中选择。 Based on the above port correspondence mode, when the number of layers is 5, if the OCC selected in the first code division multiplexing group is: OCC:. ^ OCC, , then the OCC selected in the second code division multiplexing group is: OCC 3 , S [0 ^ OCC 2 > ^ 12 ^ OCC, , at this time due to the OCC used by DMRS port 7 (ie occ. ) The occ of each port in the second code division multiplexing group is different, so it is used. When performing despreading, the interference that is leaked from the RE corresponding to the second code division multiplexing group will be completely eliminated. When the maximum support layer is 8 and the mapping of each DMRS port is in the hybrid multiplexing mode of CDM+FDM, the specific OCC allocation mode is as shown in FIG. 6, that is, the occ selected in the first code division multiplexing group is : occ. ^ occ x . s 11 ^ oc . s OCC,; The OCC selected in the second code division multiplexing group is: s 9 H OCC 3 , s 10 H occ 2 , ^ 12 OCC, OCC. It should be noted that the DMRS port in the present invention is not limited to Choose from {7~14}.
另外, 本发明也可以为不同的码分复用组分别设置不同的选取起始位 置偏移 , 各个码分复用组从自身对应的 开始, 按照步长 ^顺序选择 In addition, the present invention may also set different selection start position offsets for different code division multiplexing groups, and each code division multiplexing group starts from its own correspondence and selects according to the step size.
OCC, 其中, 表示码分复用组的序号, 和 ;为整数, 且 0≤ <t, l≤A <k。 对于第 ί个码分复用组的第 个 DMRS端口, 其所对应的 OCC 的索引按照以下方式选取: (δ,+η' λ , + a)mod/t, 其中, mod为取模运算, OCC, where denotes the sequence number of the code division multiplexing group, and ; is an integer, and 0 ≤ < t, l ≤ A < k. For the first DMRS port of the ίth code division multiplexing group, the corresponding OCC index is selected as follows: (δ, +η' λ , + a) mod/t, where mod is a modulo operation,
In  In
当 。 为奇数时, "的取值为 0; 当 。;为偶数时, 下面举例进 k when . When it is odd, the value of "is 0; when .;; when it is even, the following example enters k
行说明, 两个码分复用组之间设置不同的起始位置偏移 。和 , 并按照步 长 4」选取 occ。 以^ =0, =1, 却—。=/1 — 1为例, 即: The line description sets a different starting position offset between the two code division multiplexing groups. And , and select occ according to step 4". With ^ =0, =1, but —. =/1 - 1 is an example, namely:
s1 OCC, ss OCCx s 1 OCC, s s OCC x
s9 OCC, s10 0CC2 su OCC3 当按照上述的给定的偏移量和步长选择 0CC时, 在最大支持 8层且各 个端口 DMRS的映射采用 CDM+FDM的混合复用方式时, 具体的 0CC选 择如图 7 所示, 即在第一个码分复用组中选择的 OCC 为: s 7 occ。、 ss ^ OCC, , sll^0CC2. su ^ OCC,;在第二个码分复用组中选择的 OCC为: OCQ、 s10 ^ OCC2 、 s12 OCC,、 s1A ^ OCC0 。 j) 时, 当用 对应的 00 00^对 + + .(^ +^ 。+ 2)进行解扩时, 由于端口 8、 9、 10、 12所采用的 OCC与端口 Ί的 OCC均正交, 因此可以准确恢复出信道 系数 。 s 9 OCC, s 10 0CC 2 s u OCC 3 When 0CC is selected according to the given offset and step size above, when the maximum supported 8 layers and the mapping of each port DMRS adopts the hybrid multiplexing mode of CDM+FDM The specific 0CC selection is shown in Figure 7, that is, the OCC selected in the first code division multiplexing group is: s 7 occ. , s s ^ OCC, , s ll ^0CC 2 . s u ^ OCC,; The OCC selected in the second code division multiplexing group is: OCQ, s 10 ^ OCC 2 , s 12 OCC, s 1A ^ OCC 0 . j), when despreading with the corresponding 00 00^ pair + + .(^ +^ .+ 2 ), since the OCC used by ports 8, 9, 10, and 12 are orthogonal to the OCC of the port ,, Therefore, the channel coefficient can be accurately recovered.
再有, 考虑到与低秩情况的兼容, 在低秩(rank为 1~4)情况下, 不同 的码分复用组中, 可以只有部分 OCC按照相反的顺序从 OCC集合中选择。 在两个不同的码分复用组中, 前 M个 DMRS端口按照相同的顺序从 OCC 集合中选择前 M个 OCC, 后 N个 DMRS端口按照相反的顺序从 OCC集合 中选择后 N个 OCC,其中, M + N为每个码分复用组中最大可复用的 DMRS 端口数量, M、 N都是大于或等于 0, 小于或等于每个 DMRS端口組中最 大可复用的 DMRS端口数的整数, 优选的 M = N。 例如: 在两个码分复用 组中分配 OCC时, 可以将 OCC集合中的部分进行反向分配, 为分析方便, 仍以第一个码分复用组对应 DMRS 端口为 {7811 13}, 第二个码分复用组 对应 DMRS端口为 {9101214}为例, 为第一个码分复用组的各端口按顺序 可以分别选取 OCC。、 OCC, , OCC OCC3, 而对第二个码分复用组的各个 端口 ,仅对 OCC集合中的部分反向选取,为第二个码分复用组的各个 DMRS 端口的顺序分别分配为 occ。、 occ occ3、 occ2。 具体的 occ分配方式 如图 8所示。 Furthermore, considering the compatibility with the low rank case, in the case of low rank (rank 1 to 4), in the different code division multiplexing groups, only part of the OCCs may be selected from the OCC set in reverse order. In two different code division multiplexing groups, the first M DMRS ports select the first M OCCs from the OCC set in the same order, and the last N DMRS ports select the next N OCCs from the OCC set in reverse order, Where M + N is the largest reusable DMRS in each code division multiplexing group The number of ports, M and N, are all integers greater than or equal to 0, less than or equal to the maximum number of multiplexable DMRS ports in each DMRS port group, preferably M = N. For example, when the OCC is allocated in two code division multiplexing groups, the parts in the OCC set can be reversely allocated. For the convenience of analysis, the DMRS port corresponding to the first code division multiplexing group is still {7811 13}. The second code division multiplexing group corresponds to the DMRS port as {9101214}. For each port of the first code division multiplexing group, the OCC can be selected in order. , OCC, , OCC OCC 3 , and for each port of the second code division multiplexing group, only the part in the OCC set is reversely selected, and the order of each DMRS port of the second code division multiplexing group is separately allocated. For occ. , occ occ 3 , occ 2 . The specific occ allocation method is shown in Figure 8.
对于不同的码分复用组按照不同的准则产生 DMRS 的加扰序列的部 分,不同的码分复用组可以采用不同的初始化方式产生 DMRS的加扰序列, 当有两組码分复用组时,第一组按照 cmit = (lns 12」+l). (2NS11 + 1).216 + nscm的初始 化方式产生 DMRS 的加扰序列,
Figure imgf000015_0001
0或 1; 第二组按 照(iP+l)mod2的初始化方式产生 DMRS的加扰序列, 根据 cimt产生加扰序列 的过程与背景技术方式相同。 那么当采用不同的序列时, 由于序列之间为 半正交, 此时当载波间存在干扰时(这里仅仅以两个载波的情况为例), 端 口 7接收到的信号为:
For different code division multiplexing groups, the parts of the scrambling sequence of the DMRS are generated according to different criteria. Different code division multiplexing groups may use different initialization methods to generate a scrambling sequence of the DMRS, when there are two sets of code division multiplexing groups. When the first group generates a scrambling sequence of DMRS according to the initialization mode of c mit = (ln s 12"+l). (2NS 11 + 1).2 16 + n scm ,
Figure imgf000015_0001
0 or 1; The second group generates a scrambling sequence of the DMRS according to the initialization mode of (iP+l) mod2, and the process of generating the scrambling sequence according to the c imt is the same as the background art. Then, when different sequences are used, since the sequences are semi-orthogonal, when there is interference between carriers (here, only two carriers are taken as an example), the signals received by port 7 are:
H7 rcl +H rcl + -{H9s9rc2 +Hwswrc2 +Hnsnrc2) 去 除 导 频 的 序 列 ^ 后 , 为 H7s7+ + β . {H9s9rc + Hlosl0rc2 + Hns12rc2 ) ' conj{rcl ) , 其中, conj—fx)表示对序列 中的元素分别取共轭, 之后用 对应的 OCCOCC。进行解扩时, 设 OCC的 长度为 解扩后为 H+ PWH、。+H\ 。 可以看 出 , 干扰为 k H 7 r cl +H r cl + -{H 9 s 9 r c2 + H w s w r c2 + H n s n r c2 ) After removing the sequence of the pilot ^, it is H 7 s 7 + + β . H 9 s 9 r c + H lo s l0 r c2 + H n s 12 r c2 ) ' conj{r cl ) , where conj-fx) denotes a conjugate of the elements in the sequence, and then uses the corresponding OCCOCC . When performing despreading, let the length of the OCC be H , + PW H after despreading. + H\ . It can be seen that the interference is k
β-(Η9ιοη) ^ 由于 、 Ηο12为伪随机数, 因此相比现有技术中的 k --(Η 9ιοη ) ^ Since , Η , ο , 12 are pseudo-random numbers, so compared to k in the prior art
千扰 H9要小。 步驟 502,将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终 的导频序列。 The interference H 9 is small. Step 502: Multiply the selected OCC with the scrambling sequence to generate a final pilot sequence for each DMRS port.
在步骤 501 中各个实施例给出的 OCC 选择方式中, 为了避免不同 OFDM符号上的功率不同, 在相邻 DMRS载波上, 同一码分复用组的各个 DMRS端口对应的 OCC可以进行反向或循环偏移映射。这里以在相邻载波 上按照各个 DMRS端口对应的 OCC进行循环偏移映射的方式为例进行说 明。 对于其他 OCC的选择方式同样适用。  In the OCC selection manner given in each embodiment in step 501, in order to avoid different powers on different OFDM symbols, on the adjacent DMRS carrier, the OCC corresponding to each DMRS port of the same code division multiplexing group may be reversed or Cyclic offset mapping. Here, a method of performing cyclic offset mapping on the adjacent carrier according to the OCC corresponding to each DMRS port will be described as an example. The same is true for other OCC options.
殳设同一码分复用组的层之间采用的 OCC分别为 OCC。: [1 1 1 1]、 OC : [1 -1 1 -1]、 OCC2: [1 -1 -1 1]、 OCC,: [1 1 -1 -1]。 在相邻的 DMRS 子栽波上,所用的加扰序列分别为 和 , oAwA+wA+w,并假设该 The OCCs used between the layers of the same code division multiplexing group are respectively OCC. : [1 1 1 1], OC : [1 -1 1 -1], OCC 2 : [1 -1 -1 1], OCC,: [1 1 -1 -1]. On the adjacent DMRS subcarriers, the scrambling sequences used are sum, oAwA+wA+w, and assumed
1 1 1 1  1 1 1 1
1 1 -1 -1  1 1 -1 -1
PRB上的预编码权值为 w: , 经过 OCC处理后, 同一栽波对 The precoding weight on the PRB is w : , after the OCC processing, the same wave pair
1 -1 1 -1  1 -1 1 -1
1 -1 -1 1  1 -1 -1 1
应的不同 OFDM符号上的导频信号表示为 一 一¾ The pilot signals on the different OFDM symbols are represented as one-to-one
一 一  One by one
一 一¾  One by one
当不对 OCC 进行反向或偏移映射时, 同一 DMRS 载波对应的不同 OFDM 符 号 在 各 个 天 线 端 口 上 的 发射 信 号 分 别 为 : When the reverse or offset mapping of the OCC is not performed, the transmit signals of the different OFDM symbols corresponding to the same DMRS carrier on each antenna port are:
DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM
符号 1 符号 2 符号 3 符号 4  Symbol 1 symbol 2 symbol 3 symbol 4
端口 0 「4 0 0 0 0 Port 0 "4 0 0 0 0
端口 1 0 0 ,2 0 Port 1 0 0 , 2 0
端口 2 0 0 0 Port 2 0 0 0
端口 3 0 45. 0 0 Port 3 0 45. 0 0
。 可见对于任意一个端口, 出现在在某个 DMRS OFDM符号上的功率增大, 而在其他 DMRS OFDM符号上的功率降^^甚至 没有信号发送问题。 同样,对于相邻的载波上,如果没有 OCC的反向映射, DMRS DMRS DMRS DMRS . It can be seen that for any one port, the power appearing on a certain DMRS OFDM symbol increases, while the power drop on other DMRS OFDM symbols does not even have a signal transmission problem. Similarly, for adjacent carriers, if there is no reverse mapping of OCC, DMRS DMRS DMRS DMRS
OFDM OFDM OFDM OFDM  OFDM OFDM OFDM OFDM
符号 1 符号 2 符号 3 符号 4  Symbol 1 symbol 2 symbol 3 symbol 4
端口 0 0 0 0  Port 0 0 0 0
端口 1 0 0 0  Port 1 0 0 0
端口 2 0 0 0 4si+ Port 2 0 0 0 4s i+
0 0 0  0 0 0
其他的载波上与上面的格式完全相同端口 3 ,因为对于某 一端口,例如 DMRS端口 0,总是在某个 DMRS OFDM符号上功率最大(端 口 0对应 DMRS OFDM符号 1 ), 而在其他符号上没有信号,从而导致不同 DMRS OFDM符号的功率不同。 由于码分复用组 2 采用相同的 OCC分配 方式, 因此与码分复用组 1的情况相同。 The other carriers are exactly the same as the above format, port 3 , because for a certain port, such as DMRS port 0, the power is always the highest on a certain DMRS OFDM symbol (port 0 corresponds to DMRS OFDM symbol 1), and on other symbols There are no signals, resulting in different powers for different DMRS OFDM symbols. Since the code division multiplexing group 2 adopts the same OCC allocation method, it is the same as the case of the code division multiplexing group 1.
本发明通过对 OCC进行反向映射或 SoccJ偏移映射,并结合不同码分复 用组中釆用不同的 OCC分配, 可以降低载波间干 4无对信道估计的影响。 这 里的起始位置偏移 ^^是指针对 OCC集合中的每个长度为 的 OCC, 对 该 OCC进行的偏移 。— , 具体的偏移方式, 可以参考下面实施例所述。 The present invention can reduce the influence of the inter-carrier inter-channel 4 without channel estimation by performing reverse mapping or S occJ offset mapping on the OCC and combining different OCC allocations in different code division multiplexing groups. The starting position offset ^^ here is the offset of the OCC for each length of the OCC in the OCC set. — , The specific offset method can be referred to the following embodiment.
由于通常来讲, 每个码分复用组对应 DMRS端口采用的预编码权值不 同, 因此可以以一个码分复用組说明反向映射或循环偏移映射的作用。 实 际应用中, 可以根据第一个码分复用组的反向映射或循环偏移映射方式按 照相同的格式获得第二个码分复用组的反向映射或循环偏移映射的方式。 需要说明的是, 在前面描述的几种 OCC选择方式下, 该映射方式都适用。 在下面的实施例中, 以循环偏移的方式为例进行说明。  Generally, each code division multiplexing group has a different precoding weight corresponding to the DMRS port, so the role of the reverse mapping or cyclic offset mapping can be explained by a code division multiplexing group. In an actual application, the reverse mapping or cyclic offset mapping of the second code division multiplexing group can be obtained according to the same format in the reverse mapping or cyclic offset mapping manner of the first code division multiplexing group. It should be noted that, in the several OCC selection modes described above, the mapping method is applicable. In the following embodiments, the manner of cyclic offset is taken as an example for explanation.
当釆用 。。―,.循环偏移时, 对应不同的码分复用组! ·,在 OCC映射时, 釆 用不同或相同的起始位置 。。 ;偏移,其中 0≤ SDCCJ < L - 1, L表示 OCC的长度。 此处的起始位置 ∞;是指针对 OCC 集合中的每个长度为 的 occ, 对该 OCC 进 行 的 偏 移 」 。 一 种 的 取 值 方 式 为 <5"occ f = mod(SubcarierIndex + £i , L), 其中 Subcarierlndex表示子载波索引, L表示 每个 OCC的长度。 可以与 ^取相同的值或不同的值, ε;、 表示不同码 分复用組之间的相对偏移量。 为了便于描述, 这里仅以 ς = ^为例进行说明。 对于某个码分复用组, 在相邻的 DMRS子载波上, 所用的加扰序列仍 分别以 和 ,。A+U, ,2, ,3为例。 当第 个该码分复用组对应的 When used. . ―,. When the cyclic offset is used, it corresponds to different code division multiplexing groups! · When OCC mapping, different or the same starting position is used. . ; Offset, where 0≤ S DCCJ <L - 1, L represents the length of the OCC. The starting position here is the offset of the OCC for each OCC in the OCC set, ”. One value is <5" occ f = mod(SubcarierIndex + £ i , L), where Subcarierlndex represents the subcarrier index and L represents the length of each OCC. The same value or different value can be taken with ^ ε;, indicates a different code The relative offset between the sub-multiplex groups. For the convenience of description, only ς = ^ is taken as an example here. For a code division multiplexing group, the scrambling sequences used are still summed in the adjacent DMRS subcarriers. A + U , , 2 , , 3 are examples. When the first code division multiplexing group corresponds
DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM  DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM
端 t  End t
端 t  End t
端!:  End!:
端 t  End t
DMRS 载波上的映射方式为
Figure imgf000018_0001
时, 则在第 ί + l个该
The mapping method on the DMRS carrier is
Figure imgf000018_0001
At the time of the ί + l
DMRS DMRS DMRS DMRS DMRS DMRS DMRS DMRS
OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM
符号 1 符号 2 符号 3 符号 4 端口 0  Symbol 1 symbol 2 symbol 3 symbol 4 port 0
端口 1 ^ϊ  Port 1 ^ϊ
端口 2 一 ,  Port 2 one
端口 3  Port 3
码分复用組对应的 , Corresponding to the code division multiplexing group,
DMRS载波上的映射方式为 设 a b c 。 则在上述的 和 ζ· + 1
Figure imgf000018_0002
The mapping mode on the DMRS carrier is abc. Then in the above ζ· + 1
Figure imgf000018_0002
DMRS载波上, OCC在 4个 OFDM符号上对应各个 DMRS端口的映射分 别为 (a b c ί )和 (b c d a) ,同理,在 f + 3 + 4上, OCC在 4个 OFDM 符号上对应各个 DMRS端口的映射分別为(c d a 6)和 (ί/ a b c)。 假设预编码权值^ , 在相邻的 4 载波上的功率分別为
Figure imgf000018_0003
On the DMRS carrier, the mapping of the OCC to the respective DMRS ports on the four OFDM symbols is (abc ί ) and (bcda) respectively. Similarly, on f + 3 + 4, the OCC corresponds to each DMRS port on the four OFDM symbols. The mappings are (cda 6) and (ί/ abc). Assuming the precoding weight ^, the power on the adjacent 4 carriers is
Figure imgf000018_0003
DMRS DMRS DMRS DMRS DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM  DMRS DMRS DMRS DMRS DMRS DMRS DMRS DMRS OFDM OFDM OFDM OFDM OFDM OFDM OFDM
端口 0 - ; 0 0 0 0 " 端口 0 0 0 4¾ Port 0 - ; 0 0 0 0 "Port 0 0 0 43⁄4
端口 1 0 0 4 0 端口 1 0 0 0 Port 1 0 0 4 0 Port 1 0 0 0
端口 2 0 4 0 0 端口 2 十 0 0 Port 2 0 4 0 0 port 2 ten 0 0
端口 3 0 0 0 4 — 端口 3 0 +1, 0 DMRS DMRS DMRS DMRS DMRS DMRS DMRS DMRS Port 3 0 0 0 4 — Port 3 0 +1 , 0 DMRS DMRS DMRS DMRS DMRS DMRS DMRS DMRS
OFDM OFDM OFDM OFDM OFDM OFDM OFDM OFDM  OFDM OFDM OFDM OFDM OFDM OFDM OFDM
符号 1 符号 2 符号 3 符号 4 符号】 符号 2 符号 3  Symbol 1 symbol 2 symbol 3 symbol 4 symbol] symbol 2 symbol 3
端口 0 0 0 0 端 0 0 0 Port 0 0 0 0 End 0 0 0
端口 1 0 0 0 0 0 0 4 Port 1 0 0 0 0 0 0 4
端口 2 0 0 0 0 0 0 Port 2 0 0 0 0 0 0
端口 0 0 0 0 0 0 Port 0 0 0 0 0 0
」, 可见每个 DMRS端 口在各个符号上循环出现最大值, 从而避免某个符号上某个 OFDM符号发 送功率过大问题。  It can be seen that each DMRS port has a maximum value cyclically on each symbol, thereby avoiding the problem of excessive transmission power of an OFDM symbol on a certain symbol.
当为第一个码分复用组分配 OCC (ΚΧ 、 OCC2、 OCC3 , 而对第二个 码分复用组分配 OCC OCC OCC3、 OCC2时, 对应的分配方式如图 9所 示。 When OCC (ΚΧ, OCC 2 , OCC 3 is allocated for the first code division multiplexing group and OCC OCC OCC 3 and OCC 2 are allocated to the second code division multiplexing group, the corresponding allocation mode is as shown in FIG. .
对应上述导频序列的产生方法, 本发明还提供了一种导频序列的产生 装置, 包括: 选择模块和导频序列产生模块。 选择模块, 用于在各个进行 码分与频分和 /或时分混合复用的 DMRS端口中,为不同的码分复用組按照 不同的准则从 OCC集合中选择 OCC , 和 /或为不同的码分复用组按照不同 的准则产生 DMRS的加扰序列。 具体的: 选择模块可以对不同的码分复用 组按照相反的顺序从 OCC集合 [OCC ^OCG—J中选择 OCC;在低秩情况下, 不同的码分复用组中, 也可以只对部分 OCC按照相反的顺序从 OCC集合 中选择;也为不同的码分复用组分別设置不同的选取起始位置偏移 ,各个 码分复用组从自身对应的 开始, 按照步长 ^ ;顺序选择 OCC; 还可以对 不同的码分复用组采用不同的初始化方式产生 DMRS的加扰序列。 The present invention further provides a pilot sequence generating apparatus, including: a selecting module and a pilot sequence generating module. a selection module, configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different The code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria. Specifically: the selection module may select the OCC from the OCC set [OCC ^OCG_J in different orders for different code division multiplexing groups; in the case of low rank, different code division multiplexing groups, or only The partial OCCs are selected from the OCC set in the reverse order; different pick start position offsets are also set for different code division multiplexing groups, and each code division multiplexing group starts from its own corresponding, according to the step size ; The OCC is selected; the different DMARS scrambling sequences can also be generated by different initialization methods for different code division multiplexing groups.
导频序列产生模块, 用于将所选择的 OCC 与加扰序列相乘产生各个 DMRS端口最终的导频序列。具体的:在将选择的 OCC与加扰序列相乘时, 相邻 DMRS载波上, 可以为各个 DMRS端口对应的 OCC进行反向映射; 或者, 对应不同的码分复用组 在 OCC映射时, 采用不同或相同的起始 位置 S。CCJ偏移, 其中 0≤ < L - L表示 OCC的长度。 And a pilot sequence generating module, configured to multiply the selected OCC and the scrambling sequence to generate a final pilot sequence of each DMRS port. Specifically, when the selected OCC is multiplied by the scrambling sequence, the adjacent DMRS carriers may be inversely mapped for the OCC corresponding to each DMRS port; or, when the different code division multiplexing groups are mapped in the OCC, Different or identical starting positions S are used. CCJ offset, where 0 ≤ < L - L represents the length of the OCC.
综上所述, 通过本发明能够降低不同 CDM端口组之间对应的层, 降低 由于多普勒频移及定时误差问题造成的载波间干扰对信道估计的影响, 提 高信道估计的精度。 In summary, the present invention can reduce the corresponding layer between different CDM port groups, and reduce The accuracy of channel estimation is improved due to the influence of inter-carrier interference on channel estimation caused by Doppler shift and timing error.
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。  The above is only the preferred embodiment of the present invention and is not intended to limit the scope of the present invention.

Claims

权利要求书 Claim
1、 一种导频序列的产生方法, 其特征在于, 该方法包括:  A method for generating a pilot sequence, the method comprising:
在各个进行码分与频分和 /或时分混合复用的解调参考符号( DMRS ) 端口中, 为不同的码分复用组按照不同的准则从正交掩码 ( OCC ) 集合中 选择 OCC, 和 /或为不同的码分复用组按照不同的准则产生 DMRS的加扰 序列;  Selecting an OCC from an orthogonal mask (OCC) set for different code division multiplexing groups in different demodulation reference symbol (DMRS) ports for performing code division and frequency division and/or time division hybrid multiplexing. And/or generating a scrambling sequence of the DMRS according to different criteria for different code division multiplexing groups;
将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导频序 列。  The selected OCC is multiplied by the scrambling sequence to produce the final pilot sequence for each DMRS port.
2、 根据权利要求 1所述导频序列的产生方法, 其特征在于, 所述为不 同的码分复用組按照不同的准则从 OCC集合中选择 OCC , 具体为:  2. The method for generating a pilot sequence according to claim 1, wherein the different code division multiplexing groups select OCC from the OCC set according to different criteria, specifically:
所述不同的码分复用组按照相反的顺序从 OCC集合^^^。,...,。^^^中 选择 OCC, 其中 A表示 OCC集合中 OCC的个数, /t为大于 1的整数。  The different code division multiplexing groups are aggregated from the OCC in reverse order. ,...,. ^^^ Select OCC, where A is the number of OCCs in the OCC set, and /t is an integer greater than 1.
3、 根据权利要求 1所述导频序列的产生方法, 其特征在于, 所述为不 同的码分复用組按照不同的准则从 OCC集合中选择 OCC , 具体为:  The method for generating a pilot sequence according to claim 1, wherein the different code division multiplexing groups select OCC from the OCC set according to different criteria, specifically:
所述不同的码分复用组中, 只有部分 OCC按照相反的顺序从 OCC集 合中选择, 具体包括: 在两个不同的码分复用组中, 前 M个 DMRS端口按 照相同的顺序从 OCC集合中选择前 M个 OCC, 后 N个 DMRS端口按照相 反的顺序从 OCC集合中选择后 N个 OCC, 其中, 为每个码分复用组 中最大可复用的 DMRS端口数量。  In the different code division multiplexing groups, only part of the OCCs are selected from the OCC set in reverse order, including: In two different code division multiplexing groups, the first M DMRS ports are in the same order from the OCC. The first M OCCs are selected in the set, and the last N DMRS ports select the next N OCCs from the OCC set in reverse order, where is the maximum number of multiplexable DMRS ports in each code division multiplexing group.
4、 根据权利要求 1所述导频序列的产生方法, 其特征在于, 所述为不 同的码分复用组按照不同的准则从 OCC集合中选择 OCC , 具体为:  The method for generating a pilot sequence according to claim 1, wherein the different code division multiplexing groups select OCC from the OCC set according to different criteria, specifically:
为所述不同的码分复用组分别设置不同的选取起始位置偏移 , 各个 码分复用组从自身对应的 开始, 按照步长 ^ 顺序选择 OCC, 其中, ί表 示码分复用组的序号, 和 4^·为整数, 且 0 l≤ tep i < k 。 Setting different selection start position offsets for the different code division multiplexing groups, each code division multiplexing group starts from its own correspondence, and selects OCC according to the step size ^, wherein ί indicates a code division multiplexing group. The serial number, and 4^· are integers, and 0 l ≤ tep i < k .
5、 根据权利要求 4所述导频序列的产生方法, 其特征在于, 所述对于 第 i个码分复用组的第《个 DMRS端口, 其所对应的 OCC的索引按照以下 方式选取: (δ;+η- step + a) mod k , The method for generating a pilot sequence according to claim 4, wherein the index of the corresponding OCRS port of the i-th code division multiplexing group is selected as follows: δ ; +η- step + a) mod k ,
其中, mod为取模运算, 当 , 为奇数时, "的取值为 0; 当 ^ 为偶
Figure imgf000022_0001
Where mod is the modulo operation, and when it is an odd number, the value of "is 0; when ^ is even
Figure imgf000022_0001
6、 根据权利要求 1所述导频序列的产生方法, 其特征在于, 所述为不 同的码分复用组按照不同的准则产生 DMRS的加扰序列, 具体为:  The method for generating a pilot sequence according to claim 1, wherein the different code division multiplexing groups generate a scrambling sequence of the DMRS according to different criteria, specifically:
所述不同的码分复用组采用不同的初始化方式产生 DMRS 的加 #序 列 , 当 有 两 组 码 分 复 用 组 时 , 第 一 组 按 照 ciBit = (k 2j + l)-(2N^u + 1)·216 + nscro的初始化方式产生 DMRS的加扰序列, 其中默 «scro = , ζ3 = 0或 1; 第二组按照 cm=(p+l)mod2的初始化方式产 生 DMRS的加扰序列。 The different code division multiplexing groups use different initialization methods to generate a # sequence of DMRS. When there are two sets of code division multiplexing groups, the first group follows c iBit = (k 2j + l)-(2N^ u + 1)·2 16 + n scro initialization method generates a scrambling sequence of DMRS, where 默 « scro = , ζ 3 = 0 or 1; the second group generates DMRS according to the initialization mode of cm = (p + l) mod2 Scrambling sequence.
7、根据权利要求 1至 6任一项所述导频序列的产生方法,其特征在于, 所述将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导频序 列, 具体为:  The method for generating a pilot sequence according to any one of claims 1 to 6, wherein the multiplying the selected OCC and the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
在将选择的 OCC与加扰序列相乘时,相邻 DMRS载波上,各个 DMRS 端口对应的 OCC进行反向映射。  When the selected OCC is multiplied by the scrambling sequence, the OCC corresponding to each DMRS port is inversely mapped on the adjacent DMRS carrier.
8、根据权利要求 1至 6任一项所述导频序列的产生方法,其特征在于, 所述将所选择的 OCC与加扰序列相乘产生各个 DMRS端口最终的导频序 列, 具体为:  The method for generating a pilot sequence according to any one of claims 1 to 6, wherein the multiplying the selected OCC and the scrambling sequence to generate a final pilot sequence of each DMRS port is specifically:
对应不同的码分复用组 , 在 OCC映射时, 采用不同或相同的起始位 置 — ,偏移' 其中 0≤ ^ < - 1, 表示 OCC的长度。  Corresponding to different code division multiplexing groups, when OCC mapping, different or the same starting position is used - and offset 'where 0 ≤ ^ < - 1, indicating the length of the OCC.
9、 根据权利要求 8任一项所述导频序列的产生方法, 其特征在于, 所 述 ¾cc i的取值为 mod(SubcarierIndex + e L) , 其中, Subcarierlndex表示子载波索 引, 表示每个 OCC的长度。 The method for generating a pilot sequence according to any one of the preceding claims, wherein the value of the 3⁄4cc i is mod (SubcarierIndex + e L), where Subcarierlndex represents a subcarrier cable Quote, indicating the length of each OCC.
10、 一种导频序列的产生装置, 其特征在于, 该装置包括:  10. A device for generating a pilot sequence, the device comprising:
选择模块,用于在各个进行码分与频分和 /或时分混合复用的 DMRS端 口中, 为不同的码分复用组按照不同的准则从 OCC集合中选择 OCC, 和 / 或为不同的码分复用组按照不同的准则产生 DMRS的加扰序列;  a selection module, configured to select an OCC from a set of OCCs for different code division multiplexing groups in different DMRS ports for performing code division and frequency division and/or time division hybrid multiplexing, and/or different The code division multiplexing group generates a scrambling sequence of the DMRS according to different criteria;
导频序列产生模块, 用于将所选择的 OCC 与加扰序列相乘产生各个 DMRS端口最终的导频序列。  A pilot sequence generating module is configured to multiply the selected OCC by a scrambling sequence to generate a final pilot sequence for each DMRS port.
11、 根据权利要求 10所述导频序列的产生装置, 其特征在于, 所述选 择模块进一步用于, 对不同的码分复用组按照相反的顺序从 OCC 集合 [0 。,...,6> ^— J中选择 OCC, 其中/ 1表示 OCC集合中 OCC的个数, t为大 于 1的整数。  The apparatus for generating pilot sequences according to claim 10, wherein the selection module is further configured to collect from the OCCs in different orders for different code division multiplexing groups [0. ,...,6> ^—J selects OCC, where / 1 represents the number of OCCs in the OCC set, and t is an integer greater than 1.
12、 根据权利要求 11所述导频序列的产生装置, 其特征在于, 所述选 择模块进一步用于, 在不同的码分复用组中, 只对部分 OCC按照相反的顺 序从 OCC集合中选择。  The apparatus for generating a pilot sequence according to claim 11, wherein the selecting module is further configured to: select, in a different code division multiplexing group, only part of the OCCs from the OCC set in reverse order .
13、 根据权利要求 10所述导频序列的产生装置, 其特征在于, 所述选 择模块进一步用于, 为所述不同的码分复用组分别设置不同的选取起始位 置偏移 , 各个码分复用组从自身对应的 开始, 按照步长 ^顺序选择 The apparatus for generating a pilot sequence according to claim 10, wherein the selecting module is further configured to separately set different selection start position offsets for the different code division multiplexing groups, each code The sub-multiplexing group starts from its own correspondence and selects according to the step size
OCC , 其中, ζ·表示码分复用组的序号, 和 lstep i为整数, JL 0≤di < k , ι≤0 。 OCC , where ζ · represents the sequence number of the code division multiplexing group, and l step i is an integer, JL 0 ≤ d i < k , ι ≤ 0.
14、 根据权利要求 13所述导频序列的产生装置, 其特征在于, 所述选 择模块进一步用于, 对于第 i个码分复用組的第《个 DMRS端口, 按照以下 方式选取其所对应的 OCC的索引: ( + " · Xstep t + a) mod k , The apparatus for generating a pilot sequence according to claim 13, wherein the selecting module is further configured to: select, for the DMRS port of the i-th code division multiplexing group, according to the following manner Index of OCC: ( + " · X step t + a) mod k ,
其中, mod为取模运算, 当 ^为奇数时, 的取值为 0; 当 Λ ρ ί为偶 数时, = 。 Where mod is the modulo operation, when ^ is an odd number, the value is 0; when Λ ρ ί is an even number, = .
k k
15、 根据权利要求 10所述导频序列的产生装置, 其特征在于, 所述选 择模块进一步用于, 对不同的码分复用组采用不同的初始化方式产生 DMRS 的加 4尤序列 , 当有两组码分复用組时, 第一组按照 ciBit = ([n /2j + l) - (2N∞u + 1)· 216 + nscro的初始化方式产生 DMRS的加扰序列, 其中默认 ^ = , = 0或 1 ; 第二組按照《scro = (p+l) mod2的初始化方式产 生 DMRS的加护 ύ序列。 The apparatus for generating a pilot sequence according to claim 10, wherein the selecting module is further configured to: use different initialization manners for different code division multiplexing groups to generate a ADD sequence of the DMRS, when When two sets of code division multiplexing groups, the first group generates a scrambling sequence of DMRS according to the initialization mode of c iBit = ([n /2j + l) - (2N∞ u + 1) · 2 16 + n scro , where the default ^ = , = 0 or 1 ; The second group generates the DMRS sequence according to the initialization method of scro = (p+l) mod2.
16、 根据权利要求 10至 15任一项所述导频序列的产生装置, 其特征 在于, 所述导频序列产生模块进一步用于, 在将选择的 OCC与加扰序列相 乘时,相邻 DMRS载波上, 为各个 DMRS端口对应的 OCC进行反向映射。  The pilot sequence generating apparatus according to any one of claims 10 to 15, wherein the pilot sequence generating module is further configured to: when multiplying the selected OCC by the scrambling sequence, adjacent On the DMRS carrier, reverse mapping is performed for the OCC corresponding to each DMRS port.
17、 根据权利要求 10至 15任一项所述导频序列的产生装置, 其特征 在于, 所述导频序列产生模块进一步用于, 对应不同的码分复用组 ί , 在 OCC映射时, 采用不同或相同的起始位置 U為移, 其中 0≤«^ ; < _l, L 表示 OCC的长度。 The pilot sequence generating apparatus according to any one of claims 10 to 15, wherein the pilot sequence generating module is further configured to correspond to different code division multiplexing groups ί, when OCC mapping, Use different or the same starting position U as the shift, where 0 ≤ «^ ; < _l, L represents the length of the OCC.
18、 根据权利要求 17任一项所述导频序列的产生装置, 其特征在于, 所述 ^occ;的取值为鶴 <i(SubcarierIndex + £„L) , 其中' Subcarierlndex表示子载波 索引, 表示每个 OCC的长度。  The apparatus for generating a pilot sequence according to any one of claims 17 to 17, wherein the value of ^occ; is a value of <i(SubcarierIndex + £„L), where 'Subcarierlndex indicates a subcarrier index, Indicates the length of each OCC.
PCT/CN2011/071492 2010-03-26 2011-03-03 Method and apparatus for generating pilot sequence WO2011116651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010133375.7A CN102202027B (en) 2010-03-26 2010-03-26 A kind of production method of pilot frequency sequence and device
CN201010133375.7 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011116651A1 true WO2011116651A1 (en) 2011-09-29

Family

ID=44662427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071492 WO2011116651A1 (en) 2010-03-26 2011-03-03 Method and apparatus for generating pilot sequence

Country Status (2)

Country Link
CN (1) CN102202027B (en)
WO (1) WO2011116651A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107025A1 (en) * 2012-01-19 2013-07-25 Panasonic Corporation Method of scrambling reference signals, device and user equipment using the method
US10038534B2 (en) 2012-01-19 2018-07-31 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
WO2019222875A1 (en) * 2018-05-21 2019-11-28 Qualcomm Incorporated Techniques and apparatuses for configuring demodulation reference signals in grant-free uplink non-orthogonal multiple access systems

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013048220A1 (en) 2011-09-30 2013-04-04 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving signal in distributed antenna system
KR20130035830A (en) * 2011-09-30 2013-04-09 삼성전자주식회사 Method for apparatus for transmitting and receiving signal in distribution antenna system
CN103220071B (en) * 2012-01-20 2018-03-23 中兴通讯股份有限公司 A kind of Notification Method and system of uplink demodulation pilot tone control signaling
CN103391155B (en) * 2012-05-11 2016-12-14 华为技术有限公司 The collocation method of reference signal, base station and subscriber equipment
CN104995975B (en) * 2013-06-19 2019-06-28 华为技术有限公司 A kind of method and apparatus of interference coordination
CN108809607B (en) * 2014-05-29 2019-07-12 华为技术有限公司 Demodulate pilot frequency collocation method and device
CN105790904B (en) * 2014-12-16 2019-06-21 北京信威通信技术股份有限公司 A kind of extended method for the maximum antenna port number being multiplexed same pilot resource
CN106712915B (en) * 2015-11-16 2020-06-30 中国移动通信集团公司 Method, device, base station and terminal for sending demodulation reference signal
CN107181579A (en) * 2016-03-11 2017-09-19 北京信威通信技术股份有限公司 A kind of descending DMRS resource multiplexing methods
CN109150438B (en) * 2017-06-16 2020-12-25 展讯通信(上海)有限公司 Frequency domain position configuration method, base station, computer readable medium and system
CN109391414B (en) * 2017-08-11 2020-10-16 电信科学技术研究院 DMRS antenna port determination method, user terminal and network side equipment
CN109391359B (en) * 2017-08-11 2022-05-10 华为技术有限公司 Method, network equipment and terminal equipment for data transmission
CN108111275B (en) * 2017-08-11 2022-01-28 中兴通讯股份有限公司 Method and device for configuring reference signal information
CN109842471B (en) * 2017-11-24 2021-06-29 维沃移动通信有限公司 Transmission method of demodulation reference signal DMRS, network equipment and terminal
WO2019136647A1 (en) * 2018-01-10 2019-07-18 富士通株式会社 Data transmitting method and device, and communication system
CN108400829B (en) * 2018-02-09 2019-12-06 北京松果电子有限公司 method and device for generating ZC sequence
CN108683624B (en) * 2018-05-10 2020-04-07 西安电子科技大学 Burst OFDM frequency offset estimation method based on interference self-cancellation technology
KR102654120B1 (en) * 2018-09-05 2024-04-04 삼성전자주식회사 Method and apparatus for reference signal sequence generation for reducing peak-to-average-power-ratio in wireless communication systems
CN115473617A (en) * 2018-09-14 2022-12-13 华为技术有限公司 Reference signal configuration method and device
CN110912666B (en) * 2018-09-14 2023-12-29 华为技术有限公司 Reference signal and sequence configuration method and device
CN110535594B (en) * 2018-10-22 2022-11-01 中兴通讯股份有限公司 Pilot sequence configuration method and device, electronic equipment and storage medium
CN111385074B (en) * 2018-12-28 2023-10-17 中兴通讯股份有限公司 Reference signal processing method and device
CN112104444B (en) * 2019-06-17 2022-04-08 中国移动通信有限公司研究院 Reference signal sending method, terminal and network side equipment
WO2022052073A1 (en) * 2020-09-11 2022-03-17 北京小米移动软件有限公司 Channel estimation method, apparatus, communication device, and storage medium
CN112702290B (en) * 2021-03-23 2021-06-29 新华三技术有限公司 Channel estimation method and device
CN113079118B (en) * 2021-03-23 2023-01-24 展讯通信(上海)有限公司 Channel estimation method and device based on OCC sequence grouping, storage medium and computer equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621492A (en) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 Resource determining method of special demodulation data reference signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309134B (en) * 2008-06-23 2013-03-27 中兴通讯股份有限公司 Notifying method of downlink data receiving status
KR20100017039A (en) * 2008-08-05 2010-02-16 엘지전자 주식회사 Method for transmitting data in multiple antenna system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621492A (en) * 2009-08-14 2010-01-06 中兴通讯股份有限公司 Resource determining method of special demodulation data reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATR.: "Views on layer mapping to DM-RS ports and downlink signalling for rank 3-8", 3GPP TSG-RAN WG1L MEETING #60, RL-101026, 26 February 2010 (2010-02-26), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_60/Docs/R1-101026.zip> *
ERICSSON, ST-ERICSSON: "Layer-to-antenna port mapping for LTE-Advanced", 3GPPTSG-RAN WG1 #60, RL-100848, 26 February 2010 (2010-02-26), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_rl1/TSGR1_60/Docs/R1-100848.zip> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107025A1 (en) * 2012-01-19 2013-07-25 Panasonic Corporation Method of scrambling reference signals, device and user equipment using the method
US9712299B2 (en) 2012-01-19 2017-07-18 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US10038534B2 (en) 2012-01-19 2018-07-31 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US10727997B2 (en) 2012-01-19 2020-07-28 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
US11552759B2 (en) 2012-01-19 2023-01-10 Sun Patent Trust Method of scrambling reference signals, device and user equipment using the method
WO2019222875A1 (en) * 2018-05-21 2019-11-28 Qualcomm Incorporated Techniques and apparatuses for configuring demodulation reference signals in grant-free uplink non-orthogonal multiple access systems

Also Published As

Publication number Publication date
CN102202027A (en) 2011-09-28
CN102202027B (en) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2011116651A1 (en) Method and apparatus for generating pilot sequence
JP5612124B2 (en) Method and apparatus for channel estimation and detection in a MIMO system
CN102437986B (en) Reference signal mapping method and device
KR101690150B1 (en) Method and apparatus for optimizing power distribution between symbols
US8982834B2 (en) Method and apparatus for transmitting a reference signal in a multi-antenna system
CA2805223C (en) Method and system for multiplexing acknowledgement signals and sounding reference signals
JP5417536B2 (en) Method and apparatus for mapping multiple layers to multiple antenna ports in a wireless communication system
US8804647B2 (en) Method and apparatus for generating an uplink reference signal sequence in a wireless communication system
US8902849B2 (en) Method and apparatus for transmitting a reference signal in a multi-antenna system
CN102148659B (en) The transmit power collocation method and device of demodulated reference signal
EP2421184B1 (en) Method and apparatus for transmitting reference signals in a multi-antenna system
CN102271109B (en) A kind of mapping method of demodulation reference mark and system
TWI423608B (en) Methods and apparatus for generating and mapping of orthogonal cover code
WO2011097923A1 (en) Pre-coding method and apparatus based on mixed multiplexing demodulation reference signals
JP2013502135A5 (en)
EP2409434A1 (en) Insertion of downlink demodulation reference signals into ofdm frames
CN102123013B (en) Method and device for mapping demodulation reference signals (DMRS)
WO2012071721A1 (en) Method for transmitting reference signals, base station and mobile terminal
WO2011160473A1 (en) Method and apparatus for transmitting channel measurement pilot
CN102123022B (en) Method and device for mapping demodulation reference signals (DMRS)
WO2010124456A1 (en) Data transmitting processing method and apparatus, data receiving processing method and apparatus
CN102377719A (en) Data symbol orthogonal processing method and device
JP5938073B2 (en) Method and apparatus for channel estimation and detection in a MIMO system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11758761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11758761

Country of ref document: EP

Kind code of ref document: A1