WO2011115271A1 - Tumor angiogenesis inhibitor - Google Patents

Tumor angiogenesis inhibitor Download PDF

Info

Publication number
WO2011115271A1
WO2011115271A1 PCT/JP2011/056639 JP2011056639W WO2011115271A1 WO 2011115271 A1 WO2011115271 A1 WO 2011115271A1 JP 2011056639 W JP2011056639 W JP 2011056639W WO 2011115271 A1 WO2011115271 A1 WO 2011115271A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
enah
cells
gene
amino acid
Prior art date
Application number
PCT/JP2011/056639
Other languages
French (fr)
Japanese (ja)
Inventor
京子 樋田
泰浩 樋田
則孝 大賀
嗣輝 大坪
剛之 岩崎
敏裕 甲斐
英史 佐藤
Original Assignee
大日本住友製薬株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本住友製薬株式会社, 国立大学法人北海道大学 filed Critical 大日本住友製薬株式会社
Priority to JP2012505774A priority Critical patent/JPWO2011115271A1/en
Publication of WO2011115271A1 publication Critical patent/WO2011115271A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to an angiogenesis inhibitor, and more particularly, to a substance useful as a pharmaceutical agent such as a cancer therapeutic agent / prophylactic agent, etc., which has an activity of suppressing proliferation and / or migration of tumor vascular endothelial cells, and a screening method thereof.
  • tumor cell growth Many of the currently widely used methods for treating tumors, whether chemotherapy or radiation therapy, suppress tumor cell growth. Therefore, it is very important to selectively suppress the growth of tumor cells without affecting normal cells, but even with drugs that act selectively on tumor cells, the tumor cells are compared to other normal cells. It largely depends on the nature of repeating division and proliferation much more actively.
  • angiogenesis is indispensable for cell growth, and when malignant tumors grow, tumor cells themselves produce angiogenesis-promoting substances and induce angiogenesis in order to obtain nutrients and oxygen necessary for growth. .
  • tumor angiogenesis is induced, and the tumor cells move along the bloodstream.
  • angiogenesis is a source of nutrients and oxygen. That is, instead of attacking the tumor cell itself, the tumor cell is put into a nutrient or oxygen-depleted state, and as a result, the therapeutic effect of suppressing the growth of the tumor cell and regression is achieved.
  • tumor blood vessels reaching the tumor are mentioned.
  • Tumors containing cancer cells produce angiogenesis-promoting substances when they are about 1 to 2 mm 3 in size, ingesting nutrients and oxygen necessary for the growth of the cells themselves, and building a system to carry away metabolic waste products Will come to do. This system promotes the initial growth of the cells.
  • angiogenesis inhibitors have been studied using vascular endothelial cell lines and normal vascular endothelial cells, but recently, it has become clear that the properties of tumor blood vessels and normal blood vessels are very different (non- (See Patent Document 1). For example, normal blood vessels have an ordered hierarchy of arteries, veins, and capillaries, while tumor blood vessels run disorderly.
  • tumor vascular endothelial cells ashesion, etc.
  • pericytes which enhances blood vessel permeability.
  • tumor blood vessels are immature blood vessels compared with normal blood vessels.
  • the conventional method using normal vascular endothelial cells is insufficient to find an ideal target for angiogenesis inhibitor as a cancer therapeutic agent.
  • the present inventors have established a technique for separating and culturing tumor vascular endothelial cells in order to search for a target factor of an ideal angiogenesis inhibitor.
  • ENAH enabled homolog
  • ENAH is one of the Ena / VASP family proteins and is known to be involved in the regulation of cell movement through the control of the actin cytoskeleton (see Non-Patent Document 2).
  • the expression of a specific splice variant of ENAH is increased in metastatic cancer cells, and it is reported that it may be involved in cancer cell migration (Patent Document 1, Non-Patent Document 3, and Non-Patent Document). 4).
  • ENAH is highly expressed in tumor vascular endothelial cells or that the growth or migration of tumor vascular endothelial cells is suppressed by suppressing the expression or function of ENAH.
  • the problem to be solved by the present invention is an angiogenesis inhibitor, more specifically, a substance having an activity of suppressing the proliferation and / or migration of tumor vascular endothelial cells, and useful as a pharmaceutical agent such as a cancer therapeutic agent / prophylactic agent, and the like It is in providing the screening method.
  • the inventors of the present application conducted isolation and culture of tumor vascular endothelial cells, and as a result of intensive studies, they were involved in proliferation and / or migration of tumor vascular endothelial cells.
  • an antitumor agent comprising as an active ingredient a substance that suppresses the expression or function of ENAH;
  • the substance is a substance selected from the group consisting of the following (1) to (3), which suppresses the expression of ENAH: (1) an antisense nucleic acid against a transcription product of a gene encoding ENAH, (2) a ribozyme nucleic acid for a transcription product of a gene encoding ENAH, and (3) a nucleic acid having RNAi activity for a transcription product of a gene encoding ENAH or a precursor thereof;
  • the agent according to [1], wherein the substance is an antibody that binds to ENAH;
  • ENAH is a protein comprising an amino acid sequence selected from the following (a) to (e): (A) the amino acid sequence represented by SEQ ID NO
  • SEQ ID NO: 3 SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52 encoded by DNA that hybridizes under stringent conditions with DNA having complementarity to the DNA having the base sequence shown in SEQ ID NO: 52 And an amino acid sequence having at least one of the above properties (1) to (3);
  • a method for screening an angiogenesis inhibitor which comprises selecting a compound that reduces the expression level of ENAH;
  • the screening method according to [8] comprising the following steps (1) to (3): (1) contacting a test substance with a cell containing a nucleic acid encoding a gene encoding ENAH or a reporter protein under the control of a transcriptional regulatory region
  • a method for screening an angiogenesis inhibitor which comprises selecting a compound that reduces the expression level of a gene encoding ENAH;
  • a method for screening an angiogenesis inhibitor which comprises selecting a compound that decreases the function of ENAH;
  • a method for determining whether or not there is a risk of developing cancer, or whether or not the patient is suffering from cancer comprising the following steps (1) and (2): (1) a step of measuring the expression level of ENAH-encoding gene or ENAH or ENAH function in a sample collected from a test animal, and (2) in comparison with the case of measuring in a sample derived from a normal animal, Determining the subject animal whose expression level or function is elevated to be at risk of developing cancer or suffering from cancer; [13] The following groups: (1) a base sequence represented by SEQ ID NO: 25 to 47, and (2) a base sequence having 2 to 4 bases added to the 3 ′ end of the base sequence represented by SEQ ID NO: 25 to 47, An oligonu
  • an angiogenesis inhibitor more specifically, a substance having an activity of suppressing the proliferation and / or migration of tumor vascular endothelial cells and useful as a pharmaceutical agent for cancer treatment / prevention, and a screening method thereof are provided. It became possible to do.
  • the present invention provides an angiogenesis inhibitor, specifically a tumor vascular endothelial cell proliferation and / or migration inhibitor, comprising a substance that suppresses the expression or function of ENAH.
  • ENAH is a known protein and is known as SEQ ID NO: 2 known as Genbank Accession No .: NP_001008493 or Genbank Accession No .: NP_060682
  • a protein comprising the amino acid sequence of human ENAH represented by SEQ ID NO: 4 or an amino acid sequence substantially identical thereto.
  • ENAH is a cell of a human or other warm-blooded animal (eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.) [eg, MDAMB361, MCF7, SKBr3, SBT , MAS, T47D, BT474, Calu3, A427, SiHa, CaSKi, LS180, HT29, ADF, U251, U87MG, U373, T98G cells, etc.] or any tissue from which those cells are derived [eg breast, lung, brain, colon Etc.] or a tissue expressing the protein in vivo [for example, bladder, gallbladder prostate, heart, uterus, etc.] and the like may be isolated and
  • amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 or substantially the same amino acid sequence thereof include the following (a) to (e): (A) the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53; (B) in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, one or more amino acids are deleted, added, inserted or substituted; And the following properties (1) to (3): (1) can bind to actin competitively with the anti-twist end cap protein; (2) F-actin and G-actin binding motifs are conserved; and (3) the amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Can be recognized by an antibody that specifically recognizes a protein consisting of a sequence; An amino acid sequence having at
  • amino acid sequence of an ortholog in another mammal of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, or the amino acid represented by SEQ ID NO: 2 or SEQ ID NO: 4
  • amino acid sequences of splice variants include amino acid sequences of splice variants, allelic variants, or polymorphic variants of human proteins or orthologs thereof.
  • Specific examples of the splicing variants include human proteins having the amino acid sequence represented by SEQ ID NO: 49, SEQ ID NO: 51, or SEQ ID NO: 53 (Biochimica et Biophysica Acta 1759 (2006) p99-107). reference).
  • homology refers to an optimal alignment when two amino acid sequences are aligned using a mathematical algorithm known in the art (preferably the algorithm uses a sequence of sequences for optimal alignment). The percentage of the same amino acid residue and similar amino acid residues to all overlapping amino acid residues in (one or both of which can be considered introduction of a gap).
  • Similar amino acids means amino acids that are similar in physicochemical properties, such as aromatic amino acids (Phe, Trp, Tyr), aliphatic amino acids (Ala, Leu, Ile, Val), polar amino acids (Gln, Asn) ), Basic amino acids (Lys, Arg, His), acidic amino acids (Glu, Asp), amino acids with hydroxyl groups (Ser, Thr), amino acids with small side chains (Gly, Ala, Ser, Thr, Met), etc. Examples include amino acids classified into groups. It is expected that substitution with such similar amino acids will not change the phenotype of the protein (ie, is a conservative amino acid substitution). Specific examples of conservative amino acid substitutions are well known in the art and are described in various literature (see, for example, Bowie et al., Science, 247: 1306-1310 (1990)).
  • NCBI BLAST National Center for Biotechnology Information Basic Local Alignment Search Tool
  • Other algorithms for determining amino acid sequence homology include, for example, the algorithm described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) [the algorithms are NBLAST and XBLAST] Embedded in the program (version 2.0) (Altschul et al., Nucleic Acids Res., 25: 3389-3402 1997 (1997))], Needleman et al., J. Mol.
  • the stringent conditions in the above (e) are, for example, the conditions described in Current Protocols, in Molecular, Biology, John, Wiley, & Sons, 6.3.1-6.3.6, 1999, for example, 6 ⁇ SSC (sodium chloride / sodium citrate) / 45 ° C., followed by one or more washes at 0.2 ⁇ SSC / 0.1% SDS / 50-65 ° C., but those skilled in the art will give equivalent stringency.
  • Hybridization conditions can be appropriately selected.
  • amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 Or about 80% or more, preferably about 90% or more, more preferably about 95% or more, more preferably about 97% or more, particularly preferably about 98% or more, and most preferably the amino acid sequence represented by SEQ ID NO: 53
  • SEQ ID NO: 53 An amino acid sequence having about 99% or more identity is preferable.
  • a protein comprising an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 is substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4.
  • substantially the same function means that the properties are qualitatively the same, for example, physiologically or pharmacologically, and the degree of function (eg, about 0.1 to about 10 Times, preferably 0.5 to 2 times) and quantitative factors such as the molecular weight of the protein may be different.
  • (1) Can bind to actin competitively with anti-tapping end cap protein (CP), that is, interact with profilin and G-actin to suppress actin's anti-tapping end capping, or (2) sequence A protein that can be recognized by an antibody that specifically recognizes a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51, or SEQ ID NO: 53 is “substantially identical. Can be regarded as a protein having the function of
  • the actin polymerization-promoting activity of ENAH and the interaction with profilin are described in, for example, Non-Patent Document 2 (Barzik M et al., J Biol Chem., 280, No. 31, pp. 28653-28662 ( 2005))).
  • ENAH in the present invention, for example, (i) 1 to 50 in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, Preferably, 1 to 30, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acid sequences deleted, (ii) SEQ ID NO: 2, SEQ ID NO : 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, the amino acid sequence represented by 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably 1 to number An amino acid sequence to which (5, 4, 3 or 2) amino acids are added, (iii) an amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 1-50, preferably 1-30, more preferably 1-10, even more preferred in the sequence Or an amino acid sequence in which 1 to several (5, 4, 3 or 2) amino acids are are
  • the position of the insertion, deletion, addition or substitution indicates the ability of the protein to bind to actin competitively with the anti-end cap protein.
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53
  • examples include a method in which conventional site-directed mutagenesis is performed on DNA encoding the amino acid sequence shown, and then this DNA is expressed by a conventional method.
  • a site-specific mutagenesis method for example, a method using amber mutation (gapped duplex method, Nucleic Acids Res., 12,9441-9456 (1984)), a PCR method using a mutagenesis primer Etc.
  • ENAH include, for example, a human protein (Genbank Accession No .: NP_001008493 or NP_060682) consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, or their orthologs in other mammals (for example, , Mouse ENAH protein (SEQ ID NO: 6, 8, 10, or 12; Genbank Accession No. NP_034265, NP_032706, NP_001076589, or NP_001076590), rat ENAH protein (Genbank Accession No. NP_001012150), etc., allelic variant, polymorphism Variants etc. are raised.
  • the “gene encoding ENAH” is a base encoding the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 shown in the above (a) to (e) or an amino acid sequence substantially identical thereto. Represents a gene having a sequence.
  • the gene may be any of DNA such as cDNA or genomic DNA, or RNA such as mRNA, and is a concept including both a single-stranded nucleic acid sequence and a double-stranded nucleic acid sequence.
  • the nucleic acid sequence shown in 52 etc. is a DNA sequence for convenience, but when an RNA sequence such as mRNA is shown, thymine (T) is interpreted as uracil (U).
  • Substance that suppresses expression of ENAH refers to the transcription level of the gene encoding ENAH (ENAH gene), the level of post-transcriptional regulation, the translation level to ENAH, and post-translational modification It may act at any stage, such as the level of. Therefore, substances that suppress ENAH expression include, for example, substances that inhibit the transcription of the ENAH gene (eg, antigene), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm.
  • substances that suppress ENAH expression include, for example, substances that inhibit the transcription of the ENAH gene (eg, antigene), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm.
  • Substances that inhibit the translation of ENAH from mRNA eg, antisense nucleic acid, miRNA or those that degrade mRNA (eg, siRNA, ribozyme), substances that inhibit post-translational modification of the initial translation product, etc. .
  • Any substance that acts at any stage can be preferably used, but more preferably, a substance selected from the group consisting of the following (1) to (3) is exemplified.
  • a preferable example of the transcript is mRNA.
  • a base sequence complementary to or substantially complementary to the base sequence of these mRNAs or a part thereof The nucleic acid containing is mentioned.
  • the base sequence substantially complementary to the base sequence of the mRNA of the ENAH gene can bind to the target sequence of the mRNA and inhibit its translation under physiological conditions of the tumor blood vessel that is the target tissue of a mammal. It means a base sequence having a degree of complementarity (or that cleaves the target sequence).
  • a base sequence that is completely complementary to the base sequence of the mRNA that is, a base sequence of a complementary strand of the mRNA
  • a base sequence of a complementary strand of the mRNA that is, a base sequence of a complementary strand of the mRNA
  • the base sequence complementary or substantially complementary to the base sequence of the mRNA of the ENAH gene includes the following (k) or (l): (k) a nucleotide sequence complementary or substantially complementary to the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52; (l) a nucleotide sequence that hybridizes under stringent conditions with the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, and SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51, or complementary to a sequence encoding a protein having substantially the same function as the protein consisting of the amino acid sequence represented by SEQ ID NO: 53 Or a substantially complementary nucleotide sequence; Is mentioned.
  • “substantially the same function” has the same meaning as described above.
  • the stringent conditions
  • mice ENAH Genbank Accession No. NM_008680
  • SEQ ID NO: 9 Mouse ENAH Genbank AccessionNo. NM_001083120
  • mouse ENAH represented by SEQ ID NO: 11 (Genbank Accession No. NM_001083121) or rat ENAH (Genbank Accession No.150NM_001012150)
  • SEQ ID NO: 11 Genbank Accession No. NM_001083121
  • rat ENAH Genbank Accession No.150NM_001012150
  • the nucleotide sequence of the ENAH gene mRNA and the “part of the complementary or substantially complementary nucleotide sequence” are those that can specifically bind to the mRNA of the ENAH gene and translate the protein from the mRNA.
  • the length and the position are not particularly limited as long as they can inhibit (or degrade the mRNA), but at least 10 bases that are complementary or substantially complementary to the target sequence from the viewpoint of sequence specificity. As mentioned above, it preferably contains about 15 bases or more.
  • a nucleic acid that includes a base sequence complementary to or substantially complementary to the base sequence of mRNA of the ENAH gene or a part thereof is preferably exemplified by any of the following (1) to (3) Is: (1) antisense nucleic acid against mRNA of ENAH gene, (2) Ribozyme nucleic acid against mRNA of ENAH gene, or (3) A nucleic acid having RNAi activity against mRNA of ENAH gene or a precursor thereof.
  • Antisense nucleic acid against mRNA of ENAH gene includes a base sequence complementary to or substantially complementary to the base sequence of the mRNA or a part thereof. It is a nucleic acid and has a function of suppressing protein synthesis by forming a specific and stable duplex with a target mRNA.
  • Antisense nucleic acids are polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, other types of polynucleotides that are N-glycosides of purine or pyrimidine bases, Other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers) or other polymers containing special linkages, provided that the polymer is a base as found in DNA or RNA And a nucleotide having a configuration that allows attachment of a base).
  • RNA double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, unmodified polynucleotides (or unmodified oligonucleotides), known modifications Additions, such as those with labels known in the art, capped, methylated, one or more natural nucleotides replaced with analogs, intramolecular nucleotide modifications Such as those with uncharged bonds (eg methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged bonds or sulfur-containing bonds (eg phosphorothioates, phosphorodithioates, etc.) Such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine etc.
  • proteins eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine etc
  • nucleoside may include not only purine and pyrimidine bases but also those having other heterocyclic bases modified. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles.
  • Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, eg, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted.
  • the antisense nucleic acid may be DNA or RNA, or may be a DNA / RNA chimera.
  • the RNA DNA hybrid formed by the target RNA and the antisense DNA can be recognized by endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the ENAH gene.
  • the intron sequence can be determined by comparing the genomic sequence with the cDNA base sequence of the ENAH gene using a homology search program such as BLAST or FASTA.
  • the target region of the antisense nucleic acid of the present invention is not particularly limited as long as the antisense nucleic acid hybridizes, and as a result, the translation into protein: ENAH is inhibited.
  • the entire sequence or partial sequence of mRNA may be a short sequence of about 10 bases, and a long sequence of mRNA or the initial transcript.
  • an oligonucleotide consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases is preferred, but is not limited thereto.
  • 5 'end hairpin loop of ENAH gene 5' end 6-base pair repeat, 5 'end untranslated region, translation start codon, protein coding region, ORF translation stop codon, 3' end untranslated region
  • a 3′-end palindromic region or a 3′-end hairpin loop can be selected as a preferred target region of an antisense nucleic acid, but is not limited thereto.
  • the antisense nucleic acid of the present invention not only hybridizes with the mRNA of the ENAH gene and the initial transcription product to inhibit translation into a protein, but also binds to these genes that are double-stranded DNA to form a triplex ( A triplex) that can inhibit transcription to RNA (antigene).
  • the nucleotide molecule constituting the antisense nucleic acid may be natural DNA or RNA, but various chemicals may be used to improve stability (chemical and / or enzyme) and specific activity (affinity with RNA). Modifications can be included.
  • the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be substituted with a phosphate residue.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate etc. It can be substituted with a phosphate residue.
  • the 2′-position hydroxyl group of the sugar (ribose) of each nucleotide is represented by —OR (R ⁇ CH 3 (2′-O-Me), CH 2 CH 2 OCH 3 (2′-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.) may be substituted.
  • the base moiety pyrimidine, purine
  • BNA LNA
  • ENA ENA
  • the antisense oligonucleotide of the present invention determines the target sequence of mRNA or initial transcript based on the cDNA sequence or genomic DNA sequence of the ENAH gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman) Etc.) can be prepared by synthesizing a complementary sequence thereto.
  • any of the above-described antisense nucleic acids containing various modifications can be chemically synthesized by a method known per se.
  • Ribozyme Nucleic Acid for ENAH Gene mRNA Another preferred example of a nucleic acid comprising a base sequence complementary to or substantially complementary to the base sequence of the ENAH gene mRNA or a part thereof is the mRNA of the coding region.
  • Examples include ribozyme nucleic acids that can be cleaved specifically inside. “Ribozyme” refers to RNA having an enzyme activity that cleaves nucleic acids in a narrow sense, but in this specification, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity.
  • the most versatile ribozyme nucleic acids include self-splicing RNAs found in infectious RNAs such as viroids and virusoids, and hammerhead and hairpin types are known.
  • the hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends (about 10 bases in total) adjacent to the part having the hammerhead structure are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA.
  • This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate.
  • the target sequence is made single-stranded by using a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase.
  • a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)].
  • ribozymes are used in the form of expression vectors containing the DNA that encodes them, they should be hybrid ribozymes in which tRNA-modified sequences are further linked in order to promote the transfer of transcripts to the cytoplasm. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
  • siRNA RNA interference
  • RNAi RNA interference
  • siRNA is based on cDNA sequence information of a target gene, for example, Elbashir et al. (Genes Dev., 15, 188-200 (2001)), Teramoto et al. (FEBS Lett. 579 (13): p2878-82 (2005)) Can be designed according to the rules proposed by As a target sequence of siRNA, in principle, it has a length of 15 to 50 bases, preferably 19 to 49 bases, more preferably 19 to 27 bases. For example, AA + (N) 19 (following AA, 19 base sequence), AA + (N) 21 (21 base sequence following AA) or A + (N) 21 (21 base sequence following A).
  • the nucleic acid of the present invention may have an additional base at the 5 ′ or 3 ′ end.
  • the length of the additional base is usually about 2 to 4 bases, and the total length of siRNA is 19 bases or more.
  • the additional base may be DNA or RNA, but use of DNA may improve the stability of the nucleic acid. Examples of such an additional base sequence include ug-3 ′, uu-3 ′, tg-3 ′, tt-3 ′, ggg-3 ′, guuu-3 ′, gttt-3 ′, and ttttt-3. Examples include, but are not limited to, ', uuuuu-3'.
  • siRNA may have a protruding portion sequence (overhang) at the 3 ′ end, and specifically includes those to which dTdT (dT represents deoxyribonucleic acid) is added. Further, it may be a blunt end (blunt end) without end addition.
  • siRNA may have a different number of bases in the sense strand and the antisense strand, for example, “aiRNA” in which the antisense strand has a protruding sequence (overhang) at the 3 ′ end and the 5 ′ end. Can be mentioned.
  • a typical aiRNA consists of 21 bases in the antisense strand, 15 bases in the sense strand, and has an overhang structure of 3 bases at both ends of the antisense strand (Sun, X. et al., Nature Biotechnology Vol. 26 No.12 p1379, International Publication No. WO2009 / 029688 Pamphlet). Specifically, a blunt-end siRNA having a length of 25 bases as described in Example 5 or a target sequence portion as described in Example 10 having a length of 19 bases and a dTdT at the 3 ′ end is used. SiRNA having a total length of 21 bases to which is added.
  • the position of the target sequence is not particularly limited, but it is desirable to select the target sequence from 5′-UTR and the start codon to about 50 bases and from regions other than 3′-UTR.
  • BLAST http: //www.ncbi.nlm Investigate using homology search software such as .nih.gov / BLAST /
  • a sense strand having a 3 'end overhang of TT or UU at 19-21 bases after AA (or NA), a sequence complementary to the 19-21 bases and TT or A double-stranded RNA consisting of an antisense strand having a 3 ′ end overhang of UU may be designed as an siRNA.
  • siRNA short hairpin RNA
  • an arbitrary linker sequence for example, about 5-25 bases
  • the sense strand and the antisense strand are combined with each other. It can be designed by linking via a linker sequence.
  • siRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites. Examples of such sites include siRNA Target Finder (http://www.ambion.com/jp/techlib/misc/siRNA_finder.html) and pSilencer (registered trademark) Expression Vector insert design tools ( http://www.ambion.com/techlib/misc/psilencer_converter.html), GeneSeer provided by RNAixCodex (http://codex.cshl.edu/scripts/newsearchhairpin.cgi) Not.
  • the ribonucleoside molecule constituting siRNA may also be modified in the same manner as the above-described antisense nucleic acid in order to improve stability, specific activity and the like.
  • siRNA if all ribonucleoside molecules in natural RNA are replaced with a modified form, RNAi activity may be lost, so the introduction of the minimum modified nucleoside that allows the RISC complex to function is necessary. .
  • RNA having various chemical modifications see Usman and Cedergren, 1992, TIBS 17,34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163.
  • phosphate residues (phosphates) of each nucleotide constituting siRNA are converted into chemically modified phosphates such as phosphorothioate (PS), methylphosphonate, and phosphorodithionate.
  • the 2′-position hydroxyl group of the sugar (ribose) of each nucleotide is represented by —OR (R ⁇ CH 3 (2′-O-Me), CH 2 CH 2 OCH 3 (2′-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.) or a fluorine atom (—F) may be substituted.
  • the base moiety pyrimidine, purine
  • the method for modifying an antisense nucleic acid described in (1) above can be used. Or you may give the chemical modification (2'-deoxylation, 2'-H) which substitutes a part of RNA in siRNA with DNA.
  • an artificial nucleic acid LNA: Locked Nucleic Acid
  • the sense strand and antisense strand constituting siRNA are linked via a linker to a ligand, peptide, sugar chain, antibody, lipid, positive charge or molecular structure that specifically recognizes a receptor present on the cell surface. It may be chemically bonded to oligoarginine, Tat peptide, Rev peptide or Ant peptide that adsorbs and penetrates the surface layer.
  • the siRNA is synthesized by synthesizing a sense strand and an antisense strand of a target sequence on mRNA with a DNA / RNA automatic synthesizer, denatured at about 90 to about 95 ° C. for about 1 minute in an appropriate annealing buffer, It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing a short hairpin RNA (shRNA) serving as a precursor of siRNA and cleaving it with a dicer.
  • shRNA short hairpin RNA
  • a nucleic acid designed to generate siRNA against the mRNA of the ENAH gene in vivo also includes a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the mRNA of the ENAH gene. Defined as encompassed by a nucleic acid containing a moiety. Examples of such nucleic acids include expression vectors constructed so as to express the above-mentioned shRNA and siRNA.
  • shRNA is an oligo containing a base sequence in which the sense strand and the antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence (for example, about 5 to 25 bases) long enough to form an appropriate loop structure.
  • Vectors expressing shRNA include tandem type and stem loop (hairpin) type.
  • siRNA sense strand expression cassette and antisense strand expression cassette are linked in tandem, and each strand is expressed and annealed in the cell to form double stranded siRNA (dsRNA).
  • dsRNA double stranded siRNA
  • the latter is one in which an shRNA expression cassette is inserted into a vector, in which shRNA is expressed in cells and processed by dicer to form dsRNA.
  • a pol II promoter for example, a CMV immediate early promoter
  • a pol III promoter is generally used.
  • the polIII promoter include mouse and human U6-snRNA promoters, human H1-RNase P RNA promoter, and human valine-tRNA promoter.
  • a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
  • the siRNA or shRNA expression cassette thus constructed is then inserted into a plasmid vector or viral vector.
  • vectors include retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors, animal cell expression plasmids, and the like.
  • siRNA can be chemically synthesized according to a conventional method using an automatic DNA / RNA synthesizer such as a 394-Applied Biosystems, Inc. synthesizer based on the nucleotide sequence information.
  • an automatic DNA / RNA synthesizer such as a 394-Applied Biosystems, Inc. synthesizer based on the nucleotide sequence information.
  • nucleic acid protecting group known to those skilled in the art (for example, dimethoxytrityl group at the 5 'end) and a coupling group (for example, phosphoramidite at the 3' end). That is, the protecting group at the 5 ′ end is deprotected with an acid such as TCA (trichloroacetic acid) and a coupling reaction is performed. Then, after capping with an acetyl group, the next nucleic acid condensation reaction is performed.
  • TCA trifluoride trichloroacetic acid
  • RNA containing modified RNA or DNA a modified RNA (eg, 2′-O-methyl nucleotide, 2′-deoxy-2′-fluoro nucleotide) may be used as a raw material, and the coupling reaction These conditions can be adjusted as appropriate.
  • a borage reagent (3H-1,2-benzodithiol-3-one 1,1-dioxide) can be used.
  • oligonucleotides may be synthesized separately and joined together after synthesis, for example, by ligation (Moore et al., 1992, Science 256,9923; Draper et al. International Publication WO93 / 23569; Shabarova et al. , 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. It may be connected.
  • siRNA molecules can also be synthesized by tandem synthesis.
  • both siRNA strands are synthesized as a single continuous oligonucleotide separated by a cleavable linker, which is then cleaved to generate separate siRNA fragments that are hybridized and purified .
  • the linker may be a polynucleotide linker or a non-nucleotide linker.
  • the synthesized siRNA molecules can be purified using methods known to those skilled in the art. For example, a method of purification by gel electrophoresis or a method of purification using high performance liquid chromatography (HPLC) can be mentioned.
  • siRNA molecules can be inserted into DNA or RNA vectors and expressed using recombinant vectors.
  • the vector can be a DNA plasmid or a viral vector.
  • the viral vector expressing siRNA is not limited, adenovirus and the like can be used.
  • siRNA examples include the following groups: (1) an siRNA in which the double-stranded RNA portion includes a base sequence represented by any one of SEQ ID NOs: 13, 14, and 25 to 47; (2) The siRNA according to (1) above, wherein an overhang of 2 to 4 bases is added to the 3 ′ end, (3) The siRNA according to (1) or (2), wherein at least one base is chemically modified, or (4) The siRNA according to any one of (1) to (3), wherein at least one phosphodiester bond is chemically modified, Etc. can be illustrated.
  • the base length of the double-stranded RNA portion of siRNA is 15-50 bases, preferably 19-50 bases, more preferably 19-49 bases, 15-49 bases, more preferably 19-25 bases, 15- 25 bases, more preferably 19 to 23 bases.
  • Nucleic acids containing a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the ENAH gene mRNA, or a part thereof, are provided in a special form such as liposomes or microspheres, applied to gene therapy, It can be given in an added form.
  • the additional form can be used as a polycationic substance such as polylysine, which acts to neutralize the charge of the phosphate group skeleton, to enhance the interaction with the cell membrane, or to increase the uptake of nucleic acid Examples include hydrophobic substances such as lipids (eg, phospholipids, cholesterol, etc.).
  • Preferred lipids for addition include cholesterol and derivatives thereof (eg, cholesteryl chloroformate, cholic acid, etc.). These can be attached to the 3 'or 5' end of the nucleic acid and can be attached via a base, sugar, intramolecular nucleoside bond.
  • the other group include a cap group specifically arranged at the 3 'end or 5' end of a nucleic acid, which prevents degradation by nucleases such as exonuclease and RNase.
  • capping groups include, but are not limited to, hydroxyl protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
  • ENAH expression inhibitory activity of these nucleic acids should be examined using a transformant introduced with the ENAH gene, an in vivo or in vitro ENAH gene expression system, or an in vivo or in vitro protein: ENAH translation system. Can do.
  • the substance that inhibits the expression of ENAH in the present invention is not limited to a nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of the mRNA of the ENAH gene as described above or a part thereof, and the production of ENAH Other substances such as low molecular weight compounds may be used as long as they are directly or indirectly inhibited. Such a substance can be obtained, for example, by the screening method of the present invention described later.
  • “substance that suppresses ENAH function” may be any substance as long as it suppresses the function of ENAH once produced functionally.
  • examples of the substance that suppresses the function of ENAH include an antibody against ENAH.
  • the antibody may be a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to a method known per se for producing antibodies or antisera.
  • the isotype of the antibody is not particularly limited, but preferably IgG, IgM or IgA, particularly preferably IgG.
  • the antibody is not particularly limited as long as it has at least a complementarity determining region (CDR) for specifically recognizing and binding a target antigen.
  • CDR complementarity determining region
  • Fab, Fab ′, F (ab ') 2 such as fragments, scFv, scFv-Fc, conjugation molecules prepared by genetic engineering such as minibodies and diabodies, or molecules having a protein stabilizing action such as polyethylene glycol (PEG)
  • PEG polyethylene glycol
  • the antibody against ENAH is used as a pharmaceutical for human administration
  • the antibody is an antibody with reduced risk of showing antigenicity when administered to humans.
  • Specific examples include fully human antibodies, humanized antibodies, mouse-human chimeric antibodies, and particularly preferably fully human antibodies. Humanized antibodies and chimeric antibodies can be prepared by genetic engineering according to conventional methods.
  • ENAH has the property of binding to actin competitively with the anti-tapping end cap protein of actin filaments. That is, it interacts with profilin and G-actin to suppress actin anti-tapping edge capping. Examples of the anti-tapping end cap protein include CapG, heterodimeric capping protein (CapZ), and gelsolin.
  • ENAH is an F-actin binding motif (region corresponding to Block B in FIG. 1 of Bachmann et al., J. Biol.
  • the binding motif region corresponding to Block A in FIG. 1 in Bachmann et al., J. Biol. Chem., 274, No. 33, 23549-23557, FIG. 1 is preserved.
  • the substance that suppresses the ENAH function is desirably a substance excellent in tumor blood vessel migration and cell membrane permeability. Therefore, another preferable substance that suppresses the function of ENAH is a low-molecular compound commensurate with Lipinski's Rule. Such a compound can be obtained, for example, using the screening method of the present invention described later.
  • Substances that suppress the expression or function of ENAH exhibit angiogenesis inhibitory activity, specifically tumor angiogenesis inhibitory activity, more specifically, growth inhibitory activity and / or migration inhibitory activity of tumor vascular endothelial cells. As such, it is useful for improving the pathology of patients suffering from cancer and for preventing cancer, particularly cancer metastasis and recurrence. Therefore, a medicament containing a substance that suppresses the expression or function of ENAH can be used as a preventive and / or therapeutic agent (antitumor agent) for cancer.
  • An antisense nucleic acid of the present invention that binds complementarily to a transcription product of a pharmaceutical ENAH gene containing an antisense nucleic acid, a ribozyme nucleic acid, siRNA and a precursor thereof, and can suppress translation of a protein from the transcription product, SiRNA (or ribozyme) that can cleave the transcript from the homologous (or complementary) nucleotide sequence in the ENAH gene transcript, and shRNA that is the precursor of the siRNA (hereinafter referred to as “general”
  • the "nucleic acid of the invention” may be used as an antitumor agent because it suppresses the expression of ENAH in vivo and suppresses the proliferation and / or migration of tumor vascular endothelial cells.
  • the medicament containing the nucleic acid of the present invention has low toxicity and is used as it is as a liquid or as a pharmaceutical composition of an appropriate dosage form, as a human or non-human mammal (eg, rat, rabbit, sheep, pig, cow, cat, It can be administered orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
  • a human or non-human mammal eg, rat, rabbit, sheep, pig, cow, cat, It can be administered orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
  • the nucleic acid of the present invention When used as the antitumor agent, it can be formulated and administered according to a method known per se. That is, the nucleic acid of the present invention is inserted alone or in a functional manner into an appropriate expression vector for mammalian cells such as a retrovirus vector, adenovirus vector, adenovirus associated virus vector, and then formulated according to conventional means. can do.
  • the nucleic acid can be administered as it is or together with an auxiliary agent for promoting intake by a catheter such as a gene gun or a hydrogel catheter. Alternatively, it can be aerosolized and locally administered into the trachea as an inhalant.
  • the nucleic acid may be formulated (injection) alone or with a carrier such as a liposome and administered intravenously, subcutaneously, etc. .
  • the nucleic acid of the present invention may be administered per se or as an appropriate pharmaceutical composition.
  • the pharmaceutical composition used for administration may contain the nucleic acid of the present invention and a pharmacologically acceptable carrier, diluent or excipient.
  • a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
  • injections are dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, and the like. May be included.
  • Such an injection can be prepared according to a known method.
  • a method for preparing an injection it can be prepared, for example, by dissolving, suspending or emulsifying the nucleic acid of the present invention in a sterile aqueous liquid or oily liquid usually used for injection.
  • an aqueous solution for injection for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination.
  • alcohol eg, ethanol
  • polyalcohol eg, Propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)
  • oily liquid for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solub
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like.
  • Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • a carrier and excipient for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
  • the above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dosage of the active ingredient.
  • dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories.
  • the nucleic acid of the present invention is preferably contained, for example, usually 5 to 500 mg per dosage unit form, especially 5 to 100 mg for injections and 10 to 250 mg for other dosage forms.
  • the dosage of the above-mentioned pharmaceutical containing the nucleic acid of the present invention varies depending on the administration subject, target disease, symptom, administration route, etc., but for example, when used for the treatment / prevention of cancer, the nucleic acid of the present invention. Is usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight, about 1 to 5 times a day, preferably 1 day a day. It is convenient to administer about 3 times by intravenous injection. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
  • compositions may appropriately contain other active ingredients as long as an undesirable interaction is not caused by blending with the nucleic acid of the present invention.
  • An antibody against ENAH or a low molecular compound that suppresses the expression or function of ENAH can inhibit the production or function of ENAH. Therefore, since these substances suppress the expression or function of ENAH in vivo, they can be used as preventive and / or therapeutic agents for cancer.
  • a medicine containing the above-mentioned antibody or low molecular weight compound has low toxicity, and it is used as a solution or as a pharmaceutical composition of an appropriate dosage form as a human or mammal (eg, rat, rabbit, sheep, pig, cow, cat). , Dogs, monkeys, etc.) or or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
  • the above-mentioned antibodies and low molecular compounds may be administered per se, or may be administered as an appropriate pharmaceutical composition.
  • the pharmaceutical composition used for administration may contain the above-mentioned antibody or low molecular compound or a salt thereof and a pharmacologically acceptable carrier, diluent or excipient.
  • Such a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
  • injections are dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, and the like. May be included.
  • Such an injection can be prepared according to a known method.
  • a method for preparing an injection it can be prepared, for example, by dissolving, suspending or emulsifying the antibody or low molecular compound or salt thereof of the present invention in a sterile aqueous liquid or oily liquid that is usually used for injection.
  • an aqueous solution for injection for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination.
  • alcohol eg, ethanol
  • polyalcohol eg, Propylene glycol, polyethylene glycol
  • nonionic surfactants eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)
  • oily liquid for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solub
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like.
  • Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • a carrier and excipient for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
  • the above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dosage of the active ingredient.
  • dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories.
  • the antibody or low molecular weight compound is preferably contained in an amount of usually 5 to 500 mg per dosage unit form, particularly 5 to 100 mg for injections and 10 to 250 mg for other dosage forms.
  • the dose of the above-mentioned medicament containing the above-mentioned antibody or low-molecular compound or a salt thereof varies depending on the administration subject, target disease, symptom, administration route, etc. Is usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight 1 to 5 times a day, with an antibody or low molecular weight compound as a single dose. It is convenient to administer by intravenous injection to a degree, preferably about 1 to 3 times a day. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
  • Each of the above-described compositions may contain other active ingredients as long as an undesirable interaction is not caused by blending with the above antibody or low molecular weight compound.
  • a pharmaceutical composition containing the above-mentioned antisense nucleic acid against ENAH, ribozyme nucleic acid, siRNA and its precursor, an antibody against ENAH, a low molecular compound that suppresses the expression or function of ENAH, etc. can be used to treat, prevent, or prevent progression of cancer. That is, it can be used to suppress cancer growth, metastasis, cancerous ascites or cancer pleural effusion.
  • Specific cancers include solid cancer, transitional cell carcinoma, colon cancer, colorectal cancer, colon cancer, lung cancer (small cell cancer), lung cancer (non-small cell lung cancer), kidney cancer (renal cell carcinoma), liver cancer ( Hepatocellular carcinoma), brain tumor, glioma (glioma), glioblastoma, glioblastoma multiforme, pancreatic cancer, head and neck cancer (squamous cell carcinoma), multiple myeloma, prostate cancer, ovarian cancer, digestion Tubular stromal tumor (GIST), gastric cancer, female genital cancer, cervical cancer, breast cancer, melanoma (melanoma), lymphoma (non-Hodgkin), lymphoma (Hodgkin), lymphoma (diffuse large cell type), leukemia (acute bone marrow) ), Leukemia (chronic lymphatic), esophageal cancer, thyroid cancer, adrenocortical cancer, fibrous histiocytoma, meningi
  • the above-described pharmaceutical composition containing an antisense nucleic acid against ENAH, a ribozyme nucleic acid, a nucleic acid containing siRNA and a precursor thereof, an antibody against ENAH, or a low molecular compound that suppresses the expression or function of ENAH is an angiogenesis inhibitor.
  • diseases associated with abnormal angiogenesis specifically diabetic retinopathy, choroidal neovascularization, macular degeneration, heart failure, myelodysplasia, influenza, inflammation, arthritis, hepatitis C, psoriasis, edema, neurodegeneration Disease, amyloidosis, idiopathic pulmonary fibrosis, multiple sclerosis, Wilson disease, von Hippel-Lindau disease, Crohn's disease, systemic mastocytosis, myeloproliferative syndrome, myelodysplasia, etc., preferably diabetic retinopathy, macular To treat, prevent, or prevent progression of degeneration, inflammation, arthritis, psoriasis, edema, idiopathic pulmonary fibrosis, von Hippel-Lindau disease, Crohn's disease It can be used.
  • Treatment or prevention of cancer with a pharmaceutical composition containing the above-mentioned antisense nucleic acid against ENAH, ribozyme nucleic acid, siRNA and its precursor, an antibody against ENAH, a low molecular compound that suppresses the expression or function of ENAH, etc. May be used alone, or may be used in combination with one or more drugs having anticancer activity and / or radiation therapy.
  • the drugs to be used in combination are not particularly limited.
  • angiogenesis inhibitors such as Bevacizumab, Sunitinib, Sorafenib, Erlotinib, Erbitax
  • blood vessel destruction drugs such as ASA404, 5-FU (fluorouracil), gemcitabine
  • chemotherapeutic agents such as cisplatin, irinotecan, carboplatin, and paclitaxel.
  • the screening method involves culturing cells capable of producing ENAH in the presence and absence of a test substance, Comparing the expression level and / or function of ENAH below.
  • Cells having the ability to produce ENAH used in the above screening methods may be human or other mammalian cells that naturally express them or biological samples (eg, blood, tissues, organs, etc.) containing them. There are no particular restrictions. In the case of blood, tissues, organs, etc. derived from non-human animals, they may be isolated from the living body and cultured, or the test substance is administered to the living body itself, and these biological samples are isolated after a certain period of time. May be. Examples of cells having the ability to produce ENAH include various transformants prepared by known and commonly used genetic engineering techniques. As the host, for example, animal cells such as H4IIE-C3 cells, HepG2 cells, HEK293 cells, COS7 cells, CHO cells are preferably used.
  • DNA encoding ENAH (that is, the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, or complementary to the nucleotide sequence)
  • a DNA containing a base sequence encoding a polypeptide having the same function as that of a protein) can be prepared by ligating downstream of a promoter in an appropriate expression vector and introducing it into a host animal cell.
  • the gene encoding ENAH can be obtained by conventional genetic engineering methods (eg Sambrook J., Frisch EF, Maniatis T., Molecular Cloning 2nd edition), Cold Spring Harbor Laboratory (Cold Spring Harbor Laboratory). press), etc.). That is, DNA encoding ENAH is obtained by, for example, using an appropriate oligonucleotide based on the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50, or SEQ ID NO: 52.
  • Hybridization can be performed, for example, according to the method described in Molecular Cloning 2nd edition (above). When a commercially available library is used, hybridization can be performed according to the method described in the instruction manual attached to the library.
  • the DNA base sequence can be determined using a known kit such as Mutan TM -super Express Km (Takara Shuzo), Mutan TM -K (Takara Shuzo), etc., using the ODA-LA PCR method, the Gapped duplex method, Conversion can be performed according to a method known per se such as the Kunkel method or a method analogous thereto.
  • the cloned DNA can be used as it is or after digestion with a restriction enzyme or addition of a linker, if desired.
  • the DNA may have ATG as a translation initiation codon on the 5 ′ end side and TAA, TGA or TAG as a translation termination codon on the 3 ′ end side. These translation initiation codon and translation termination codon can be added using an appropriate synthetic DNA adapter.
  • ENAH protein
  • ENAH protein
  • the plasmid include a promoter that contains genetic information that can be replicated in a host cell, can be propagated autonomously, can be easily isolated and purified from the host cell, and can function in the host cell.
  • Preferred examples include those in which a gene encoding ENAH is introduced into an expression vector having a detectable marker.
  • Various types of expression vectors are commercially available. For example, an expression vector used for expression in E.
  • coli is an expression vector containing a promoter such as lac, trp, tac, etc., and these are commercially available from Pharmacia, Takara Bio and the like. Restriction enzymes used to introduce a gene encoding ENAH into the expression vector are also commercially available from Takara Bio and others. If it is necessary to induce further high expression, a ribosome binding region may be linked upstream of the gene encoding protein: ENAH. Examples of the ribosome binding region used include those described in reports by Guarente L. et al. (Cell 20, p543) and Taniguchi et al. (Genetics of Industrial Microorganisms, p202, Kodansha).
  • animal cell expression plasmids eg pA1-11, pXT1, pRc / CMV, pRc / RSV, pcDNAI / Neo
  • bacteriophages such as ⁇ phage
  • animal virus vectors such as retrovirus, vaccinia virus, adenovirus, etc. It can also be used.
  • the promoter may be any promoter as long as it is appropriate for the host used for gene expression.
  • SR ⁇ promoter for example, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, ⁇ -actin A gene promoter, aP2 gene promoter, etc. are used.
  • CMV promoter, SR ⁇ promoter and the like are preferable.
  • an expression vector containing an enhancer, a splicing signal, a poly A addition signal, a selection marker, an SV40 replication origin (hereinafter sometimes abbreviated as SV40 ori), etc. is used as desired. Can do.
  • Selectable markers include, for example, dihydrofolate reductase gene (hereinafter abbreviated as dhfr, methotrexate (MTX) resistance), ampicillin resistance gene (hereinafter abbreviated as amp r ), neomycin resistance gene ( hereinafter sometimes abbreviated as neo r, include G418 resistance) and the like.
  • dhfr dihydrofolate reductase gene
  • amp r ampicillin resistance gene
  • neomycin resistance gene hereinafter sometimes abbreviated as neo r, include G418 resistance
  • the target gene can also be selected using a medium that does not contain thymidine.
  • An ENAH-expressing cell can be produced by transforming a host with an expression vector containing the above-described DNA encoding ENAH.
  • host cells include prokaryotic or eukaryotic microbial cells, insect cells, and mammalian cells.
  • mammalian cells include HepG2 cells, HEK293 cells, HeLa cells, human FL cells, monkey COS-7 cells, monkey Vero cells, Chinese hamster ovary cells (hereinafter abbreviated as CHO cells), dhfr gene-deficient CHO cells ( Hereinafter, abbreviated as CHO (dhfr ⁇ ) cells), mouse L cells, mouse AtT-20 cells, mouse myeloma cells, rat H4IIE-C3 cells, rat GH3 cells, and the like.
  • the plasmid obtained as described above can be introduced into the host cell by an ordinary genetic engineering method.
  • the transformant can be cultured by a conventional method used for culturing microorganisms, insect cells or mammalian cells.
  • culturing is performed in a medium appropriately containing a suitable carbon source, nitrogen source and trace nutrients such as vitamins.
  • the culture method may be any of solid culture and liquid culture, and preferred examples include liquid culture such as aeration and agitation culture.
  • Transformation can be performed by calcium phosphate coprecipitation method, PEG method, electroporation method, microinjection method, lipofection method and the like.
  • PEG method New Cell Engineering Experiment Protocol
  • electroporation method microinjection method
  • lipofection method lipofection method and the like.
  • the methods described in Cell Engineering Supplement 8, New Cell Engineering Experiment Protocol, 263-267 (1995) (published by Shujunsha), Virology, 52, 456 (1973) can be used.
  • the transformed cells obtained as described above, mammalian cells having the ability to naturally produce ENAH, or tissues / organs containing the cells are, for example, a minimum essential medium (MEM) containing about 5 to 20% fetal calf serum. ) [Science, 122, 501 (1952)], Dulbecco's modified Eagle medium (DMEM) [Virology, 8, 396 (1959)], RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967) )], 199 medium (Proceeding of the Society for biological the Biological Medicine, Vol. 73, 1 (1950)).
  • the pH of the medium is preferably about 6-8. Cultivation is usually carried out at about 30-40 ° C, with aeration and agitation as necessary.
  • ENAH can be obtained by combining methods commonly used for isolation and purification of general proteins. For example, the transformants obtained by the above culture are collected by centrifugation or the like, and the transformants are crushed or dissolved, and if necessary, proteins are solubilized, and various types such as ion exchange, hydrophobicity, gel filtration, etc. What is necessary is just to refine
  • test substance examples include proteins, peptides, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, and the like. These substances may be novel or may be known ones.
  • a control cell that does not contact the test substance can also be used as a comparative control.
  • Do not contact the test substance means that the same amount of solvent (blank) as the test substance is added instead of the test substance, or that the expression level of ENAH or ENAH gene or ENAH function is affected. The case where a negative control substance not given is added is also included.
  • the contact of the test substance with the cells may be performed by, for example, the above-mentioned medium or various buffers (for example, HEPES buffer, phosphate buffer, phosphate buffered saline, Tris-HCl buffer, borate buffer, acetic acid).
  • the test substance can be added to a buffer solution or the like, and the cells can be incubated for a certain time.
  • concentration of the test substance to be added varies depending on the type of compound (solubility, toxicity, etc.), but is appropriately selected within the range of about 0.1 nM to about 100 ⁇ M, for example. Examples of the incubation time include about 10 minutes to about 24 hours.
  • the state of the animal individual is not particularly limited.
  • model mice transplanted with cancer cells for example, A375SM (human highly metastatic A mouse produced by transplanting the melanoma cell) into the right dorsal skin of a KSN / Slc nude mouse.
  • A375SM human highly metastatic A mouse produced by transplanting the melanoma cell
  • the animals are raised in an environment of SPF grade or higher.
  • Contact of the test substance with the cells is carried out by administering the test substance to the animal individual.
  • the administration route is not particularly limited, and examples thereof include intravenous administration, intraarterial administration, subcutaneous administration, intradermal administration, intraperitoneal administration, oral administration, intratracheal administration, and rectal administration.
  • the dose is not particularly limited. For example, a dose of about 0.5 to 20 mg / kg can be administered 1 to 5 times a day, preferably 1 to 3 times a day for 1 to 14 days.
  • the screening method described above can be carried out by contacting a test substance with an extract of the cells or ENAH isolated and purified from the cells, instead of the cells having the ability to produce ENAH.
  • the present invention relates to a screening for a substance having an angiogenesis inhibitory activity, characterized by comparing the expression of the protein (gene) in cells having the ability to produce ENAH in the presence and absence of a test substance.
  • a method The cells used in this method, the type of test substance, the mode of contact between the test substance and cells, etc. are the same as described above.
  • ENAH is a nucleic acid that can hybridize with the above-described DNA encoding ENAH under stringent conditions, that is, SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50, or SEQ ID NO: :
  • a nucleic acid (DNA) that can hybridize with the base sequence represented by 52 or a base sequence complementary thereto under stringent conditions hereinafter sometimes referred to as “the nucleic acid for detection of the present invention”
  • the nucleic acid for detection of the present invention By detecting the mRNA of the ENAH gene, it can be measured at the RNA level.
  • the expression level can also be measured at the protein level by detecting these proteins using the above-mentioned antibody against ENAH (hereinafter sometimes referred to as “the detection antibody of the present invention”). Therefore, more specifically, the present invention (A) Cells having the ability to produce ENAH are cultured in the presence and absence of a test substance, and the amount of mRNA encoding the protein under both conditions is measured using the nucleic acid for detection of the present invention.
  • a method for screening a substance having an angiogenesis inhibitory activity characterized by comparing, and (b) culturing cells capable of producing ENAH in the presence and absence of a test substance, under both conditions
  • a method for screening a substance having an angiogenesis inhibitory activity is provided, which comprises measuring and comparing the amount of the protein in (1) using the detection antibody of the present invention.
  • screening for a substance that changes the expression level of ENAH can be performed as follows.
  • Normal or disease for example, transplanted model mice such as colon cancer and lung cancer: model mice transplanted with cancer cells subcutaneously on the right back of KSN / Slc nude mice
  • model non-human mammals for example, mice, Rats, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.
  • blood, a specific organ eg, brain, etc.
  • a tissue or cell isolated from the organ is obtained.
  • ENAH mRNA can be quantified by extracting mRNA from cells and the like by a conventional method, or can be quantified by Northern blot analysis known per se. On the other hand, the amount of ENAH protein can be quantified using Western blot analysis or various immunoassay methods described in detail below.
  • a cell that expresses the ENAH gene (for example, a transformant into which ENAH has been introduced) is prepared according to the method described above, and a test substance is added to a medium or a buffer when cultivating according to a conventional method for a certain period of time.
  • ENAH or mRNA encoding the same contained in the cells is quantified in the same manner as in (i) above. Can be analyzed.
  • the detection and quantification of the expression level of the ENAH gene can be performed by a known method such as Northern blotting or RT-PCR using RNA prepared from the cells or a complementary polynucleotide transcribed therefrom. Specifically, the presence or absence of expression of the ENAH gene in RNA and its expression by using a polynucleotide having at least 15 bases continuous in the base sequence of the ENAH gene and / or its complementary polynucleotide as a primer or probe The level can be detected and measured.
  • Such a probe or primer is based on the base sequence of the ENAH gene, for example, primer 3 (HYPERLINK http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi http: // www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi) or vector NTI (manufactured by Infomax).
  • primer 3 HYPERLINK http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi http: // www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi
  • vector NTI manufactured by Infomax
  • the primer or probe When using Northern blotting, the primer or probe is labeled with a radioisotope (32P, 33P, etc .: RI) or a fluorescent substance and hybridized with cell-derived RNA transferred to a nylon membrane or the like according to a conventional method. After soy, the formed duplex of the primer or probe (DNA or RNA) and RNA is used as a signal from the primer or probe label (RI or fluorescent material) as a radiation detector (BAS- 1800II (manufactured by Fuji Film) or a method of detecting and measuring with a fluorescence detector can be exemplified.
  • a radioisotope 32P, 33P, etc .: RI
  • RI a fluorescent substance
  • the probe is labeled according to the protocol, hybridized with cell-derived RNA, and then the signal derived from the labeled product of the probe is multi-bypassed.
  • a method of detecting and measuring with an imager STORM860 can also be used.
  • a cDNA is prepared from cell-derived RNA according to a conventional method, and using this as a template, a target ENAH gene region can be amplified.
  • a method of detecting the amplified double-stranded DNA obtained by hybridizing a primer (a normal strand that binds to the above cDNA (-strand) and a reverse strand that binds to a + strand) and performing PCR according to a conventional method can be illustrated.
  • the detection of the amplified double-stranded DNA was performed by a method for detecting the labeled double-stranded DNA produced by performing the PCR using a primer previously labeled with RI or a fluorescent substance.
  • a method can be used in which double-stranded DNA is transferred to a nylon membrane or the like according to a conventional method, and the labeled primer is used as a probe to hybridize with this to detect it.
  • the produced labeled double-stranded DNA product can be measured with an Agilent 2100 Bioanalyzer (manufactured by Yokogawa Analytical Systems). Also, prepare an RT-PCR reaction solution according to the protocol using SYBR Green RT-PCR Reagents (Applied Biosystems) and react with ABI PRISM 7900 Sequence Detection System (Applied Biosystems) to detect the reaction product. You can also The expression level of ENAH gene in the cells to which the test substance is added is 2/3 times or less, preferably 1/2 times or less, more preferably 1/3 times the expression level in the control cells to which no test substance is added. The test substance can be selected as an ENAH gene expression inhibitor if it is below.
  • the “transcriptional regulatory region” usually refers to a range from several kb to several tens of kb upstream of the chromosomal gene.
  • 5′-race method for example, 5
  • Genome Walker Kit which can be carried out using conventional methods such as oligocap method and S1 primer mapping
  • Genome Walker Kit The 5′-upstream region can be obtained using Clontech, etc., and the obtained upstream region can be identified by a technique including a step of measuring promoter activity. Specifically, in L. Urbanelli et al., Biochimica et Biophysica Acta 1759 (2006) p99-107, p105, based on the sequence of the 5′-upstream region disclosed in FIG. Can be identified.
  • a reporter protein expression vector is constructed by linking a nucleic acid encoding a reporter protein (hereinafter referred to as “reporter gene”) in a functional manner downstream of the transcriptional regulatory region of the ENAH gene.
  • reporter gene a reporter protein
  • the vector may be prepared by a method known to those skilled in the art. That is, the conventional genetic engineering described in ⁇ Molecular Cloning: A Laboratory Manual 2nd edition '' (1989), Cold Spring Harbor Laboratory Press, ⁇ Current Protocols In Molecular Biology '' (1987), John Wiley & Sons, Inc.
  • the transcriptional regulatory region of ENAH gene excised according to the technique can be incorporated on a plasmid containing a reporter gene.
  • Reporter proteins include ⁇ -glucuronidase (GUS), luciferase, chloramphenicol transacetylase (CAT), ⁇ -galactosidase (GAS), green fluorescent protein (GFP) and the like.
  • GUS ⁇ -glucuronidase
  • CAT chloramphenicol transacetylase
  • GAS ⁇ -galactosidase
  • GFP green fluorescent protein
  • a reporter gene that is operably linked to the prepared transcriptional regulatory region of the ENAH gene into a vector that can be used in the cell into which the reporter gene is to be introduced. And can be introduced into a suitable host cell. Stable transformed cells can be obtained by culturing in a medium with selection conditions according to the selection marker gene mounted on the vector.
  • a reporter gene in which the transcriptional regulatory region of the ENAH gene is operably linked may be transiently expressed in the host cell.
  • a method for measuring the expression level of the reporter gene a method corresponding to each reporter gene may be used.
  • a luciferase gene when used as a reporter gene, the transformed cell is cultured for several days, an extract of the cell is obtained, and then the extract is reacted with luciferin and ATP to cause chemiluminescence, and the emission intensity Promoter activity can be detected by measuring.
  • a commercially available luciferase reaction detection kit such as Picker Gene Dual Kit (registered trademark; manufactured by Toyo Ink) can be used.
  • a method for measuring ENAH protein amount specifically, for example, (I) Quantifying ENAH in a sample solution by competitively reacting the detection antibody of the present invention with the sample solution and labeled ENAH, and detecting the labeled protein bound to the antibody How, (Ii) The sample solution is reacted with the detection antibody of the present invention insolubilized on the carrier and another labeled detection antibody of the present invention simultaneously or continuously, and then the labeling agent on the insolubilized carrier.
  • a method of quantifying ENAH in a sample solution by measuring the amount (activity) of s.
  • ENAH protein expression level can be detected and quantified according to a known method such as Western blotting using an antibody recognizing ENAH.
  • Western blotting uses an antibody that recognizes ENAH as the primary antibody, and then binds to the primary antibody labeled with a radioisotope such as 125 I, a fluorescent substance, or an enzyme such as horseradish peroxidase (HRP) as the secondary antibody.
  • a radioisotope such as 125 I, a fluorescent substance, or an enzyme such as horseradish peroxidase (HRP) as the secondary antibody.
  • HRP horseradish peroxidase
  • This is carried out by measuring the signal derived from these labeling substances using a radiation measuring instrument (BAI-1800II: manufactured by Fuji Film Co., Ltd.), a fluorescence detector or the like.
  • detection is performed according to the protocol using ECL Plus Western Blotting Detection System (Amersham Pharmacia Biotech) It can also be measured.
  • the above-described antibody is not particularly limited in its form, and may be a polyclonal antibody having ENAH as an immunizing antigen, or may be a monoclonal antibody thereof.
  • an antibody having antigen-binding ability against a polypeptide consisting of 8 amino acids, preferably 15 amino acids, more preferably 20 amino acids can also be used.
  • Methods for producing these antibodies are already well known, and the antibodies of the present invention can also be produced according to these conventional methods (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section 11.12-11.13).
  • the two antibodies recognize different portions of ENAH.
  • one antibody recognizes the N-terminal part of ENAH, one that reacts with the C-terminal part of the protein can be used as the other antibody.
  • a labeling agent used in a measurement method using a labeling substance for example, a radioisotope, an enzyme, a fluorescent substance, a luminescent substance, or the like is used.
  • the radioisotope for example, [ 125 I], [ 131 I], [ 3 H], [ 14 C] and the like are used.
  • the enzyme is preferably stable and has a large specific activity.
  • ⁇ -galactosidase ⁇ -glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase and the like are used.
  • fluorescent substance for example, fluorescamine, fluorescein isothiocyanate and the like are used.
  • luminescent substance for example, luminol, luminol derivatives, luciferin, lucigenin and the like are used.
  • a biotin- (strept) avidin system can be used for binding of an antibody or antigen to a labeling agent.
  • the ENAH quantification method using the detection antibody of the present invention is not particularly limited, and the amount of antibody, antigen or antibody-antigen complex corresponding to the amount of antigen in the sample solution is chemically or physically determined. Any measurement method may be used as long as it is a measurement method that is detected by means and calculated from a standard curve prepared using a standard solution containing a known amount of antigen. For example, nephrometry, competition method, immunometric method and sandwich method are preferably used. In view of sensitivity and specificity, for example, the sandwich method described later is preferably used.
  • the carrier include insoluble polysaccharides such as agarose, dextran, and cellulose, synthetic resins such as polystyrene, polyacrylamide, and silicon, or glass.
  • the sample solution is reacted with the insolubilized detection antibody of the present invention (primary reaction), and further labeled with another detection antibody of the present invention (secondary reaction), and then on the insolubilized carrier.
  • primary reaction By measuring the amount or activity of the labeling agent, ENAH in the sample solution can be quantified.
  • the primary reaction and the secondary reaction may be performed in the reverse order, may be performed simultaneously, or may be performed at different times.
  • the labeling agent and the insolubilizing method can be the same as those described above.
  • the antibody used for the immobilized antibody or the labeled antibody is not necessarily one type, and a mixture of two or more types of antibodies is used for the purpose of improving measurement sensitivity. May be.
  • the detection antibody of the present invention can also be used in measurement systems other than the sandwich method, such as a competitive method, an immunometric method, or nephrometry.
  • a competitive method ENAH in the sample solution and labeled ENAH are reacted competitively with the antibody, and then the unreacted labeled antigen (F) and the labeled antigen (B) bound to the antibody are separated.
  • B / F separation Quantify ENAH in the sample solution by measuring the amount of label B or F.
  • a soluble antibody is used as an antibody
  • B / F separation is performed using polyethylene glycol or a secondary antibody against the antibody (primary antibody)
  • a solid phase is used as the primary antibody.
  • Either the antibody is used (direct method), or the primary antibody is soluble, and the immobilized antibody is used as the secondary antibody (indirect method).
  • ENAH in a sample solution and solid-phased ENAH are subjected to a competitive reaction with a certain amount of labeled antibody, and then the solid phase and the liquid phase are separated, or ENAH in the sample solution is separated.
  • solid-phased ENAH is added to bind unreacted labeled antibody to the solid phase, and then the solid phase and the liquid phase are separated.
  • the amount of label in any phase is measured to quantify the amount of antigen in the sample solution.
  • the amount of insoluble precipitate produced as a result of the antigen-antibody reaction in a gel or solution is measured. Even when the amount of ENAH in the sample solution is small and only a small amount of precipitate is obtained, laser nephrometry using laser scattering is preferably used.
  • An ENAH measurement system may be constructed by adding ordinary technical considerations to those skilled in the art to the usual conditions and operation methods in each method. For details of these general technical means, it is possible to refer to reviews, books and the like. For example, Hiroshi Irie “Radioimmunoassay” (Kodansha, published in 1974), Hiroshi Irie “Continue Radioimmunoassay” (published in Kodansha, 1979), “Enzyme Immunoassay” edited by Eiji Ishikawa et al. 53), edited by Eiji Ishikawa et al.
  • the expression level (mRNA level or protein level) of ENAH in the presence of the test substance is about 20% or more, preferably about 30%, compared to the case in the absence of the test substance.
  • the inhibition is more preferably about 50% or more
  • the test substance can be selected as a candidate for ENAH expression-suppressing substance, and thus a substance having angiogenesis inhibitory activity.
  • cells containing a reporter gene under the control of the transcriptional regulatory region in the ENAH gene can be used instead of cells expressing the ENAH gene.
  • Such cells may be cells, tissues, organs or individuals of transgenic animals into which a reporter gene (eg, luciferase, GFP, etc.) under the control of the transcriptional regulatory region of the ENAH gene has been introduced.
  • a reporter gene eg, luciferase, GFP, etc.
  • the expression level of ENAH can be evaluated by measuring the expression level of the reporter gene using a conventional method.
  • the screening method of the present invention can also be performed using as an index whether or not a test substance suppresses the function of ENAH.
  • a test substance suppresses the function of ENAH.
  • it can be carried out by measuring whether or not proliferation or migration of the cells is suppressed by adding a test substance.
  • cell proliferation or cell migration of tumor vascular endothelial cells in the presence of the test substance is about 10% or more, preferably about 20% or more, more than cell growth or cell migration in the absence of the test substance.
  • the test substance can be selected as a candidate for ENAH function-suppressing substance, and thus a substance having angiogenesis inhibitory activity.
  • a substance having angiogenesis inhibitory activity in the screening method described above, as a control, cells that have been prepared using conventional methods and have the ENAH gene knocked out should not exhibit the above function in control cells that do not express the ENAH gene. Can be confirmed. That is, it can be confirmed that the action mechanism of the candidate substance having angiogenesis inhibitory activity obtained in the above screening method is based on suppression of ENAH or ENAH gene expression or suppression of ENAH function.
  • the substance that suppresses the expression or function of ENAH obtained by using any one of the screening methods of the present invention is useful as a pharmaceutical for the prevention and / or treatment of cancer.
  • the compound obtained by using the screening method of the present invention is used as the above-mentioned prophylactic / therapeutic agent, it can be formulated in the same manner as the low molecular weight compound that suppresses the expression or function of ENAH, and has the same administration route and
  • the dose may be administered orally or parenterally to humans or mammals (eg, mice, rats, rabbits, sheep, pigs, cows, horses, cats, dogs, monkeys, chimpanzees, etc.). it can.
  • the present invention provides a method for determining cancer onset or onset risk, characterized by measuring the expression level of ENAH in a sample collected from a test animal.
  • the method includes the following steps (a) and (b).
  • the step of determining that the test animal having an increased function has cancer or has a high risk of developing in the future.
  • test animals include humans and other mammals, preferably humans, mice, rats, rabbits, dogs, monkeys and the like that are widely used as experimental animals.
  • the measurement target sample include blood, plasma, serum, cerebrospinal fluid, lymph fluid, saliva, mucous membrane, urine, tears, semen, joint fluid, biopsy sample, and the like.
  • ENAH gene expression level and protein ENAH level in a sample can be measured by the same method as described in the above screening method using the gene or protein expression level as an index. As a result of the above measurement, the amount of ENAH gene expression or ENAH in the sample collected from the test animal is significantly higher than the amount of ENAH gene expression or ENAH in the sample collected from the normal animal It can be determined that the test animal has developed cancer or has a high risk of developing in the future.
  • the expression level in a normal animal is identified in advance, for example, the average value + 2SD is defined as a cut-off value, and the expression level of the ENAH gene or the amount of ENAH in a sample collected from the test animal If the value is exceeded, the test animal can also be determined to have developed cancer or have a high risk of developing in the future.
  • HSC3 human tongue cancer cells
  • SIGMA DMEM medium
  • FBS manufactured by Hyclone
  • A375SM human highly metastatic melanoma cells
  • HBSS Hank's buffered salt solution
  • Example 2 Transplantation of cancer cells into mice 6 to 7-week-old mice (strain: KSN / Slc nude, gender: female, breeder: Nippon SLC) subcutaneously transplanted in Example 1 per mouse.
  • 0.1 ml of the cell suspension was injected using a 1 mL syringe syringe (Terumo) and a 27G needle (Terumo). The mice were reared until the diameter of the transplanted tumor was about 10 mm.
  • Example 3 Preparation of Mouse Primary Vascular Endothelial Cells
  • the tumor subcutaneously transplanted mice prepared in Example 2 were euthanized after general anesthesia with isoflurane (Abbott Japan). After removing the tumor part (tumor mass) and cutting it finely with scissors in 20 ml of a collagenase type II (Collagenase Type II, GIBCO) solution with a final concentration of 10-15 mg / ml, the final concentration becomes 20-30 ⁇ g / ml As described above, DNase (Roche) was added and incubated at 37 ° C. for 30 minutes (shaking) to prepare a cell suspension.
  • a collagenase type II Collagenase Type II, GIBCO
  • the tube containing the cell suspension is placed on ice, and the suspension (upper layer) from which the undigested tissue fragments that have precipitated are removed is transferred to a new 50 mL tube through a 100 ⁇ m mesh size cell strainer (BD Biosciences). did.
  • the collagenase was inactivated by adding the same amount of FBS as the cell suspension.
  • the cells were collected by centrifugation at 1000 rpm at 4 ° C. for 5 minutes, and then suspended in 20 mL of HBSS (GIBCO).
  • the suspension was suspended in 1 ml of HBSS containing 0.5% BSA and incubated (stirred) at room temperature for 20 minutes. Thereto, 5 ⁇ l of rat anti-mouse CD31 antibody (Purified Rat Anti-mouse CD31, manufactured by BD Biosciences pharmingen) was added and incubated (stirred) at 4 ° C. for 30 minutes. After centrifugation at 1000 rpm and 4 ° C. for 5 minutes, the cells were suspended in 0.5% BSA-containing HBSS and centrifuged again at 1000 rpm and 4 ° C. for 5 minutes.
  • rat anti-mouse CD31 antibody Purified Rat Anti-mouse CD31, manufactured by BD Biosciences pharmingen
  • BSA-containing MACS buffer degassed PBS buffer containing 2 mM EDTA
  • 20 ⁇ l of goat anti-rat IgG magnetic beads goat anti-rat IgG Microbeads, manufactured by Miltenyi Biotec.
  • Centrifugation was performed at 1000 rpm and 4 ° C. for 5 minutes, and the precipitated cells were suspended in 1 ml of MACS buffer.
  • MS column MS Columns, manufactured by Miltenyi Biotec if the number of cells in the suspension is 1 ⁇ 10 7 or less
  • LS column LS Columns, manufactured by Miltenyi Biotec if it is 1 ⁇ 10 7 or more
  • the following operation was performed using First, place the selected column on the attached magnetic magnet, add 500 ⁇ l of MACS buffer 3 times for calibration (initial calibration), add 1 mL of cell suspension to the column, and wash 3 times with 500 ⁇ l of MACS buffer. did. The column was removed from the magnet, and the magnetically labeled CD31 positive cells remaining in the column were pushed out into a 15 ml tube with 1 mL of MACS buffer using a syringe attached to the column.
  • 6-well plate manufactured by Nunc coated with PBS containing 1.5% gelatin (manufactured by SIGMA) after resuspending the cells using a medium dedicated to vascular endothelial cells EGM-2MV (manufactured by Lonza) and counting the number of cells 2x10 5 cells / well in a 20% FBS-containing EGM-2MV medium containing diphtheria toxin (Calbiochem) at a final concentration of 500 ng / ml for 16 hours and then converted to a medium containing no diphtheria toxin. Cultured for 2 weeks.
  • the cultured cells are collected, resuspended in HBSS containing 0.5% BSA, and then BS1-B4 positive cells are separated and collected by MACS using BS1-B4 (Vector Laboratories) instead of the CD31 antibody.
  • the tumor vascular endothelial cells were used in the following experiments.
  • normal vascular endothelial cells were prepared in the same manner as the above-described method for preparing tumor vascular endothelial cells, starting from the skin blood vessels of mice not transplanted with tumor cells.
  • Example 4 Cultivation of mouse primary vascular endothelial cells Cultured at 37 ° C. and 5% CO 2 using a growth medium for vascular endothelial cells (Brett Kit EGM-2MV, manufactured by Lonza). During passage, after removing the medium from the flask by suction, it was washed once with PBS (GIBCO), added with 0.05% trypsin-EDTA solution (GIBCO), and then at 37 ° C and 5% CO 2 The cells detached in 3 minutes were suspended and collected by adding DMEM medium containing 10% FBS (manufactured by Nacalai Tesque). The cell suspension was centrifuged at 800 rpm for 5 minutes at room temperature, and the cells were collected, diluted and suspended in EGM-2MV medium, and cultured.
  • a growth medium for vascular endothelial cells (Brett Kit EGM-2MV, manufactured by Lonza).
  • Example 5 SiRNA transfection of mouse primary vascular endothelial cells Add 1.44 ⁇ l of 10 ⁇ M siRNA solution and 8 ⁇ l of Lipofectamine RNAiMAX reagent (Invitrogen) to 0.8 ml of EBM-2 medium (Lonza) and mix at room temperature for 10- The mixture was allowed to stand for 20 minutes to form a complex of the following siRNA (showing only the sense strand) and liposome.
  • mENAH-1 siRNA GACAGAAAUGAAGAUGCAGAGCCUA (SEQ ID NO: 13)
  • mENAH-2 siRNA CAACUGGGUUCAGCAGAGUACAUAU (SEQ ID NO: 14)
  • a vascular endothelial cell suspension diluted to 9 ⁇ 10 4 cells / ml in EBM-2 medium containing 0.5% FBS, and mixed.
  • the mixture is 55 ⁇ l / well in a 96-well plate (Costar) for proliferation assay, 2.25 ml / well in a 6-well plate (Asahi Techno Glass) for migration assay, and 6 wells for RNA preparation.
  • RNAi siRNA Enah Stealth Select RNAi (registered trademark) siRNA (MSS203860) and mENAH-2: Enah Stealth Select RNAi siRNA (MSS274145), which are commercially available from Invitrogen.
  • Example 6 Proliferation assay Two kinds of siRNAs described in Example 5 were transfected into mouse primary tumor vascular endothelial cells prepared from A375SM (human highly metastatic melanoma cells) transplanted model mice and primary normal vascular endothelial cells prepared from normal mice. The cell growth inhibitory effect was confirmed. 72 hours after siRNA transfection, 20 ⁇ l of the mixed solution obtained by mixing Alamar Blue solution (Alamar Bioscience) and EGM-2MV medium at a ratio of 13: 7 was added to the 96-well plate for proliferation assay prepared in Example 5. / Well and incubated at 37 ° C. under 5% CO 2 for 2 to 3 hours.
  • Alamar Blue solution Alamar Bioscience
  • Example 7 Migration assay Angiogenesis system: Measured using a vascular endothelial migration assay (Becton Dickinson). That is, 48 hours after siRNA transfection, the medium of the 6-well plate for migration assay prepared in Example 5 was removed by suction, washed once with PBS (manufactured by GIBCO), and then EBM-2 containing 0.2% BSA. The medium was added at 1-2 ml / well and cultured at 37 ° C. under 5% CO 2 for 2-3 hours. After detaching and suspending the cells by pipetting, the number of cells was counted by staining with 0.2% trypan blue (GIBCO) (0.2% BSA as necessary to reach about 10-20x10 4 cells / ml).
  • GIBCO trypan blue
  • EBM-2 medium Diluted with EBM-2 medium containing The above cell suspension was added at 0.075 ml / well to the upper chamber of a 96-well plate for migration assay (Becton Dickinson) returned to room temperature, and then EGM-2MV diluted 10-fold with EBM-2 medium. The medium was added to the lower well at 0.225 ml / well and cultured for 16-20 hours in a CO 2 incubator (37 ° C., 5% CO 2 condition).
  • RNA was prepared from the cells described in Example 5 using QuickGene-800 (Fuji Film) according to the attached protocol. That is, 48 hours after siRNA transfection, the medium was aspirated and removed from each well of the 6-well plate for RNA preparation prepared in Example 5, and then the LRC lysate attached to QuickGene RNA cultured cell kit S (Fuji Film) was attached. A mixed solution obtained by adding 2-mercaptoethanol at 10 ⁇ l / ml to the solution was added at 350 ⁇ l / well to prepare a cell lysate.
  • RNA mode was selected and RNA was automatically prepared.
  • concentration of the prepared RNA was measured with Nanodrop-1000 (manufactured by Thermo scientific) and subjected to RT-PCR reaction. (RT-PCR) Using the prepared RNA as a template, cDNA was synthesized using TaqMan Reverse Transcription Reagents (ABI).
  • a pair of primers (a normal strand that binds to the cDNA (-strand) and a reverse strand that binds to the + strand so that the base sequence region encoding the gene to be quantified can be specifically amplified. ) was designed and synthesized in the usual way.
  • primers 1 and 2 having the base sequences shown below were used.
  • Mouse ENAH Primer 1 CACATTCAGAGTTGTGGGCAGA (SEQ ID NO: 15)
  • Mouse ENAH primer 2 TGCTGCCAAAGTTGAGACCATAC (SEQ ID NO: 16)
  • Mouse 18S ribosomal RNA Primer 1 GGGAGCCTGAGAAACGGC (SEQ ID NO: 17)
  • Mouse 18S ribosomal RNA Primer 2 GGGTCGGGAGTGGGTAATTT (SEQ ID NO: 18)
  • the value obtained by correcting the expression level of mouse ENAH in each sample with the expression level of 18S ribosomal RNA was defined as the ENAH expression level in each sample, and the gene expression suppression rate was usually determined by the following formula. ((Expression level of control cell) ⁇ (expression level of cell introduced with siRNA)) / (expression level of control cell) ⁇ 100
  • the control cell means a cell (mock) that does not contain siRNA and to which only the transfection reagent is added.
  • Table 3 shows the inhibition rate of mouse ENAH gene expression when each siRNA of the mouse ENAH gene (see Example 5) was introduced into mouse primary tumor vascular endothelial cells.
  • Example 9 Expression in mouse primary tumor vascular endothelial cells RNA was prepared from the cells prepared in Example 4 by the method described in Example 8, and quantitative RT-PCR was performed.
  • primers 1 and 2 having the base sequences shown below were used.
  • Mouse ENAH Primer 1 GGCAAGATCACCGTGCATTGAAAT (SEQ ID NO: 19)
  • Mouse ENAH Primer 2 GCGCCCTCTGGAAAAAAATCTCTG (SEQ ID NO: 20)
  • ENAH expression was significantly higher in mouse primary tumor vascular endothelial cells than in mouse primary normal vascular endothelial cells (FIG. 1).
  • Example 10 Inhibition of human ENAH expression Phosphoramidite method using siRNA sequence for human ENAH (see Table 4) (21-base double-stranded siRNA consisting of 19 base pairs and 2-base 3'-end overhang) using amidite was synthesized with an RNA synthesizer (ABI394). 10 ml of Lipofectamine RNAiMAX reagent (manufactured by Invitrogen) was added per 1 ml of Opti-MEM medium (manufactured by GIBCO), mixed, and dispensed into a 6-well plate (manufactured by Asahi Techno Glass) at 400 ⁇ l / well.
  • RNAiMAX human fetal kidney-derived cell line
  • 2 ml of HEK293 (human fetal kidney-derived cell line) cell suspension prepared to 1 ⁇ 10 5 cells / ml in DMEM medium (GIBCO) containing 10% FBS was added thereto, at 37 ° C., 5% Incubate overnight under CO 2 conditions.
  • Table 4 shows the sequence of each siRNA and the gene expression suppression effect. Table 4 shows the portion corresponding to the sense strand of the target gene, and the actually prepared siRNA has an overhang sequence “dTdT” added to the 3 ′ end of the sequence shown in Table 4. Yes.
  • siRNA of human ENAH has a gene expression inhibitory effect on human ENAH.
  • Example 11 SiRNA Transfection into Primary Tumor Vascular Endothelial Cells of Mouse Among siRNA sequences for human ENAH described in Table 4 of Example 10, siRNA having a sequence that completely matches mouse ENAH (SEQ ID NO: 35) was used to produce primary mouse SiRNA transfection into tumor vascular endothelial cells was performed. That is, 6 ⁇ l of 5 ⁇ M siRNA solution and 12 ⁇ l of Lipofectamine RNAiMAX reagent (Invitrogen) were added to 1.2 ml of EBM-2 medium (Lonza), mixed, and allowed to stand at room temperature for 10 to 20 minutes. The complex of was formed.
  • EBM-2 medium Longza
  • vascular endothelial cell suspension diluted to 8 ⁇ 10 4 cells / ml with EBM-2 medium containing 0.5% FBS was added thereto and mixed.
  • the mixture is 50 ⁇ l / well in a 96-well plate (Costar) for proliferation assay, 2 ml / well in a 6-well plate (Asahi Techno Glass) for migration assay, and 6-well plate for RNA preparation. (Asahi Techno Glass Co., Ltd.) was dispensed at 1.5 ml / well. After culturing at 37 ° C. and 5% CO 2 for 6 hours, an equal amount of EGM-2MV medium (Lonza) was added, and the cells were cultured at 37 ° C. and 5% CO 2 until each assay was performed. .
  • EGM-2MV medium Longza
  • Example 12 Proliferation assay The assay was performed according to the method described in Example 6. The results of confirming the cell growth inhibitory effect are shown in Table 5.
  • Example 13 Migration assay The migration assay was performed according to the method described in Example 7. The results of confirming the cell migration inhibitory effect are shown in Table 6.
  • Example 14 Quantitative RT-PCR From the cells described in Example 11, RNA was prepared 24 hours after siRNA transfection according to the method described in Example 8, and quantitative RT-PCR was performed. Table 7 shows the inhibition rate of mouse ENAH gene expression when siRNA (SEQ ID NO: 35) of mouse ENAH gene was introduced into mouse primary tumor vascular endothelial cells.
  • primers 1 and 2 having the base sequences shown below were used.
  • Mouse ENAH primer 1 GGCAAGATCACCGTGCATTGAAAT (SEQ ID NO: 19)
  • Mouse ENAH Primer 2 GCGCCCTCTGGAAAAAAATCTCTG (SEQ ID NO: 20)
  • the substance that suppresses the expression or function of ENAH or the ENAH gene of the present invention exhibits the activity of inhibiting the growth and / or migration of tumor vascular endothelial cells, and is useful as a medicine, specifically as a therapeutic or preventive agent for cancer.
  • the screening method of the present invention is useful for searching for an angiogenesis inhibitor that is a candidate substance for cancer treatment or prevention.
  • siRNA SEQ ID NOs: 13-14 siRNA SEQ ID NO: 15-24: PCR primer SEQ ID NO: 25-47: siRNA

Abstract

Provided is an antitumor agent, or more specifically, an angiogenesis inhibitor, that contains as an active ingredient a substance which suppresses the expression or function of ENAH. Specifically, the angiogenesis inhibitor contains: an antisense nucleic acid, a ribozyme, or a nucleic acid having RNAi activity for the transcription product of the gene that encodes ENAH; or an antibody, or the like, that binds to ENAH. Also provided is a method for screening angiogenesis inhibitors, characterized in that the genes that encode ENAH, or compounds that reduce the level of expression of ENAH or the function of ENAH, are selected.

Description

腫瘍血管新生阻害剤Tumor angiogenesis inhibitor
 本発明は、血管新生阻害剤、詳しくは、腫瘍血管内皮細胞の増殖及び/又は遊走を抑制する活性を有し、癌治療薬・予防薬等の医薬として有用な物質及びそのスクリーニング方法等に関する。 The present invention relates to an angiogenesis inhibitor, and more particularly, to a substance useful as a pharmaceutical agent such as a cancer therapeutic agent / prophylactic agent, etc., which has an activity of suppressing proliferation and / or migration of tumor vascular endothelial cells, and a screening method thereof.
 腫瘍の治療法として現在広く用いられているものの多くは、化学療法であれ、放射線療法であれ、腫瘍細胞の増殖を抑制するものがほとんどである。従って、正常細胞に影響を与えることなく腫瘍細胞選択的に増殖を抑制することが非常に重要であるが、腫瘍細胞に選択的に作用する薬剤でも、腫瘍細胞が他の正常な細胞に比べてはるかに活発に分裂、増殖を繰り返しているという性状に依存するところが大きい。
 一方、血管新生は細胞増殖に不可欠であり、悪性腫瘍が増殖する際にも、腫瘍細胞は、増殖に必要な栄養や酸素を得るために自ら血管新生促進物質を産生し、血管新生を誘導する。また、悪性腫瘍が他の臓器や部位へ転移する場合も腫瘍血管新生が誘導され、腫瘍細胞は血流にのって移動する。そこで、固形腫瘍の増殖を抑制するために、その栄養ならびに酸素の供給源である血管新生を断つという治療戦略が提唱されてきた。すなわち腫瘍細胞そのものを攻撃するのではなく、腫瘍細胞を栄養や酸素の枯渇状態に陥れ、結果として腫瘍細胞の増殖抑制、そして退縮という治療効果をあげるというものである。
 この手法の具体的な標的として、腫瘍に到達している腫瘍血管があげられている。癌細胞を含む腫瘍は1~2mm3程度の大きさになると血管新生促進物質を産生し、当該細胞自身の増殖に要する栄養と酸素とを摂取し、代謝老廃物を運び去るためのシステムを構築するようになる。このシステムにより、当該細胞の初期成長が促進される。そのため、血管新生の抑制による腫瘍細胞の増殖・転移抑制が癌治療に有効であると考えられ、血管新生阻害活性を有する物質に関する研究が行われた。
 これまで、血管新生阻害剤の研究は、血管内皮細胞株、正常血管内皮細胞を用いて行われてきたが、最近、腫瘍血管と正常血管の性状は極めて異なることが明らかになってきた(非特許文献1を参照)。例えば、正常血管は動脈、静脈、毛細血管が秩序を持った階層構造をとっているのに対し、腫瘍血管は無秩序な走行をしている。また腫瘍血管内皮細胞同士の関係(接着など)は正常血管内皮細胞に比べて疎であり、周皮細胞も少ないため血管の透過性が亢進している。このように腫瘍血管は正常血管に比べて未熟な血管であるといえる。すなわち、癌治療薬として理想的な血管新生阻害剤の標的を発見するには、従来の正常血管内皮細胞を用いた方法では不十分であると言わざるを得ない。そこで、本発明者らは、理想的な血管新生阻害剤の標的因子の探索のため、腫瘍血管内皮細胞の分離培養技術を確立した。
 一方、enabled homolog(ENAH)はEna/VASPファミリータンパク質の一つであり、アクチン細胞骨格の制御を介して細胞運動の調節に関与していることが知られている(非特許文献2を参照)。また、ENAHの特定のスプライスバリアントの発現が転移性癌細胞において増加しており、癌細胞の遊走に関与している可能性が報告されている(特許文献1、非特許文献3及び非特許文献4を参照)。
 しかしながら、ENAHが腫瘍血管内皮細胞で高発現していることも、ENAHの発現又は機能を抑制することによって腫瘍血管内皮細胞の増殖又は遊走が抑制されることも知られていなかった。
Many of the currently widely used methods for treating tumors, whether chemotherapy or radiation therapy, suppress tumor cell growth. Therefore, it is very important to selectively suppress the growth of tumor cells without affecting normal cells, but even with drugs that act selectively on tumor cells, the tumor cells are compared to other normal cells. It largely depends on the nature of repeating division and proliferation much more actively.
On the other hand, angiogenesis is indispensable for cell growth, and when malignant tumors grow, tumor cells themselves produce angiogenesis-promoting substances and induce angiogenesis in order to obtain nutrients and oxygen necessary for growth. . Also, when a malignant tumor metastasizes to another organ or site, tumor angiogenesis is induced, and the tumor cells move along the bloodstream. Therefore, in order to suppress the growth of solid tumors, therapeutic strategies have been proposed to cut off angiogenesis, which is a source of nutrients and oxygen. That is, instead of attacking the tumor cell itself, the tumor cell is put into a nutrient or oxygen-depleted state, and as a result, the therapeutic effect of suppressing the growth of the tumor cell and regression is achieved.
As a specific target of this technique, tumor blood vessels reaching the tumor are mentioned. Tumors containing cancer cells produce angiogenesis-promoting substances when they are about 1 to 2 mm 3 in size, ingesting nutrients and oxygen necessary for the growth of the cells themselves, and building a system to carry away metabolic waste products Will come to do. This system promotes the initial growth of the cells. Therefore, suppression of tumor cell proliferation / metastasis by suppressing angiogenesis is considered to be effective for cancer treatment, and research has been conducted on substances having angiogenesis inhibitory activity.
So far, angiogenesis inhibitors have been studied using vascular endothelial cell lines and normal vascular endothelial cells, but recently, it has become clear that the properties of tumor blood vessels and normal blood vessels are very different (non- (See Patent Document 1). For example, normal blood vessels have an ordered hierarchy of arteries, veins, and capillaries, while tumor blood vessels run disorderly. Also, the relationship between tumor vascular endothelial cells (adhesion, etc.) is sparse compared to normal vascular endothelial cells, and there are fewer pericytes, which enhances blood vessel permeability. Thus, it can be said that tumor blood vessels are immature blood vessels compared with normal blood vessels. In other words, it must be said that the conventional method using normal vascular endothelial cells is insufficient to find an ideal target for angiogenesis inhibitor as a cancer therapeutic agent. Accordingly, the present inventors have established a technique for separating and culturing tumor vascular endothelial cells in order to search for a target factor of an ideal angiogenesis inhibitor.
On the other hand, enabled homolog (ENAH) is one of the Ena / VASP family proteins and is known to be involved in the regulation of cell movement through the control of the actin cytoskeleton (see Non-Patent Document 2). . In addition, the expression of a specific splice variant of ENAH is increased in metastatic cancer cells, and it is reported that it may be involved in cancer cell migration (Patent Document 1, Non-Patent Document 3, and Non-Patent Document). 4).
However, it has not been known that ENAH is highly expressed in tumor vascular endothelial cells or that the growth or migration of tumor vascular endothelial cells is suppressed by suppressing the expression or function of ENAH.
WO2008/097466WO2008 / 097466
 本発明が解決しようとする課題は、血管新生阻害剤、詳しくは、腫瘍血管内皮細胞の増殖及び/又は遊走を抑制する活性を有し、癌治療薬・予防薬等の医薬として有用な物質及びそのスクリーニング方法を提供することにある。 The problem to be solved by the present invention is an angiogenesis inhibitor, more specifically, a substance having an activity of suppressing the proliferation and / or migration of tumor vascular endothelial cells, and useful as a pharmaceutical agent such as a cancer therapeutic agent / prophylactic agent, and the like It is in providing the screening method.
 本願発明者らは、腫瘍血管新生阻害活性を有する物質を探索するために、腫瘍血管内皮細胞の分離培養を行い、鋭意検討を行った結果、腫瘍血管内皮細胞の増殖及び/又は遊走に関与する因子の単離及び当該因子の発現又は機能を抑制する物質の単離に成功した。
 すなわち、本発明者らは、正常血管内皮細胞と比較して腫瘍血管内皮細胞において高発現する因子として、ENAHを見出し、更には、ENAHの発現を阻害するsiRNAが腫瘍血管内皮細胞に対して増殖抑制活性及び遊走抑制活性を示すことを見出した。本発明は上記の知見をもとに完成するに至ったものである。
 即ち本発明は、
〔1〕 ENAHの発現又は機能を抑制する物質を有効成分として含有する、抗腫瘍剤;
〔2〕 物質が、ENAHの発現を抑制する、以下の(1)~(3)からなる群より選択される物質である、〔1〕に記載の剤:
(1)ENAHをコードする遺伝子の転写産物に対するアンチセンス核酸、
(2)ENAHをコードする遺伝子の転写産物に対するリボザイム核酸、及び
(3)ENAHをコードする遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
〔3〕 物質が、ENAHと結合する抗体である、〔1〕に記載の剤;
〔4〕 ENAHが、以下の(a)~(e)から選択されるアミノ酸配列からなるタンパク質である、〔1〕~〔3〕のいずれかに記載の剤:
(a)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列、
(b)配列番号:2、配列番号4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列において、1もしくは複数のアミノ酸が欠失、付加、挿入もしくは置換され、かつ以下の(1)~(3)の性質:
(1)反やじり端キャップタンパク質と競合的にアクチンに結合し得る;
(2)F-アクチンおよびG-アクチン結合モチーフが保存されている;及び
(3)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得る;
のうち少なくとも1つを有するアミノ酸配列、
(c)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列と80%以上の相同性を有し、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列、
(d)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAによりコードされるアミノ酸配列、並びに
(e)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAに対し相補性を有するDNAと、ストリンジェントな条件下でハイブリダイズするDNAによりコードされ、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列;
〔5〕 血管新生阻害剤である、〔1〕~〔4〕のいずれかに記載の剤;
〔6〕 腫瘍血管新生阻害剤である、〔5〕に記載の剤;
〔7〕 腫瘍血管内皮細胞増殖及び/又は遊走抑制剤である、〔1〕~〔6〕のいずれかに記載の剤;
〔8〕 ENAHの発現量を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法;
〔9〕 以下の(1)~(3)の工程を含む、〔8〕に記載のスクリーニング方法:
(1)ENAHをコードする遺伝子もしくは該遺伝子の転写調節領域の制御下にあるレポータータンパク質をコードする核酸を含む細胞に、被検物質を接触させる工程、
(2)前記細胞におけるENAHもしくはレポータータンパク質の発現量を測定する工程、及び
(3)被検物質の非存在下において測定した場合と比較して、前記発現量を低下させる化合物を血管新生阻害剤の候補として選択する工程;
〔10〕 ENAHをコードする遺伝子の発現量を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法;
〔11〕 ENAHの機能を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法;
〔12〕 癌を発症する危険性があるか否か、あるいは、癌に罹患しているか否かを判定する方法であって、以下の(1)及び(2)の工程を含む方法:
(1)被験動物より採取した試料中の、ENAHをコードする遺伝子もしくはENAHの発現量、又はENAHの機能を測定する工程、及び
(2)正常動物由来の試料において測定した場合と比較して、前記発現量もしくは機能が上昇している被験動物を、癌を発症する危険性があるか、又は癌に罹患していると判定する工程;
〔13〕 以下の群:
(1)配列番号:25~47で示される塩基配列、及び
(2)配列番号:25~47で示される塩基配列の3’末端に2~4塩基が付加された塩基配列、
から選択されるいずれかの塩基配列からなるオリゴヌクレオチド;
〔14〕 二重鎖RNA部分が、配列番号:25~47から選択されるいずれかの配列番号で示される塩基配列からなる、siRNA;
〔15〕 3’末端に2~4塩基のオーバーハングが付加されていることを特徴とする、〔14〕に記載のsiRNA;
〔16〕 少なくとも1つの塩基が化学的に修飾されている〔14〕又は〔15〕に記載のsiRNA;
〔17〕 少なくとも1つのホスホジエステル結合が化学的に修飾されている〔14〕~〔16〕のいずれかに記載のsiRNA;
〔18〕 〔14〕~〔17〕のいずれかに記載のsiRNAを有効成分として含有する抗腫瘍剤;
に関する。
In order to search for substances having tumor angiogenesis inhibitory activity, the inventors of the present application conducted isolation and culture of tumor vascular endothelial cells, and as a result of intensive studies, they were involved in proliferation and / or migration of tumor vascular endothelial cells. We have succeeded in isolating a factor and isolating a substance that suppresses the expression or function of the factor.
That is, the present inventors have found ENAH as a factor that is highly expressed in tumor vascular endothelial cells compared to normal vascular endothelial cells, and further, siRNA that inhibits the expression of ENAH proliferates against tumor vascular endothelial cells. It was found to show inhibitory activity and migration inhibitory activity. The present invention has been completed based on the above findings.
That is, the present invention
[1] An antitumor agent comprising as an active ingredient a substance that suppresses the expression or function of ENAH;
[2] The agent according to [1], wherein the substance is a substance selected from the group consisting of the following (1) to (3), which suppresses the expression of ENAH:
(1) an antisense nucleic acid against a transcription product of a gene encoding ENAH,
(2) a ribozyme nucleic acid for a transcription product of a gene encoding ENAH, and (3) a nucleic acid having RNAi activity for a transcription product of a gene encoding ENAH or a precursor thereof;
[3] The agent according to [1], wherein the substance is an antibody that binds to ENAH;
[4] The agent according to any one of [1] to [3], wherein ENAH is a protein comprising an amino acid sequence selected from the following (a) to (e):
(A) the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53,
(B) in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, one or more amino acids are deleted, added, inserted or substituted; The following properties (1) to (3):
(1) can bind to actin competitively with the anti-twist end cap protein;
(2) F-actin and G-actin binding motifs are conserved; and (3) the amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Can be recognized by an antibody that specifically recognizes a protein consisting of a sequence;
An amino acid sequence having at least one of
(C) SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 or more than 80% homology with the amino acid sequence represented by SEQ ID NO: 53 and (1) to ( An amino acid sequence having at least one of the properties of 3),
(D) an amino acid sequence encoded by DNA having the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, and (e) SEQ ID NO: 1. , SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52 encoded by DNA that hybridizes under stringent conditions with DNA having complementarity to the DNA having the base sequence shown in SEQ ID NO: 52 And an amino acid sequence having at least one of the above properties (1) to (3);
[5] The agent according to any one of [1] to [4], which is an angiogenesis inhibitor;
[6] The agent according to [5], which is a tumor angiogenesis inhibitor;
[7] The agent according to any one of [1] to [6], which is a tumor vascular endothelial cell proliferation and / or migration inhibitor;
[8] A method for screening an angiogenesis inhibitor, which comprises selecting a compound that reduces the expression level of ENAH;
[9] The screening method according to [8], comprising the following steps (1) to (3):
(1) contacting a test substance with a cell containing a nucleic acid encoding a gene encoding ENAH or a reporter protein under the control of a transcriptional regulatory region of the gene;
(2) a step of measuring the expression level of ENAH or a reporter protein in the cell; and (3) an angiogenesis inhibitor that reduces the expression level as compared with the case where measurement is performed in the absence of a test substance. Selecting as a candidate for;
[10] A method for screening an angiogenesis inhibitor, which comprises selecting a compound that reduces the expression level of a gene encoding ENAH;
[11] A method for screening an angiogenesis inhibitor, which comprises selecting a compound that decreases the function of ENAH;
[12] A method for determining whether or not there is a risk of developing cancer, or whether or not the patient is suffering from cancer, the method comprising the following steps (1) and (2):
(1) a step of measuring the expression level of ENAH-encoding gene or ENAH or ENAH function in a sample collected from a test animal, and (2) in comparison with the case of measuring in a sample derived from a normal animal, Determining the subject animal whose expression level or function is elevated to be at risk of developing cancer or suffering from cancer;
[13] The following groups:
(1) a base sequence represented by SEQ ID NO: 25 to 47, and (2) a base sequence having 2 to 4 bases added to the 3 ′ end of the base sequence represented by SEQ ID NO: 25 to 47,
An oligonucleotide consisting of any nucleotide sequence selected from:
[14] siRNA, wherein the double-stranded RNA portion consists of a base sequence represented by any one of SEQ ID NOs: 25 to 47;
[15] The siRNA according to [14], wherein an overhang of 2 to 4 bases is added to the 3 ′ end;
[16] The siRNA according to [14] or [15], wherein at least one base is chemically modified;
[17] The siRNA according to any one of [14] to [16], wherein at least one phosphodiester bond is chemically modified;
[18] An antitumor agent comprising the siRNA according to any one of [14] to [17] as an active ingredient;
About.
 本発明により、血管新生阻害剤、詳しくは、腫瘍血管内皮細胞の増殖及び/又は遊走を抑制する活性を有し、癌治療薬・予防薬等の医薬として有用な物質及びそのスクリーニング方法等を提供することが可能になった。 INDUSTRIAL APPLICABILITY According to the present invention, an angiogenesis inhibitor, more specifically, a substance having an activity of suppressing the proliferation and / or migration of tumor vascular endothelial cells and useful as a pharmaceutical agent for cancer treatment / prevention, and a screening method thereof are provided. It became possible to do.
マウス初代腫瘍血管内皮細胞及びマウス初代正常血管内皮細胞でのマウスENAHの発現量を比較した結果を示す図である。縦軸は、ENAHのmRNAの発現量(Quantity値)を示す。正常血管内皮細胞は、正常マウスの皮膚組織から採取した血管内皮細胞を用いた。また、腫瘍血管内皮細胞としては、HSC3(ヒト舌癌細胞)、OSRC2(ヒト腎癌細胞)、A375SM(ヒト高転移性のメラノーマ細胞)をそれぞれ移植したマウスの腫瘍組織より採取した血管内皮細胞を用いた。マウスENAHの発現は、マウス初代正常血管内皮細胞と比較して、マウス初代腫瘍血管内皮細胞で顕著に高いことが示された。It is a figure which shows the result of having compared the expression level of mouse | mouth ENAH in a mouse | mouth primary tumor vascular endothelial cell and a mouse | mouth primary normal vascular endothelial cell. The vertical axis shows ENAH mRNA expression level (Quantity value). As normal vascular endothelial cells, vascular endothelial cells collected from the skin tissue of normal mice were used. Tumor vascular endothelial cells include vascular endothelial cells collected from tumor tissues of mice transplanted with HSC3 (human tongue cancer cells), OSRC2 (human kidney cancer cells), and A375SM (human highly metastatic melanoma cells). Using. Mouse ENAH expression was shown to be significantly higher in mouse primary tumor vascular endothelial cells compared to mouse primary normal vascular endothelial cells.
 本発明は、ENAHの発現を抑制する物質又は機能を抑制する物質を含有してなる、血管新生阻害剤、詳しくは腫瘍血管内皮細胞増殖及び/又は遊走抑制剤を提供する。
I. ENAH又はこれをコードするENAH遺伝子
 本明細書において、ENAHは公知のタンパク質であり、Genbank Accession No.:NP_001008493として知られている配列番号:2又は、Genbank Accession No.:NP_060682として知られている配列番号:4で表されるヒトENAHのアミノ酸配列又はこれと実質的に同一のアミノ酸配列を含むタンパク質である。
 本明細書において、タンパク質及びペプチドは、ペプチド標記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)で記載される。
 本明細書において、ENAHはヒトや他の温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、イヌ、ブタ、ヒツジ、ウシ、サルなど)の細胞[例えば、MDAMB361、MCF7、SKBr3、SBT、MAS、T47D、BT474、Calu3、A427、SiHa、CaSKi、LS180、HT29、ADF、U251、U87MG、U373、T98G細胞など]もしくはそれらの細胞が由来するあらゆる組織[例えば、乳房、肺、脳、大腸など]、又は生体内で該タンパク質を発現している組織[例えば、膀胱、胆嚢前立腺、心臓、子宮など]等から、公知のタンパク質分離精製技術により単離・精製されるものであってよい。
The present invention provides an angiogenesis inhibitor, specifically a tumor vascular endothelial cell proliferation and / or migration inhibitor, comprising a substance that suppresses the expression or function of ENAH.
I. ENAH or the ENAH gene encoding the same In this specification, ENAH is a known protein and is known as SEQ ID NO: 2 known as Genbank Accession No .: NP_001008493 or Genbank Accession No .: NP_060682 A protein comprising the amino acid sequence of human ENAH represented by SEQ ID NO: 4 or an amino acid sequence substantially identical thereto.
In the present specification, proteins and peptides are described with the N-terminus (amino terminus) at the left end and the C-terminus (carboxyl terminus) at the right end according to the convention of peptide designation.
As used herein, ENAH is a cell of a human or other warm-blooded animal (eg, guinea pig, rat, mouse, chicken, rabbit, dog, pig, sheep, cow, monkey, etc.) [eg, MDAMB361, MCF7, SKBr3, SBT , MAS, T47D, BT474, Calu3, A427, SiHa, CaSKi, LS180, HT29, ADF, U251, U87MG, U373, T98G cells, etc.] or any tissue from which those cells are derived [eg breast, lung, brain, colon Etc.] or a tissue expressing the protein in vivo [for example, bladder, gallbladder prostate, heart, uterus, etc.] and the like may be isolated and purified by a known protein separation and purification technique.
 「配列番号:2又は配列番号:4で表されるアミノ酸配列又はこれと実質的に同一のアミノ酸配列」としては、以下の(a)~(e)が挙げられる:
(a)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列;
(b)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列において、1もしくは複数のアミノ酸が欠失、付加、挿入もしくは置換され、かつ以下の(1)~(3)の性質:
(1)反やじり端キャップタンパク質と競合的にアクチンに結合し得る;
(2)F-アクチンおよびG-アクチン結合モチーフが保存されている;及び
(3)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得る;
のうち少なくとも1つを有するアミノ酸配列;
(c)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列と80%以上の相同性を有し、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列;
(d)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAによりコードされるアミノ酸配列;又は
(e)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAに対し相補性を有するDNAとストリンジェントな条件下でハイブリダイズするDNAによりコードされ、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列。
Examples of the “amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 or substantially the same amino acid sequence thereof” include the following (a) to (e):
(A) the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53;
(B) in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, one or more amino acids are deleted, added, inserted or substituted; And the following properties (1) to (3):
(1) can bind to actin competitively with the anti-twist end cap protein;
(2) F-actin and G-actin binding motifs are conserved; and (3) the amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Can be recognized by an antibody that specifically recognizes a protein consisting of a sequence;
An amino acid sequence having at least one of:
(C) SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 or more than 80% homology with the amino acid sequence represented by SEQ ID NO: 53, and (1) to ( An amino acid sequence having at least one of the properties of 3);
(D) an amino acid sequence encoded by DNA having the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52; or (e) SEQ ID NO: 1 Encoded by DNA that hybridizes under stringent conditions with DNA having complementarity to the DNA having the base sequence represented by SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52; And an amino acid sequence having at least one of the above properties (1) to (3).
 具体的には、配列番号:2又は配列番号:4で表されるアミノ酸配列からなるヒトタンパク質の他の哺乳動物におけるオルソログのアミノ酸配列、又は配列番号:2又は配列番号:4で表されるアミノ酸配列からなるヒトタンパク質もしくはそのオルソログのスプライスバリアント、アレル変異体もしくは多型バリアントにおけるアミノ酸配列が挙げられる。前記スプライシングバリアントとして、具体的には、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列からなるヒトタンパク質が挙げられる(Biochimica et Biophysica Acta 1759 (2006) p99-107を参照)。
 ここで「相同性」とは、当該技術分野において公知の数学的アルゴリズムを用いて2つのアミノ酸配列をアラインさせた場合の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラインメントのために配列の一方もしくは両方へのギャップの導入を考慮し得るものである)における、オーバーラップする全アミノ酸残基に対する同一アミノ酸及び類似アミノ酸残基の割合(%)を意味する。「類似アミノ酸」とは物理化学的性質において類似したアミノ酸を意味し、例えば、芳香族アミノ酸(Phe、Trp、Tyr)、脂肪族アミノ酸(Ala、Leu、Ile、Val)、極性アミノ酸(Gln、Asn)、塩基性アミノ酸(Lys、Arg、His)、酸性アミノ酸(Glu、Asp)、水酸基を有するアミノ酸(Ser、Thr)、側鎖の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)などの同じグループに分類されるアミノ酸が挙げられる。このような類似アミノ酸による置換はタンパク質の表現型に変化をもたらさない(即ち、保存的アミノ酸置換である)ことが予測される。保存的アミノ酸置換の具体例は当該技術分野で周知であり、種々の文献に記載されている(例えば、Bowieら,Science, 247:1306-1310 (1990)を参照)。
Specifically, the amino acid sequence of an ortholog in another mammal of the human protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, or the amino acid represented by SEQ ID NO: 2 or SEQ ID NO: 4 Examples include amino acid sequences of splice variants, allelic variants, or polymorphic variants of human proteins or orthologs thereof. Specific examples of the splicing variants include human proteins having the amino acid sequence represented by SEQ ID NO: 49, SEQ ID NO: 51, or SEQ ID NO: 53 (Biochimica et Biophysica Acta 1759 (2006) p99-107). reference).
As used herein, “homology” refers to an optimal alignment when two amino acid sequences are aligned using a mathematical algorithm known in the art (preferably the algorithm uses a sequence of sequences for optimal alignment). The percentage of the same amino acid residue and similar amino acid residues to all overlapping amino acid residues in (one or both of which can be considered introduction of a gap). "Similar amino acids" means amino acids that are similar in physicochemical properties, such as aromatic amino acids (Phe, Trp, Tyr), aliphatic amino acids (Ala, Leu, Ile, Val), polar amino acids (Gln, Asn) ), Basic amino acids (Lys, Arg, His), acidic amino acids (Glu, Asp), amino acids with hydroxyl groups (Ser, Thr), amino acids with small side chains (Gly, Ala, Ser, Thr, Met), etc. Examples include amino acids classified into groups. It is expected that substitution with such similar amino acids will not change the phenotype of the protein (ie, is a conservative amino acid substitution). Specific examples of conservative amino acid substitutions are well known in the art and are described in various literature (see, for example, Bowie et al., Science, 247: 1306-1310 (1990)).
 本明細書におけるアミノ酸配列の相同性は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて計算することができる。アミノ酸配列の相同性を決定するための他のアルゴリズムとしては、例えば、Karlinら, Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993)に記載のアルゴリズム[該アルゴリズムはNBLAST及びXBLASTプログラム(version 2.0)に組み込まれている(Altschulら, Nucleic Acids Res., 25: 3389-3402 (1997))]、Needlemanら, J. Mol. Biol., 48: 444-453 (1970)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のGAPプログラムに組み込まれている]、Myers及びMiller, CABIOS, 4: 11-17 (1988)に記載のアルゴリズム[該アルゴリズムはCGC配列アラインメントソフトウェアパッケージの一部であるALIGNプログラム(version 2.0)に組み込まれている]、Pearsonら, Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のFASTAプログラムに組み込まれている]等が挙げられ、それらも同様に好ましく用いられ得る。 The homology of the amino acid sequences in this specification is determined using the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (expected value = 10; allow gap; matrix = BLOSUM62; filtering) = OFF). Other algorithms for determining amino acid sequence homology include, for example, the algorithm described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) [the algorithms are NBLAST and XBLAST] Embedded in the program (version 2.0) (Altschul et al., Nucleic Acids Res., 25: 3389-3402 1997 (1997))], Needleman et al., J. Mol. Biol., 48: 444-453 (1970) [The algorithm is incorporated in the GAP program in the GCG software package], Myers and Miller, CABIOS, 4: 11-17 (1988) [The algorithm is part of the CGC sequence alignment software package. Embedded in the ALIGN program (version 2.0)], Pearson et al., Proc. Natl. Acad. Sci. USA, 85: 2444-2448 1988 (1988) [the algorithm is a GCG software package Are incorporated in the FASTA program in the system], and the like can be preferably used as well.
 上記(e)におけるストリンジェントな条件とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6, 1999に記載される条件、例えば、6×SSC(sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられるが、当業者であれば、これと同等のストリンジェンシーを与えるハイブリダイゼーションの条件を適宜選択することができる。 The stringent conditions in the above (e) are, for example, the conditions described in Current Protocols, in Molecular, Biology, John, Wiley, & Sons, 6.3.1-6.3.6, 1999, for example, 6 × SSC (sodium chloride / sodium citrate) / 45 ° C., followed by one or more washes at 0.2 × SSC / 0.1% SDS / 50-65 ° C., but those skilled in the art will give equivalent stringency. Hybridization conditions can be appropriately selected.
 より好ましくは、「配列番号:2又は配列番号:4で表されるアミノ酸配列と実質的に同一のアミノ酸配列」として、配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列と、約80%以上、好ましくは約90%以上、より好ましくは約95%以上、いっそう好ましくは約97%以上、特に好ましくは約98%以上、最も好ましくは約99%以上の同一性を有するアミノ酸配列が挙げられる。 More preferably, as the “amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4,” SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 Or about 80% or more, preferably about 90% or more, more preferably about 95% or more, more preferably about 97% or more, particularly preferably about 98% or more, and most preferably the amino acid sequence represented by SEQ ID NO: 53 An amino acid sequence having about 99% or more identity is preferable.
 「配列番号:2又は配列番号:4で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質」は、配列番号:2又は配列番号:4で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含み、かつ配列番号:2又は配列番号:4で表されるアミノ酸配列からなるタンパク質と実質的に同質の機能を有するタンパク質である。
 ここで「実質的に同質の機能」とは、例えば生理学的に、あるいは薬理学的にみて、その性質が定性的に同じであることを意味し、機能の程度(例、約0.1~約10倍、好ましくは0.5~2倍)や、タンパク質の分子量などの量的要素は異なっていてもよい。また、
(1)反やじり端キャップタンパク質(CP)と競合的にアクチンに結合し得る、すなわちプロフィリン及びG-アクチンと相互作用してアクチンの反やじり端キャッピングを抑制し得るか、又は
(2)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表わされるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得るタンパク質を、「実質的に同一の機能を有するタンパク質」と見なすことができる。
 ここで、ENAHのアクチン重合促進活性やプロフィリンとの相互作用は、例えば、上記非特許文献2(Barzik Mら著、J Biol Chem.、第280巻、第31号、第28653-28662頁(2005年))に記載された方法に従い測定することができる。
“A protein comprising an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4” is substantially identical to the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4. And a protein having substantially the same function as the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4.
As used herein, “substantially the same function” means that the properties are qualitatively the same, for example, physiologically or pharmacologically, and the degree of function (eg, about 0.1 to about 10 Times, preferably 0.5 to 2 times) and quantitative factors such as the molecular weight of the protein may be different. Also,
(1) Can bind to actin competitively with anti-tapping end cap protein (CP), that is, interact with profilin and G-actin to suppress actin's anti-tapping end capping, or (2) sequence A protein that can be recognized by an antibody that specifically recognizes a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51, or SEQ ID NO: 53 is “substantially identical. Can be regarded as a protein having the function of
Here, the actin polymerization-promoting activity of ENAH and the interaction with profilin are described in, for example, Non-Patent Document 2 (Barzik M et al., J Biol Chem., 280, No. 31, pp. 28653-28662 ( 2005))).
 本発明におけるタンパク質:ENAHとして、例えば、(i)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列中の1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が欠失したアミノ酸配列、(ii)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列に1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が付加したアミノ酸配列、(iii)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列に1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が挿入されたアミノ酸配列、(iv)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列中の1~50個、好ましくは1~30個、より好ましくは1~10個、さらに好ましくは1~数(5、4、3もしくは2)個のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、又は(v)それらを組み合わせたアミノ酸配列を含有するタンパク質などのいわゆるムテインも含まれる。
 上記のようにアミノ酸配列が挿入、欠失、付加又は置換されている場合、その挿入、欠失、付加又は置換の位置は、タンパク質が反やじり端キャップタンパク質と競合的にアクチンに結合する能力を保持するか、F-アクチン及びG-アクチン結合モチーフが保存されるか、プロフィリンと相互作用する能力が保持されるか、あるいは配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表わされるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得る限り、特に限定されない。
 ここでアミノ酸の欠失、付加、挿入又は置換を人為的に行う場合の手法としては、例えば、配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列をコードするDNAに対して慣用の部位特異的変異導入を施し、その後このDNAを常法により発現させる手法が挙げられる。ここで部位特異的変異導入法としては、例えば、アンバー変異を利用する方法(ギャップド・デュプレックス法、Nucleic Acids Res., 12,9441-9456(1984))、変異導入用プライマーを用いたPCRによる方法等が挙げられる。
As the protein: ENAH in the present invention, for example, (i) 1 to 50 in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, Preferably, 1 to 30, more preferably 1 to 10, more preferably 1 to several (5, 4, 3 or 2) amino acid sequences deleted, (ii) SEQ ID NO: 2, SEQ ID NO : 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, the amino acid sequence represented by 1 to 50, preferably 1 to 30, more preferably 1 to 10, more preferably 1 to number An amino acid sequence to which (5, 4, 3 or 2) amino acids are added, (iii) an amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 1-50, preferably 1-30, more preferably 1-10, even more preferred in the sequence Or an amino acid sequence in which 1 to several (5, 4, 3 or 2) amino acids are inserted, (iv) SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 1 to 50, preferably 1 to 30, more preferably 1 to 10, even more preferably 1 to several (5, 4, 3 or 2) amino acids in the amino acid sequence represented by 53 Also included are so-called muteins such as proteins containing amino acid sequences substituted with amino acids, or (v) amino acid sequences combining them.
When the amino acid sequence is inserted, deleted, added or substituted as described above, the position of the insertion, deletion, addition or substitution indicates the ability of the protein to bind to actin competitively with the anti-end cap protein. Retained, preserved F-actin and G-actin binding motifs, retained the ability to interact with profilin, or SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: : 51 or SEQ ID NO: 53, as long as it can be recognized by an antibody that specifically recognizes a protein consisting of the amino acid sequence represented by SEQ ID NO: 53.
Here, as a technique for artificially performing amino acid deletion, addition, insertion or substitution, for example, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Examples include a method in which conventional site-directed mutagenesis is performed on DNA encoding the amino acid sequence shown, and then this DNA is expressed by a conventional method. Here, as a site-specific mutagenesis method, for example, a method using amber mutation (gapped duplex method, Nucleic Acids Res., 12,9441-9456 (1984)), a PCR method using a mutagenesis primer Etc.
 ENAHの好ましい例としては、例えば、配列番号:2又は配列番号:4で表されるアミノ酸配列からなるヒトタンパク質(Genbank Accession No.:NP_001008493又はNP_060682)、あるいは他の哺乳動物におけるそれらのオルソログ(例えば、マウスENAHタンパク質(配列番号:6、8、10、又は12;Genbank Accession No. NP_034265、NP_032706、NP_001076589、又はNP_001076590)、ラットENAHタンパク質(Genbank Accession No. NP_001012150)等)、アレル変異体、多型バリアントなどがあげられる。 Preferred examples of ENAH include, for example, a human protein (Genbank Accession No .: NP_001008493 or NP_060682) consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, or their orthologs in other mammals (for example, , Mouse ENAH protein (SEQ ID NO: 6, 8, 10, or 12; Genbank Accession No. NP_034265, NP_032706, NP_001076589, or NP_001076590), rat ENAH protein (Genbank Accession No. NP_001012150), etc., allelic variant, polymorphism Variants etc. are raised.
 「ENAHをコードする遺伝子」は、上記(a)~(e)で示される、配列番号:2又は配列番号:4で表されるアミノ酸配列又はこれと実質的に同一のアミノ酸配列をコードする塩基配列を有する遺伝子を表す。具体的には、以下の(f)~(j):
(f)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列をコードする塩基配列、
(g)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列において、1もしくは複数のアミノ酸が欠失、付加、挿入もしくは置換され、かつ以下の(1)~(3)の性質:
(1)反やじり端キャップタンパク質と競合的にアクチンに結合し得る;
(2)F-アクチンおよびG-アクチン結合モチーフが保存されている;及び
(3)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得る;
のうち少なくとも1つを有するアミノ酸配列をコードする塩基配列、
(h)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列と80%以上の相同性を有し、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列をコードする塩基配列、
(i)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列、又は
(j)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAに対し相補性を有するDNAとストリンジェントな条件下でハイブリダイズするDNAの塩基配列であって、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列をコードする塩基配列、
を有する遺伝子が挙げられる。
 尚、ここで遺伝子とは、cDNAもしくはゲノムDNA等のDNA、又はmRNA等のRNAのいずれでもよく、また一本鎖の核酸配列及び二本鎖の核酸配列を共に含む概念である。また、本明細書において、配列番号:1、配列番号:3、配列番号:5、配列番号:7、配列番号:9、配列番号:11、配列番号:48、配列番号:50又は配列番号:52等に示される核酸配列は、便宜的にDNA配列であるが、mRNAなどRNA配列を示す場合には、チミン(T)をウラシル(U)として解する。
The “gene encoding ENAH” is a base encoding the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 shown in the above (a) to (e) or an amino acid sequence substantially identical thereto. Represents a gene having a sequence. Specifically, the following (f) to (j):
(F) a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53,
(G) In the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, one or more amino acids are deleted, added, inserted or substituted, And the following properties (1) to (3):
(1) can bind to actin competitively with the anti-twist end cap protein;
(2) F-actin and G-actin binding motifs are conserved; and (3) the amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Can be recognized by an antibody that specifically recognizes a protein consisting of a sequence;
A base sequence encoding an amino acid sequence having at least one of
(H) having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, and the above (1) to ( A base sequence encoding an amino acid sequence having at least one of the properties of 3),
(I) SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50, or SEQ ID NO: 52, or (j) SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, a base sequence of DNA that hybridizes under stringent conditions with DNA having complementarity to the DNA having the base sequence represented by SEQ ID NO: 50 or SEQ ID NO: 52, and (1) to A base sequence encoding an amino acid sequence having at least one of the properties of (3),
The gene which has is mentioned.
Here, the gene may be any of DNA such as cDNA or genomic DNA, or RNA such as mRNA, and is a concept including both a single-stranded nucleic acid sequence and a double-stranded nucleic acid sequence. Further, in the present specification, SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: The nucleic acid sequence shown in 52 etc. is a DNA sequence for convenience, but when an RNA sequence such as mRNA is shown, thymine (T) is interpreted as uracil (U).
II.ENAHの発現を抑制する物質
 本発明において「ENAHの発現を抑制する物質」とは、ENAHをコードする遺伝子(ENAH遺伝子)の転写レベル、転写後調節のレベル、ENAHへの翻訳レベル、翻訳後修飾のレベル等のいかなる段階で作用するものであってもよい。従って、ENAHの発現を抑制する物質としては、例えば、ENAH遺伝子の転写を阻害する物質(例、アンチジーン)、初期転写産物からmRNAへのプロセッシングを阻害する物質、mRNAの細胞質への輸送を阻害する物質、mRNAからENAHの翻訳を阻害するか(例、アンチセンス核酸、miRNA)あるいはmRNAを分解する(例、siRNA、リボザイム)物質、初期翻訳産物の翻訳後修飾を阻害する物質などが含まれる。いずれの段階で作用するものであっても好ましく用いることができるが、より好ましくは、以下の(1)~(3)からなる群より選択される物質が例示される。
(1)ENAHをコードする遺伝子の転写産物に対するアンチセンス核酸、
(2)ENAHをコードする遺伝子の転写産物に対するリボザイム核酸、
(3)ENAHをコードする遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体。
 転写産物の好ましい例としては、mRNAが挙げられる。
II. Substance that suppresses expression of ENAH In the present invention, "substance that suppresses expression of ENAH" refers to the transcription level of the gene encoding ENAH (ENAH gene), the level of post-transcriptional regulation, the translation level to ENAH, and post-translational modification It may act at any stage, such as the level of. Therefore, substances that suppress ENAH expression include, for example, substances that inhibit the transcription of the ENAH gene (eg, antigene), substances that inhibit the processing of early transcripts into mRNA, and those that inhibit mRNA transport to the cytoplasm. Substances that inhibit the translation of ENAH from mRNA (eg, antisense nucleic acid, miRNA) or those that degrade mRNA (eg, siRNA, ribozyme), substances that inhibit post-translational modification of the initial translation product, etc. . Any substance that acts at any stage can be preferably used, but more preferably, a substance selected from the group consisting of the following (1) to (3) is exemplified.
(1) an antisense nucleic acid against a transcription product of a gene encoding ENAH,
(2) a ribozyme nucleic acid for the transcription product of the gene encoding ENAH,
(3) A nucleic acid having RNAi activity for a transcription product of a gene encoding ENAH or a precursor thereof.
A preferable example of the transcript is mRNA.
 ENAH遺伝子のmRNAからENAHへの翻訳を特異的に阻害する(あるいはmRNAを分解する)物質として、好ましくは、これらのmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸が挙げられる。
 ENAH遺伝子のmRNAの塩基配列と実質的に相補的な塩基配列とは、哺乳動物の標的組織である腫瘍血管の生理的条件下において、該mRNAの標的配列に結合してその翻訳を阻害し得る(あるいは該標的配列を切断する)程度の相補性を有する塩基配列を意味し、具体的には、例えば、該mRNAの塩基配列と完全相補的な塩基配列(すなわち、mRNAの相補鎖の塩基配列)と、オーバーラップする領域に関して、約80%以上、好ましくは約90%以上、より好ましくは約95%以上、特に好ましくは約97%以上の相同性を有する塩基配列である。
 本発明における「塩基配列の相同性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。
As a substance that specifically inhibits the translation of ENAH gene from mRNA to ENAH (or degrades mRNA), preferably a base sequence complementary to or substantially complementary to the base sequence of these mRNAs or a part thereof The nucleic acid containing is mentioned.
The base sequence substantially complementary to the base sequence of the mRNA of the ENAH gene can bind to the target sequence of the mRNA and inhibit its translation under physiological conditions of the tumor blood vessel that is the target tissue of a mammal. It means a base sequence having a degree of complementarity (or that cleaves the target sequence). Specifically, for example, a base sequence that is completely complementary to the base sequence of the mRNA (that is, a base sequence of a complementary strand of the mRNA) ) And about 80% or more, preferably about 90% or more, more preferably about 95% or more, and particularly preferably about 97% or more of the base sequence.
The “base sequence homology” in the present invention uses the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (expected value = 10; allow gaps; filtering = ON; It can be calculated by match score = 1; mismatch score = -3).
 より具体的には、ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列としては、以下の(k)又は(l):
(k)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で表される塩基配列と相補的もしくは実質的に相補的な塩基配列; 
(l)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で表される塩基配列とストリンジェントな条件下でハイブリダイズする塩基配列であって、かつ配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列からなるタンパク質と実質的に同質の機能を有するタンパク質をコードする配列と相補的もしくは実質的に相補的な塩基配列;
が挙げられる。ここで「実質的に同質の機能」とは前記と同義である。
 ストリンジェントな条件は、前述のとおりである。
More specifically, the base sequence complementary or substantially complementary to the base sequence of the mRNA of the ENAH gene includes the following (k) or (l):
(k) a nucleotide sequence complementary or substantially complementary to the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52;
(l) a nucleotide sequence that hybridizes under stringent conditions with the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, and SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51, or complementary to a sequence encoding a protein having substantially the same function as the protein consisting of the amino acid sequence represented by SEQ ID NO: 53 Or a substantially complementary nucleotide sequence;
Is mentioned. Here, “substantially the same function” has the same meaning as described above.
The stringent conditions are as described above.
 ENAH遺伝子のmRNAの好ましい例としては、配列番号:1もしくは配列番号:3で表される塩基配列(Genbank Accession No. NM_001008493又はNM_018212)を含むヒトENAHのmRNA、配列番号:49で表されるアミノ酸配列からなるタンパク質をコードする配列番号:48で表される塩基配列、配列番号:51で表されるアミノ酸配列からなるタンパク質をコードする配列番号:50で表される塩基配列、もしくは配列番号:53で表されるアミノ酸配列からなるタンパク質をコードする配列番号:52で表される塩基配列を含むヒトENAHのmRNA、あるいは他の哺乳動物におけるそれらのオルソログ(例えば、配列番号:5で表されるマウスENAH(Genbank Accession No. NM_010135)、配列番号:7で表されるマウスENAH(Genbank Accession No. NM_008680)、配列番号:9で表されるマウスENAH(Genbank Accession No. NM_001083120)、配列番号:11で表されるマウスENAH(Genbank Accession No. NM_001083121)、又はラットENAH(Genbank Accession No. NM_001012150)等)、さらにはそれらのスプライスバリアント、アレル変異体、多型バリアント等が挙げられる。 As a preferred example of mRNA of ENAH gene, human ENAH mRNA containing the nucleotide sequence (Genbank Accession No. NM_001008493 or NM_018212) represented by SEQ ID NO: 1 or SEQ ID NO: 3, amino acid represented by SEQ ID NO: 49 A base sequence represented by SEQ ID NO: 48 encoding a protein comprising the sequence, a base sequence represented by SEQ ID NO: 50 encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 51, or SEQ ID NO: 53 The human ENAH mRNA comprising the nucleotide sequence represented by SEQ ID NO: 52, which encodes the protein consisting of the amino acid sequence represented by (2), or an ortholog thereof in other mammals (for example, the mouse represented by SEQ ID NO: 5) ENAH (Genbank Accession No. NM_010135), SEQ ID NO: 7 mouse ENAH (Genbank Accession No. NM_008680), SEQ ID NO: 9 Mouse ENAH (Genbank AccessionNo. NM_001083120), mouse ENAH represented by SEQ ID NO: 11 (Genbank Accession No. NM_001083121) or rat ENAH (Genbank Accession No.150NM_001012150)), and their splice variants and allelic variants Body, polymorphic variant and the like.
 ENAH遺伝子のmRNAの塩基配列と「相補的もしくは実質的に相補的な塩基配列の一部」とは、ENAH遺伝子のmRNAに特異的に結合することができ、且つ該mRNAからのタンパク質の翻訳を阻害(あるいは該mRNAを分解)し得るものであれば、その長さや位置に特に制限はないが、配列特異性の面から、標的配列に相補的もしくは実質的に相補的な部分を少なくとも10塩基以上、好ましくは約15塩基以上含むものである。 The nucleotide sequence of the ENAH gene mRNA and the “part of the complementary or substantially complementary nucleotide sequence” are those that can specifically bind to the mRNA of the ENAH gene and translate the protein from the mRNA. The length and the position are not particularly limited as long as they can inhibit (or degrade the mRNA), but at least 10 bases that are complementary or substantially complementary to the target sequence from the viewpoint of sequence specificity. As mentioned above, it preferably contains about 15 bases or more.
 具体的には、ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸として、以下の(1)~(3)のいずれかのものが好ましく例示される:
(1) ENAH遺伝子のmRNAに対するアンチセンス核酸、
(2) ENAH遺伝子のmRNAに対するリボザイム核酸、又は
(3) ENAH遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体。
Specifically, a nucleic acid that includes a base sequence complementary to or substantially complementary to the base sequence of mRNA of the ENAH gene or a part thereof is preferably exemplified by any of the following (1) to (3) Is:
(1) antisense nucleic acid against mRNA of ENAH gene,
(2) Ribozyme nucleic acid against mRNA of ENAH gene, or
(3) A nucleic acid having RNAi activity against mRNA of ENAH gene or a precursor thereof.
(1) ENAH遺伝子のmRNAに対するアンチセンス核酸
 本発明における「ENAH遺伝子のmRNAに対するアンチセンス核酸」とは、該mRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸であって、標的mRNAと特異的かつ安定した二重鎖を形成して結合することにより、タンパク質合成を抑制する機能を有するものである。
 アンチセンス核酸は、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリン又はピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、非ヌクレオチド骨格を有するその他のポリマー(例えば、市販のタンパク質核酸及び合成配列特異的な核酸ポリマー)又は特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、DNA:RNAハイブリッドであってもよく、さらに非修飾ポリヌクレオチド(又は非修飾オリゴヌクレオチド)、公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電荷を有する結合又は硫黄含有結合(例、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例えばタンパク質(例、ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど)や糖(例、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例、アクリジン、ソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」及び「核酸」とは、プリン及びピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。このような修飾物は、メチル化されたプリン及びピリミジン、アシル化されたプリン及びピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオシド及び修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、又はエーテル、アミンなどの官能基に変換されていたりしてよい。
(1) Antisense nucleic acid against mRNA of ENAH gene “Antisense nucleic acid against mRNA of ENAH gene” in the present invention includes a base sequence complementary to or substantially complementary to the base sequence of the mRNA or a part thereof. It is a nucleic acid and has a function of suppressing protein synthesis by forming a specific and stable duplex with a target mRNA.
Antisense nucleic acids are polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, other types of polynucleotides that are N-glycosides of purine or pyrimidine bases, Other polymers with non-nucleotide backbones (eg, commercially available protein nucleic acids and synthetic sequence specific nucleic acid polymers) or other polymers containing special linkages, provided that the polymer is a base as found in DNA or RNA And a nucleotide having a configuration that allows attachment of a base). They may be double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, unmodified polynucleotides (or unmodified oligonucleotides), known modifications Additions, such as those with labels known in the art, capped, methylated, one or more natural nucleotides replaced with analogs, intramolecular nucleotide modifications Such as those with uncharged bonds (eg methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.), charged bonds or sulfur-containing bonds (eg phosphorothioates, phosphorodithioates, etc.) Such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine etc. ), Sugars (eg, monosaccharides), etc., side chain groups, intercurrent compounds (eg, acridine, psoralen, etc.), chelate compounds (eg, metals, radioactive metals) , Boron, an oxidizing metal, etc.), an alkylating agent, and a modified bond (for example, α-anomeric nucleic acid). Here, “nucleoside”, “nucleotide” and “nucleic acid” may include not only purine and pyrimidine bases but also those having other heterocyclic bases modified. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also be modified at the sugar moiety, eg, one or more hydroxyl groups are replaced by halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may be converted.
 上記の通り、アンチセンス核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。アンチセンス核酸がDNAの場合、標的RNAとアンチセンスDNAとによって形成されるRNA:DNAハイブリッドは、内在性RNase Hに認識されて標的RNAの選択的な分解を引き起こすことができる。したがって、RNase Hによる分解を指向するアンチセンスDNAの場合、標的配列は、mRNA中の配列だけでなく、ENAH遺伝子の初期翻訳産物におけるイントロン領域の配列であってもよい。イントロン配列は、ゲノム配列と、ENAH遺伝子のcDNA塩基配列とをBLAST、FASTA等のホモロジー検索プログラムを用いて比較することにより、決定することができる。 As described above, the antisense nucleic acid may be DNA or RNA, or may be a DNA / RNA chimera. When the antisense nucleic acid is DNA, the RNA: DNA hybrid formed by the target RNA and the antisense DNA can be recognized by endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the ENAH gene. The intron sequence can be determined by comparing the genomic sequence with the cDNA base sequence of the ENAH gene using a homology search program such as BLAST or FASTA.
 本発明のアンチセンス核酸の標的領域は、該アンチセンス核酸がハイブリダイズすることにより、結果としてタンパク質:ENAHへの翻訳が阻害されるものであればその長さに特に制限はなく、ENAHをコードするmRNAの全配列であっても部分配列であってもよく、短いもので約10塩基程度、長いものでmRNAもしくは初期転写産物の全配列が挙げられる。合成の容易さや抗原性、細胞内移行性の問題等を考慮すれば、約10~約40塩基、特に約15~約30塩基からなるオリゴヌクレオチドが好ましいが、それに限定されない。具体的には、ENAH遺伝子の5’端ヘアピンループ、5’端6-ベースペア・リピート、5’端非翻訳領域、翻訳開始コドン、タンパク質コード領域、ORF翻訳終止コドン、3’端非翻訳領域、3’端パリンドローム領域又は3’端ヘアピンループなどが、アンチセンス核酸の好ましい標的領域として選択しうるが、それらに限定されない。 The target region of the antisense nucleic acid of the present invention is not particularly limited as long as the antisense nucleic acid hybridizes, and as a result, the translation into protein: ENAH is inhibited. The entire sequence or partial sequence of mRNA may be a short sequence of about 10 bases, and a long sequence of mRNA or the initial transcript. In view of easiness of synthesis, antigenicity, intracellular migration, etc., an oligonucleotide consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases is preferred, but is not limited thereto. Specifically, 5 'end hairpin loop of ENAH gene, 5' end 6-base pair repeat, 5 'end untranslated region, translation start codon, protein coding region, ORF translation stop codon, 3' end untranslated region A 3′-end palindromic region or a 3′-end hairpin loop can be selected as a preferred target region of an antisense nucleic acid, but is not limited thereto.
 さらに、本発明のアンチセンス核酸は、ENAH遺伝子のmRNAや初期転写産物とハイブリダイズしてタンパク質への翻訳を阻害するだけでなく、二本鎖DNAであるこれらの遺伝子と結合して三重鎖(トリプレックス)を形成し、RNAへの転写を阻害し得るもの(アンチジーン)であってもよい。 Furthermore, the antisense nucleic acid of the present invention not only hybridizes with the mRNA of the ENAH gene and the initial transcription product to inhibit translation into a protein, but also binds to these genes that are double-stranded DNA to form a triplex ( A triplex) that can inhibit transcription to RNA (antigene).
 アンチセンス核酸を構成するヌクレオチド分子は、天然型のDNAもしくはRNAでもよいが、安定性(化学的及び/又は対酵素)や比活性(RNAとの親和性)を向上させるために、種々の化学修飾を含むことができる。例えば、ヌクレアーゼなどの加水分解酵素による分解を防ぐために、アンチセンス核酸を構成する各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖(リボース)の2’位の水酸基を、-OR(R=CH3(2’-O-Me)、CH2CH2OCH3(2’-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。 The nucleotide molecule constituting the antisense nucleic acid may be natural DNA or RNA, but various chemicals may be used to improve stability (chemical and / or enzyme) and specific activity (affinity with RNA). Modifications can be included. For example, in order to prevent degradation by a hydrolase such as nuclease, the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be substituted with a phosphate residue. In addition, the 2′-position hydroxyl group of the sugar (ribose) of each nucleotide is represented by —OR (R═CH 3 (2′-O-Me), CH 2 CH 2 OCH 3 (2′-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.) may be substituted. Furthermore, the base moiety (pyrimidine, purine) may be chemically modified, for example, introduction of a methyl group or a cationic functional group at the 5-position of the pyrimidine base, or substitution of the carbonyl group at the 2-position with thiocarbonyl. Is mentioned.
 RNAの糖部のコンフォーメーションはC2’-endo(S型)とC3’-endo(N型)の2つが支配的であり、一本鎖RNAではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2’酸素と4’炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したRNA誘導体であるBNA(LNA)(Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotides, 14, 130-46, 2004)やENA(Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003)もまた、好ましく用いられ得る。 The conformation of the sugar part of RNA is dominated by C2'-endo (S type) and C3'-endo (N type). In single-stranded RNA, it exists as an equilibrium between the two, but double-stranded Is fixed to the N type. Therefore, in order to give strong binding ability to the target RNA, BNA (LNA) (Imanishi) is an RNA derivative in which the conformation of the sugar moiety is fixed to N-type by cross-linking 2 'oxygen and 4' carbon. , T. et al., Chem. Commun., 1653-9, 2002; Jepsen, JS et al., Oligonucleotides, 14, 130-46, 2004) and ENA (Morita, K. et al., Nucleosides Nucleotides Nucleicides Nucleicides Nucleicides , 22, 1619-21, 2003) can also be preferably used.
 本発明のアンチセンスオリゴヌクレオチドは、ENAH遺伝子のcDNA配列もしくはゲノミックDNA配列に基づいてmRNAもしくは初期転写産物の標的配列を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。また、上記した各種修飾を含むアンチセンス核酸も、いずれも自体公知の手法により、化学的に合成することができる。 The antisense oligonucleotide of the present invention determines the target sequence of mRNA or initial transcript based on the cDNA sequence or genomic DNA sequence of the ENAH gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman) Etc.) can be prepared by synthesizing a complementary sequence thereto. In addition, any of the above-described antisense nucleic acids containing various modifications can be chemically synthesized by a method known per se.
(2) ENAH遺伝子のmRNAに対するリボザイム核酸
 ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸の他の好ましい例としては、該mRNAをコード領域の内部で特異的に切断し得るリボザイム核酸が挙げられる。「リボザイム」とは、狭義には、核酸を切断する酵素活性を有するRNAをいうが、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイム核酸として最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイム核酸は、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。ENAH遺伝子のmRNAが自身で二本鎖構造をとる場合には、RNAヘリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる[Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる[Nucleic Acids Res., 29(13): 2780-2788 (2001)]。
(2) Ribozyme Nucleic Acid for ENAH Gene mRNA Another preferred example of a nucleic acid comprising a base sequence complementary to or substantially complementary to the base sequence of the ENAH gene mRNA or a part thereof is the mRNA of the coding region. Examples include ribozyme nucleic acids that can be cleaved specifically inside. “Ribozyme” refers to RNA having an enzyme activity that cleaves nucleic acids in a narrow sense, but in this specification, it is used as a concept including DNA as long as it has sequence-specific nucleic acid cleavage activity. The most versatile ribozyme nucleic acids include self-splicing RNAs found in infectious RNAs such as viroids and virusoids, and hammerhead and hairpin types are known. The hammerhead type exhibits enzyme activity at about 40 bases, and several bases at both ends (about 10 bases in total) adjacent to the part having the hammerhead structure are made complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA. This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate. If the mRNA of the ENAH gene has a double-stranded structure by itself, the target sequence is made single-stranded by using a hybrid ribozyme linked to an RNA motif derived from a viral nucleic acid that can specifically bind to an RNA helicase. [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)]. Furthermore, when ribozymes are used in the form of expression vectors containing the DNA that encodes them, they should be hybrid ribozymes in which tRNA-modified sequences are further linked in order to promote the transfer of transcripts to the cytoplasm. [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
(3) ENAH遺伝子のmRNAに対するsiRNA
 本明細書においては、ENAH遺伝子のmRNAに相補的なオリゴRNAとその相補鎖とからなる二本鎖RNA、いわゆるsiRNAもまた、ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸に包含されるものとして定義される。短い二本鎖RNAを細胞内に導入するとそのRNAに相補的なmRNAが分解される、いわゆるRNA干渉(RNAi)と呼ばれる現象は、以前から線虫、昆虫、植物等で知られていたが、この現象が動物細胞でも広く起こることが確認されて以来[Nature, 411(6836): 494-498 (2001)]、上記のアンチセンス核酸やリボザイムの代替技術として汎用されている。
(3) siRNA against ENAH gene mRNA
In the present specification, a double-stranded RNA consisting of an oligo RNA complementary to the mRNA of the ENAH gene and its complementary strand, so-called siRNA, is also complementary or substantially complementary to the base sequence of the mRNA of the ENAH gene. Defined as encompassed by nucleic acid containing base sequence or part thereof. When a short double-stranded RNA is introduced into a cell, the mRNA complementary to the RNA is degraded. So-called RNA interference (RNAi) has long been known in nematodes, insects, plants, etc. Since it has been confirmed that this phenomenon occurs widely in animal cells [Nature, 411 (6836): 494-498 (2001)], it has been widely used as an alternative technique to the above-mentioned antisense nucleic acids and ribozymes.
 siRNAは、標的遺伝子のcDNA配列情報に基づいて、例えば、Elbashirら(Genes Dev., 15, 188-200 (2001))、Teramotoら(FEBS Lett. 579(13):p2878-82(2005))の提唱する規則に従って設計することができる。siRNAの標的配列としては、原則的には15~50塩基、好ましくは19~49塩基、更に好ましくは19~27塩基の長さを有しており、例えばAA+(N)19(AAに続く、19塩基の塩基配列)、AA+(N)21(AAに続く、21塩基の塩基配列)もしくはA+(N)21(Aに続く、21塩基の塩基配列)であってもよい。
 本発明の核酸は、5’又は3’末端に、付加的な塩基を有していてもよい。該付加的塩基の長さは、通常2~4塩基程度であり、siRNAの全長として19塩基以上である。該付加的塩基は、DNAでもRNAでもよいが、DNAを用いると核酸の安定性を向上させることができる場合がある。このような付加的塩基の配列としては、例えばug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、ttttt-3’、uuuuu-3’などの配列が挙げられるが、これらに限定されるものではない。
 また、siRNAは、3'末端に突出部配列(オーバーハング)を有していてもよく、具体的には、dTdT(dTはデオキシリボ核酸を表わす)を付加したものが挙げられる。また、末端付加がない平滑末端(ブラントエンド)であってもよい。
 また、siRNAは、センス鎖とアンチセンス鎖が異なる塩基数であってもく、例えば、アンチセンス鎖が3'末端及び5'末端に突出部配列(オーバーハング)を有している「aiRNA」を挙げることができる。典型的なaiRNAは、アンチセンス鎖が21塩基からなり、センス鎖が15塩基からなり、アンチセンス鎖の両端で各々3塩基のオーバーハング構造をとる(Sun, X.ら著、Nature Biotechnology Vol.26 No.12 p1379、国際公開第WO2009/029688号パンフレット)。
 具体的には、実施例5に記載されているような、25塩基長のブラントエンド型のsiRNAや、実施例10に記載されているような標的配列部分が19塩基長で3'末端にdTdTを付加された合計21塩基長のsiRNAが挙げられる。
 標的配列の位置は特に制限されるわけではないが、5’-UTR及び開始コドンから約50塩基まで、並びに3’-UTR以外の領域から標的配列を選択することが望ましい。上述の規則その他に基づいて選択された標的配列の候補群について、標的以外のmRNAにおいて16-17塩基の連続した配列に相同性がないかどうかを、BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)等のホモロジー検索ソフトを用いて調べ、選択した標的配列の特異性を確認する。特異性の確認された標的配列について、AA(もしくはNA)以降の19-21塩基にTTもしくはUUの3’末端オーバーハングを有するセンス鎖と、該19-21塩基に相補的な配列及びTTもしくはUUの3’末端オーバーハングを有するアンチセンス鎖とからなる2本鎖RNAをsiRNAとして設計してもよい。また、siRNAの前駆体であるショートヘアピンRNA(shRNA)は、ループ構造を形成しうる任意のリンカー配列(例えば、5-25塩基程度)を適宜選択し、上記センス鎖とアンチセンス鎖とを該リンカー配列を介して連結することにより設計することができる。
siRNA is based on cDNA sequence information of a target gene, for example, Elbashir et al. (Genes Dev., 15, 188-200 (2001)), Teramoto et al. (FEBS Lett. 579 (13): p2878-82 (2005)) Can be designed according to the rules proposed by As a target sequence of siRNA, in principle, it has a length of 15 to 50 bases, preferably 19 to 49 bases, more preferably 19 to 27 bases. For example, AA + (N) 19 (following AA, 19 base sequence), AA + (N) 21 (21 base sequence following AA) or A + (N) 21 (21 base sequence following A).
The nucleic acid of the present invention may have an additional base at the 5 ′ or 3 ′ end. The length of the additional base is usually about 2 to 4 bases, and the total length of siRNA is 19 bases or more. The additional base may be DNA or RNA, but use of DNA may improve the stability of the nucleic acid. Examples of such an additional base sequence include ug-3 ′, uu-3 ′, tg-3 ′, tt-3 ′, ggg-3 ′, guuu-3 ′, gttt-3 ′, and ttttt-3. Examples include, but are not limited to, ', uuuuu-3'.
Further, siRNA may have a protruding portion sequence (overhang) at the 3 ′ end, and specifically includes those to which dTdT (dT represents deoxyribonucleic acid) is added. Further, it may be a blunt end (blunt end) without end addition.
In addition, siRNA may have a different number of bases in the sense strand and the antisense strand, for example, “aiRNA” in which the antisense strand has a protruding sequence (overhang) at the 3 ′ end and the 5 ′ end. Can be mentioned. A typical aiRNA consists of 21 bases in the antisense strand, 15 bases in the sense strand, and has an overhang structure of 3 bases at both ends of the antisense strand (Sun, X. et al., Nature Biotechnology Vol. 26 No.12 p1379, International Publication No. WO2009 / 029688 Pamphlet).
Specifically, a blunt-end siRNA having a length of 25 bases as described in Example 5 or a target sequence portion as described in Example 10 having a length of 19 bases and a dTdT at the 3 ′ end is used. SiRNA having a total length of 21 bases to which is added.
The position of the target sequence is not particularly limited, but it is desirable to select the target sequence from 5′-UTR and the start codon to about 50 bases and from regions other than 3′-UTR. For a candidate group of target sequences selected based on the above-mentioned rules and others, whether or not there is homology in a 16-17 base sequence in mRNA other than the target is determined by BLAST (http: //www.ncbi.nlm Investigate using homology search software such as .nih.gov / BLAST /) to confirm the specificity of the selected target sequence. About the target sequence whose specificity has been confirmed, a sense strand having a 3 'end overhang of TT or UU at 19-21 bases after AA (or NA), a sequence complementary to the 19-21 bases and TT or A double-stranded RNA consisting of an antisense strand having a 3 ′ end overhang of UU may be designed as an siRNA. In addition, for short hairpin RNA (shRNA) which is a precursor of siRNA, an arbitrary linker sequence (for example, about 5-25 bases) capable of forming a loop structure is appropriately selected, and the sense strand and the antisense strand are combined with each other. It can be designed by linking via a linker sequence.
 siRNA及び/又はshRNAの配列は、種々のwebサイト上に無料で提供される検索ソフトを用いて検索が可能である。このようなサイトとしては、例えば、Ambionが提供するsiRNA Target Finder(http://www.ambion.com/jp/techlib/misc/siRNA_finder.html)及びpSilencer(登録商標) Expression Vector用インサートデザインツール(http://www.ambion.com/jp/techlib/misc/psilencer_converter.html)、RNAi Codexが提供するGeneSeer(http://codex.cshl.edu/scripts/newsearchhairpin.cgi)があるがこれらに限定されない。 The siRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites. Examples of such sites include siRNA Target Finder (http://www.ambion.com/jp/techlib/misc/siRNA_finder.html) and pSilencer (registered trademark) Expression Vector insert design tools ( http://www.ambion.com/techlib/misc/psilencer_converter.html), GeneSeer provided by RNAixCodex (http://codex.cshl.edu/scripts/newsearchhairpin.cgi) Not.
 siRNAを構成するリボヌクレオシド分子もまた、安定性、比活性などを向上させるために、上記のアンチセンス核酸の場合と同様の修飾を受けていてもよい。但し、siRNAの場合、天然型RNA中のすべてのリボヌクレオシド分子を修飾型で置換すると、RNAi活性が失われる場合があるので、RISC複合体が機能できる最小限の修飾ヌクレオシドの導入が必要である。
 当該修飾として具体的には、siRNAを構成するヌクレオチド分子の一部を、天然型のDNAや、安定性(化学的及び/又は対酵素)や比活性(RNAとの親和性)を向上させるために、種々の化学修飾を施したRNAに置換することができる(Usman and Cedergren,1992,TIBS 17,34;Usman et al.,1994,Nucleic Acids Symp.Ser.31,163を参照)。例えば、ヌクレアーゼなどの加水分解酵素による分解を防ぐために、siRNAを構成する各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖(リボース)の2’位の水酸基を、-OR(R=CH3(2’-O-Me)、CH2CH2OCH3(2’-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等)、フッ素原子(-F)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。その他上記(1)に記載されたアンチセンス核酸における修飾方法を用いることができる。あるいは、siRNAにおけるRNAの一部をDNAに置換する化学修飾(2'-デオキシ化、2'-H)を施しても良い。また、糖(リボース)の2'位と4'位を-O-CH2で架橋しコンフォーメーションをN型に固定した人工核酸(LNA:Locked Nucleic Acid)を用いてもよい。
 また、siRNAを構成するセンス鎖およびアンチセンス鎖は、リンカーを介し、細胞表層に存在する受容体を特異的に認識するリガンド、ペプチド、糖鎖、抗体、脂質や正電荷や分子構造的に細胞膜表層に吸着し貫通するオリゴアルギニン、Tatペプチド、RevペプチドまたはAntペプチドなどと化学結合していてもよい。
The ribonucleoside molecule constituting siRNA may also be modified in the same manner as the above-described antisense nucleic acid in order to improve stability, specific activity and the like. However, in the case of siRNA, if all ribonucleoside molecules in natural RNA are replaced with a modified form, RNAi activity may be lost, so the introduction of the minimum modified nucleoside that allows the RISC complex to function is necessary. .
Specifically, in order to improve a part of the nucleotide molecule constituting siRNA, natural DNA, stability (chemical and / or enzyme) and specific activity (affinity with RNA) as the modification In addition, it can be substituted with RNA having various chemical modifications (see Usman and Cedergren, 1992, TIBS 17,34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163). For example, in order to prevent degradation by a hydrolase such as nuclease, phosphate residues (phosphates) of each nucleotide constituting siRNA are converted into chemically modified phosphates such as phosphorothioate (PS), methylphosphonate, and phosphorodithionate. It can be substituted with a residue. In addition, the 2′-position hydroxyl group of the sugar (ribose) of each nucleotide is represented by —OR (R═CH 3 (2′-O-Me), CH 2 CH 2 OCH 3 (2′-O-MOE), CH 2 CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.) or a fluorine atom (—F) may be substituted. Furthermore, the base moiety (pyrimidine, purine) may be chemically modified, for example, introduction of a methyl group or a cationic functional group at the 5-position of the pyrimidine base, or substitution of the carbonyl group at the 2-position with thiocarbonyl. Is mentioned. In addition, the method for modifying an antisense nucleic acid described in (1) above can be used. Or you may give the chemical modification (2'-deoxylation, 2'-H) which substitutes a part of RNA in siRNA with DNA. Alternatively, an artificial nucleic acid (LNA: Locked Nucleic Acid) in which the 2′-position and 4′-position of sugar (ribose) are cross-linked with —O—CH 2 and the conformation is fixed to N-type may be used.
In addition, the sense strand and antisense strand constituting siRNA are linked via a linker to a ligand, peptide, sugar chain, antibody, lipid, positive charge or molecular structure that specifically recognizes a receptor present on the cell surface. It may be chemically bonded to oligoarginine, Tat peptide, Rev peptide or Ant peptide that adsorbs and penetrates the surface layer.
 siRNAは、mRNA上の標的配列のセンス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせることにより調製することができる。また、siRNAの前駆体となるショートヘアピンRNA(shRNA)を合成し、これを、ダイサー(dicer)を用いて切断することにより調製することもできる。 The siRNA is synthesized by synthesizing a sense strand and an antisense strand of a target sequence on mRNA with a DNA / RNA automatic synthesizer, denatured at about 90 to about 95 ° C. for about 1 minute in an appropriate annealing buffer, It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing a short hairpin RNA (shRNA) serving as a precursor of siRNA and cleaving it with a dicer.
 本明細書においては、生体内でENAH遺伝子のmRNAに対するsiRNAを生成し得るようにデザインされた核酸もまた、ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸に包含されるものとして定義される。そのような核酸としては、上記したshRNAやsiRNAを発現するように構築された発現ベクターなどが挙げられる。shRNAは、mRNA上の標的配列のセンス鎖及びアンチセンス鎖を適当なループ構造を形成しうる長さ(例えば5~25塩基程度)のスペーサー配列を間に挿入して連結した塩基配列を含むオリゴRNAをデザインし、これをDNA/RNA自動合成機で合成することにより調製することができる。shRNAを発現するベクターには、タンデムタイプとステムループ(ヘアピン)タイプとがある。前者はsiRNAのセンス鎖の発現カセットとアンチセンス鎖の発現カセットをタンデムに連結したもので、細胞内で各鎖が発現してアニーリングすることにより2本鎖のsiRNA(dsRNA)を形成するというものである。一方、後者はshRNAの発現カセットをベクターに挿入したもので、細胞内でshRNAが発現しdicerによるプロセシングを受けてdsRNAを形成するというものである。プロモーターとしては、polII系プロモーター(例えば、CMV前初期プロモーター)を使用することもできるが、短いRNAの転写を正確に行わせるために、polIII系プロモーターを使用するのが一般的である。polIII系プロモーターとしては、マウス及びヒトのU6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどが挙げられる。また、転写終結シグナルとして4個以上Tが連続した配列が用いられる。
 このようにして構築したsiRNAもしくはshRNA発現カセットを、次いでプラスミドベクターやウイルスベクターに挿入する。このようなベクターとしては、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクターや、動物細胞発現プラスミドなどが用いられる。
In the present specification, a nucleic acid designed to generate siRNA against the mRNA of the ENAH gene in vivo also includes a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the mRNA of the ENAH gene. Defined as encompassed by a nucleic acid containing a moiety. Examples of such nucleic acids include expression vectors constructed so as to express the above-mentioned shRNA and siRNA. shRNA is an oligo containing a base sequence in which the sense strand and the antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence (for example, about 5 to 25 bases) long enough to form an appropriate loop structure. It can be prepared by designing RNA and synthesizing it with an automatic DNA / RNA synthesizer. Vectors expressing shRNA include tandem type and stem loop (hairpin) type. In the former, siRNA sense strand expression cassette and antisense strand expression cassette are linked in tandem, and each strand is expressed and annealed in the cell to form double stranded siRNA (dsRNA). It is. On the other hand, the latter is one in which an shRNA expression cassette is inserted into a vector, in which shRNA is expressed in cells and processed by dicer to form dsRNA. As the promoter, a pol II promoter (for example, a CMV immediate early promoter) can be used, but in order to accurately transcribe a short RNA, a pol III promoter is generally used. Examples of the polIII promoter include mouse and human U6-snRNA promoters, human H1-RNase P RNA promoter, and human valine-tRNA promoter. Further, a sequence in which 4 or more Ts are continuous is used as a transcription termination signal.
The siRNA or shRNA expression cassette thus constructed is then inserted into a plasmid vector or viral vector. Examples of such vectors include retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus, Sendai virus and other viral vectors, animal cell expression plasmids, and the like.
 上記siRNAは、ヌクレオチド配列の情報に基づいて、例えば394 Applied Biosystems,Inc.合成機等のDNA/RNA自動合成機を用いて常法に従って化学的に合成することができる。例えば,Caruthers et al.,1992,Methods in Enzymology 211,3-19、Thompson et al.,国際公開99/54459、Wincott et al.,1995,Nucleic Acids Res.23,2677-2684、Wincott et al.,1997,Methods Mol.Bio.,74,59、Brennan et al.,1998,Biotechnol Bioeng.,61,33-45、Usman et al.,1987 J.Am.Chem.Soc.,109,7845、Scaringe et al.,1990 Nucleic Acids Res.,18,5433)、Wincott et al.,1995 Nucleic Acids Res.23,2677-2684、Wincott et al.,1997,Methods Mol.Bio.,74,59、及び米国特許第6001311号に記載される方法等が挙げられる。具体的には、当業者に公知の核酸保護基(例えば5’末端にジメトキシトリチル基)及びカップリング基(例えば3’末端にホスホルアミダイト)を用いて合成できる。すなわち、5'末端の保護基を、TCA(トリクロロ酢酸)等の酸で脱保護し、カップリング反応を行う。ついでアセチル基でキャッピングを行った後、次の核酸の縮合反応を行う。修飾されたRNAやDNAを含むsiRNAの場合には、原料として修飾されたRNA(例えば、2'-O-メチルヌクレオチド、2'-デオキシ-2'-フルオロヌクレオチド)を用いればよく、カップリング反応の条件は適宜調整できる。また、リン酸結合部分が修飾されたホスホロチオエート結合を導入する場合には、ボーケージ試薬(3H-1,2-ベンゾジチオール-3-オン1,1-ジオキシド)を用いることができる。 The above siRNA can be chemically synthesized according to a conventional method using an automatic DNA / RNA synthesizer such as a 394-Applied Biosystems, Inc. synthesizer based on the nucleotide sequence information. For example, Caruthers et al., 1992, Methods in Enzymology 211,3-19, Thompson et al., International Publication 99/54459, Wincott et al., 1995, Nucleic Acids Res.23,2677-2684, Wincott et al. , 1997, MethodsolMol.Bio., 74,59, Brennan et al., 1998, Biotechnol Bioeng., 61,33-45, Usman et al., 1987 J.Am.Chem.Soc., 109,7845, Scaringe et al., 1990 Nucleic Acids Res., 18, 5433), Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684, Wincott et al., 1997, Methods Mol. Bio., 74, 59, and the United States Examples include the method described in Japanese Patent No. 6001311. Specifically, it can be synthesized using a nucleic acid protecting group known to those skilled in the art (for example, dimethoxytrityl group at the 5 'end) and a coupling group (for example, phosphoramidite at the 3' end). That is, the protecting group at the 5 ′ end is deprotected with an acid such as TCA (trichloroacetic acid) and a coupling reaction is performed. Then, after capping with an acetyl group, the next nucleic acid condensation reaction is performed. In the case of siRNA containing modified RNA or DNA, a modified RNA (eg, 2′-O-methyl nucleotide, 2′-deoxy-2′-fluoro nucleotide) may be used as a raw material, and the coupling reaction These conditions can be adjusted as appropriate. When introducing a phosphorothioate bond in which the phosphate binding moiety is modified, a borage reagent (3H-1,2-benzodithiol-3-one 1,1-dioxide) can be used.
 あるいは,オリゴヌクレオチドは,別々に合成し、合成後に例えばライゲーションにより一緒につなげてもよいし(Moore et al.,1992,Science 256,9923;Draper et al.国際公開WO93/23569;Shabarova et al.,1991,Nucleic Acids Research 19,4247;Bellon et al.,1997,Nucleosides & Nucleotides,16,951;Bellon et al.,1997,Bioconjugate Chem.8,204)、又は合成及び/又は脱保護の後にハイブリダイゼーションにより、一緒につなげてもよい。siRNA分子はまたタンデム合成法により合成することができる。すなわち、両方のsiRNA鎖を、切断可能なリンカーにより分離された単一の連続するオリゴヌクレオチドとして合成し、次にこれを切断して別々のsiRNAフラグメントを生成し、これをハイブリダイズさせて精製する。リンカーはポリヌクレオチドリンカーであっても非ヌクレオチドリンカーであってもよい。 Alternatively, oligonucleotides may be synthesized separately and joined together after synthesis, for example, by ligation (Moore et al., 1992, Science 256,9923; Draper et al. International Publication WO93 / 23569; Shabarova et al. , 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. It may be connected. siRNA molecules can also be synthesized by tandem synthesis. That is, both siRNA strands are synthesized as a single continuous oligonucleotide separated by a cleavable linker, which is then cleaved to generate separate siRNA fragments that are hybridized and purified . The linker may be a polynucleotide linker or a non-nucleotide linker.
 合成したsiRNA分子は、当業者に公知の方法を用いて精製できる。例えばゲル電気泳動により精製する方法、又は高速液体クロマトグラフィー(HPLC)を用いて精製する方法が挙げられる。
 また、siRNA分子をDNA又はRNAベクター中に挿入させて、組換えベクターを用いて発現させることもできる。ベクターは、DNAプラスミド又はウイルスベクターでありうる。siRNAを発現するウイルスベクターは,限定されないが,アデノウイルス等を用いることができる。
The synthesized siRNA molecules can be purified using methods known to those skilled in the art. For example, a method of purification by gel electrophoresis or a method of purification using high performance liquid chromatography (HPLC) can be mentioned.
Alternatively, siRNA molecules can be inserted into DNA or RNA vectors and expressed using recombinant vectors. The vector can be a DNA plasmid or a viral vector. Although the viral vector expressing siRNA is not limited, adenovirus and the like can be used.
 具体的なsiRNAとしては例えば、以下の群:
(1)二重鎖RNA部分が、配列番号:13、14及び25~47から選択されるいずれかの配列番号で示される塩基配列を含むsiRNA、
(2)3’末端に2~4塩基のオーバーハングが付加されていることを特徴とする前記(1)に記載のsiRNA、
(3)少なくとも1つの塩基が化学的に修飾されている前記(1)又は(2)に記載のsiRNA、又は、
(4)少なくとも1つのホスホジエステル結合が化学的に修飾されている前記(1)~(3)のいずれかに記載のsiRNA、
等を例示することができる。ここでsiRNAの二重鎖RNA部分の塩基の長さは15~50塩基、好ましくは19~50塩基、更に好ましくは19~49塩基、15~49塩基、更に好ましくは19~25塩基、15~25塩基、更に好ましくは19~23塩基である。
Specific examples of siRNA include the following groups:
(1) an siRNA in which the double-stranded RNA portion includes a base sequence represented by any one of SEQ ID NOs: 13, 14, and 25 to 47;
(2) The siRNA according to (1) above, wherein an overhang of 2 to 4 bases is added to the 3 ′ end,
(3) The siRNA according to (1) or (2), wherein at least one base is chemically modified, or
(4) The siRNA according to any one of (1) to (3), wherein at least one phosphodiester bond is chemically modified,
Etc. can be illustrated. Here, the base length of the double-stranded RNA portion of siRNA is 15-50 bases, preferably 19-50 bases, more preferably 19-49 bases, 15-49 bases, more preferably 19-25 bases, 15- 25 bases, more preferably 19 to 23 bases.
 ENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸は、リポソーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療に適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大させたりするような脂質(例、ホスホリピド、コレステロールなど)などの疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3’端又は5’端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3’端又は5’端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。 Nucleic acids containing a nucleotide sequence complementary to or substantially complementary to the nucleotide sequence of the ENAH gene mRNA, or a part thereof, are provided in a special form such as liposomes or microspheres, applied to gene therapy, It can be given in an added form. In this way, the additional form can be used as a polycationic substance such as polylysine, which acts to neutralize the charge of the phosphate group skeleton, to enhance the interaction with the cell membrane, or to increase the uptake of nucleic acid Examples include hydrophobic substances such as lipids (eg, phospholipids, cholesterol, etc.). Preferred lipids for addition include cholesterol and derivatives thereof (eg, cholesteryl chloroformate, cholic acid, etc.). These can be attached to the 3 'or 5' end of the nucleic acid and can be attached via a base, sugar, intramolecular nucleoside bond. Examples of the other group include a cap group specifically arranged at the 3 'end or 5' end of a nucleic acid, which prevents degradation by nucleases such as exonuclease and RNase. Such capping groups include, but are not limited to, hydroxyl protecting groups known in the art, including glycols such as polyethylene glycol and tetraethylene glycol.
 これらの核酸のタンパク質:ENAH発現阻害活性は、ENAH遺伝子を導入した形質転換体、生体内や生体外のENAH遺伝子発現系、又は生体内や生体外のタンパク質:ENAHの翻訳系を用いて調べることができる。 The protein: ENAH expression inhibitory activity of these nucleic acids should be examined using a transformant introduced with the ENAH gene, an in vivo or in vitro ENAH gene expression system, or an in vivo or in vitro protein: ENAH translation system. Can do.
 本発明におけるENAHの発現を阻害する物質は、上記のようなENAH遺伝子のmRNAの塩基配列と相補的もしくは実質的に相補的な塩基配列又はその一部を含む核酸に限定されず、ENAHの産生を直接的又は間接的に阻害する限り、低分子化合物などの他の物質であってもよい。そのような物質は、例えば、後述する本発明のスクリーニング方法により取得することができる。 The substance that inhibits the expression of ENAH in the present invention is not limited to a nucleic acid containing a base sequence complementary to or substantially complementary to the base sequence of the mRNA of the ENAH gene as described above or a part thereof, and the production of ENAH Other substances such as low molecular weight compounds may be used as long as they are directly or indirectly inhibited. Such a substance can be obtained, for example, by the screening method of the present invention described later.
III. ENAHの機能を抑制する物質
 本発明において「ENAHの機能を抑制する物質」とは、いったん機能的に産生されたENAHの機能を発揮するのを抑制する限りいかなるものでもよい。
III. Substance that Suppresses ENAH Function In the present invention, “substance that suppresses ENAH function” may be any substance as long as it suppresses the function of ENAH once produced functionally.
 具体的には、ENAHの機能を抑制する物質として、例えば、ENAHに対する抗体が挙げられる。該抗体はポリクローナル抗体、モノクローナル抗体の何れであってもよい。これらの抗体は、自体公知の抗体又は抗血清の製造法に従って製造することができる。抗体のアイソタイプは特に限定されないが、好ましくはIgG、IgM又はIgA、特に好ましくはIgGが挙げられる。また、該抗体は、標的抗原を特異的に認識し結合するための相補性決定領域(CDR)を少なくとも有するものであれば特に制限はなく、完全抗体分子の他、例えばFab、Fab'、F(ab’)2等のフラグメント、scFv、scFv-Fc、ミニボディー、ダイアボディー等の遺伝子工学的に作製されたコンジュゲート分子、あるいはポリエチレングリコール(PEG)等のタンパク質安定化作用を有する分子等で修飾されたそれらの誘導体などであってもよい。
 好ましい一実施態様において、ENAHに対する抗体はヒトを投与対象とする医薬品として使用されることから、該抗体(好ましくはモノクローナル抗体)はヒトに投与した場合に抗原性を示す危険性が低減された抗体、具体的には、完全ヒト抗体、ヒト化抗体、マウス-ヒトキメラ抗体などであり、特に好ましくは完全ヒト抗体である。ヒト化抗体及びキメラ抗体は、常法に従って遺伝子工学的に作製することができる。また、完全ヒト抗体は、ヒト-ヒト(もしくはマウス)ハイブリドーマより製造することも可能ではあるが、大量の抗体を安定に且つ低コストで提供するためには、ヒト抗体産生マウスやファージディスプレイ法を用いて製造することが望ましい。
 ENAHは、アクチンフィラメントの反やじり端キャップタンパク質と競合的にアクチンに結合する性質を有する。すなわち、プロフィリン及びG-アクチンと相互作用して、アクチンの反やじり端キャッピングを抑制する。反やじり端キャップタンパク質としては、例えば、CapG、heterodimeric capping protein (CapZ)、gelsolinなどが挙げられる。また、ENAHは、F-アクチン結合モチーフ(Bachmannら著、J. Biol. Chem.、第274巻、第33号、第23549-23557項の図1におけるBlock Bに相当する領域)及びG-アクチン結合モチーフ(Bachmannら著、J. Biol. Chem.、第274巻、第33号、第23549-23557項の図1におけるBlock Aに相当する領域)が保存されていることを特徴とする。
 ENAHの機能を抑制する物質は、腫瘍血管移行性、細胞膜透過性に優れた物質であることが望ましい。したがって、ENAHの機能を抑制する別の好ましい物質は、Lipinski's Ruleに見合った低分子化合物である。そのような化合物は、例えば、後述する本発明のスクリーニング法を用いて取得することができる。
Specifically, examples of the substance that suppresses the function of ENAH include an antibody against ENAH. The antibody may be a polyclonal antibody or a monoclonal antibody. These antibodies can be produced according to a method known per se for producing antibodies or antisera. The isotype of the antibody is not particularly limited, but preferably IgG, IgM or IgA, particularly preferably IgG. The antibody is not particularly limited as long as it has at least a complementarity determining region (CDR) for specifically recognizing and binding a target antigen. In addition to a complete antibody molecule, for example, Fab, Fab ′, F (ab ') 2 such as fragments, scFv, scFv-Fc, conjugation molecules prepared by genetic engineering such as minibodies and diabodies, or molecules having a protein stabilizing action such as polyethylene glycol (PEG) They may be modified derivatives thereof.
In a preferred embodiment, since the antibody against ENAH is used as a pharmaceutical for human administration, the antibody (preferably a monoclonal antibody) is an antibody with reduced risk of showing antigenicity when administered to humans. Specific examples include fully human antibodies, humanized antibodies, mouse-human chimeric antibodies, and particularly preferably fully human antibodies. Humanized antibodies and chimeric antibodies can be prepared by genetic engineering according to conventional methods. In addition, fully human antibodies can be produced from human-human (or mouse) hybridomas, but in order to provide a large amount of antibodies stably and at low cost, human antibody-producing mice and phage display methods are used. It is desirable to manufacture using.
ENAH has the property of binding to actin competitively with the anti-tapping end cap protein of actin filaments. That is, it interacts with profilin and G-actin to suppress actin anti-tapping edge capping. Examples of the anti-tapping end cap protein include CapG, heterodimeric capping protein (CapZ), and gelsolin. ENAH is an F-actin binding motif (region corresponding to Block B in FIG. 1 of Bachmann et al., J. Biol. Chem., 274, 33, 23549-23557) and G-actin. The binding motif (region corresponding to Block A in FIG. 1 in Bachmann et al., J. Biol. Chem., 274, No. 33, 23549-23557, FIG. 1) is preserved.
The substance that suppresses the ENAH function is desirably a substance excellent in tumor blood vessel migration and cell membrane permeability. Therefore, another preferable substance that suppresses the function of ENAH is a low-molecular compound commensurate with Lipinski's Rule. Such a compound can be obtained, for example, using the screening method of the present invention described later.
 ENAHの発現もしくは機能を抑制する物質は、血管新生阻害活性、詳しくは腫瘍血管新生阻害活性、更に詳しくは、腫瘍血管内皮細胞の増殖抑制活性及び/又は遊走抑制活性を示すことから、抗腫瘍剤として、癌に罹患した患者の病態を改善したり、癌への罹患、特には癌の転移・再発を予防したりするのに有用である。
 従って、ENAHの発現もしくは機能を抑制する物質を含有する医薬は、癌の予防及び/又は治療剤(抗腫瘍剤)として使用することができる。
Substances that suppress the expression or function of ENAH exhibit angiogenesis inhibitory activity, specifically tumor angiogenesis inhibitory activity, more specifically, growth inhibitory activity and / or migration inhibitory activity of tumor vascular endothelial cells. As such, it is useful for improving the pathology of patients suffering from cancer and for preventing cancer, particularly cancer metastasis and recurrence.
Therefore, a medicament containing a substance that suppresses the expression or function of ENAH can be used as a preventive and / or therapeutic agent (antitumor agent) for cancer.
IV.アンチセンス核酸、リボザイム核酸、siRNA及びその前駆体を含有する医薬
 ENAH遺伝子の転写産物に相補的に結合し、該転写産物からのタンパク質の翻訳を抑制することができる本発明のアンチセンス核酸や、ENAH遺伝子の転写産物における相同な(もしくは相補的な)塩基配列を標的として該転写産物を切断し得るsiRNA(もしくはリボザイム)、さらに該siRNAの前駆体であるshRNAなど(以下、包括的に「本発明の核酸」という場合がある)は、生体内におけるENAHの発現を抑制し、腫瘍血管内皮細胞の増殖及び/又は遊走を抑制するので、抗腫瘍剤として使用することができる。
 本発明の核酸を含有する医薬は低毒性であり、そのまま液剤として、又は適当な剤型の医薬組成物として、ヒト又は非ヒト哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的又は非経口的(例、血管内投与、皮下投与など)に投与することができる。
IV. An antisense nucleic acid of the present invention that binds complementarily to a transcription product of a pharmaceutical ENAH gene containing an antisense nucleic acid, a ribozyme nucleic acid, siRNA and a precursor thereof, and can suppress translation of a protein from the transcription product, SiRNA (or ribozyme) that can cleave the transcript from the homologous (or complementary) nucleotide sequence in the ENAH gene transcript, and shRNA that is the precursor of the siRNA (hereinafter referred to as “general” The "nucleic acid of the invention" may be used as an antitumor agent because it suppresses the expression of ENAH in vivo and suppresses the proliferation and / or migration of tumor vascular endothelial cells.
The medicament containing the nucleic acid of the present invention has low toxicity and is used as it is as a liquid or as a pharmaceutical composition of an appropriate dosage form, as a human or non-human mammal (eg, rat, rabbit, sheep, pig, cow, cat, It can be administered orally or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
 本発明の核酸を上記の抗腫瘍剤として使用する場合、自体公知の方法に従って製剤化し、投与することができる。即ち、本発明の核酸を、単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当な哺乳動物細胞用の発現ベクターに機能可能な態様で挿入した後、常套手段に従って製剤化することができる。該核酸は、そのままで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することができる。あるいは、エアロゾル化して吸入剤として気管内に局所投与することもできる。
 さらに、体内動態の改良、半減期の長期化、細胞内取り込み効率の改善を目的に、前記核酸を単独又はリポソームなどの担体とともに製剤(注射剤)化し、静脈、皮下等に投与してもよい。
When the nucleic acid of the present invention is used as the antitumor agent, it can be formulated and administered according to a method known per se. That is, the nucleic acid of the present invention is inserted alone or in a functional manner into an appropriate expression vector for mammalian cells such as a retrovirus vector, adenovirus vector, adenovirus associated virus vector, and then formulated according to conventional means. can do. The nucleic acid can be administered as it is or together with an auxiliary agent for promoting intake by a catheter such as a gene gun or a hydrogel catheter. Alternatively, it can be aerosolized and locally administered into the trachea as an inhalant.
Furthermore, for the purpose of improving the pharmacokinetics, extending the half-life, and improving the efficiency of cellular uptake, the nucleic acid may be formulated (injection) alone or with a carrier such as a liposome and administered intravenously, subcutaneously, etc. .
 本発明の核酸は、それ自体を投与してもよいし、又は適当な医薬組成物として投与してもよい。投与に用いられる医薬組成物としては、本発明の核酸と薬理学的に許容され得る担体、希釈剤もしくは賦形剤とを含むものであってよい。このような医薬組成物は、経口又は非経口投与に適する剤形として提供される。 The nucleic acid of the present invention may be administered per se or as an appropriate pharmaceutical composition. The pharmaceutical composition used for administration may contain the nucleic acid of the present invention and a pharmacologically acceptable carrier, diluent or excipient. Such a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
 非経口投与のための組成物としては、例えば、注射剤、坐剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を包含しても良い。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の核酸を通常注射剤に用いられる無菌の水性液、又は油性液に溶解、懸濁又は乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil)〕等と併用してもよい。油性液としては、例えば、ゴマ油、大豆油等が用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。直腸投与に用いられる坐剤は、上記核酸を通常の坐薬用基剤に混合することによって調製されてもよい。 As a composition for parenteral administration, for example, injections, suppositories and the like are used. Injections are dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, and the like. May be included. Such an injection can be prepared according to a known method. As a method for preparing an injection, it can be prepared, for example, by dissolving, suspending or emulsifying the nucleic acid of the present invention in a sterile aqueous liquid or oily liquid usually used for injection. As an aqueous solution for injection, for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination. As the oily liquid, for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The prepared injection solution is preferably filled in a suitable ampoule. Suppositories used for rectal administration may be prepared by mixing the nucleic acid with a normal suppository base.
 経口投与のための組成物としては、固体又は液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムが用いられる。 Compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like. Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field. As the carrier and excipient for tablets, for example, lactose, starch, sucrose, and magnesium stearate are used.
 上記の非経口用又は経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。このような投薬単位の剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤が挙げられる。本発明の核酸は、例えば、投薬単位剤形当たり通常5~500mg、とりわけ注射剤では5~100mg、その他の剤形では10~250mg含有されていることが好ましい。 The above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dosage of the active ingredient. Examples of the dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories. The nucleic acid of the present invention is preferably contained, for example, usually 5 to 500 mg per dosage unit form, especially 5 to 100 mg for injections and 10 to 250 mg for other dosage forms.
 本発明の核酸を含有する上記医薬の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、癌の治療・予防のために使用する場合には、本発明の核酸を1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度を、1日1~5回程度、好ましくは1日1~3回程度、静脈注射により投与するのが好都合である。他の非経口投与及び経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。 The dosage of the above-mentioned pharmaceutical containing the nucleic acid of the present invention varies depending on the administration subject, target disease, symptom, administration route, etc., but for example, when used for the treatment / prevention of cancer, the nucleic acid of the present invention. Is usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight, about 1 to 5 times a day, preferably 1 day a day. It is convenient to administer about 3 times by intravenous injection. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
 なお前記した各組成物は、本発明の核酸との配合により好ましくない相互作用を生じない限り適宜他の活性成分を含有してもよい。 Note that each of the above-described compositions may appropriately contain other active ingredients as long as an undesirable interaction is not caused by blending with the nucleic acid of the present invention.
V.ENAHに対する抗体、ENAHの発現もしくは機能を抑制する低分子化合物等を含有する医薬
 ENAHに対する抗体又はENAHの発現もしくは機能を抑制する低分子化合物は、ENAHの産生又は機能を阻害することができる。したがって、これらの物質は、生体内におけるENAHの発現もしくは機能を抑制するので、癌の予防及び/又は治療剤として使用することができる。
 上記の抗体や低分子化合物を含有する医薬は低毒性であり、そのまま液剤として、又は適当な剤型の医薬組成物として、ヒト又は哺乳動物(例、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して経口的又は非経口的(例、血管内投与、皮下投与など)に投与することができる。
V. A drug containing an antibody against ENAH, a low molecular compound that suppresses the expression or function of ENAH, etc. An antibody against ENAH or a low molecular compound that suppresses the expression or function of ENAH can inhibit the production or function of ENAH. Therefore, since these substances suppress the expression or function of ENAH in vivo, they can be used as preventive and / or therapeutic agents for cancer.
A medicine containing the above-mentioned antibody or low molecular weight compound has low toxicity, and it is used as a solution or as a pharmaceutical composition of an appropriate dosage form as a human or mammal (eg, rat, rabbit, sheep, pig, cow, cat). , Dogs, monkeys, etc.) or or parenterally (eg, intravascular administration, subcutaneous administration, etc.).
 上記の抗体や低分子化合物は、それ自体を投与してもよいし、又は適当な医薬組成物として投与してもよい。投与に用いられる医薬組成物としては、上記の抗体もしくは低分子化合物又はその塩と薬理学的に許容され得る担体、希釈剤もしくは賦形剤とを含むものであってもよい。このような医薬組成物は、経口又は非経口投与に適する剤形として提供される。 The above-mentioned antibodies and low molecular compounds may be administered per se, or may be administered as an appropriate pharmaceutical composition. The pharmaceutical composition used for administration may contain the above-mentioned antibody or low molecular compound or a salt thereof and a pharmacologically acceptable carrier, diluent or excipient. Such a pharmaceutical composition is provided as a dosage form suitable for oral or parenteral administration.
 非経口投与のための組成物としては、例えば、注射剤、坐剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を包含しても良い。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の抗体又は低分子化合物もしくはその塩を通常注射剤に用いられる無菌の水性液、又は油性液に溶解、懸濁又は乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられ、適当な溶解補助剤、例えば、アルコール(例、エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン界面活性剤〔例、ポリソルベート80、HCO-50(polyoxyethylene(50mol)adduct of hydrogenated castor oil)〕等と併用してもよい。油性液としては、例えば、ゴマ油、大豆油等が用いられ、溶解補助剤として安息香酸ベンジル、ベンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。直腸投与に用いられる坐剤は、上記抗体又はその塩を通常の坐薬用基剤に混合することによって調製されても良い。 As a composition for parenteral administration, for example, injections, suppositories and the like are used. Injections are dosage forms such as intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, infusions, and the like. May be included. Such an injection can be prepared according to a known method. As a method for preparing an injection, it can be prepared, for example, by dissolving, suspending or emulsifying the antibody or low molecular compound or salt thereof of the present invention in a sterile aqueous liquid or oily liquid that is usually used for injection. As an aqueous solution for injection, for example, an isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used, and suitable solubilizers such as alcohol (eg, ethanol), polyalcohol (eg, Propylene glycol, polyethylene glycol), nonionic surfactants (eg, polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct-of-hydrogenated-castor-oil)) and the like may be used in combination. As the oily liquid, for example, sesame oil, soybean oil and the like are used, and benzyl benzoate, benzyl alcohol and the like may be used in combination as a solubilizing agent. The prepared injection solution is preferably filled in a suitable ampoule. A suppository used for rectal administration may be prepared by mixing the above-mentioned antibody or a salt thereof with an ordinary suppository base.
 経口投与のための組成物としては、固体又は液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムが用いられる。 Compositions for oral administration include solid or liquid dosage forms, specifically tablets (including sugar-coated tablets and film-coated tablets), pills, granules, powders, capsules (including soft capsules), and syrups. Agents, emulsions, suspensions and the like. Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field. As the carrier and excipient for tablets, for example, lactose, starch, sucrose, and magnesium stearate are used.
 上記の非経口用又は経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。このような投薬単位の剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤(アンプル)、坐剤が挙げられる。抗体や低分子化合物は、投薬単位剤形当たり通常5~500mg、とりわけ注射剤では5~100mg、その他の剤形では10~250mg含有されていることが好ましい。 The above parenteral or oral pharmaceutical composition is conveniently prepared in a dosage unit form suitable for the dosage of the active ingredient. Examples of the dosage form of such a dosage unit include tablets, pills, capsules, injections (ampoules), and suppositories. The antibody or low molecular weight compound is preferably contained in an amount of usually 5 to 500 mg per dosage unit form, particularly 5 to 100 mg for injections and 10 to 250 mg for other dosage forms.
 上記の抗体もしくは低分子化合物又はその塩を含有する上記医薬の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、例えば、癌の治療・予防のために使用する場合には、抗体もしくは低分子化合物を1回量として、通常0.01~20mg/kg体重程度、好ましくは0.1~10mg/kg体重程度、さらに好ましくは0.1~5mg/kg体重程度を、1日1~5回程度、好ましくは1日1~3回程度、静脈注射により投与するのが好都合である。他の非経口投与及び経口投与の場合もこれに準ずる量を投与することができる。症状が特に重い場合には、その症状に応じて増量してもよい。
 なお前記した各組成物は、上記抗体や低分子化合物との配合により好ましくない相互作用を生じない限り他の活性成分を含有してもよい。
The dose of the above-mentioned medicament containing the above-mentioned antibody or low-molecular compound or a salt thereof varies depending on the administration subject, target disease, symptom, administration route, etc. Is usually about 0.01 to 20 mg / kg body weight, preferably about 0.1 to 10 mg / kg body weight, more preferably about 0.1 to 5 mg / kg body weight 1 to 5 times a day, with an antibody or low molecular weight compound as a single dose. It is convenient to administer by intravenous injection to a degree, preferably about 1 to 3 times a day. In the case of other parenteral administration and oral administration, an equivalent amount can be administered. If symptoms are particularly severe, the dose may be increased according to the symptoms.
Each of the above-described compositions may contain other active ingredients as long as an undesirable interaction is not caused by blending with the above antibody or low molecular weight compound.
 上述のENAHに対するアンチセンス核酸、リボザイム核酸、siRNA及びその前駆体を含有する医薬や、ENAHに対する抗体、ENAHの発現もしくは機能を抑制する低分子化合物等を含有する医薬組成物は、血管新生阻害剤として、癌の治療、予防、又は進行防止に用いることができる。すなわち、癌の増殖、転移、癌性腹水もしくは癌性胸水の蓄積を抑制するために用いることができる。癌として具体的には、固形癌、移行上皮癌、大腸癌、結腸直腸癌、結腸癌、肺癌(小細胞癌)、肺癌(非小細胞肺癌)、腎癌(腎細胞癌)、肝臓癌(肝細胞癌)、脳腫瘍、神経膠腫(グリオーマ)、膠芽腫、多型性神経膠芽腫、膵臓癌、頭頸部癌(扁平上皮癌)、多発性骨髄腫、前立腺癌、卵巣癌、消化管間質腫瘍(GIST)、胃癌、女性生殖器癌、子宮頸癌、乳癌、黒色腫(メラノーマ)、リンパ腫(非ホジキン)、リンパ腫(ホジキン)、リンパ腫(びまん性大細胞型)、白血病(急性骨髄性)、白血病(慢性リンパ性)、食道癌、甲状腺癌、副腎皮質癌、線維性組織球腫、髄膜腫、膀胱癌、ユーイング肉腫、カポジ肉腫、中皮腫又は隆起性皮膚線維肉腫等が挙げられる。
 また、上述のENAHに対するアンチセンス核酸、リボザイム核酸、siRNAおよびその前駆体を含有する核酸、ENAHに対する抗体又はENAHの発現もしくは機能を抑制する低分子化合物等を含有する医薬組成物は、血管新生阻害剤として、血管新生の異常を伴う疾患、具体的には、糖尿病網膜症、脈絡膜血管新生、黄斑変性症、心不全、骨髄形成異常、インフルエンザ、炎症、関節炎、C型肝炎、乾癬、浮腫、神経変性疾患、アミロイドーシス、特発性肺線維症、多発性硬化症、ウィルソン病、フォンヒッペル・リンダウ病、クローン病、全身性肥満細胞症、骨髄増殖症候群、骨髄異形成等、好ましくは、糖尿病網膜症、黄斑変性症、炎症、関節炎、乾癬、浮腫、特発性肺線維症、フォンヒッペル・リンダウ病、クローン病の治療、予防、または進行防止にも用いることができる。
A pharmaceutical composition containing the above-mentioned antisense nucleic acid against ENAH, ribozyme nucleic acid, siRNA and its precursor, an antibody against ENAH, a low molecular compound that suppresses the expression or function of ENAH, etc. Can be used to treat, prevent, or prevent progression of cancer. That is, it can be used to suppress cancer growth, metastasis, cancerous ascites or cancer pleural effusion. Specific cancers include solid cancer, transitional cell carcinoma, colon cancer, colorectal cancer, colon cancer, lung cancer (small cell cancer), lung cancer (non-small cell lung cancer), kidney cancer (renal cell carcinoma), liver cancer ( Hepatocellular carcinoma), brain tumor, glioma (glioma), glioblastoma, glioblastoma multiforme, pancreatic cancer, head and neck cancer (squamous cell carcinoma), multiple myeloma, prostate cancer, ovarian cancer, digestion Tubular stromal tumor (GIST), gastric cancer, female genital cancer, cervical cancer, breast cancer, melanoma (melanoma), lymphoma (non-Hodgkin), lymphoma (Hodgkin), lymphoma (diffuse large cell type), leukemia (acute bone marrow) ), Leukemia (chronic lymphatic), esophageal cancer, thyroid cancer, adrenocortical cancer, fibrous histiocytoma, meningioma, bladder cancer, Ewing sarcoma, Kaposi sarcoma, mesothelioma or elevated dermal fibrosarcoma, etc. Can be mentioned.
In addition, the above-described pharmaceutical composition containing an antisense nucleic acid against ENAH, a ribozyme nucleic acid, a nucleic acid containing siRNA and a precursor thereof, an antibody against ENAH, or a low molecular compound that suppresses the expression or function of ENAH is an angiogenesis inhibitor. As an agent, diseases associated with abnormal angiogenesis, specifically diabetic retinopathy, choroidal neovascularization, macular degeneration, heart failure, myelodysplasia, influenza, inflammation, arthritis, hepatitis C, psoriasis, edema, neurodegeneration Disease, amyloidosis, idiopathic pulmonary fibrosis, multiple sclerosis, Wilson disease, von Hippel-Lindau disease, Crohn's disease, systemic mastocytosis, myeloproliferative syndrome, myelodysplasia, etc., preferably diabetic retinopathy, macular To treat, prevent, or prevent progression of degeneration, inflammation, arthritis, psoriasis, edema, idiopathic pulmonary fibrosis, von Hippel-Lindau disease, Crohn's disease It can be used.
 上述のENAHに対するアンチセンス核酸、リボザイム核酸、siRNA及びその前駆体を含有する医薬や、ENAHに対する抗体、ENAHの発現もしくは機能を抑制する低分子化合物等を含有する医薬組成物を癌の治療又は予防に使用する場合には、単独で使用してもよいが、1種又は2種以上の抗癌作用を有する薬剤及び/又は放射線療法と併用してもよい。
 併用する薬剤としては、特に限定されるものではないが、例えば、Bevacizumab、Sunitinib、Sorafenib、Erlotinib、Erbitaxなどの血管新生阻害薬、ASA404をはじめとする血管破滅薬、5-FU(フルオロウラシル)、ゲムシタビン、シスプラチン、イリノテカン、カルボプラチン、パクリタキセル等の化学療法剤等が挙げられる。
Treatment or prevention of cancer with a pharmaceutical composition containing the above-mentioned antisense nucleic acid against ENAH, ribozyme nucleic acid, siRNA and its precursor, an antibody against ENAH, a low molecular compound that suppresses the expression or function of ENAH, etc. May be used alone, or may be used in combination with one or more drugs having anticancer activity and / or radiation therapy.
The drugs to be used in combination are not particularly limited. For example, angiogenesis inhibitors such as Bevacizumab, Sunitinib, Sorafenib, Erlotinib, Erbitax, blood vessel destruction drugs such as ASA404, 5-FU (fluorouracil), gemcitabine And chemotherapeutic agents such as cisplatin, irinotecan, carboplatin, and paclitaxel.
VI. 疾病に対する医薬候補化合物のスクリーニング
 上述の通り、ENAHの発現及び/又は機能を抑制すると、腫瘍血管内皮細胞の増殖及び/又は遊走、好ましくは腫瘍血管内皮細胞の増殖及び遊走が抑制され、血管新生阻害活性を有する。従って、ENAHの発現及び/又は機能を抑制する化合物又はその塩は、癌の予防及び/又は治療剤(抗腫瘍剤)として使用することができる。
 したがって、ENAHを産生する細胞は、ENAH(又はENAH遺伝子)の発現量及び/又は機能を指標とすることにより、血管新生阻害活性を有する物質のスクリーニングのためのツールとして用いることができる。
VI. Screening for Drug Candidate Compounds for Diseases As described above, suppression of ENAH expression and / or function suppresses proliferation and / or migration of tumor vascular endothelial cells, preferably proliferation and migration of tumor vascular endothelial cells. Has anti-neoplastic activity. Therefore, the compound or its salt that suppresses the expression and / or function of ENAH can be used as an agent for preventing and / or treating cancer (antitumor agent).
Therefore, cells that produce ENAH can be used as a tool for screening for substances having angiogenesis inhibitory activity by using the expression level and / or function of ENAH (or ENAH gene) as an index.
 ENAHの発現及び/又は機能を抑制する化合物又はその塩をスクリーニングする場合、該スクリーニング方法は、ENAHを産生する能力を有する細胞を、被検物質の存在下及び非存在下に培養し、両条件下におけるENAHの発現量及び/又は機能を比較することを含む。 When screening a compound or a salt thereof that suppresses the expression and / or function of ENAH, the screening method involves culturing cells capable of producing ENAH in the presence and absence of a test substance, Comparing the expression level and / or function of ENAH below.
 上記のスクリーニング方法において用いられるENAHを産生する能力を有する細胞としては、それらを生来発現しているヒトもしくは他の哺乳動物細胞又はそれを含む生体試料(例:血液、組織、臓器等)であれば特に制限はない。非ヒト動物由来の血液、組織、臓器等の場合は、それらを生体から単離して培養してもよいし、あるいは生体自体に被検物質を投与し、一定時間経過後にそれら生体試料を単離してもよい。
 また、ENAHを産生する能力を有する細胞としては、公知慣用の遺伝子工学的手法により作製された各種の形質転換体が例示される。宿主としては、例えば、H4IIE-C3細胞、HepG2細胞、HEK293細胞、COS7細胞、CHO細胞などの動物細胞が好ましく用いられる。
 具体的には、ENAHをコードするDNA(即ち、配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で表される塩基配列又は該塩基配列に対し相補性を有する塩基配列とストリンジェントな条件下でハイブリダイズし、且つ配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列からなるタンパク質と同質の機能を有するポリペプチドをコードする塩基配列を含むDNA)を、適当な発現ベクター中のプロモーターの下流に連結して宿主動物細胞に導入することにより調製することができる。
Cells having the ability to produce ENAH used in the above screening methods may be human or other mammalian cells that naturally express them or biological samples (eg, blood, tissues, organs, etc.) containing them. There are no particular restrictions. In the case of blood, tissues, organs, etc. derived from non-human animals, they may be isolated from the living body and cultured, or the test substance is administered to the living body itself, and these biological samples are isolated after a certain period of time. May be.
Examples of cells having the ability to produce ENAH include various transformants prepared by known and commonly used genetic engineering techniques. As the host, for example, animal cells such as H4IIE-C3 cells, HepG2 cells, HEK293 cells, COS7 cells, CHO cells are preferably used.
Specifically, DNA encoding ENAH (that is, the nucleotide sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, or complementary to the nucleotide sequence) A protein comprising an amino acid sequence that hybridizes with a stringent base sequence under stringent conditions and is represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51, or SEQ ID NO: 53 A DNA containing a base sequence encoding a polypeptide having the same function as that of a protein) can be prepared by ligating downstream of a promoter in an appropriate expression vector and introducing it into a host animal cell.
 ENAHをコードする遺伝子の調製方法について、以下に説明する。
 ENAHをコードする遺伝子は、通常の遺伝子工学的方法(例えば、Sambrook J., Frisch E. F., Maniatis T.著、モレキュラークローニング第2版(Molecular Cloning 2nd edition)、コールド スプリング ハーバー ラボラトリー発行(Cold Spring Harbor Laboratory press)等に記載されている方法)に準じて取得することができる。すなわち、ENAHをコードするDNAは、例えば、配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で表される塩基配列に基づいて、適当なオリゴヌクレオチドをプローブもしくはプライマーとして合成し、前記したENAHを産生する細胞・組織由来のcDNAもしくはcDNAライブラリーから、ハイブリダイゼーション法やPCR法を用いてクローニングすることができる。ハイブリダイゼーションは、例えば、モレキュラー・クローニング(Molecular Cloning)第2版(上記)に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、ハイブリダイゼーションは、該ライブラリーに添付された使用説明書に記載の方法に従って行なうことができる。
A method for preparing a gene encoding ENAH is described below.
The gene encoding ENAH can be obtained by conventional genetic engineering methods (eg Sambrook J., Frisch EF, Maniatis T., Molecular Cloning 2nd edition), Cold Spring Harbor Laboratory (Cold Spring Harbor Laboratory). press), etc.). That is, DNA encoding ENAH is obtained by, for example, using an appropriate oligonucleotide based on the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50, or SEQ ID NO: 52. It can be synthesized as a probe or primer and cloned from the above-described cDNA or cDNA library derived from cells / tissues that produce ENAH using a hybridization method or a PCR method. Hybridization can be performed, for example, according to the method described in Molecular Cloning 2nd edition (above). When a commercially available library is used, hybridization can be performed according to the method described in the instruction manual attached to the library.
 DNAの塩基配列は、公知のキット、例えば、MutanTM-super Express Km(宝酒造(株))、MutanTM-K(宝酒造(株))等を用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法等の自体公知の方法あるいはそれらに準じる方法に従って変換することができる。 The DNA base sequence can be determined using a known kit such as Mutan -super Express Km (Takara Shuzo), Mutan -K (Takara Shuzo), etc., using the ODA-LA PCR method, the Gapped duplex method, Conversion can be performed according to a method known per se such as the Kunkel method or a method analogous thereto.
 クローン化されたDNAは、目的によりそのまま、又は所望により制限酵素で消化するか、リンカーを付加した後に、使用することができる。該DNAはその5’末端側に翻訳開始コドンとしてのATGを有し、また3’末端側には翻訳終止コドンとしてのTAA、TGA又はTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することができる。
 次いで、得られたENAH遺伝子を用いて、通常の遺伝子工学的方法に準じてENAH(タンパク質)を製造・取得することができる。
 例えば、ENAH遺伝子が宿主細胞中で発現できるようなプラスミドを作製し、これを宿主細胞に導入して形質転換し、さらに形質転換された宿主細胞(形質転換体)を培養することで得られる培養物からENAHを取得すればよい。上記プラスミドとしては、例えば、宿主細胞中で複製可能な遺伝情報を含み、自立的に増殖できるものであって、宿主細胞からの単離・精製が容易であり、宿主細胞中で機能可能なプロモーターを有し、検出可能なマーカーをもつ発現ベクターに、ENAHをコードする遺伝子が導入されたものを好ましく挙げることができる。
 尚、発現ベクターとしては、各種のものが市販されている。
 例えば、大腸菌での発現に使用される発現ベクターは、lac、trp、tacなどのプロモーターを含む発現ベクターであって、これらはファルマシア社、タカラバイオ等から市販されている。当該発現ベクターにENAHをコードする遺伝子を導入するために用いられる制限酵素もタカラバイオ等から市販されている。さらなる高発現を導くことが必要な場合には、タンパク質:ENAHをコードする遺伝子の上流にリボゾーム結合領域を連結してもよい。用いられるリボゾーム結合領域としては、Guarente L.ら(Cell 20, p543)や谷口ら(Genetics of Industrial Microorganisms, p202, 講談社)による報告に記載されたものを挙げることができる。
The cloned DNA can be used as it is or after digestion with a restriction enzyme or addition of a linker, if desired. The DNA may have ATG as a translation initiation codon on the 5 ′ end side and TAA, TGA or TAG as a translation termination codon on the 3 ′ end side. These translation initiation codon and translation termination codon can be added using an appropriate synthetic DNA adapter.
Subsequently, ENAH (protein) can be produced and obtained in accordance with a normal genetic engineering method using the obtained ENAH gene.
For example, a culture obtained by preparing a plasmid that allows the ENAH gene to be expressed in a host cell, introducing it into the host cell, transforming it, and then culturing the transformed host cell (transformant) You can get ENAH from things. Examples of the plasmid include a promoter that contains genetic information that can be replicated in a host cell, can be propagated autonomously, can be easily isolated and purified from the host cell, and can function in the host cell. Preferred examples include those in which a gene encoding ENAH is introduced into an expression vector having a detectable marker.
Various types of expression vectors are commercially available.
For example, an expression vector used for expression in E. coli is an expression vector containing a promoter such as lac, trp, tac, etc., and these are commercially available from Pharmacia, Takara Bio and the like. Restriction enzymes used to introduce a gene encoding ENAH into the expression vector are also commercially available from Takara Bio and others. If it is necessary to induce further high expression, a ribosome binding region may be linked upstream of the gene encoding protein: ENAH. Examples of the ribosome binding region used include those described in reports by Guarente L. et al. (Cell 20, p543) and Taniguchi et al. (Genetics of Industrial Microorganisms, p202, Kodansha).
 また、動物細胞発現プラスミド(例:pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo);λファージなどのバクテリオファージ;レトロウイルス、ワクシニアウイルス、アデノウイルスなどの動物ウイルスベクターなどを用いることもできる。プロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)LTR、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーター、βアクチン遺伝子プロモーター、aP2遺伝子プロモーターなどが用いられる。なかでも、CMVプロモーター、SRαプロモーターなどが好ましい。
 発現ベクターとしては、上記の他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製起点(以下、SV40 oriと略称する場合がある)などを含有しているものを用いることができる。
In addition, animal cell expression plasmids (eg pA1-11, pXT1, pRc / CMV, pRc / RSV, pcDNAI / Neo); bacteriophages such as λ phage; animal virus vectors such as retrovirus, vaccinia virus, adenovirus, etc. It can also be used. The promoter may be any promoter as long as it is appropriate for the host used for gene expression. For example, SRα promoter, SV40 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) LTR, HSV-TK (herpes simplex virus thymidine kinase) promoter, β-actin A gene promoter, aP2 gene promoter, etc. are used. Of these, CMV promoter, SRα promoter and the like are preferable.
In addition to the above, an expression vector containing an enhancer, a splicing signal, a poly A addition signal, a selection marker, an SV40 replication origin (hereinafter sometimes abbreviated as SV40 ori), etc. is used as desired. Can do.
 選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素遺伝子(以下、dhfrと略称する場合がある、メソトレキセート(MTX)耐性)、アンピシリン耐性遺伝子(以下、amprと略称する場合がある)、ネオマイシン耐性遺伝子(以下、neorと略称する場合がある、G418耐性)等が挙げられる。特に、dhfr遺伝子欠損チャイニーズハムスター細胞を用い、dhfr遺伝子を選択マーカーとして使用する場合、チミジンを含まない培地によって目的遺伝子を選択することもできる。 Selectable markers include, for example, dihydrofolate reductase gene (hereinafter abbreviated as dhfr, methotrexate (MTX) resistance), ampicillin resistance gene (hereinafter abbreviated as amp r ), neomycin resistance gene ( hereinafter sometimes abbreviated as neo r, include G418 resistance) and the like. In particular, when dhfr gene-deficient Chinese hamster cells are used and the dhfr gene is used as a selection marker, the target gene can also be selected using a medium that does not contain thymidine.
 上記したENAHをコードするDNAを含む発現ベクターで宿主を形質転換することにより、ENAH発現細胞を製造することができる。
 宿主細胞としては、原核生物もしくは真核生物である微生物細胞、昆虫細胞又は哺乳動物細胞等を挙げることができる。哺乳動物細胞としては、例えば、HepG2細胞、HEK293細胞、HeLa細胞、ヒトFL細胞、サルCOS-7細胞、サルVero細胞、チャイニーズハムスター卵巣細胞(以下、CHO細胞と略記)、dhfr遺伝子欠損CHO細胞(以下、CHO(dhfr-)細胞と略記)、マウスL細胞,マウスAtT-20細胞、マウスミエローマ細胞,ラットH4IIE-C3細胞、ラットGH3細胞などが用いられ得る。例えば、ENAHの大量調製が容易になるという観点では、大腸菌等を好ましく挙げることができる。
 前記のようにして得られたプラスミドは、通常の遺伝子工学的方法により前記宿主細胞に導入することができる。形質転換体の培養は、微生物培養、昆虫細胞もしくは哺乳動物細胞の培養に使用される通常の方法によって行うことができる。例えば大腸菌の場合、適当な炭素源、窒素源及びビタミン等の微量栄養物を適宜含む培地中で培養を行う。培養方法としては、固体培養、液体培養のいずれの方法でもよく、好ましくは、通気撹拌培養法等の液体培養を挙げることができる。
An ENAH-expressing cell can be produced by transforming a host with an expression vector containing the above-described DNA encoding ENAH.
Examples of host cells include prokaryotic or eukaryotic microbial cells, insect cells, and mammalian cells. Examples of mammalian cells include HepG2 cells, HEK293 cells, HeLa cells, human FL cells, monkey COS-7 cells, monkey Vero cells, Chinese hamster ovary cells (hereinafter abbreviated as CHO cells), dhfr gene-deficient CHO cells ( Hereinafter, abbreviated as CHO (dhfr ) cells), mouse L cells, mouse AtT-20 cells, mouse myeloma cells, rat H4IIE-C3 cells, rat GH3 cells, and the like. For example, from the viewpoint of facilitating mass preparation of ENAH, E. coli and the like can be preferably mentioned.
The plasmid obtained as described above can be introduced into the host cell by an ordinary genetic engineering method. The transformant can be cultured by a conventional method used for culturing microorganisms, insect cells or mammalian cells. For example, in the case of Escherichia coli, culturing is performed in a medium appropriately containing a suitable carbon source, nitrogen source and trace nutrients such as vitamins. The culture method may be any of solid culture and liquid culture, and preferred examples include liquid culture such as aeration and agitation culture.
 形質転換は、リン酸カルシウム共沈殿法、PEG法、エレクトロポレーション法、マイクロインジェクション法、リポフェクション法などにより行うことができる。例えば、細胞工学別冊8 新細胞工学実験プロトコール,263-267 (1995)(秀潤社発行)、ヴィロロジー(Virology),52巻,456 (1973)に記載の方法を用いることができる。 Transformation can be performed by calcium phosphate coprecipitation method, PEG method, electroporation method, microinjection method, lipofection method and the like. For example, the methods described in Cell Engineering Supplement 8, New Cell Engineering Experiment Protocol, 263-267 (1995) (published by Shujunsha), Virology, 52, 456 (1973) can be used.
 上記のようにして得られる形質転換細胞や生来ENAHを産生する能力を有する哺乳動物細胞又は該細胞を含む組織・臓器は、例えば、約5~20%の胎仔牛血清を含む最小必須培地(MEM)〔Science,122巻,501(1952)〕,ダルベッコ改変イーグル培地(DMEM)〔Virology,8巻,396(1959)〕,RPMI 1640培地〔The Journal of the American Medical Association,199巻,519(1967)〕,199培地〔Proceeding of the Society for the Biological Medicine,73巻,1(1950)〕などの培地中で培養することができる。培地のpHは約6~8であるのが好ましい。培養は通常約30~40℃で行ない、必要に応じて通気や撹拌を加える。 The transformed cells obtained as described above, mammalian cells having the ability to naturally produce ENAH, or tissues / organs containing the cells are, for example, a minimum essential medium (MEM) containing about 5 to 20% fetal calf serum. ) [Science, 122, 501 (1952)], Dulbecco's modified Eagle medium (DMEM) [Virology, 8, 396 (1959)], RPMI 1640 medium [The Journal of the American Medical Association, 199, 519 (1967) )], 199 medium (Proceeding of the Society for biological the Biological Medicine, Vol. 73, 1 (1950)). The pH of the medium is preferably about 6-8. Cultivation is usually carried out at about 30-40 ° C, with aeration and agitation as necessary.
 ENAHの取得は、一般のタンパク質の単離・精製に通常使用される方法を組み合わせて実施すればよい。例えば、前記の培養により得られた形質転換体を遠心分離等で集め、該形質転換体を破砕又は溶解せしめ、必要であればタンパク質の可溶化を行い、イオン交換、疎水、ゲルろ過等の各種クロマトグラフィーを用いた工程を単独で、若しくは組み合わせることにより精製すればよい。精製されたタンパク質の高次構造を復元する操作をさらに行ってもよい。また、例えば、前記の培養により得られた形質転換体を遠心分離などで除去し、培養上清からENAHを前記と同様にして精製してもよい。 ENAH can be obtained by combining methods commonly used for isolation and purification of general proteins. For example, the transformants obtained by the above culture are collected by centrifugation or the like, and the transformants are crushed or dissolved, and if necessary, proteins are solubilized, and various types such as ion exchange, hydrophobicity, gel filtration, etc. What is necessary is just to refine | purify the process using a chromatography individually or in combination. An operation of restoring the higher order structure of the purified protein may be further performed. Further, for example, the transformant obtained by the above culture may be removed by centrifugation or the like, and ENAH may be purified from the culture supernatant in the same manner as described above.
 本発明のスクリーニングを実施するに当たり、被検物質としては、例えばタンパク質、ペプチド、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが挙げられ、これらの物質は新規なものであってもよいし、公知のものであってもよい。
 また、ENAHもしくはENAH遺伝子の発現量を低下させる物質、又はENAHの機能を低下させる物質を選択する際に、被検物質を接触させない対照細胞を比較対照として用いることもできる。ここで「被検物質を接触させない」とは、被検物質の代わりに被検物質と同量の溶媒(ブランク)を添加する場合や、ENAHもしくはENAH遺伝子の発現量又はENAHの機能に影響を与えないネガティブコントロール物質を添加する場合も含まれる。
In carrying out the screening of the present invention, examples of the test substance include proteins, peptides, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, and the like. These substances may be novel or may be known ones.
In addition, when selecting a substance that reduces the expression level of ENAH or the ENAH gene, or a substance that decreases the function of ENAH, a control cell that does not contact the test substance can also be used as a comparative control. Here, “Do not contact the test substance” means that the same amount of solvent (blank) as the test substance is added instead of the test substance, or that the expression level of ENAH or ENAH gene or ENAH function is affected. The case where a negative control substance not given is added is also included.
 被検物質の上記細胞との接触は、例えば、上記の培地や各種緩衝液(例えば、HEPES緩衝液、リン酸緩衝液、リン酸緩衝生理食塩水、トリス塩酸緩衝液、ホウ酸緩衝液、酢酸緩衝液など)の中に被検物質を添加して、細胞を一定時間インキュベートすることにより実施することができる。添加される被検物質の濃度は化合物の種類(溶解度、毒性等)により異なるが、例えば、約0.1nM~約100μMの範囲で適宜選択される。インキュベート時間としては、例えば、約10分~約24時間が挙げられる。 The contact of the test substance with the cells may be performed by, for example, the above-mentioned medium or various buffers (for example, HEPES buffer, phosphate buffer, phosphate buffered saline, Tris-HCl buffer, borate buffer, acetic acid). The test substance can be added to a buffer solution or the like, and the cells can be incubated for a certain time. The concentration of the test substance to be added varies depending on the type of compound (solubility, toxicity, etc.), but is appropriately selected within the range of about 0.1 nM to about 100 μM, for example. Examples of the incubation time include about 10 minutes to about 24 hours.
 ENAHを産生する細胞が、非ヒト哺乳動物個体の形態で提供される場合、該動物個体の状態は特に制限されないが、例えば、がん細胞を移植したモデルマウス〔例えば、A375SM(ヒト高転移性のメラノーマ細胞)をKSN/Slc nudeマウスの右背部皮下に移植して作製したマウス〕等のモデル動物であってもよい。使用される動物の飼育条件に特に制限はないが、SPFグレード以上の環境下で飼育されたものであることが好ましい。被検物質の該細胞との接触は、該動物個体への被検物質の投与によって行われる。投与経路は特に制限されないが、例えば、静脈内投与、動脈内投与、皮下投与、皮内投与、腹腔内投与、経口投与、気道内投与、直腸投与等が挙げられる。投与量も特に制限はないが、例えば、1回量として約0.5~20 mg/kgを、1日1~5回、好ましくは1日1~3回、1~14日間投与することができる。
 あるいは、上記のスクリーニング方法は、ENAHを産生する能力を有する細胞に代えて、該細胞の抽出液、あるいは該細胞から単離精製したENAHに、被検物質を接触させることにより行うこともできる。
When cells that produce ENAH are provided in the form of a non-human mammal individual, the state of the animal individual is not particularly limited. For example, model mice transplanted with cancer cells [for example, A375SM (human highly metastatic A mouse produced by transplanting the melanoma cell) into the right dorsal skin of a KSN / Slc nude mouse]. There are no particular restrictions on the breeding conditions of the animals used, but it is preferable that the animals are raised in an environment of SPF grade or higher. Contact of the test substance with the cells is carried out by administering the test substance to the animal individual. The administration route is not particularly limited, and examples thereof include intravenous administration, intraarterial administration, subcutaneous administration, intradermal administration, intraperitoneal administration, oral administration, intratracheal administration, and rectal administration. The dose is not particularly limited. For example, a dose of about 0.5 to 20 mg / kg can be administered 1 to 5 times a day, preferably 1 to 3 times a day for 1 to 14 days.
Alternatively, the screening method described above can be carried out by contacting a test substance with an extract of the cells or ENAH isolated and purified from the cells, instead of the cells having the ability to produce ENAH.
(ENAH遺伝子又はENAHの発現量の測定)
 本発明は、ENAHを産生する能力を有する細胞における該タンパク質(遺伝子)の発現を、被検物質の存在下と非存在下で比較することを特徴とする、血管新生阻害活性を有する物質のスクリーニング方法を提供する。本方法において用いられる細胞、被検物質の種類、被検物質と細胞との接触の態様などは、上記と同様である。
(Measurement of expression level of ENAH gene or ENAH)
The present invention relates to a screening for a substance having an angiogenesis inhibitory activity, characterized by comparing the expression of the protein (gene) in cells having the ability to produce ENAH in the presence and absence of a test substance. Provide a method. The cells used in this method, the type of test substance, the mode of contact between the test substance and cells, etc. are the same as described above.
 ENAHの発現量は、前記したENAHをコードするDNAとストリンジェントな条件下でハイブリダイズし得る核酸、即ち、配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で表される塩基配列もしくはそれと相補的な塩基配列とストリンジェントな条件下でハイブリダイズし得る核酸(DNA)(以下、「本発明の検出用核酸」という場合がある)を用いて、ENAH遺伝子のmRNAを検出することにより、RNAレベルで測定することができる。あるいは、該発現量は、前記したENAHに対する抗体(以下、「本発明の検出用抗体」とい場合がある)を用いて、これらのタンパク質を検出することにより、タンパク質レベルで測定することもできる。
 従って、より具体的には、本発明は、
(a)ENAHを産生する能力を有する細胞を被検物質の存在下及び非存在下に培養し、両条件下における該タンパク質をコードするmRNAの量を、本発明の検出用核酸を用いて測定、比較することを特徴とする、血管新生阻害活性を有する物質のスクリーニング方法、及び
(b)ENAHを産生する能力を有する細胞を被検物質の存在下及び非存在下に培養し、両条件下における該タンパク質の量を、本発明の検出用抗体を用いて測定、比較することを特徴とする、血管新生阻害活性を有する物質のスクリーニング方法を提供する。
The expression level of ENAH is a nucleic acid that can hybridize with the above-described DNA encoding ENAH under stringent conditions, that is, SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50, or SEQ ID NO: : A nucleic acid (DNA) that can hybridize with the base sequence represented by 52 or a base sequence complementary thereto under stringent conditions (hereinafter sometimes referred to as “the nucleic acid for detection of the present invention”), By detecting the mRNA of the ENAH gene, it can be measured at the RNA level. Alternatively, the expression level can also be measured at the protein level by detecting these proteins using the above-mentioned antibody against ENAH (hereinafter sometimes referred to as “the detection antibody of the present invention”).
Therefore, more specifically, the present invention
(A) Cells having the ability to produce ENAH are cultured in the presence and absence of a test substance, and the amount of mRNA encoding the protein under both conditions is measured using the nucleic acid for detection of the present invention. A method for screening a substance having an angiogenesis inhibitory activity, characterized by comparing, and (b) culturing cells capable of producing ENAH in the presence and absence of a test substance, under both conditions A method for screening a substance having an angiogenesis inhibitory activity is provided, which comprises measuring and comparing the amount of the protein in (1) using the detection antibody of the present invention.
 すなわち、ENAHの発現量を変化させる物質のスクリーニングは、以下のようにして行うことができる。
(i)正常あるいは疾患(例えば、大腸がん、肺がんなどの移植モデルマウス: KSN/Slc nudeマウスの右背部皮下にがん細胞を移植したモデルマウスなど)モデル非ヒト哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して被検物質を投与し、一定時間経過した後(30分後~3日後、好ましくは1時間後~2日後、より好ましくは1時間後~24時間後)に、血液、特定の臓器(例えば、脳等)、あるいは臓器から単離した組織又は細胞を得る。
 ENAHのmRNAは、通常の方法により細胞等からmRNAを抽出して定量することができ、あるいは自体公知のノーザンブロット解析により定量することもできる。一方、ENAHのタンパク質量は、ウェスタンブロット解析や以下に詳述する各種イムノアッセイ法を用いて定量することができる。
(ii)ENAH遺伝子を発現する細胞(例えば、ENAHを導入した形質転換体)を上記の方法に従って作製し、常法に従って培養する際に被検物質を培地もしくは緩衝液中に添加し、一定時間インキュベート後(1日後~7日後、好ましくは1日後~3日後、より好ましくは2日後~3日後)、該細胞に含まれるENAHあるいはそれをコードするmRNAを、上記(i)と同様にして定量、解析することができる。
That is, screening for a substance that changes the expression level of ENAH can be performed as follows.
(I) Normal or disease (for example, transplanted model mice such as colon cancer and lung cancer: model mice transplanted with cancer cells subcutaneously on the right back of KSN / Slc nude mice) model non-human mammals (for example, mice, Rats, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.) after administration of the test substance, after a certain period of time (30 minutes to 3 days, preferably 1 hour to 2 days later, more Preferably, 1 hour to 24 hours later, blood, a specific organ (eg, brain, etc.), or a tissue or cell isolated from the organ is obtained.
ENAH mRNA can be quantified by extracting mRNA from cells and the like by a conventional method, or can be quantified by Northern blot analysis known per se. On the other hand, the amount of ENAH protein can be quantified using Western blot analysis or various immunoassay methods described in detail below.
(Ii) A cell that expresses the ENAH gene (for example, a transformant into which ENAH has been introduced) is prepared according to the method described above, and a test substance is added to a medium or a buffer when cultivating according to a conventional method for a certain period of time. After incubation (1 day to 7 days later, preferably 1 day to 3 days later, more preferably 2 days to 3 days later), ENAH or mRNA encoding the same contained in the cells is quantified in the same manner as in (i) above. Can be analyzed.
 ENAH遺伝子(mRNA)の発現レベルの検出及び定量は、前記細胞から調製したRNA又はそれから転写された相補的なポリヌクレオチドを用いて、ノーザンブロット法、RT-PCR法など公知の方法で実施できる。具体的には、ENAH遺伝子の塩基配列において連続する少なくとも15塩基を有するポリヌクレオチド及び/又はその相補的なポリヌクレオチドをプライマー又はプローブとして用いることによって、RNA中のENAH遺伝子の発現の有無やその発現レベルを検出、測定することができる。そのようなプローブもしくはプライマーは、ENAH遺伝子の塩基配列をもとに、例えばprimer 3(HYPERLINK http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi)あるいはベクターNTI(Infomax社製)を利用して設計することができる。 The detection and quantification of the expression level of the ENAH gene (mRNA) can be performed by a known method such as Northern blotting or RT-PCR using RNA prepared from the cells or a complementary polynucleotide transcribed therefrom. Specifically, the presence or absence of expression of the ENAH gene in RNA and its expression by using a polynucleotide having at least 15 bases continuous in the base sequence of the ENAH gene and / or its complementary polynucleotide as a primer or probe The level can be detected and measured. Such a probe or primer is based on the base sequence of the ENAH gene, for example, primer 3 (HYPERLINK http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi http: // www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi) or vector NTI (manufactured by Infomax).
 ノーザンブロット法を利用する場合、前記プライマーもしくはプローブを放射性同位元素(32P、33Pなど:RI)や蛍光物質などで標識し、それを、常法に従ってナイロンメンブレン等にトランスファーした細胞由来のRNAとハイブリダイズさせた後、形成された前記プライマーもしくはプローブ(DNA又はRNA)とRNAとの二重鎖を、前記プライマーもしくはプローブの標識物(RI若しくは蛍光物質)に由来するシグナルとして放射線検出器(BAS-1800II、富士フィルム社製)又は蛍光検出器で検出、測定する方法を例示することができる。また、AlkPhos Direct Labelling and Detection System (Amersham Pharmacia Biotech社製)を用いて、該プロトコールに従って前記プローブを標識し、細胞由来のRNAとハイブリダイズさせた後、前記プローブの標識物に由来するシグナルをマルチバイオイメージャーSTORM860(Amersham Pharmacia Biotech社製)で検出、測定する方法を使用することもできる。
 RT-PCR法を利用する場合は、細胞由来のRNAから常法に従ってcDNAを調製して、これを鋳型として標的のENAH遺伝子の領域が増幅できるように、ENAH遺伝子の配列に基づき調製した一対のプライマー(上記cDNA(-鎖)に結合する正鎖、+鎖に結合する逆鎖)をこれとハイブリダイズさせて、常法に従ってPCR法を行い、得られた増幅二本鎖DNAを検出する方法を例示することができる。なお、増幅された二本鎖DNAの検出は、上記PCRを予めRIや蛍光物質で標識しておいたプライマーを用いて行うことによって産生される標識二本鎖DNAを検出する方法、産生された二本鎖DNAを常法に従ってナイロンメンブレン等にトランスファーさせて、標識した前記プライマーをプローブとして使用してこれとハイブリダイズさせて検出する方法などを用いることができる。なお、生成された標識二本鎖DNA産物はアジレント2100バイオアナライザ(横河アナリティカルシステムズ社製)などで測定することができる。また、SYBR Green RT-PCR Reagents (Applied Biosystems 社製)で該プロトコールに従ってRT-PCR反応液を調製し、ABI PRISM 7900 Sequence Detection System (Applied Biosystems 社製)で反応させて、該反応物を検出することもできる。
 被検物質を添加した細胞におけるENAH遺伝子の発現が被検物質を添加しない対照細胞での発現量と比較して2/3倍以下、好ましくは1/2倍以下、更に好ましくは1/3倍以下であれば、該被検物質はENAH遺伝子の発現抑制物質として選択することができる。
 また、ENAHの発現量を変化させる物質のスクリーニングは、ENAH遺伝子の転写調節領域を用いたレポーター遺伝子アッセイで行うことも可能である。ここで、「転写調節領域」とは、通常、当該染色体遺伝子の上流数kbから数十kbの範囲を指し、例えば、(i)5’-レース法(5'-RACE法)(例えば、5’-full Race Core Kit(タカラバイオ社製)等を用いて実施されうる)、オリゴキャップ法、S1プライマーマッピング等の通常の方法により、5’末端を決定するステップ;(ii)Genome Walker Kit(クローンテック社製)等を用いて5’-上流領域を取得し、得られた上流領域について、プロモーター活性を測定するステップ;を含む手法等により同定することが出来る。具体的には、L. Urbanelliら著、Biochimica et Biophysica Acta 1759 (2006) p99-107において、p105、Fig.6に開示された5’-上流領域の配列に基づいて、「転写調節領域」を特定することができる。
When using Northern blotting, the primer or probe is labeled with a radioisotope (32P, 33P, etc .: RI) or a fluorescent substance and hybridized with cell-derived RNA transferred to a nylon membrane or the like according to a conventional method. After soy, the formed duplex of the primer or probe (DNA or RNA) and RNA is used as a signal from the primer or probe label (RI or fluorescent material) as a radiation detector (BAS- 1800II (manufactured by Fuji Film) or a method of detecting and measuring with a fluorescence detector can be exemplified. In addition, using the AlkPhos Direct Labeling and Detection System (manufactured by Amersham Pharmacia Biotech), the probe is labeled according to the protocol, hybridized with cell-derived RNA, and then the signal derived from the labeled product of the probe is multi-bypassed. A method of detecting and measuring with an imager STORM860 (manufactured by Amersham Pharmacia Biotech) can also be used.
When using the RT-PCR method, a cDNA is prepared from cell-derived RNA according to a conventional method, and using this as a template, a target ENAH gene region can be amplified. A method of detecting the amplified double-stranded DNA obtained by hybridizing a primer (a normal strand that binds to the above cDNA (-strand) and a reverse strand that binds to a + strand) and performing PCR according to a conventional method Can be illustrated. The detection of the amplified double-stranded DNA was performed by a method for detecting the labeled double-stranded DNA produced by performing the PCR using a primer previously labeled with RI or a fluorescent substance. For example, a method can be used in which double-stranded DNA is transferred to a nylon membrane or the like according to a conventional method, and the labeled primer is used as a probe to hybridize with this to detect it. The produced labeled double-stranded DNA product can be measured with an Agilent 2100 Bioanalyzer (manufactured by Yokogawa Analytical Systems). Also, prepare an RT-PCR reaction solution according to the protocol using SYBR Green RT-PCR Reagents (Applied Biosystems) and react with ABI PRISM 7900 Sequence Detection System (Applied Biosystems) to detect the reaction product. You can also
The expression level of ENAH gene in the cells to which the test substance is added is 2/3 times or less, preferably 1/2 times or less, more preferably 1/3 times the expression level in the control cells to which no test substance is added. The test substance can be selected as an ENAH gene expression inhibitor if it is below.
Screening for substances that change the expression level of ENAH can also be performed by a reporter gene assay using the transcriptional regulatory region of the ENAH gene. Here, the “transcriptional regulatory region” usually refers to a range from several kb to several tens of kb upstream of the chromosomal gene. For example, (i) 5′-race method (5′-RACE method) (for example, 5 (ii) Genome Walker Kit (which can be carried out using conventional methods such as oligocap method and S1 primer mapping) (ii) Genome Walker Kit ( The 5′-upstream region can be obtained using Clontech, etc., and the obtained upstream region can be identified by a technique including a step of measuring promoter activity. Specifically, in L. Urbanelli et al., Biochimica et Biophysica Acta 1759 (2006) p99-107, p105, based on the sequence of the 5′-upstream region disclosed in FIG. Can be identified.
 ENAH遺伝子の転写調節領域の下流に機能可能な形でレポータータンパク質をコードする核酸(以下、「レポーター遺伝子」という)を連結して、レポータータンパク質発現ベクターを構築する。該ベクターは、当業者に公知の方法で調製すればよい。すなわち、「Molecular Cloning:A Laboratory Manual 2nd edition」(1989),Cold Spring Harbor Laboratory Press、「Current Protocols In Molecular Biology」(1987),John Wiley & Sons,Inc.等に記載される通常の遺伝子工学的手法に従って切り出されたENAH遺伝子の転写調節領域を、レポーター遺伝子を含むプラスミド上に組み込むことができる。
 レポータータンパク質としては、β-グルクロニダーゼ(GUS)、ルシフェラーゼ、クロラムフェニコールトランスアセチラーゼ(CAT)、β-ガラクトシダーゼ(GAS)及びグリーン蛍光タンパク質(GFP)等が挙げられる。
 調製したENAH遺伝子の転写調節領域を機能可能な形で連結されてなるレポーター遺伝子を、通常の遺伝子工学的手法を用いて、当該レポーター遺伝子を導入する細胞において使用可能なベクターに挿入し、プラスミドを作製し、適当な宿主細胞へ導入することができる。ベクターに搭載される選択マーカー遺伝子に応じた選抜条件の培地で培養することにより、安定な形質転換細胞を得ることができる。あるいは、ENAH遺伝子の転写調節領域を機能可能な形で連結されてなるレポーター遺伝子は、宿主細胞内に一過的に発現させてもよい。
 また、レポーター遺伝子の発現量を測定する方法としては、個々のレポーター遺伝子に応じた方法を利用すればよい。例えば、レポーター遺伝子としてルシフェラーゼ遺伝子を用いる場合には、前記形質転換細胞を数日間培養後、当該細胞の抽出物を得、次いで当該抽出物をルシフェリン及びATPと反応させて化学発光させ、その発光強度を測定することによりプロモーター活性を検出することができる。この際、ピッカジーンデュアルキット(登録商標;東洋インキ製)等の市販のルシフェラーゼ反応検出キットを用いることができる。
A reporter protein expression vector is constructed by linking a nucleic acid encoding a reporter protein (hereinafter referred to as “reporter gene”) in a functional manner downstream of the transcriptional regulatory region of the ENAH gene. The vector may be prepared by a method known to those skilled in the art. That is, the conventional genetic engineering described in `` Molecular Cloning: A Laboratory Manual 2nd edition '' (1989), Cold Spring Harbor Laboratory Press, `` Current Protocols In Molecular Biology '' (1987), John Wiley & Sons, Inc. The transcriptional regulatory region of ENAH gene excised according to the technique can be incorporated on a plasmid containing a reporter gene.
Reporter proteins include β-glucuronidase (GUS), luciferase, chloramphenicol transacetylase (CAT), β-galactosidase (GAS), green fluorescent protein (GFP) and the like.
Using a normal genetic engineering technique, insert a reporter gene that is operably linked to the prepared transcriptional regulatory region of the ENAH gene into a vector that can be used in the cell into which the reporter gene is to be introduced. And can be introduced into a suitable host cell. Stable transformed cells can be obtained by culturing in a medium with selection conditions according to the selection marker gene mounted on the vector. Alternatively, a reporter gene in which the transcriptional regulatory region of the ENAH gene is operably linked may be transiently expressed in the host cell.
In addition, as a method for measuring the expression level of the reporter gene, a method corresponding to each reporter gene may be used. For example, when a luciferase gene is used as a reporter gene, the transformed cell is cultured for several days, an extract of the cell is obtained, and then the extract is reacted with luciferin and ATP to cause chemiluminescence, and the emission intensity Promoter activity can be detected by measuring. In this case, a commercially available luciferase reaction detection kit such as Picker Gene Dual Kit (registered trademark; manufactured by Toyo Ink) can be used.
 ENAHのタンパク質量の測定方法としては、具体的には、例えば、
(i)本発明の検出用抗体と、試料液及び標識化されたENAHとを競合的に反応させ、該抗体に結合した標識化されたタンパク質を検出することにより試料液中のENAHを定量する方法や、
(ii)試料液と、担体上に不溶化した本発明の検出用抗体及び標識化された別の本発明の検出用抗体とを、同時あるいは連続的に反応させた後、不溶化担体上の標識剤の量(活性)を測定することにより、試料液中のENAHを定量する方法等が挙げられる。
As a method for measuring ENAH protein amount, specifically, for example,
(I) Quantifying ENAH in a sample solution by competitively reacting the detection antibody of the present invention with the sample solution and labeled ENAH, and detecting the labeled protein bound to the antibody How,
(Ii) The sample solution is reacted with the detection antibody of the present invention insolubilized on the carrier and another labeled detection antibody of the present invention simultaneously or continuously, and then the labeling agent on the insolubilized carrier. A method of quantifying ENAH in a sample solution by measuring the amount (activity) of s.
 ENAHのタンパク質発現レベルの検出及び定量は、ENAHを認識する抗体を用いたウェスタンブロット法等の公知方法に従って定量できる。ウェスタンブロット法は、一次抗体としてENAHを認識する抗体を用いた後、二次抗体として125Iなどの放射性同位元素、蛍光物質、ホースラディッシュペルオキシダーゼ(HRP)等の酵素等で標識した一次抗体に結合する抗体を用いて標識し、これら標識物質由来のシグナルを放射線測定器(BAI-1800II:富士フィルム社製など)、蛍光検出器などで測定することによって実施できる。また、一次抗体としてENAHを認識する抗体を用いた後、ECL Plus Western Blotting Detection System(アマシャム ファルマシアバイオテク社製)を利用して該プロトコールに従って検出し、マルチバイオメージャーSTORM860(アマシャム ファルマシアバイオテク社製)で測定することもできる。 ENAH protein expression level can be detected and quantified according to a known method such as Western blotting using an antibody recognizing ENAH. Western blotting uses an antibody that recognizes ENAH as the primary antibody, and then binds to the primary antibody labeled with a radioisotope such as 125 I, a fluorescent substance, or an enzyme such as horseradish peroxidase (HRP) as the secondary antibody. This is carried out by measuring the signal derived from these labeling substances using a radiation measuring instrument (BAI-1800II: manufactured by Fuji Film Co., Ltd.), a fluorescence detector or the like. In addition, after using an antibody recognizing ENAH as a primary antibody, detection is performed according to the protocol using ECL Plus Western Blotting Detection System (Amersham Pharmacia Biotech) It can also be measured.
 上記の抗体は、その形態に特に制限はなく、ENAHを免疫抗原とするポリクローナル抗体であっても、またそのモノクローナル抗体であってもよく、さらにはENAHを構成するアミノ酸配列のうち少なくとも連続する、通常8アミノ酸、好ましくは15アミノ酸、より好ましくは20アミノ酸からなるポリペプチドに対して抗原結合性を有する抗体を用いることもできる。
 これらの抗体の製造方法は、すでに周知であり、本発明の抗体もこれらの常法に従って製造することができる(Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section 11.12~11.13)。
The above-described antibody is not particularly limited in its form, and may be a polyclonal antibody having ENAH as an immunizing antigen, or may be a monoclonal antibody thereof. Usually, an antibody having antigen-binding ability against a polypeptide consisting of 8 amino acids, preferably 15 amino acids, more preferably 20 amino acids can also be used.
Methods for producing these antibodies are already well known, and the antibodies of the present invention can also be produced according to these conventional methods (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley and Sons. Section 11.12-11.13).
 上記(ii)の定量法においては、2種の抗体はENAHの異なる部分を認識するものであることが望ましい。例えば、一方の抗体がENAHのN端部を認識する抗体であれば、他方の抗体として該タンパク質のC端部と反応するものを用いることができる。
 標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、〔125I〕、〔131I〕、〔3H〕、〔14C〕などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチン-(ストレプト)アビジン系を用いることもできる。
In the quantification method (ii) above, it is desirable that the two antibodies recognize different portions of ENAH. For example, if one antibody recognizes the N-terminal part of ENAH, one that reacts with the C-terminal part of the protein can be used as the other antibody.
As a labeling agent used in a measurement method using a labeling substance, for example, a radioisotope, an enzyme, a fluorescent substance, a luminescent substance, or the like is used. As the radioisotope, for example, [ 125 I], [ 131 I], [ 3 H], [ 14 C] and the like are used. The enzyme is preferably stable and has a large specific activity. For example, β-galactosidase, β-glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase and the like are used. As the fluorescent substance, for example, fluorescamine, fluorescein isothiocyanate and the like are used. As the luminescent substance, for example, luminol, luminol derivatives, luciferin, lucigenin and the like are used. Furthermore, a biotin- (strept) avidin system can be used for binding of an antibody or antigen to a labeling agent.
 本発明の検出用抗体を用いるENAHの定量法は、特に制限されるべきものではなく、試料液中の抗原量に対応した、抗体、抗原もしくは抗体-抗原複合体の量を化学的又は物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法及びサンドイッチ法が好適に用いられる。感度、特異性の点で、例えば、後述するサンドイッチ法を用いるのが好ましい。 The ENAH quantification method using the detection antibody of the present invention is not particularly limited, and the amount of antibody, antigen or antibody-antigen complex corresponding to the amount of antigen in the sample solution is chemically or physically determined. Any measurement method may be used as long as it is a measurement method that is detected by means and calculated from a standard curve prepared using a standard solution containing a known amount of antigen. For example, nephrometry, competition method, immunometric method and sandwich method are preferably used. In view of sensitivity and specificity, for example, the sandwich method described later is preferably used.
 抗原あるいは抗体の不溶化にあたっては、物理吸着を用いてもよく、また通常タンパク質あるいは酵素等を不溶化・固定化するのに用いられる化学結合を用いてもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等があげられる。 In the insolubilization of the antigen or antibody, physical adsorption may be used, or a chemical bond usually used for insolubilizing and immobilizing proteins or enzymes may be used. Examples of the carrier include insoluble polysaccharides such as agarose, dextran, and cellulose, synthetic resins such as polystyrene, polyacrylamide, and silicon, or glass.
 サンドイッチ法においては不溶化した本発明の検出用抗体に試料液を反応させ(1次反応)、さらに標識化した別の本発明の検出用抗体を反応させた(2次反応)後、不溶化担体上の標識剤の量もしくは活性を測定することにより、試料液中のENAHを定量することができる。1次反応と2次反応は逆の順序で行っても、また、同時に行ってもよいし、時間をずらして行ってもよい。標識化剤及び不溶化の方法は前記のそれらに準じることができる。また、サンドイッチ法による免疫測定法において、固相化抗体あるいは標識化抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。 In the sandwich method, the sample solution is reacted with the insolubilized detection antibody of the present invention (primary reaction), and further labeled with another detection antibody of the present invention (secondary reaction), and then on the insolubilized carrier. By measuring the amount or activity of the labeling agent, ENAH in the sample solution can be quantified. The primary reaction and the secondary reaction may be performed in the reverse order, may be performed simultaneously, or may be performed at different times. The labeling agent and the insolubilizing method can be the same as those described above. Further, in the immunoassay by the sandwich method, the antibody used for the immobilized antibody or the labeled antibody is not necessarily one type, and a mixture of two or more types of antibodies is used for the purpose of improving measurement sensitivity. May be.
 本発明の検出用抗体は、サンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどにも用いることができる。
 競合法では、試料液中のENAHと標識したENAHとを抗体に対して競合的に反応させた後、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B,Fいずれかの標識量を測定することにより、試料液中のENAHを定量する。本反応法には、抗体として可溶性抗体を用い、ポリエチレングリコールや前記抗体(1次抗体)に対する2次抗体などを用いてB/F分離を行う液相法、及び、1次抗体として固相化抗体を用いるか(直接法)、あるいは1次抗体は可溶性のものを用い、2次抗体として固相化抗体を用いる(間接法)固相化法とが用いられる。
 イムノメトリック法では、試料液中のENAHと固相化したENAHとを一定量の標識化抗体に対して競合反応させた後、固相と液相を分離するか、あるいは試料液中のENAHと過剰量の標識化抗体とを反応させ、次に固相化したENAHを加えて未反応の標識化抗体を固相に結合させた後、固相と液相を分離する。次に、いずれかの相の標識量を測定し試料液中の抗原量を定量する。
 また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果生じた不溶性の沈降物の量を測定する。試料液中のENAHの量がわずかであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。
The detection antibody of the present invention can also be used in measurement systems other than the sandwich method, such as a competitive method, an immunometric method, or nephrometry.
In the competitive method, ENAH in the sample solution and labeled ENAH are reacted competitively with the antibody, and then the unreacted labeled antigen (F) and the labeled antigen (B) bound to the antibody are separated. (B / F separation) Quantify ENAH in the sample solution by measuring the amount of label B or F. In this reaction method, a soluble antibody is used as an antibody, B / F separation is performed using polyethylene glycol or a secondary antibody against the antibody (primary antibody), and a solid phase is used as the primary antibody. Either the antibody is used (direct method), or the primary antibody is soluble, and the immobilized antibody is used as the secondary antibody (indirect method).
In the immunometric method, ENAH in a sample solution and solid-phased ENAH are subjected to a competitive reaction with a certain amount of labeled antibody, and then the solid phase and the liquid phase are separated, or ENAH in the sample solution is separated. After reacting with an excess amount of labeled antibody, solid-phased ENAH is added to bind unreacted labeled antibody to the solid phase, and then the solid phase and the liquid phase are separated. Next, the amount of label in any phase is measured to quantify the amount of antigen in the sample solution.
In nephrometry, the amount of insoluble precipitate produced as a result of the antigen-antibody reaction in a gel or solution is measured. Even when the amount of ENAH in the sample solution is small and only a small amount of precipitate is obtained, laser nephrometry using laser scattering is preferably used.
 これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えてENAHの測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。
 例えば、入江 寛編「ラジオイムノアッセイ」(講談社、昭和49年発行)、入江 寛編「続ラジオイムノアッセイ」(講談社、昭和54年発行)、石川栄治ら編「酵素免疫測定法」(医学書院、昭和53年発行)、石川栄治ら編「酵素免疫測定法」(第2版)(医学書院、昭和57年発行)、石川栄治ら編「酵素免疫測定法」(第3版)(医学書院、昭和62年発行)、「Methods in ENZYMOLOGY」 Vol. 70 (Immunochemical Techniques (Part A))、同書 Vol. 73 (Immunochemical Techniques (Part B))、同書 Vol. 74 (Immunochemical Techniques (Part C))、同書 Vol. 84 (Immunochemical Techniques (Part D: Selected Immunoassays))、同書 Vol. 92 (Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121 (Immunochemical Techniques (Part I: Hybridoma Technology and Monoclonal Antibodies))(以上、アカデミックプレス社発行)などを参照することができる。
 以上のようにして、本発明の検出用抗体を用いることによって、細胞におけるENAHの量を感度よく定量することができる。
In applying these individual immunological measurement methods to the quantification method of the present invention, special conditions, operations and the like are not required to be set. An ENAH measurement system may be constructed by adding ordinary technical considerations to those skilled in the art to the usual conditions and operation methods in each method. For details of these general technical means, it is possible to refer to reviews, books and the like.
For example, Hiroshi Irie “Radioimmunoassay” (Kodansha, published in 1974), Hiroshi Irie “Continue Radioimmunoassay” (published in Kodansha, 1979), “Enzyme Immunoassay” edited by Eiji Ishikawa et al. 53), edited by Eiji Ishikawa et al. "Enzyme Immunoassay" (2nd edition) (Medical Shoin, published in 1982), edited by Eiji Ishikawa et al. "Enzyme Immunoassay" (3rd edition) (Medical School, Showa 62)), "Methods in ENZYMOLOGY" Vol. 70 (Immunochemical Techniques (Part A)), ibid Vol. 73 (Immunochemical Techniques (Part B)), ibid Vol. 74 (Immunochemical Techniques (Part C)), ibid Vol 84 (Immunochemical Techniques (Part D: Selected Immunoassays)), ibid. Vol. 92 (Immunochemical Techniques (Part E: Monoclonal Antibodies and General Immunoassay Methods)), ibid. )) (Above, published by Academic Press) It is possible to see.
As described above, by using the detection antibody of the present invention, the amount of ENAH in cells can be quantified with high sensitivity.
 例えば、上記スクリーニング法において、被検物質の存在下におけるENAHの発現量(mRNA量又はタンパク質量)が、被検物質の非存在下における場合に比べて、約20%以上、好ましくは約30%以上、より好ましくは約50%以上阻害された場合、該被検物質を、ENAHの発現抑制物質、従って、血管新生阻害活性を有する物質の候補として選択することができる。 For example, in the above screening method, the expression level (mRNA level or protein level) of ENAH in the presence of the test substance is about 20% or more, preferably about 30%, compared to the case in the absence of the test substance. As described above, when the inhibition is more preferably about 50% or more, the test substance can be selected as a candidate for ENAH expression-suppressing substance, and thus a substance having angiogenesis inhibitory activity.
 あるいは、上記スクリーニング法において、ENAH遺伝子を発現する細胞に代えて、ENAH遺伝子の内在の転写調節領域の制御下にあるレポーター遺伝子を含む細胞を用いることができる。このような細胞は、ENAH遺伝子の転写調節領域の制御下にあるレポーター遺伝子(例、ルシフェラーゼ、GFPなど)を導入したトランスジェニック動物の細胞、組織、臓器もしくは個体であってもよい。かかる細胞を用いる場合には、ENAHの発現量は、レポーター遺伝子の発現レベルを、常法を用いて測定することにより評価することができる。 Alternatively, in the screening method described above, cells containing a reporter gene under the control of the transcriptional regulatory region in the ENAH gene can be used instead of cells expressing the ENAH gene. Such cells may be cells, tissues, organs or individuals of transgenic animals into which a reporter gene (eg, luciferase, GFP, etc.) under the control of the transcriptional regulatory region of the ENAH gene has been introduced. When such cells are used, the expression level of ENAH can be evaluated by measuring the expression level of the reporter gene using a conventional method.
(ENAHの機能の測定)
 本発明のスクリーニング方法は、被検物質がENAHの機能を抑制するか否かを指標として行うこともできる。
 具体的には、ENAHを発現する腫瘍血管内皮細胞において、被検物質を添加することにより、該細胞の増殖又は遊走が抑制されるか否かを測定することにより実施することができる。例えば、被検物質存在下における腫瘍血管内皮細胞の細胞増殖又は細胞遊走が、被検物質の非存在下における細胞増殖又は細胞遊走に比べて、約10%以上、好ましくは約20%以上、より好ましくは約30%以上、更に好ましくは約50%以上阻害された場合に、該被検物質を、ENAHの機能抑制物質、従って、血管新生阻害活性を有する物質の候補として選択することができる。
 上記のスクリーニング方法において、コントロールとして、常法を用いて作製される、ENAH遺伝子がノックアウトされた細胞を用いることにより、被検物質がENAH遺伝子を発現していないコントロール細胞において上記機能を示さないことを確認できる。すなわち、上記のスクリーニング方法において得られる血管新生阻害活性を有する候補物質の作用機序が、ENAHもしくはENAH遺伝子の発現抑制又はENAHの機能抑制に基づくものであることが確認できる。
(Measurement of ENAH function)
The screening method of the present invention can also be performed using as an index whether or not a test substance suppresses the function of ENAH.
Specifically, in tumor vascular endothelial cells expressing ENAH, it can be carried out by measuring whether or not proliferation or migration of the cells is suppressed by adding a test substance. For example, cell proliferation or cell migration of tumor vascular endothelial cells in the presence of the test substance is about 10% or more, preferably about 20% or more, more than cell growth or cell migration in the absence of the test substance. When it is preferably inhibited by about 30% or more, more preferably about 50% or more, the test substance can be selected as a candidate for ENAH function-suppressing substance, and thus a substance having angiogenesis inhibitory activity.
In the screening method described above, as a control, cells that have been prepared using conventional methods and have the ENAH gene knocked out should not exhibit the above function in control cells that do not express the ENAH gene. Can be confirmed. That is, it can be confirmed that the action mechanism of the candidate substance having angiogenesis inhibitory activity obtained in the above screening method is based on suppression of ENAH or ENAH gene expression or suppression of ENAH function.
 本発明の上記いずれかのスクリーニング方法を用いて得られる、ENAHの発現又は機能を抑制する物質は、癌の予防及び/又は治療用に、医薬として有用である。
 本発明のスクリーニング方法を用いて得られる化合物を上述の予防・治療剤として使用する場合、上記ENAHの発現又は機能を抑制する低分子化合物と同様に製剤化することができ、同様の投与経路及び投与量で、ヒト又は哺乳動物(例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジーなど)に対して、経口的に又は非経口的に投与することができる。
The substance that suppresses the expression or function of ENAH obtained by using any one of the screening methods of the present invention is useful as a pharmaceutical for the prevention and / or treatment of cancer.
When the compound obtained by using the screening method of the present invention is used as the above-mentioned prophylactic / therapeutic agent, it can be formulated in the same manner as the low molecular weight compound that suppresses the expression or function of ENAH, and has the same administration route and The dose may be administered orally or parenterally to humans or mammals (eg, mice, rats, rabbits, sheep, pigs, cows, horses, cats, dogs, monkeys, chimpanzees, etc.). it can.
VII. 癌の発症又は発症リスクの判定方法
 また、本発明は、被験動物より採取した試料中のENAHの発現量を測定することを特徴とする癌の発症又は発症リスクの判定方法を提供する。当該方法は以下の(a)及び(b)の工程を含む。
(a)被験動物より採取した試料中の、ENAH遺伝子もしくはENAHの発現量、又はENAHの機能を測定する工程;及び
(b)正常動物由来の試料において測定した場合と比較して、前記発現量もしくは機能が上昇している被験動物を、癌を発症しているか、将来発症するリスクが高いと判定する工程。
VII. Method for Determining Cancer Onset or Onset Risk In addition, the present invention provides a method for determining cancer onset or onset risk, characterized by measuring the expression level of ENAH in a sample collected from a test animal. The method includes the following steps (a) and (b).
(A) a step of measuring the expression level of ENAH gene or ENAH or the function of ENAH in a sample collected from a test animal; and (b) the expression level as compared with the case of measuring in a sample derived from a normal animal. Alternatively, the step of determining that the test animal having an increased function has cancer or has a high risk of developing in the future.
 被験動物としては、ヒトもしくは他の哺乳動物が挙げられるが、好ましくはヒト、あるいは実験動物として汎用されるマウス、ラット、ウサギ、イヌ、サル等である。測定対象試料としては、血液、血漿、血清、脳脊髄液、リンパ液、唾液、粘膜、尿、涙、精液、関節液、生検サンプル等が挙げられる。 Examples of test animals include humans and other mammals, preferably humans, mice, rats, rabbits, dogs, monkeys and the like that are widely used as experimental animals. Examples of the measurement target sample include blood, plasma, serum, cerebrospinal fluid, lymph fluid, saliva, mucous membrane, urine, tears, semen, joint fluid, biopsy sample, and the like.
 試料中のENAH遺伝子の発現量及びタンパク質:ENAHの量は、該遺伝子もしくは該タンパク質の発現量を指標とする上記スクリーニング法に記載されたのと同様の方法により測定することができる。
 上記測定の結果、被験動物より採取した試料中のENAH遺伝子の発現量又はENAHの量が、正常動物より採取した試料中のENAH遺伝子の発現量又はENAHの量と比較して有意に高かった場合、該被験動物は、癌を発症しているか、将来発症するリスクが高いと判定することができる。あるいは、正常動物における発現量を予め同定しておき、例えば、その平均値+2SDをカットオフ値として規定し、被験動物より採取した試料中のENAH遺伝子の発現量又はENAHの量が、当該カットオフ値を超えた場合に、該被験動物は、癌を発症しているか、将来発症するリスクが高いと判定することもできる。
ENAH gene expression level and protein: ENAH level in a sample can be measured by the same method as described in the above screening method using the gene or protein expression level as an index.
As a result of the above measurement, the amount of ENAH gene expression or ENAH in the sample collected from the test animal is significantly higher than the amount of ENAH gene expression or ENAH in the sample collected from the normal animal It can be determined that the test animal has developed cancer or has a high risk of developing in the future. Alternatively, the expression level in a normal animal is identified in advance, for example, the average value + 2SD is defined as a cut-off value, and the expression level of the ENAH gene or the amount of ENAH in a sample collected from the test animal If the value is exceeded, the test animal can also be determined to have developed cancer or have a high risk of developing in the future.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔実施例1〕
移植用癌細胞懸濁液の調製
 HSC3(ヒト舌癌細胞)は10%FBS(Hyclone社製)を含有するDMEM培地(SIGMA社製)を用いて、A375SM(ヒト高転移性のメラノーマ細胞)は10%FBS(Hyclone社製)を含有するMEM培地(GIBCO社製)を用いて、OSRC2(ヒト腎癌細胞)は10%FBS(Hyclone社製)を含有するRPMI培地(SIGMA社製)を用いて、それぞれ37℃、5% CO2条件下で培養した。培地を吸引除去後、PBS(日水製薬社)で1回洗浄し、0.5%トリプシン‐EDTA溶液(SIGMA 社製)を添加して、37℃、5% CO2条件下5分で剥離した細胞を、10% FBS含有DMEM培地(SIGMA社)を用いて懸濁した。該細胞懸濁液を1000rpm、4℃、5分間遠心して細胞を回収し、ハンクス緩衝液(Hank's buffered salt solution、以下HBSSと記す。GIBCO社製)で1x107細胞/mlに希釈・懸濁して移植用癌細胞懸濁液とした。
[Example 1]
Preparation of cancer cell suspension for transplantation HSC3 (human tongue cancer cells) is a DMEM medium (manufactured by SIGMA) containing 10% FBS (manufactured by Hyclone), and A375SM (human highly metastatic melanoma cells) is Using MEM medium (GIBCO) containing 10% FBS (Hyclone), OSRC2 (human kidney cancer cells) using RPMI medium (SIGMA) containing 10% FBS (Hyclone) Each was cultured at 37 ° C. and 5% CO 2 . After removing the medium by suction, the cells were washed once with PBS (Nissui Pharmaceutical Co., Ltd.), added with 0.5% trypsin-EDTA solution (manufactured by SIGMA), and detached after 5 minutes at 37 ° C and 5% CO 2 Was suspended in DMEM medium (SIGMA) containing 10% FBS. The cell suspension is centrifuged at 1000 rpm at 4 ° C. for 5 minutes to collect cells, diluted and suspended at 1 × 10 7 cells / ml with Hank's buffered salt solution (hereinafter referred to as HBSS, manufactured by GIBCO). This was a cancer cell suspension for transplantation.
〔実施例2〕
マウスへの癌細胞の移植
 6~7週齢のマウス(ストレイン:KSN/Slc nude、性別:female、ブリーダー:日本エスエルシー)の右背部皮下に、一匹当たり実施例1で調製した移植用癌細胞懸濁液0.1mlを、1mLシリンジ注射器(テルモ社製)と27G針(テルモ社製)を用いて注入した。移植腫瘍の直径が約10mmになるまで飼育した。
[Example 2]
Transplantation of cancer cells into mice 6 to 7-week-old mice (strain: KSN / Slc nude, gender: female, breeder: Nippon SLC) subcutaneously transplanted in Example 1 per mouse. 0.1 ml of the cell suspension was injected using a 1 mL syringe syringe (Terumo) and a 27G needle (Terumo). The mice were reared until the diameter of the transplanted tumor was about 10 mm.
〔実施例3〕
マウス初代血管内皮細胞の調製
 実施例2にて作成した腫瘍皮下移植マウスをイソフルラン(アボットジャパン社製)で全身麻酔後、安楽死させた。腫瘍部分(腫瘍塊)を摘出し、終濃度10~15mg/ml のII 型コラゲナーゼ(Collagenase Type II、GIBCO社)溶液20ml中でハサミを用いて細かく切断後、終濃度20~30μg/mlとなるようにDNase(Roche社製)を加え、37℃で30分インキュベート(振蕩)して細胞懸濁液を調製した。該細胞懸濁液を含むチューブを氷上にたて、沈殿した未消化の組織片を除いた懸濁液(上層部分)を100μmメッシュサイズのセルストレーナー(BD Biosciences社製)を通して新しい50mLチューブに移した。そこに該細胞懸濁液と等量のFBSを添加してコラゲナーゼを失活させた。1000rpm、4℃、5分間遠心して細胞を回収後、20mLのHBSS(GIBCO社製)で懸濁した。該細胞懸濁液を同量(20ml)のHistopaque(登録商標)‐1077(SIGMA ALDRICH社製)上に重層し、2000rpm、4℃で20分遠心し、中間層に分離された単核球細胞を回収した。回収液に40mlのHBSS(GIBCO社製)を添加し、1000rpm、4℃で10分間遠心して細胞を回収後、40mlの0.5%BSA(Albumin solution,from bovine serum,30%,ASEPTICALLY FILLED:SIGMA社製)含有HBSSで再懸濁した。1000rpm、4℃、5分間遠心した後、1mlの0.5%BSA含有HBSSで懸濁し、室温で20分インキュベート(攪拌)した。そこに、ラット抗マウスCD31抗体(Purified Rat Anti-mouse CD31、BD Biosciences pharmingen社製)を5μl加え、4℃で30分間インキュベート(攪拌)した。1000rpm、4℃、5分間遠心した後、細胞を0.5%BSA含有HBSS にて懸濁して、再度1000rpm、4℃、5分間遠心した。回収した細胞を80μl の0.5% BSA含有MACS buffer(脱気した2mM EDTA含有PBS緩衝液)で懸濁後、ヤギ抗ラットIgG 磁気ビーズ (Goat Anti-Rat IgG Microbeads、Miltenyi Biotec社製)を20μl加え、4℃で15分間静置した。1000rpm、4℃、5分間遠心し、沈殿した細胞を1mlのMACS bufferで懸濁した。該懸濁液の細胞数が1×107個以下であれば MSカラム(MS Columns、Miltenyi Biotec社製)を、1×107個以上であればLSカラム(LS Columns、Miltenyi Biotec社製)を用いて以下の操作(MACS)を行った。先ず、選択したカラムを付属の磁気マグネットに設置し、500μl のMACS bufferを3回加えキァリブレーション(初期較正)した後、細胞懸濁液1mLをカラムに加え、500μlのMACS bufferで3回洗浄した。カラムをマグネットから外し、カラム内に残った磁気標識されたCD31陽性細胞を、カラムに付随しているシリンジを用い、1mLのMACS bufferで15mlチューブに押し出した。該細胞を血管内皮細胞専用培地EGM-2MV(Lonza社製)を用いて再懸濁し、細胞数を計測後、1.5%ゼラチン(SIGMA社製)含有PBSでコーティングした6 well plate (Nunc社製)に約2x105細胞/ wellの割合でまき、終濃度500ng/mlのジフテリア毒素(Calbiochem社)を含む20%FBS含有EGM-2MV培地で16時間培養後、ジフテリア毒素を含まない培地に変換し約2週間培養した。培養後の細胞を回収し、0.5%BSA含有HBSSにて再懸濁した後、上記CD31抗体の代わりにBS1-B4(Vector Laboratories社)を用いたMACSによってBS1-B4陽性細胞を分離・回収し、腫瘍血管内皮細胞として以下の実験に使用した。一方、正常血管内皮細胞は、腫瘍細胞を移植していないマウスの皮膚血管を出発材料とし、上記腫瘍血管内皮細胞の調製法と同様の操作で調製した。
Example 3
Preparation of Mouse Primary Vascular Endothelial Cells The tumor subcutaneously transplanted mice prepared in Example 2 were euthanized after general anesthesia with isoflurane (Abbott Japan). After removing the tumor part (tumor mass) and cutting it finely with scissors in 20 ml of a collagenase type II (Collagenase Type II, GIBCO) solution with a final concentration of 10-15 mg / ml, the final concentration becomes 20-30 μg / ml As described above, DNase (Roche) was added and incubated at 37 ° C. for 30 minutes (shaking) to prepare a cell suspension. The tube containing the cell suspension is placed on ice, and the suspension (upper layer) from which the undigested tissue fragments that have precipitated are removed is transferred to a new 50 mL tube through a 100 μm mesh size cell strainer (BD Biosciences). did. The collagenase was inactivated by adding the same amount of FBS as the cell suspension. The cells were collected by centrifugation at 1000 rpm at 4 ° C. for 5 minutes, and then suspended in 20 mL of HBSS (GIBCO). Mononuclear cells separated into an intermediate layer by overlaying the cell suspension on the same volume (20 ml) of Histopaque (registered trademark) -1077 (manufactured by SIGMA ALDRICH), centrifuging at 2000 rpm, 4 ° C. for 20 minutes Was recovered. 40ml of HBSS (manufactured by GIBCO) was added to the collected solution, and the cells were collected by centrifugation at 1000rpm and 4 ° C for 10 minutes, then 40ml of 0.5% BSA (Albumin solution, from bovine serum, 30%, ASEPTICALLY FILLED: SIGMA The product was resuspended in HBSS. After centrifugation at 1000 rpm and 4 ° C. for 5 minutes, the suspension was suspended in 1 ml of HBSS containing 0.5% BSA and incubated (stirred) at room temperature for 20 minutes. Thereto, 5 μl of rat anti-mouse CD31 antibody (Purified Rat Anti-mouse CD31, manufactured by BD Biosciences pharmingen) was added and incubated (stirred) at 4 ° C. for 30 minutes. After centrifugation at 1000 rpm and 4 ° C. for 5 minutes, the cells were suspended in 0.5% BSA-containing HBSS and centrifuged again at 1000 rpm and 4 ° C. for 5 minutes. Suspend the collected cells in 80 μl of 0.5% BSA-containing MACS buffer (degassed PBS buffer containing 2 mM EDTA), and then add 20 μl of goat anti-rat IgG magnetic beads (Goat Anti-Rat IgG Microbeads, manufactured by Miltenyi Biotec). And left at 4 ° C. for 15 minutes. Centrifugation was performed at 1000 rpm and 4 ° C. for 5 minutes, and the precipitated cells were suspended in 1 ml of MACS buffer. MS column (MS Columns, manufactured by Miltenyi Biotec) if the number of cells in the suspension is 1 × 10 7 or less, LS column (LS Columns, manufactured by Miltenyi Biotec) if it is 1 × 10 7 or more The following operation (MACS) was performed using First, place the selected column on the attached magnetic magnet, add 500 μl of MACS buffer 3 times for calibration (initial calibration), add 1 mL of cell suspension to the column, and wash 3 times with 500 μl of MACS buffer. did. The column was removed from the magnet, and the magnetically labeled CD31 positive cells remaining in the column were pushed out into a 15 ml tube with 1 mL of MACS buffer using a syringe attached to the column. 6-well plate (manufactured by Nunc) coated with PBS containing 1.5% gelatin (manufactured by SIGMA) after resuspending the cells using a medium dedicated to vascular endothelial cells EGM-2MV (manufactured by Lonza) and counting the number of cells 2x10 5 cells / well in a 20% FBS-containing EGM-2MV medium containing diphtheria toxin (Calbiochem) at a final concentration of 500 ng / ml for 16 hours and then converted to a medium containing no diphtheria toxin. Cultured for 2 weeks. The cultured cells are collected, resuspended in HBSS containing 0.5% BSA, and then BS1-B4 positive cells are separated and collected by MACS using BS1-B4 (Vector Laboratories) instead of the CD31 antibody. The tumor vascular endothelial cells were used in the following experiments. On the other hand, normal vascular endothelial cells were prepared in the same manner as the above-described method for preparing tumor vascular endothelial cells, starting from the skin blood vessels of mice not transplanted with tumor cells.
〔実施例4〕
マウス初代血管内皮細胞の培養
 血管内皮細胞用増殖培地(ブレットキットEGM-2MV、Lonza社製)を用いて37℃、5% CO2条件下で培養した。継代の際は、フラスコから培地を吸引除去後、PBS(GIBCO社製)で1回洗浄し、0.05%トリプシン‐EDTA溶液(GIBCO社製)を添加後、37℃、5% CO2条件下3分で剥離した細胞を、10% FBS含有DMEM培地(ナカライテスク社製)を添加して懸濁・回収した。該細胞懸濁液を800rpmで室温、5分間遠心して細胞を回収し、EGM-2MV培地で希釈・懸濁して培養した。
Example 4
Cultivation of mouse primary vascular endothelial cells Cultured at 37 ° C. and 5% CO 2 using a growth medium for vascular endothelial cells (Brett Kit EGM-2MV, manufactured by Lonza). During passage, after removing the medium from the flask by suction, it was washed once with PBS (GIBCO), added with 0.05% trypsin-EDTA solution (GIBCO), and then at 37 ° C and 5% CO 2 The cells detached in 3 minutes were suspended and collected by adding DMEM medium containing 10% FBS (manufactured by Nacalai Tesque). The cell suspension was centrifuged at 800 rpm for 5 minutes at room temperature, and the cells were collected, diluted and suspended in EGM-2MV medium, and cultured.
〔実施例5〕
マウス初代血管内皮細胞へのsiRNAトランスフェクション
 0.8mlのEBM-2培地(Lonza社製)に10μMのsiRNA溶液1.44μlとLipofectamine RNAiMAX試薬(Invitrogen社製)8μlを添加して混和後、室温で10~20分静置して以下に示すsiRNA(センス鎖のみを示す)とリポソームの複合体を形成させた。
 
 mENAH-1 siRNA:GACAGAAAUGAAGAUGCAGAGCCUA(配列番号:13)
 mENAH-2 siRNA:CAACUGGGUUCAGCAGAGUACAUAU(配列番号:14)
  
 そこに、0.5%のFBSを含有するEBM-2培地で9x104細胞/mlに希釈した血管内皮細胞懸濁液を4ml添加し、混合した。該混合液を、増殖アッセイ用として96穴プレート(Costar社製)に55μl/ウェルで、遊走アッセイ用として6穴プレート(旭テクノグラス社製)に2.25ml/ウェルで、RNA調製用として6穴プレート(旭テクノグラス社製)に1.5ml/ウェルでそれぞれ分注した。37℃、5% CO2条件下で6時間培養後、等容のEGM-2MV培地(Lonza社製)をそれぞれ添加し、各アッセイを実施するまで37℃、5% CO2条件下で培養した。
 尚、ここで用いたsiRNAは、Invitrogen社市販品であるmENAH-1: Enah Stealth Select RNAi(登録商標) siRNA(MSS203860)、及びmENAH-2:Enah Stealth Select RNAi siRNA(MSS274145)である。
Example 5
SiRNA transfection of mouse primary vascular endothelial cells Add 1.44 μl of 10 μM siRNA solution and 8 μl of Lipofectamine RNAiMAX reagent (Invitrogen) to 0.8 ml of EBM-2 medium (Lonza) and mix at room temperature for 10- The mixture was allowed to stand for 20 minutes to form a complex of the following siRNA (showing only the sense strand) and liposome.

mENAH-1 siRNA: GACAGAAAUGAAGAUGCAGAGCCUA (SEQ ID NO: 13)
mENAH-2 siRNA: CAACUGGGUUCAGCAGAGUACAUAU (SEQ ID NO: 14)

Thereto was added 4 ml of a vascular endothelial cell suspension diluted to 9 × 10 4 cells / ml in EBM-2 medium containing 0.5% FBS, and mixed. The mixture is 55 μl / well in a 96-well plate (Costar) for proliferation assay, 2.25 ml / well in a 6-well plate (Asahi Techno Glass) for migration assay, and 6 wells for RNA preparation. Each plate was dispensed at 1.5 ml / well on a plate (Asahi Techno Glass). 37 ° C., after 6 hours of culture under 5% CO 2, EGM-2 MV medium equal volumes of (Lonza Inc.) were added, respectively, 37 ° C. until carrying out the assay, and incubated under 5% CO 2 .
The siRNA used here is mENAH-1: Enah Stealth Select RNAi (registered trademark) siRNA (MSS203860) and mENAH-2: Enah Stealth Select RNAi siRNA (MSS274145), which are commercially available from Invitrogen.
〔実施例6〕
増殖アッセイ
 A375SM(ヒト高転移性のメラノーマ細胞)移植モデルマウスから調製したマウス初代腫瘍血管内皮細胞及び正常マウスから調製した初代正常血管内皮細胞に実施例5に記載の2種類のsiRNAをトランスフェクションし、細胞増殖抑制効果を確認した。
 siRNAトランスフェクションの72時間後に、Alamar Blue溶液(Alamar Bioscience社製)とEGM-2MV培地を13:7の割合で混合した混合液を、実施例5で作成した増殖アッセイ用の96穴プレートに20μl/ウェルで添加し、37℃、5% CO2条件下で2~3時間培養した。蛍光プレートリーダー(Ascent FL, Labsystems社製)を用いて蛍光値を測定し(励起波長544nm/測定波長590nm)、細胞を含まない培地のみ(ブランク)の測定値を0%、siRNAを含まないトランスフェクション試薬のみを添加した細胞(モック)の測定値を100%として、siRNAを導入した細胞の相対値(%)を計算した。以下の計算式にて増殖抑制率を計算した。
 
増殖抑制率=100% - siRNAを導入した細胞の相対値(%)
 
 細胞増殖抑制効果を確認した結果を表1に示した。
Example 6
Proliferation assay Two kinds of siRNAs described in Example 5 were transfected into mouse primary tumor vascular endothelial cells prepared from A375SM (human highly metastatic melanoma cells) transplanted model mice and primary normal vascular endothelial cells prepared from normal mice. The cell growth inhibitory effect was confirmed.
72 hours after siRNA transfection, 20 μl of the mixed solution obtained by mixing Alamar Blue solution (Alamar Bioscience) and EGM-2MV medium at a ratio of 13: 7 was added to the 96-well plate for proliferation assay prepared in Example 5. / Well and incubated at 37 ° C. under 5% CO 2 for 2 to 3 hours. Fluorescence values are measured using a fluorescence plate reader (Ascent FL, Labsystems) (excitation wavelength: 544 nm / measurement wavelength: 590 nm). The measured value of only the medium without cells (blank) is 0%, and no siRNA is transferred. The relative value (%) of the cells into which siRNA was introduced was calculated with the measured value of the cells (mock) to which only the detection reagent was added as 100%. The growth inhibition rate was calculated by the following formula.

Growth inhibition rate = 100%-relative value of cells into which siRNA has been introduced (%)

The results of confirming the cell growth inhibitory effect are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のごとく、ENAH遺伝子のsiRNAをトランスフェクションしてENAHの遺伝子発現を抑制することにより、初代腫瘍血管内皮細胞及び初代正常血管内皮細胞の増殖が抑制された。このことから、ENAHのsiRNAは、血管内皮細胞の増殖抑制活性を有することがわかった。 As described above, the growth of primary tumor vascular endothelial cells and primary normal vascular endothelial cells was suppressed by transfecting siRNA of ENAH gene to suppress ENAH gene expression. From this, it was found that ENAH siRNA has an inhibitory activity on the proliferation of vascular endothelial cells.
〔実施例7〕
遊走アッセイ
 アンジオジェネシスシステム:血管内皮遊走アッセイ(ベクトン・ディッキンソン社製)を用いて測定した。即ち、siRNAトランスフェクション48時間後に、実施例5にて作成した遊走アッセイ用6穴プレートの培地を吸引除去し、PBS(GIBCO社製)で1回洗浄後、0.2% BSAを含有するEBM-2培地を1~2ml/ウェルで添加して37℃、5% CO2条件下で2~3時間培養した。ピペッティングにて細胞を剥離・懸濁させた後、0.2%トリパンブルー(GIBCO社)染色にて細胞数を計測した(10~20x104細胞/ml程度になるよう、必要に応じて0.2% BSAを含有するEBM-2培地で希釈した)。室温に戻した遊走アッセイ用96穴プレート(ベクトン・ディッキンソン社製)の上部チャンバーに0.075ml/ウェルで上記細胞懸濁液を添加し、続いて、EBM-2培地で10倍希釈したEGM-2MV培地を0.225ml/ウェルで下部ウェルに添加し、CO2インキュベーター(37℃、5% CO2条件下)で16~20時間培養した。上部チャンバー内の培養液を吸引除去後、HBSS(GIBCO社)にて4μg/mlの濃度に調製した Calcein AM(ベクトン・ディッキンソン社製)溶液0.225ml/ウェルで満たした別の96穴プレート(Falcon社製)に該チャンバーを浸し、そのままCO2インキュベーター(37℃、5% CO2条件下)で90分間培養して、チャンバーメンブレンを通過(遊走)した細胞を蛍光標識した。下方測光型蛍光プレートリーダー(CytoFluorII, PerSeptive Biosystems社製)で蛍光値を測定し(励起波長485nm/測定波長530nm)、上部チャンバーに撒きこんだ細胞数で補正して104細胞当たりの蛍光値を算出した。細胞を含まない培地のみ(ブランク)の測定値を0%、siRNAを含まないトランスフェクション試薬のみを添加した細胞(モック)の測定値を100%として、siRNAを導入した細胞の相対値(%)を計算した。以下の計算式にて遊走抑制率を計算した。
 
遊走抑制率=100%- siRNAを導入した細胞の相対値(%)
 
 結果を表2に示した。
Example 7
Migration assay Angiogenesis system: Measured using a vascular endothelial migration assay (Becton Dickinson). That is, 48 hours after siRNA transfection, the medium of the 6-well plate for migration assay prepared in Example 5 was removed by suction, washed once with PBS (manufactured by GIBCO), and then EBM-2 containing 0.2% BSA. The medium was added at 1-2 ml / well and cultured at 37 ° C. under 5% CO 2 for 2-3 hours. After detaching and suspending the cells by pipetting, the number of cells was counted by staining with 0.2% trypan blue (GIBCO) (0.2% BSA as necessary to reach about 10-20x10 4 cells / ml). Diluted with EBM-2 medium containing The above cell suspension was added at 0.075 ml / well to the upper chamber of a 96-well plate for migration assay (Becton Dickinson) returned to room temperature, and then EGM-2MV diluted 10-fold with EBM-2 medium. The medium was added to the lower well at 0.225 ml / well and cultured for 16-20 hours in a CO 2 incubator (37 ° C., 5% CO 2 condition). After removing the culture medium in the upper chamber by suction, another 96-well plate (Falcon) filled with 0.225 ml / well of Calcein AM (Becton Dickinson) solution prepared to a concentration of 4 μg / ml with HBSS (GIBCO) The chamber was immersed in a CO 2 incubator for 90 minutes in a CO 2 incubator (37 ° C., 5% CO 2 condition), and the cells that passed (migrated) through the chamber membrane were fluorescently labeled. Fluorescence values are measured with a downward photometric fluorescence plate reader (CytoFluor II, manufactured by PerSeptive Biosystems) (excitation wavelength: 485 nm / measurement wavelength: 530 nm), corrected by the number of cells in the upper chamber and corrected for the fluorescence value per 10 4 cells. Calculated. Relative value of cells into which siRNA is introduced (%), where the measured value of the medium without cells (blank) is 0% and the measured value of the cells (mock) to which only the transfection reagent without siRNA is added is 100% Was calculated. The migration inhibition rate was calculated by the following formula.

Migration inhibition rate = 100%-relative value of cells introduced with siRNA (%)

The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、ENAH遺伝子のsiRNAをトランスフェクションしてENAHの遺伝子発現を抑制することにより、初代腫瘍血管内皮細胞及び初代正常血管内皮細胞の遊走が抑制された。このことから、ENAHのsiRNAは、血管内皮細胞の遊走抑制活性を有することがわかった。 From the above results, the migration of primary tumor vascular endothelial cells and primary normal vascular endothelial cells was suppressed by transfecting siRNA of ENAH gene to suppress ENAH gene expression. From this, it was found that ENAH siRNA has the activity of inhibiting migration of vascular endothelial cells.
〔実施例8〕
定量的RT-PCR
(RNA調製)
 実施例5記載の細胞から、QuickGene-800(富士フィルム社製)を用い、添付のプロトコールに従ってRNAを調製した。即ち、siRNAトランスフェクションの48時間後に、実施例5にて作成したRNA調製用6穴プレートの各ウェルから培地を吸引除去した後、QuickGene RNA cultured cell kit S(富士フィルム社製)添付のLRC溶解液に2-メルカプトエタノールを10μl/mlで添加した混合液を350μl/ウェルで添加し、細胞溶解液を調製した。70%エタノール溶液を350μl添加して混合後、10000rpmで室温、1分間遠心して混合液を回収し、回収した混合液全量をキット添付のカートリッジに添加した。該カートリッジをQuickGene-800の所定の場所にセット後、RNAモードを選択してRNAを自動調製した。調製したRNAはNanodrop-1000(Thermo scientific社製)で濃度を測定し、RT-PCR反応に供した。
(RT-PCR)
 調製したRNAを鋳型としてTaqMan Reverse Transcription Reagents(ABI社製)を用いてcDNAを合成した。得られたcDNAを鋳型として定量しようとする遺伝子をコードする塩基配列領域を特異的に増幅できるように、一対のプライマー(上記cDNA(-鎖)に結合する正鎖、+鎖に結合する逆鎖)を設計し、通常の方法で合成した。マウスENAHを定量する際には下記に示される塩基配列からなるプライマー1及び2を用いた。
 
マウスENAH プライマー1:CACATTCAGAGTTGTGGGCAGA(配列番号:15)
マウスENAH プライマー2:TGCTGCCAAAGTTGAGACCATAC(配列番号:16)
マウス18S ribosomal RNA プライマー1: GGGAGCCTGAGAAACGGC(配列番号:17)
マウス18S ribosomal RNA プライマー2: GGGTCGGGAGTGGGTAATTT(配列番号:18)
  
 合成したプライマー及びSYBR Green RT-PCR Reagents (Applied Biosystems 社製)を用いてプロトコールに従ってRT-PCR反応液を調製し、ABI PRISM7900 Sequence Detection System (Applied Biosystems 社製)で反応させて、該反応物を検出、定量した。各サンプルにおけるマウスENAHの発現量を18SリボソームRNAの発現量で補正した値をそれぞれのサンプルにおけるENAHの発現レベルとし、通常、遺伝子発現抑制率は以下の計算式により求めた。
((対照細胞の発現レベル)-(siRNAを導入した細胞の発現レベル))/(対照細胞の発現レベル)×100
 ここで対照細胞とは、siRNAを含まない、トランスフェクション試薬のみを添加した細胞(モック)を意味する。表3はマウスENAH遺伝子の各siRNA(実施例5を参照)を、マウス初代腫瘍血管内皮細胞へ導入した際のマウスENAHの遺伝子発現抑制率を示す。
Example 8
Quantitative RT-PCR
(RNA preparation)
RNA was prepared from the cells described in Example 5 using QuickGene-800 (Fuji Film) according to the attached protocol. That is, 48 hours after siRNA transfection, the medium was aspirated and removed from each well of the 6-well plate for RNA preparation prepared in Example 5, and then the LRC lysate attached to QuickGene RNA cultured cell kit S (Fuji Film) was attached. A mixed solution obtained by adding 2-mercaptoethanol at 10 μl / ml to the solution was added at 350 μl / well to prepare a cell lysate. After adding 350 μl of 70% ethanol solution and mixing, the mixture was collected by centrifugation at 10000 rpm for 1 minute at room temperature, and the entire amount of the collected mixture was added to the cartridge attached to the kit. After setting the cartridge in a predetermined place of QuickGene-800, RNA mode was selected and RNA was automatically prepared. The concentration of the prepared RNA was measured with Nanodrop-1000 (manufactured by Thermo scientific) and subjected to RT-PCR reaction.
(RT-PCR)
Using the prepared RNA as a template, cDNA was synthesized using TaqMan Reverse Transcription Reagents (ABI). Using the resulting cDNA as a template, a pair of primers (a normal strand that binds to the cDNA (-strand) and a reverse strand that binds to the + strand so that the base sequence region encoding the gene to be quantified can be specifically amplified. ) Was designed and synthesized in the usual way. When quantifying mouse ENAH, primers 1 and 2 having the base sequences shown below were used.

Mouse ENAH Primer 1: CACATTCAGAGTTGTGGGCAGA (SEQ ID NO: 15)
Mouse ENAH primer 2: TGCTGCCAAAGTTGAGACCATAC (SEQ ID NO: 16)
Mouse 18S ribosomal RNA Primer 1: GGGAGCCTGAGAAACGGC (SEQ ID NO: 17)
Mouse 18S ribosomal RNA Primer 2: GGGTCGGGAGTGGGTAATTT (SEQ ID NO: 18)

Prepare the RT-PCR reaction solution according to the protocol using the synthesized primer and SYBR Green RT-PCR Reagents (Applied Biosystems), and react with ABI PRISM7900 Sequence Detection System (Applied Biosystems). Detection and quantification. The value obtained by correcting the expression level of mouse ENAH in each sample with the expression level of 18S ribosomal RNA was defined as the ENAH expression level in each sample, and the gene expression suppression rate was usually determined by the following formula.
((Expression level of control cell) − (expression level of cell introduced with siRNA)) / (expression level of control cell) × 100
Here, the control cell means a cell (mock) that does not contain siRNA and to which only the transfection reagent is added. Table 3 shows the inhibition rate of mouse ENAH gene expression when each siRNA of the mouse ENAH gene (see Example 5) was introduced into mouse primary tumor vascular endothelial cells.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果から、mENAH-1、mENAH-2の2種類のsiRNAにより、ENAHの発現が抑制されていることがわかった。 From the above results, it was found that ENAH expression was suppressed by two types of siRNAs, mENAH-1 and mENAH-2.
〔実施例9〕
マウス初代腫瘍血管内皮細胞での発現
 実施例4で調製した細胞から実施例8に記載の方法でRNAを調製し、定量的RT-PCRを実施した。マウスENAHを定量する際には下記に示される塩基配列からなるプライマー1及び2を用いた。
 
マウスENAH プライマー1:GGCAAGATCACCGTGCATTGAAAT(配列番号:19)
マウスENAH プライマー2:GCGCCCTCTGGAAAAAAATCTCTG(配列番号:20)
 
 その結果、ENAHの発現は、マウス初代正常血管内皮細胞と比較して、マウス初代腫瘍血管内皮細胞で顕著に高いことが示された(図1)。
Example 9
Expression in mouse primary tumor vascular endothelial cells RNA was prepared from the cells prepared in Example 4 by the method described in Example 8, and quantitative RT-PCR was performed. When quantifying mouse ENAH, primers 1 and 2 having the base sequences shown below were used.

Mouse ENAH Primer 1: GGCAAGATCACCGTGCATTGAAAT (SEQ ID NO: 19)
Mouse ENAH Primer 2: GCGCCCTCTGGAAAAAAATCTCTG (SEQ ID NO: 20)

As a result, it was shown that ENAH expression was significantly higher in mouse primary tumor vascular endothelial cells than in mouse primary normal vascular endothelial cells (FIG. 1).
〔実施例10〕
ヒトENAHの発現抑制
 ヒトENAHに対するsiRNA配列(表4を参照)(19塩基対と2塩基の3'末端オーバーハングとからなる21塩基の二本鎖siRNA)を、アミダイトを用いたホスホロアミダイト法によりRNA合成機(ABI394)にて合成した。
 1mlのOpti-MEM培地(GIBCO社製)あたりLipofectamine RNAiMAX試薬(Invitrogen社製)10μlを添加して混和後、6穴プレート(旭テクノグラス社製)に400μl/ウェルで分注した。該RNAiMAX希釈溶液400μlに10μMのsiRNA溶液2.4μlを添加あるいは非添加し、室温で20分間静置してsiRNAとリポソームの複合体を形成させた。そこに、10%のFBSを含有するDMEM培地(GIBCO社製)で1x105細胞/mlに調製したHEK293(ヒト胎児腎由来細胞株)の細胞懸濁液を2ml添加し、37℃、5% CO2条件下で一晩培養した。その後、6穴プレートの各ウェルから培地を吸引除去した後、QuickGene RNA cultured cell kit S(富士フィルム社製)添付のLRC溶解液に2-メルカプトエタノールを10μl/mlで添加した混合液を350μl添加し、細胞溶解液を調製した。以降、実施例8記載の方法でRNAを調製し、ヒトENAHに特異的なプライマー及びヒトGAPDHに特異的なプライマーを用い、定量的RT-PCRを実施した。各サンプルにおけるヒトENAHの発現量をGAPDHの発現量で補正した値をそれぞれのサンプルにおけるENAHの発現レベルとし、実施例8に記載の方法で遺伝子発現抑制率を求めた。対照細胞としては、無処置の細胞を用いた。
 使用したプライマーは以下のとおり。
 
ヒトENAH プライマー1:GTGGCTCAACTGGATTCAGCA (配列番号:21)
ヒトENAH プライマー2:AGGAATGGCACAGTTTATCACGA (配列番号:22)
ヒトGAPDH プライマー1: GCACCGTCAAGGCTGAGAAC (配列番号:23)
ヒトGAPDH プライマー2: TGGTGAAGACGCCAGTGGA (配列番号:24)
 
 各siRNAの配列と遺伝子発現抑制効果を表4に示した。尚、表4には、標的遺伝子のセンス鎖に相当する部分を表示しており、実際に調製したsiRNAは、表4に示した配列の3'末端にオーバーハング配列「dTdT」が付加されている。
Example 10
Inhibition of human ENAH expression Phosphoramidite method using siRNA sequence for human ENAH (see Table 4) (21-base double-stranded siRNA consisting of 19 base pairs and 2-base 3'-end overhang) using amidite Was synthesized with an RNA synthesizer (ABI394).
10 ml of Lipofectamine RNAiMAX reagent (manufactured by Invitrogen) was added per 1 ml of Opti-MEM medium (manufactured by GIBCO), mixed, and dispensed into a 6-well plate (manufactured by Asahi Techno Glass) at 400 μl / well. 2.4 μl of 10 μM siRNA solution was added or not added to 400 μl of the RNAiMAX diluted solution and allowed to stand at room temperature for 20 minutes to form a complex of siRNA and liposome. 2 ml of HEK293 (human fetal kidney-derived cell line) cell suspension prepared to 1 × 10 5 cells / ml in DMEM medium (GIBCO) containing 10% FBS was added thereto, at 37 ° C., 5% Incubate overnight under CO 2 conditions. Then, after removing the culture medium from each well of the 6-well plate, 350 μl of a mixed solution obtained by adding 2-mercaptoethanol at 10 μl / ml to the LRC solution attached to QuickGene RNA cultured cell kit S (Fujifilm) is added. A cell lysate was prepared. Thereafter, RNA was prepared by the method described in Example 8, and quantitative RT-PCR was performed using a primer specific for human ENAH and a primer specific for human GAPDH. The value obtained by correcting the expression level of human ENAH in each sample with the expression level of GAPDH was used as the expression level of ENAH in each sample, and the gene expression suppression rate was determined by the method described in Example 8. Untreated cells were used as control cells.
The following primers were used.

Human ENAH Primer 1: GTGGCTCAACTGGATTCAGCA (SEQ ID NO: 21)
Human ENAH Primer 2: AGGAATGGCACAGTTTATCACGA (SEQ ID NO: 22)
Human GAPDH Primer 1: GCACCGTCAAGGCTGAGAAC (SEQ ID NO: 23)
Human GAPDH Primer 2: TGGTGAAGACGCCAGTGGA (SEQ ID NO: 24)

Table 4 shows the sequence of each siRNA and the gene expression suppression effect. Table 4 shows the portion corresponding to the sense strand of the target gene, and the actually prepared siRNA has an overhang sequence “dTdT” added to the 3 ′ end of the sequence shown in Table 4. Yes.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上の結果から、ヒトENAHのsiRNAは、ヒトENAHに対して遺伝子発現抑制効果を有することがわかった。 From the above results, it was found that siRNA of human ENAH has a gene expression inhibitory effect on human ENAH.
〔実施例11〕
マウス初代腫瘍血管内皮細胞へのsiRNAトランスフェクション
 実施例10の表4記載のヒトENAHに対するsiRNA配列の中で、マウスENAHと完全に一致する配列を有するsiRNA(配列番号:35)を用い、マウス初代腫瘍血管内皮細胞へのsiRNAトランスフェクションを行った。
 即ち、1.2mlのEBM-2培地(Lonza社製)に5μMのsiRNA溶液6μlとLipofectamine RNAiMAX試薬(Invitrogen社製)12μlを添加して混和後、室温で10~20分静置してsiRNAとリポソームの複合体を形成させた。
 そこに、0.5%のFBSを含有するEBM-2培地で8x104細胞/mlに希釈した血管内皮細胞懸濁液を4.8ml添加し、混合した。該混合液を、増殖アッセイ用として96穴プレート(Costar社製)に50μl/ウェルで、遊走アッセイ用として6穴プレート(旭テクノグラス社製)に2ml/ウェルで、RNA調製用として6穴プレート(旭テクノグラス社製)に1.5ml/ウェルでそれぞれ分注した。37℃、5% CO2条件下で6時間培養後、等量のEGM-2MV培地(Lonza社製)をそれぞれ添加し、各アッセイを実施するまで37℃、5% CO2条件下で培養した。
Example 11
SiRNA Transfection into Primary Tumor Vascular Endothelial Cells of Mouse Among siRNA sequences for human ENAH described in Table 4 of Example 10, siRNA having a sequence that completely matches mouse ENAH (SEQ ID NO: 35) was used to produce primary mouse SiRNA transfection into tumor vascular endothelial cells was performed.
That is, 6 μl of 5 μM siRNA solution and 12 μl of Lipofectamine RNAiMAX reagent (Invitrogen) were added to 1.2 ml of EBM-2 medium (Lonza), mixed, and allowed to stand at room temperature for 10 to 20 minutes. The complex of was formed.
4.8 ml of vascular endothelial cell suspension diluted to 8 × 10 4 cells / ml with EBM-2 medium containing 0.5% FBS was added thereto and mixed. The mixture is 50 μl / well in a 96-well plate (Costar) for proliferation assay, 2 ml / well in a 6-well plate (Asahi Techno Glass) for migration assay, and 6-well plate for RNA preparation. (Asahi Techno Glass Co., Ltd.) was dispensed at 1.5 ml / well. After culturing at 37 ° C. and 5% CO 2 for 6 hours, an equal amount of EGM-2MV medium (Lonza) was added, and the cells were cultured at 37 ° C. and 5% CO 2 until each assay was performed. .
〔実施例12〕
増殖アッセイ
 実施例6記載の方法に従って行った。細胞増殖抑制効果を確認した結果を表5に示した。
Example 12
Proliferation assay The assay was performed according to the method described in Example 6. The results of confirming the cell growth inhibitory effect are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上のごとく、化学修飾が施されていない非修飾のsiRNAを用いた場合においても、ENAH遺伝子のsiRNAをトランスフェクションしてENAHの遺伝子発現を抑制することにより、初代腫瘍血管内皮細胞の増殖が抑制された。 As described above, even when unmodified siRNA without chemical modification is used, the growth of primary tumor vascular endothelial cells is suppressed by transfecting the siRNA of ENAH gene to suppress the expression of ENAH gene. It was done.
〔実施例13〕
遊走アッセイ
 実施例7記載の方法に従って行った。細胞遊走抑制効果を確認した結果を表6に示した。
Example 13
Migration assay The migration assay was performed according to the method described in Example 7. The results of confirming the cell migration inhibitory effect are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上のごとく、化学修飾が施されていない非修飾のsiRNAを用いた場合においても、ENAH遺伝子のsiRNAをトランスフェクションしてENAHの遺伝子発現を抑制することにより、初代腫瘍血管内皮細胞の遊走が抑制された。 As described above, even when unmodified siRNA without chemical modification is used, the migration of primary tumor vascular endothelial cells is suppressed by transducing the ENAH gene siRNA to suppress ENAH gene expression. It was done.
〔実施例14〕
定量的RT-PCR
 実施例11記載の細胞から、実施例8記載の方法に従って、siRNAトランスフェクションの24時間後にRNAを調製し、定量的RT-PCRを行った。表7はマウスENAH遺伝子のsiRNA(配列番号:35)を、マウス初代腫瘍血管内皮細胞へ導入した際のマウスENAHの遺伝子発現抑制率を示す。マウスENAHを定量する際には下記に示される塩基配列からなるプライマー1および2を用いた。
マウスENAH プライマー1:GGCAAGATCACCGTGCATTGAAAT(配列番号:19)
マウスENAH プライマー2:GCGCCCTCTGGAAAAAAATCTCTG(配列番号:20)
Example 14
Quantitative RT-PCR
From the cells described in Example 11, RNA was prepared 24 hours after siRNA transfection according to the method described in Example 8, and quantitative RT-PCR was performed. Table 7 shows the inhibition rate of mouse ENAH gene expression when siRNA (SEQ ID NO: 35) of mouse ENAH gene was introduced into mouse primary tumor vascular endothelial cells. When quantifying mouse ENAH, primers 1 and 2 having the base sequences shown below were used.
Mouse ENAH primer 1: GGCAAGATCACCGTGCATTGAAAT (SEQ ID NO: 19)
Mouse ENAH Primer 2: GCGCCCTCTGGAAAAAAATCTCTG (SEQ ID NO: 20)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、ENAHに対する非修飾siRNAにより、マウスENAHの発現が抑制されていることがわかった。 From the above results, it was found that the expression of mouse ENAH was suppressed by unmodified siRNA against ENAH.
 本発明のENAH又はENAH遺伝子の発現又は機能を抑制する物質は、腫瘍血管内皮細胞の増殖及び/又は遊走抑制活性を示し、医薬、詳しくは癌の治療又は予防薬として有用である。また、本発明のスクリーニング方法は、癌の治療又は予防薬の候補物質となる、血管新生阻害剤を探索するために有用である。 The substance that suppresses the expression or function of ENAH or the ENAH gene of the present invention exhibits the activity of inhibiting the growth and / or migration of tumor vascular endothelial cells, and is useful as a medicine, specifically as a therapeutic or preventive agent for cancer. Moreover, the screening method of the present invention is useful for searching for an angiogenesis inhibitor that is a candidate substance for cancer treatment or prevention.
配列番号:13~14:siRNA
配列番号:15~24:PCRプライマー
配列番号:25~47:siRNA
SEQ ID NOs: 13-14: siRNA
SEQ ID NO: 15-24: PCR primer SEQ ID NO: 25-47: siRNA
 本発明を好ましい態様を強調して説明してきたが、好ましい態様が変更され得ることは当業者にとって自明であろう。本発明は、本発明が本明細書に詳細に記載された以外の方法で実施され得ることを意図する。したがって、本発明は添付の「請求の範囲」の精神および範囲に包含されるすべての変更を含むものである。
 ここで述べられた特許および特許出願明細書を含む全ての刊行物に記載された内容は、ここに引用されたことによって、その全てが明示されたと同程度に本明細書に組み込まれるものである。
 本出願は、2010年3月18日出願の日本国特許出願、特願2010-062825を基礎としており、その内容は全て本明細書に包含される。
While the invention has been described with emphasis on preferred embodiments, it will be apparent to those skilled in the art that the preferred embodiments can be modified. The present invention contemplates that the present invention may be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the appended claims.
The contents of all publications, including the patents and patent application specifications mentioned herein, are hereby incorporated by reference herein to the same extent as if all were specified. .
This application is based on Japanese Patent Application No. 2010-062825 filed on Mar. 18, 2010, the contents of which are incorporated in full herein.

Claims (18)

  1.  ENAHの発現または機能を抑制する物質を有効成分として含有する、抗腫瘍剤。 An antitumor agent containing as an active ingredient a substance that suppresses the expression or function of ENAH.
  2.  物質が、ENAHの発現を抑制する、以下の(1)~(3)からなる群より選択される物質である、請求項1に記載の剤:
    (1)ENAHをコードする遺伝子の転写産物に対するアンチセンス核酸、
    (2)ENAHをコードする遺伝子の転写産物に対するリボザイム核酸、及び
    (3)ENAHをコードする遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体。
    The agent according to claim 1, wherein the substance is a substance selected from the group consisting of the following (1) to (3), which suppresses the expression of ENAH:
    (1) an antisense nucleic acid against a transcription product of a gene encoding ENAH,
    (2) a ribozyme nucleic acid for a transcription product of a gene encoding ENAH, and (3) a nucleic acid having a RNAi activity for a transcription product of a gene encoding ENAH or a precursor thereof.
  3.  物質が、ENAHと結合する抗体である、請求項1に記載の剤。 The agent according to claim 1, wherein the substance is an antibody that binds to ENAH.
  4.  ENAHが、以下の(a)~(e)から選択されるアミノ酸配列からなるタンパク質である、請求項1~3のいずれか1項に記載の剤:
    (a)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で表されるアミノ酸配列、
    (b)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列において、1もしくは複数のアミノ酸が欠失、付加、挿入もしくは置換され、かつ以下の(1)~(3)の性質:
    (1)反やじり端キャップタンパク質と競合的にアクチンに結合し得る;
    (2)F-アクチンおよびG-アクチン結合モチーフが保存されている;及び
    (3)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列からなるタンパク質を特異的に認識する抗体によって認識され得る;
    のうち少なくとも1つを有するアミノ酸配列、
    (c)配列番号:2、配列番号:4、配列番号:49、配列番号:51又は配列番号:53で示されるアミノ酸配列と80%以上の相同性を有し、かつ以下の(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列、
    (d)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAによりコードされるアミノ酸配列、及び
    (e)配列番号:1、配列番号:3、配列番号:48、配列番号:50又は配列番号:52で示される塩基配列を有するDNAに対し相補性を有するDNAと、ストリンジェントな条件下でハイブリダイズするDNAによりコードされ、かつ上記(1)~(3)の性質のうち少なくとも1つを有するアミノ酸配列。
    The agent according to any one of claims 1 to 3, wherein ENAH is a protein comprising an amino acid sequence selected from the following (a) to (e):
    (A) the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53,
    (B) in the amino acid sequence represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, one or more amino acids are deleted, added, inserted or substituted; And the following properties (1) to (3):
    (1) can bind to actin competitively with the anti-twist end cap protein;
    (2) F-actin and G-actin binding motifs are conserved; and (3) the amino acid represented by SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53 Can be recognized by an antibody that specifically recognizes a protein consisting of a sequence;
    An amino acid sequence having at least one of
    (C) SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 49, SEQ ID NO: 51 or SEQ ID NO: 53, which has 80% or more homology with the amino acid sequence shown in the following (1) to An amino acid sequence having at least one of the properties of (3),
    (D) an amino acid sequence encoded by DNA having the base sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52, and (e) SEQ ID NO: 1. , SEQ ID NO: 3, SEQ ID NO: 48, SEQ ID NO: 50 or SEQ ID NO: 52 encoded by DNA that hybridizes under stringent conditions with DNA having complementarity to DNA having the base sequence And an amino acid sequence having at least one of the above properties (1) to (3).
  5.  血管新生阻害剤である、請求項1~4のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 4, which is an angiogenesis inhibitor.
  6.  腫瘍血管新生阻害剤である、請求項5に記載の剤。 The agent according to claim 5, which is a tumor angiogenesis inhibitor.
  7.  腫瘍血管内皮細胞増殖及び/又は遊走抑制剤である、請求項1~6のいずれか1項に記載の剤。 The agent according to any one of claims 1 to 6, which is a tumor vascular endothelial cell proliferation and / or migration inhibitor.
  8.  ENAHの発現量を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法。 A screening method for an angiogenesis inhibitor, which comprises selecting a compound that reduces the expression level of ENAH.
  9.  以下の(1)~(3)の工程を含む、請求項8に記載のスクリーニング方法:
    (1)ENAHをコードする遺伝子もしくは該遺伝子の転写調節領域の制御下にあるレポータータンパク質をコードする核酸を含む細胞に、被検物質を接触させる工程、
    (2)前記細胞におけるENAHもしくはレポータータンパク質の発現量を測定する工程、及び
    (3)被検物質の非存在下において測定した場合と比較して、前記発現量を低下させる化合物を血管新生阻害剤の候補として選択する工程。
    The screening method according to claim 8, comprising the following steps (1) to (3):
    (1) contacting a test substance with a cell containing a nucleic acid encoding a gene encoding ENAH or a reporter protein under the control of a transcriptional regulatory region of the gene;
    (2) a step of measuring the expression level of ENAH or a reporter protein in the cell; and (3) an angiogenesis inhibitor that reduces the expression level as compared with the case where measurement is performed in the absence of a test substance. Selecting as a candidate.
  10.  ENAHをコードする遺伝子の発現量を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法。 A method for screening an angiogenesis inhibitor, which comprises selecting a compound that reduces the expression level of a gene encoding ENAH.
  11.  ENAHの機能を低下させる化合物を選択することを特徴とする、血管新生阻害剤のスクリーニング方法。 A screening method for an angiogenesis inhibitor, which comprises selecting a compound that reduces the function of ENAH.
  12.  癌を発症する危険性があるか否か、あるいは、癌に罹患しているか否かを判定する方法であって、以下の(1)及び(2)の工程を含む方法:
    (1)被験動物より採取した試料中の、ENAHをコードする遺伝子もしくはENAHの発現量、又はENAHの機能を測定する工程、及び
    (2)正常動物由来の試料において測定した場合と比較して、前記発現量もしくは機能が上昇している被験動物を、癌を発症する危険性があるか、又は癌に罹患していると判定する工程。
    A method for determining whether or not there is a risk of developing cancer, or whether or not the patient is suffering from cancer, comprising the following steps (1) and (2):
    (1) a step of measuring the expression level of ENAH-encoding gene or ENAH, or the function of ENAH in a sample collected from a test animal, and (2) compared with the case of measuring in a sample derived from a normal animal, Determining the subject animal whose expression level or function is elevated to be at risk of developing cancer or suffering from cancer.
  13.  以下の群:
    (1)配列番号:25~47で示される塩基配列、及び
    (2)配列番号:25~47で示される塩基配列の3’末端に2~4塩基が付加された塩基配列、
    から選択されるいずれかの塩基配列からなるオリゴヌクレオチド。
    The following groups:
    (1) a base sequence represented by SEQ ID NO: 25 to 47, and (2) a base sequence having 2 to 4 bases added to the 3 ′ end of the base sequence represented by SEQ ID NO: 25 to 47,
    An oligonucleotide comprising any nucleotide sequence selected from
  14.  二重鎖RNA部分が、配列番号:25~47から選択されるいずれかの配列番号で示される塩基配列からなる、siRNA。 An siRNA in which the double-stranded RNA portion consists of a base sequence represented by any one of SEQ ID NOs: 25 to 47.
  15.  3’末端に2~4塩基のオーバーハングが付加されていることを特徴とする、請求項14に記載のsiRNA。 The siRNA according to claim 14, wherein an overhang of 2 to 4 bases is added to the 3 'end.
  16.  少なくとも1つの塩基が化学的に修飾されている請求項14又は15に記載のsiRNA。 The siRNA according to claim 14 or 15, wherein at least one base is chemically modified.
  17.  少なくとも1つのホスホジエステル結合が化学的に修飾されている請求項14~16のいずれか1項に記載のsiRNA。 The siRNA according to any one of claims 14 to 16, wherein at least one phosphodiester bond is chemically modified.
  18.  請求項14~17のいずれか1項に記載のsiRNAを有効成分として含有する抗腫瘍剤。 An antitumor agent comprising the siRNA according to any one of claims 14 to 17 as an active ingredient.
PCT/JP2011/056639 2010-03-18 2011-03-18 Tumor angiogenesis inhibitor WO2011115271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505774A JPWO2011115271A1 (en) 2010-03-18 2011-03-18 Tumor angiogenesis inhibitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010062825 2010-03-18
JP2010-062825 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011115271A1 true WO2011115271A1 (en) 2011-09-22

Family

ID=44649351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056639 WO2011115271A1 (en) 2010-03-18 2011-03-18 Tumor angiogenesis inhibitor

Country Status (2)

Country Link
JP (1) JPWO2011115271A1 (en)
WO (1) WO2011115271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009896A1 (en) * 2016-07-08 2018-01-11 Metastat, Inc. Methods and compositions for anticancer therapies that target mena protein isoforms kinases

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150494A1 (en) * 2008-06-12 2009-12-17 Istituti Fisioterapici Ospitalieri (Ifo) - Istituto Regina Elena Per Lo Studio E La Cura Dei Tumori Human mena isoforms serve as markers of epithelial to mesenchymal transition and sensitivity to egfr inhibition in human cancer cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150494A1 (en) * 2008-06-12 2009-12-17 Istituti Fisioterapici Ospitalieri (Ifo) - Istituto Regina Elena Per Lo Studio E La Cura Dei Tumori Human mena isoforms serve as markers of epithelial to mesenchymal transition and sensitivity to egfr inhibition in human cancer cells

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DI MODUGNO, FRANCESCA ET AL.: "Molecular cloning of hMena (ENAH) and its splice variant hMena+ lla: epidermal growth factor increases their expression and stimulates hMena+lla phosphorylation in breast cancer cell lines.", CANCER RES., vol. 67, no. 6, 2007, pages 2657 - 2665 *
GOSWAMI, SUMANTA ET AL.: "Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo.", CLIN. EXP. METASTASIS., vol. 26, no. 2, 2009, pages 153 - 159 *
GURZU, SIMONA ET AL.: "The expression of cytoskeleton regulatory protein Mena in colorectal lesions.", ROM. J. MORPHOL. EMBRYOL., vol. 49, no. 3, 2008, pages 345 - 349 *
HIGASHI, MORIHIRO ET AL.: "Human Mena associates with Racl small GTPase in glioblastoma cell lines. abst. e4765", PLOS ONE., vol. 4, no. 3, 2009, pages 1 - 13 *
PHILIPPAR, ULRIKE ET AL.: "A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis.", DEV. CELL., vol. 15, 2008, pages 813 - 828 *
PINO, MARIA S ET AL.: "Human Mena+lla isoform serves as a marker of epithelial phenotype and sensitivity to epidermal growth factor receptor inhibition in human pancreatic cancer cell lines.", CLIN. CANCER. RES., vol. 14, no. 15, 2008, pages 4943 - 4950 *
URBANELLI, LORENA ET AL.: "Characterization of human Enah gene.", BIOCHIM. BIOPHYS. ACTA, vol. 1759, 2006, pages 99 - 107 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009896A1 (en) * 2016-07-08 2018-01-11 Metastat, Inc. Methods and compositions for anticancer therapies that target mena protein isoforms kinases
CN109475631A (en) * 2016-07-08 2019-03-15 迈特斯泰公司 For targeting the method and composition of the anti-cancer therapies of MENA protein isoform kinases

Also Published As

Publication number Publication date
JPWO2011115271A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5794514B2 (en) Tumor angiogenesis inhibitor
JP2015173601A (en) Screening method for cancer stem cell proliferation inhibition material
JP2011032236A (en) Inhibitor for tumor neovascularization
JP7175526B2 (en) Preventive/therapeutic agents for diseases related to cell migration regulation and disease activity assessment/prognostic evaluation for pulmonary interstitial diseases
WO2010140694A1 (en) Method for screening of inhibitor using factor capable of enhancing production of amyloid-beta peptide, and inhibitor obtained by same
WO2017195809A1 (en) Expression inhibitor of inflammation promoting factor, screening method for active ingredient thereof, expression cassette useful for said method, diagnostic agent and diagnosis method
JP5669271B2 (en) Tumor angiogenesis inhibitor
WO2011115271A1 (en) Tumor angiogenesis inhibitor
WO2011040421A1 (en) Screening method
JP7450268B2 (en) Cancer stem cell markers and cancer stem cell targeting drugs
US20110027297A1 (en) Methods Involving MS4A12 and Agents Targeting MS4A12 for Therapy, Diagnosis and Testing
JP6226315B2 (en) Inflammatory disease preventive / therapeutic agent and screening method for inflammatory disease prophylactic / therapeutic agent
EP2123303A1 (en) Ameliorating agent for insulin resistance
WO2011115268A1 (en) Tumor angiogenesis inhibitor
WO2011019065A1 (en) Tumor angiogenesis inhibitor
JP6653120B2 (en) Anti-inflammatory drugs based on IKAROS inhibition
WO2016031996A1 (en) Prophylactic/therapeutic agent for arthritis, test kit for arthritis, and method for screening for prophylactic/therapeutic agent for arthritis
JP5176035B2 (en) Composition for cancer treatment using DREF as molecular target
WO2009084668A1 (en) Method of inhibiting cancer cell proliferation, proliferation inhibitor and screening method
JP2012135304A (en) Method for screening inhibitor by using factor for controlling production of amyloid beta
KR101862520B1 (en) Composition for prevention or treating cancer comprising inhibitors for expression or activity of ANKs1a, and screening method for thereof
JP2011105669A (en) Antitumor agent and method of screening antitumor agent
KR20170049024A (en) Composition for prevention or treating cancer comprising inhibitors for expression or activity of ANKs1a, and screening method for thereof
JP2010111623A (en) New use of sugar chain recognition receptor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505774

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756454

Country of ref document: EP

Kind code of ref document: A1