WO2011114028A1 - Method for monitoring polluting emissions from a vehicle hybrid engine - Google Patents

Method for monitoring polluting emissions from a vehicle hybrid engine Download PDF

Info

Publication number
WO2011114028A1
WO2011114028A1 PCT/FR2011/050308 FR2011050308W WO2011114028A1 WO 2011114028 A1 WO2011114028 A1 WO 2011114028A1 FR 2011050308 W FR2011050308 W FR 2011050308W WO 2011114028 A1 WO2011114028 A1 WO 2011114028A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
temperature
scr catalyst
reducing agent
mass
Prior art date
Application number
PCT/FR2011/050308
Other languages
French (fr)
Inventor
Evangelos Georgiadis
Charles Bizet
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2011114028A1 publication Critical patent/WO2011114028A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a method for controlling pollutant emissions of nitrogen oxides by injecting a reducing agent into the exhaust line of a gasoline or hybrid diesel engine.
  • a reducing agent such as oil or coal
  • pollutants especially nitric oxide or nitrogen dioxide collectively noted nitrogen oxides (called NO x ).
  • Nitrogen oxides are a particular problem since these gases are suspected to be one of the factors contributing to the formation of acid rain and deforestation. Additionally, NO x are linked to health problems for humans and are a key part of the training smog in cities.
  • the legislation imposes levels of increasing rigor for their reduction and / or their elimination including emissions from vehicles.
  • SCR selective catalytic reduction
  • N 2 nitrogen
  • H 2 O water
  • the reducing agent may be one or more hydrocarbon (s), partially oxidized hydrocarbon species, or more commonly ammonia (NH 3 ), or a compound, such as urea, generating ammonia by chemical decomposition.
  • the SCR catalysts are generally devices comprising micropores, or pores, in which the reducing agent to be stored, for example ammonia, is adsorbed.
  • the reducing agent to be stored for example ammonia
  • ammonia for example ammonia
  • a relatively large amount of ammonia must be adsorbed.
  • desorption of ammonia occurs competing with the adsorption of the latter, thus leading to an inadvertent release of pure ammonia into the atmosphere, at levels that may exceed regulatory requirements in this area.
  • the optimum mass of reducing agent present in the SCR catalyst to effect a maximum reduction of NO x is a function of the temperature in the SCR catalyst and this mass of reducing agent must be at the nearest, but always lower of the desorption limit from which the SCR catalyst discharges ammonia.
  • the ammonia injection upstream of the SCR catalyst is managed by specific control functions and strategies, housed in a specific computer or in the engine ECU so that the mass of reductant present in the SCR catalyst is adjustable, in view of the mass of reducing agent already present and the temperature in the catalyst, to approach as closely as possible the mass of ammonia called optimal for the conversion / reduction of NO x .
  • a control method of a nitrogen oxides treatment system (NO x ) present in an exhaust line of a hybrid engine of a vehicle capable of providing an electric torque and a thermal torque comprising means for introducing into the exhaust line a reducing agent upstream of an NO x reduction catalyst, the reducing agent being intended to be used for chemically reducing the NO x , during a catalytic reduction reaction called "SCR" in the reduction catalyst, characterized in that, during a propulsion phase of the vehicle, it is determined, for a torque demand greater than a couple initial, the predictable temperature T in the catalyst SCR corresponding to the torque demand when the latter is allotted to the thermal torque; this predictable temperature T is compared with a reference temperature T 0 for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and allocating a portion of the requested torque to the electrical torque if the predictable temperature T is greater than To.
  • NO x nitrogen oxides treatment system
  • the optimum reducing agent mass present in the SCR catalyst is considered to be reached when the NO x reduction is maximum while no phenomenon of desorption of the reducing agent in the SCR catalyst is observed.
  • the part of the torque attributed to the electrical torque corresponds to the additional torque, ie to the difference between the initial torque and the requested torque; the additional torque attributed to the electrical torque is exclusively attributed to said torque only during a transient phase ti from the instant t 0 of the torque request; the transient phase lasts for at least 0.5 seconds; beyond the transitional phase t- ⁇ , the part of the additional torque supported by the electric torque decreases to a zero value; the part of the additional torque supported by the thermal torque correspondingly increasing; the reduction of the part of the additional torque supported by the electrical torque is linear or substantially linear; the entire torque requested, that is the initial torque and the additional torque, is attributed to the engine torque when the foreseeable temperature T determined is lower than the aforementioned reference temperature To.
  • the invention also relates to a control device for the implementation of the method described above, comprising a supervisor capable of determining the temperature in the SCR catalyst and the mass of reducing agent present in said catalyst, characterized in that the function of the supervisor is: to determine a predictable temperature T in the catalyst SCR as a function of a torque demand greater than an initial torque, this predictable temperature T being determined under the assumption that the totality of the requested torque is attributed to the thermal torque; determining whether this predictable temperature T is greater than a reference temperature To for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and controlling the allocation of at least a portion of the requested torque to the electrical torque if the predictable temperature T is greater than the reference temperature To.
  • the supervisor checks, as a function of the mass of reducing agent and of the temperature in the SCR catalyst, as well as of the reference temperature To, of injecting a quantity of reducing agent. in the exhaust line and is able to control this injection.
  • FIG. 1 shows a graph illustrating the mass of reducing agent that can be stored in the SCR catalyst as a function of the temperature in said catalyst;
  • FIG. 2 shows a graph identical to that of FIG. 1 in which it is noted the evolution of the efficiency of the SCR catalyst as a function of different loading / injection instructions of ammonia in the SCR catalyst, and in particular of a flat setpoint;
  • FIG. 3 shows a graph identical to that of FIG. 1 in which it is shown how the value of To can be determined.
  • FIG. 4a shows a diagram illustrating the operation without optimization strategy of the electrical / thermal torque and its consequences at the level of the SCR catalyst
  • FIG. 4b shows a diagram illustrating the operation according to the method of the invention and its consequences on the SCR catalyst
  • FIG. 5 shows a functional diagram of a control method of an NO x treatment system according to the invention.
  • the nitrogen oxides are frequently designated by the NO x nomenclature.
  • the selective catalytic reduction type catalyst is referred to as the SCR catalyst or simply SCR.
  • reducing agent and “ammonia” are used interchangeably, knowing that in all cases, all the means and features described herein can be used with any other reducing agent.
  • Ammonia used for NO x reduction can be in any phase, liquid, gaseous or solid.
  • an additive consisting of a 32.5% aqueous solution of urea can be used.
  • the structure of the nitrogen oxides treatment system and that of the exhaust line, not shown in the accompanying figures, is conventional and should not undergo any particular modification in the context of the present invention.
  • the nitrogen oxides from the engine are directed to an SCR catalyst in which the chemical reduction of NO x takes place .
  • liquid urea is usually stored in a specific tank installed in the vehicle. This reservoir is connected, via a feed pipe, to a specific injector, for injecting urea into the exhaust line of the engine, upstream of the catalyst SCR.
  • the various elements of the exhaust line are conventionally managed by an on-board computer, calculator or supervisor, of the vehicle using different information records.
  • the information recorded for the management of the exhaust line include temperature measurements using temperature sensors located in the SCR catalyst or these temperatures can be obtained by modeling, from experimental data recorded. in a memory, using temperature sensors placed at other locations in the exhaust line.
  • this information is conventionally obtained by experimental modeling on the basis of the quantity of NO x produced as a function of the vehicle traveling conditions and / or using a sensor. (s) NO x usually located at the output of the engine. With the mass of ammonia injected into the exhaust line, the amount of NO x produced by the engine, as well as the temperature in the SCR catalyst, the mass of ammonia present in the SCR catalyst can be determined.
  • the Applicant is part of the observation of the ratio between the ammonia mass optimal for maximum conversion / reduction of NO x in the SCR catalyst as a function of the temperature in this catalyst.
  • optimum ammonia mass means that the quantity, or mass, of ammonia present in the SCR catalyst allows a maximum reduction of the NO x emitted by the engine, while avoiding a desorption phenomenon of ammonia in the SCR.
  • a solution could consist in having, depending on the temperature in the SCR catalyst, a mass of ammonia in the catalyst substantially lower than the limit mass before desorption so that in case of rapid increase of the temperature in the SCR catalyst, thanks also to the stop or the reduction of the injection of ammonia in the exhaust line, the risk of desorption would be relatively low. Nevertheless, as is apparent in FIG. 2, the more the mass of ammonia present in the SCR catalyst decreases and moves away from the limit mass before desorption, the lower the efficiency of the SCR system.
  • FIG. 3 illustrates a system according to the invention by essentially reproducing the scheme of Figure 1, that is to say, in a hypothesis favoring the efficiency of the catalytic treatment.
  • the mass of ammonia in the catalyst is optimized for the catalyst temperature If, taking into account the demand for additional torque, the temperature of the catalyst is expected to rise to a level T. If this temperature T is greater than the temperature T 0 for which, at iso-mass of ammonia, a desorption takes place, there is a risk of uncontrolled desorption if the transition is too fast. If on the other hand this rise in temperature can be controlled, the control of the stored mass will allow to remain along the optimal curve.
  • T 0 depends on the value of But since the optimal mass and desorption risk curves are essentially parallel, it is possible to calculate T 0 by adding a predefined difference to Tjnj . It is also possible to choose a value in a reference table, in other words by an appropriate mapping, defined during the engine tuning phases, possibly taking into account the nature of the catalyst and the gearbox.
  • the invention is applied and it is intended to control the temperature in the SCR catalyst via the control of electrical and thermal torque.
  • the new predictable temperature T is determined in the case of an exclusive allocation of the torque 20 to the thermal torque, that is to say in the case illustrated on FIG. Figure 4a. If the foreseeable temperature T is determined higher than the reference temperature T 0 for which the mass of ammonia is optimal in the catalyst (maximum efficiency of the SCR without however observing a desorption phenomenon), there is a risk of desorption and allocates the additional torque 30 to the electrical torque.
  • the allocation of the additional torque 30 to the electrical torque makes it possible not to increase, or almost not, the temperature in the SCR catalyst.
  • the additional torque 30 is ideally exclusively allocated to the electrical torque during a transient phase t 0 -ti (of the order of a few hundred milliseconds to a few seconds, depending on the difference between T and To) and then beyond t- ⁇ , the portion of the additional torque 30 attributed to the electrical torque decreases while the portion attributed to the thermal torque increases correlatively.
  • a final temperature T ' is obtained which is lower than the predictable temperature T.
  • the increase in temperature is also controlled so that the final temperature T 'is reached later (lower temperature increase slope) than in the case of standard management of the hybrid engine (mode of the Figure 4a).
  • the reduction in the mass of ammonia present in the SCR catalyst is identical, or substantially identical, because the reduction / stop of the injection of ammonia into the exhaust line is ideally based on on the predictable temperature T and not on the actual temperature in the SCR.
  • the final temperature T 'in the catalyst SCR will gradually increase to the predictable temperature T insofar as the requested torque is equivalent and that the attribution to the thermal couple is exclusive.
  • the rate of increase of the temperature in the SCR catalyst by the management of the thermal / electrical torque, any phenomenon of desorption of the ammonia is avoided.
  • Figure 5 shows the operation of the control method according to the invention.
  • a supervisor may be dedicated to this control but this supervisor may also consist of a computer already present in the vehicle, including the one present to ensure the complete management of the exhaust line. If a strong torque gradient is detected, the supervisor determines the risk of desorption based on the mass of ammonia in the SCR, the temperature of the latter and the expected temperature T that will result in the torque demand 20.
  • the temperature control strategy in the SCR catalyst is triggered, as described in connection with Figure 4b.
  • the supervisor regularly determines whether, given the temperature detected in the SCR catalyst and the theoretical mass of ammonia present in said catalyst, the risk of desorption still exists. As soon as the risk of desorption is eliminated, due to the drop in ammonia mass and the lower / slower temperature increase in the SCR catalyst, the standard strategy of the hybrid engine is reset. Note that the temperature supervisor in the SCR catalyst can also be activated only if a strong torque gradient is recorded, for example an increase in torque of at least 50%.
  • the invention is not limited to a particular embodiment of the exhaust line to the extent that the latter comprises at least one SCR catalyst. Furthermore, the invention is also applicable regardless of the type of hybrid engine of the vehicle as long as it can provide an electric torque and a thermal torque during the propulsion of the vehicle.
  • the invention makes it possible to optimize the conversion / reduction of NO x by the SCR catalyst, especially when the exhaust line is cold and that there is a risk of observing, in case of strong acceleration, a strong gradient. temperature in the catalyst.
  • the invention makes it possible to guarantee the absence of desorption of ammonia in the SCR catalyst and thus to dispense with an additional system for treating ammonia at the outlet of the SCR catalyst, of the "clean-up" catalyst type.
  • the invention optimizes the consumption of reducing agent, where in particular reduced maintenance and / or to provide a less bulky ammonia reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to a method for monitoring a system for treating the Nox that are present in a hybrid engine exhaust line, in which: for a request for torque (20), greater that an initial torque (10), the predictable temperature T in the catalytic converter SCR corresponding to the request for torque (20) when the latter is fully assigned to the thermal torque is determined; said predictable temperature T is compared to a reference temperature for which the mass of the reducing agent present in the catalytic converter SCR is optimal for reducing the NOx; and part of the requested torque (20) is assigned to the electric torque if the predictable temperature T is greater than a reference temperature. The invention also relates to a device for implementing the above-mentioned method.

Description

PROCEDE DE CONTROLE DES EMISSIONS POLLUANTES D'UN MOTEUR  METHOD FOR CONTROLLING POLLUTANT EMISSIONS OF AN ENGINE
HYBRIDE DE VEHICULE  HYBRID VEHICLE
[0001 ] La présente invention revendique la priorité de la demande française 1051987 déposée le 19 mars 2010 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of the French application 1051987 filed March 19, 2010 whose content (text, drawings and claims) is here incorporated by reference.
[ooo2] La présente invention concerne un procédé de contrôle des émissions polluantes d'oxydes d'azote par l'injection d'un agent réducteur dans la ligne d'échappement d'un moteur essence ou diesel hybride. [ooo3] L'utilisation de combustible fossile comme le pétrole ou le charbon dans un système de combustion, en particulier dans un moteur thermique, entraîne la production en quantité non négligeable de polluants qui peuvent être déchargés par l'échappement dans l'environnement et y causer des dégâts. Parmi ces polluants, notamment le monoxyde d'azote ou le dioxyde d'azote ont collectivement notées les oxydes d'azote (appelés NOx). Les oxydes d'azote posent un problème particulier puisque ces gaz sont soupçonnés d'être un des facteurs qui contribuent à la formation des pluies acides et à la déforestation. En outre, les NOx sont liés à des problèmes de santé pour les humains et sont un élément clé de la formation de brouillard de pollution dans les villes. La législation impose des niveaux de rigueur croissante pour leur réduction et/ou leur élimination notamment des émissions issues des véhicules. The present invention relates to a method for controlling pollutant emissions of nitrogen oxides by injecting a reducing agent into the exhaust line of a gasoline or hybrid diesel engine. [ooo3] The use of fossil fuel such as oil or coal in a combustion system, particularly in a combustion engine, results in the production of significant amounts of pollutants that can be discharged through the exhaust into the environment and cause damage. Among these pollutants, especially nitric oxide or nitrogen dioxide collectively noted nitrogen oxides (called NO x ). Nitrogen oxides are a particular problem since these gases are suspected to be one of the factors contributing to the formation of acid rain and deforestation. Additionally, NO x are linked to health problems for humans and are a key part of the training smog in cities. The legislation imposes levels of increasing rigor for their reduction and / or their elimination including emissions from vehicles.
[ooo4] Une solution pour réduire l'utilisation des moteurs thermiques, et donc les polluants atmosphériques qu'ils contribuent à générer, consiste à utiliser un véhicule à motorisation hybride qui associe deux modes de génération de l'énergie, un moteur thermique et une machine électrique. Même si certaines phases de roulage sont alors opérées avec le moteur thermique arrêté ou ralenti, il n'en reste pas moins que ce type de véhicule I produit toujours une quantité conséquente de NOx qu'il est nécessaire de traiter. [ooo4] A solution to reduce the use of heat engines, and therefore the atmospheric pollutants they contribute to generate, is to use a hybrid engine that combines two modes of energy generation, a heat engine and an engine. electric machine. Even if certain running phases are then operated with the engine stopped or idle, the fact remains that this type of vehicle I always produces a significant amount of NO x that must be processed.
[ooo5] Une des solutions propre au traitement des NOx à l'échappement du véhicule est la réduction par catalyse sélective (SCR). Ce procédé a pour principe une réduction sélective des NOx en azote (N2) et eau (H20), en présence d'un catalyseur spécifique, par l'action d'un réducteur. Ce réducteur est généralement injecté en amont du catalyseur SCR dans la ligne d'échappement. La réduction s'effectue dans un milieu contenant un excès d'air. Le réducteur peut être un ou des hydrocarbure(s), des espèces hydrocarbonées partiellement oxydés, ou plus communément de l'ammoniac (NH3), ou bien un composé, tel l'urée, générant de l'ammoniac par décomposition chimique. [ooo5] One of own solutions to the treatment of NO x in the exhaust of the vehicle is the selective catalytic reduction (SCR). This process is based on a selective reduction of NO x in nitrogen (N 2 ) and water (H 2 O), in the presence of a catalyst specific, by the action of a reducer. This reducer is generally injected upstream of the SCR catalyst in the exhaust line. The reduction is carried out in a medium containing an excess of air. The reducing agent may be one or more hydrocarbon (s), partially oxidized hydrocarbon species, or more commonly ammonia (NH 3 ), or a compound, such as urea, generating ammonia by chemical decomposition.
[ooo6] Les catalyseurs SCR sont généralement des dispositifs comprenant des micropores, ou des pores, dans lesquels l'agent réducteur à stocker, par exemple l'ammoniac, est adsorbé. Pour que la réduction des NOx soit maximum, il est nécessaire qu'une quantité relativement importante d'ammoniac soit adsorbée. Toutefois, on a constaté que, sous l'effet d'une température élevée, il se produit une désorption de l'ammoniac concurrençant l'adsorption de ce dernier, conduisant ainsi à un rejet intempestif d'ammoniac pur dans l'atmosphère, à des niveaux pouvant dépasser les exigences réglementaires en la matière. [ooo7] Ainsi, la masse optimale d'agent réducteur présent dans le catalyseur SCR pour effectuer une réduction maximum des NOx est fonction de la température dans le catalyseur SCR et cette masse d'agent réducteur doit être au plus proche, mais toujours inférieure, de la limite de désorption à partir de laquelle le catalyseur SCR rejette de l'ammoniac. [ooo8] L'injection d'ammoniac en amont du catalyseur SCR est gérée par des fonctions et stratégies de contrôle spécifiques, hébergées dans un calculateur spécifique ou dans le calculateur moteur de sorte que la masse de réducteur présent dans le catalyseur SCR est ajustable, au regard de la masse d'agent réducteur déjà présent et de la température dans le catalyseur, pour approcher au plus près la masse d'ammoniac dite optimale pour la conversion/réduction des NOx. The SCR catalysts are generally devices comprising micropores, or pores, in which the reducing agent to be stored, for example ammonia, is adsorbed. For NO x reduction to be maximum, a relatively large amount of ammonia must be adsorbed. However, it has been found that, under the effect of a high temperature, desorption of ammonia occurs competing with the adsorption of the latter, thus leading to an inadvertent release of pure ammonia into the atmosphere, at levels that may exceed regulatory requirements in this area. [ooo7] Thus, the optimum mass of reducing agent present in the SCR catalyst to effect a maximum reduction of NO x is a function of the temperature in the SCR catalyst and this mass of reducing agent must be at the nearest, but always lower of the desorption limit from which the SCR catalyst discharges ammonia. [ooo8] The ammonia injection upstream of the SCR catalyst is managed by specific control functions and strategies, housed in a specific computer or in the engine ECU so that the mass of reductant present in the SCR catalyst is adjustable, in view of the mass of reducing agent already present and the temperature in the catalyst, to approach as closely as possible the mass of ammonia called optimal for the conversion / reduction of NO x .
[ooo9] Le problème vient de l'évolution imprévisible de la température dans le catalyseur SCR. Ainsi, lors d'une forte accélération, la température dans le catalyseur SCR peut passer de faible à forte en très peu de temps, entraînant la désorption de l'ammoniac. [0010] La présente invention entend remédier à ce problème dans les véhicules à motorisation hybride via le contrôle du couple électrique et thermique, en particulier durant les phases de fortes accélérations. [ooo9] The problem comes from the unpredictable evolution of the temperature in the SCR catalyst. Thus, during a strong acceleration, the temperature in the SCR catalyst can go from low to high in a very short time, resulting in the desorption of ammonia. The present invention intends to remedy this problem in vehicles with hybrid drive through the control of electrical and thermal torque, especially during the phases of strong acceleration.
[ooi i] Selon l'invention, il est ainsi proposé un procédé de contrôle d'un système de traitement des oxydes d'azote (NOx) présents dans une ligne d'échappement d'une motorisation hybride d'un véhicule apte à fournir un couple électrique et un couple thermique, ledit système comportant des moyens pour introduire dans la ligne d'échappement un agent réducteur en amont d'un catalyseur de réduction des NOx, l'agent réducteur étant destiné à être utilisé pour réduire chimiquement les NOx, au cours d'une réaction de réduction catalytique dite « SCR » dans le catalyseur de réduction, caractérisé en ce que, au cours d'une phase de propulsion du véhicule, on détermine, pour une demande de couple supérieure à un couple initial, la température prévisible T dans le catalyseur SCR correspondant à la demande de couple lorsque ce dernier est attribué intégralement au couple thermique ; on compare cette température prévisible T à une température de référence To pour laquelle la masse d'agent réducteur présent dans le catalyseur SCR est considérée optimale pour la réduction des NOx ; et on attribue une partie du couple demandé au couple électrique si la température prévisible T est supérieure à To. [Ooi i] According to the invention, it is thus proposed a control method of a nitrogen oxides treatment system (NO x ) present in an exhaust line of a hybrid engine of a vehicle capable of providing an electric torque and a thermal torque, said system comprising means for introducing into the exhaust line a reducing agent upstream of an NO x reduction catalyst, the reducing agent being intended to be used for chemically reducing the NO x , during a catalytic reduction reaction called "SCR" in the reduction catalyst, characterized in that, during a propulsion phase of the vehicle, it is determined, for a torque demand greater than a couple initial, the predictable temperature T in the catalyst SCR corresponding to the torque demand when the latter is allotted to the thermal torque; this predictable temperature T is compared with a reference temperature T 0 for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and allocating a portion of the requested torque to the electrical torque if the predictable temperature T is greater than To.
[0012] Selon l'invention, la masse d'agent réducteur optimal présent dans le catalyseur SCR est considérée atteinte lorsque la réduction des NOx est maximum tandis qu'aucun phénomène de désorption de l'agent réducteur dans le catalyseur SCR n'est observé. According to the invention, the optimum reducing agent mass present in the SCR catalyst is considered to be reached when the NO x reduction is maximum while no phenomenon of desorption of the reducing agent in the SCR catalyst is observed.
[0013] Selon d'autres caractéristiques avantageuses de l'invention : According to other advantageous features of the invention:
la partie du couple attribuée au couple électrique correspond au couple supplémentaire, soit à la différence entre le couple initial et le couple demandé ; le couple supplémentaire attribué au couple électrique est exclusivement attribué audit couple uniquement pendant une phase transitoire ti à partir de l'instant t0 de la demande de couple ; la phase transitoire ti dure au moins 0,5 seconde ; - au-delà de la phase transitoire t-ι, la partie du couple supplémentaire prise en charge par le couple électrique diminue jusqu'à une valeur nulle ; la partie du couple supplémentaire prise en charge par le couple thermique augmentant corrélativement ; - la diminution de la partie du couple supplémentaire prise en charge par le couple électrique est linéaire ou sensiblement linéaire ; on attribue la totalité du couple demandé, soit le couple initial et le couple supplémentaire, au couple moteur lorsque la température prévisible T déterminée est inférieure à la susdite température de référence To. [0014] L'invention concerne également un dispositif de contrôle pour la mise en œuvre du procédé décrit ci-dessus, comprenant un superviseur apte à déterminer la température dans le catalyseur SCR ainsi que la masse d'agent réducteur présent dans ledit catalyseur, caractérisé en ce que le superviseur a pour fonction : de déterminer une température prévisible T dans le catalyseur SCR en fonction d'une demande de couple supérieure à un couple initial, cette température prévisible T étant déterminée dans l'hypothèse où la totalité du couple demandé est attribué au couple thermique ; de déterminer si cette température prévisible T est supérieure à une température de référence To pour laquelle la masse d'agent réducteur présent dans le catalyseur SCR est considérée optimale pour la réduction des NOx ; et de commander l'attribution d'au moins une partie du couple demandé au couple électrique si la température prévisible T est supérieure à la température de référence To. the part of the torque attributed to the electrical torque corresponds to the additional torque, ie to the difference between the initial torque and the requested torque; the additional torque attributed to the electrical torque is exclusively attributed to said torque only during a transient phase ti from the instant t 0 of the torque request; the transient phase lasts for at least 0.5 seconds; beyond the transitional phase t-ι, the part of the additional torque supported by the electric torque decreases to a zero value; the part of the additional torque supported by the thermal torque correspondingly increasing; the reduction of the part of the additional torque supported by the electrical torque is linear or substantially linear; the entire torque requested, that is the initial torque and the additional torque, is attributed to the engine torque when the foreseeable temperature T determined is lower than the aforementioned reference temperature To. [0014] The invention also relates to a control device for the implementation of the method described above, comprising a supervisor capable of determining the temperature in the SCR catalyst and the mass of reducing agent present in said catalyst, characterized in that the function of the supervisor is: to determine a predictable temperature T in the catalyst SCR as a function of a torque demand greater than an initial torque, this predictable temperature T being determined under the assumption that the totality of the requested torque is attributed to the thermal torque; determining whether this predictable temperature T is greater than a reference temperature To for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and controlling the allocation of at least a portion of the requested torque to the electrical torque if the predictable temperature T is greater than the reference temperature To.
[0015] Avantageusement, le superviseur vérifie s'il y a lieu, en fonction de la masse d'agent réducteur et de la température dans le catalyseur SCR ainsi que de la température de référence To, d'injecter une quantité d'agent réducteur dans la ligne d'échappement et est apte à commander cette injection. [0016] D'autres détails et caractéristiques avantageuses de l'invention ressortent de la description détaillée faite ci-après à titre non limitatif à l'aide des figures annexées sur lesquelles : Advantageously, the supervisor checks, as a function of the mass of reducing agent and of the temperature in the SCR catalyst, as well as of the reference temperature To, of injecting a quantity of reducing agent. in the exhaust line and is able to control this injection. Other details and advantageous features of the invention appear from the detailed description given below by way of non-limiting example with the aid of the attached figures in which:
- la figure 1 montre un graphique illustrant la masse d'agent réducteur pouvant être stockée dans le catalyseur SCR en fonction de la température dans ledit catalyseur ; FIG. 1 shows a graph illustrating the mass of reducing agent that can be stored in the SCR catalyst as a function of the temperature in said catalyst;
- la figure 2 montre un graphique identique à celui de la figure 1 dans lequel il est noté l'évolution de l'efficacité du catalyseur SCR en fonction de différentes consignes de chargement/injection d'ammoniac dans le catalyseur SCR et notamment d'une consigne plate ; FIG. 2 shows a graph identical to that of FIG. 1 in which it is noted the evolution of the efficiency of the SCR catalyst as a function of different loading / injection instructions of ammonia in the SCR catalyst, and in particular of a flat setpoint;
-- la figure 3 montre un graphique identique à celui de la figure 1 dans lequel il est montré comment on peut déterminer la valeur de To. FIG. 3 shows a graph identical to that of FIG. 1 in which it is shown how the value of To can be determined.
- la figure 4a montre un schéma illustrant le fonctionnement sans stratégie d'optimisation du couple électrique/thermique et ses conséquences au niveau du catalyseur SCR ; FIG. 4a shows a diagram illustrating the operation without optimization strategy of the electrical / thermal torque and its consequences at the level of the SCR catalyst;
- la figure 4b montre un schéma illustrant le fonctionnement selon le procédé de l'invention et ses conséquences au niveau du catalyseur SCR ; FIG. 4b shows a diagram illustrating the operation according to the method of the invention and its consequences on the SCR catalyst;
- la figure 5 montre un diagramme fonctionnel d'un procédé de contrôle d'un système de traitement des NOx conforme à l'invention. [0017] Par commodité, dans la suite, les oxydes d'azote sont fréquemment désignés par la nomenclature NOx. De la même manière, le catalyseur du type à réduction catalytique sélective est désigné le catalyseur SCR ou plus simplement SCR. FIG. 5 shows a functional diagram of a control method of an NO x treatment system according to the invention. For convenience, in the following, the nitrogen oxides are frequently designated by the NO x nomenclature. Similarly, the selective catalytic reduction type catalyst is referred to as the SCR catalyst or simply SCR.
[0018] En outre, les termes « agent réducteur » et « ammoniac » sont indifféremment utilisés, en sachant que, dans tous les cas, l'ensemble des moyens et caractéristiques ici décrits peuvent être utilisés avec tout autre agent réducteur. L'ammoniac utilisé pour la réduction des NOx peut se trouver dans n'importe quelle phase, liquide, gazeuse ou solide. A titre d'exemple, on peut utiliser un additif consistant en une solution aqueuse à 32,5% d'urée. [ooi 9] La structure du système de traitement des oxydes d'azote ainsi que celle de la ligne d'échappement, non représentées dans les figures annexées, est classique et ne doit subir aucune modification particulière dans le cadre de la présente invention. Ainsi, de façon usuelle, les oxydes d'azote issus du moteur sont dirigés vers un catalyseur SCR, dans lequel a lieu la réduction chimique des NOx. Pour que cette réduction ait lieu, il est nécessaire d'ajouter aux oxydes d'azote de l'ammoniac, par exemple contenu dans de l'urée liquide. Cette urée liquide est généralement stockée dans un réservoir spécifique installé dans le véhicule. Ce réservoir est relié, via un conduit d'alimentation, à un injecteur spécifique, permettant d'injecter l'urée dans la ligne d'échappement du moteur, en amont du catalyseur SCR. Les différents éléments de la ligne d'échappement sont classiquement gérés par un ordinateur de bord, calculateur ou superviseur, du véhicule à l'aide de différents relevés d'information. In addition, the terms "reducing agent" and "ammonia" are used interchangeably, knowing that in all cases, all the means and features described herein can be used with any other reducing agent. Ammonia used for NO x reduction can be in any phase, liquid, gaseous or solid. By way of example, an additive consisting of a 32.5% aqueous solution of urea can be used. [Ooi 9] The structure of the nitrogen oxides treatment system and that of the exhaust line, not shown in the accompanying figures, is conventional and should not undergo any particular modification in the context of the present invention. Thus, in the usual way, the nitrogen oxides from the engine are directed to an SCR catalyst in which the chemical reduction of NO x takes place . In order for this reduction to occur, it is necessary to add ammonia to the nitrogen oxides, for example contained in liquid urea. This liquid urea is usually stored in a specific tank installed in the vehicle. This reservoir is connected, via a feed pipe, to a specific injector, for injecting urea into the exhaust line of the engine, upstream of the catalyst SCR. The various elements of the exhaust line are conventionally managed by an on-board computer, calculator or supervisor, of the vehicle using different information records.
[0020] Les informations relevées permettant la gestion de la ligne d'échappement concernent notamment des mesures de température à l'aide de capteurs de température situés dans le catalyseur SCR ou bien ces températures peuvent être obtenues par modélisation, à partir de données expérimentales enregistrées dans une mémoire, à l'aide de capteurs de températures placés à d'autres endroits dans la ligne d'échappement. Concernant la masse d'ammoniac à injecter dans la ligne d'échappement, cette information est classiquement obtenue par modélisation expérimentale sur la base de la quantité de NOx produites en fonction des conditions de déplacement du véhicule et/ou à l'aide de capteur(s) de NOx généralement situés en sortie du moteur. Avec la masse d'ammoniac injectée dans la ligne d'échappement, la quantité de NOx produite par le moteur, ainsi que la température dans le catalyseur SCR, on peut déterminer la masse d'ammoniac présent dans le catalyseur SCR. The information recorded for the management of the exhaust line include temperature measurements using temperature sensors located in the SCR catalyst or these temperatures can be obtained by modeling, from experimental data recorded. in a memory, using temperature sensors placed at other locations in the exhaust line. As regards the mass of ammonia to be injected into the exhaust line, this information is conventionally obtained by experimental modeling on the basis of the quantity of NO x produced as a function of the vehicle traveling conditions and / or using a sensor. (s) NO x usually located at the output of the engine. With the mass of ammonia injected into the exhaust line, the amount of NO x produced by the engine, as well as the temperature in the SCR catalyst, the mass of ammonia present in the SCR catalyst can be determined.
[0021] La demanderesse est partie de l'observation du rapport entre la masse d'ammoniac optimale pour la conversion/réduction maximum des NOx dans le catalyseur SCR en fonction de la température dans ce catalyseur. On entend par l'expression « masse d'ammoniac optimale » le fait que la quantité, ou masse, d'ammoniac présente dans le catalyseur SCR permet une réduction maximum des NOx émis par le moteur, tout en évitant un phénomène de désorption de l'ammoniac dans le SCR. La courbe d'évolution de la masse d'ammoniac optimale dans le catalyseur SCR est représentée sur la figure 1 et on note d'une part que cette courbe suit sensiblement parallèlement celle, représentée en pointillé, de la masse d'ammoniac limite dans le SCR avant désorption de l'ammoniac et d'autre part que la masse d'ammoniac optimale (et donc la limite avant désorption) décroit avec l'augmentation de la température. The Applicant is part of the observation of the ratio between the ammonia mass optimal for maximum conversion / reduction of NO x in the SCR catalyst as a function of the temperature in this catalyst. The expression "optimum ammonia mass" means that the quantity, or mass, of ammonia present in the SCR catalyst allows a maximum reduction of the NO x emitted by the engine, while avoiding a desorption phenomenon of ammonia in the SCR. The evolution curve of the optimum ammonia mass in the SCR catalyst is shown in Figure 1 and note that on the one hand that curve follows substantially parallel to that, shown in dashed line, the mass of ammonia limit in the SCR before desorption of ammonia and secondly that the Optimum ammonia mass (and thus the limit before desorption) decreases with increasing temperature.
[0022] On comprend que pour éviter tout risque de désorption, une solution pourrait consister à disposer, en fonction de la température dans le catalyseur SCR, d'une masse d'ammoniac dans le catalyseur sensiblement inférieure à la masse limite avant désorption de sorte qu'en cas d'augmentation rapide de la température dans le catalyseur SCR, grâce par ailleurs à l'arrêt ou la réduction de l'injection d'ammoniac dans la ligne d'échappement, le risque de désorption serait relativement faible. Néanmoins, comme cela est apparent sur la figure 2, plus la masse d'ammoniac présente dans le catalyseur SCR diminue et s'éloigne de la masse limite avant désorption, plus l'efficacité du système SCR est réduite. Ainsi, pour optimiser la réduction des NOx (masse d'ammoniac proche de la masse limite avant désorption) et éviter toute désorption par une gestion de la variation de la masse d'ammoniac présente dans le catalyseur SCR, il serait nécessaire de pouvoir faire varier cette masse d'ammoniac très rapidement. It is understood that to avoid any risk of desorption, a solution could consist in having, depending on the temperature in the SCR catalyst, a mass of ammonia in the catalyst substantially lower than the limit mass before desorption so that in case of rapid increase of the temperature in the SCR catalyst, thanks also to the stop or the reduction of the injection of ammonia in the exhaust line, the risk of desorption would be relatively low. Nevertheless, as is apparent in FIG. 2, the more the mass of ammonia present in the SCR catalyst decreases and moves away from the limit mass before desorption, the lower the efficiency of the SCR system. Thus, to optimize the reduction of NO x (mass of ammonia close to the limit mass before desorption) and to avoid any desorption by a management of the variation of the mass of ammonia present in the SCR catalyst, it would be necessary to be able to vary this mass of ammonia very quickly.
[0023] Or, en cas de forte accélération, c'est-à-dire d'une demande de couple par le conducteur très supérieure au couple initial ou précédent, la température s'élève généralement très rapidement dans le catalyseur SCR et il n'est pas possible de faire diminuer suffisamment rapidement la masse d'ammoniac présente dans le catalyseur SCR si cette masse d'ammoniac est prévue optimale pour la réduction des NOx, c'est-à-dire (très) proche de la masse limite avant désorption. [0024] Comme illustré également sur la figure 2, une autre solution pour éviter la désorption de l'ammoniac consiste à injecter une quantité d'ammoniac dans la ligne d'échappement pour maintenir constante la masse d'ammoniac dans le catalyseur SCR ; cette masse constante d'ammoniac étant choisie telle qu'aucun phénomène de désorption ne puisse se produire quelque soit la température dans le catalyseur SCR. On comprend alors que, si le risque de désorption de l'ammoniac est écarté, l'efficacité du catalyseur SCR est faible et très inférieure au cas d'une masse d'ammoniac optimale dans le catalyseur SCR. [0025] La figure 3 illustre un système selon l'invention en reprenant pour l'essentiel le schéma de la figure 1 , c'est-à-dire dans une hypothèse privilégiant l'efficacité du traitement catalytique. A l'instant initial, la masse d'ammoniac dans le catalyseur est optimisée pour la température du catalyseur
Figure imgf000010_0001
Si, compte tenu de la demande de couple supplémentaire, on prévoit que la température du catalyseur passe à un niveau T. Si cette température T est supérieure à la température T0 pour laquelle, à iso-masse d'ammoniac se produit une désorption, il y a un risque de désorption incontrôlée si la transition est trop rapide. Si par contre cette montée en température peut être contrôlée, le pilotage de la masse stockée va permettre de rester le long de la courbe optimale.
However, in case of strong acceleration, that is to say a torque demand by the driver much greater than the initial or previous torque, the temperature usually rises very rapidly in the SCR catalyst and it It is not possible to reduce the mass of ammonia present in the SCR catalyst sufficiently rapidly if this mass of ammonia is optimal for the reduction of NO x , that is to say (very) close to the limiting mass. before desorption. As also illustrated in Figure 2, another solution to avoid the desorption of ammonia is to inject a quantity of ammonia in the exhaust line to maintain the mass of ammonia constant in the SCR catalyst; this constant mass of ammonia being chosen such that no desorption phenomenon can occur whatever the temperature in the SCR catalyst. It is understood that, if the risk of desorption of ammonia is removed, the effectiveness of the SCR catalyst is low and much lower than the case of an optimal mass of ammonia in the SCR catalyst. Figure 3 illustrates a system according to the invention by essentially reproducing the scheme of Figure 1, that is to say, in a hypothesis favoring the efficiency of the catalytic treatment. At the initial moment, the mass of ammonia in the catalyst is optimized for the catalyst temperature
Figure imgf000010_0001
If, taking into account the demand for additional torque, the temperature of the catalyst is expected to rise to a level T. If this temperature T is greater than the temperature T 0 for which, at iso-mass of ammonia, a desorption takes place, there is a risk of uncontrolled desorption if the transition is too fast. If on the other hand this rise in temperature can be controlled, the control of the stored mass will allow to remain along the optimal curve.
[0026] De ce qui précède, on note que la valeur de T0 dépend de la valeur de
Figure imgf000010_0002
Mais comme les courbes de masse optimale et de risque de désorption sont essentiellement parallèles, il est possible de calculer T0 en ajoutant un écart prédéfini à Tjnj. Il est aussi possible de choisir une valeur dans une table de référence, autrement dit par une cartographie appropriée, définie lors des phases de mise au point du moteur, en tenant compte éventuellement de la nature du catalyseur et du réducteur.
From the foregoing, it is noted that the value of T 0 depends on the value of
Figure imgf000010_0002
But since the optimal mass and desorption risk curves are essentially parallel, it is possible to calculate T 0 by adding a predefined difference to Tjnj . It is also possible to choose a value in a reference table, in other words by an appropriate mapping, defined during the engine tuning phases, possibly taking into account the nature of the catalyst and the gearbox.
[0027] Les figures 4a et 4b illustrent respectivement le cas où le système de traitement prévoit de porter la masse d'agent réducteur dans le catalyseur SCR à sa valeur optimale ou sensiblement optimale (= efficacité maximum du SCR) mais sans appliquer par ailleurs l'invention et le cas où on applique la même gestion de la masse d'agent réducteur dans le catalyseur SCR cette fois en utilisant l'invention, à savoir en optimisant le couple électrique/thermique. FIGS. 4a and 4b respectively illustrate the case where the treatment system plans to bring the mass of reducing agent into the SCR catalyst at its optimal or substantially optimal value (= maximum efficiency of the SCR) but without otherwise applying the the invention and the case where the same management of the reducing agent mass in the SCR catalyst is applied this time using the invention, namely by optimizing the electrical / thermal torque.
[0028] Pour bien illustrer les différences, dans les deux cas, on part d'un couple 10 initial identique pour lequel la température dans le catalyseur SCR est égale à une valeur initiale Tini. A l'instant t0, un nouveau couple 20, supérieure au couple initial 10, est demandé par le conducteur. Ce nouveau couple 20 présente un couple supplémentaire noté 30 par rapport au couple initial 10. To illustrate the differences, in both cases, we start from an identical initial pair for which the temperature in the catalyst SCR is equal to an initial value T ini . At time t 0 , a new torque 20, greater than the initial torque 10, is requested by the driver. This new torque 20 has an additional torque noted 30 with respect to the initial torque 10.
[0029] Dans un fonctionnement classique d'une motorisation hybride, lors de la propulsion du véhicule à l'aide du seul couple thermique, le couple supplémentaire est généralement affecté quasi-intégralement au couple thermique de sorte que la température augmente très rapidement dans le catalyseur SCR lors d'une forte accélération, pour passer à une température T. Evidemment, cette température T est d'autant plus importante et supérieure à la température initiale
Figure imgf000011_0001
que le couple 20 est grand par rapport au couple initial 10. [0030] Dans le cas illustré sur la figure 4a, la masse d'ammoniac présente dans le catalyseur SCR diminue essentiellement du fait de sa consommation par l'apport d'une quantité plus importante de NOx mais également grâce à l 'arrêt/réduction de l'injection d'ammoniac dans la ligne d'échappement. Néanmoins, cette baisse de la masse de NOx présente dans le catalyseur SCR est relativement faible et ne peut concurrencer l'augmentation très rapide de la température dans le SCR de sorte que la masse d'ammoniac dans le SCR devient supérieure à la masse limite avant désorption. En conséquence, comme illustré sur cette figure, pendant une phase relativement longue, un phénomène de désorption de l'agent réducteur est observé dans le catalyseur SCR.
In a conventional operation of a hybrid engine, during the propulsion of the vehicle using the only thermal torque, the additional torque is generally affected almost completely to the thermal torque so that the temperature increases very rapidly in the SCR catalyst during a strong acceleration, to switch to a temperature T. Evidently, this temperature T is all the more important and higher than the initial temperature
Figure imgf000011_0001
that the torque 20 is large compared to the initial torque 10. In the case illustrated in FIG. 4a, the mass of ammonia present in the SCR catalyst essentially decreases because of its consumption by the addition of a quantity more important of NO x but also thanks to the stop / reduction of the injection of ammonia in the exhaust line. Nevertheless, this decrease of the mass of NO x present in the SCR catalyst is relatively low and can not compete with the very rapid increase of the temperature in the SCR so that the mass of ammonia in the SCR becomes greater than the limiting mass. before desorption. As a result, as shown in this figure, during a relatively long phase, a desorption phenomenon of the reducing agent is observed in the SCR catalyst.
[0031 ] Sur la figure 4b, les mêmes conditions étant considérées, l'invention est appliquée et celle-ci a pour but de contrôler la température dans le catalyseur SCR via le contrôle du couple électrique et thermique. Ainsi, à l'instant t0 (demande de couple 20), on détermine la nouvelle température prévisible T dans le cas d'une attribution exclusive du couple 20 au couple thermique, c'est-à-dire dans le cas illustré sur la figure 4a. Si la température prévisible T est déterminée supérieure à la température de référence T0 pour laquelle la masse d'ammoniac est optimale dans le catalyseur (efficacité maximum du SCR sans toutefois observer de phénomène de désorption), il y a un risque de désorption et on attribue le couple supplémentaire 30 au couple électrique. L'attribution du couple supplémentaire 30 au couple électrique permet de ne pas augmenter, ou quasiment pas, la température dans le catalyseur SCR. Le couple supplémentaire 30 est idéalement attribué de façon exclusive au couple électrique pendant une phase transitoire t0-ti (de l'ordre de quelques centaines de millisecondes à quelques secondes, en fonction de la différence entre T et To) puis au-delà de t-ι , la partie du couple supplémentaire 30 attribuée au couple électrique diminue tandis que la partie attribuée au couple thermique augmente corrélativement. [0032] Ainsi, pour le couple 20 demandé, une température finale T' est obtenue qui est inférieure à la température T prévisible. En outre, l'augmentation de la température est également maîtrisée de sorte que la température finale T' est atteinte plus tard (pente d'augmentation de température plus faible) que dans le cas d'une gestion standard du moteur hybride (mode de la figure 4a). On notera que, par ailleurs, la réduction de la masse d'ammoniac présente dans le catalyseur SCR est identique, ou sensiblement identique, du fait que la réduction/arrêt de l'injection d'ammoniac dans la ligne d'échappement est idéalement basée sur la température prévisible T et non sur la température réelle dans le SCR. [0033] Bien entendu, à compter de l'attribution exclusive du couple demandé au couple thermique, la température finale T' dans le catalyseur SCR va augmenter progressivement jusqu'à la température prévisible T dans la mesure où le couple demandé est équivalent et que l'attribution au couple thermique est exclusive. Néanmoins, en réduisant la vitesse d'augmentation de la température dans le catalyseur SCR grâce à la gestion du couple thermique/électrique, on évite tout phénomène de désorption de l'ammoniac. In Figure 4b, the same conditions being considered, the invention is applied and it is intended to control the temperature in the SCR catalyst via the control of electrical and thermal torque. Thus, at the instant t 0 (torque request 20), the new predictable temperature T is determined in the case of an exclusive allocation of the torque 20 to the thermal torque, that is to say in the case illustrated on FIG. Figure 4a. If the foreseeable temperature T is determined higher than the reference temperature T 0 for which the mass of ammonia is optimal in the catalyst (maximum efficiency of the SCR without however observing a desorption phenomenon), there is a risk of desorption and allocates the additional torque 30 to the electrical torque. The allocation of the additional torque 30 to the electrical torque makes it possible not to increase, or almost not, the temperature in the SCR catalyst. The additional torque 30 is ideally exclusively allocated to the electrical torque during a transient phase t 0 -ti (of the order of a few hundred milliseconds to a few seconds, depending on the difference between T and To) and then beyond t-ι, the portion of the additional torque 30 attributed to the electrical torque decreases while the portion attributed to the thermal torque increases correlatively. Thus, for the requested torque, a final temperature T 'is obtained which is lower than the predictable temperature T. In addition, the increase in temperature is also controlled so that the final temperature T 'is reached later (lower temperature increase slope) than in the case of standard management of the hybrid engine (mode of the Figure 4a). It will be noted that, moreover, the reduction in the mass of ammonia present in the SCR catalyst is identical, or substantially identical, because the reduction / stop of the injection of ammonia into the exhaust line is ideally based on on the predictable temperature T and not on the actual temperature in the SCR. Of course, from the exclusive allocation of the torque requested to the thermal torque, the final temperature T 'in the catalyst SCR will gradually increase to the predictable temperature T insofar as the requested torque is equivalent and that the attribution to the thermal couple is exclusive. Nevertheless, by reducing the rate of increase of the temperature in the SCR catalyst by the management of the thermal / electrical torque, any phenomenon of desorption of the ammonia is avoided.
[0034] La figure 5 reprend le fonctionnement du procédé de contrôle selon l'invention. Un superviseur peut être dédié à ce contrôle mais ce superviseur peut également consister en un calculateur déjà présent dans le véhicule, notamment celui présent pour assurer la gestion complète de la ligne d'échappement. Si un fort gradient de couple est détecté, le superviseur détermine le risque de désorption sur la base de la masse d'ammoniac dans le SCR, de la température de ce dernier et de la température prévisible T que va entraîner la demande de couple 20. Figure 5 shows the operation of the control method according to the invention. A supervisor may be dedicated to this control but this supervisor may also consist of a computer already present in the vehicle, including the one present to ensure the complete management of the exhaust line. If a strong torque gradient is detected, the supervisor determines the risk of desorption based on the mass of ammonia in the SCR, the temperature of the latter and the expected temperature T that will result in the torque demand 20.
[0035] S'il y a un risque de désorption de l'ammoniac, la stratégie de contrôle de la température dans le catalyseur SCR est déclenchée, comme on l'a décrit en relation avec la figure 4b. Le superviseur détermine régulièrement si, compte tenu de la température détectée dans le catalyseur SCR et de la masse théorique d'ammoniac présente dans ledit catalyseur, le risque de désorption existe toujours. Dès que le risque de désorption est écarté, du fait de la baisse de la masse d'ammoniac et de l'augmentation plus faible/lente de la température dans le catalyseur SCR, la stratégie standard du moteur hybride est réinitialisée. [0036] On notera que le superviseur de température dans le catalyseur SCR peut également n'être activé que si un fort gradient de couple est enregistré, par exemple une augmentation du couple d'au moins 50%. Dans l'hypothèse d'une augmentation de couple ne dépassant pas une valeur seuil d'augmentation de couple, le superviseur n'étant pas activé, il n'y a évidemment aucune stratégie de contrôle particulière du couple électrique/thermique, soit un fonctionnement standard du couple, car il est estimé qu'aucun risque de désorption d'ammoniac n'est susceptible d'intervenir. If there is a risk of desorption of ammonia, the temperature control strategy in the SCR catalyst is triggered, as described in connection with Figure 4b. The supervisor regularly determines whether, given the temperature detected in the SCR catalyst and the theoretical mass of ammonia present in said catalyst, the risk of desorption still exists. As soon as the risk of desorption is eliminated, due to the drop in ammonia mass and the lower / slower temperature increase in the SCR catalyst, the standard strategy of the hybrid engine is reset. Note that the temperature supervisor in the SCR catalyst can also be activated only if a strong torque gradient is recorded, for example an increase in torque of at least 50%. In the hypothesis of a torque increase not exceeding a torque increase threshold value, the supervisor not being activated, there is obviously no particular control strategy of the electrical / thermal torque, that is to say a functioning torque, because it is estimated that no risk of ammonia desorption is likely to occur.
[0037] Il est bien entendu que, dans les véhicules hybrides, il est possible de prévoir qu'une partie du couple soit dédié au couple électrique mais jusqu'à la présente invention, l'attribution d'au moins une partie du couple demandé au couple électrique n'a jamais été basée sur la gestion du risque de désorption de l'agent réducteur dans le catalyseur SCR. It is understood that in hybrid vehicles, it is possible to provide a portion of the torque is dedicated to the electrical torque but up to the present invention, the allocation of at least a portion of the requested torque The electrical torque has never been based on the desorption risk management of the reducing agent in the SCR catalyst.
[0038] L'invention n'est pas limitée à un mode d'agencement particulier de la ligne d'échappement dans la mesure où cette dernière comporte au moins un catalyseur SCR. Par ailleurs, l'invention est également applicable quelque soit le type de motorisation hybride du véhicule du moment que l'on peut fournir un couple électrique et un couple thermique lors de la propulsion du véhicule. The invention is not limited to a particular embodiment of the exhaust line to the extent that the latter comprises at least one SCR catalyst. Furthermore, the invention is also applicable regardless of the type of hybrid engine of the vehicle as long as it can provide an electric torque and a thermal torque during the propulsion of the vehicle.
[0039] L'invention permet d'optimiser la conversion/réduction des NOx par le catalyseur SCR, notamment lorsque la ligne d'échappement est froide et que l'on risque d'observer, en cas de forte accélération, un fort gradient de température dans le catalyseur. L'invention permet de garantir l'absence de désorption d'ammoniac dans le catalyseur SCR et donc de s'affranchir d'un système additionnel de traitement de l'ammoniac en sortie du catalyseur SCR, du type catalyseur « clean-up ». [0040] En outre, du fait de l'absence de désorption, l'invention permet d'optimiser la consommation d'agent réducteur, d'où en particulier une maintenance réduite et/ou de prévoir un réservoir d'ammoniac moins volumineux. The invention makes it possible to optimize the conversion / reduction of NO x by the SCR catalyst, especially when the exhaust line is cold and that there is a risk of observing, in case of strong acceleration, a strong gradient. temperature in the catalyst. The invention makes it possible to guarantee the absence of desorption of ammonia in the SCR catalyst and thus to dispense with an additional system for treating ammonia at the outlet of the SCR catalyst, of the "clean-up" catalyst type. In addition, because of the absence of desorption, the invention optimizes the consumption of reducing agent, where in particular reduced maintenance and / or to provide a less bulky ammonia reservoir.

Claims

REVENDICATIONS
1. Procédé de contrôle d'un système de traitement des oxydes d'azote (NOx) présents dans les gaz d'échappement d'un véhicule équipé d'un moteur thermique et d'une machine électrique apte à fournir respectivement un couple thermique et un couple électrique, ledit système comportant, disposé dans la ligne d'échappement, un catalyseur SCR de réduction sélective des NOx et des moyens d'introduction d'un agent réducteur des NOx en amont dudit catalyseur SCR, caractérisé en ce que, au cours d'une phase de propulsion du véhicule, on détermine, pour une demande de couple (20) supérieure à un couple initial (10), la température prévisible T dans le catalyseur SCR correspondant à la demande de couple (20) lorsque ce dernier est attribué intégralement au couple thermique ; on compare cette température prévisible T à une température de référence To pour laquelle la masse d'agent réducteur présent dans le catalyseur SCR est considérée optimale pour la réduction des NOx ; et on attribue une partie du couple demandé (20) au couple électrique si la température prévisible T est supérieure à To. 1. A method of controlling a nitrogen oxide treatment system (NO x) present in exhaust gas of a vehicle equipped with an engine and an electric machine capable of providing a thermal torque respectively and an electric torque, said system comprising, arranged in the exhaust line, a SCR catalyst for selectively reducing NO x and means for introducing an NO x reducing agent upstream of said SCR catalyst, characterized in that during a propulsion phase of the vehicle, the expected temperature T in the SCR catalyst corresponding to the torque demand (20) is determined for a torque demand (20) greater than an initial torque (10) when the latter is attributed in full to the thermal torque; this predictable temperature T is compared with a reference temperature T 0 for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and allocating a portion of the requested torque (20) to the electrical torque if the predictable temperature T is greater than To.
2. Procédé selon la revendication 1 , caractérisé en ce que la masse d'agent réducteur optimal présent dans le catalyseur SCR est considérée atteinte lorsque la réduction des NOx est maximum tandis qu'aucun phénomène de désorption de l'agent réducteur dans le catalyseur SCR n'est observé. 2. Method according to claim 1, characterized in that the optimum reducing agent mass present in the SCR catalyst is considered to be reached when the NO x reduction is maximum while no phenomenon of desorption of the reducing agent in the catalyst. SCR is not observed.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la partie du couple attribuée au couple électrique correspond au couple supplémentaire (30), soit à la différence entre le couple initial (10) et le couple demandé (20). 3. Method according to claim 1 or 2, characterized in that the part of the torque attributed to the electrical torque corresponds to the additional torque (30), the difference between the initial torque (10) and the requested torque (20).
4. Procédé selon la revendication 3, caractérisé en ce que le couple supplémentaire (30) attribué au couple électrique est exclusivement attribué audit couple uniquement pendant une phase transitoire ti à partir de l'instant t0 de la demande de couple (20). 4. Method according to claim 3, characterized in that the additional torque (30) attributed to the electrical torque is exclusively assigned to said torque only during a transient phase ti from the moment t 0 of the torque request (20).
5. Procédé selon la revendication 4, caractérisé en ce que la phase transitoire ti dure au moins 0,5 seconde. 5. Method according to claim 4, characterized in that the transient phase lasts for at least 0.5 seconds.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que, au-delà de la phase transitoire t-ι , la partie du couple supplémentaire (30) prise en charge par le couple électrique diminue jusqu'à une valeur nulle ; la partie du couple supplémentaire (30) prise en charge par le couple thermique augmentant corrélativement. 6. Method according to claim 4 or 5, characterized in that, beyond the transitional phase t-ι, the portion of the additional torque (30) supported by the couple electric decreases to zero; the portion of the additional torque (30) supported by the correspondingly increasing thermal torque.
7. Procédé selon la revendication 6, caractérisé en ce que la diminution de la partie du couple supplémentaire (30) prise en charge par le couple électrique est linéaire. 7. Method according to claim 6, characterized in that the reduction of the portion of the additional torque (30) supported by the electrical torque is linear.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'on attribue la totalité du couple demandé (20), soit le couple initial (10) et le couple supplémentaire (30), au couple moteur lorsque la température prévisible T déterminée est inférieure à la susdite température de référence To. 8. Method according to any one of the preceding claims, characterized in that all of the requested torque (20), ie the initial torque (10) and the additional torque (30), are attributed to the engine torque when the foreseeable temperature T determined is less than the aforementioned reference temperature To.
9. Dispositif de contrôle de la pollution des NOx pour la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, comprenant un superviseur apte à déterminer la température dans le catalyseur SCR ainsi que la masse d'agent réducteur présent dans ledit catalyseur, caractérisé en ce que le superviseur a pour fonction : 9. A pollution control of NOx for implementing the method according to any preceding claim comprising a supervisor adapted to determine the temperature in the SCR catalyst and the weight of reducing agent present in said catalyst, characterized in that the function of the supervisor is:
- de déterminer une température prévisible T dans le catalyseur SCR en fonction d'une demande de couple (20) supérieure à un couple initial (10), cette température prévisible T étant déterminée dans l'hypothèse où la totalité du couple demandé est attribué au couple thermique ; determining a predictable temperature T in the catalyst SCR as a function of a torque demand (20) greater than an initial torque (10), this predictable temperature T being determined under the assumption that the totality of the requested torque is attributed to thermal torque;
- de déterminer si cette température prévisible T est supérieure à une température de référence To pour laquelle la masse d'agent réducteur présent dans le catalyseur SCR est considérée optimale pour la réduction des NOx ; et determining whether this predictable temperature T is greater than a reference temperature To for which the mass of reducing agent present in the SCR catalyst is considered optimal for the reduction of NO x ; and
- de commander l'attribution d'au moins une partie du couple demandé (20) au couple électrique si la température prévisible T est supérieure à la température de référence To. - Control the allocation of at least a portion of the requested torque (20) to the electrical torque if the predictable temperature T is greater than the reference temperature To.
10. Dispositif selon la revendication 9, caractérisé en ce que le superviseur vérifie s'il y a lieu, en fonction de la masse d'agent réducteur et de la température dans le catalyseur SCR ainsi que de la température de référence To, d'injecter une quantité d'agent réducteur dans la ligne d'échappement et est apte à commander cette injection. 10. Device according to claim 9, characterized in that the supervisor checks if necessary, depending on the mass of reducing agent and the temperature in the SCR catalyst and the reference temperature To, of injecting a quantity of reducing agent into the exhaust line and is able to control this injection.
PCT/FR2011/050308 2010-03-19 2011-02-15 Method for monitoring polluting emissions from a vehicle hybrid engine WO2011114028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051987A FR2957578A1 (en) 2010-03-19 2010-03-19 METHOD FOR MONITORING POLLUTING EMISSIONS OF A VEHICLE HYBRID ENGINE
FR1051987 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114028A1 true WO2011114028A1 (en) 2011-09-22

Family

ID=42990332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/050308 WO2011114028A1 (en) 2010-03-19 2011-02-15 Method for monitoring polluting emissions from a vehicle hybrid engine

Country Status (2)

Country Link
FR (1) FR2957578A1 (en)
WO (1) WO2011114028A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503725A (en) * 2012-07-05 2014-01-08 Gm Global Tech Operations Inc Hybrid powertrain control to split power between a combustion engine and motor generator based on the temperature upstream of an SCR
DE102015204093A1 (en) 2015-03-06 2016-09-08 Ford Global Technologies, Llc A method for suppressing ammonia slip in the operation of an SCR catalyst of a hybrid electric drive
CN109572679A (en) * 2017-09-28 2019-04-05 罗伯特·博世有限公司 For running the method for having the driving system of the motor vehicle of combustion engine and another machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359404B1 (en) * 1999-09-07 2002-03-19 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicle
WO2005019628A1 (en) * 2003-08-20 2005-03-03 Volkswagen Aktiengesellschaft Hybrid vehicle and method for operating a hybrid vehicle
US20070204601A1 (en) * 2006-03-03 2007-09-06 Nissan Motor Co.,Ltd. Exhaust gas purification system for hybrid vehicle
EP2058198A1 (en) * 2007-01-26 2009-05-13 Toyota Jidosha Kabushiki Kaisha Exhaust purifier of compression ignition internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359404B1 (en) * 1999-09-07 2002-03-19 Honda Giken Kogyo Kabushiki Kaisha Control apparatus for hybrid vehicle
WO2005019628A1 (en) * 2003-08-20 2005-03-03 Volkswagen Aktiengesellschaft Hybrid vehicle and method for operating a hybrid vehicle
US20070204601A1 (en) * 2006-03-03 2007-09-06 Nissan Motor Co.,Ltd. Exhaust gas purification system for hybrid vehicle
EP2058198A1 (en) * 2007-01-26 2009-05-13 Toyota Jidosha Kabushiki Kaisha Exhaust purifier of compression ignition internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503725A (en) * 2012-07-05 2014-01-08 Gm Global Tech Operations Inc Hybrid powertrain control to split power between a combustion engine and motor generator based on the temperature upstream of an SCR
DE102015204093A1 (en) 2015-03-06 2016-09-08 Ford Global Technologies, Llc A method for suppressing ammonia slip in the operation of an SCR catalyst of a hybrid electric drive
DE102015204093B4 (en) 2015-03-06 2021-10-14 Ford Global Technologies, Llc Method for suppressing ammonia slip during operation of an SCR catalytic converter of a hybrid electric drive
CN109572679A (en) * 2017-09-28 2019-04-05 罗伯特·博世有限公司 For running the method for having the driving system of the motor vehicle of combustion engine and another machine
CN109572679B (en) * 2017-09-28 2024-02-06 罗伯特·博世有限公司 Method for operating a drive train of a motor vehicle with a combustion engine and a further machine

Also Published As

Publication number Publication date
FR2957578A1 (en) 2011-09-23

Similar Documents

Publication Publication Date Title
FR2963641A1 (en) METHOD AND DEVICE FOR REGENERATING A PARTICLE FILTER
EP2501909A1 (en) Method for controlling pollutant emissions from a combustion engine
EP2943663A1 (en) Method for monitoring the nitrogen oxide decontamination in a motor vehicle
EP3017158B1 (en) System and process for regeneration of a nox adsorbing material
WO2011114028A1 (en) Method for monitoring polluting emissions from a vehicle hybrid engine
EP2539557A1 (en) Method for regenerating a particle filter for a hybrid motor vehicle
WO2017153665A1 (en) Method for optimizing the consumption of reducing agent in a motor vehicle exhaust line
EP2016263B1 (en) Method for controlling the operation of a reciprocating engine, exhaust line for implementing said method, and suitably equipped vehicle
EP2479409B1 (en) Method for controlling the temperature of exhaust gases in order to optimise the regeneration of a particle filter
FR2979091A1 (en) Method for controlling runaway reaction for regeneration of particulate filter retaining contaminating particles in hybrid vehicle, involves performing initiation or D-initiation of regeneration reaction, and performing smothering step
EP3084157B1 (en) Exhaust system of an internal combustion engine and method for treating combustion gases
WO2011107686A1 (en) Method for detecting the defective operation of a particulate filter of a pollution control system
EP2545261A2 (en) Method for regulating the regeneration temperature of a particulate filter
EP3008301A1 (en) Method for limiting the ageing of a catalyst in a motor vehicle exhaust line
EP2993320B1 (en) Motor vehicle with improved exhaust gas purification device
EP2604832A1 (en) Method for optimising the process of combustion of polluting particles emitted by a heat engine of a vehicle
WO2011104451A1 (en) Method for controlling a system for the treatment of the exhaust gases of an internal combustion engine
EP2961955B1 (en) Method for detecting a malfunction of a selective catalytic reduction system
EP3073085B1 (en) Method for treating exhaust gases from an internal combustion engine
WO2017077212A1 (en) Method for estimating a volume of a reducing agent in liquid form in a container
FR3030618A1 (en) METHOD FOR MANAGING A METHANE OXIDATION CATALYST AND EXHAUST GAS POST-TREATMENT SYSTEM FOR ITS IMPLEMENTATION
FR2983522A1 (en) Method for regenerating e.g. particle filter, of exhaust gases emitted by diesel engine of power train of car, involves estimating effectiveness of regeneration, and determining setpoint temperature based on estimated effectiveness
FR2952122A1 (en) Nitrogen oxide processing method for e.g. stratified combustion or spark ignition engine of commercial vehicle, involves regulating injection of reducer when engine is operated in one mode according to quantity of reducer
FR3006001A1 (en) DEVICE AND METHOD FOR THERMAL PROTECTION OF A REDUCER INJECTOR IN AN EXHAUST LINE
FR3085715A1 (en) DEVICE AND METHOD FOR MONITORING THE OPERATING CONDITION OF A GAS EFFLUENT TREATMENT BODY OF AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11712902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11712902

Country of ref document: EP

Kind code of ref document: A1