WO2011116537A1 - 强地震短临预测卫星热红外亮温异常方法 - Google Patents

强地震短临预测卫星热红外亮温异常方法 Download PDF

Info

Publication number
WO2011116537A1
WO2011116537A1 PCT/CN2010/071702 CN2010071702W WO2011116537A1 WO 2011116537 A1 WO2011116537 A1 WO 2011116537A1 CN 2010071702 W CN2010071702 W CN 2010071702W WO 2011116537 A1 WO2011116537 A1 WO 2011116537A1
Authority
WO
WIPO (PCT)
Prior art keywords
earthquake
temperature
satellite
epicenter
satellites
Prior art date
Application number
PCT/CN2010/071702
Other languages
English (en)
French (fr)
Inventor
强祖基
胡中书
臧协礼
胡丰厚
刘波
曾佐勋
强进
Original Assignee
Qiang Zuji
Hu Zhongshu
Zang Xieli
Hu Fenghou
Liu Bo
Zeng Zuoxun
Qiang Jin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiang Zuji, Hu Zhongshu, Zang Xieli, Hu Fenghou, Liu Bo, Zeng Zuoxun, Qiang Jin filed Critical Qiang Zuji
Publication of WO2011116537A1 publication Critical patent/WO2011116537A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes

Definitions

  • the invention relates to a technique for short-term predicting satellite thermal infrared brightness temperature anomaly of strong earthquakes, that is, using satellite thermal infrared brightness temperature abnormality to make short-term earthquake prediction, specifically A short-term prediction method for the three elements of earthquakes (intensity time, location, and magnitude).
  • the invention belongs to the field of remote sensing and seismology.
  • Earthquake prediction is a major problem in today's world. It is at the exploratory stage both at home and abroad, and has been slow for decades. There are four air pockets inside the earth, plus an atmosphere outside the earth. These five airspheres move in the mutual movement. Before the earthquake was born and earthquaked, the rock layers were stressed in the vast area around the earthquake. Micro-cracks appeared, leading to the earth. A large amount of exhaust gas, such as CH 4 , C0 2 , C0, H 2 , H+, He, H 2 0, etc. from the deep earth can overflow, which can cause the temperature of the earth's interface to warm up or the cloud to cool down. The inventor started the experiment in October 1989, and made hundreds of predictions and analyses on the earthquake, and succeeded.
  • the US Arthur polar orbiting satellite, the Japanese sunflower geostationary satellite and the Chinese Fengyun 1, 2 satellites are observed.
  • the polar orbiting satellite scan area is 2800 km wide and thousands of kilometers long, while a geostationary map of the geostationary satellite Covering an area of 6,000 x 10,000 square kilometers, this satellite scan image is available in one hour.
  • the Arthur satellite can measure the brightness temperature, while the sunflower satellite has the same temperature (bright temperature) resolution as high as 0.
  • the thermal infrared data provided by satellite has the advantages of accuracy, reliability, wide coverage, large amount of information and fast transmission speed, the technology has a breakthrough in predicting the success rate of earthquakes. That is to say, the present invention will heat the satellite remote sensing today.
  • Infrared technology is put into the earth observation, and with the help of GIS and computer operation, a large amount of information is collected for analysis and use, and the sudden increase of temperature and temperature drop on the earth interface formed by the coupling of the earth and the atmosphere is captured. Unlike the general weather warming anomaly, the thermal infrared cooling anomaly has a close causal relationship with the earthquake.
  • the inventor filed a Chinese patent application entitled "Using Satellite Thermal Infrared Brightness and Temperature Anomaly for Earthquake Imminent Prediction" on March 15, 1990: CN90101272. 6 (The patent was filed on July 1, 1992. Authorization). The new content of this technology needs to be supplemented.
  • the object of the present invention is to make the satellite thermal infrared temperature anomaly short-term prediction of earthquake
  • the method further improves the prediction success rate, especially narrows the epicenter location range, and accurately divides the seismogenic time into two short-term and adjacent ranges, and further eliminates the interference factors that influence the prediction.
  • the invention has been applied to various regions and corners of the world in order to minimize the harm of earthquakes to humans.
  • the technical measures adopted for carrying out the above object of the present invention are as follows:
  • the color grade can be applied to different seasons and different latitude regions, and it is easy to capture the satellite thermal infrared brightness temperature warming and An abnormal precursor to cooling.
  • the color grade ie the brightness temperature grade, can be between 0.5°K and 5° ⁇ , for example, north and N10. Separate from 35° on the bright temperature range, 2° to 3° ⁇ for each grade, and ⁇ for the north of ⁇ 40°, and in the equatorial region (in Indonesia and other places) and in the polar regions (New Zealand, 5° ⁇ 5° ⁇ The temperature values of each grade in Iceland and other places are 0.
  • different brightness and temperature grades can be used in summer and winter.
  • the gray value obtained by the scanner can be corrected by the atmospheric model to obtain the actual temperature value, and the conversion of addition and subtraction ⁇ is adopted according to the actual situation of each place.
  • the topography and air mass form it is used to distinguish between the temperature increase and the temperature decrease caused by the earthquake or the temperature increase and decrease of the meteorological process, and to eliminate the interference information caused by the terrain and weather factors, for example, according to the thermal abnormality pattern at 12 to 18 o'clock (World Time) per day. Crossing different topographical and geomorphic units, if it is a precursor to earthquakes, otherwise it is caused by the weather.
  • the method proposed by the present invention predicted a total of 99 earthquakes of magnitude 5 or higher from October 1989 to the end of 2000, of which 62 were more successful, that is, the prediction of time, place and magnitude was more accurate. From this, the relationship between the anomalous characteristics of the earthquake's precursor infrared thermal temperature and its evolution law and the short-term prediction of the three elements of the earthquake are summarized:
  • the location of the epicenter can be divided into three types. One is the future epicenter and its periphery, and there is a thermal anomaly. Then the peripheral warming anomaly expands obviously and approaches the epicenter. The last two thermal anomalies are connected. The abnormal temperature edge in the forward direction is the future epicenter. The other type is the peripheral warming anomaly. As time advances toward the epicenter, the direction of the warming zone and the intersection of the structural zone or the strong earthquake zone is the future epicenter. The third type is that when earthquakes occur in the inland plateau region, temperature anomalies may occur in some low-lying valleys. These areas of warming can show certain stress hotlines. These stress hotspots meet in the future. Epicenter location.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

强地震短临预测卫星热红外亮温异常方法 本发明涉及一种强地震短临预测卫星热红外亮温异常技术, 也就 是用卫星热红外亮温温度异常做地震短临预测, 确切地说是做中强以 上地震三要素 (发震时间、 地点和震级)的短临预测方法。 本发明属于 遥感和地震学领域。
地震预测, 特别是短临预测是当今世界一大难题, 国内外都处在 探索阶段, 数十年进展缓慢。 地球内部有 4个气圈, 加上地球外的一 个大气圈, 这 5个气圈在相互运动着, 当地震孕育及发震前, 在地震 周围广大地区岩层受力, 微裂隙出现, 导致地球大量排气, 来自地球 深部的 CH4、 C02、 C0、 H2、 H+、 He、 H20等气体溢出, 可以引起地球界 面升温或云的降温现象。 本发明人在 1989年 10月开始试验, 对地震 做过数百次预测分析并获得成功, 从此对地震预测这一难题开创了一 条全新的途径和方法, 即主要是利用载有红外波段扫描仪的美国诺阿 极轨卫星、 日本葵花静止卫星和中国风云 1、 2号卫星进行观测, 其 中极轨卫星扫描面积为一条轨道宽 2800公里, 长可达数千公里, 而 静止卫星一幅气象图可覆盖面积达 6000x10000平方公里, 这种卫星 扫描图象 1小时就可获得。 其中诺阿卫星可测亮温温度, 而葵花卫星 同样, 前者温度(亮温)分辨率高达 0. 5°C, 而后者的时间分辨率高, 因此将测得的亮温温度异常变化与同时间绝对温度进行温度异常的 对比定量计算, 就能及时准确掌握地面、 水面温度的动态演化和热冷 应力场特征。由于通过卫星提供热红外资料具有准确可靠、覆盖面广、 信息量大而且传输速度快等优点, 使此项技术预测地震的成功率有突 破性的提高, 这就是说, 本发明将当今卫星遥感热红外技术投入对地 球观测, 借助地理信息系统和计算机运行, 大量信息被采集供人们分 析使用, 捕捉到地球与大气耦合作用所形成的地球界面上的突发性增 温和降温异常, 这种现象不同于一般天气增温异常, 热红外降温异常 与地震具有密切的因果关系。 本发明人于 1990年 3月 15日提出一份题为 "用卫星热红外亮温 异常做地震临震预报" 的中国专利申请案: CN90101272. 6 (该专利已 于 1992年 7月 1 日被授权)。 此项技术又有新的内容需要补充,因而 又于 1999年 3月 5 日提出一份题为 "用卫星热红外增温异常做地震 短临预报" 的中国专利申请案: CN97100774. 8 (该专利已 2002年 10月 2日被授权), 鉴于近两年地震频繁发生, 星座卫星带有微波探测云下 温度计升空使我们在地震预测研究过程中又积累了大量的资料数据, 并从中总结出卫星热红外亮温异常地震预测新技术。为此我们再次提 出本专利申请案: "强地震短临预测卫星热红外亮温异常技术" 。 统 计表明, 采用这一方法可使地震短临预测的成功率达到更高水平。 尽 管如此, 在地震三要素的确定上仍存在许多不足: 例如确定震中位置 上待进一歩缩小范围; 发震时间上待精确划分短期和临近两个类型; 进一歩探索并排除影响预测的除云之外其它干扰因素。
本发明专利申请的创新点如下所述, 这些创新点使得此项技术在 2008年的地震预测预报技术获得显著进展。
对于应用热红外预测地震时, 除了震前有升温异常现象之外, 可 能出现特殊的地震前兆现象:
1、 可能在孕震区域云层上方出现降温圆环现象。 该现象显示出 区域性震前特征。 例如中国东部 1998年 1月 10日张北一尚义 6. 2级 地震前在该区域上空曾出现明显的降温环现象。
2、 孕震区域上空出现亮温增温圆环, 此次 2008年四川汶川大地 震前 13天和 7天就出现了增温震兆。 提出涡旋上涌运动是震前主热 应力场。
3、 当地震发生在内陆高原区域时, 由于地形起伏复杂, 难于观 察和分辨地震前兆异常现象, 此时在一些低洼河谷地带可能出现增温 异常, 连结这些增温区域能显示出一定的应力热线, 而这些应力热线 的交汇部位则为未来震中。 例如 1997年 11月 8日西藏那曲玛尼 7. 5 级地震前, 1999年 9月 21 日台湾集集 7. 6级大地震, 2001年 11月 14日昆仑山口西 8. 1级, 2008年四川汶川 8. 0级大地震 2009年 1月 13日海地强震 7. 3和 2010年 2月 27日智利巨震 8. 8在孕震区域出现 应力热线、 场震兆。
本发明的目的是使这种卫星热红外温度异常做地震短临预测的 方法进一歩提高其预测成功率, 特别是缩小其震中位置范围, 精确地 将发震时间划分为短期和临近两个范围, 进一歩排除影响预测的干扰 因素。 本发明已适用于全球各个地区和角落, 以便在最大程度上减轻 地震对人类的危害。
实施本发明上述目的而采用的技术措施如下所述: 对卫星热红外 云图的彩色密度分割档次, 其色彩档次可对不同季节、 不同纬度地区 都适用, 易于捕捉到卫星热红外亮温增温和降温异常前兆。 其中色彩 档次即亮温档次可在 0. 5°K至 5°Κ之间, 例如匿以北与 N10。至 35° 在亮温分档上分开, 每档次温度值为 2°至 3°Κ, 而 Ν40°以北则用 ΓΚ 分档, 而在赤道地区(印度尼西亚等地)和在极地地区(新西兰、 冰岛 等地)每档次温度值分别为 0. 5°Κ至 5°Κ。 而且夏季和冬季可采用不同 的亮温分档档次。扫描仪所得灰度值可经大气模型校正获得实际温度 值, 并根据各地实际情况, 采取加减 ΓΚ的换算。 根据地形和气团形 态来区别地震引起的增温和降温还是气象过程增温和降温,排除掉地 形、 天气因素导致的干扰信息, 例如根据热异常形态在每日 12至 18 时 (世界时)是否跨越不同地形地貌单元, 若是则为地震前兆,否则就 是天气所致。
本发明提出的方法自 1989年 10月至 2000年年底总共预测了 5 级以上地震 99次, 其中 62次较为成功, 即时间、 地点和震级的预测 都较为精确。 由此总结出地震前兆热红外亮温温度异常特性及其演变 规律对地震三要素短临预测的关系:
(1)时间: 5级以上地震在震前 10至 20多天出现, 温度异常面积 可达 10万至 60万平方公里, 若在岩石圈厚度大的地区, 5级以上地 震前 30— 120天左右可出现增温异常。 在云层覆盖时, 可在云层上出 现降温怪状云, 同样可作为短临震兆。
(2)地点: 即震中位置可分三个类型, 其一是未来震中及其外围, 同时出现热异常,随后外围增温异常明显地不断扩展,并向震中靠近, 最后两个热异常连接起来, 前进方向上的温度异常边缘为未来震中。 另一类型是外围增温异常, 随着时间向震中附近推进, 其前进方向增 温区与构造带或强震带交汇部位为未来震中。第三个类型是地震发生 在内陆高原区域时, 在一些低洼河谷地带可能出现增温异常, 连结这 些增温区域能显示出一定的应力热线, 这些应力热线交汇部位为未来 震中位置。
(3)震级:5级左右地震亮温增温面积 10多万平方公里, 6级左右 地震亮温增温面积 40多万平方公里, 7级以上地震增温面积则为 70 万或百多万平方公里。
(4)辅以次声波仪台阵布置, 可以对未来地震的发震时间和震级 及震中所处的大方向提供有价值的信息。
现在列举实例说明本发明所述方法做地震短临预测较为成功的情 况, 例如:
1992年 4月 16日(震前 4天)在台湾岛东北侧海域冲绳海槽出现北 东向增温异常带, 而到 4月 17日(震前 3天), 增温异常向西南及南 部海域扩大, 此时已跨越台湾东部强地震带花莲海外地区, 为此做了 地震三要素短临预测,实际上过了三天 (4月 20日)即发生 6. 8级地震。
1995年 11月 22日约旦亚喀巴湾附近的 7. 5级地震, 震前 10天 在亚喀巴湾内及其北侧陆地附近曾出现孤立增温异常。再次证明此次 地震也是有卫星热红外增温异常前兆的。
1998年 8月 27日新疆伽师 6. 6级地震, 震前 15天即 8月 13日 在塔里木西部出现孤立增温异常区, 8月 1 日两组 (NE,EW向)应力热 线交汇在伽师附近, 于 8月 14日做了地震三要素短临预测, 结果于 8 月 27日在新疆伽师(N39. 9°, E77. 9°)发生了 6. 6级地震, 这是 1998年 发生在我国最大的地震。 此次预测三要素准确。
1999年 9月 21 日中国台湾集集强震 /Z 6, 震前 9天即 9月 12 日热应力场呈单臂状, 直抵台湾西部地震带。 此次预测地震三要素地 点差 40公里, 时间和震级都比较好。
2008年 5月 12日四川汶川大地震 O,震前 7天, 5月 6日热应 力场具对接式和来自震中地下的冷气。

Claims

权 利 要 求 书
1.一种强地震短临预测卫星热红外亮温异常技术, 主要利用极轨 卫星、 静止气象卫星和卫星星座微波进行观测, 并结合其它载有红外 波段扫描仪的卫星,以及处理过的卫星遥测得亮温 (NCEP) 、 海区潜 热通量。 还包括卫星接收设备和图象处理设备, 卫星热红外云图的彩 色密度分割档次, 可对不同季节、 不同纬度地区都适用, 易于捕捉卫 星热红外温度 (亮温) 异常前兆, 其中色彩档次即亮温档次在 0. 5°K 至 5°Κ之间; 扫描仪所得灰度值可经大气模型校正获得实际温度值, 并根据各地实际情况, 采取加减 ΓΚ计算; 根据地形和气团形态来区 别地震引起的增温和降温还是气象过程增温和降温, 排除掉地形、 天 气因素导致的干扰信息; 由此总结出地震前兆热红外温度异常特性及 其演变规律对地震三要素短临预报的关系:
(1)时间: 5级以上地震在震前 10至 20多天出现, 温度异常面积 可达 10万至 60万平方公里, 若在岩石圈厚度大的地区, 5级以上地 震前 30— 120天左右可出现增温异常现象;次声波异常出现日期起 10 天内发震。
(2)地点: 即震中位置可分两个类型, 其一是未来震中及其外围, 同时出现热异常,随后外围增温异常明显地不断扩展,并向震中靠近, 最后两个热异常连接起来, 或前进方向上的单臂状温度异常前缘为未 来震中。 另一类型是外围增温异常, 随着时间向震中附近推进, 其前 进方向增温区进入活动构造带或强震带部位为未来震中;
(3)震级: 5级左右地震增温面积 10多万平方公里, 6级左右地震 增温面积 40多万平方公里, 7级以上地震增温面积则为 70万或数百 万平方公里,
其特征在于, 可能在孕震区域上方出现降温环现象; 孕震区域 上空在发震前可能出现怪状云、 条带云; 地震发生在内陆高原区域时 在一些低洼河谷地带可能出现增温异常, 连接这些增温区域能显示出 一定的应力热线, 这些应力热线的交汇部位为未来震中位置。
2.按权利要求 1 所述的强地震短临预测卫星热红外亮温异常技 术, 其特征在于, 所述亮温分档 Ν40°以北与 Ν10°至 35°是分开的, 每 档次温度值为 2°至 3°K,而 Ν40°以北则用 ΓΚ分档。 而在赤道地区(印 度尼西亚等地)和在极地地区(新西兰、 冰岛等地)每档次温度值分别 为 0. 5°Κ至 5°Κ。
PCT/CN2010/071702 2010-03-25 2010-04-12 强地震短临预测卫星热红外亮温异常方法 WO2011116537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010131858.3 2010-03-25
CN201010131858A CN101793972A (zh) 2010-03-25 2010-03-25 强地震短临预测卫星热红外亮温异常技术

Publications (1)

Publication Number Publication Date
WO2011116537A1 true WO2011116537A1 (zh) 2011-09-29

Family

ID=42586772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071702 WO2011116537A1 (zh) 2010-03-25 2010-04-12 强地震短临预测卫星热红外亮温异常方法

Country Status (3)

Country Link
US (1) US20110238314A1 (zh)
CN (1) CN101793972A (zh)
WO (1) WO2011116537A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633646C1 (ru) * 2016-05-25 2017-10-16 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ определения повышенной сейсмической активности
CN112967477A (zh) * 2021-05-13 2021-06-15 西南交通大学 一种高铁地震预警方法及系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012017867A1 (de) * 2012-09-05 2014-03-06 Martin Härtel Verfahren zur Früherkennung von -Erdbeben
DE102013105726B3 (de) * 2013-06-04 2014-12-04 Petra Sonja Biedermann Verfahren und Vorrichtungen zur Detektion und Lokalisierung von Infraschall
CN106199683B (zh) * 2016-07-04 2018-04-13 曾雄飞 一种基于共振包波谱监测数据的地震预测方法
CN107783177B (zh) * 2016-08-25 2019-09-20 中国科学院遥感与数字地球研究所 一种用于地震监测的逐日亮温异常回归分析方法
CN107045140A (zh) * 2017-02-22 2017-08-15 中国科学院寒区旱区环境与工程研究所 地震中期预测的地气图方法
CN107356969A (zh) * 2017-09-06 2017-11-17 四川易利数字城市科技有限公司 一种基于卫星热红外数据及gis的地震前兆分析方法
CN108196297A (zh) * 2017-12-15 2018-06-22 长沙志唯电子科技有限公司 一种红外线感应地震仪
CN108445464B (zh) * 2018-03-12 2021-09-10 南京恩瑞特实业有限公司 基于机器学习的卫星雷达反演融合方法
CN112665730B (zh) * 2020-12-30 2023-11-03 中国地震局地质研究所 震前温度异常检测方法、装置、设备和存储介质
CN113238282B (zh) * 2021-07-13 2021-09-28 中南大学 联合多源辅助数据提取地震微波辐射异常的方法
CN113960670A (zh) * 2021-10-22 2022-01-21 中国科学院空天信息创新研究院 一种基于警报成功率的显著性检验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191978A (zh) * 1997-02-25 1998-09-02 余新河 用卫星热红外增温异常做地震短临预报
CN1250880A (zh) * 1999-03-05 2000-04-19 强祖基 强地震短临预测卫星热红外技术
WO2003025622A2 (en) * 2001-09-14 2003-03-27 Stellar Solutions Satellite and ground system for detection and forecasting of earthquakes
CN1948998A (zh) * 2006-11-08 2007-04-18 梁富泉 多功能地震探测与预报装置
US20080021657A1 (en) * 2006-07-21 2008-01-24 International Business Machines Corporation Utilizing rapid water displacement detection systems and satellite imagery data to predict tsunamis
US20090242745A1 (en) * 2005-11-04 2009-10-01 DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. Method for Detecting of Geotectonic Signals Triggered by a Geotectonic Event

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7277797B1 (en) * 2005-03-29 2007-10-02 Kunitsyn Viatcheslav E Prediction system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191978A (zh) * 1997-02-25 1998-09-02 余新河 用卫星热红外增温异常做地震短临预报
CN1250880A (zh) * 1999-03-05 2000-04-19 强祖基 强地震短临预测卫星热红外技术
WO2003025622A2 (en) * 2001-09-14 2003-03-27 Stellar Solutions Satellite and ground system for detection and forecasting of earthquakes
US20090242745A1 (en) * 2005-11-04 2009-10-01 DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. Method for Detecting of Geotectonic Signals Triggered by a Geotectonic Event
US20080021657A1 (en) * 2006-07-21 2008-01-24 International Business Machines Corporation Utilizing rapid water displacement detection systems and satellite imagery data to predict tsunamis
CN1948998A (zh) * 2006-11-08 2007-04-18 梁富泉 多功能地震探测与预报装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633646C1 (ru) * 2016-05-25 2017-10-16 Акционерное общество "Российская корпорация ракетно-космического приборостроения и информационных систем" (АО "Российские космические системы") Способ определения повышенной сейсмической активности
CN112967477A (zh) * 2021-05-13 2021-06-15 西南交通大学 一种高铁地震预警方法及系统
CN112967477B (zh) * 2021-05-13 2023-11-07 西南交通大学 一种高铁地震预警方法及系统

Also Published As

Publication number Publication date
US20110238314A1 (en) 2011-09-29
CN101793972A (zh) 2010-08-04

Similar Documents

Publication Publication Date Title
WO2011116537A1 (zh) 强地震短临预测卫星热红外亮温异常方法
Serreze et al. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale
Wadhams Arctic sea ice extent and thickness
Abd El-Wahed et al. Pan-African dextral transpressive duplex and flower structure in the Central Eastern Desert of Egypt
Li et al. Uppermost mantle structure of the North China Craton: Constraints from interstation Pn travel time difference tomography
Teleti et al. Sea ice observations in polar regions: Evolution of technologies in remote sensing
Hello et al. Modern mermaids: New floats image the deep Earth
Miller et al. Crustal structure along the west flank of the Cascades, western Washington
Saruwatari et al. Seismic anisotropy of mantle xenoliths and constraints on upper mantle structure beneath the southern Canadian Cordillera
US6288396B1 (en) Satellite thermal infrared technique for short-term and impending prediction of strong earthquakes
Xiang et al. Characteristics of extreme rainfall and rainbands evolution of Super Typhoon Lekima (2019) during its landfall
Johnson et al. Physical and morphological properties of first-year Antarctic sea ice in the spring marginal ice zone of the Atlantic-Indian sector
Smith et al. High Arctic permafrost observatory at Alert, Nunavut–analysis of a 23 year data set
Zhang et al. Tracking of thermal infrared anomaly before one strong earthquake-In the case of Ms6. 2 earthquake in Zadoi, Qinghai on October 17th, 2016
Lu et al. Monitoring the 2008 cold surge and frozen disasters snowstorm in South China based on regional ATOVS data assimilation
Valentino et al. Rock uplift at the transition from flat-slab to normal subduction: The Kenai Mountains, southeast Alaska
England et al. Apatite fission-track dating of the Cowichan fold and thrust system, southern Vancouver Island, British Columbia
Muceku et al. First results of fission-track thermochronology in the Albanides
Zundel et al. Post Mid‐Cretaceous Tectonic and Topographic Evolution of Western Marie Byrd Land, WestAntarctica: Insights from Apatite FissionTrack and (U‐Th‐Sm)/He Data
Perrin et al. The origin and characteristics of cold air outbreaks over Melbourne
Verner et al. Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone
Li et al. Ecological and sediment dynamics response to typhoons passing from the east and west sides of the Changjiang (Yangtze River) Estuary and its adjacent sea area
Wang et al. Kinematics and Microphysical Characteristics of the First Intense Rainfall Convective Storm Observed by Jiangsu Polarimetric Radar Network
Saito et al. Thermally-conditioned paleo-permafrost variations from global climate modeling
Pętlicki et al. Frontal collapse of San Quintín glacier (Northern Patagonia Icefield), the last piedmont glacier lobe in the Andes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848199

Country of ref document: EP

Kind code of ref document: A1