WO2011114788A1 - Method for producing lactone-modified single-terminal silicone polyol, and urethane resin composition - Google Patents

Method for producing lactone-modified single-terminal silicone polyol, and urethane resin composition Download PDF

Info

Publication number
WO2011114788A1
WO2011114788A1 PCT/JP2011/052086 JP2011052086W WO2011114788A1 WO 2011114788 A1 WO2011114788 A1 WO 2011114788A1 JP 2011052086 W JP2011052086 W JP 2011052086W WO 2011114788 A1 WO2011114788 A1 WO 2011114788A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactone
silicone polyol
modified
producing
type silicone
Prior art date
Application number
PCT/JP2011/052086
Other languages
French (fr)
Japanese (ja)
Inventor
善之 小田
弘 須崎
西村 勝英
晶子 雨宮
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2011114788A1 publication Critical patent/WO2011114788A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/695Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon
    • C08G63/6952Polyesters containing atoms other than carbon, hydrogen and oxygen containing silicon derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/46Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen
    • C08G18/4692Polycondensates having carboxylic or carbonic ester groups in the main chain having heteroatoms other than oxygen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen

Definitions

  • the present invention relates to a method for producing a lactone-modified one-end type silicone polyol and a urethane resin composition.
  • organopolysiloxane compounds have excellent interfacial properties such as low friction, thermal stability, water repellency, antifoaming, and releasability, so that the performance of synthetic resins such as paints and molded products can be improved.
  • modifiers such as dimethylpolysiloxane, methylphenylpolysiloxane, reactive group-containing dimethylpolysiloxane, and polyether-modified organopolysiloxane are added and used.
  • An object of the present invention is to provide a silicone having a polysiloxane chain in the side chain which is suitable as a raw material for a polyurethane resin having a normal molecular weight distribution, a low molecular weight deviation rate, and a low unreacted primary hydroxyl group that has not reacted with lactones. It exists in the manufacturing method of a polyol, and exists in the silicone polyol which can be especially used as a polyurethane resin raw material for one shot molding.
  • a lactone monomer is present at a temperature of 80 to 140 ° C. in an organopolysiloxane having a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end.
  • the present invention provides a process for producing a lactone-modified one-end type silicone polyol for a urethane raw material characterized by 5 to 10 moles of ring-opening addition polymerization per primary hydroxyl group, and a urethane resin composition using the same. .
  • the present invention provides a ring-opening addition polymerization of a specific amount of a lactone monomer at a specific temperature to an organopolysiloxane having two primary hydroxyl groups at one end of a specific molecular weight and no reactive group at the other end.
  • a one-shot molding polyurethane resin raw material it is possible to produce a silicone polyol having a normal molecular weight distribution, a low molecular weight deviation rate, and a low unreacted primary hydroxyl group remaining without reacting with lactones. Useful.
  • the organopolysiloxane used in the present invention has a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end, and preferably has a molecular weight of 2000 to 4000. .
  • the hydroxyl value is preferably 20 to 60 mgKOH / g, and the acid value is preferably 0.5 mgKOH / g or less.
  • the molecular weight is larger than 4000, the reaction between the lactone monomer and the organopolysiloxane does not proceed well, resulting in two peaks, which is not preferable because unreacted primary hydroxyl groups increase.
  • it is less than 1000 the effect of organopolysiloxane such as low friction cannot be imparted to the urethane resin.
  • lactone monomer used in the present invention examples include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -crotonolactone, and preferably ⁇ -caprolactone.
  • the lactone monomer is subjected to ring-opening addition polymerization of 5 to 10 moles per primary hydroxyl group.
  • Preferably, 8 moles of lactone monomer are added and polymerized to two primary hydroxyl groups on one side of the organopolysiloxane. Is.
  • the lactone monomer is less than 5 moles per primary hydroxyl group of the organopolysiloxane, the amount of unreacted primary hydroxyl groups will increase, and it will not be normal distribution and will have a shoulder, which is not preferable. . On the other hand, when the amount is more than 10 moles, the viscosity of the obtained resin becomes high and handling properties are inferior.
  • the production conditions of the lactone-modified one-end type silicone polyol are produced by carrying out in the system at a temperature of 80 to 140 ° C. in the presence of a catalyst. More preferably, it is 80 to 120 ° C. When the temperature in the system is lower than 80 ° C., the reaction rate becomes slow and a long-time synthesis is required. When the temperature in the system is higher than 140 ° C., organopolysiloxane having two primary hydroxyl groups at one end and no reactive group at the other end decomposes, and the desired lactone-modified one-end type silicone A polyol cannot be obtained.
  • the catalyst to be used is preferably a tin-based catalyst, and particularly preferably butyltin tris-2-ethylhexanoate.
  • the concentration of the catalyst in the system is preferably 100 to 500 ppm.
  • an organopolysiloxane having a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end and a catalyst are charged into a reaction vessel. Then, the temperature in the system is set to 80 to 140 ° C., and the lactone monomer is charged in a nitrogen gas atmosphere so as to be 5 to 10 mol per hydroxyl group of the organopolysiloxane, preferably 6 to 24 hours, more preferably 8 The reaction is performed for ⁇ 15 hours, and the reaction is terminated when the nonvolatile content becomes 99.5% by mass or more. Thereafter, the silicone polyol may be taken out.
  • the urethane resin composition of the present invention is a urethane resin molded product by reacting with the polyisocyanate by mixing the modified piece-terminated silicone polyol and other polyol components to form a polyol component.
  • it is good also as a urethane prepolymer beforehand, and polyisocyanate, a polyol, and a chain extender may be formed in one shot.
  • the polyisocyanate used in the present invention is usually used for a polyurethane resin.
  • a polyurethane resin for example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or a mixture thereof, m- or p-phenylene diisocyanate.
  • P-xylene diisocyanate ethylene diisocyanate, tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-diphenylmethane-4,4-biphenylene Diisocyanate, 3,3-dichloro-4,4-biphenylene diisocyanate, 4,4-biphenylene diisocyanate or 1,5-naphthalene diisocyanate, tolidine diisocyanate, ifosolone diisocyanate Sulfonates, cyclohexane diisocyanate, toluidine diisocyanate, crude diphenylmethane diisocyanate, and diphenylmethane diisocyanate are triphenylmethane triisocyanate and their various derivatives. Moreover, the urethane prepoly
  • polyols include known polyether polyols, polycarbonate polyols, or ordinary polyester polyols, that is, those having an ester bond by condensation reaction of polyhydric alcohol and polyhydric carboxylic acid in the presence of a catalyst. It is.
  • the polyol preferably has a molecular weight of 500 to 5000, particularly preferably 1000 to 3000, as determined from the hydroxyl value.
  • the chain extender is preferably a low molecular weight linear diol or diamine compound having 2 to 10 carbon atoms.
  • Typical examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 2,2′-dimethyl-1,3-propanediol.
  • Diethylene glycol 1,5 pentamethylene glycol, 1,6-hexamethylene glycol, cyclohexane 1,4-diol, cyclohexane-1,4 diol, cyclohexane-1,4 dimethanol, or the like; ethylenediamine, 1, 6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, 1,4-cyclohexanediamine, 1, - propanediamine, diethylenetriamine, triethylenetetramine, 3,3'-dichloro-amine compounds such as, and hydrazine, hydrazine such as acid hydrazide.
  • 1,4-butanediol and trimethylolpropane are preferable.
  • the urethane resin composition of the present invention can be produced by a conventionally known polyurethane production method, for example, a one-shot method, a prepolymer method or a quasi-prepolymer method, and further, bulk polymerization, solution polymerization, emulsion polymerization, emulsion polymerization, etc. Can be used.
  • the production method may be a conventionally known method, such as a slab method, a double conveyor method, a hot cure method, a cold cure method, a RIM method, molding by an open mold, an integral molding with a composite material, an on-site construction method, a spray method, a casting method. Methods such as injection, coating, and impregnation can be used.
  • the polyisocyanate and the polyol are preferably reacted at a molar ratio (NCO / (OH + NH 2 )) of 0.8 to 1.1, more preferably 1.0 to 1.05.
  • a well-known urethanization catalyst, surfactant, another adjuvant, etc. can be used in the addition amount generally used when manufacturing urethane.
  • the urethane composition of the present invention can be added with an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, a filler, a colorant, a reinforcing agent, a release agent, a flame retardant and the like, if necessary.
  • an antioxidant an ultraviolet absorber
  • a hydrolysis inhibitor a filler
  • a colorant a reinforcing agent
  • a release agent a flame retardant and the like
  • other thermoplastic polyurethane elastomers and other general-purpose thermoplastic resins such as ABS resin, AS resin, vinyl chloride resin, polyamide and the like can be added within a range not impairing the effect of the urethane resin composition according to the present invention.
  • the composition of the present invention may contain various additives selected from surfactants, catalysts, stabilizers, and pigments.
  • the urethane composition of the present invention can be used as a thermoplastic elastomer (TPU), a thermosetting elastomer (TSU), an aqueous polyurethane resin, a radical curable urethane resin, a molding material, an adhesive, an adhesive, a paint, a foam, It can be used for polyurethane products in all fields such as sealing agents and photo-curable resins. Specific applications include three-dimensional molded products such as yarns, films, sheets, belts, hoses, rolls, tires, anti-vibration materials, packings, and shoe soles, as well as artificial leather, synthetic leather, soft / hard foams, and textile materials. It can be used in many fields such as industrial materials, electrical and electronic materials, optical materials, medical materials, and civil engineering materials.
  • Example 1 Synthesis of lactone-modified one-end type silicone polyol Organo with two primary hydroxyl groups at one end of the following structural formula and no reactive group at the other end in a 1 liter four-necked flask equipped with a nitrogen inlet tube, thermometer, cooling tube, and stirring device Charge 500 parts of polysiloxane (hydroxyl value: 41.1 mg KOH / g, acid value: 0.05 mg KOH / g), 335 parts of ⁇ -caprolactone, 0.250 part of butyltin tris-2-ethylhexanoate as a reaction catalyst, and pass through nitrogen. The reaction was carried out at 100 ° C. for 13 hours.
  • Non-volatile content (NV) was appropriately measured for the reaction end point, and the end point was determined when NV was 99.5% or higher.
  • NV Non-volatile content
  • the reaction product had a hydroxyl value of 24.4 mg KOH / g, an acid value of 0.55 mg KOH / g, and a white solid at room temperature (25 ° C.), and a transparent liquid resin at 100 ° C.
  • the molecular weight distribution by GPC measurement showed a normal distribution, and the proportion of the unreacted primary hydroxyl group of the organopolysiloxane by C13 NMR measurement was 5% (that is, the primary hydroxyl group reacted with ⁇ -caprolactone was 95%).
  • Examples 2-4 Synthesis was performed in the same manner as in Example 1 except for the number of parts and the synthesis conditions shown in Table 1.
  • Comparative Examples 1-7 Synthesis was performed in the same manner as in Example 1 except for the number of parts and the synthesis conditions shown in Table 1.
  • the resins obtained in the above Examples and Comparative Examples were measured for the non-volatile content, hydroxyl value, acid value, molecular weight deviation rate, ratio of unreacted primary hydroxyl groups, and molecular weight distribution by GPC measurement by the following methods.
  • Nonvolatile content (BC) / (AC) ⁇ 100
  • acetylating agent consisting of acetic anhydride and pyridine was added to the sample, and then acetylated at 115 ° C. for 1 hour. Next, water was added to decompose excess acetic anhydride into acetic acid, acetone and toluene were added, and then neutralization titration was performed using N / 2 potassium hydroxide ethyl alcohol solution.
  • V Drop amount of 0.1N potassium hydroxide ethyl alcohol (ml)
  • F Potency of 0.1N potassium hydroxide ethyl alcohol
  • S Sampling amount (g)
  • Example (production of urethane elastomer sheet) (Synthesis of urethane prepolymer) 484.1 parts of 4,4-diphenylmethane diisocyanate was placed in a 2 liter flask, and 1000 parts of polylite OD-X-640M (polyester polyol molecular weight of DIC 2000) and 50.1 parts of the lactone-modified one-end type silicone polyol of Example 1 were added. The mixture was mixed and reacted at 70 ° C. for about 5 hours under a nitrogen atmosphere to obtain a silicone-containing urethane prepolymer having an NCO equivalent of 525.
  • Synthesis of urethane prepolymer 484.1 parts of 4,4-diphenylmethane diisocyanate was placed in a 2 liter flask, and 1000 parts of polylite OD-X-640M (polyester polyol molecular weight of DIC 2000) and 50.1 parts of the lactone-modified one-end type silicone polyol

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a method for producing a silicone polyol, which has a normally-distributed molecular weight distribution, a low molecular dissociation, and a polysiloxane chain in a side chain, and which is suitable for use as a polyurethane resin starting material having little unreacted primary hydroxyl groups that have not reacted with lactones. Specifically, provided is a silicone polyol which can be used as a polyurethane resin starting material for one-shot molding. The method for producing a lactone-modified single-terminal silicone polyol involves ring-opening polymerizing a lactone monomer with 5 to 10 moles of an organo polysiloxane, which has two primary hydroxyl groups at one terminal and a molecular weight of 2000 to 4000 and which does not have a reactive group at the other terminal, per one primary hydroxyl group at the temperature of 80 to 140°C and in the presence of a catalyst.

Description

ラクトン変性片末端型シリコーンポリオールの製造方法およびウレタン樹脂組成物Method for producing lactone-modified one-end type silicone polyol and urethane resin composition
 本発明は、ラクトン変性片末端型シリコーンポリオールの製造方法およびウレタン樹脂組成物に関する。 The present invention relates to a method for producing a lactone-modified one-end type silicone polyol and a urethane resin composition.
 近年、オルガノポリシロキサン化合物は、低摩擦性、熱安定性、撥水性、消泡性、離型性等の界面特性に優れているため、塗料、成型品等の合成樹脂の性能改良のために例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、反応基含有ジメチルポリシロキサン、ポリエーテル変性オルガノポリシロキサン等の改質剤が添加使用されている。 In recent years, organopolysiloxane compounds have excellent interfacial properties such as low friction, thermal stability, water repellency, antifoaming, and releasability, so that the performance of synthetic resins such as paints and molded products can be improved. For example, modifiers such as dimethylpolysiloxane, methylphenylpolysiloxane, reactive group-containing dimethylpolysiloxane, and polyether-modified organopolysiloxane are added and used.
 しかしながら、これらは樹脂との相溶性が不十分であったり、耐熱性が不十分であるために使用範囲が限定されていた。そこでこれらの欠点を改良する目的でポリシロキサンとグリセリンモノアリルエーテルとの付加反応物にラクトンを付加したラクトン変性オルガノポリシロキサン化合物が提案されている。(特許文献1)
 しかし、このものは、ラクトンがグリセリンモノアリルエーテルの複数の水酸基に反応して複数のポリラクトン鎖を有し架橋構造が多くなり、第1級水酸基と第2級水酸基が混在し反応性がばらつく為、ポリウレタン樹脂用原料として使用が困難であった。更に、ポリウレタン樹脂用原料として使用できるポリシロキサン鎖含有ポリオール(以下シリコーンポリオールと言う)の開発が望まれていた。
However, these materials have insufficient compatibility with the resin or have insufficient heat resistance, so the range of use has been limited. Therefore, a lactone-modified organopolysiloxane compound in which a lactone is added to an addition reaction product of polysiloxane and glycerol monoallyl ether has been proposed for the purpose of improving these drawbacks. (Patent Document 1)
However, in this product, the lactone reacts with a plurality of hydroxyl groups of glycerin monoallyl ether and has a plurality of polylactone chains to increase the crosslinking structure, and the primary hydroxyl group and the secondary hydroxyl group coexist and the reactivity varies. It was difficult to use as a raw material for polyurethane resins. Furthermore, development of a polysiloxane chain-containing polyol (hereinafter referred to as a silicone polyol) that can be used as a raw material for a polyurethane resin has been desired.
特開平03-6230号公報Japanese Unexamined Patent Publication No. 03-6230
 本発明の目的は、分子量分布が正規分布となり、分子量乖離率の低い、ラクトン類と反応していない未反応第一級水酸基の少ないポリウレタン樹脂用原料として好適なポリシロキサン鎖を側鎖に有するシリコーンポリオールの製造方法にあり、特にワンショット成形用ポリウレタン樹脂原料として使用できるシリコーンポリオールにある。 An object of the present invention is to provide a silicone having a polysiloxane chain in the side chain which is suitable as a raw material for a polyurethane resin having a normal molecular weight distribution, a low molecular weight deviation rate, and a low unreacted primary hydroxyl group that has not reacted with lactones. It exists in the manufacturing method of a polyol, and exists in the silicone polyol which can be especially used as a polyurethane resin raw material for one shot molding.
 本発明者らは、分子量分布が正規分布となり未反応第一級水酸基の少ないポリウレタン樹脂用シリコーンポリオールの製造方法について鋭意研究した結果、特定ポリシロキサンを特定温度で触媒の存在下に製造する方法により、ポリウレタンエラストマー原料として優れたシリコーンポリオールを得ることができることを見出し、本発明を完成させるに至った。 As a result of diligent research on a method for producing a silicone polyol for polyurethane resin having a normal molecular weight distribution and a small number of unreacted primary hydroxyl groups, the present inventors have found that a specific polysiloxane is produced at a specific temperature in the presence of a catalyst. The inventors have found that an excellent silicone polyol can be obtained as a polyurethane elastomer raw material, and have completed the present invention.
 即ち、本発明は、片末端に第1級水酸基を2個有し、他端に反応性基を有さない分子量1000~4000のオルガノポリシロキサンにラクトンモノマーを温度80~140℃で触媒の存在下、1級水酸基1個あたり5~10モル開環付加重合することを特徴とするウレタン原料用ラクトン変性片末端型シリコーンポリオールの製造方法及びそれを用いたウレタン樹脂組成物を提供するものである。 That is, in the present invention, a lactone monomer is present at a temperature of 80 to 140 ° C. in an organopolysiloxane having a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end. The present invention provides a process for producing a lactone-modified one-end type silicone polyol for a urethane raw material characterized by 5 to 10 moles of ring-opening addition polymerization per primary hydroxyl group, and a urethane resin composition using the same. .
 本発明は、特定分子量の片末端に第1級水酸基を2個有し、他端に反応性基を有さないオルガノポリシロキサンに特定温度でラクトンモノマーの特定量を開環付加重合することで、分子量分布が正規分布となり、分子量乖離率の低い、ラクトン類と反応せずに残った未反応の第一級水酸基が少ないシリコーンポリオールを製造することができるので、ワンショット成形用ポリウレタン樹脂原料として有用である。 The present invention provides a ring-opening addition polymerization of a specific amount of a lactone monomer at a specific temperature to an organopolysiloxane having two primary hydroxyl groups at one end of a specific molecular weight and no reactive group at the other end. As a one-shot molding polyurethane resin raw material, it is possible to produce a silicone polyol having a normal molecular weight distribution, a low molecular weight deviation rate, and a low unreacted primary hydroxyl group remaining without reacting with lactones. Useful.
 本発明で使用するオルガノポリシロキサンは、片末端に第1級水酸基を2個有し、他端に反応性基を有さない分子量1000~4000のものであり、好ましくは分子量2000~4000である。また、水酸基価が、好ましくは20~60mgKOH/g、酸価が好ましくは0.5mgKOH/g以下である。分子量が4000より大きい場合は、ラクトンモノマーとオルガノポリシロキサンの反応が旨く進行せず2ピークとなり、未反応第1級水酸基が多くなってしまうので好ましくない。又、1000より小さい場合は、オルガノポリシロキサンの効果である低摩擦性等の効果をウレタン樹脂に付与できない。 The organopolysiloxane used in the present invention has a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end, and preferably has a molecular weight of 2000 to 4000. . The hydroxyl value is preferably 20 to 60 mgKOH / g, and the acid value is preferably 0.5 mgKOH / g or less. When the molecular weight is larger than 4000, the reaction between the lactone monomer and the organopolysiloxane does not proceed well, resulting in two peaks, which is not preferable because unreacted primary hydroxyl groups increase. On the other hand, if it is less than 1000, the effect of organopolysiloxane such as low friction cannot be imparted to the urethane resin.
 本発明で使用するラクトンモノマーとは、例えば、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、γ-クロトノラクトン等が挙げられ、好ましくはε-カプロラクトンである。ラクトンモノマーを第1級水酸基1個あたり5~10モルを開環付加重合させるものであるが、好ましくはラクトンモノマーを8モルずつオルガノポリシロキサンの片側の2個の第1級水酸基に付加重合したものである。ラクトンモノマーがオルガノポリシロキサンの有する第1級水酸基1個あたり5モルより少ない場合、未反応第1級水酸基が多くなってしまうし、正規分布とならずショルダーのあるものになってしまうので好ましくない。一方、10モルより多い場合、得られた樹脂の粘度が高くなってしまいハンドリング性に劣る。 Examples of the lactone monomer used in the present invention include β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone, γ-crotonolactone, and preferably ε-caprolactone. The lactone monomer is subjected to ring-opening addition polymerization of 5 to 10 moles per primary hydroxyl group. Preferably, 8 moles of lactone monomer are added and polymerized to two primary hydroxyl groups on one side of the organopolysiloxane. Is. If the lactone monomer is less than 5 moles per primary hydroxyl group of the organopolysiloxane, the amount of unreacted primary hydroxyl groups will increase, and it will not be normal distribution and will have a shoulder, which is not preferable. . On the other hand, when the amount is more than 10 moles, the viscosity of the obtained resin becomes high and handling properties are inferior.
 ラクトン変性片末端型シリコーンポリオールの製造条件は、系中温度80~140℃で触媒の存在下で行うことで製造される。更に好ましくは、80~120℃である。
 系中温度が80℃より低い場合、反応速度が遅くなり長時間の合成が必要となる。又系中の温度が140℃より高い場合、片末端に第1級水酸基を2個有し他端に反応性基を有さないオルガノポリシロキサンが分解してしまい所望のラクトン変性片末端型シリコーンポリオールが得られない。
The production conditions of the lactone-modified one-end type silicone polyol are produced by carrying out in the system at a temperature of 80 to 140 ° C. in the presence of a catalyst. More preferably, it is 80 to 120 ° C.
When the temperature in the system is lower than 80 ° C., the reaction rate becomes slow and a long-time synthesis is required. When the temperature in the system is higher than 140 ° C., organopolysiloxane having two primary hydroxyl groups at one end and no reactive group at the other end decomposes, and the desired lactone-modified one-end type silicone A polyol cannot be obtained.
 前記使用する触媒とは、好ましくは錫系触媒で、特に好ましくはトリス-2-エチルヘキサン酸ブチル錫である。その際、系中触媒の濃度は、好ましくは100~500ppmである。 The catalyst to be used is preferably a tin-based catalyst, and particularly preferably butyltin tris-2-ethylhexanoate. At that time, the concentration of the catalyst in the system is preferably 100 to 500 ppm.
 ラクトン変性片末端型シリコーンポリオールを製造するには、反応容器に片末端に第1級水酸基を2個有し他端に反応性基を有さない分子量1000~4000のオルガノポリシロキサン及び触媒を投入し、系中温度80~140℃とし、ラクトンモノマーをオルガノポリシロキサンの水酸基1個あたり5~10モルとなるように窒素ガス雰囲気下に投入して、好ましくは6~24時間、より好ましくは8~15時間反応を行い、不揮発分が99.5質量%以上となったら反応終了とする。その後、シリコーンポリオールを取り出せば良い。 In order to produce a lactone-modified one-end type silicone polyol, an organopolysiloxane having a molecular weight of 1000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end and a catalyst are charged into a reaction vessel. Then, the temperature in the system is set to 80 to 140 ° C., and the lactone monomer is charged in a nitrogen gas atmosphere so as to be 5 to 10 mol per hydroxyl group of the organopolysiloxane, preferably 6 to 24 hours, more preferably 8 The reaction is performed for ˜15 hours, and the reaction is terminated when the nonvolatile content becomes 99.5% by mass or more. Thereafter, the silicone polyol may be taken out.
 本願発明のウレタン樹脂組成物とは、前記変性片末端型シリコーンポリオールと他のポリオール成分と混合してポリオール成分とし、ポリイソシアネートと反応することで、ウレタン樹脂成形品とされる。その際、予めウレタンプレポリマーとしても良いし、ポリイソシアネート、ポリオール、鎖伸長剤をワンショット成形しても良い。 The urethane resin composition of the present invention is a urethane resin molded product by reacting with the polyisocyanate by mixing the modified piece-terminated silicone polyol and other polyol components to form a polyol component. In that case, it is good also as a urethane prepolymer beforehand, and polyisocyanate, a polyol, and a chain extender may be formed in one shot.
 本発明で使用するポリイソシアネートとは、通常ポリウレタン樹脂に使用されるものであり、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートまたはこれらの混合物、m-もしくはp-フェニレンジイソシアネート、p-キシレンジイソシアネート、エチレンジイソシアネート、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、ジフエニルメタン-4,4’-ジイソシアネート、3,3’-ジメチル-ジフェニルメタン-4,4-ビフェニレンジイソシアネート、3,3-ジクロル-4,4-ビフェニレンジイソシアネート、4,4-ビフェニレンジイソシアネートまたは1,5-ナフタレンジイソシアネート、トリジンシイソシアネート、イホソロンジイソシアネート、シクロヘキサンジイソシアネート、トルイジンジイソシアネート、粗製ジフェニルメタンジイソシアネート、及びジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネートおよびこれらの各種誘導体が挙げられる。また、下記のポリオールと、前記いずれかのポリイソシアネートとを反応させた末端がイソシアネート基であるウレタンプレポリマーも挙げられる。 The polyisocyanate used in the present invention is usually used for a polyurethane resin. For example, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, or a mixture thereof, m- or p-phenylene diisocyanate. P-xylene diisocyanate, ethylene diisocyanate, tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, diphenylmethane-4,4′-diisocyanate, 3,3′-dimethyl-diphenylmethane-4,4-biphenylene Diisocyanate, 3,3-dichloro-4,4-biphenylene diisocyanate, 4,4-biphenylene diisocyanate or 1,5-naphthalene diisocyanate, tolidine diisocyanate, ifosolone diisocyanate Sulfonates, cyclohexane diisocyanate, toluidine diisocyanate, crude diphenylmethane diisocyanate, and diphenylmethane diisocyanate are triphenylmethane triisocyanate and their various derivatives. Moreover, the urethane prepolymer whose terminal which made the following polyol and one of the said polyisocyanates react is an isocyanate group is also mentioned.
 その他のポリオールとは、公知のポリエーテルポリオール、ポリカーボネートポリオール、或いは通常のポリエステルポリオール、即ち、多価アルコールと多価カルボン酸とを触媒の存在下で縮合反応してエステル結合を有したものも含まれる。前記ポリオールは、好ましくは、水酸基価より求めた分子量が500~5000のものであり、特に好ましくは1000~3000である。 Other polyols include known polyether polyols, polycarbonate polyols, or ordinary polyester polyols, that is, those having an ester bond by condensation reaction of polyhydric alcohol and polyhydric carboxylic acid in the presence of a catalyst. It is. The polyol preferably has a molecular weight of 500 to 5000, particularly preferably 1000 to 3000, as determined from the hydroxyl value.
 前記鎖伸長剤とは、好ましくは、炭素数2~10の低分子量直鎖ジオール、ジアミン化合物が使用される。その代表例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、2,2’-ジメチル-1,3-プロパンジオール、ジエチレングリコール、1,5ペンタメチレングリコール、1,6-ヘキサメチレングリコール、シクロヘキサン1,4-ジオール、シクロヘキサン-1,4ジオール、シクロヘキサン-1,4ジメタノールなどの単独あるいは混合物、;エチレンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン、1,2-プロパンジアミン、ジエチレントリアミン、トリエチレンテトラミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン等のアミン化合物、及びヒドラジン、酸ヒドラジド等のヒドラジン類が挙げられる。特に1,4-ブタンジオール、トリメチロールプロパンが好ましい。 The chain extender is preferably a low molecular weight linear diol or diamine compound having 2 to 10 carbon atoms. Typical examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 2,3-butylene glycol, 1,4-butylene glycol, 2,2′-dimethyl-1,3-propanediol. , Diethylene glycol, 1,5 pentamethylene glycol, 1,6-hexamethylene glycol, cyclohexane 1,4-diol, cyclohexane-1,4 diol, cyclohexane-1,4 dimethanol, or the like; ethylenediamine, 1, 6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, 1,4-cyclohexanediamine, 1, - propanediamine, diethylenetriamine, triethylenetetramine, 3,3'-dichloro-amine compounds such as, and hydrazine, hydrazine such as acid hydrazide. In particular, 1,4-butanediol and trimethylolpropane are preferable.
 本発明のウレタン樹脂組成物は、従来公知のポリウレタンの製造方法、例えば、ワンショット法、プレポリマー法または準プレポリマー法等の方法、さらに、バルク重合、溶液重合、エマルジョン重合、乳化重合等が使用できる。生産方式も従来から公知の方法でよく、スラブ方式、ダブルコンベア方式、ホットキュアー方式、コールドキュアー方式、RIM方式、開放モールドによる成形、複合材との一体成形、現場施工方式、スプレー方式、キャスティング方式、注入、塗布、含浸等の方法が使用できる。製造の際には、ポリイソシアネートとポリオールとをモル比(NCO/(OH+NH2))が0.8~1.1で反応することが好ましい、より好ましくは1.0~1.05である。また、公知のウレタン化触媒、界面活性剤、その他の助剤等を、ウレタンを製造する際に一般的に用いられる添加量で使用することができる。 The urethane resin composition of the present invention can be produced by a conventionally known polyurethane production method, for example, a one-shot method, a prepolymer method or a quasi-prepolymer method, and further, bulk polymerization, solution polymerization, emulsion polymerization, emulsion polymerization, etc. Can be used. The production method may be a conventionally known method, such as a slab method, a double conveyor method, a hot cure method, a cold cure method, a RIM method, molding by an open mold, an integral molding with a composite material, an on-site construction method, a spray method, a casting method. Methods such as injection, coating, and impregnation can be used. In the production, the polyisocyanate and the polyol are preferably reacted at a molar ratio (NCO / (OH + NH 2 )) of 0.8 to 1.1, more preferably 1.0 to 1.05. Moreover, a well-known urethanization catalyst, surfactant, another adjuvant, etc. can be used in the addition amount generally used when manufacturing urethane.
 更に、本発明のウレタン組成物は、必要により、酸化防止剤、紫外線吸収剤、加水分解防止剤、充填剤、着色剤、強化剤、離型剤、難燃剤等を添加し得る。さらに、他の熱可塑性ポリウレタンエラストマーや、それ以外の汎用熱可塑性樹脂、例えば、ABS樹脂、AS樹脂、塩化ビニル樹脂、ポリアミド等を本発明によるウレタン樹脂組成物の効果を損なわない範囲で添加し得る。本発明の組成物には、界面活性剤、触媒、安定剤、及び顔料から選ばれた各種添加剤を含有しても良い。 Furthermore, the urethane composition of the present invention can be added with an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, a filler, a colorant, a reinforcing agent, a release agent, a flame retardant and the like, if necessary. Furthermore, other thermoplastic polyurethane elastomers and other general-purpose thermoplastic resins such as ABS resin, AS resin, vinyl chloride resin, polyamide and the like can be added within a range not impairing the effect of the urethane resin composition according to the present invention. . The composition of the present invention may contain various additives selected from surfactants, catalysts, stabilizers, and pigments.
 本発明のウレタン組成物は、熱可塑性エラストマー(TPU)、熱硬化性エラストマー(TSU)、水性ポリウレタン樹脂、ラジカル硬化性ウレタン樹脂として使用でき、成形材料、接着剤、粘着剤、塗料、発泡体、シーリング剤、光硬化性樹脂等のあらゆる分野のポリウレタン製品に使用可能である。具体的用途は、糸、フィルム、シート、ベルト、ホース、ロール、タイヤ、防振材、パッキン、靴底等の3次元成形物、さらに、人工皮革、合成皮革、軟質・硬質発泡体、繊維材料、工業材料、電機電子材料、光学材料、医療材料、土木建設材料等多くの分野に使用することができる。 The urethane composition of the present invention can be used as a thermoplastic elastomer (TPU), a thermosetting elastomer (TSU), an aqueous polyurethane resin, a radical curable urethane resin, a molding material, an adhesive, an adhesive, a paint, a foam, It can be used for polyurethane products in all fields such as sealing agents and photo-curable resins. Specific applications include three-dimensional molded products such as yarns, films, sheets, belts, hoses, rolls, tires, anti-vibration materials, packings, and shoe soles, as well as artificial leather, synthetic leather, soft / hard foams, and textile materials. It can be used in many fields such as industrial materials, electrical and electronic materials, optical materials, medical materials, and civil engineering materials.
 以下、実施例を挙げて、本発明を具体的に説明するが、これらに限定するものではない。また、文中の「部」、「%」は質量基準であるものとする。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, “part” and “%” in the sentence are based on mass.
実施例1(ラクトン変性片末端型シリコーンポリオールの合成)
 窒素導入管、温度計、冷却管、攪拌装置を備えた1リットル4つ口フラスコに下記構造式の片末端に第1級水酸基を2個有し、他端に反応性基を有さないオルガノポリシロキサン(水酸基価:41.1mgKOH/g 酸価:0.05mgKOH/g)500部、ε-カプロラクトン335部、反応触媒としてトリス-2-エチルヘキサン酸ブチル錫0.250部を仕込み、窒素を通じながら100℃ 13時間で反応させた。(反応終点は不揮発分(NV)を適宜測定し、NVが99.5%以上となった時終点とした。) 13時間反応後、NVは99.7%に到達したので、樹脂をフラスコから取り出した。反応物の水酸基価は24.4mgKOH/g、酸価0.55mgKOH/gで常温(25℃)では白色固体、100℃では、透明液体の樹脂を得た。GPC測定による分子量分布は正規分布を示し、C13NMR測定によるオルガノポリシロキサンの未反応1級水酸基の割合は、5%であった(即ち、ε-カプロラクトンと反応した1級水酸基は95%)。
Example 1 (Synthesis of lactone-modified one-end type silicone polyol)
Organo with two primary hydroxyl groups at one end of the following structural formula and no reactive group at the other end in a 1 liter four-necked flask equipped with a nitrogen inlet tube, thermometer, cooling tube, and stirring device Charge 500 parts of polysiloxane (hydroxyl value: 41.1 mg KOH / g, acid value: 0.05 mg KOH / g), 335 parts of ε-caprolactone, 0.250 part of butyltin tris-2-ethylhexanoate as a reaction catalyst, and pass through nitrogen. The reaction was carried out at 100 ° C. for 13 hours. (Non-volatile content (NV) was appropriately measured for the reaction end point, and the end point was determined when NV was 99.5% or higher.) After reaction for 13 hours, NV reached 99.7%, so the resin was removed from the flask. I took it out. The reaction product had a hydroxyl value of 24.4 mg KOH / g, an acid value of 0.55 mg KOH / g, and a white solid at room temperature (25 ° C.), and a transparent liquid resin at 100 ° C. The molecular weight distribution by GPC measurement showed a normal distribution, and the proportion of the unreacted primary hydroxyl group of the organopolysiloxane by C13 NMR measurement was 5% (that is, the primary hydroxyl group reacted with ε-caprolactone was 95%).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
実施例2~4
 表1に示す配合部数、合成条件以外、実施例1と同様に合成した。
Examples 2-4
Synthesis was performed in the same manner as in Example 1 except for the number of parts and the synthesis conditions shown in Table 1.
比較例1~7
 表1に示す配合部数、合成条件以外、実施例1と同様に合成した。
Comparative Examples 1-7
Synthesis was performed in the same manner as in Example 1 except for the number of parts and the synthesis conditions shown in Table 1.
上記実施例及び比較例で得られた樹脂を下記に示す方法で、不揮発分、水酸基価、酸価、分子量乖離率、未反応第1級水酸基の割合、GPC測定による分子量分布を測定した。 The resins obtained in the above Examples and Comparative Examples were measured for the non-volatile content, hydroxyl value, acid value, molecular weight deviation rate, ratio of unreacted primary hydroxyl groups, and molecular weight distribution by GPC measurement by the following methods.
<不揮発分>
 金属シャーレに試料1gを取りトルエンを5ml加え、107.5℃で1時間乾燥後の残量を求めた。
 不揮発分(%)=(B-C)/(A-C)×100
 但し、 A:金属シャーレ+乾燥前の試料の質量(g)
     B:金属シャーレ+乾燥後の試料の質量(g)
     C:金属シャーレの質量
<Nonvolatile content>
A 1 g sample was placed in a metal petri dish, 5 ml of toluene was added, and the remaining amount after drying at 107.5 ° C. for 1 hour was determined.
Nonvolatile content (%) = (BC) / (AC) × 100
However, A: Metal Petri dish + Mass of the sample before drying (g)
B: Mass of the metal petri dish + sample after drying (g)
C: Mass of metal petri dish
<水酸基価>
  試料に無水酢酸及びピリジンからなるアセチル化剤を加えた後、115℃×1時間アセチル化した。次いで水を加え過剰の無水酢酸を酢酸に分解し、アセトン、トルエンを加えた後、N/2水酸化カリウムエチルアコール溶液を用いて酢酸を中和滴定した。
 水酸基価(mgKOH/g)=(B-T)×F×28.05/S+AN
 但し、 B:空試験におけるN/2水酸化カリウムエチルアルコールの滴下量(ml)
     T:本試験におけるN/2水酸化カリウムエチルアルコールの滴下量(ml)
     F:N/2水酸化カリウムエチルアルコールの力価
     S:試料採取量(g)
     AN:試料の酸価
<Hydroxyl value>
An acetylating agent consisting of acetic anhydride and pyridine was added to the sample, and then acetylated at 115 ° C. for 1 hour. Next, water was added to decompose excess acetic anhydride into acetic acid, acetone and toluene were added, and then neutralization titration was performed using N / 2 potassium hydroxide ethyl alcohol solution.
Hydroxyl value (mgKOH / g) = (BT) × F × 28.05 / S + AN
B: Drop amount of N / 2 potassium hydroxide ethyl alcohol in the blank test (ml)
T: Drop amount of N / 2 potassium hydroxide ethyl alcohol in this test (ml)
F: Potency of N / 2 potassium hydroxide ethyl alcohol S: Sampling amount (g)
AN: Acid value of the sample
<酸価>
  試料に中性溶媒(トルエン/メタノール)を加え溶解した後、0.1N水酸化カリウムエチルアルコールで中和滴定した。
 酸価(mgKOH/g)=V×F×5.611/S
 但し V:0.1N水酸化カリウムエチルアルコールの滴下量(ml)
    F:0.1N水酸化カリウムエチルアルコールの力価
    S:試料採取量(g)
<Acid value>
The sample was dissolved by adding a neutral solvent (toluene / methanol), and then neutralized with 0.1N potassium hydroxide ethyl alcohol.
Acid value (mgKOH / g) = V × F × 5.661 / S
V: Drop amount of 0.1N potassium hydroxide ethyl alcohol (ml)
F: Potency of 0.1N potassium hydroxide ethyl alcohol S: Sampling amount (g)
<分子量乖離率>
  片末端ジオール型オルガノポリシロキサンの水酸基価、酸価、及びε-カプロラクトン/片末端ジオール型オルガノポリシロキサンのモル比から計算により求めた目標分子量と、
得られた樹脂の水酸基価、酸価から計算により求めた実験分子量から乖離率を求めた。
 分子量乖離率(%)=(目標分子量-実験分子量)/目標分子量×100
 但し、分子量=56100×2/(水酸基価+酸価)
<Molecular weight deviation rate>
The target molecular weight determined by calculation from the hydroxyl value of the one-end diol type organopolysiloxane, the acid value, and the molar ratio of ε-caprolactone / one-end diol type organopolysiloxane,
The deviation rate was determined from the experimental molecular weight obtained by calculation from the hydroxyl value and acid value of the obtained resin.
Molecular weight deviation rate (%) = (Target molecular weight−Experimental molecular weight) / Target molecular weight × 100
However, molecular weight = 56100 × 2 / (hydroxyl value + acid value)
<未反応第1級水酸基の割合>
 試料を重クロロホルムに溶解させ、常法により13C-NMRを測定した。65.5ppm(未反応第1級水酸基に隣接する炭素に相当)に表れるピークと62・0ppm(ラクトンと反応した第1級水酸基に隣接する炭素)に表れるピークから計算した。
 未反応第1級水酸基の割合(%)=65.5ppmピーク面積/(65.5ppmピーク面積+62.0ppmピーク面積)×100
<Ratio of unreacted primary hydroxyl group>
A sample was dissolved in deuterated chloroform, and 13 C-NMR was measured by a conventional method. It was calculated from a peak appearing at 65.5 ppm (corresponding to carbon adjacent to the unreacted primary hydroxyl group) and a peak appearing at 62.0 ppm (carbon adjacent to the primary hydroxyl group reacted with lactone).
Unreacted primary hydroxyl group ratio (%) = 65.5 ppm peak area / (65.5 ppm peak area + 62.0 ppm peak area) × 100
<GPC測定による分子量分布>
 試料をテトラヒドロフラン(THF)に溶解させ(0.4%溶液)、ゲルパーミッションクロマトグラフ分析を行った。得られたチャートの形状を評価した。
 [測定条件] 溶離液:THF カラム:TSKgel流量:1.0ml/min 
        カラム:TSKgelG5・4・3・2 検出器:RI
<Molecular weight distribution by GPC measurement>
The sample was dissolved in tetrahydrofuran (THF) (0.4% solution) and subjected to gel permeation chromatography analysis. The shape of the obtained chart was evaluated.
[Measurement conditions] Eluent: THF Column: TSKgel flow rate: 1.0 ml / min
Column: TSKgelG5 ・ 4 ・ 3 ・ 2 Detector: RI
実施例(ウレタンエラストマーシートの作成)
 (ウレタンプレポリマーの合成)
 4,4-ジフェニルメタンジイソシアネート 484.1部を2リットルフラスコに入れ、ポリライト OD-X-640M(DIC製ポリエステルポリオール 分子量2000) 1000部と実施例1のラクトン変性片末端型シリコーンポリオール 50.1部を混合し、窒素雰囲気下、70℃で約5時間反応を行い、NCO当量525のシリコーン含有ウレタンプレポリマーを得た。
Example (production of urethane elastomer sheet)
(Synthesis of urethane prepolymer)
484.1 parts of 4,4-diphenylmethane diisocyanate was placed in a 2 liter flask, and 1000 parts of polylite OD-X-640M (polyester polyol molecular weight of DIC 2000) and 50.1 parts of the lactone-modified one-end type silicone polyol of Example 1 were added. The mixture was mixed and reacted at 70 ° C. for about 5 hours under a nitrogen atmosphere to obtain a silicone-containing urethane prepolymer having an NCO equivalent of 525.
 (ウレタンエラストマーの作成)
 80℃に温調したシリコーン含有ウレタンプレポリマー 400部と1,4ブタンジオール/トリメチロールプロパンの70/30(重量比)混合物を 32.6部混合し、遠心成形機に注型して140℃×1時間の条件で硬化させた後、二次キュアを110℃×16時間の条件で行い2mm厚のウレタンエラストマーシートを得た。得られたシートはやや白濁しているが透明感のある強靱なシートが得られた。 
(Creation of urethane elastomer)
400 parts of a silicone-containing urethane prepolymer adjusted to 80 ° C. and 32.6 parts of a 70/30 (weight ratio) mixture of 1,4 butanediol / trimethylolpropane were mixed and cast in a centrifugal molding machine at 140 ° C. After curing under conditions of × 1 hour, secondary curing was performed under conditions of 110 ° C. × 16 hours to obtain a 2 mm thick urethane elastomer sheet. Although the obtained sheet was slightly cloudy, a tough sheet having a transparent feeling was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (14)

  1. 片末端に第1級水酸基を2個有し、他端に反応性基を有さない分子量2000~4000のオルガノポリシロキサンにラクトンモノマーを温度80~140℃で触媒の存在下、1級水酸基1個あたり5~10モル開環付加重合することを特徴とするラクトン変性片末端型シリコーンポリオールの製造方法。 A lactone monomer is added to an organopolysiloxane having a molecular weight of 2000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end in the presence of a catalyst at a temperature of 80 to 140 ° C. A process for producing a lactone-modified one-end type silicone polyol, which comprises 5 to 10 moles of ring-opening addition polymerization per unit.
  2. 前記触媒が、錫系触媒であることを特徴とする請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the catalyst is a tin-based catalyst.
  3. 前記錫系触媒が、トリス-2-エチルヘキサン酸ブチル錫であることを特徴とする請求項2記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 2, wherein the tin-based catalyst is butyltin tris-2-ethylhexanoate.
  4. 系中触媒の濃度が、100~500ppmであることを特徴とする請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 2. The process for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the concentration of the catalyst in the system is 100 to 500 ppm.
  5. ラクトンモノマーが、ε-カプロラクトンである請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The process for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the lactone monomer is ε-caprolactone.
  6. ラクトン変性片末端型シリコーンポリオールが、ラクトンモノマーを8モルずつオルガノポリシロキサンの片側の2個の第1級水酸基に付加したものである請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the lactone-modified one-end type silicone polyol is obtained by adding lactone monomer to each of the two primary hydroxyl groups on one side of the organopolysiloxane by 8 moles.
  7. 請求項1記載のラクトン変性片末端型シリコーンポリオールを配合したポリウレタン樹脂組成物。





    A polyurethane resin composition comprising the lactone-modified one-end type silicone polyol according to claim 1.





  8. 片末端に第1級水酸基を2個有し、他端に反応性基を有さない分子量2000~4000のオルガノポリシロキサンにラクトンモノマーを温度80~140℃で触媒の存在下、1級水酸基1個あたり5~10モル開環付加重合することを特徴とするラクトン変性片末端型シリコーンポリオールの製造方法。 A lactone monomer is added to an organopolysiloxane having a molecular weight of 2000 to 4000 having two primary hydroxyl groups at one end and no reactive group at the other end in the presence of a catalyst at a temperature of 80 to 140 ° C. A process for producing a lactone-modified one-end type silicone polyol, which comprises 5 to 10 moles of ring-opening addition polymerization per unit.
  9. 前記触媒が、錫系触媒であることを特徴とする請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the catalyst is a tin-based catalyst.
  10. 前記錫系触媒が、トリス-2-エチルヘキサン酸ブチル錫であることを特徴とする請求項2記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 2, wherein the tin-based catalyst is butyltin tris-2-ethylhexanoate.
  11. 系中触媒の濃度が、100~500ppmであることを特徴とする請求項1~2いずれか記載のラクトン変性片末端型シリコーンポリオールの製造方法。 3. The method for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the concentration of the catalyst in the system is 100 to 500 ppm.
  12. ラクトンモノマーが、ε-カプロラクトンである請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The process for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the lactone monomer is ε-caprolactone.
  13. ラクトン変性片末端型シリコーンポリオールが、ラクトンモノマーを8モルずつオルガノポリシロキサンの片側の2個の第1級水酸基に付加したものである請求項1記載のラクトン変性片末端型シリコーンポリオールの製造方法。 The method for producing a lactone-modified one-end type silicone polyol according to claim 1, wherein the lactone-modified one-end type silicone polyol is obtained by adding lactone monomer to each of the two primary hydroxyl groups on one side of the organopolysiloxane by 8 moles.
  14. 請求項1記載のラクトン変性片末端型シリコーンポリオールを配合したポリウレタン樹脂組成物。 A polyurethane resin composition comprising the lactone-modified one-end type silicone polyol according to claim 1.
PCT/JP2011/052086 2010-03-19 2011-02-02 Method for producing lactone-modified single-terminal silicone polyol, and urethane resin composition WO2011114788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010064103 2010-03-19
JP2010-064103 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114788A1 true WO2011114788A1 (en) 2011-09-22

Family

ID=44648896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052086 WO2011114788A1 (en) 2010-03-19 2011-02-02 Method for producing lactone-modified single-terminal silicone polyol, and urethane resin composition

Country Status (2)

Country Link
TW (1) TW201139511A (en)
WO (1) WO2011114788A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679054A (en) * 2018-11-12 2019-04-26 中国人民解放军海军工程大学 Ship vibration isolation element hydrolysis resistant polyurethane method for producing elastomers
CN111307888A (en) * 2018-12-11 2020-06-19 辽宁奥克化学股份有限公司 Method for detecting content of primary hydroxyl in block polyether polyol

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501848A (en) * 1985-01-04 1987-07-23 ソラテツク ラボラトリ−ス コ−ポレ−シヨン Polysiloxane-polylactone block copolymer
JPH01299819A (en) * 1988-05-27 1989-12-04 Regurusu:Kk Polyester resin and preparation thereof
JPH0299558A (en) * 1988-10-06 1990-04-11 Takemoto Oil & Fat Co Ltd Impact resistance improver and polyester resin composition containing the same blended therein
JPH02228323A (en) * 1989-03-02 1990-09-11 Dainichiseika Color & Chem Mfg Co Ltd Siloxane-modified polyester resin and preparation thereof
JPH036230A (en) * 1989-06-02 1991-01-11 Shin Etsu Chem Co Ltd Polyactone-modified organopolysiloxane compound
JPH06345858A (en) * 1993-06-10 1994-12-20 Daicel Chem Ind Ltd Production of lactone polymer
JPH0770323A (en) * 1993-07-28 1995-03-14 Wacker Chemie Gmbh Organopolysiloxane with ester group, its production, and defoaming or degassing method for organic system
JPH083300A (en) * 1995-04-21 1996-01-09 Dainichiseika Color & Chem Mfg Co Ltd Siloxane-modified polyester resin, its production and curable composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501848A (en) * 1985-01-04 1987-07-23 ソラテツク ラボラトリ−ス コ−ポレ−シヨン Polysiloxane-polylactone block copolymer
JPH01299819A (en) * 1988-05-27 1989-12-04 Regurusu:Kk Polyester resin and preparation thereof
JPH0299558A (en) * 1988-10-06 1990-04-11 Takemoto Oil & Fat Co Ltd Impact resistance improver and polyester resin composition containing the same blended therein
JPH02228323A (en) * 1989-03-02 1990-09-11 Dainichiseika Color & Chem Mfg Co Ltd Siloxane-modified polyester resin and preparation thereof
JPH036230A (en) * 1989-06-02 1991-01-11 Shin Etsu Chem Co Ltd Polyactone-modified organopolysiloxane compound
JPH06345858A (en) * 1993-06-10 1994-12-20 Daicel Chem Ind Ltd Production of lactone polymer
JPH0770323A (en) * 1993-07-28 1995-03-14 Wacker Chemie Gmbh Organopolysiloxane with ester group, its production, and defoaming or degassing method for organic system
JPH083300A (en) * 1995-04-21 1996-01-09 Dainichiseika Color & Chem Mfg Co Ltd Siloxane-modified polyester resin, its production and curable composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679054A (en) * 2018-11-12 2019-04-26 中国人民解放军海军工程大学 Ship vibration isolation element hydrolysis resistant polyurethane method for producing elastomers
CN109679054B (en) * 2018-11-12 2021-05-11 中国人民解放军海军工程大学 Preparation method of hydrolysis-resistant polyurethane elastomer for ship vibration isolation element
CN111307888A (en) * 2018-12-11 2020-06-19 辽宁奥克化学股份有限公司 Method for detecting content of primary hydroxyl in block polyether polyol
CN111307888B (en) * 2018-12-11 2022-04-12 辽宁奥克化学股份有限公司 Method for detecting content of primary hydroxyl in block polyether polyol

Also Published As

Publication number Publication date
TW201139511A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5019011B2 (en) Polyurethane resin composition and molded product thereof
TWI816652B (en) Polycarbonate polyols and polyurethanes
US20040210024A1 (en) Organopolysiloxane/polyurea/polyurethane block copolymers
US20050143551A1 (en) Thermoplastic polyurethane
CN104884499A (en) Polycarbonate diol and polyurethane using same
CN113825783B (en) Polyether polycarbonate diol and method for producing same
JP7484967B2 (en) Polyurethane elastomer and its manufacturing method
JP2014080590A (en) Polycarbonate diol
JP6042699B2 (en) Polyisocyanate composition and polyurethane resin
CN105283482A (en) Thermoplastic polyurethane and associated method and article
CN113563588A (en) Hydroxyl-terminated siloxane, silicon polyurethane containing same and preparation method thereof
CN115322330A (en) Thermoplastic and elastomeric polyurethanes produced from biobased 1,5-pentamethylene diisocyanate
Li et al. A new amino-alcohol originated from carbon dioxide and its application as chain extender in the preparation of polyurethane
CN104628984A (en) Preparation method of star-structure water-based polyurethane adhesive
WO2011114788A1 (en) Method for producing lactone-modified single-terminal silicone polyol, and urethane resin composition
WO2009151055A1 (en) Chlorinated polyether and polyurethane obtained from the same
JP7230468B2 (en) Polyurethane elastomer and its manufacturing method
CN115160534A (en) Aqueous polyurethane
JP5521213B2 (en) Chlorinated polyether copolymer and process for producing the same
JP7380676B2 (en) Polyalkylene ether glycol composition and method for producing polyurethane using the same
US20220289893A1 (en) A preparation comprising thermoplastic polyisocyanate polyaddition product, a process for preparing the same and the use thereof
JP2019044003A (en) Two-part curable urethane resin composition and film molding
Tang et al. Sucrose stearates: Plant-derived polyols for rigid and high Tg bio-based polyurethane with rigid Main chains and soft side chains
WO2023153398A1 (en) Prepolymer composition, polyurethane resin, elastic molded article, and method for producing prepolymer composition
JP2023103002A (en) Polyether polycarbonate diol and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP