WO2011115069A1 - Exhaustive searching for crystals - Google Patents

Exhaustive searching for crystals Download PDF

Info

Publication number
WO2011115069A1
WO2011115069A1 PCT/JP2011/055958 JP2011055958W WO2011115069A1 WO 2011115069 A1 WO2011115069 A1 WO 2011115069A1 JP 2011055958 W JP2011055958 W JP 2011055958W WO 2011115069 A1 WO2011115069 A1 WO 2011115069A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
salt
amorphous
solvent
solvate
Prior art date
Application number
PCT/JP2011/055958
Other languages
French (fr)
Japanese (ja)
Inventor
克弘 小林
宏之 山脇
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2011115069A1 publication Critical patent/WO2011115069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/26Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an acyl radical attached to the ring nitrogen atom
    • C07D209/281-(4-Chlorobenzoyl)-2-methyl-indolyl-3-acetic acid, substituted in position 5 by an oxygen or nitrogen atom; Esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/80Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D211/84Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen directly attached to ring carbon atoms
    • C07D211/90Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention provides a method for easily and comprehensively preparing various salts of target compounds, their co-crystals, their solvates and their crystal forms, and the resulting salts, their co-crystals, their solvents
  • the present invention relates to a method for selecting a desired form from hydrates and their crystal forms.
  • salts and / or crystals with good solubility and stability are required as the drug substance form.
  • the drug substance forms that the drug can take include salts and solvates in addition to the free form, and furthermore, there are crystal polymorphs for each of these. Since the properties of a compound vary greatly depending on the state of the salt, solvation, and crystal polymorphism, selection of a preferred form of the compound is a very important matter particularly in the pharmaceutical field.
  • Non-Patent Documents 1 to 4 Examples of methods that can be used to obtain new salts of the target compounds and their co-crystals, their solvates, and / or their crystal forms include slurry methods, concentration methods, poor solvent addition methods, vapor diffusion methods, and cooling methods. And neutralization crystallization methods are known (for example, Non-Patent Documents 1 to 4).
  • the method of crystallizing a compound after dissolving it in a solution is not suitable for large-scale screening because it requires information on the solubility of the target compound in advance or requires a large amount of specimen. It is.
  • a method for screening a salt or crystal of a compound using a small amount of specimen high-throughput screening using a 96-well plate or the like using recrystallization, slurry purification, evaporation method, etc. has been developed (for example, non- According to Patent Document 2), recrystallization at a small scale, slurry purification, evaporation method and the like are difficult to adjust crystallization conditions, and anyone cannot easily perform crystallization screening with high reproducibility and high probability.
  • Non-patent Document 5 As for solvent vapor exposure, crystals are formed by exposing an amorphous lactose or erythromycin to solvent vapor (Non-patent Document 5), or by exposing co-crystals to various solvent vapors. (Non-Patent Document 6) is known.
  • a method for preparing various salts of a target compound, their co-crystals, their solvates and / or their crystal forms comprising: (1) A step of producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal or a solvate thereof; (2) exposing the amorphous or the low crystalline solid to solvent vapor; (3) analyzing the crystal form of the compound obtained in the step (2); and (4) changing the conditions of the solvent vapor exposure and repeating the steps (1) to (3) one or more times.
  • the method for producing the amorphous or low crystalline solid is [1], wherein the free form, a salt thereof, a co-crystal thereof or a solvate thereof is pulverized, cooled by cooling, freeze-dried or spray-dried.
  • a drug substance form can be quickly and easily examined by anyone easily and comprehensively with a high crystallization probability.
  • recovered in Example 1 is shown (solvent exposure time: 1 day).
  • recovered in Example 1 is shown (solvent exposure time: 1 week).
  • the representative powder X-ray diffraction pattern of the sample collected in Example 2 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 3 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 3 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 4 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 4 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown.
  • the representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown.
  • the present invention relates to a method for preparing various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising the following steps: (1) A step of producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal or a solvate thereof; (2) exposing the amorphous or the low crystalline solid to solvent vapor; (3) a step of analyzing the crystal form of the compound obtained in the step (2); and (4) a step of repeating the steps (1) to (3) one or more times while changing the conditions of the solvent vapor exposure.
  • the present invention also relates to a method of making various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising the following steps: (1a) producing a low crystalline solid of a free form or a salt thereof, or a free form, a salt thereof, a co-crystal thereof or a solvate thereof in the first container; (2a) placing the first container in a second container and exposing the amorphous or low crystalline solid to solvent vapor; (3a) analyzing the crystal form of the compound obtained in step (2a); (4a) A step of repeating the steps (1a) to (3a) one or more times while changing the conditions of solvent vapor exposure.
  • the “target compound” means an organic compound to be investigated for a salt, a solvate, a co-crystal or a crystal form.
  • the “target compound” refers to a compound in a free form that is neither a salt form nor a solvate form, or a guest ( guest) A host compound that is looking for a compound.
  • crystal polymorph or “polymorph” means that the same compound in the chlorination state or the solvation state has two or more different crystal structures, or each such crystal.
  • crystal polymorph or “polymorph” used for a co-crystal means a co-crystal having the same host compound-guest compound combination and the same chlorination state and solvation state. It has two or more different crystal structures, or each such crystal. Since polymorphs have different crystal structures, they may show different peak characteristics in X-ray crystal analysis and infrared spectroscopy, draw different TG / DTA curves, and have different melting points and moisture absorption / desorption behavior. Are known.
  • crystal form means that the free form or the portion of the host compound is a crystal of two common compounds, even if the chlorinated state or the solvated state, or the combination of the host compound and the guest compound is different. That means.
  • crystal polymorph and “polymorph” are included in the range of “crystal form”.
  • a certain free form compound X shows two kinds of crystal polymorphs as a free form, two kinds of crystal polymorphs as a sodium salt anhydrate, and two kinds as a sodium salt pentahydrate.
  • crystal forms respectively or collectively.
  • co-crystal refers to a crystal formed from a plurality of compounds, generally two compounds. Looking at the “co-crystal” at the molecular level, the molecules of the two types of compounds have a crystal structure with a regular arrangement. This “co-crystal” is known to have a different crystal structure from the crystals formed by each of the two types of compounds that form the co-crystal, and thus may exhibit different physiochemical properties. ing.
  • amorphous is also referred to as amorphous, and refers to an amorphous solid having no regular three-dimensional crystal structure. Whether or not the target compound is amorphous is, for example, when the compound is subjected to powder X-ray diffraction analysis, a specific peak does not exist and a broad powder X-ray diffraction profile (halo) is generated. It is confirmed to be amorphous.
  • low crystalline solid means a metastable crystal having a low powder X-ray diffraction peak, which does not show a broader powder X-ray diffraction profile as amorphous, but has a low powder X-ray diffraction peak. To do.
  • amorphous and “low crystalline solid” may be collectively referred to as amorphous or the like.
  • salt, co-crystal, solvate and / or crystal form thereof of “target compound” means free salt, free solvate, free form of target compound.
  • Amorphous and the like are appropriately selected in consideration of the thermal stability of a free form, a salt thereof, a co-crystal thereof, or a solvate thereof (hereinafter sometimes referred to as a free form). Can be done.
  • the lower limit of the amount of free body used for the production of amorphous or the like is not particularly limited, but may be at least 0.1 mg or more per one solvent exposure condition, and preferably 1 mg or more and 3 mg per one solvent exposure condition. As long as it is 5 mg or more, 6 mg or more, 7 mg or more, 8 mg or more, 9 mg or more, or 10 mg or more.
  • the upper limit of the amount of free body or the like is not particularly limited, and is determined depending on the amount of available free body or the like and the number of exposure conditions. Amorphous or the like may be produced for each solvent exposure condition, or a plurality of solvent exposure conditions may be produced together.
  • a method for preparing a plurality of solvent exposure conditions for a free body or the like for example, 1 to 10 g of a free body or the like is dissolved in 2 to 2000 mL of solvent, and the number of solvent exposure conditions to be examined The sample dissolved in the container may be divided and then processed so that amorphous or the like is formed.
  • the method for producing amorphous or the like is not limited to these.
  • a method of pulverizing a free body or the like a method of melting and cooling (sometimes referred to as a melting cooling method in this specification), and a method of freeze-drying.
  • a method of spraying and drying sometimes referred to as a spray-drying method in the present specification
  • a drying method is mentioned, More preferably, a freeze-drying method is mentioned.
  • a method for producing an amorphous compound is described in, for example, Ralph Hilfiker, Polymorphism, 2006, Willy-VCH Weinheim, p263-269.
  • what is necessary is just to use, when a free body etc. can be purchased as an amorphous etc.
  • an amorphous or the like can be prepared by a freeze-drying method.
  • amorphous materials such as free bodies by freeze-drying
  • the solution is frozen in liquid nitrogen or a low-temperature chamber, and then the solvent is gradually increased under reduced pressure. It can be freeze-dried by removing.
  • the solvent for dissolving the free form or the like is not particularly limited, and examples thereof include water, dioxane, dimethyl sulfoxide, methanol, acetonitrile, tetrahydrofuran, dimethylformamide, dimethylacetamide, chloroform, trifluoroethanol, and the like.
  • the water content is appropriately selected according to the free form or the like or the solvent to be used, and is not particularly limited.
  • a water content in the range of 5% to 95% can be mentioned, preferably 5 %, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% water content.
  • the water content means the ratio of the volume of water to the total volume of the solvent.
  • the mixing ratio of each solvent can be suitably determined according to a free body etc. or the solvent to mix.
  • the amount of the solvent is not particularly limited.
  • the solvent is 2 mL to 200 mL, preferably 10 mL to 100 mL with respect to 1 g of the free form.
  • the temperature at which the free form or the like is dissolved in the solvent is appropriately selected according to the free form or the like or the solvent used, and is not particularly limited, but is, for example, 5 ° C. to 60 ° C., preferably 15 ° C. to 40 ° C.
  • the temperature for lyophilization is appropriately selected according to the free form or the like or the solvent used, and is not particularly limited. For example, it is preferably ⁇ 80 ° C. to 60 ° C., more preferably ⁇ 60 to 40 ° C.
  • the time until lyophilization is appropriately selected according to the free form, the solvent used, and the lyophilization temperature, and is not particularly limited. For example, it is preferably 12 hours to 1 week, more preferably 1 day to 3 days.
  • an amorphous or the like can be created by a melting cooling method.
  • the melting and cooling method can obtain amorphous or the like by melting a free body or the like and then rapidly cooling it with liquid nitrogen or the like.
  • the metal container used in the melting and cooling method is not particularly limited, but is selected depending on the amount and properties of the free body.
  • an aluminum container for thermal analysis a platinum container, an aluminum foil and the like can be mentioned, and an aluminum container for thermal analysis is preferable.
  • the temperature for melting the free body or the like is selected in consideration of the stability of the free body or the like, and is, for example, from about the melting point to about 30 ° C. higher than the melting point, and preferably from the melting point to about 5 ° C. higher than the melting point.
  • a cooling method liquid nitrogen, dry ice, or a freezer can be used, but liquid nitrogen is preferable.
  • the amorphous body In order to handle amorphous at room temperature, it is necessary to return the cooled amorphous body or the like to room temperature. However, in order to suppress crystallization, the amorphous body is stored in a container with controlled humidity. For example, it is left in a container containing a desiccant such as silica gel or phosphorus pentoxide or in a thermo-hygrostat controlled at low humidity. Silica gel is preferable as the desiccant, and a constant temperature and humidity machine is also preferable.
  • the standing time is not particularly limited, but is about 10 minutes to about 1 day, preferably about 30 minutes to about 2 hours.
  • the step of producing the amorphous body such as the free body is preferably performed in a first container (where the first container is sized to be accommodated in the second container) as described later.
  • the free form may be chlorinated or co-crystallized.
  • the salt when preparing a crystalline form of a free-form salt, if the material to be used is a salt, the salt may be subjected to the above-described amorphization or low-crystallization step. Alternatively, after adding a base to salify the free form, the above-described amorphization or low crystallization may be performed. In addition, for example, when a crystal form of a co-crystal is produced, if the material used is a co-crystal, the co-crystal may be subjected to the above-described low crystallization step. If the material used is a host compound, After adding a co-crystal partner, the above-described low crystallization may be performed.
  • the timing of addition is before and after dissolving the target compound in the solvent. Any of these may be used, but it is preferable to add the target compound after dissolving it in a solvent.
  • the amount of acid or base to be added is not particularly limited, but is determined with reference to the number of dissociable groups and the pKa value of the target compound. For example, the amount is 0.75 to 2.0 equivalents, preferably 0.9 to 1.1 equivalents, with respect to the target compound having one dissociating group.
  • Step 2 relates to a step of exposing amorphous or the like to solvent vapor.
  • the solvent vapor exposure of the target compound such as amorphous is not limited to this method, but examples include the following method. First, a first container and a second container that is smaller than the first container and can be stored in the first container are prepared, an exposure solvent is put in the first container, and the amorphous or the like is put in the second container. Or place and leave each until exposure temperature conditions are reached. When each container is at an exposure temperature condition, the second container is placed in the first container without sealing.
  • the said exposure solvent is a liquid, the said solvent liquid is not made to contact amorphous etc.
  • the first container In a state where the second container is in the first container, the first container is sealed with a lid, a parafilm, or the like of the first container, so that the amorphous material in the second container or on the second container Etc. are exposed to the vapor of solvent that was in the first container. After the amorphous or the like is exposed to the solvent at the target temperature and time, the first container is opened and the crystals in the second container or on the second container exposed to the solvent can be collected.
  • the type of the first container is not particularly limited as long as it can accommodate the second container, and can be appropriately selected according to the nature and amount of the target compound.
  • the material of the first container is not particularly limited, and examples thereof include glass and metal containers, and can be appropriately selected according to the nature and amount of the target compound. Examples of the first container include a beaker, a vial bottle, a glass bottle, and a metal drum.
  • the method for sealing the first container is not particularly limited, and a container with a lid may be used, or sealing may be performed by plugging with a parafilm or the like.
  • the type of the second container is not particularly limited as long as amorphous or the like can be disposed and can be stored in the first container, and can be appropriately selected according to the property and amount of the target compound.
  • the material of the first container is not particularly limited, and examples thereof include glass and metal containers, and can be appropriately selected according to the nature and amount of the target compound.
  • Examples of the second container include a flask, a beaker, a test tube, a vial bottle, a glass bottle, a petri dish, or a plate.
  • the first container and the second container may be integrated or separable.
  • the first container and the second container for example, a commercially available square 96-well deep plate, an aluminum container for thermal analysis having the same size as the diameter of the well, and an aluminum container slightly smaller than the diameter of the well are combined. Can also be exposed to steam.
  • the aluminum container is placed in the middle of the well. stay.
  • Examples of the solvent exposed to vapor include anisole, acetone, 2-butanone, toluene, benzene, phenol, naphthalene, acetonitrile, dimethoxyethane, dimethoxymethane, chloroform, acetic acid, ethyl acetate, dioxane, dimethyl sulfoxide, tetrahydrofuran, 1-propanol.
  • 2-propanol, ethanol, methanol or water, or a mixed solvent thereof preferably acetone, toluene, benzene, phenol, naphthalene, acetonitrile, 2-dimethoxyethane, chloroform, acetic acid, ethyl acetate, 1,4- Examples thereof include dioxane, dimethyl sulfoxide, tetrahydrofuran, 1-propanol, 2-propanol, ethanol, methanol or water, or a mixed solvent thereof.
  • the solvent exposed to vapor includes benzene, phenol, naphthalene, acetic acid, 1,4-dioxane, dimethyl sulfoxide, or a mixed solvent thereof.
  • the solvent to be exposed to vapor is not limited to a solvent that is liquid at the exposure temperature, and may be a solid as long as it has a vapor pressure.
  • these polymorphs can be obtained by exposing a target compound, a salt thereof, an amorphous form of a co-crystal or the like to a vapor of these solvents.
  • the vapor exposure solvent in step 3 may be a mixed solvent of a solvent for screening polymorphs and a solvating solvent, and may be arbitrarily selected according to the purpose.
  • the temperature at the time of solvent vapor exposure can be appropriately selected depending on the solvent to be exposed, and is not particularly limited, but is, for example, ⁇ 20 ° C. to 80 ° C., preferably 5 ° C. to 60 ° C.
  • the preferred temperature and time of the solvent vapor exposure are 5 ° C. to 60 ° C. for 1 day to 4 days, preferably 5 ° C. to 40 ° C. for 2 days to 3 days.
  • the amount of the solvent put into the first container is not particularly limited, but is usually an amount from the amount covering the entire bottom of the first container to about 1 cm below the edge of the second container, preferably the first container The amount from about 1 cm from the bottom of the container to about 1 cm below the edge of the container. If the exposed solvent remains in the first container after the solvent is exposed to amorphous or the like, the solvent can be used for exposure of another amorphous or the like.
  • the analysis includes various devices useful for crystal analysis, such as a powder X-ray diffractometer well known to those skilled in the art of crystal chemistry, such as an infrared spectrometer, a thermal analyzer (TG / TDA), and water vapor adsorption.
  • a powder X-ray diffractometer well known to those skilled in the art of crystal chemistry
  • TG / TDA thermal analyzer
  • water vapor adsorption water vapor adsorption.
  • An analysis using a measuring device can be mentioned. These analyzes are described, for example, in Ralph Hilfiker, Polymorphism, 2006, Willy-VCH Weinheim, p43-207, edited by Stephen Byrn, et al., Solid-state Chemistry of Drug, 1999, SS45. Yes.
  • Step 4 relates to a step of repeating the steps (1) to (3) one or more times using conditions different from the previously used conditions of chlorination, cocrystallization or solvent vapor exposure for the target compound.
  • steps (1) to (3) using a plurality of exposed solvents, another type of crystal form of the target compound can be found, or different crystallization conditions can be used for the same crystal form. Can be found.
  • steps (1) to (3) can be repeated multiple times.
  • the number of times the steps (1) to (3) are repeated is preferably 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, or 100 times or more, preferably 30 times or more, 40 times More than once, 50 times or more or 100 times or more are more preferable. It is preferable that the steps (1) to (3) are repeated more frequently because the salt, crystal form, etc. of the target compound can be examined more comprehensively, and the choices for selecting the desired drug substance form are expanded.
  • the profile of the salt of the target compound, their co-crystals, their solvates or their crystal forms (Sometimes referred to herein as a compound profile)
  • the preferred salt of the target compound, their co-crystals, their solvates and / or their crystal forms You can choose.
  • another aspect of the present invention provides a step of creating a profile of the target compound using the result of step (3) and the results obtained by repeating steps (1) to (3) one or more times, and Selecting a preferred salt of the target compound, their co-crystal, their solvate and / or their crystal form using a profile, preferred salt of the target compound, their co-crystal, their solvation
  • the invention relates to a method for selecting products and / or their crystal forms.
  • the method of the present invention can easily perform a large number of crystallization conditions for a desired compound with a small amount of sample without using complicated operations. This facilitates the creation of profiles relating to the salt, co-crystal, solvate and crystal form of the target compound.
  • An exhaustive search of the present invention enables the creation of a more detailed compound profile of the target compound. By using the detailed compound profile obtained by the method of the present invention, it is possible to select a preferable crystal form without further analyzing each crystal form by elemental analysis or the like.
  • the salt, co-crystal, solvate and crystal form of the target compound can all be screened at the same time, or desired items can be screened according to the purpose.
  • one compound can be screened for salt forms and crystal forms of those salt forms (see, eg, Example 3 or Example 4), and another compound can be co-crystal form. And their co-crystal forms can also be screened (see, eg, Example 5).
  • Table 1 shows the results of indomethacin crystal search created from the powder X-ray diffraction results.
  • the alphabetical notation from a to d in Table 1 indicates the pattern of the powder X-ray diffraction profile, and the same alphabetical notation indicates that the powder X-ray diffraction profiles are similar to each other. * Indicates that the solid was amorphous. The parentheses indicate that although the crystal form was identified, the powder X-ray diffraction peak was weak and the crystallinity was low.
  • Cholic acid crystal search Cholic acid crystal polymorphism screening was performed under 96 solvents and 3 temperature conditions.
  • Cholic acid (1.20 g, 0.561 mmol) was dissolved in 30 mL of a 1,4-dioxane / dimethylsulfoxide (volume ratio: 5/1) mixed solution, and 100 ⁇ L was dispensed into 288 HPLC vials. These vials were placed in a lyophilizer, and the dispensed solution was lyophilized while changing the shelf temperature from ⁇ 45 ° C. to 40 ° C.
  • Table 2 shows the results of crystal search for cholic acid prepared from the results of powder X-ray diffraction.
  • the alphabetical notation from A to L in Table 2 indicates the pattern of the powder X-ray diffraction profile, and the same alphabetical notation indicates that the powder X-ray diffraction profiles are similar to each other.
  • Low indicates that the solid was low crystalline
  • * indicates that the solid was amorphous
  • Can indicates that the specimen was candy-like.
  • the salt was obtained as a solid as monohydrochloride, hydrobromide, mononitrate, fumarate, and oxalate.
  • Table 3 shows the results of searching for the salt and crystal form of nicardipine prepared from the results of powder X-ray diffraction.
  • the salt type and its crystal form are distinguished using the salt type abbreviations (HCl, HBr, HNO, Fum or Oxa) and alphabetical notation from A to D.
  • the same alphabetical letters at the end indicate that the powder X-ray diffraction profiles are homologous to each other.
  • monohydrobromide exposed to solvent vapor in dichloromethane or ethyl acetate are both labeled as HBr_A, indicating that both powder X-ray diffraction profiles were homologous.
  • HCl_B and HBr_B have the same alphabet at the end, but the types of salt differ between monohydrochloride and monohydrobromide, so the powder X-ray diffraction profiles do not correspond to each other.
  • Sulfasalazine 400 mg, 1 mmol is dissolved in 10 mL of 1,4-dioxane / dimethyl sulfoxide (volume ratio: 50/50), and this solution is added to 1200 ⁇ l (equivalent to 48 mg, equivalent to 0.123 ⁇ mol) in 8 glass sample tubes. Each was dispensed. None was added to one of these tubes, and it was directly subjected to the next freeze-drying step.
  • Table 4 shows the results of searching for alkali metals and alkaline earth metal salts of sulfasalazine and their crystal forms prepared from the results of powder X-ray diffraction.
  • the salt type and its crystal form are distinguished by using the salt type abbreviations (Fr, Li, Na, K, HMg, HCa, HZn, or TAl) and the alphabetical notation from A to F.
  • the salt type is the same, the same alphabetical letters at the end indicate that the powder X-ray diffraction profiles are homologous to each other.
  • monolithium salts exposed to solvent vapor in acetonitrile or acetone are both labeled LiA, indicating that both powder X-ray diffraction profiles were homologous.
  • the salt types are different, their powder X-ray diffraction profiles are not relevant even if the alphabetical suffix is the same.
  • LiA and HCaA have the same alphabet at the end, the powder X-ray diffraction profiles do not correspond to each other because the type of salt differs between 1 lithium salt and 1/2 calcium salt.
  • the peak positions of the powder X-ray diffraction are slightly different from each other, those that are homologous as an overall profile are distinguished by numbers described after the alphabet.
  • the monosodium salt two types of powder X-ray diffraction profiles that are totally homologous were obtained (NaA1 and NaA2) although the peak positions of the powder X-ray diffraction were slightly different from each other.
  • Piroxicam 1000 mg, 3.018 mmol was dissolved in a dioxane solution (60 mL), and this was dispensed in 1680 ⁇ l portions into 32 glass sample tubes. Further, 1 equivalent each of water of a co-crystal partner or a mixed solution of 1,4-dioxane / dimethyl sulfoxide (volume ratio 50:50) was added. When a precipitate was deposited, water or dimethyl sulfoxide was added to obtain a uniform solution. These 32 sample tubes were stirred with a vortex mixer for about 10 minutes, and each sample tube was then dispensed in 7 HPLC vials to an equal volume. A total of 224 HPLC vials prepared in this manner were placed in a freeze dryer, and freeze-dried while changing the shelf temperature from ⁇ 45 ° C. to 25 ° C.
  • Table 5 shows the co-crystals of piroxicam prepared from the results of powder X-ray diffraction and the results of searching for these crystal forms.
  • the co-crystal partners and their crystal forms are distinguished by using the abbreviations of the co-crystal partners (Fr to Pgt) and alphabetical notations from A to F. If the co-crystal partners are the same, those with the same alphabetical letter at the end indicate that they have powder X-ray diffraction profiles that are homologous to each other.
  • the co-crystals of piroxicam and oxalic acid exposed to solvent vapor in tetrahydrofuran or methanol are both labeled OxaA, indicating that both powder X-ray diffraction profiles were homologous.
  • the co-crystal partners are different, their powder X-ray diffraction profiles are not relevant even if the alphabetical suffix is the same. For example, FumA and MleA have the same alphabet at the end, but the powder X-ray diffraction profiles do not correspond to each other because the co-crystal partners are different between fumaric acid and maleic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed is a method for preparing the various salts of a target compound, the co-crystal of the salts, the solvate of the salts and the co-crystal, and/or the crystal form of the salts, the co-crystal and the solvate, which involves: a step (1) for preparing an amorphous of a free form or the salt thereof, or a low-crystallinity solid of the free form, the salt thereof, the co-crystal of the free form and the salt, or the solvate of the free form, the salt and the co-crystal; a step (2) for exposing said amorphous or said low-crystallinity solid to a solvent vapor; a step (3) for analyzing the crystal form of the compound obtained in step (2); and a step (4) for repeating steps (1) to (3) for no less than one time by varying the solvent vapor exposure conditions.

Description

結晶の網羅的探索Comprehensive search for crystals
 本発明は、目的化合物の多様な塩、それらの共結晶、それらの溶媒和物およびそれらの結晶形を簡便に網羅的に作製する方法、ならびに得られた塩、それらの共結晶、それらの溶媒和物およびそれらの結晶形から所望の形態を選択する方法に関する。 The present invention provides a method for easily and comprehensively preparing various salts of target compounds, their co-crystals, their solvates and their crystal forms, and the resulting salts, their co-crystals, their solvents The present invention relates to a method for selecting a desired form from hydrates and their crystal forms.
 良好な医薬品を迅速に開発するには、溶解性や安定性の良好な塩および/または結晶を原薬形態とすることが求められる。薬物の取り得る原薬形態としては、フリー体以外に塩や溶媒和物などがあり、さらに、これらそれぞれについて結晶多形がある。化合物は、塩や溶媒和の状態、さらにはその結晶多形によって性質が大きく変わるため、化合物の好ましい形態を選択することは特に医薬品の分野において非常に重要な事項になっている。 In order to rapidly develop good pharmaceuticals, it is required to use salts and / or crystals with good solubility and stability as the drug substance form. The drug substance forms that the drug can take include salts and solvates in addition to the free form, and furthermore, there are crystal polymorphs for each of these. Since the properties of a compound vary greatly depending on the state of the salt, solvation, and crystal polymorphism, selection of a preferred form of the compound is a very important matter particularly in the pharmaceutical field.
 目的化合物の新しい塩やそれらの共結晶、それらの溶媒和物および/またはそれらの結晶形を得るために試みられる方法としては、スラリー法、濃縮法、貧溶媒添加法、蒸気拡散法、冷却法や中和晶析法などが知られている(例えば、非特許文献1~4)。 Examples of methods that can be used to obtain new salts of the target compounds and their co-crystals, their solvates, and / or their crystal forms include slurry methods, concentration methods, poor solvent addition methods, vapor diffusion methods, and cooling methods. And neutralization crystallization methods are known (for example, Non-Patent Documents 1 to 4).
 スラリー法や再結晶といった化合物を溶液に溶解させた後に結晶化させる方法は、予め目的化合物の溶解度に関する情報が必要であったり、多くの検体量を必要としたりするので大規模なスクリーニングには不向きである。少量の検体を用いて化合物の塩や結晶をスクリーニングする方法としては、再結晶、スラリー精製、エバポレーション法等を応用した96穴プレート等を用いたハイスループットスクリーニングが開発されている(例えば、非特許文献2)が、少スケールでの再結晶、スラリー精製、エバポレーション法等は、結晶化の条件調節が難しく、誰でも簡便に再現性良く高い確率で結晶化スクリーニングができる訳では無かった。 The method of crystallizing a compound after dissolving it in a solution, such as a slurry method or recrystallization, is not suitable for large-scale screening because it requires information on the solubility of the target compound in advance or requires a large amount of specimen. It is. As a method for screening a salt or crystal of a compound using a small amount of specimen, high-throughput screening using a 96-well plate or the like using recrystallization, slurry purification, evaporation method, etc. has been developed (for example, non- According to Patent Document 2), recrystallization at a small scale, slurry purification, evaporation method and the like are difficult to adjust crystallization conditions, and anyone cannot easily perform crystallization screening with high reproducibility and high probability.
 また、溶媒蒸気曝露については、ラクトースまたはエリスロマイシンのアモルファスを溶媒蒸気に曝露させることで結晶が生成すること(非特許文献5)や共結晶を種々の溶媒蒸気に曝露させることで結晶の転移が起こること(非特許文献6)が知られている。 As for solvent vapor exposure, crystals are formed by exposing an amorphous lactose or erythromycin to solvent vapor (Non-patent Document 5), or by exposing co-crystals to various solvent vapors. (Non-Patent Document 6) is known.
 医薬品開発においては、候補化合物が得られるとできるだけ多くの塩、共結晶、それらの溶媒和物およびそれらの結晶形を迅速に調べ、その中から適切なものを原薬形態として選択することが重要である。しかしこれまでは、化合物の塩、それらの共結晶、それらの溶媒和物およびそれらの結晶形を、迅速かつ容易に、誰でも高い結晶化確率で網羅的に作製し、それらの中から所望のものを選択できるようなスクリーニング方法は提供されておらず、限られた結晶化条件下で得られた限られた数の塩、それらの共結晶、それらの溶媒和物またはそれらの結晶形の中から開発する形態を選択するしかなかった。 In drug development, when candidate compounds are obtained, it is important to quickly investigate as many salts, co-crystals, solvates and crystal forms as possible, and to select the appropriate one as the drug substance form. It is. However, until now, the salts of compounds, their co-crystals, their solvates and their crystal forms have been prepared quickly and easily by anyone with high crystallization probability, and the desired There is no screening method available to select one, and within a limited number of salts, their co-crystals, their solvates or their crystal forms obtained under limited crystallization conditions. There was no choice but to select the form to develop from.
本発明は、以下に関する。
[1]目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下:
 (1)フリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
 (2)該アモルファスまたは該低結晶性固体を溶媒蒸気に曝露させる工程;
 (3)該工程(2)で得た化合物の結晶形態を分析する工程;および
 (4)該溶媒蒸気曝露の条件を変えて該工程(1)~(3)を1回以上繰り返す工程
を含む、方法;
[2]前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の粉砕、融解冷却、凍結乾燥または噴霧乾燥である、[1]に記載の方法;
[3]前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の凍結乾燥である、[2]に記載の方法;
[4]前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物を水、1,4-ジオキサン、ジメチルスルホキシド、含水1,4-ジオキサン、ジメチルスルホキシド/1,4-ジオキサン混合溶媒または水/ジメチルスルホキシド/1,4-ジオキサンに溶解させ、次いで、凍結乾燥させてアモルファスまたは低結晶性固体を作製する、[3]に記載の方法;
[5]前記工程(4)において該工程(1)~(3)を少なくとも10回以上繰り返す、[4]に記載の方法;
[6]前記工程(1)の前に、(1-1)目的化合物の塩化または共結晶化工程を含む、[5]に記載の方法;
[7][1]~[6]のいずれか1項に記載の方法で得られた、目的化合物の塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形;
[8]目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下:
 (1a)第1の容器中でフリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
 (2a)該第1の容器を第2の容器に入れ、該アモルファスまたは低結晶性固体を溶媒蒸気に曝露させる工程;
 (3a)工程(2a)で得た化合物の結晶形態を分析する工程;
 (4a)溶媒蒸気曝露の条件を変えて該工程(1a)~(3a)を1回以上繰り返す工程
を含む、方法;
[9]前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の粉砕、融解冷却、凍結乾燥または噴霧乾燥である、[8]に記載の方法;
[10]前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の凍結乾燥である、[9]に記載の方法;
[11]フリー体、その塩、それらの共結晶またはそれらの溶媒和物を水、1,4-ジオキサン、ジメチルスルホキシド、含水1,4-ジオキサン、ジメチルスルホキシド/1,4-ジオキサン混合溶媒または水/ジメチルスルホキシド/1,4-ジオキサンに溶解させ、次いで、第1の容器中で凍結乾燥させてアモルファスまたは低結晶性固体を作製する、[10]に記載の方法;
[12]前記工程(4)において該工程(1)~(3)を少なくとも10回以上繰り返す、[11]に記載の方法;
[13]前記工程(1a)の前に、(1a-1)目的化合物を塩化または共結晶化させる工程を含む、[12]に記載の方法;
[14][8]~13]のいずれか1項に記載の方法で得られた、目的化合物の塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形。
The present invention relates to the following.
[1] A method for preparing various salts of a target compound, their co-crystals, their solvates and / or their crystal forms, comprising:
(1) A step of producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal or a solvate thereof;
(2) exposing the amorphous or the low crystalline solid to solvent vapor;
(3) analyzing the crystal form of the compound obtained in the step (2); and (4) changing the conditions of the solvent vapor exposure and repeating the steps (1) to (3) one or more times. ,Method;
[2] The method for producing the amorphous or low crystalline solid is [1], wherein the free form, a salt thereof, a co-crystal thereof or a solvate thereof is pulverized, cooled by cooling, freeze-dried or spray-dried. Described method;
[3] The method according to [2], wherein the method for producing the amorphous or low crystalline solid is lyophilization of the free form, a salt thereof, a co-crystal thereof or a solvate thereof;
[4] Water, 1,4-dioxane, dimethyl sulfoxide, hydrous 1,4-dioxane, dimethyl sulfoxide / 1,4-dioxane mixed solvent or the free form, its salt, co-crystal or solvate thereof The method according to [3], which is dissolved in water / dimethyl sulfoxide / 1,4-dioxane and then lyophilized to produce an amorphous or low crystalline solid;
[5] The method according to [4], wherein the steps (1) to (3) are repeated at least 10 times in the step (4);
[6] The method according to [5], including (1-1) a step of chlorinating or co-crystallizing the target compound before the step (1);
[7] A salt of the target compound, a co-crystal, a solvate thereof, and / or a crystal form thereof obtained by the method according to any one of [1] to [6];
[8] A method for preparing various salts of the target compound, their co-crystals, their solvates and / or their crystal forms, comprising:
(1a) producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal thereof or a solvate thereof in the first container;
(2a) placing the first container in a second container and exposing the amorphous or low crystalline solid to solvent vapor;
(3a) analyzing the crystal form of the compound obtained in step (2a);
(4a) A method comprising the step of repeating the steps (1a) to (3a) one or more times while changing the conditions of solvent vapor exposure;
[9] The method for producing the amorphous or low crystalline solid is [8], wherein the free form, a salt thereof, a co-crystal thereof, or a solvate thereof is pulverized, melt-cooled, freeze-dried or spray-dried. Described method;
[10] The method according to [9], wherein the method for producing the amorphous or low crystalline solid is lyophilization of the free form, a salt thereof, a co-crystal thereof, or a solvate thereof;
[11] Water, 1,4-dioxane, dimethyl sulfoxide, hydrous 1,4-dioxane, dimethyl sulfoxide / 1,4-dioxane mixed solvent or water in a free form, a salt thereof, a co-crystal or a solvate thereof The method according to [10], wherein the method is dissolved in / dimethylsulfoxide / 1,4-dioxane and then lyophilized in a first container to produce an amorphous or low crystalline solid;
[12] The method according to [11], wherein the steps (1) to (3) are repeated at least 10 times in the step (4);
[13] The method according to [12], which comprises the step of (1a-1) chlorination or cocrystallization of the target compound before the step (1a);
[14] A salt of the target compound, a co-crystal, a solvate thereof, and / or a crystal form thereof obtained by the method according to any one of [8] to [13].
 本発明により、原薬形態を、迅速、容易、かつ誰でも高い結晶化確率で簡便にかつ網羅的に調べることが可能になる。 DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a drug substance form can be quickly and easily examined by anyone easily and comprehensively with a high crystallization probability.
実施例1で回収されたサンプルの粉末X線回折パターンを示す(溶媒曝露時間:1日)。The powder X-ray diffraction pattern of the sample collect | recovered in Example 1 is shown (solvent exposure time: 1 day). 実施例1で回収されたサンプルの粉末X線回折パターンを示す(溶媒曝露時間:1週間)。The powder X-ray diffraction pattern of the sample collect | recovered in Example 1 is shown (solvent exposure time: 1 week). 実施例2で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 2 is shown. 実施例3で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 3 is shown. 実施例3で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 3 is shown. 実施例4で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 4 is shown. 実施例4で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 4 is shown. 実施例5で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown. 実施例5で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown. 実施例5で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown. 実施例5で回収されたサンプルの代表的な粉末X線回折パターンを示す。The representative powder X-ray diffraction pattern of the sample collected in Example 5 is shown.
 本発明は、目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下の工程を包含する方法に関する:
 (1)フリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
 (2)該アモルファスまたは該低結晶性固体を溶媒蒸気に曝露させる工程;
 (3)該工程(2)で得た化合物の結晶形態を分析する工程;および
 (4)該溶媒蒸気曝露の条件を変えて該工程(1)~(3)を1回以上繰り返す工程。
The present invention relates to a method for preparing various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising the following steps:
(1) A step of producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal or a solvate thereof;
(2) exposing the amorphous or the low crystalline solid to solvent vapor;
(3) a step of analyzing the crystal form of the compound obtained in the step (2); and (4) a step of repeating the steps (1) to (3) one or more times while changing the conditions of the solvent vapor exposure.
 本発明はまた、目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下の工程を包含する方法に関する:
 (1a)第1の容器中でフリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
 (2a)該第1の容器を第2の容器に入れ、該アモルファスまたは低結晶性固体を溶媒蒸気に曝露させる工程;
 (3a)工程(2a)で得た化合物の結晶形態を分析する工程;
 (4a)溶媒蒸気曝露の条件を変えて該工程(1a)~(3a)を1回以上繰り返す工程。
The present invention also relates to a method of making various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising the following steps:
(1a) producing a low crystalline solid of a free form or a salt thereof, or a free form, a salt thereof, a co-crystal thereof or a solvate thereof in the first container;
(2a) placing the first container in a second container and exposing the amorphous or low crystalline solid to solvent vapor;
(3a) analyzing the crystal form of the compound obtained in step (2a);
(4a) A step of repeating the steps (1a) to (3a) one or more times while changing the conditions of solvent vapor exposure.
 本明細書において、「目的化合物」とは、塩、溶媒和物、共結晶または結晶形について調べようとしている有機化合物のことをいう。本明細書において、「目的化合物」とは、特に記載されない限り、塩の形態でも溶媒和物の形態でもないフリー体の形態の化合物をいうか、または共結晶に関して使用される場合は、ゲスト(guest)化合物を探しているホスト(host)化合物のことをいう。 In the present specification, the “target compound” means an organic compound to be investigated for a salt, a solvate, a co-crystal or a crystal form. In the present specification, unless otherwise specified, the “target compound” refers to a compound in a free form that is neither a salt form nor a solvate form, or a guest ( guest) A host compound that is looking for a compound.
 本明細書において、「結晶多形」または「多形」とは、塩化の状態も溶媒和の状態も同じ化合物が2以上の異なる結晶構造を有すること、または、そのような各結晶のことをいう。また、本明細書において、共結晶に関して使用される「結晶多形」または「多形」とは、ホスト化合物-ゲスト化合物の組み合わせが同じでかつ塩化の状態も溶媒和の状態も同じ共結晶が、2以上の異なる結晶構造を有すること、または、そのような各結晶のことをいう。多形は、それぞれ結晶構造が異なるので、X線結晶分析や赤外分光装置においてそれぞれ異なるピーク特徴を示したり、異なるTG/DTA曲線を描いたり、融点や吸脱湿挙動が異なったりすることが知られている。 In this specification, the “crystal polymorph” or “polymorph” means that the same compound in the chlorination state or the solvation state has two or more different crystal structures, or each such crystal. Say. Further, in this specification, “crystal polymorph” or “polymorph” used for a co-crystal means a co-crystal having the same host compound-guest compound combination and the same chlorination state and solvation state. It has two or more different crystal structures, or each such crystal. Since polymorphs have different crystal structures, they may show different peak characteristics in X-ray crystal analysis and infrared spectroscopy, draw different TG / DTA curves, and have different melting points and moisture absorption / desorption behavior. Are known.
 本明細書において、「結晶形」とは、塩化の状態または溶媒和の状態、あるいはホスト化合物-ゲスト化合物の組み合わせは異なっていても、フリー体あるいはホスト化合物の部分は共通する化合物どうしの結晶のことをいう。本明細書において、「結晶多形」および「多形」は、「結晶形」の範囲に含まれる。例えば、本明細書において、あるフリー体化合物Xが、フリー体として2種類の結晶多形を示し、ナトリウム塩無水和物として2種類の結晶多形を示し、ナトリウム塩5水和物として2種類の結晶多形を示し、あるゲスト化合物との共結晶として2種類の結晶多形を示す場合、これら8種類の結晶多形を、それぞれまたは総称して、結晶形と呼ぶ。 In this specification, the “crystal form” means that the free form or the portion of the host compound is a crystal of two common compounds, even if the chlorinated state or the solvated state, or the combination of the host compound and the guest compound is different. That means. In the present specification, “crystal polymorph” and “polymorph” are included in the range of “crystal form”. For example, in the present specification, a certain free form compound X shows two kinds of crystal polymorphs as a free form, two kinds of crystal polymorphs as a sodium salt anhydrate, and two kinds as a sodium salt pentahydrate. When two crystal polymorphs are shown as a co-crystal with a certain guest compound, these eight types of crystal polymorphs are referred to as crystal forms, respectively or collectively.
 本明細書において、「共結晶」とは、複数の化合物、一般的には2つの化合物とで形成される結晶のことをいう。「共結晶」を分子レベルでみると、2種類の化合物の分子が規則正しい配列により結晶構造を有している。この「共結晶」は、共結晶のもとになった2種類の化合物それぞれによって形成される結晶とは異なる結晶構造を有し、それゆえ異なる生理化学的性質を呈する場合があることが知られている。 As used herein, “co-crystal” refers to a crystal formed from a plurality of compounds, generally two compounds. Looking at the “co-crystal” at the molecular level, the molecules of the two types of compounds have a crystal structure with a regular arrangement. This “co-crystal” is known to have a different crystal structure from the crystals formed by each of the two types of compounds that form the co-crystal, and thus may exhibit different physiochemical properties. ing.
 本明細書において、「アモルファス」とは、無定形とも呼ばれ、規則的な三次元の結晶構造を持たない非晶質固体のことをいう。目的の化合物がアモルファスであるかどうかは、例えば、当該化合物を粉末X線回折解析にかけた場合に、特定のピークが存在せずブロードな粉末X線回折のプロファイル(ハロー)が生成される場合、アモルファスであることが確認される。 In this specification, “amorphous” is also referred to as amorphous, and refers to an amorphous solid having no regular three-dimensional crystal structure. Whether or not the target compound is amorphous is, for example, when the compound is subjected to powder X-ray diffraction analysis, a specific peak does not exist and a broad powder X-ray diffraction profile (halo) is generated. It is confirmed to be amorphous.
 本明細書において、「低結晶性固体」とは、アモルファスほどブロードな粉末X線回折のプロファイルは示さないが、粉末X線回折のピークが弱い、結晶性の低い準安定な結晶のことを意味する。 In the present specification, “low crystalline solid” means a metastable crystal having a low powder X-ray diffraction peak, which does not show a broader powder X-ray diffraction profile as amorphous, but has a low powder X-ray diffraction peak. To do.
 本明細書において、「アモルファス」および「低結晶性固体」を総称して、アモルファス等と称する場合がある。 In this specification, “amorphous” and “low crystalline solid” may be collectively referred to as amorphous or the like.
 本明細書において、「目的化合物」の「塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形」とは、目的化合物のフリー体の塩、フリー体の溶媒和物、フリー体の塩の溶媒和物、フリー体の結晶形、フリー体の塩の結晶形、フリー体の溶媒和物の結晶形、フリー体の塩の溶媒和物の結晶形、フリー体の共結晶パートナー(ゲスト化合物)、フリー体の塩の共結晶パートナー(ゲスト化合物)、フリー体の共結晶の溶媒和物、フリー体の塩の共結晶の溶媒和物、フリー体の共結晶の結晶形、フリー体の塩の共結晶の結晶形、フリー体の共結晶の溶媒和物の結晶形およびフリー体の塩の共結晶の溶媒和物の結晶形からなる群から選択される形態を作製することを意味する。 In the present specification, “salt, co-crystal, solvate and / or crystal form thereof” of “target compound” means free salt, free solvate, free form of target compound. Solvates of free-form salts, free-form crystal forms, free-form salt crystal forms, free-form solvate crystal forms, free-form salt solvate crystal forms, free-form co-crystal partners (Guest compound), Free-form salt co-crystal partner (Guest compound), Free-form co-crystal solvate, Free-form salt co-crystal solvate, Free-form co-crystal crystal form, Free Producing a form selected from the group consisting of a crystalline form of a co-crystal of a free-form salt, a crystalline form of a solvate of a free-form co-crystal, and a crystalline form of a solvate of a free-form salt co-crystal means.
 以下に、本発明の各工程について詳述する。 Hereinafter, each step of the present invention will be described in detail.
 (工程1)
 アモルファス等の作製は、フリー体、その塩、それらの共結晶またはそれらの溶媒和物(以下、本明細書中、フリー体等と称する場合がある。)の熱安定性を考慮して適宜選択され得る。アモルファス等の作製に用いられるフリー体等の量の下限は、特に限定されないが、1つの溶媒曝露条件につき少なくとも0.1mg以上あればよく、好ましくは、1つの溶媒曝露条件につき、1mg以上、3mg以上、5mg以上、6mg以上、7mg以上、8mg以上、9mg以上または10mg以上あればよい。フリー体等の量の上限は、特に限定されず、入手可能なフリー体等の量及び曝露条件の数に依存して決定される。アモルファス等は、1つの溶媒曝露条件毎に作製してもよいし、複数の溶媒曝露条件分をまとめて作製してもよい。フリー体等のアモルファス等を複数の溶媒曝露条件分をまとめて作製する方法としては、例えば、1~10gのフリー体等を2~2000mLの溶媒に溶解し、検討したい溶媒曝露条件分の数の容器に溶解した検体を分け、その後、アモルファス等が形成されるように処理すればよい。
(Process 1)
Amorphous and the like are appropriately selected in consideration of the thermal stability of a free form, a salt thereof, a co-crystal thereof, or a solvate thereof (hereinafter sometimes referred to as a free form). Can be done. The lower limit of the amount of free body used for the production of amorphous or the like is not particularly limited, but may be at least 0.1 mg or more per one solvent exposure condition, and preferably 1 mg or more and 3 mg per one solvent exposure condition. As long as it is 5 mg or more, 6 mg or more, 7 mg or more, 8 mg or more, 9 mg or more, or 10 mg or more. The upper limit of the amount of free body or the like is not particularly limited, and is determined depending on the amount of available free body or the like and the number of exposure conditions. Amorphous or the like may be produced for each solvent exposure condition, or a plurality of solvent exposure conditions may be produced together. As a method for preparing a plurality of solvent exposure conditions for a free body or the like, for example, 1 to 10 g of a free body or the like is dissolved in 2 to 2000 mL of solvent, and the number of solvent exposure conditions to be examined The sample dissolved in the container may be divided and then processed so that amorphous or the like is formed.
 アモルファス等の作製方法としては、これらに限定されないが、例えば、フリー体等を粉砕する方法、融解し冷却する方法(本明細書中、融解冷却法と称する場合がある。)、凍結乾燥させる方法(本明細書中、凍結乾燥法と称する場合がある。)または噴霧し乾燥させる方法(本明細書中、噴霧乾燥法と称する場合がある。)が挙げられ、好ましくは、融解冷却法または凍結乾燥法が挙げられ、より好ましくは、凍結乾燥法が挙げられる。化合物のアモルファス等を作製する方法としては、例えば、Ralph Hilfiker編、Polymorphism、2006、Willy-VCH Weinheim、p263-269に記載されている。また、フリー体等がアモルファス等として購入可能な場合はそれを用いればよい。 The method for producing amorphous or the like is not limited to these. For example, a method of pulverizing a free body or the like, a method of melting and cooling (sometimes referred to as a melting cooling method in this specification), and a method of freeze-drying. (Sometimes referred to as a freeze-drying method in the present specification) or a method of spraying and drying (sometimes referred to as a spray-drying method in the present specification). A drying method is mentioned, More preferably, a freeze-drying method is mentioned. A method for producing an amorphous compound is described in, for example, Ralph Hilfiker, Polymorphism, 2006, Willy-VCH Weinheim, p263-269. Moreover, what is necessary is just to use, when a free body etc. can be purchased as an amorphous etc.
 例えば、フリー体等のTG-DTA測定を実施し、融解直後に分解による重量減少が観察された場合は、凍結乾燥法によりアモルファス等を作成することができる。凍結乾燥法によりフリー体等のアモルファス等を作製する場合、フリー体等を溶媒に溶解した後、液体窒素や低温庫で溶液を凍結させた後、減圧条件下、温度を徐々に上昇させながら溶媒を除くことで凍結乾燥させることができる。 For example, when a TG-DTA measurement of a free body or the like is performed and a weight reduction due to decomposition is observed immediately after melting, an amorphous or the like can be prepared by a freeze-drying method. When producing amorphous materials such as free bodies by freeze-drying, after free bodies are dissolved in a solvent, the solution is frozen in liquid nitrogen or a low-temperature chamber, and then the solvent is gradually increased under reduced pressure. It can be freeze-dried by removing.
 凍結乾燥法において、フリー体等を溶解させる溶媒としては、特に限定されないが、例えば、水、ジオキサン、ジメチルスルホキシド、メタノール、アセトニトリル、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、トリフルオロエタノールなど、またはこれらの混合溶媒(例えば、含水溶媒)が挙げられ、好ましくは、水、ジオキサン、含水ジオキサン、ジメチルスルホキシド、ジオキサン/ジメチルスルホキシド混合溶媒、水/ジオキサン/ジメチルスルホキシド混合溶媒、メタノール、アセトニトリル、テトラヒドロフラン、含水テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、クロロホルム、トリフルオロエタノールが挙げられ、より好ましくは、水、1,4-ジオキサン、含水1,4-ジオキサン、1,4-ジオキサン/ジメチルスルホキシド混合溶媒、水/1,4-ジオキサン/ジメチルスルホキシド混合溶媒が挙げられる。当該溶媒が含水溶媒である場合、含水率はフリー体等または用いる溶媒に応じて適宜選択され、特に限定されないが、例えば、5%~95%の範囲の含水率が挙げられ、好ましくは、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%または95%の含水率の溶媒が挙げられる。ここで、含水率とは、溶媒全容量に対する水の容量の割合をいう。当該溶媒が混合溶媒である場合、各溶媒の混合比率は、フリー体等または混合させる溶媒に応じて適宜決定され得る。当該溶媒の量は特に限定されないが、例えば、フリー体等1gに対し、溶媒2mL~200mL、好ましくは、10mL~100mLである。 In the lyophilization method, the solvent for dissolving the free form or the like is not particularly limited, and examples thereof include water, dioxane, dimethyl sulfoxide, methanol, acetonitrile, tetrahydrofuran, dimethylformamide, dimethylacetamide, chloroform, trifluoroethanol, and the like. And preferably include water, dioxane, hydrous dioxane, dimethyl sulfoxide, dioxane / dimethyl sulfoxide mixed solvent, water / dioxane / dimethyl sulfoxide mixed solvent, methanol, acetonitrile, tetrahydrofuran, hydrous tetrahydrofuran Dimethylformamide, dimethylacetamide, chloroform, trifluoroethanol, more preferably water, 1,4-dioxa , Hydrous 1,4-dioxane, 1,4-dioxane / dimethyl sulfoxide mixed solvent include water / 1,4-dioxane / dimethyl sulfoxide mixed solvent. When the solvent is a water-containing solvent, the water content is appropriately selected according to the free form or the like or the solvent to be used, and is not particularly limited. For example, a water content in the range of 5% to 95% can be mentioned, preferably 5 %, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 95% water content. Here, the water content means the ratio of the volume of water to the total volume of the solvent. When the said solvent is a mixed solvent, the mixing ratio of each solvent can be suitably determined according to a free body etc. or the solvent to mix. The amount of the solvent is not particularly limited. For example, the solvent is 2 mL to 200 mL, preferably 10 mL to 100 mL with respect to 1 g of the free form.
 フリー体等を当該溶媒に溶解させる温度は、フリー体等または用いる溶媒に応じて適宜選択され、特に限定されないが、例えば、5℃~60℃、好ましくは、15℃~40℃である。 The temperature at which the free form or the like is dissolved in the solvent is appropriately selected according to the free form or the like or the solvent used, and is not particularly limited, but is, for example, 5 ° C. to 60 ° C., preferably 15 ° C. to 40 ° C.
 凍結乾燥させる温度は、フリー体等または用いる溶媒に応じて適宜選択され、特に限定されないが、例えば、-80℃~60℃が好ましく、-60~40℃がより好ましい。凍結乾燥させるまでの時間は、フリー体等、用いる溶媒、凍結乾燥させる温度に応じて適宜選択され、特に限定されないが、例えば、12時間~1週間が好ましく、1日~3日間がより好ましい。 The temperature for lyophilization is appropriately selected according to the free form or the like or the solvent used, and is not particularly limited. For example, it is preferably −80 ° C. to 60 ° C., more preferably −60 to 40 ° C. The time until lyophilization is appropriately selected according to the free form, the solvent used, and the lyophilization temperature, and is not particularly limited. For example, it is preferably 12 hours to 1 week, more preferably 1 day to 3 days.
 あるいは、フリー体等のTG-DTA測定を実施し、融解直後に分解による重量減少が観察されない場合は、融解冷却法によりアモルファス等を作成することができる。融解冷却法とは、具体的には、フリー体等を融解した後、液体窒素などで急冷することで、アモルファス等を得ることができる。 Alternatively, when a TG-DTA measurement of a free body or the like is performed and a weight reduction due to decomposition is not observed immediately after melting, an amorphous or the like can be created by a melting cooling method. Specifically, the melting and cooling method can obtain amorphous or the like by melting a free body or the like and then rapidly cooling it with liquid nitrogen or the like.
 融解冷却法で用いる金属容器は、特に限定されないが、フリー体等の量や性質によって選択される。例えば、熱分析測定用アルミニウム容器、白金容器、アルミホイルなどが挙げられ、好ましくは熱分析用アルミニウム容器である。フリー体等を融解させる温度はフリー体等の安定性を考慮して選ばれるが、例えば、融点~融点より約30℃高温であり、好ましくは融点から融点より約5℃高温である。冷却方法としては液体窒素やドライアイス、冷凍庫を用いることができるが、好ましくは液体窒素である。室温でアモルファスを取り扱うためには、冷却されたフリー体等のアモルファスを室温まで戻す必要があるが、結晶化を抑制するために、湿度をコントロールした容器内に保管する。例えば、シリカゲルや五酸化リンなどの乾燥剤を入れた容器中や低湿度にコントロールされた恒温恒湿機に放置する。乾燥剤としてはシリカゲルが好ましく、恒温恒湿機も好ましい。放置時間は特に限定されないが、約10分から約1日間、好ましくは約30分から約2時間である。 The metal container used in the melting and cooling method is not particularly limited, but is selected depending on the amount and properties of the free body. For example, an aluminum container for thermal analysis, a platinum container, an aluminum foil and the like can be mentioned, and an aluminum container for thermal analysis is preferable. The temperature for melting the free body or the like is selected in consideration of the stability of the free body or the like, and is, for example, from about the melting point to about 30 ° C. higher than the melting point, and preferably from the melting point to about 5 ° C. higher than the melting point. As a cooling method, liquid nitrogen, dry ice, or a freezer can be used, but liquid nitrogen is preferable. In order to handle amorphous at room temperature, it is necessary to return the cooled amorphous body or the like to room temperature. However, in order to suppress crystallization, the amorphous body is stored in a container with controlled humidity. For example, it is left in a container containing a desiccant such as silica gel or phosphorus pentoxide or in a thermo-hygrostat controlled at low humidity. Silica gel is preferable as the desiccant, and a constant temperature and humidity machine is also preferable. The standing time is not particularly limited, but is about 10 minutes to about 1 day, preferably about 30 minutes to about 2 hours.
 当該フリー体等のアモルファスを作製する工程は、後述するように第1の容器(ここで、第1の容器は第2の容器に収納できる大きさである。)内で行うことが好ましい。 The step of producing the amorphous body such as the free body is preferably performed in a first container (where the first container is sized to be accommodated in the second container) as described later.
 工程(1)の前には、フリー体を塩化または共結晶化させてもよい。例えば、フリー体の塩の結晶形を作製する場合、用いる材料が塩であれば当該塩を上述したアモルファス化もしくは低結晶化工程に供すればよく、用いる材料がフリー体の場合、適切な酸もしくは塩基を添加してフリー体を塩化させた後、上述したアモルファス化もしくは低結晶化を行えばよい。また、例えば、共結晶の結晶形を作製する場合、用いる材料が共結晶であれば当該共結晶を上述した低結晶化工程に供すればよく、用いる材料が用いる材料がホスト化合物の場合、適切な共結晶パートナーを添加した後、上述した低結晶化を行えばよい。 <Prior to step (1), the free form may be chlorinated or co-crystallized. For example, when preparing a crystalline form of a free-form salt, if the material to be used is a salt, the salt may be subjected to the above-described amorphization or low-crystallization step. Alternatively, after adding a base to salify the free form, the above-described amorphization or low crystallization may be performed. In addition, for example, when a crystal form of a co-crystal is produced, if the material used is a co-crystal, the co-crystal may be subjected to the above-described low crystallization step. If the material used is a host compound, After adding a co-crystal partner, the above-described low crystallization may be performed.
 フリー体の塩、フリー体の共結晶またはフリー体の塩の共結晶のスクリーニングにおいて、酸もしくは塩基および/またはまたは共結晶パートナーを添加する場合、添加するタイミングは目的化合物を溶媒に溶解させる前後途中いずれであってもよいが、好ましくは、目的化合物を溶媒に溶解させた後、添加すればよい。添加される酸または塩基の量は特に限定されないが、目的化合物の解離基の数やpKa値を参考に決定される。例えば、一つの解離基を有する目的化合物に対して0.75当量~2.0当量、好ましくは、0.9当量~1.1当量である。 In the screening of free-form salt, free-form co-crystal or free-form salt co-crystal, when adding an acid or base and / or a co-crystal partner, the timing of addition is before and after dissolving the target compound in the solvent. Any of these may be used, but it is preferable to add the target compound after dissolving it in a solvent. The amount of acid or base to be added is not particularly limited, but is determined with reference to the number of dissociable groups and the pKa value of the target compound. For example, the amount is 0.75 to 2.0 equivalents, preferably 0.9 to 1.1 equivalents, with respect to the target compound having one dissociating group.
 (工程2)
 工程2は、アモルファス等を溶媒蒸気に曝露させる工程に関する。
(Process 2)
Step 2 relates to a step of exposing amorphous or the like to solvent vapor.
 目的化合物のアモルファス等の溶媒蒸気曝露は、この方法に限定される訳ではないが、例えば、以下のような方法が挙げられる。まず、第1の容器と、第1の容器よりも小型で第1の容器内に収納できる第2の容器を用意し、第1の容器に曝露溶媒を入れ、第2の容器に該アモルファス等を入れるかまたは配置させ、それぞれ、曝露温度条件になるまで放置する。それぞれの容器が曝露温度条件になったところで、第2の容器を密封することなく第1の容器に入れる。ここで、当該曝露溶媒が液体の場合、当該溶媒液はアモルファス等に接触させない。第2の容器が第1の容器に入った状態で、第1の容器の蓋やパラフィルム等で第1の容器を密封することで、第2の容器内または第2の容器上の該アモルファス等を、第1の容器に入っていた溶媒の蒸気に曝露させる。目的の温度および時間でアモルファス等を溶媒に曝露させた後、第1の容器の密栓を開け、溶媒曝露された第2の容器内または第2の容器上の結晶を回収することができる。 The solvent vapor exposure of the target compound such as amorphous is not limited to this method, but examples include the following method. First, a first container and a second container that is smaller than the first container and can be stored in the first container are prepared, an exposure solvent is put in the first container, and the amorphous or the like is put in the second container. Or place and leave each until exposure temperature conditions are reached. When each container is at an exposure temperature condition, the second container is placed in the first container without sealing. Here, when the said exposure solvent is a liquid, the said solvent liquid is not made to contact amorphous etc. In a state where the second container is in the first container, the first container is sealed with a lid, a parafilm, or the like of the first container, so that the amorphous material in the second container or on the second container Etc. are exposed to the vapor of solvent that was in the first container. After the amorphous or the like is exposed to the solvent at the target temperature and time, the first container is opened and the crystals in the second container or on the second container exposed to the solvent can be collected.
 第1の容器の種類は第2の容器を収納することができるものであれば特に限定されず、目的化合物の性質や量に応じて適宜選択され得る。第1の容器の材質は特に限定されず、例えば、ガラス製や金属製の容器が挙げられ、目的化合物の性質や量に応じて適宜選択され得る。第1の容器としては、例えば、ビーカー、バイアル瓶、ガラス瓶または金属ドラム等が挙げられる。第1の容器を密封する方法は特に限定されず、蓋つきの容器を使用してもよいし、パラフィルム等で栓をすることで密封してもよい。 The type of the first container is not particularly limited as long as it can accommodate the second container, and can be appropriately selected according to the nature and amount of the target compound. The material of the first container is not particularly limited, and examples thereof include glass and metal containers, and can be appropriately selected according to the nature and amount of the target compound. Examples of the first container include a beaker, a vial bottle, a glass bottle, and a metal drum. The method for sealing the first container is not particularly limited, and a container with a lid may be used, or sealing may be performed by plugging with a parafilm or the like.
 第2の容器の種類はアモルファス等を配置することができ、かつ、第1の容器に収納することができるものであれば特に限定されず、目的化合物の性質や量に応じて適宜選択され得る。第1の容器の材質は特に限定されず、例えば、ガラス製や金属製の容器が挙げられ、目的化合物の性質や量に応じて適宜選択され得る。第2の容器としては、例えば、フラスコ、ビーカー、試験管、バイアル瓶、ガラス瓶、シャーレまたはプレート等が挙げられる。 The type of the second container is not particularly limited as long as amorphous or the like can be disposed and can be stored in the first container, and can be appropriately selected according to the property and amount of the target compound. . The material of the first container is not particularly limited, and examples thereof include glass and metal containers, and can be appropriately selected according to the nature and amount of the target compound. Examples of the second container include a flask, a beaker, a test tube, a vial bottle, a glass bottle, a petri dish, or a plate.
 第1の容器と第2の容器は、一体化したものであっても分離可能なものであってもよい。 The first container and the second container may be integrated or separable.
 第1の容器および第2の容器としては、例えば、市販の角型96ウェルディーププレート、ウェルの直径と同じ大きさの熱分析用アルミニウム容器およびウェルの直径よりも少し小さめのアルミニウム容器を組み合わせることで蒸気に曝露させることもできる。例えば、実施例に記載されるように、角型96ウェルディーププレートに有機溶媒を入れ、ウェルの直径と同じ大きさの熱分析用アルミニウム容器をウェルに入れると、ウェルの中ほどにアルミニウム容器が留まる。このアルミニウム容器の上にアモルファス等を入れたウェルの直径よりも少し小さめの熱分析アルミニウム容器を置き、パラフィルムやプレート蓋で栓をすることで、アモルファス等を溶媒蒸気に曝露することができる。 As the first container and the second container, for example, a commercially available square 96-well deep plate, an aluminum container for thermal analysis having the same size as the diameter of the well, and an aluminum container slightly smaller than the diameter of the well are combined. Can also be exposed to steam. For example, as described in the Examples, when an organic solvent is placed in a square 96-well deep plate and a thermal analysis aluminum container having the same size as the diameter of the well is placed in the well, the aluminum container is placed in the middle of the well. stay. By placing a thermal analysis aluminum container slightly smaller than the diameter of the well containing amorphous or the like on the aluminum container and plugging it with a parafilm or a plate lid, the amorphous or the like can be exposed to the solvent vapor.
 蒸気曝露させる溶媒としては、例えば、アニソール、アセトン、2-ブタノン、トルエン、ベンゼン、フェノール、ナフタレン、アセトニトリル、ジメトキシエタン、ジメトキシメタン、クロロホルム、酢酸、酢酸エチル、ジオキサン、ジメチルスルホキシド、テトラヒドロフラン、1-プロパノール、2-プロパノール、エタノール、メタノールもしくは水またはこれらの混合溶媒が挙げられ、好ましくは、アセトン、トルエン、ベンゼン、フェノール、ナフタレン、アセトニトリル、2-ジメトキシエタン、クロロホルム、酢酸、酢酸エチル、1,4-ジオキサン、ジメチルスルホキシド、テトラヒドロフラン、1-プロパノール、2-プロパノール、エタノール、メタノールもしくは水またはこれらの混合溶媒が挙げられる。蒸気曝露させる溶媒として、さらに好ましくは、ベンゼン、フェノール、ナフタレン、酢酸、1,4-ジオキサンもしくはジメチルスルホキシドまたはこれらの混合溶媒が挙げられる。蒸気曝露させる溶媒は、曝露温度において液体である溶媒に限定されず、蒸気圧を有するものであれば固体であってもよい。工程3において、目的化合物、その塩、それらまたは共結晶のアモルファス等をこれらの溶媒に蒸気曝露させることで、これらの多形を得ることができる。目的化合物の溶媒和物またはその多形をスクリーニングする場合、これらの溶媒と目的の溶媒和溶媒とで混合溶媒を作製し、その混合溶媒を用いてアモルファス等を蒸気曝露させればよい。従って、工程3の蒸気曝露溶媒は、多形をスクリーニングするための溶媒と溶媒和溶媒との混合溶媒であってもよく、目的に応じて任意に選択され得る。 Examples of the solvent exposed to vapor include anisole, acetone, 2-butanone, toluene, benzene, phenol, naphthalene, acetonitrile, dimethoxyethane, dimethoxymethane, chloroform, acetic acid, ethyl acetate, dioxane, dimethyl sulfoxide, tetrahydrofuran, 1-propanol. 2-propanol, ethanol, methanol or water, or a mixed solvent thereof, preferably acetone, toluene, benzene, phenol, naphthalene, acetonitrile, 2-dimethoxyethane, chloroform, acetic acid, ethyl acetate, 1,4- Examples thereof include dioxane, dimethyl sulfoxide, tetrahydrofuran, 1-propanol, 2-propanol, ethanol, methanol or water, or a mixed solvent thereof. More preferably, the solvent exposed to vapor includes benzene, phenol, naphthalene, acetic acid, 1,4-dioxane, dimethyl sulfoxide, or a mixed solvent thereof. The solvent to be exposed to vapor is not limited to a solvent that is liquid at the exposure temperature, and may be a solid as long as it has a vapor pressure. In Step 3, these polymorphs can be obtained by exposing a target compound, a salt thereof, an amorphous form of a co-crystal or the like to a vapor of these solvents. When screening for a solvate of a target compound or a polymorph thereof, a mixed solvent is prepared with these solvent and the target solvated solvent, and amorphous or the like may be exposed to vapor using the mixed solvent. Therefore, the vapor exposure solvent in step 3 may be a mixed solvent of a solvent for screening polymorphs and a solvating solvent, and may be arbitrarily selected according to the purpose.
 溶媒蒸気曝露の際の温度は、曝露溶媒によって適宜選択され得、特に限定されないが、例えば、-20℃~80℃、好ましくは、5℃~60℃である。 The temperature at the time of solvent vapor exposure can be appropriately selected depending on the solvent to be exposed, and is not particularly limited, but is, for example, −20 ° C. to 80 ° C., preferably 5 ° C. to 60 ° C.
 溶媒蒸気に曝露させる時間、曝露溶媒や曝露温度によって適宜選択され得、特に限定されないが、例えば、例えば、15分~1週間、好ましくは、1日~3日である。 It can be appropriately selected depending on the exposure time to the solvent vapor, the exposure solvent and the exposure temperature, and is not particularly limited. For example, it is 15 minutes to 1 week, preferably 1 to 3 days.
 好ましい溶媒蒸気曝露の温度と時間は、5℃~60℃で1日~4日間、好ましくは、5℃~40℃で2日~3日間である。 The preferred temperature and time of the solvent vapor exposure are 5 ° C. to 60 ° C. for 1 day to 4 days, preferably 5 ° C. to 40 ° C. for 2 days to 3 days.
 第1の容器に入れる溶媒の量は、特に限定されないが、通常、第1の容器の底全体を覆う量から第2の容器の縁から約1cm下までの量であり、好ましくは、第1の容器の底から約1cmの辺りから容器の縁から約1cm下までの量である。アモルファス等に当該溶媒を曝露させた後、第1の容器内に当該曝露溶媒が残存している場合、当該溶媒は、別のアモルファス等の曝露に使用することができる。 The amount of the solvent put into the first container is not particularly limited, but is usually an amount from the amount covering the entire bottom of the first container to about 1 cm below the edge of the second container, preferably the first container The amount from about 1 cm from the bottom of the container to about 1 cm below the edge of the container. If the exposed solvent remains in the first container after the solvent is exposed to amorphous or the like, the solvent can be used for exposure of another amorphous or the like.
 (工程3)
 溶媒曝露に供された目的化合物は、次に、結晶形態の分析工程に供される。
(Process 3)
The target compound subjected to solvent exposure is then subjected to a crystal form analysis step.
 当該分析としては、結晶化学の当業者に周知の粉末X線回折装置をはじめとする、結晶解析に有用な種々の機器、例えば、赤外分光装置、熱分析装置(TG/TDA)、水蒸気吸着測定装置を用いた分析が挙げられる。これらの分析については、例えば、Ralph Hilfiker編、Polymorphism、2006、Willy-VCH Weinheim、p43-207、Stephen Byrnら編、Solid-state Chemistry of Drug、1999、SSCI Inc、p45-139、に記載されている。 The analysis includes various devices useful for crystal analysis, such as a powder X-ray diffractometer well known to those skilled in the art of crystal chemistry, such as an infrared spectrometer, a thermal analyzer (TG / TDA), and water vapor adsorption. An analysis using a measuring device can be mentioned. These analyzes are described, for example, in Ralph Hilfiker, Polymorphism, 2006, Willy-VCH Weinheim, p43-207, edited by Stephen Byrn, et al., Solid-state Chemistry of Drug, 1999, SS45. Yes.
 (工程4)
 工程4は、当該目的化合物について、先に用いた塩化、共結晶化または溶媒蒸気曝露の条件とは別の条件を用いて、該工程(1)~(3)を1回以上繰り返す工程に関する。複数の曝露溶媒を用いて工程(1)~(3)を繰り返すことで、当該目的化合物の別の種類の結晶形を見出すこともできるし、あるいは、同じ結晶形であっても異なる結晶化条件を見出すことができる。
(Process 4)
Step 4 relates to a step of repeating the steps (1) to (3) one or more times using conditions different from the previously used conditions of chlorination, cocrystallization or solvent vapor exposure for the target compound. By repeating steps (1) to (3) using a plurality of exposed solvents, another type of crystal form of the target compound can be found, or different crystallization conditions can be used for the same crystal form. Can be found.
 本発明の方法は、1回の溶媒曝露条件に使用する試料が少なく、また、操作も容易であるので工程(1)~(3)を複数回繰り返すことが可能である。工程(4)において、工程(1)~(3)を繰り返す回数は、10回以上、20回以上、30回以上、40回以上、50回以上または100回以上が好ましく、30回以上、40回以上、50回以上または100回以上がより好ましい。工程(1)~(3)を繰り返す回数が多いほうが、より網羅的に目的化合物の塩や結晶形等を調べることができ、所望の原薬形態を選択するにあたって選択肢が広がるので好ましい。 Since the method of the present invention uses few samples for one solvent exposure condition and is easy to operate, steps (1) to (3) can be repeated multiple times. In the step (4), the number of times the steps (1) to (3) are repeated is preferably 10 times or more, 20 times or more, 30 times or more, 40 times or more, 50 times or more, or 100 times or more, preferably 30 times or more, 40 times More than once, 50 times or more or 100 times or more are more preferable. It is preferable that the steps (1) to (3) are repeated more frequently because the salt, crystal form, etc. of the target compound can be examined more comprehensively, and the choices for selecting the desired drug substance form are expanded.
 このようにして得られた結果を用いて、当該目的化合物について得た複数の溶媒曝露の結果を用いて当該目的化合物の塩、それらの共結晶、それらの溶媒和物またはそれらの結晶形に関するプロファイル(本明細書中、化合物プロファイルと称する場合がある。)を作成し、当該化合物プロファイルを用いて、目的化合物の好ましい塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を選択することができる。従って、本発明の別の態様は、工程(3)の結果及び工程(1)~(3)を1回以上繰り返して得た結果を用いて、該目的化合物のプロファイルを作成する工程、ならびに該プロファイルを用いて該目的化合物の好ましい塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を選択する工程を含む、目的化合物の好ましい塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を選択する方法に関する。 Using the results obtained in this way, using the results of a plurality of solvent exposures obtained for the target compound, the profile of the salt of the target compound, their co-crystals, their solvates or their crystal forms (Sometimes referred to herein as a compound profile), and using the compound profile, the preferred salt of the target compound, their co-crystals, their solvates and / or their crystal forms You can choose. Therefore, another aspect of the present invention provides a step of creating a profile of the target compound using the result of step (3) and the results obtained by repeating steps (1) to (3) one or more times, and Selecting a preferred salt of the target compound, their co-crystal, their solvate and / or their crystal form using a profile, preferred salt of the target compound, their co-crystal, their solvation The invention relates to a method for selecting products and / or their crystal forms.
 本発明の方法は、所望の化合物について、少量のサンプル量で多数の結晶化条件を複雑な操作を用いることなく簡便に行うことができる。それにより目的化合物の塩、共結晶、溶媒和物、結晶形に関するプロファイルの作成が容易になる。本発明の網羅的に探索により、目的化合物のより詳細な化合物プロファイルの作成が可能になる。本発明の方法で得られる詳細な化合物プロファイルを用いれば、例えば、元素分析等で各結晶形をさらに分析することなく好ましい結晶形を選択することも可能になる。 The method of the present invention can easily perform a large number of crystallization conditions for a desired compound with a small amount of sample without using complicated operations. This facilitates the creation of profiles relating to the salt, co-crystal, solvate and crystal form of the target compound. An exhaustive search of the present invention enables the creation of a more detailed compound profile of the target compound. By using the detailed compound profile obtained by the method of the present invention, it is possible to select a preferable crystal form without further analyzing each crystal form by elemental analysis or the like.
 本発明の方法は、目的化合物について、塩、共結晶、溶媒和物および結晶形の全てを同時にスクリーニングすることもできるし、目的に応じて、望みの項目についてスクリーニングすることができる。例えば、ある化合物ついては、塩形態とそれらの塩形態の結晶形についてスクリーニングを行うこともできるし(例えば、実施例3または実施例4を参照のこと。)、別の化合物については、共結晶形態とそれら共結晶形態の結晶形についてスクリーニングを行うこともできる(例えば、実施例5を参照のこと。)。 In the method of the present invention, the salt, co-crystal, solvate and crystal form of the target compound can all be screened at the same time, or desired items can be screened according to the purpose. For example, one compound can be screened for salt forms and crystal forms of those salt forms (see, eg, Example 3 or Example 4), and another compound can be co-crystal form. And their co-crystal forms can also be screened (see, eg, Example 5).
 以下に実施例を記載するが、本発明はこれらに限定されるものではない。 Examples are described below, but the present invention is not limited thereto.
 (インドメタシンの結晶探索)
 インドメタシン(約5mg、約13.9μmol)を熱分析測定のアルミニウム製のサンプルパン(後に台座として使うサンプルパンよりも小型のもの)に秤量した。このサンプルパンを、あらかじめ200℃に加熱したホットプレート上に置くことで、インドメタシン固体を完全に融解させた。その後、このサンプルパンを液体窒素で約20秒間、冷却した。シリカゲルを入れた容器にサンプルパンを移し、約1時間放置した。この操作を繰り返すことで、合計36個の融解冷却検体を準備した。
(Crystal search for indomethacin)
Indomethacin (about 5 mg, about 13.9 μmol) was weighed into a sample pan made of aluminum for thermal analysis measurement (smaller than a sample pan used later as a pedestal). The sample pan was placed on a hot plate previously heated to 200 ° C. to completely melt the indomethacin solid. The sample pan was then cooled with liquid nitrogen for about 20 seconds. The sample pan was transferred to a container containing silica gel and left for about 1 hour. By repeating this operation, a total of 36 melt-cooled specimens were prepared.
 表1に示す各溶媒を、それぞれ1mLずつ96ウェルの角型ディーププレートに入れた。続いて、ウェルの幅とほぼ同じ直径の熱分析用のアルミニウム製のサンプルパンを、各ウェルに入れた。このサンプルパンは、ウェルの底部まで入ることなくウェルの中間付近で保持される。融解冷却検体が入っているサンプルパンを、各ウェルの中間付近で保持されているサンプルパンの中に入れ、次いで、シリコンゴム製のウェルプレートのふたで密栓をした。室温で1日または1週間放置した後、検体が入ったサンプルパンを取り出し、室温で乾燥させた。得られた検体の結晶形を同定するために粉末X線回折を測定した。 1 mL of each solvent shown in Table 1 was placed in a 96-well square deep plate. Subsequently, an aluminum sample pan for thermal analysis having a diameter approximately the same as the width of the well was placed in each well. This sample pan is held near the middle of the well without entering the bottom of the well. The sample pan containing the molten and cooled specimen was placed in a sample pan held near the middle of each well, and then sealed with a lid of a silicon rubber well plate. After leaving at room temperature for 1 day or 1 week, the sample pan containing the specimen was taken out and dried at room temperature. Powder X-ray diffraction was measured in order to identify the crystal form of the obtained specimen.
 回収されたサンプルの粉末X線回折(CuKα、λ=1.54オングストローム)パターンを図1Aおよび図1Bに示す。 The powder X-ray diffraction (CuKα, λ = 1.54 angstrom) pattern of the collected sample is shown in FIGS. 1A and 1B.
 粉末X線回折の結果から作成したインドメタシンの結晶探索の結果を表1に示す。 Table 1 shows the results of indomethacin crystal search created from the powder X-ray diffraction results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1のa~dまでのアルファベット表記は粉末X線回折プロファイルのパターンを示し、アルファベット表記が同じものは互いに相同な粉末X線回折プロファイルを有することを示す。*は、固体がアモルファスであったことを示す。括弧書きは、結晶形の同定はできたものの、粉末X線回折のピークが弱く結晶性が低かったものを示す。 The alphabetical notation from a to d in Table 1 indicates the pattern of the powder X-ray diffraction profile, and the same alphabetical notation indicates that the powder X-ray diffraction profiles are similar to each other. * Indicates that the solid was amorphous. The parentheses indicate that although the crystal form was identified, the powder X-ray diffraction peak was weak and the crystallinity was low.
 (コール酸 結晶探索)
 コール酸 結晶多形スクリーニングを96種類の溶媒と3つの温度条件下で行った。
(Cholic acid crystal search)
Cholic acid crystal polymorphism screening was performed under 96 solvents and 3 temperature conditions.
 コール酸(1.20g、0.561mmol)を1,4-ジオキサン/ジメチルスルホキシド(容量比:5/1)混合液30mLに溶解し、288個のHPLCバイアル瓶に100μLずつ分注した。これらのバイアル瓶を凍結乾燥機に入れ、棚温を-45℃から40℃へ変化させながら、分注した溶液を凍結乾燥させた。 Cholic acid (1.20 g, 0.561 mmol) was dissolved in 30 mL of a 1,4-dioxane / dimethylsulfoxide (volume ratio: 5/1) mixed solution, and 100 μL was dispensed into 288 HPLC vials. These vials were placed in a lyophilizer, and the dispensed solution was lyophilized while changing the shelf temperature from −45 ° C. to 40 ° C.
 ガラス瓶に表Bに記載される各溶媒をそれぞれ1mLずつ入れ、次いで、このガラス瓶に凍結乾燥検体の入ったHPLCバイアル瓶を入れた。HPLCバイアル瓶が入ったガラス瓶を5℃、25℃、40℃に設定された恒温庫に入れ、2日間放置した。その後、ガラス瓶からHPLCバイアル瓶を取り出し、同温で検体を乾燥させた。得られた各検体の結晶形を同定するために粉末X線回折を測定した。 1 mL of each solvent described in Table B was put into a glass bottle, and then an HPLC vial containing a freeze-dried sample was put into the glass bottle. The glass bottle containing the HPLC vial was placed in a thermostat set at 5 ° C., 25 ° C., and 40 ° C. and left for 2 days. Thereafter, the HPLC vial was taken out from the glass bottle, and the specimen was dried at the same temperature. Powder X-ray diffraction was measured to identify the crystal form of each specimen obtained.
 回収されたサンプルの粉末X線回折(CuKα、λ=1.54オングストローム)のうち、代表的な回折パターンを図2に示す。 Of the collected sample X-ray powder diffraction (CuKα, λ = 1.54 Å), a typical diffraction pattern is shown in FIG.
 粉末X線回折の結果から作成したコール酸の結晶探索の結果を表2に示す。 Table 2 shows the results of crystal search for cholic acid prepared from the results of powder X-ray diffraction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2のA~Lまでのアルファベット表記は粉末X線回折プロファイルのパターンを示し、アルファベット表記が同じものは互いに相同な粉末X線回折プロファイルを有することを示す。表2において、Lowは、固体が低結晶性であったことを示し、*は、固体がアモルファスであったことを示し、Canとは検体がキャンディー状だったことを示す。 The alphabetical notation from A to L in Table 2 indicates the pattern of the powder X-ray diffraction profile, and the same alphabetical notation indicates that the powder X-ray diffraction profiles are similar to each other. In Table 2, Low indicates that the solid was low crystalline, * indicates that the solid was amorphous, and Can indicates that the specimen was candy-like.
 (ニカルジピンの酸性塩及び結晶形探索)
 ニカルジピンについて、次の47種類の酸塩のスクリーニングをし、さらにフリー体と各酸塩について下記の表3に示す17種類の溶媒を用いて結晶形のスクリーニングを行った。
(Search for acid salt and crystal form of nicardipine)
For nicardipine, the following 47 types of acid salts were screened, and for free forms and each acid salt, the crystal form was screened using 17 types of solvents shown in Table 3 below.
 47種類の酸塩:1塩酸塩、1臭化水素酸塩、1硝酸塩、1/2硫酸塩、1硫酸塩、1/2リン酸塩、1リン酸塩、1メタンスルホン酸塩、1エタンスルホン酸塩、1ベンゼンスルホン酸塩、1p-トルエンスルホン酸塩、1ナフタレンー2-スルホン酸塩、1/2フマル酸塩、1フマル酸塩、1/2マレイン酸塩、1マレイン酸塩、1/2酒石酸塩、1酒石酸塩、1/2クエン酸塩、1クエン酸塩、1/2L-リンゴ酸塩、1L-リンゴ酸塩、1/2α-ケトグルタル酸塩、1α-ケトグルタル酸塩、1/2シュウ酸塩、1シュウ酸塩、1/2マロン酸塩、1マロン酸塩、1/2コハク酸塩、1コハク酸塩、1/2グルタル酸塩、1グルタル酸塩、1/2アジピン酸塩、1アジピン酸塩、1/2樟脳酸塩、1樟脳酸塩、1酢酸塩、1乳酸塩、1安息香酸塩、1サリチル酸塩、1ゲンチシン酸塩、1ニコチン酸塩、1イソニコチン酸塩、1馬尿酸塩、1桂皮酸、1グリコール酸塩、1ピログルタミン酸塩、4-ヒドロキシ安息香酸塩。 47 types of acid salts: 1 hydrochloride, 1 hydrobromide, 1 nitrate, 1/2 sulfate, 1 sulfate, 1/2 phosphate, 1 phosphate, 1 methanesulfonate, 1 ethane Sulfonate, 1 benzene sulfonate, 1p-toluene sulfonate, 1 naphthalene-2-sulfonate, 1/2 fumarate, 1 fumarate, 1/2 maleate, 1 maleate, 1 / 2 tartrate, 1 tartrate, 1/2 citrate, 1 citrate, 1/2 L-malate, 1 L-malate, 1/2 α-ketoglutarate, 1α-ketoglutarate, 1 / 2 oxalate, 1 oxalate, 1/2 malonate, 1 malonate, 1/2 succinate, 1 succinate, 1/2 glutarate, 1 glutarate, 1/2 Adipate, 1 adipate, 1/2 camphorate, 1 camphorate, 1 acetate, 1 lactate 1 benzoate, 1 salicylate, 1 gentisate, 1 nicotinate, 1 isonicotiate, 1 hippurate, 1 cinnamic acid, 1 glycolate, 1 pyroglutamate, 4-hydroxybenzoic acid salt.
 ニカルジピン塩酸塩(4.00g、7.75mmol)に酢酸エチル(16mL)、テトラヒドロフラン(40mL)および水(12.5mL)を加えた後、水酸化ナトリウム水溶液(11.57mL、11.63mmol)を加えた。混合液を5分間攪拌した後、分液ロートを用いて、有機層と水層を分離した。分離された有機層を水(12.5mL)と飽和食塩水(12.5mL)で洗浄した後、適量の無水硫酸ナトリウムを加えた。その後、硫酸ナトリウムをろ過、ろ液を減圧濃縮し、さらに、メタノール(40mL)を加えて、減圧濃縮した。残留物を-20℃に冷却し、固体を析出させ、メタノール/水(容量比:25/75)混合液を16mL加え、室温で2時間攪拌した。析出固体をろ取、減圧乾燥した後、1,4-ジオキサン(100mL)を加え、HPLCにて溶液濃度を測定した(30.77mg/mL)。 After adding ethyl acetate (16 mL), tetrahydrofuran (40 mL) and water (12.5 mL) to nicardipine hydrochloride (4.00 g, 7.75 mmol), an aqueous sodium hydroxide solution (11.57 mL, 11.63 mmol) was added. It was. After stirring the mixed solution for 5 minutes, the organic layer and the aqueous layer were separated using a separating funnel. The separated organic layer was washed with water (12.5 mL) and saturated brine (12.5 mL), and then an appropriate amount of anhydrous sodium sulfate was added. Thereafter, sodium sulfate was filtered, the filtrate was concentrated under reduced pressure, methanol (40 mL) was further added, and the mixture was concentrated under reduced pressure. The residue was cooled to −20 ° C. to precipitate a solid, 16 mL of a methanol / water (volume ratio: 25/75) mixture was added, and the mixture was stirred at room temperature for 2 hours. The precipitated solid was collected by filtration and dried under reduced pressure, 1,4-dioxane (100 mL) was added, and the solution concentration was measured by HPLC (30.77 mg / mL).
 次に、この溶液を49本のガラス製のサンプルチューブに1988μlづつそれぞれ分注した。つづいて、酸溶液を48本の各サンプルチューブへ添加した。酸溶液の種類と添加量を次ぎに記載する。1塩酸塩(1.004M水溶液、127.2μl)、1臭化水素酸塩(1.004M水溶液、127.6μl)、1硝酸塩(1.001M水溶液、127.6μl)、1/2硫酸塩(1.004M水溶液、63.6μl)、1硫酸塩(1.004M水溶液、127.2μl)、1/2リン酸塩(1.001M水溶液、63.8μl)、1リン酸塩(1.001M水溶液、127.6μl)、1メタンスルホン酸塩(1.001M水溶液、127.6μl)、1エタンスルホン酸塩(1.000M水溶液、127.6μl)、1ベンゼンスルホン酸塩(1.000M水溶液、127.6μl)、1p-トルエンスルホン酸塩(1.021M水溶液、125.0μl)、1ナフタレンー2-スルホン酸塩(1.000M水溶液、127.6μl)、1/2フマル酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、63.8μl)、1フマル酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.6μl)、1/2マレイン酸塩(1.000M水溶液、63.8μl)、1マレイン酸塩(1.000M水溶液、127.6μl)、1/2酒石酸塩(1.000M水溶液、63.8μl)、1酒石酸塩(1.000M水溶液、127.6μl)、1/2クエン酸塩(1.000M水溶液、63.8μl)、1クエン酸塩(1.000M水溶液、127.6μl)、1/2L-リンゴ酸塩(1.000M水溶液、63.8μl)、1L-リンゴ酸塩(1.000M水溶液、127.6μl)、1/2α-ケトグルタル酸塩(1.000M水溶液、63.8μl)、1α-ケトグルタル酸塩(1.000M水溶液、127.6μl)、1/2シュウ酸塩(1.001M水溶液、63.8μl)、1シュウ酸塩(1.000M水溶液、127.6μl)、1/2マロン酸塩(1.000M水溶液、63.8μl)、1マロン酸塩(1.000M水溶液、127.6μl)、1/2コハク酸塩(0.5001M水溶液、127.6μl)、1コハク酸塩(0.5001M水溶液、255μl)、1/2グルタル酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、63.8μl)、1グルタル酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.8μl)、1/2アジピン酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、63.8μl)、1アジピン酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.6μl)、1/2樟脳酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、63.8μl)、1樟脳酸塩(1.000M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.8μl)、1酢酸塩(0.9909M水溶液、128.8μl)、1乳酸塩(1.000M水溶液、127.6μl)、1安息香酸塩(1.000M 1,4-ジオキサン溶液、127.6μl)、1サリチル酸塩(1.000M 1,4-ジオキサン溶液、127.6μl)、1ゲンチシン酸塩(1.000M 1,4-ジオキサン溶液、127.6μl)、1ニコチン酸塩(0.101M 水溶液、1264μl)、1イソニコチン酸塩(0.040M 水溶液、3191μl)、1馬尿酸塩(1.001M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.6μl)、1桂皮酸(1.005M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.0μl)、1グリコール酸塩(1.000M 水溶液、127.0μl)、1ピログルタミン酸塩(1.001M 水溶液、127.6μl)、4-ヒドロキシ安息香酸塩(1.005M 1,4-ジオキサン/ジメチルスルホキシド(1/1)溶液、127.0μl)。1本のサンプルチューブには酸溶液を添加せず、そのまま17種類の溶媒を用いた溶媒蒸気曝露工程に用いた。沈殿が析出した場合は、溶液状態にするために、水またはジメチルスルホキシドを加えた。チューブ中の混合液を、約10分間ボルテックスミキサーで攪拌した後、49本それぞれにつき18本のHPLCバイアル瓶に均等な体積になるように分注した。このようにして調製した合計882本のHPLCバイアル瓶を凍結乾燥機に入れ、棚温を-45℃から25℃へ変化させながら凍結乾燥させた。 Next, 1988 μl each of this solution was dispensed into 49 glass sample tubes. Subsequently, the acid solution was added to each of the 48 sample tubes. The type and amount of acid solution are described below. Monohydrochloride (1.004 M aqueous solution, 127.2 μl), monohydrobromide (1.004 M aqueous solution, 127.6 μl), 1 nitrate (1.001 M aqueous solution, 127.6 μl), 1/2 sulfate ( 1.004 M aqueous solution, 63.6 μl), monosulfate (1.004 M aqueous solution, 127.2 μl), 1/2 phosphate (1.001 M aqueous solution, 63.8 μl), 1 phosphate (1.001 M aqueous solution) 127.6 μl), 1 methanesulfonate (1.001 M aqueous solution, 127.6 μl), 1 ethanesulfonate (1.00M aqueous solution, 127.6 μl), 1 benzenesulfonate (1,000 M aqueous solution, 127 1.6 μl), 1p-toluenesulfonate (1.021 M aqueous solution, 125.0 μl), 1 naphthalene-2-sulfonate (1,000 M aqueous solution, 127.6 μl), 1/2 fumarate (1.0 00M 1,4-dioxane / dimethylsulfoxide (1/1) solution, 63.8 μl), 1 fumarate (1,000 M11,4-dioxane / dimethylsulfoxide (1/1) solution, 127.6 μl), 1 / 2 maleate (1,000 M aqueous solution, 63.8 μl), 1 maleate (1,000 M aqueous solution, 127.6 μl), 1/2 tartrate (1,000 M aqueous solution, 63.8 μl), 1 tartrate (1,000 M aqueous solution, 127.6 μl), 1/2 citrate (1,000 M aqueous solution, 63.8 μl), 1 citrate (1,000 M aqueous solution, 127.6 μl), 1/2 L-malate (1,000 M aqueous solution, 63.8 μl), 1 L-malate (1,000 M aqueous solution, 127.6 μl), 1 / 2α-ketoglutarate (1,000 M aqueous solution, 63.8 μl), 1α-ketoglutarate ( .000 M aqueous solution, 127.6 μl), 1/2 oxalate (1.001 M aqueous solution, 63.8 μl), 1 oxalate (1,000 M aqueous solution, 127.6 μl), 1/2 malonate (1. 000 M aqueous solution, 63.8 μl), 1 malonate (1,000 M aqueous solution, 127.6 μl), 1/2 succinate (0.5001 M aqueous solution, 127.6 μl), 1 succinate (0.5001 M aqueous solution, 255 μl), 1/2 glutarate (1,000 M 1,4-dioxane / dimethylsulfoxide (1/1) solution, 63.8 μl), 1 glutarate (1,000 M0001,4-dioxane / dimethylsulfoxide ( 1/1) solution, 127.8 μl), 1/2 adipate (1,000 M11,4-dioxane / dimethyl sulfoxide (1/1) solution, 63.8 μl), 1 adipate (1,000 M 1) , 4-Geo Sun / dimethyl sulfoxide (1/1) solution, 127.6 μl), 1/2 camphorate (1,000 M 1,4-dioxane / dimethylsulfoxide (1/1) solution, 63.8 μl), 1 camphorate (1,000 M 1,4-dioxane / dimethylsulfoxide (1/1) solution, 127.8 μl), 1 acetate (0.9909 M aqueous solution, 128.8 μl), 1 lactate (1,000 M aqueous solution, 127.6 μl) ), 1 benzoate (1,000 M 1,4-dioxane solution, 127.6 μl), 1 salicylate (1,000 M 1,4-dioxane solution, 127.6 μl), 1 gentisate (1,000 M 1) , 4-dioxane solution, 127.6 μl), 1 nicotinate (0.101 M aqueous solution, 1264 μl), 1 isonicotiate (0.040 M aqueous solution, 3191 μl), 1 hippurate (1.01 M aqueous solution 1,4- Geo Sun / dimethyl sulfoxide (1/1) solution, 127.6 μl), cinnamic acid (1.005 M 1,4-dioxane / dimethyl sulfoxide (1/1) solution, 127.0 μl), 1 glycolate (1. 000 M aqueous solution, 127.0 μl), 1 pyroglutamate (1.001 M aqueous solution, 127.6 μl), 4-hydroxybenzoate (1.005 M aqueous 1,4-dioxane / dimethylsulfoxide (1/1) solution, 127. 0 μl). The acid solution was not added to one sample tube, and it was used for the solvent vapor exposure process using 17 types of solvents as they were. When a precipitate was precipitated, water or dimethyl sulfoxide was added to make a solution. The mixed solution in the tube was stirred with a vortex mixer for about 10 minutes, and then dispensed so that each of 49 bottles had an equal volume in 18 HPLC vials. A total of 882 HPLC vials prepared in this manner were placed in a lyophilizer and lyophilized while changing the shelf temperature from −45 ° C. to 25 ° C.
 ガラス瓶に表3に記載される各溶媒をそれぞれ1mLずつ入れ、次いで、このガラス瓶に凍結乾燥検体の入ったHPLCバイアル瓶を入れ密栓した。HPLCバイアル瓶が入ったガラス瓶を25℃で4日間溶媒蒸気に曝露させた。その後、HPLCバイアル瓶を取り出し、25℃で検体を乾燥させた。各検体が固体として得られた場合、結晶形を同定するために粉末X線回折を測定した。 1 mL of each solvent described in Table 3 was put into a glass bottle, and then an HPLC vial containing a freeze-dried specimen was put into the glass bottle and sealed. Glass bottles with HPLC vials were exposed to solvent vapor at 25 ° C. for 4 days. Thereafter, the HPLC vial was taken out and the specimen was dried at 25 ° C. When each specimen was obtained as a solid, powder X-ray diffraction was measured to identify the crystalline form.
 塩が固体として得られたのは、1塩酸塩、1臭化水素酸塩、1硝酸塩、フマル酸塩、1シュウ酸塩であった。 The salt was obtained as a solid as monohydrochloride, hydrobromide, mononitrate, fumarate, and oxalate.
 回収されたサンプルの代表的な粉末X線回折(CuKα、λ=1.54オングストローム)パターンを図3Aおよび図3Bに示す。 3A and 3B show typical powder X-ray diffraction (CuKα, λ = 1.54 angstrom) patterns of the collected samples.
 粉末X線回折の結果から作成した、ニカルジピンの塩及び結晶形探索の結果を表3に示す。 Table 3 shows the results of searching for the salt and crystal form of nicardipine prepared from the results of powder X-ray diffraction.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  表3では、塩の種類の略号(HCl、HBr、HNO、FumまたはOxa)とA~Dまでのアルファベット表記を用いて、塩の種類及びその結晶形を区別する。塩の種類が同じ場合、末尾のアルファベット表記が同じものは互いに相同な粉末X線回折プロファイルを有することを示す。例えば、ジクロロメタンまたは酢酸エチルに溶媒蒸気曝露させた1臭化水素酸塩は、いずれもHBr_Aと表記されており、これは、両方の粉末X線回折プロファイルが相同であったことを示す。塩の種類が異なる場合、末尾のアルファベット表記が同じであってもそれらの粉末X線回折プロファイルは関連していない。例えば、HCl_BとHBr_Bは末尾のアルファベットが同一であるが、塩の種類が1塩酸塩と1臭化水素酸塩とで異なるので、粉末X線回折プロファイルは相互に対応している訳ではない。 表 In Table 3, the salt type and its crystal form are distinguished using the salt type abbreviations (HCl, HBr, HNO, Fum or Oxa) and alphabetical notation from A to D. When the salt type is the same, the same alphabetical letters at the end indicate that the powder X-ray diffraction profiles are homologous to each other. For example, monohydrobromide exposed to solvent vapor in dichloromethane or ethyl acetate are both labeled as HBr_A, indicating that both powder X-ray diffraction profiles were homologous. If the salt types are different, their powder X-ray diffraction profiles are not relevant even if the alphabetical suffix is the same. For example, HCl_B and HBr_B have the same alphabet at the end, but the types of salt differ between monohydrochloride and monohydrobromide, so the powder X-ray diffraction profiles do not correspond to each other.
 粉末X線回折の各ピーク位置が互いにわずかに異なるものの全体的なプロファイルとしては相同なもの同士については、アルファベット表記の後ろ記載される数字で区別する。例えば、1/2シュウ酸塩および1シュウ酸塩については、粉末X線回折の各ピーク位置が互いにわずかに異なるものの全体的には相同な粉末X線回折プロファイルが全部で15種類得られた(Oxa_A1~Oxa_A15)。 Although the peak positions of the powder X-ray diffraction are slightly different from each other, those that are homologous as an overall profile are distinguished by numbers described after the alphabet. For example, for 1/2 oxalate and 1 oxalate, a total of 15 powder X-ray diffraction profiles were obtained in total, although each peak position of powder X-ray diffraction was slightly different from each other ( Oxa_A1 to Oxa_A15).
 表3において、Lowは、固体が低結晶性であったことを示し、*は、固体がアモルファスであったことを示し、Candyとは検体がキャンディー状態だったことを示し、括弧書きは、結晶形の同定はできたものの、粉末X線回折のピークが弱く結晶性が低かったものを示す。 In Table 3, Low indicates that the solid was low crystalline, * indicates that the solid was amorphous, Candy indicates that the specimen was in a candy state, and parentheses indicate crystal Although the shape was identified, the powder X-ray diffraction peak was weak and the crystallinity was low.
 (スルファサラジンのアルカリ金属塩、アルカリ土類金属塩及びこれらの結晶形探索)
 スルファサラジンについて、リチウム塩、ナトリウム塩、カリウム塩、1/2マグネシウム塩、1/2カルシウム塩、1/2亜鉛塩及び1/3アルミニウム塩のスクリーニングをし、さらにフリー体及び各塩について下記の表4に示す9種類の溶媒を用いて結晶形のスクリーニングを行った。
(Search for alkali metal and alkaline earth metal salts of sulfasalazine and their crystal forms)
For sulfasalazine, lithium salt, sodium salt, potassium salt, 1/2 magnesium salt, 1/2 calcium salt, 1/2 zinc salt, and 1/3 aluminum salt were screened. The crystal form was screened using nine types of solvents shown in FIG.
 スルファサラジン(400mg、1mmol)を1,4-ジオキサン/ジメチルスルホキシド(容量比:50/50)10mLに溶解し、この溶液を8本のガラス製のサンプルチューブに1200μl(48mg相当、0.123μmol相当)ずつそれぞれ分注した。このうちの1本のチューブには何も添加せず、そのまま次の凍結乾燥工程に供した。3本のサンプルチューブに、それぞれ、4M 水酸化リチウム水溶液(30.8μl、0.123μmol)、1.005M 水酸化ナトリウム水溶液(123μl、0.123μmol)、または1.004M 水酸化カリウム水溶液(123μl、0.123μmol)を加えた。残り4本のサンプルチューブに、それぞれ、4M 水酸化リチウム水溶液(30.8μl、0.123μmol)を加え、つづいて、それぞれ、1.000M塩化マグネシウム水溶液(62μl、0.062μmol)、1.001M塩化カルシウム水溶液(62μl、0.062μmol)、0.9998M臭化亜鉛水溶液(62μl、0.062μmol)、または1.002M塩化アルミニウム水溶液(41μl、0.041μmol)を加えた。沈殿が析出した場合は、溶液状態にするために水またはジメチルスルホキシドを加え、均一溶液とした。これら8本のサンプルチューブを、約10分間ボルテックスミキサーで攪拌した後、それぞれのサンプルチューブについて10本のHPLCバイアル瓶に均等な体積になるように分注した。このようにして作製した合計80本のHPLCバイアル瓶を凍結乾燥機に入れ、棚温を-45℃から25℃へ変化させながら凍結乾燥させた。 Sulfasalazine (400 mg, 1 mmol) is dissolved in 10 mL of 1,4-dioxane / dimethyl sulfoxide (volume ratio: 50/50), and this solution is added to 1200 μl (equivalent to 48 mg, equivalent to 0.123 μmol) in 8 glass sample tubes. Each was dispensed. Nothing was added to one of these tubes, and it was directly subjected to the next freeze-drying step. In three sample tubes, 4M lithium hydroxide aqueous solution (30.8 μl, 0.123 μmol), 1.005 M sodium hydroxide aqueous solution (123 μl, 0.123 μmol), or 1.004 M potassium hydroxide aqueous solution (123 μl, 0.123 μmol) was added. To the remaining four sample tubes, 4M lithium hydroxide aqueous solution (30.8 μl, 0.123 μmol) was added, respectively, followed by 1.000 M magnesium chloride aqueous solution (62 μl, 0.062 μmol) and 1.001 M chloride, respectively. An aqueous calcium solution (62 μl, 0.062 μmol), 0.9998 M zinc bromide aqueous solution (62 μl, 0.062 μmol), or 1.002 M aluminum chloride aqueous solution (41 μl, 0.041 μmol) was added. When a precipitate was deposited, water or dimethyl sulfoxide was added to obtain a uniform solution. After stirring these 8 sample tubes with a vortex mixer for about 10 minutes, each sample tube was dispensed so as to have an equal volume in 10 HPLC vials. A total of 80 HPLC vials thus prepared were placed in a freeze dryer and freeze dried while changing the shelf temperature from −45 ° C. to 25 ° C.
 ガラス瓶に表4に記載される各溶媒をそれぞれ1mLずつ入れ、次いで、このガラス瓶に凍結乾燥検体の入ったHPLCバイアル瓶を入れ密栓した。HPLCバイアル瓶が入ったガラス瓶を、40℃で1日間溶媒蒸気に曝露させた。その後、HPLCバイアル瓶を取り出し、25℃で検体を乾燥させた。結晶形を同定するために粉末X線回折を測定した。 1 mL of each solvent described in Table 4 was put into a glass bottle, and then an HPLC vial containing a freeze-dried sample was put into the glass bottle and sealed. The glass bottle containing the HPLC vial was exposed to solvent vapor at 40 ° C. for 1 day. Thereafter, the HPLC vial was taken out and the specimen was dried at 25 ° C. Powder X-ray diffraction was measured to identify the crystal form.
 回収されたサンプルの代表的な粉末X線回折(CuKα、λ=1.54オングストローム)パターンを図4Aおよび図4Bに示す。 4A and 4B show typical powder X-ray diffraction (CuKα, λ = 1.54 angstrom) patterns of the collected samples.
 粉末X線回折の結果から作成した、スルファサラジンのアルカリ金属、アルカリ土類金属塩及びこれらの結晶形探索の結果を表4に示す。 Table 4 shows the results of searching for alkali metals and alkaline earth metal salts of sulfasalazine and their crystal forms prepared from the results of powder X-ray diffraction.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4では、塩の種類の略号(Fr、Li、Na、K、HMg、HCa、HZnまたはTAl)とA~Fまでのアルファベット表記を用いて、塩の種類及びその結晶形を区別する。塩の種類が同じ場合、末尾のアルファベット表記が同じものは互いに相同な粉末X線回折プロファイルを有することを示す。例えば、アセトニトリルまたはアセトンに溶媒蒸気曝露させた1リチウム塩は、いずれもLiAと表記されており、これは、両方の粉末X線回折プロファイルが相同であったことを示す。塩の種類が異なる場合、末尾のアルファベット表記が同じであってもそれらの粉末X線回折プロファイルは関連していない。例えば、LiAとHCaAは末尾のアルファベットが同一であるが、塩の種類が1リチウム塩と1/2カルシウム塩とで異なるので、粉末X線回折プロファイルは相互に対応している訳ではない。 In Table 4, the salt type and its crystal form are distinguished by using the salt type abbreviations (Fr, Li, Na, K, HMg, HCa, HZn, or TAl) and the alphabetical notation from A to F. When the salt type is the same, the same alphabetical letters at the end indicate that the powder X-ray diffraction profiles are homologous to each other. For example, monolithium salts exposed to solvent vapor in acetonitrile or acetone are both labeled LiA, indicating that both powder X-ray diffraction profiles were homologous. If the salt types are different, their powder X-ray diffraction profiles are not relevant even if the alphabetical suffix is the same. For example, although LiA and HCaA have the same alphabet at the end, the powder X-ray diffraction profiles do not correspond to each other because the type of salt differs between 1 lithium salt and 1/2 calcium salt.
 粉末X線回折の各ピーク位置が互いにわずかに異なるものの全体的なプロファイルとしては相同なもの同士については、アルファベット表記の後ろ記載される数字で区別する。例えば、1ナトリウム塩については、粉末X線回折の各ピーク位置が互いにわずかに異なるものの全体的には相同な粉末X線回折プロファイルが全部で2種類得られた(NaA1とNaA2)。 Although the peak positions of the powder X-ray diffraction are slightly different from each other, those that are homologous as an overall profile are distinguished by numbers described after the alphabet. For example, for the monosodium salt, two types of powder X-ray diffraction profiles that are totally homologous were obtained (NaA1 and NaA2) although the peak positions of the powder X-ray diffraction were slightly different from each other.
 表4において、Lowは、固体が低結晶性であったことを示し、*は、固体がアモルファスであったことを示し、Candyとは検体がキャンディー状だったことを示し、括弧書きは、結晶形の同定はできたものの、粉末X線回折のピークが弱く結晶性が低かったものを示す。 In Table 4, Low indicates that the solid was low crystalline, * indicates that the solid was amorphous, Candy indicates that the specimen was candy-like, and parentheses indicate crystal Although the shape was identified, the powder X-ray diffraction peak was weak and the crystallinity was low.
 (ピロキシカムの共結晶スクリーニング)
 ピロキシカムについて、下記の表5に示す32種類の共結晶パートナー(共結晶パートナー無しの場合を含む)のスクリーニングをし、さらに各共結晶パートナー(共結晶パートナー無しの場合を含む)について表5に示す6種類の溶媒を用いて結晶形のスクリーニングを行った。
(Piroxicam co-crystal screening)
For piroxicam, 32 types of co-crystal partners shown in Table 5 below (including those without co-crystal partners) were screened, and each co-crystal partner (including those without co-crystal partners) was shown in Table 5. The crystal form was screened using six types of solvents.
 ピロキシカム(1000mg、3.018mmol)をジオキサン溶液(60mL)に溶解し、これを32本のガラス製のサンプルチューブに1680μlづつ分注した。さらに、共結晶パートナーの水または1,4-ジオキサン/ジメチルスルホキシド(容量比50:50)混合溶液をそれぞれ1当量分加えた。沈殿が析出した場合は、溶液状態にするために水またはジメチルスルホキシドを加え、均一溶液とした。これら32本のサンプルチューブを、約10分間ボルテックスミキサーで攪拌した後、それぞれのサンプルチューブについてそれぞれ7本のHPLCバイアル瓶に均等な体積になるように分注した。このようにして作製した合計224本のHPLCバイアル瓶を凍結乾燥機に入れ、棚温を-45℃から25℃へ変化させながら、凍結乾燥させた。 Piroxicam (1000 mg, 3.018 mmol) was dissolved in a dioxane solution (60 mL), and this was dispensed in 1680 μl portions into 32 glass sample tubes. Further, 1 equivalent each of water of a co-crystal partner or a mixed solution of 1,4-dioxane / dimethyl sulfoxide (volume ratio 50:50) was added. When a precipitate was deposited, water or dimethyl sulfoxide was added to obtain a uniform solution. These 32 sample tubes were stirred with a vortex mixer for about 10 minutes, and each sample tube was then dispensed in 7 HPLC vials to an equal volume. A total of 224 HPLC vials prepared in this manner were placed in a freeze dryer, and freeze-dried while changing the shelf temperature from −45 ° C. to 25 ° C.
 ガラス瓶に表5に記載される各溶媒をそれぞれ1mLずつ入れ、次いで、このガラス瓶に凍結乾燥検体の入ったHPLCバイアル瓶を入れ密栓した。HPLCバイアル瓶が入ったガラス瓶を、室温で3日間溶媒蒸気に曝露させた。その後、HPLCバイアル瓶を取り出し、室温で検体を乾燥させた。結晶形を同定するために粉末X線回折を測定した。 1 mL of each solvent described in Table 5 was put in a glass bottle, and then an HPLC vial containing a freeze-dried sample was put in the glass bottle and sealed. Glass bottles with HPLC vials were exposed to solvent vapor for 3 days at room temperature. Thereafter, the HPLC vial was taken out and the specimen was dried at room temperature. Powder X-ray diffraction was measured to identify the crystal form.
 回収されたサンプルの代表的な粉末X線回折(CuKα、λ=1.54オングストローム)パターンを図5A~図5Dに示す。 A representative powder X-ray diffraction (CuKα, λ = 1.54 Å) pattern of the collected sample is shown in FIGS. 5A to 5D.
 粉末X線回折の結果から作成した、ピロキシカムの共結晶及びこれらの結晶形探索の結果を表5に示す。 Table 5 shows the co-crystals of piroxicam prepared from the results of powder X-ray diffraction and the results of searching for these crystal forms.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5では、共結晶パートナーの略号(Fr~Pgt)とA~Fまでのアルファベット表記を用いて、共結晶パートナー及びその結晶形を区別する。共結晶パートナーが同じ場合、末尾のアルファベット表記が同じものは互いに相同な粉末X線回折プロファイルを有することを示す。例えば、テトラヒドロフランまたはメタノールに溶媒蒸気曝露させたピロキシカムとシュウ酸の共結晶は、いずれもOxaAと表記されており、これは、両方の粉末X線回折プロファイルが相同であったことを示す。共結晶パートナーが異なる場合、末尾のアルファベット表記が同じであってもそれらの粉末X線回折プロファイルは関連していない。例えば、FumAとMleAは末尾のアルファベットが同一であるが、共結晶パートナーがフマル酸とマレイン酸とで異なるので、粉末X線回折プロファイルは相互に対応している訳ではない。 In Table 5, the co-crystal partners and their crystal forms are distinguished by using the abbreviations of the co-crystal partners (Fr to Pgt) and alphabetical notations from A to F. If the co-crystal partners are the same, those with the same alphabetical letter at the end indicate that they have powder X-ray diffraction profiles that are homologous to each other. For example, the co-crystals of piroxicam and oxalic acid exposed to solvent vapor in tetrahydrofuran or methanol are both labeled OxaA, indicating that both powder X-ray diffraction profiles were homologous. If the co-crystal partners are different, their powder X-ray diffraction profiles are not relevant even if the alphabetical suffix is the same. For example, FumA and MleA have the same alphabet at the end, but the powder X-ray diffraction profiles do not correspond to each other because the co-crystal partners are different between fumaric acid and maleic acid.
 表5において、括弧書きは、結晶形の同定はできたものの粉末X線回折のピークが弱く結晶性が低かったものを示し、Lowは、粉末X線回折のピークが弱く結晶性であり結晶形の同定ができなかったものを示し、*は、固体がアモルファスであったことを示し、Candyとは、検体がキャンディー状であったことを示す。 In Table 5, the parenthesis indicates that the crystal form was identified but the powder X-ray diffraction peak was weak and the crystallinity was low, and Low is the powder X-ray diffraction peak weak and crystalline. Of the sample could not be identified, * indicates that the solid was amorphous, and Candy indicates that the specimen was candy-like.

Claims (14)

  1. 目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下:
     (1)フリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
     (2)該アモルファスまたは該低結晶性固体を溶媒蒸気に曝露させる工程;
     (3)該工程(2)で得た化合物の結晶形態を分析する工程;および
     (4)該溶媒蒸気曝露の条件を変えて該工程(1)~(3)を1回以上繰り返す工程
    を含む、方法。
    Process for preparing various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising:
    (1) A step of producing an amorphous free body or a salt thereof, or a low crystalline solid of a free body, a salt thereof, a co-crystal or a solvate thereof;
    (2) exposing the amorphous or the low crystalline solid to solvent vapor;
    (3) analyzing the crystal form of the compound obtained in the step (2); and (4) changing the conditions of the solvent vapor exposure and repeating the steps (1) to (3) one or more times. ,Method.
  2. 前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の粉砕、融解冷却、凍結乾燥または噴霧乾燥である、請求項1に記載の方法。 The method according to claim 1, wherein the method for producing the amorphous or low crystalline solid is grinding, melting cooling, freeze drying or spray drying of the free form, a salt thereof, a co-crystal thereof or a solvate thereof. .
  3. 前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の凍結乾燥である、請求項2に記載の方法。 The method according to claim 2, wherein the method for producing the amorphous or low crystalline solid is lyophilization of the free form, a salt thereof, a co-crystal thereof, or a solvate thereof.
  4. 前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物を水、1,4-ジオキサン、ジメチルスルホキシド、含水1,4-ジオキサン、ジメチルスルホキシド/1,4-ジオキサン混合溶媒または水/ジメチルスルホキシド/1,4-ジオキサンに溶解させ、次いで、凍結乾燥させてアモルファスまたは低結晶性固体を作製する、請求項3に記載の方法。 The free form, a salt thereof, a co-crystal thereof or a solvate thereof is mixed with water, 1,4-dioxane, dimethyl sulfoxide, hydrous 1,4-dioxane, dimethyl sulfoxide / 1,4-dioxane mixed solvent or water / dimethyl. 4. The method of claim 3, wherein the method is dissolved in sulfoxide / 1,4-dioxane and then lyophilized to produce an amorphous or low crystalline solid.
  5. 前記工程(4)において該工程(1)~(3)を少なくとも10回以上繰り返す、請求項4に記載の方法。 The method according to claim 4, wherein the steps (1) to (3) are repeated at least 10 times in the step (4).
  6. 前記工程(1)の前に、(1-1)目的化合物の塩化または共結晶化工程を含む、請求項5に記載の方法。 6. The method according to claim 5, further comprising (1-1) a step of chlorinating or co-crystallizing the target compound before the step (1).
  7. 請求項1~6のいずれか1項に記載の方法で得られた、目的化合物の塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形。 A salt of a target compound, a co-crystal thereof, a solvate thereof and / or a crystal form thereof obtained by the method according to any one of claims 1 to 6.
  8. 目的化合物の多様な塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形を作製する方法であって、以下:
     (1a)第1の容器中でフリー体もしくはその塩のアモルファス、または、フリー体、その塩、それらの共結晶もしくはそれらの溶媒和物の低結晶性固体を作製する工程;
     (2a)該第1の容器を第2の容器に入れ、該アモルファスまたは低結晶性固体を溶媒蒸気に曝露させる工程;
     (3a)工程(2a)で得た化合物の結晶形態を分析する工程;
     (4a)溶媒蒸気曝露の条件を変えて該工程(1a)~(3a)を1回以上繰り返す工程
    を含む、方法。
    Process for preparing various salts of the target compound, their co-crystals, their solvates and / or their crystalline forms, comprising:
    (1a) producing a low crystalline solid of a free form or a salt thereof, or a free form, a salt thereof, a co-crystal thereof or a solvate thereof in the first container;
    (2a) placing the first container in a second container and exposing the amorphous or low crystalline solid to solvent vapor;
    (3a) analyzing the crystal form of the compound obtained in step (2a);
    (4a) A method comprising a step of repeating the steps (1a) to (3a) one or more times by changing the conditions of solvent vapor exposure.
  9. 前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の粉砕、融解冷却、凍結乾燥または噴霧乾燥である、請求項8に記載の方法。 The method according to claim 8, wherein the method for producing the amorphous or low crystalline solid is grinding, melting cooling, freeze drying or spray drying of the free form, a salt thereof, a co-crystal thereof or a solvate thereof. .
  10. 前記アモルファスまたは低結晶性固体の作製方法が、前記フリー体、その塩、それらの共結晶またはそれらの溶媒和物の凍結乾燥である、請求項9に記載の方法。 The method according to claim 9, wherein the method for producing the amorphous or low crystalline solid is lyophilization of the free form, a salt thereof, a co-crystal thereof or a solvate thereof.
  11. フリー体、その塩、それらの共結晶またはそれらの溶媒和物を水、1,4-ジオキサン、ジメチルスルホキシド、含水1,4-ジオキサン、ジメチルスルホキシド/1,4-ジオキサン混合溶媒または水/ジメチルスルホキシド/1,4-ジオキサンに溶解させ、次いで、第1の容器中で凍結乾燥させてアモルファスまたは低結晶性固体を作製する、請求項10に記載の方法。 Free forms, salts thereof, co-crystals or solvates thereof are mixed with water, 1,4-dioxane, dimethyl sulfoxide, hydrous 1,4-dioxane, dimethyl sulfoxide / 1,4-dioxane mixed solvent, or water / dimethyl sulfoxide. 11. The method of claim 10, wherein the method is dissolved in / 1,4-dioxane and then lyophilized in a first container to produce an amorphous or low crystalline solid.
  12. 前記工程(4)において該工程(1)~(3)を少なくとも10回以上繰り返す、請求項11に記載の方法。 The method according to claim 11, wherein the steps (1) to (3) are repeated at least 10 times in the step (4).
  13. 前記工程(1a)の前に、(1a-1)目的化合物を塩化または共結晶化させる工程を含む、請求項12に記載の方法。 The method according to claim 12, comprising the step of (1a-1) chlorination or cocrystallization of the target compound before the step (1a).
  14. 請求項8~13のいずれか1項に記載の方法で得られた、目的化合物の塩、それらの共結晶、それらの溶媒和物および/またはそれらの結晶形。 A salt of the target compound, a co-crystal, a solvate thereof and / or a crystal form thereof obtained by the method according to any one of claims 8 to 13.
PCT/JP2011/055958 2010-03-19 2011-03-14 Exhaustive searching for crystals WO2011115069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063696 2010-03-19
JP2010-063696 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011115069A1 true WO2011115069A1 (en) 2011-09-22

Family

ID=44649154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055958 WO2011115069A1 (en) 2010-03-19 2011-03-14 Exhaustive searching for crystals

Country Status (1)

Country Link
WO (1) WO2011115069A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504054A (en) * 2015-12-31 2019-02-14 シャンハイ ファーマシューティカルズ ホールディング カンパニー,リミティド Salt of quinoline compound, crystal form thereof, preparation method, composition and use
WO2020100712A1 (en) * 2018-11-12 2020-05-22 昭和電工株式会社 Method for producing orotic acid derivative
CN113072483A (en) * 2021-03-30 2021-07-06 济南良福精合医药科技有限公司 Refining method of nicardipine hydrochloride

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199667A (en) * 1993-01-06 1994-07-19 Sawai Seiyaku Kk Persistent nicardipine composition
JP2001527067A (en) * 1997-12-24 2001-12-25 バイエル薬品株式会社 Thermodynamically stable form of (R) -3-[[(4-fluorophenyl) sulfonyl] amino] -1,2,3,4-tetrahydro-9H-carbazole-9-propanoic acid (ramatroban)
JP2003531173A (en) * 2000-04-24 2003-10-21 テバ ファーマシューティカル インダストリーズ リミティド Zolpidem hemitartrate
JP2008503495A (en) * 2004-06-17 2008-02-07 トランスフオーム・フアーマシユーチカルズ・インコーポレーテツド Pharmaceutical co-crystal composition and related methods of use
WO2008073757A1 (en) * 2006-12-07 2008-06-19 Helsinn Healthcare Sa Crystalline and amorphous forms of palonosetron hydrochloride
JP2009538904A (en) * 2006-05-31 2009-11-12 ビアル−ポルテア アンド シー.エイ., エス.エイ. New crystal form
JP2010505771A (en) * 2006-10-05 2010-02-25 ナブリヴァ セラピュティクス アクチエンゲゼルシャフト Method for producing pleuromutilin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199667A (en) * 1993-01-06 1994-07-19 Sawai Seiyaku Kk Persistent nicardipine composition
JP2001527067A (en) * 1997-12-24 2001-12-25 バイエル薬品株式会社 Thermodynamically stable form of (R) -3-[[(4-fluorophenyl) sulfonyl] amino] -1,2,3,4-tetrahydro-9H-carbazole-9-propanoic acid (ramatroban)
JP2003531173A (en) * 2000-04-24 2003-10-21 テバ ファーマシューティカル インダストリーズ リミティド Zolpidem hemitartrate
JP2008503495A (en) * 2004-06-17 2008-02-07 トランスフオーム・フアーマシユーチカルズ・インコーポレーテツド Pharmaceutical co-crystal composition and related methods of use
JP2009538904A (en) * 2006-05-31 2009-11-12 ビアル−ポルテア アンド シー.エイ., エス.エイ. New crystal form
JP2010505771A (en) * 2006-10-05 2010-02-25 ナブリヴァ セラピュティクス アクチエンゲゼルシャフト Method for producing pleuromutilin
WO2008073757A1 (en) * 2006-12-07 2008-06-19 Helsinn Healthcare Sa Crystalline and amorphous forms of palonosetron hydrochloride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NORIAKI HIRAYAMA, HANDBOOK - GENRI TO KNOW-HOW, 2008, pages 57 - 65, 78 TO 79 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504054A (en) * 2015-12-31 2019-02-14 シャンハイ ファーマシューティカルズ ホールディング カンパニー,リミティド Salt of quinoline compound, crystal form thereof, preparation method, composition and use
US10344035B2 (en) 2015-12-31 2019-07-09 Shanghai Phaarmaceuticals Holding Co., Ltd. Salt of quinolone compound, polymorphs thereof, preparation method therefor, composition, and applications
WO2020100712A1 (en) * 2018-11-12 2020-05-22 昭和電工株式会社 Method for producing orotic acid derivative
CN112969462A (en) * 2018-11-12 2021-06-15 昭和电工株式会社 Process for producing orotic acid derivative
US11453648B2 (en) 2018-11-12 2022-09-27 Showa Denko K.K. Method for producing orotic acid derivative
JP7363805B2 (en) 2018-11-12 2023-10-18 株式会社レゾナック Method for producing orotic acid derivatives
CN112969462B (en) * 2018-11-12 2024-03-19 株式会社力森诺科 Process for producing orotic acid derivative
CN113072483A (en) * 2021-03-30 2021-07-06 济南良福精合医药科技有限公司 Refining method of nicardipine hydrochloride

Similar Documents

Publication Publication Date Title
Zhang et al. Crystallization and transitions of sulfamerazine polymorphs
US20080027223A1 (en) Polymorphs of eszopiclone malate
CN110381940A (en) The preparation method of AG-10, wherein mesosome and its salt
WO2011115069A1 (en) Exhaustive searching for crystals
Surov et al. Polymorphic forms of antiandrogenic drug nilutamide: structural and thermodynamic aspects
Ma et al. Identification of novel adefovir dipivoxil-saccharin cocrystal polymorphs and their thermodynamic polymorphic transformations
US20230295121A1 (en) Solid forms of pralsetinib
US11584711B2 (en) 2,2,2-trifluoroacetic acid 1-(2,4-dimethylphenyl)-2-[(3-methoxyphenyl)methylene] method of making the same
KR20140108222A (en) Process for rapid identification and preparation of crystalline forms
JP6193762B2 (en) 1-{(2S) -2-amino-4- [2,4-bis (trifluoromethyl) -5,8-dihydropyrido [3,4-d] pyrimidine-7 (6H) -i
US10562895B2 (en) Pyrroloquinoline quinone B crystal form and preparation method therefor
SK1632001A3 (en) A process for the preparation of zofenopril calcium salt
CN105246892A (en) Crystalline cis-(e)-4-(3-fluorophenyl)-2&#39;,3&#39;,4&#39;,9&#39;-tetrahydro-n,n-dimethyl-2&#39;-(1-oxo-3-phenyl-2-propenyl)-spiro[cyclohexane-1,1&#39;[1h]-pyrido[3,4-b]indol]-4-amine
CN101484451A (en) Polymorphs of (R) -5- (2-aminoethyl) -1- (6, 8-difluorochroman-3-yl) -1,3- dihydroimidazole-thione hydrochloride
Chadha et al. Retrospection on polymorphism and cocrystallization of anti-retrovirals
CN104109159A (en) New crystal forms of benzene sulfonamide thiazole and preparation method thereof
US20230348433A1 (en) Polymorphs of [2-(1h-indol-3-yl)-1h-imidazol-4-yl](3,4,5-trimethoxy)methanone and its salts
RU2792728C2 (en) Method for producing a polymorphic form of 3-[5-amino-4-(3-cyanobenzoyl)pyrazole-1-yl]-n-cyclopropyl-4-methylbenzamide
CN109415325B (en) Process for preparing polymorphic forms of 3- [ 5-amino-4- (3-cyanobenzoyl) -pyrazol-1-yl ] -N-cyclopropyl-4-methylbenzamide
Sarkar et al. Investigation on polymorphic behavior of progesterone and stabilization by co-crystallization: A review
TW201506020A (en) Solid state forms of 6-[4-[3-((R)-2-methylpyrrolidine-1-yl)-propoxy]phenyl] 2H-pyridazine-3-one hydrochloride
CN107074744B (en) Nep inhibitor crystal type free acid, calcium salt polymorphic and its preparation method and application
EP2895469B1 (en) Solid forms of (s)-2-methoxy-3-{4-[2-(5-methyl-2-phenyl-oxazol-4-yl)-ethoxy]-benzo[b]thiophen-7-yl}-propionic acid and of salts thereof
TW202408494A (en) Novel crystalline form of isoxazole derivate and salt thereof and pharmaceutical composition including the same
CN114524846A (en) Ruidexiwei p-toluenesulfonate and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP