WO2011113821A1 - Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme - Google Patents

Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme Download PDF

Info

Publication number
WO2011113821A1
WO2011113821A1 PCT/EP2011/053866 EP2011053866W WO2011113821A1 WO 2011113821 A1 WO2011113821 A1 WO 2011113821A1 EP 2011053866 W EP2011053866 W EP 2011053866W WO 2011113821 A1 WO2011113821 A1 WO 2011113821A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal axis
radial
blades
ring
arms
Prior art date
Application number
PCT/EP2011/053866
Other languages
English (en)
Inventor
Wouter Balk
Gilles Alain Charier
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to US13/635,048 priority Critical patent/US9227723B2/en
Priority to GB1216378.8A priority patent/GB2490852B/en
Publication of WO2011113821A1 publication Critical patent/WO2011113821A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/306Blade pitch-changing mechanisms specially adapted for contrarotating propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D7/00Rotors with blades adjustable in operation; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/12Two-dimensional rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a variable pitch pitch setting mechanism for a counter-rotating propeller system, a counter-rotating propeller system comprising at least one such variable timing mechanism, and to a turbomachine comprising such a system.
  • turbomachines with counter-rotating propeller system, whose propellers are driven by a mechanical transmission device, usually taking the form of a differential gear.
  • Each of the first and second propellers comprises a hub centered on the longitudinal axis, an outer shell being disposed concentrically and participating in the radially outward delimitation of a main annular vein of the gas flow of the turbomachine, as well as arms fitting connecting the outer shell to the hub.
  • the contra-rotating propeller system includes a variable pitch setting mechanism of each blade of both propellers to adapt the angular orientation of the blades to each flight condition and to generate a counter-thrust after landing in order to brake the landing. 'aircraft.
  • a variable timing mechanism comprising a hydraulic cylinder located on the motor shaft, it sets in motion racks meshing radial shafts. The radial shafts pass through the vein of the hot flow and set in motion gears located outside the engine. The gears in turn are linked to the propeller blades' feet.
  • This mechanism has a low rigidity, which affects the maintenance of the orientation of the blades at the desired angle.
  • the gears are located outside the engine and are therefore exposed to ambient conditions without lubrication. The life of these is then directly impacted and maintenance costs are increased.
  • Another mechanism was then proposed, the latter, in order to overcome the low rigidity of the mechanism described above, comprises a large number of gears and an epicyclic reduction gear in each blade pivot. The significant reduction between the drive motor and the blade provides improved accuracy and stiffness. On the other hand, the mechanism presents a significant complexity, a large mass and a high cost price.
  • a blade setting mechanism of at least one propeller comprising a linear actuator, means for transforming the movement of the actuator into rotation of the blades, said means comprising a fitting provided with a plurality of arm, the fitting having a substantially frustoconical shape. Because of its conical shape, the fitting has a high rigidity ensuring then a precise adjustment of the angular position of the blades and its maintenance. Furthermore, the fitting has a very openwork structure that reduces the negative impact of its presence on the flow of hot gas.
  • the arms of the fitting are housed in hollow connecting arms connecting an outer ring to the hub of the counter-rotating propeller system, the connecting arms forming a fairing for the arms of the fitting, which again has the effect of effect of reducing the negative impact of the presence of the fitting in the gas flow.
  • the connecting arms are inclined which allows to bring the blades of the housing, and therefore to reduce the length of the propeller system in the axial direction. This results in a gain in terms of weight and bulk.
  • the mechanism according to the present invention is both rigid enough to modify the pitch of the propellers with the desired precision, reliable, simple and sure, causing a reduced gas flow shutter.
  • the main subject of the present invention is therefore a mechanism for setting the pitch of the blades of at least one helix of a contra-rotating propeller system for a turbomachine, each blade being mobile about a radial axis, said mechanism comprising a linear actuator.
  • means for converting the displacement delivered by the linear actuator into rotation of each of said blades synchronously about their radial axis said means comprising a longitudinal axis fitting provided with a central ring, an outer ring and a plurality of radial arms rigidly connected to the central ring and to the outer ring, said central ring being intended to receive one actuation of the linear actuator, said central ring and said outer ring being arranged in two distinct planes , orthogonal to the longitudinal axis, such that said radial arms are inclined with respect to the longitudinal axis, the bracket having alo rs the shape of a truncated cone.
  • the outer ring has a polygonal shape.
  • the outer ring may be formed of a plurality of straight segments each extending between two radially outer ends of two consecutive radial arms.
  • the means for transforming the displacement of the linear actuator into rotation of each of said blades comprise links articulated between the fitting and each blade, the articulation between the link and the blade being a pivot link axis parallel to the radial axis of rotation of said blade, separate from said radial axis.
  • the mechanism according to the present invention comprises flyweights associated with each of the blades tending to bring the blades back to their "flag" position.
  • the linear actuator is for example a hydraulic cylinder.
  • the present invention also relates to a counter-rotating propeller system for an aircraft turbomachine, comprising:
  • a power-free turbine a first propeller and a second counter-rotating propeller intended to be rotated about a longitudinal axis of the propeller system, said first propeller being situated in a given direction with respect to said second propeller, each of the first and second propellers comprising a hub centered on the longitudinal axis, an outer shell being arranged concentrically and participating in the radially outward delimitation of a main annular vein, and connecting arms connecting said outer ring hub audit,
  • first mechanism for setting the pitch of the blades of the first turbine and a second mechanism for setting the pitch of the blades of the second turbine, least one of the first and second wedging mechanisms being a mechanism according to the present invention.
  • the connecting arms are advantageously hollow and the radial arms are housed in the connecting arms.
  • the fitting comprises as many radial arms as blades, each radial arm being received in a connecting arm.
  • the connecting arms are advantageously contained in planes that do not contain the longitudinal axis so that the connecting arms are aligned with the flow of gas in the main flow channel, the wedging mechanism comprising guiding means the fitting so that it has a helical movement about the longitudinal axis.
  • the wedging mechanism according to the invention comprises a synchronization ring connected to the inner ring of the fitting by a plurality of connecting rods and the guide means comprise a plurality of rectilinear grooves parallel to the longitudinal axis. for guiding the synchronization ring and a plurality of helical grooves for guiding the central ring.
  • the connecting arms of the first helix and the connecting arms of the second helix extend radially in planes containing the longitudinal axis, in directions inclined with respect to the longitudinal axis.
  • the rods are contained substantially in the plane of the connecting arms not containing the longitudinal axis, so to avoid that the radial arms work in flexion in the direction of their lower inertia.
  • the first and second wedging mechanisms are according to the present invention, and comprise a common linear actuator formed by a double hydraulic cylinder.
  • the axis of the linear actuator is preferably aligned with the longitudinal axis.
  • the linear actuator rotates at the same speed as one of the propellers, the transmission of one linear actuation to the locking mechanism of the other propeller is then carried out by means of rolling bearings.
  • the contra-rotating propeller system may comprise a sealed casing of annular shape, fixed along the longitudinal axis sealingly surrounding the central ring and the synchronization ring.
  • the rectilinear and helical guide grooves of the wedging mechanism are advantageously formed in a bottom of said housing.
  • the sealed housing may comprise tubes sealingly connecting the outer faces of the longitudinal walls of said housing, advantageously one end of the tubes being closer to the longitudinal axis than the other end. These tubes are used to return the oil.
  • the present invention also relates to an aircraft turbomachine comprising a counter-rotating propeller system according to the present invention.
  • FIG. 1 is a perspective view of a turbomachine with contra-rotating propellers to which the present invention applies,
  • FIG. 2A shows a partial longitudinal sectional view of the turbomachine of FIG. 1 at the level of the variable timing mechanism according to the present invention in two different setting positions
  • FIG. 2B represents a partial perspective view of the contra-rotating propeller system according to the present invention
  • FIG. 3 represents an isolated perspective view of the casing connected to the blades of the propeller of the mechanism of FIG. 2A,
  • FIG. 4 is a representation of the assembly represented in FIG. 3 from which a casing supporting the propeller has been removed
  • FIG. 5 represents a view of the assembly shown in FIG. 4 from a radially outer point, the ferrules and the connecting arms having been added,
  • FIG. 6 represents an enlarged view of FIG. 5 showing an exemplary embodiment of means for transforming the translation movement of the fitting into a rotational movement of the blades;
  • FIG. 7 represents a detail view of FIG. 2 at the radially end; inside the radial arms of the mechanism fitting according to the present invention in two wedging positions,
  • FIG. 8 represents the two extreme positions of a radial arm of the fitting in a connection arm
  • FIGS. 9A to 9D are schematic representations of different angular positions can be taken by a blade and those of its associated rod.
  • FIG. 1 shows a turbomachine, of the "open rotor” type, equipped with a counter-rotating propeller system according to a preferred embodiment of the present invention.
  • the direction A corresponds to the longitudinal direction or axial direction, parallel to the longitudinal axis X of the turbomachine.
  • the direction B corresponds, in turn, to the radial direction of the turbomachine.
  • the arrow 4 schematizes the direction of advance of the aircraft under the action of the thrust of the turbomachine 1, this advancement direction being contrary to the main flow direction of the gas within the turbomachine.
  • the terms "before” / "upstream”, “backward” / "downstream” used in the remainder of the description are to be considered with respect to said forward direction 4.
  • the turbomachine has a longitudinal axis X.
  • the turbomachine has an air inlet 6 continuing towards the rear by a nacelle 8, which generally comprises an outer skin 10 and an inner skin 12, both centered on the X axis and offset radially from each other.
  • the inner skin 12 forms an outer radial casing for a gas generator, conventionally comprising, from front to rear, a low pressure compressor, a high pressure compressor, a combustion chamber, a high pressure turbine and a turbine intermediate pressure.
  • the low pressure compressor and turbine are mechanically connected by a shaft, forming a low pressure pressure body, while the high pressure compressor and the turbine are mechanically connected by a shaft, forming a higher pressure body. Therefore, the gas generator preferably has a conventional double-body design.
  • a counter-rotating propeller system 14 Downstream of the intermediate pressure turbine (not visible) is a counter-rotating propeller system 14.
  • This system comprises a free power turbine (not visible), forming a low pressure turbine. It comprises a rotor constituting the inner part of the turbine, as well as a stator constituting the outer part of this turbine, which is fixedly connected to a fixed casing assembly of this propeller system, centered on the longitudinal axis X.
  • This stator is in known manner intended to be integral with the other housings of the turbomachine.
  • the propeller system is preferably designed so that the propellers are devoid of outer radial fairing surrounding them, as shown in Figure 1.
  • the propeller system Downstream of the turbine, the propeller system, shown in section in Figure 2A, comprises a first propeller 16 or upstream propeller, carrying the blades 16a. Similarly, the system comprises a second propeller 18 or downstream propeller, carrying blades 18a. Thus, the propellers 16, 18 are offset from one another in the direction 4.
  • the two propellers 16, 18 are intended to rotate in opposite directions about the axis X on which they are centered, the rotations being effected relative to the stator remaining stationary.
  • the first propeller 16 comprises a hub 20 centered on the axis of the turbine and a radially outer shell 22, concentric with the hub 20 and radially outwardly delimiting a main annular vein 24.
  • the main vein 24 is also bounded radially inwards by an intermediate shell 25.
  • the first propeller 16 also comprises a plurality of connecting arms 26 angularly distributed regularly around the hub 20.
  • the connecting arms 26 substantially form a star. The arrangement of the connecting arms 26 is visible in FIG. 2B.
  • the connecting arms 26 are hollow.
  • the connecting arms 26 are not perpendicular to the longitudinal axis X but are inclined relative to the axis upstream.
  • a counter-rotating propeller system comprising connecting arms perpendicular to the longitudinal axis X does not depart from the scope of the present invention.
  • Each blade 16a is mounted articulated around a Y axis radial direction. Each blade has a separate axis of rotation, however for the sake of simplicity we will designate these axes by the "radial axis Y".
  • Each blade 16a comprises a foot 16b pivotally received in a retention ring 28 located radially outside the radially outer shell 22, the retention ring is visible on the outside. FIG. 2A and omitted from FIG. 3.
  • the foot 16b of the blade 16a is located vertically above a radially outer end 26a of the connecting arm 26.
  • the retention ring is intended to to withstand the centrifugal force exerted by the blades 16a.
  • a rolling bearing 29 is provided in the retention ring 28 to ensure the rotational guidance of the blade root 16b.
  • the second propeller 18 comprises a hub 30 centered on the X axis of the engine and a radially outer shell 32, concentric with the hub 30 and defining radially outwardly the main annular vein 24.
  • the second propeller 18 also comprises a plurality of arms of connection 36 angularly distributed regularly around the hub 30.
  • the connecting arms 36 are also inclined relative to the longitudinal axis X, downstream.
  • a counter-rotating propeller system comprising connecting arms 36 perpendicular to the longitudinal axis X does not depart from the scope of the present invention.
  • Each blade 18a is mounted articulated about an axis extending radially.
  • Each blade 18a comprises a foot 18b pivotally received in a retaining ring 40 located radially outside the radially outer shell 32.
  • the foot 18b of the blade 18a is in line with a radially outer end 36a of the connecting arm 36.
  • a rolling bearing 39 is provided in the retaining ring 40 to ensure the rotational guidance of the blade root 18b.
  • the arrangement of the connecting arms 36 are visible in FIG. 2B.
  • the contra-rotating propeller system 14 also comprises a first variable pitching mechanism 42 for setting the pitch of the blades 16a of the first propeller 16 and a second variable pitching mechanism 44 for setting the pitch of the blades 18a of the second helix 18.
  • a counter-rotating propeller system comprising a mechanism according to the invention and another mechanism, for example known from the state of the art, is not outside the scope of the present invention.
  • the first locking mechanism 42 comprises a linear actuator 46, a fitting 48 connecting the actuator and the foot 16b of one or more blades 16a.
  • the linear actuator 46 is formed by a hydraulic cylinder located on the longitudinal axis X.
  • the fitting 48 comprises a central ring 50, an outer ring 52 concentric with the central ring 50, and radial arms 54 extending between the central ring 50 and the outer ring 52.
  • the radial arms 54 are rigidly fixed on the central ring 50 and on the outer ring 52 by their radially inner ends 54a and radially outer 54b respectively for example by welding or bolting, which facilitates assembly and disassembly operations.
  • the central ring 50 is disposed between the hub 20 and the intermediate shell 25, the outer ring is located outside the radially outer shell 22, and the radial arms 54 extend inside the connecting arms. hollow 26.
  • the radially outer end 54b of each radial arm 54 opening out of the connecting arm 26 away from the longitudinal axis X, and the radially inner end 54b of each radial arm 54 opening from the connecting arm 26 towards the longitudinal axis X.
  • the radial arms 54 of the fitting pass through the gas stream, the connecting arms forming fairings. The impact on the flow of the presence of the radial arms 54 in the vein 24 is then reduced.
  • the central ring 50, the radial arms 54 and the outer ring 52 are arranged so as to form a rigid truncated cone structure, this shape provides increased rigidity to the fitting 48.
  • the connector arms 24 being inclined upstream and forming themselves a frustoconical shape, the conicity of the fitting 48 and that of the structure formed by the radial arms 54 have the same orientation.
  • the outer ring 52 is composed of straight segments 52a extending between two radially outer ends 54b of radial arms 54. This polygonal shape makes it possible to further increase the rigidity of the fitting 48.
  • the straight segments 52a of the outer ring 52 are integrally formed, for example by folding a strip of metal or metal alloy.
  • the radially outer ends 54b of the radial arms 54 comprise a notch receiving the radially inner face of a coupling portion 52b between two straight segments 52a, as can be seen in FIG.
  • the fitting 48 comprises as many radial arms 54 as blades and connecting arms 26.
  • each radial arm 54 of the fitting 48 is intended to move in rotation of a blade 16a.
  • Each blade has the same rigidity in torsion, thus obtaining a good synchronization between the movements of all the blades.
  • the cavities 26a of hollow connecting arms 26 have a section of substantially elliptical shape.
  • the biggest The size of the section of each cavity is chosen so that the displacement of the radial arms 54 allows the pitch angle of the blades 16a to vary by about 120 °.
  • the 42 also comprises means 56 for converting the translation movement of the fitting 48 into rotational movement of the blades 16a about their radial axis Y.
  • An example of such conversion means 56 is visible in FIGS. 5 and 6.
  • the means 56 comprise a connecting rod 58 connected by a first longitudinal end 58.1 to the end of a radial arm 54 by means of a ball joint 60 and by a second longitudinal end 58.2 to the foot 16b of a blade 16a by a pivot connection 62 of Y axis' substantially parallel to the axis of rotation Y of the blade 16a and distinct therefrom.
  • a finger 64 fixed under the foot 16b is received in a bore of the rod 58 and forms the axis of the pivot.
  • the finger 64 is eccentric with respect to the Y axis.
  • any other means of converting the translation movement into rotational movement may be suitable.
  • it may be a groove formed in the outer ring and in which the finger 64 would be received.
  • the mechanism for setting the pitch or adjusting the angle of orientation of the blades plays a critical role in the regulation of the rotational speed of the propellers. Therefore, precautions are taken to avoid an over-speed condition of the propellers in case of failure of one of the components of the pitch change mechanism. Centrifugal effort and the distribution of the mass of the blade leads to a pair which tends to orient the blade perpendicularly to the longitudinal axis X designated by a "fine pitch" by the skilled person. In this case, the propeller is self-driven by the speed of the aircraft which could lead to a condition of overspeed of rotation.
  • each blade 16a is advantageously provided with a counterweight 66 as can be seen in FIGS. 3 and 5, which generates a torque which opposes the inertial torque of the blade 16a and which tends to bring the blade back 16a towards the position "flag" that is to say parallel to the longitudinal axis X, and in which it participates in the slowing of the propeller.
  • the weight 66 has substantially the shape of a part delimited between two concentric arc portions.
  • the weight 66 is fixed to the foot 16b of the blade 16a radially outside thereof relative to the axis Y by means of a radial arm 68 with respect to the axis Y.
  • the blade or blades concerned 16a are naturally “flagged", which puts the propeller 16 in a good condition to stop the engine safely. Any other system that generates a torque to bring the blades back to the "flag" position is also applicable.
  • the counter-rotating propeller system comprises fitting 26 oriented so that they are aligned with the flow that results from the rotation of the propeller 16 and the flow that leaves the motor axially.
  • This inclination reduces the drag induced by their presence in the gas stream.
  • the axis XI on which is aligned the direction of greater length of the section of each connecting arm 26 is not parallel to the axis of the motor, but is inclined with respect to it as one can see it in Figure 8.
  • the locking mechanism 42 then comprises, for this advantageous example, guide means 70, shown in FIG. 7, allowing the radial arms 54 of the fitting to follow this inclination of the connecting arms 26.
  • the guiding means are particularly visible in the enlarged view shown in FIG. 7.
  • the fitting 48 ensuring the pitch pitch of the blades, is then not only displaced in translation, but is also simultaneously rotated, thus having a helical motion around the longitudinal axis X.
  • the guiding means 70 comprise a synchronization ring 72 and rods 74 hinged on the one hand on the synchronization ring 72 and on the other hand on the central ring 50
  • the guiding means 70 comprise at least one rectilinear groove 76 parallel to the axis X and at least one helical groove 78.
  • the grooves 76, 78 are for example made, particularly advantageously, in the bottom of a sealed housing 80 which we will describe in detail in the following description.
  • the pitch of the helical groove is such that it corresponds to the inclination of the axis XI of the section of the connecting arm with respect to the longitudinal axis X.
  • the guiding means 70 comprise a plurality of rectilinear grooves 76 and intermeshed helical grooves 78, angularly distributed homogeneously in the bottom of the housing 80 around the longitudinal axis X.
  • the plurality of grooves 76, 78 ensures uniform guidance of the retention ring and the central ring 50 about the longitudinal axis X.
  • the synchronizing ring 72 is directly attached to the end of a plurality of translationally mobile return rods 82, themselves set in motion by the linear actuator 46.
  • the synchronization ring 72 is guided in translation by the rectilinear groove 76, for this it slides in the rectilinear groove 76.
  • the central ring 50 is moved by the synchronization ring via the rods 74 and slides in the helical grooves 78, the fitting therefore has a helical movement about the X axis, and the radial arms 54 which can then follow the inclination of the hollow connection arms 24.
  • FIG. 8 shows the inclination of a connecting arm with respect to the axis of the motor X and the extreme positions taken by a radial arm 54. It can be seen that the radial arm 54 follows the inclination of the arm fitting.
  • the angle ⁇ between the axis X and the axis XI along the greatest length of the section of a connecting arm is of the order of 8 °.
  • a sealed housing 80 shown in Figure 7, around the radially inner ends of the radial arms 54 so as to prevent oil leakage at the connecting arms.
  • this housing 80 has an annular shape and extends axially so as to confine the radially inner ends 54a of all the radial arms 54 and the central ring 50 over their entire stroke.
  • the return rods 82 pass through a longitudinal wall of the housing 80 in a sealed manner, for example by the presence of O-rings.
  • the housing 80 advantageously makes it possible not to resort to dynamic seals which should be located around the radial arms, and whose effectiveness over time may decrease. Thanks to the housing 80, the seal is made statically, only the relatively simple dynamic sealing of the return rods 82 is to be ensured.
  • the housing 80 is traversed axially by tubes 83 sealingly connecting the two outer faces of the two longitudinal walls 80a, 80b of the housing, allowing the return of the oil which has been centrifuged on the outer wall of the enclosure without the latter penetrating inside the housing.
  • the enclosure is formed by the volume delimited by the double wall shown in Figure 2A.
  • the longitudinal tubes 83 are preferably inclined, their downstream end being closer to the X axis than their upstream end.
  • each mechanism 42, 44 is of similar structures according to the present invention. Therefore, each mechanism 42, 44 includes a linear actuator.
  • a single actuator 46 is used for the two mechanisms 42, 44 formed by a double cylinder with an X axis.
  • the control cylinder 46 is advantageously located on the longitudinal axis X, which makes it possible to have all the high-pressure rotating joints on a small diameter, the sealing is then easier to achieve, the risks of leakage in the joints are reduced and the life of the joints increased.
  • each locking mechanism 42, 44 rotates at the same speed as its propeller 16, 18.
  • the double cylinder 46 rotates at the speed of the second propeller 18.
  • the double cylinder comprises a first cylinder rod 84 for actuating the first locking mechanism 42 of the first propeller 16 and a second cylinder rod 86 concentric with the first cylinder rod 84, to actuate the second locking mechanism 44 of the second propeller 18.
  • the actuation of the second mechanism 44 is obtained by an almost direct connection between the second cylinder rod 86 and the return rod connected to the synchronization ring of the second piston.
  • second locking mechanism only a return arm 90 is used to connect the second cylinder rod 86 to the rod connected to the synchronization ring.
  • first locking mechanism 42 it does not turn in the same direction as the second rod 86.
  • bearings bearing 92 to transmit the translation of the first rod 86 of the rotating mark of the double cylinder 46 and the second propeller 18 to that of the first propeller 16.
  • the rolling bearings 92 are immobilized in rotation in the double cylinder reference, for example by splines 94.
  • FIGS. 9A to 9D various positions taken by a blade 16a and the positions taken by the associated rod can be seen.
  • FIG. 9A the blade 16a is in the "flag” position.
  • FIG. 9B the blade 16a is in an "idle” position.
  • the axis of the rod 58 is in the take-off position of the aircraft substantially parallel to the axis Xldu profile of the rotor arm, as can be seen in FIG. 9C, which makes it possible to avoid radial arms 54 to work in flexion in the direction of their lower inertia during takeoffs during which the efforts are maximum.
  • the blade 16a is in the "reverse" position after landing to generate a counter-thrust in order to brake the aircraft.
  • the hydraulic cylinder When a change in the angular orientation of the blades 16a of the first propeller 16 is desired, the hydraulic cylinder is actuated, the actuation of the cylinder 46 causes the displacement in translation of the first cylinder rod 84; its direction of movement and the amplitude of displacement depend on the direction of rotation of the desired blades and the desired rotation angle.
  • the cylinder rod 84 causes the translation of the rods 82 in translation through the rolling bearings 92.
  • the sliding of the rods 82 causes the displacement of the synchronizing ring 72 which slides also axially, guided by the grooves rectilinear 76, as shown in Figure 7.
  • the central ring 50 Via the rods 74, the central ring 50 is also moved along the X axis and around the X axis because of its guidance by the helical grooves 78. The central ring 50 then has a helical movement, and the radial arms 54 and the outer ring 52 which forms the fitting 48. The translational movement of the radial arms 54 causes, via the rods 58, the rotation of the legs 16b of the blades 16a of the propeller 16 about their axis Y .
  • All the blades 16a of the propeller 16 pivot simultaneously and in the same direction so that at the end of the adjustment the blades 16a have the same angular orientation with respect to the axis X.
  • the flyweights 66 (visible in FIGS. 3 and 5) automatically cause the "flag" position to be set concerned.
  • the jack 46 simultaneously causes the blades 18a of the second helix 18 to wedge according to a similar procedure.
  • the orientation of the blades of the first helix is different from that of the second helix, which makes it possible, for example, to accelerate or decelerate one helix relative to the other and thus to regulate the rotational speed ratio.
  • the connecting arms are advantageously inclined relative to the longitudinal axis X in the upstream direction for those extending radially between the hub 22 and the radially outer shell of the first propeller 16 and towards the downstream for those extending radially between the hub 32 and the radially outer shell 34 of the second propeller 18.
  • the angle between the arms and the longitudinal axis may be between 20 ° and 50 °, but any other orientation may be considered, the inclinations chosen for the connecting arms depending on desired spacing between the blades 16a, 18a in the longitudinal direction, in particular to meet the acoustic constraints.
  • the mechanism according to the present invention the number of parts is reduced compared to the mechanisms of the prior art, improving the reliability of the mechanism and reducing the manufacturing cost of the mechanism.
  • the increased rigidity of the fitting improves the accuracy with which the pitch angle of the propeller blade can be adjusted.
  • the fittings are heavily perforated to pass the flow of gas inside the engine and thus cause little closure of this flow.
  • the wedging mechanism according to the invention a homogeneous setting of all the blades is obtained due to the use of parts of revolution to synchronize the rods.
  • the invention is applicable to all turbomachines, in particular those called “open rotor". In the latter case, the invention applies that the propeller system is disposed upstream or downstream of the gas generator. In each of these two cases, within the propeller system, it may be envisaged to place the power turbine upstream or downstream of the counter-rotating propellers.
  • the fitting is for example made of titanium.
  • the radial arms of the setting mechanisms are not arranged in the connecting arms but outside them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Mécanisme de calage des pales d'une hélice (16) d'un système d'hélices contrarotatives pour turbomachine, chaque pale (16a) étant mobile autour d'un axe radial (Y), ledit mécanisme comportant un actionneur linéaire, des moyens (56) pour transformer le déplacement délivré par l'actionneur linéaire en rotation de chacune desdites pales (16a) de manière synchronisée autour de leur axe radial (Y), lesdits moyens comportant une ferrure (48) d'axe longitudinal (X) formé d'un anneau central (50), d'un anneau extérieur (52) et d'une pluralité de bras radiaux (54) rigidement reliés à l'anneau central (50) et à l'anneau extérieur (52), ledit anneau central (50) étant destiné à recevoir l'actionnement de l'actionneur linéaire, ledit anneau central (50) et ledit anneau extérieur (52) étant disposés dans deux plans distincts, orthogonaux à l'axe longitudinal (X), de telle sorte que la ferrure (48) a la forme d'un tronc de cône.

Description

MECANISME DE CALAGE VARIABLE DE PALES POUR SYSTEME D'HELICES CONTRAROTATIVES ET SYSTEME D'HELICES CONTRAROTATIVES COMPORTANT AU MOINS UN TEL MECANISME
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR
La présente invention se rapporte à un mécanisme de calage variable du pas de pales pour système d'hélices contrarotatives , un système d'hélices contrarotatives comportant au moins un tel mécanisme de calage variable, et à une turbomachine comportant un tel système.
De l'état de la technique, il est connu des turbomachines à système d'hélices contrarotatives, dont les hélices sont entraînées par un dispositif de transmission mécanique, prenant habituellement la forme d'un réducteur différentiel.
Chacune des première et seconde hélices comprend un moyeu centré sur l'axe longitudinal, une virole extérieure lui étant disposée concentriquement et participant à la délimitation radiale vers l'extérieur d'une veine annulaire principale du flux gazeux de la turbomachine, ainsi que des bras de raccord reliant la virole extérieure au moyeu.
En outre, le système à hélices contrarotatives comporte un mécanisme de calage variable du pas de chaque pale des deux hélices pour adapter l'orientation angulaire des pales à chaque condition de vol et pour générer une contre-poussée après l'atterrissage afin de freiner l'aéronef. De tels mécanismes sont connus de l'état de la technique. Il existe un mécanisme de calage variable comprenant un vérin hydraulique situé sur l'axe moteur, celui-ci met en mouvement des crémaillères engrenant des arbres radiaux. Les arbres radiaux traversent la veine du flux chaud et mettent en mouvement des engrenages situés à l'extérieur du moteur. Les engrenages à leur tour sont liés aux pieds des pales d' hélice .
Ce mécanisme présente une faible rigidité, ce qui nuit au maintien de l'orientation des pales sous l'angle souhaité. En outre, les engrenages sont situés à l'extérieur du moteur et sont donc exposés aux conditions ambiantes sans lubrification. La durée de vie de ceux-ci en est alors directement impactée et les coûts de maintenance sont augmentés. Un autre mécanisme a alors été proposé, celui-ci, afin de pallier la faible rigidité du mécanisme décrit précédemment, comporte un grand nombre d'engrenages et un réducteur épicycloïdal dans chaque pivot de pale. La démultiplication importante entre le moteur d'entraînement et la pale apporte une précision et une rigidité améliorées. En revanche, le mécanisme présente un complexité importante, une masse importante et un prix de revient élevé.
C'est par conséquent un but de la présente invention d'offrir un mécanisme de calage variable des pales des hélices contrarotatives permettant une commande améliorée de l'orientation angulaire des pales, tout en étant particulièrement fiable et de réalisation relativement simple. EXPOSÉ DE L' INVENTION
Le but précédemment énoncé est atteint par un mécanisme de calage des pales d'au moins une hélice comportant un actionneur linéaire, des moyens pour transformer le déplacement de l' actionneur en rotation des pales, lesdits moyens comportant une ferrure munie d'une pluralité de bras, la ferrure présentant une forme sensiblement tronconique . Du fait de sa forme conique, la ferrure présente une rigidité importante assurant alors un réglage précis de la position angulaire des pales et son maintien. Par ailleurs, la ferrure présente une structure très ajourée qui réduit l'impact négatif de sa présence sur le flux de gaz chaud .
Dans un exemple avantageux, les bras de la ferrure sont logés dans des bras de raccord creux reliant une virole extérieure au moyeu du système d'hélices contrarotatives , les bras de raccord formant un carénage pour les bras de la ferrure, ce qui a encore pour effet de réduire l'impact négatif de la présence de la ferrure dans le flux gazeux.
De manière particulièrement avantageuse, les bras de raccord sont inclinés ce qui permet de rapprocher les pales du carter, et par conséquent de diminuer la longueur du système d'hélices dans la direction axiale. Il en résulte un gain en termes de masse et d'encombrement.
Le mécanisme selon la présente invention est à la fois suffisamment rigide pour modifier le pas des hélices avec la précision souhaitée, fiable, simple et sûr, provoquant une obturation réduite du flux de gaz .
La présente invention a alors principalement pour objet un mécanisme de calage du pas des pales d'au moins une hélice d'un système d'hélices contrarotatives pour turbomachine, chaque pale étant mobile autour d'un axe radial, ledit mécanisme comportant un actionneur linéaire, des moyens pour transformer le déplacement délivré par l' actionneur linéaire en rotation de chacune desdites pales de manière synchronisée autour de leur axe radial, lesdits moyens comportant une ferrure d' axe longitudinal munie d'un anneau central, d'un anneau extérieur et d'une pluralité de bras radiaux rigidement reliés à l'anneau central et à l'anneau extérieur, ledit anneau central étant destiné à recevoir 1 ' actionnement de l' actionneur linéaire, ledit anneau central et ledit anneau extérieur étant disposés dans deux plans distincts, orthogonaux à l'axe longitudinal, de telle sorte que lesdits bras radiaux soient inclinés par rapport à l'axe longitudinal, la ferrure ayant alors la forme d'un tronc de cône.
De manière avantageuse, l'anneau extérieur a une forme polygonale. Par exemple, l'anneau extérieur peut être formé d'une pluralité de segments droits s' étendant chacun entre deux extrémités radialement extérieures de deux bras radiaux consécutifs.
Dans un exemple de réalisation, les moyens pour transformer le déplacement de l' actionneur linéaire en rotation de chacune desdites pales comportent des biellettes articulées entre la ferrure et chaque pale, l'articulation entre la biellette et la pale étant une liaison pivot d'axe parallèle à l'axe radial de rotation de ladite pale, distinct dudit axe radial .
De manière avantageuse, le mécanisme selon la présente invention comporte des masselottes associées à chacune des pales tendant à ramener les pales dans leur position « drapeau ».
L'actionneur linéaire est par exemple un vérin hydraulique.
La présente invention a également pour objet un système d'hélices contrarotatives pour turbomachine d'aéronef, comprenant :
- une turbine libre de puissance, - une première hélice et une seconde hélice contrarotatives destinées à être mises en rotation autour d'un axe longitudinal du système d'hélices, ladite première hélice étant située dans une direction donnée par rapport à ladite seconde hélice, chacune des première et seconde hélices comprenant un moyeu centré sur l'axe longitudinal, une virole extérieure lui étant disposée concentriquement et participant à la délimitation radiale vers l'extérieur d'une veine annulaire principale, ainsi que des bras de raccord reliant ladite virole extérieure audit moyeu,
- un dispositif de transmission mécanique entraîné par ladite turbine libre de puissance et entraînant lesdites première et seconde hélices,
- un premier mécanisme de calage de pas des pales de la première turbine et un deuxième mécanisme de calage de pas des pales de la deuxième turbine, au moins l'un des premier et deuxième mécanismes de calage étant un mécanisme selon la présente invention.
Les bras de raccord sont avantageusement creux et les bras radiaux sont logés dans les bras de raccord. De manière préférée, la ferrure comporte autant de bras radiaux que de pales, chaque bras radial étant reçu dans un bras de raccord.
Les bras de raccord sont avantageusement contenus dans des plans ne contenant pas l'axe longitudinal de telle sorte que les bras de raccord soient alignés avec l'écoulement du gaz dans la veine d'écoulement principale, le mécanisme de calage comportant des moyens de guidage de la ferrure de sorte qu'elle ait un mouvement hélicoïdal autour de l'axe longitudinal. Dans un exemple de réalisation, le mécanisme de calage selon l'invention comporte un anneau de synchronisation relié à l'anneau intérieur de la ferrure par une pluralité de bielles et les moyens de guidage comportent une pluralité de rainures rectilignes parallèles à l'axe longitudinal pour guider l'anneau de synchronisation et une pluralité de rainures hélicoïdales pour guider l'anneau central.
Dans un exemple particulièrement avantageux, les bras de raccord de la première hélice et les bras de raccord de la deuxième hélice s'étendent radialement dans des plans contenant l'axe longitudinal, dans des directions inclinées par rapport à l'axe longitudinal.
De préférence, au décollage, les biellettes sont contenues sensiblement dans le plan des bras de raccord ne contenant pas l'axe longitudinal, afin d'éviter que les bras radiaux travaillent en flexion dans la direction de leur plus faible inertie.
De manière avantageuse, les premier et deuxième mécanismes de calage sont selon la présente invention, et comportent un actionneur linéaire commun formé par un vérin hydraulique double.
L'axe de l' actionneur linéaire est de préférence aligné avec l'axe longitudinal. Dans un exemple de réalisation, l' actionneur linéaire tourne à la même vitesse que l'une des hélices, la transmission de 1 ' actionnement linéaire au mécanisme de calage de l'autre hélice est alors réalisée au moyen de paliers à roulement .
Le système d'hélices contrarotatives selon l'invention peut comporter un boitier étanche de forme annulaire, fixe le long de l'axe longitudinal entourant de manière étanche l'anneau central et l'anneau de synchronisation. Les rainures rectilignes et hélicoïdales de guidage du mécanisme de calage sont avantageusement formées dans un fond dudit boîtier. Le boîtier étanche peut comporter des tubes reliant de manière étanche les faces extérieures des parois longitudinales dudit boîtier, avantageusement l'une des extrémités des tubes étant plus proches de l'axe longitudinal que l'autre extrémité. Ces tubes servent au retour de l'huile.
La présente invention a également pour objet une turbomachine pour aéronef comportant un système d'hélices contrarotatives selon la présente invention. BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à l'aide de la description qui va suivre et des dessins sur lesquels :
- la figure 1 est une vue en perspective d'une turbomachine à hélices contrarotatives à laquelle s'applique la présente invention,
- la figure 2A représente une vue en coupe longitudinale partielle de la turbomachine de la figure 1 au niveau du mécanisme de calage variable selon la présente invention dans deux positions de calage différentes,
- la figure 2B représente une vue partielle en perspective du système d'hélices contrarotatives selon la présente invention,
- la figure 3 représente une vue en perspective isolée du carter reliées aux pales de l'hélice du mécanisme de la figure 2A,
- la figure 4 est une représentation de l'ensemble représenté sur la figure 3 de laquelle a été retiré un carter soutenant l'hélice,
- la figure 5 représente une vue de l'ensemble représenté sur la figure 4 à partir d'un point radialement extérieur, les viroles et les bras de raccord ayant été ajoutés,
- la figure 6 représente une vue agrandie de la figure 5 montrant un exemple de réalisation de moyens pour transformer le mouvement de translation de la ferrure en mouvement de rotation des pales,
- la figure 7 représente une vue de détail de la figure 2 au niveau de l'extrémité radialement intérieur des bras radiaux de la ferrure du mécanisme selon la présente invention dans deux positions de calage,
- la figure 8 représente les deux positions extrêmes d'un bras radial de la ferrure dans un bras de raccordement,
- les figures 9A à 9D sont des représentations schématiques de différentes positions angulaires pouvant être prises par une pale et celles de sa biellette associée.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Sur la figure 1, on peut voir une turbomachine, du type à « open rotor », équipée d'un système d'hélices contrarotatives selon un mode de réalisation préféré de la présente invention.
Sur les figures, la direction A correspond à la direction longitudinale ou direction axiale, parallèle à l'axe longitudinal X de la turbomachine. La direction B correspond, quant à elle, à la direction radiale de la turbomachine. De plus, la flèche 4 schématise la direction d'avancement de l'aéronef sous l'action de la poussée de la turbomachine 1, cette direction d'avancement étant contraire au sens principal d'écoulement des gaz au sein de la turbomachine. Les termes « avant »/« amont », « arrière »/« aval » utilisés dans la suite de la description sont à considérer par rapport à ladite direction d'avancement 4.
Nous allons décrire, de manière préliminaire, un exemple de structure générale d'une turbomachine à systèmes d'hélices contrarotatives , en particulier la partie puissance de la turbomachine qui n'est pas visible sur les dessins. Cette description n'est en aucun cas limitative et toute turbomachine à système d'hélices contrarotatives comportant une partie puissance autre ne sort pas du cadre de la présente invention .
La turbomachine présente un axe longitudinal X.
En partie avant, la turbomachine présente une entrée d'air 6 se poursuivant vers l'arrière par une nacelle 8, celle-ci comportant globalement une peau extérieure 10 et une peau intérieure 12, toutes les deux centrées sur l'axe X et décalées radialement l'une de l'autre.
La peau intérieure 12 forme carter radial externe pour un générateur de gaz, comprenant de façon classique, de l'avant vers l'arrière, un compresseur basse pression, un compresseur haute pression, une chambre de combustion, une turbine haute pression et une turbine de pression intermédiaire. Le compresseur basse pression et la turbine sont reliés mécaniquement par un arbre, formant un corps de pression faible pression, tandis que le compresseur haute pression et la turbine sont reliés mécaniquement par un arbre, formant un corps de pression plus élevée. Par conséquent, le générateur de gaz présente de préférence une conception classique, dite à double corps.
En aval de la turbine de pression intermédiaire (non visible) , se trouve un système d'hélices contrarotatives 14. Ce système comprend une turbine libre de puissance (non visible) , formant turbine basse pression. Elle comporte un rotor constituant la partie interne de la turbine, ainsi qu'un stator constituant la partie externe de cette turbine, qui est reliée fixement à un ensemble de carter fixe de ce système d'hélices, centré sur l'axe longitudinal X. Ce stator est de façon connue destiné à être solidaire des autres carters de la turbomachine . A cet égard, il est indiqué que le système d'hélices est de préférence conçu de sorte que les hélices soient dépourvues de carénage radial extérieur les entourant, comme visible sur la figure 1.
En aval de la turbine, le système d'hélice, représenté en coupe sur la figure 2A, comporte une première hélice 16 ou hélice amont, portant les pales 16a. De manière analogue, le système comprend une seconde hélice 18 ou hélice aval, portant des pales 18a. Ainsi, les hélices 16, 18 sont décalées l'une de l'autre selon la direction 4.
Les deux hélices 16, 18 sont destinées à tourner dans des sens opposés autour de l'axe X sur lequel elles sont centrées, les rotations s' effectuant par rapport au stator restant immobile.
Pour l'entraînement en rotation de ces deux hélices 16, 18, il est prévu un dispositif de transmission mécanique 19 formant réducteur, de type connu par l'homme du métier.
La première hélice 16 comporte un moyeu 20 centré sur l'axe de la turbine et une virole radialement extérieure 22, concentrique au moyeu 20 et délimitant radialement vers l'extérieur une veine annulaire principale 24. La veine principale 24 est également délimitée radialement vers l'intérieur par une virole intermédiaire 25. La première hélice 16 comporte également une pluralité de bras de raccord 26 répartis angulairement de manière régulière autour du moyeu 20. Les bras de raccord 26 forment sensiblement une étoile. La disposition des bras de raccord 26 est visible sur la figure 2B.
Selon la présente invention, les bras de raccord 26 sont creux.
Dans l'exemple représenté, les bras de raccord 26 ne sont pas perpendiculaires à l'axe longitudinal X mais sont inclinés par rapport à l'axe vers l'amont. Nous expliquerons l'avantage d'une telle inclinaison dans la suite de la description. Cependant, il est à noter qu'un système d'hélices contrarotatives comportant des bras de raccord perpendiculaires à l'axe longitudinal X ne sort pas du cadre de la présente invention.
Sur la figure 3, on peut voir le premier rotor 16 isolé avec le mécanisme de calage selon 1 ' invention .
Chaque pale 16a est montée articulée autour d'un axe Y de direction radiale. Chaque pale a un axe de rotation distinct, cependant à des fins de simplicité nous désignerons ces axes par « l'axe radial Y ». Chaque pale 16a comporte un pied 16b reçu à pivotement dans un anneau de rétention 28 située radialement à l'extérieur de la virole radialement extérieure 22, l'anneau de rétention est visible sur la figure 2A et a été omis sur la figure 3. Dans l'exemple représenté, le pied 16b de la pale 16a se situe à l'aplomb d'une extrémité radialement extérieure 26a du bras de raccord 26. L'anneau de rétention est destiné à résister à l'effort centrifuge exercé par les pales 16a. Un palier à roulement 29 est prévu dans l'anneau de rétention 28 pour assurer le guidage en rotation du pied de pale 16b.
La deuxième hélice 18 comporte un moyeu 30 centré sur l'axe X du moteur et une virole radialement extérieure 32, concentrique au moyeu 30 et délimitant radialement vers l'extérieur la veine annulaire principale 24. La deuxième hélice 18 comporte également une pluralité de bras de raccord 36 répartis angulairement de manière régulière autour du moyeu 30.
Dans l'exemple représenté, les bras de raccord 36 sont également inclinés par rapport à l'axe longitudinal X, vers l'aval. Nous expliquerons l'avantage d'une telle inclinaison dans la suite de la description. Cependant, comme pour la première hélice il est à noter qu'un système d'hélices contrarotatives comportant des bras de raccord 36 perpendiculaires à l'axe longitudinal X ne sort pas du cadre de la présente invention.
Chaque pale 18a est montée articulée autour d'un axe s' étendant radialement. Chaque pale 18a comporte un pied 18b reçu à pivotement dans un anneau de rétention 40 située radialement à l'extérieur de la virole radialement extérieure 32. Dans l'exemple représenté, le pied 18b de la pale 18a se situe à l'aplomb d'une extrémité radialement extérieure 36a du bras de raccord 36. Un palier à roulement 39 est prévu dans l'anneau de rétention 40 pour assurer le guidage en rotation du pied de pale 18b. La disposition des bras de raccord 36 sont visibles sur la figure 2B.
Le système d'hélices contrarotatives 14 selon la présente invention comporte également un premier mécanisme de calage variable 42 pour le calage du pas des pales 16a de la première hélice 16 et un deuxième mécanisme de calage variable 44pour le calage du pas des pales 18a de la deuxième hélice 18.
Dans la description qui va suivre, les deux mécanismes de calage 42, 44 sont avantageusement similaires. Cependant un système d'hélices contrarotatives comportant un mécanisme selon l'invention et un autre mécanisme, par exemple connu de l'état de la technique, ne sort pas du cadre de la présente invention.
A des fins de simplicité, nous décrirons en détail le premier mécanisme de calage 42, la description s' appliquant au deuxième mécanisme de calage 44.
Le premier mécanisme de calage 42 comporte un actionneur linéaire 46, une ferrure 48 reliant l'actionneur et le pied 16b d'une ou plusieurs pales 16a.
Dans l'exemple représenté, l'actionneur linéaire 46 est formé par un vérin hydraulique situé sur l'axe longitudinal X.
La ferrure 48, particulièrement visible sur la figure 4, comporte un anneau central 50, un anneau extérieur 52 concentrique à l'anneau central 50 et des bras radiaux 54 s' étendant entre l'anneau central 50 et l'anneau extérieur 52. Les bras radiaux 54 sont rigidement fixés sur l'anneau central 50 et sur l'anneau extérieur 52 par leurs extrémités radialement intérieures 54a et radialement extérieures 54b respectivement, par exemple par soudure ou par boulonnage, ce qui facilite les opérations de montage et démontage.
L'anneau central 50 est disposé entre le moyeu 20 et la virole intermédiaire 25, l'anneau extérieur est situé à l'extérieur de la virole radialement extérieure 22, et les bras radiaux 54 s'étendent à l'intérieur des bras de raccord creux 26. L'extrémité radialement extérieure 54b de chaque bras radial 54 débouchant du bras de raccord 26 en éloignement de l'axe longitudinal X, et l'extrémité radialement intérieure 54b de chaque bras radial 54 débouchant du bras de raccord 26 vers l'axe longitudinal X.
Les bras radiaux 54 de la ferrure traversent le flux gazeux, les bras de raccord formant des carénages. L'impact sur le flux de la présence des bras radiaux 54 dans la veine 24 est alors réduit.
Selon la présente invention, l'anneau central 50, les bras radiaux 54 et l'anneau extérieur 52 sont disposés de sorte à former une structure rigide en tronc de cône, cette forme procure une rigidité accrue à la ferrure 48. Dans l'exemple représenté, les bras de raccords 24 étant inclinés vers l'amont et formant eux-mêmes une forme tronconique, la conicité de la ferrure 48 et celle de la structure formée par les bras radiaux 54 ont la même orientation.
Il est rappelé qu'une telle ferrure tronconique mobile dans des bras de raccord orientés perpendiculairement à l'axe longitudinal X ne sort pas du cadre de la présente invention.
De manière particulièrement avantageuse, l'anneau extérieur 52 est composé de segments droits 52a s' étendant entre deux extrémités radialement extérieures 54b de bras radiaux 54. Cette forme polygonale permet d'augmenter encore la rigidité de la ferrure 48.
Dans l'exemple représenté, les segments droits 52a de l'anneau extérieur 52 sont d'un seul tenant formés, par exemple par pliage d'une bande en métal ou en alliage métallique. En outre, les extrémités radialement extérieures 54b des bras radiaux 54 comportent une encoche recevant la face radialement intérieure d'une partie de raccord 52b entre deux segments droits 52a, comme on peut le voir sur la figure 6.
De manière avantageuse, la ferrure 48 comporte autant de bras radiaux 54 que de pales et de bras de raccord 26. Ainsi, chaque bras radial 54 de la ferrure 48 est destiné à déplacer en rotation d'une pale 16a. Chaque pale présente une même rigidité en torsion, on obtient ainsi une bonne synchronisation entre les mouvements de toutes les pales.
Comme on peut le voir sur la figure 5, les cavités 26a de bras de raccord creux 26 ont une section de forme sensiblement elliptique. La plus grande dimension de la section de chaque cavité est choisie de telle sorte que le déplacement des bras radiaux 54 permette à l'angle de calage des pales 16a de varier d'environ de 120°.
Le premier mécanisme de calage variable
42comporte également des moyens 56 pour convertir le mouvement de translation de la ferrure 48 en mouvement de rotation des pales 16a autour de leur axe radial Y. Un exemple de tels moyens de conversion 56 est visible sur les figures 5 et 6. Les moyens 56 comportent une biellette 58 connectée par une première extrémité longitudinale 58.1 à l'extrémité d'un bras radial 54 au moyen d'une liaison rotule 60 et par une deuxième extrémité longitudinale 58.2 au pied 16b d'une pale 16a par une liaison pivot 62 d'axe Y' sensiblement parallèle à l'axe de rotation Y de la pale 16a et distinct de celui-ci. Dans l'exemple représenté, un doigt 64 fixé sous le pied 16b est reçu dans un alésage de la biellette 58 et forme l'axe du pivot. Le doigt 64 est excentré par rapport à l'axe Y.
Il est bien entendu que tout autre moyen de conversion du mouvement de translation en mouvement de rotation peut convenir. Par exemple, il peut s'agir d'une rainure formée dans l'anneau extérieur et dans laquelle serait reçu le doigt 64. Le mécanisme de calage du pas ou de réglage de l'angle d'orientation des pales joue un rôle critique dans la régulation de la vitesse de rotation des hélices. De ce fait, des précautions sont prises pour éviter une condition de survitesse des hélices en cas de défaillance d'un des composants du mécanisme de changement de pas. L'effort centrifuge et la distribution de la masse de la pale conduisent à un couple qui a tendance à orienter la pale perpendiculairement à l'axe longitudinal X désigné par « un pas fin » par l'homme du métier. Dans ce cas, l'hélice est auto-entraînée par la vitesse de l'aéronef ce qui pourrait conduire à une condition de survitesse de rotation.
Pour éviter cette condition, chaque pale 16a est avantageusement dotée d'une masselotte 66 comme on peut le voir sur les figures 3 et 5, qui génère un couple qui s'oppose au couple inertiel de la pale 16a et qui tend à ramener la pale 16a vers la position « drapeau » c'est à dire parallèlement à l'axe longitudinal X, et dans laquelle elle participe au ralentissement de l'hélice. Dans l'exemple représenté, la masselotte 66 a sensiblement la forme d'une pièce délimitée entre deux portions d'arc concentriques.
La masselotte 66 est fixée au pied 16b de la pale 16a radialement à l'extérieur de celui-ci par rapport à l'axe Y au moyen d'un bras radial 68 par rapport à l'axe Y.
En cas de défaillance du mécanisme de calage pour une ou plusieurs pales, le ou les pales concernées 16a se mettent naturellement « en drapeau », ce qui met l'hélice 16 dans une bonne condition pour arrêter le moteur en toute sécurité. Tout autre système qui génère un couple pour ramener les pales vers la position « drapeau » est également applicable.
Dans l'exemple représenté, qui est un exemple particulièrement avantageux de l'invention, le système d'hélice contrarotative comporte des bras de raccord 26 orientés de telle sorte qu'ils sont alignés avec l'écoulement qui résulte de la rotation de l'hélice 16 et le flux qui sort axialement du moteur. Cette inclinaison permet de réduire la traînée induite par leur présence dans le flux gazeux. A cet effet, l'axe XI sur lequel est alignée la direction de plus grande longueur de la section de chaque bras de raccord 26 n'est pas parallèle à l'axe du moteur, mais est incliné par rapport à celui-ci comme on peut le voir sur la figure 8.
Le mécanisme de calage 42 selon la présente invention comporte alors, pour cet exemple avantageux, des moyens de guidage 70, représentés sur la figure 7, permettant aux bras radiaux 54 de la ferrure de suivre cette inclinaison des bras de raccord 26.
Les moyens de guidage sont particulièrement visibles sur la vue agrandie représentée sur la figure 7. La ferrure 48, assurant le calage du pas des pales, n'est alors pas seulement déplacée en translation, mais est également simultanément déplacée en rotation, ayant ainsi un mouvement hélicoïdal autour de l'axe longitudinal X.
Dans l'exemple représenté sur la figure 7, les moyens de guidage 70 comportent un anneau de synchronisation 72 et des biellettes 74 articulées, d'une part sur l'anneau de synchronisation 72, et d'autre part sur l'anneau central 50. En outre, les moyens de guidage 70 comportent au moins une rainure rectiligne 76 parallèle à l'axe X et au moins une rainure hélicoïdale 78. Les rainures 76, 78 sont par exemple réalisées, de manière particulièrement avantageuse, dans le fond d'un boîtier étanche 80 que nous décrirons en détail dans la suite de la description .
Il est bien entendu que toute autre surface pourrait convenir pour réaliser les rainures de guidage 76, 78.
Le pas de la rainure hélicoïdale est tel qu'il correspond à l'inclinaison de l'axe XI de la section du bras de raccord par rapport à l'axe longitudinal X.
De manière avantageuse, les moyens de guidage 70 comportent une pluralité de rainures rectilignes 76 et de rainures hélicoïdales 78 intercalées, réparties angulairement de manière homogène dans le fond du boîtier 80 autour de l'axe longitudinal X. La pluralité de rainures 76, 78 assure un guidage uniforme de l'anneau de rétention et de l'anneau central 50 autour de l'axe longitudinal X.
Comme on peut le voir sur la figure 7, l'anneau de synchronisation 72 est directement fixé à l'extrémité d'une pluralité de tiges de renvoi mobiles en translation 82, elles-mêmes mises en mouvement par l'actionneur linéaire 46. L'anneau de synchronisation 72 est guidé en translation par la rainure rectiligne 76, pour cela il coulisse dans la rainure rectiligne 76.
L'anneau central 50 est mis en mouvement par l'anneau de synchronisation via les biellettes 74 et coulisse dans les rainures hélicoïdales 78, la ferrure a donc un mouvement hélicoïdal autour de l'axe X, ainsi que les bras radiaux 54 qui peuvent alors suivre l'inclinaison des bras de raccord creux 24. Sur la figure 8, on peut voir l'inclinaison d'un bras de raccord par rapport à l'axe du moteur X et les positions extrêmes prises par un bras radial 54. On peut voir que le bras radial 54 suit l'inclinaison du bras de raccord.
Il est bien entendu que l'on pourrait réaliser les rainures dans l'anneau central 50.
A titre d'exemple, l'angle a entre l'axe X et l'axe XI selon la plus grande longueur de la section d'un bras de raccord est de l'ordre de 8°.
De manière avantageuse, il est prévu un boîtier étanche 80, représenté sur la figure 7, autour des extrémités radialement intérieures des bras radiaux 54 de sorte à éviter des fuites d'huile au niveau des bras de raccord. Par exemple, ce boîtier 80 a une forme annulaire et s'étend axialement de sorte à confiner les extrémités radialement intérieures 54a de tous les bras radiaux 54 et l'anneau central 50 sur toute leur course .
Les tiges de renvoi 82 traversent une paroi longitudinale du boîtier 80 de manière étanche, par exemple grâce à la présence de joints toriques.
Le boîtier 80 permet avantageusement de ne pas recourir à des joints dynamiques qui devraient être situés autour des bras radiaux, et dont l'efficacité dans le temps peut diminuer. Grâce au boîtier 80, l'étanchéité est réalisée de manière statique, seule l'étanchéité dynamique relativement simple des tiges de renvoi 82 est à assurer.
En outre, de manière avantageuse, le boîtier 80 est traversé axialement par des tubes 83 reliant de manière étanche les deux faces extérieures des deux parois longitudinales 80a, 80b du boîtier, permettant le retour de l'huile qui a été centrifugée sur la paroi externe de l'enceinte sans que celle-ci pénètre à l'intérieur du boîtier. L'enceinte est formée par le volume délimité par la double paroi représentée sur la figure 2A. Les tubes longitudinaux 83 sont de préférence inclinés, leur extrémité aval étant plus proche de l'axe X que leur extrémité amont.
Nous allons maintenant décrire
1 ' actionnement des deux mécanismes de calage 42, 44.
Comme mentionné précédemment, de préférence les deux mécanismes 42, 44 sont de structures similaires conformes à la présente invention. Par conséquent, chaque mécanisme 42, 44 comporte un actionneur linéaire.
De manière avantageuse, comme cela est représenté sur la figure 2A, on utilise un seul actionneur 46 pour les deux mécanismes 42, 44 formé par un vérin double d'axe X.
Le vérin de commande 46 est situé avantageusement sur l'axe longitudinal X, ce qui permet de disposer de tous les joints tournant à haute pression sur un faible diamètre, l'étanchéité est alors plus facile à réaliser, les risques de fuites au niveau des joints sont réduits et la durée de vie des joints augmentée .
Il est rappelé que les hélices sont entraînées en rotation dans des sens opposés, et que chaque mécanisme de calage 42, 44 tourne à la même vitesse que son hélice 16, 18. Dans l'exemple représenté, le vérin double 46 tourne à la vitesse de la deuxième hélice 18. Le vérin double comporte une première tige de vérin 84 pour actionner le premier mécanisme de calage 42 de la première hélice 16 et une deuxième tige de vérin 86 concentrique à la première tige de vérin 84, pour actionner le deuxième mécanisme de calage 44 de la deuxième hélice 18.
Puisque le vérin double 46 tourne à la même vitesse que la deuxième hélice 18, 1 ' actionnement du deuxième mécanisme 44 est obtenu par une connexion quasi directe entre la deuxième tige de vérin 86 et la tige de renvoi reliée à l'anneau de synchronisation du deuxième mécanisme de calage, seul un bras de renvoi 90 est utilisé pour connecter la deuxième tige de vérin 86 à la tige reliée à l'anneau de synchronisation.
En ce qui concerne le premier mécanisme de calage 42, celui-ci ne tourne pas dans le même sens que la deuxième tige 86. Sont alors prévus des paliers à roulements 92 pour transmettre la translation de la première tige 86 du repère tournant du vérin double 46 et de la deuxième hélice 18 à celui de la première hélice 16. Les paliers à roulements 92 sont immobilisés en rotation dans le repère du vérin double par exemple par des cannelures 94.
Sur les figures 9A à 9D, on peut voir différentes positions prises par une pale 16a et les positions prises par la biellette associée.
Sur la figure 9A, la pale 16a est en position « drapeau ». Sur la figure 9B, la pale 16a est dans une position « ralenti ».
Sur la figure 9C, la pale 16a est en position « décollage ».
De manière particulièrement avantageuse, l'axe de la biellette 58 est en position de décollage de l'aéronef sensiblement parallèle à l'axe Xldu profil du bras de rotor, comme cela est visible sur la figure 9C, ce qui permet d'éviter aux bras radiaux 54 de travailler en flexion dans la direction de leur plus faible inertie lors des décollages lors desquels les efforts sont maximaux.
Sur la figure 9D, la pale 16a est en position « reverse » après l'atterrissage pour générer une contre-poussée afin de freiner l'aéronef.
Nous allons maintenant expliquer le fonctionnement du premier mécanisme de calage 42 de l'hélice 16 sur la base de la figure 2A, l'explication s' appliquant au deuxième mécanisme de calage 44.
Lorsqu'une modification de l'orientation angulaire des pales 16a de la première hélice 16 est désirée, le vérin hydraulique est actionné, L' actionnement du vérin 46 provoque le déplacement en translation de la première tige de vérin 84 ; son sens de déplacement et l'amplitude de déplacement dépendent du sens de rotation des pales souhaité et de l'angle de rotation souhaité. La tige de vérin 84 provoque le déplacement en translation des tiges 82 via les paliers à roulements 92. Le coulissement des tiges 82 provoque le déplacement de l'anneau de synchronisation 72 qui coulisse également axialement, guidé par les rainures rectilignes 76, comme cela est représenté sur la figure 7.
Via les biellettes 74, l'anneau central 50 est également déplacé le long de l'axe X et autour de l'axe X du fait de son guidage par les rainures hélicoïdales 78. L'anneau central 50 a alors un mouvement hélicoïdal, ainsi que les bras radiaux 54 et l'anneau extérieur 52 qui forme la ferrure 48. Le déplacement en translation des bras radiaux 54 provoque, via les biellettes 58, la rotation des pieds 16b des pales 16a de l'hélice 16 autour de leur axe Y.
Toutes les pales 16a de l'hélice 16 pivotent simultanément et dans le même sens de sorte qu'à la fin du réglage les pales 16a aient la même orientation angulaire par rapport à l'axe X.
En cas de défaillance du mécanisme de calage pour toutes les pales ou pour certaines pales seulement, par exemple par rupture de certaines des biellettes 58, les masselottes 66 (visibles sur les figures 3 et 5) provoquent automatiquement la mise en position « drapeau » des pales concernées.
Comme cela est représenté sur la figure 2A, le vérin 46 provoque simultanément le calage des pales 18a de la deuxième hélice 18 selon un mode opératoire similaire.
On peut envisager que l'orientation des pales de la première hélice soit différente de celle de la deuxième hélice, ce qui permet par exemple d'accélérer ou décélérer une hélice par rapport à l'autre et ainsi de réguler le rapport de vitesse de rotation entre les hélices. Comme cela a été décrit précédemment, les bras de raccord sont avantageusement inclinés par rapport à l'axe longitudinal X dans la direction amont pour ceux s' étendant radialement entre le moyeu 22 et la virole radialement extérieure de la première hélice 16 et vers l'aval pour ceux s' étendant radialement entre le moyeu 32 et la virole radialement extérieure 34 de la deuxième hélice 18. Cette inclinaison permet aux bras de raccord 26 de se rapprocher du carter disposé entre la turbine libre de puissance et le système d'hélices, en allant radialement vers l'extérieur, ce qui permet globalement de rapprocher les pales 16a du carter. Il en résulte une diminution de la longueur du système d'hélices dans la direction axiale. Des gains en termes de masse et d'encombrement sont ainsi obtenus.
Comme on peut le voir sur la figure 2A, l'angle entre les bras et l'axe longitudinal peut être compris entre 20° et 50°, mais toute autre orientation peut être envisagée, les inclinaisons choisies pour les bras de raccord dépendant de l'écartement désiré entre les pales 16a, 18a selon la direction longitudinale, notamment pour répondre aux contraintes acoustiques. En variante, on peut envisager d'incliner les bras de raccord 26 vers l'amont au même titre que les bras de raccord 36.
Grâce au mécanisme selon la présente invention, le nombre de pièces est réduit par rapport aux mécanismes de l'art antérieur, améliorant la fiabilité du mécanisme et permettant de réduire le coût de fabrication du mécanisme. La rigidité augmentée de la ferrure améliore la précision avec laquelle l'angle de calage de la pale d'hélice peut être réglé. Par ailleurs, les ferrures sont fortement ajourées pour faire passer le flux de gaz à l'intérieur du moteur et provoquent ainsi peu d'obturation de ce flux. Enfin, grâce au mécanisme de calage selon l'invention, on obtient un calage homogène de l'ensemble des pales du fait de l'utilisation de pièces de révolution pour synchroniser les biellettes.
L'invention est applicable à toutes les turbomachines , en particulier celles dites à «open rotor ». Dans ce dernier cas, l'invention s'applique que le système d'hélices soit disposé en amont ou en aval du générateur de gaz. Dans chacun de ces deux cas, au sein du système d'hélices, il peut être envisagé de placer la turbine de puissance en amont ou en aval des hélices contrarotatives.
La ferrure est par exemple réalisée en titane .
Dans un autre mode de réalisation, on pourrait envisager que les bras radiaux des mécanismes de calage ne soient pas disposés dans les bras de raccord mais à l'extérieur de ceux-ci.

Claims

REVENDICATIONS
1. Mécanisme de calage (42, 44) du pas des pales d'au moins une hélice (16, 18) d'un système d'hélices contrarotatives (14) pour turbomachine, chaque pale (16a, 18a) étant mobile autour d'un axe radial (Y) , ledit mécanisme comportant un actionneur linéaire (46), des moyens (56) pour transformer le déplacement délivré par l' actionneur linéaire (46) en rotation de chacune desdites pales (16a, 18a) de manière synchronisée autour de leur axe radial (Y) , lesdits moyens comportant une ferrure (48) d'axe longitudinal (X) formé d'un anneau central (50), d'un anneau extérieur (52) et d'une pluralité de bras radiaux (54) rigidement reliés à l'anneau central (50) et à l'anneau extérieur (52), lesdits bras radiaux (54) traversant une veine annulaire principale (24) du système d'hélices contrarotatives, ledit anneau central 50) étant destiné à recevoir 1 ' actionnement de 1' actionneur linéaire (46), ledit anneau central (50) et ledit anneau extérieur (52) étant disposés dans deux plans distincts, orthogonaux à l'axe longitudinal (X) , de telle sorte que lesdits bras radiaux (54) soient inclinés par rapport à l'axe longitudinal (X), la ferrure (48) ayant alors la forme d'un tronc de cône ».
2. Mécanisme de calage selon la revendication 1, dans lequel l'anneau extérieur (52) a une forme polygonale.
3. Mécanisme de calage selon la revendication 2, dans lequel l'anneau extérieur (52) est formé d'une pluralité de segments droits (52a) s' étendant chacun entre deux extrémités radialement extérieures (54b) de deux bras radiaux (54) consécutifs .
4. Mécanisme de calage selon l'une des revendications 1 à 3, dans lequel les moyens (56) pour transformer le déplacement de l'actionneur linéaire (46) en rotation de chacune desdites pales (16a, 18a) comportent des biellettes (58) articulées entre la ferrure (48) et chaque pale (16a), l'articulation entre la biellette (58) et la pale (16a) étant une liaison pivot d'axe (Yl) parallèle à l'axe radial (Y) de rotation de ladite pale (16a), distinct dudit axe radial (Y) .
5. Système d'hélices contrarotatives (14) pour turbomachine d'aéronef, comprenant :
- une turbine libre de puissance,
- une première hélice (16) et une seconde hélice (18) contrarotatives destinées à être mises en rotation autour d'un axe longitudinal (X) du système d'hélices, ladite première hélice (16) étant située dans une direction donnée par rapport à ladite seconde hélice (16), chacune des première et seconde hélices (16, 18) comprenant un moyeu (20, 30) centré sur l'axe longitudinal (X), une virole extérieure (22, 32) lui étant disposée concentriquement et participant à la délimitation radiale vers l'extérieur d'une veine annulaire principale (24), ainsi que des bras de raccord (26, 36) reliant ladite virole extérieure audit moyeu,
- un dispositif de transmission mécanique entraîné par ladite turbine libre de puissance et entraînant lesdites première et seconde hélices (16, 18),
- un premier mécanisme de calage (42) de pas des pales de la première turbine (16) et un deuxième mécanisme de calage (44) de pas des pales de la deuxième turbine (18), au moins l'un des premier et deuxième mécanisme (42, 44) de calage étant un mécanisme selon l'une des revendication précédentes.
6. Système d'hélices contrarotatives (14) selon la revendication 5, dans lequel les bras de raccord (26, 36) sont creux et les bras radiaux (54) sont logés dans les bras de raccord (26, 36) .
7. Système d'hélices contrarotatives (14) selon la revendication 6, dans lequel la ferrure (48) comporte autant de bras radiaux (54) que de pales (16a, 18a), chaque bras radial (54) étant reçu dans un bras de raccord (26, 36) .
8. Système d'hélices contrarotatives (14) selon la revendication 7, dans lequel les bras de raccord (26, 36) sont contenus dans des plans ne contenant pas l'axe longitudinal (X) de telle sorte que les bras de raccord (26, 36) soient alignés avec l'écoulement du gaz dans la veine d'écoulement principale (24), le mécanisme de calage (42, 44) comportant des moyens de guidage (70) de la ferrure (48) de sorte qu'elle ait un mouvement hélicoïdal autour de l'axe longitudinal (X) .
9. Système d'hélices contrarotatives (14) selon la revendication 8, dans lequel le mécanisme (42, 44) comporte un anneau de synchronisation (72) relié à l'anneau intérieur (50) de la ferrure par une pluralité de biellettes (74) et les moyens de guidage (70) comportent une pluralité de rainures rectilignes (76) parallèles à l'axe longitudinal (X) pour guider l'anneau de synchronisation (72) et une pluralité de rainures hélicoïdales (78) pour guider l'anneau central (50) .
10. Système d'hélices contrarotatives (14) selon l'une des revendications 5 à 9, dans lequel les bras de raccord (26) de la première hélice (16) et les bras de raccord (36) de la deuxième hélice (18) s'étendent radialement dans des plans contenant l'axe longitudinal (X) , dans des directions inclinées par rapport à l'axe longitudinal (X) .
11. Système d'hélices contrarotatives (14) selon l'une des revendications 5 à 10 en combinaison avec les revendications 4 et 8, dans lequel, au décollage, les biellettes (58) des moyens de conversion du mouvement de translation en mouvement de rotation sont contenues sensiblement dans le plan des bras de raccord (26, 36) ne contenant pas l'axe longitudinal (X) ·
12. Système d'hélices contrarotatives (14) selon l'une des revendications 5 à 11, dans lequel les premier (42) et deuxième (44) mécanismes de calage sont selon l'une des revendications 1 à 4, comportent un actionneur linéaire commun (46), ledit actionneur (46) tournant à la même vitesse que l'une des hélices (16, 18), la transmission de 1 ' actionnement linéaire au mécanisme de calage (42, 44) de l'autre hélice (18, 16) est réalisée au moyen de paliers à roulements (92) .
13. Système d'hélices contrarotatives (14) selon l'une des revendications 5 à 12 en combinaison avec la revendication 9, comportant un boitier étanche (80) de forme annulaire, fixe le long de l'axe longitudinal (X) entourant de manière étanche l'anneau central (50) et l'anneau de synchronisation (72).
14. Système d'hélices contrarotatives (14) selon la revendication 13, dans lequel les rainures rectilignes (76) et hélicoïdales (78) sont formées dans un fond dudit boîtier (80) .
15. Système d'hélices contrarotatives (14) selon la revendication 13 ou 14, comportant des tubes (83) reliant de manière étanche les faces extérieures des parois longitudinales (80a, 80b) dudit boîtier (80), avantageusement l'une des extrémités des tubes (83) étant plus proches de l'axe longitudinal que l'autre extrémité .
16. Turbomachine pour aéronef comportant un système d'hélices contrarotatives (14) selon l'une des revendications 5 à 15.
PCT/EP2011/053866 2010-03-15 2011-03-15 Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme WO2011113821A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/635,048 US9227723B2 (en) 2010-03-15 2011-03-15 Mechanism for variable adjustment of blades for a system of contra-rotating propellers, and a system of contra-rotating propellers comprising at least one such mechanism
GB1216378.8A GB2490852B (en) 2010-03-15 2011-03-15 Mechanism for variable adjustment of blades for a system of contrarotating propellers and system of contrarotating fans comprising at least one such mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051829 2010-03-15
FR1051829A FR2957329B1 (fr) 2010-03-15 2010-03-15 Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme

Publications (1)

Publication Number Publication Date
WO2011113821A1 true WO2011113821A1 (fr) 2011-09-22

Family

ID=43034619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053866 WO2011113821A1 (fr) 2010-03-15 2011-03-15 Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme

Country Status (4)

Country Link
US (1) US9227723B2 (fr)
FR (1) FR2957329B1 (fr)
GB (1) GB2490852B (fr)
WO (1) WO2011113821A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377695A (zh) * 2013-06-17 2016-03-02 斯内克马公司 球冠形状的空气螺旋桨叶片枢轴

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962774B1 (ko) * 2009-11-09 2010-06-10 강현문 풍력발전장치
FR2979162B1 (fr) * 2011-08-17 2018-04-27 Safran Aircraft Engines Procede de determination des performances d'au moins une helice d'une turbomachine
FR2996589A1 (fr) * 2012-10-10 2014-04-11 Snecma Pivot de pied de pale comportant des moyens de refroidissement
US9765624B2 (en) 2012-10-10 2017-09-19 Snecma Propeller comprising a counterweight system provided with an air discharge channel
FR2996587A1 (fr) * 2012-10-10 2014-04-11 Snecma Helice comportant un systeme de contrepoids pourvu d'un canal d'ecoulement d'air
FR3001264B1 (fr) * 2013-01-18 2017-03-17 Snecma Systeme pour changer le pas des pales d'une helice.
FR3001498B1 (fr) 2013-01-30 2015-02-27 Snecma Partie fixe de recepteur de turbomachine comprenant un ensemble de maintien en position de servitudes a l'interieur d'un arbre creux fixe
FR3001656B1 (fr) 2013-02-04 2015-06-26 Safran Procede de fabrication ameliore d'un arbre de transmission, de preference pour systeme de boite d'accessoires de turbomachine d'aeronef
FR3002781B1 (fr) * 2013-03-01 2017-06-23 Snecma Aubage a calage variable
FR3005685B1 (fr) * 2013-05-17 2015-06-05 Snecma Pivot de pale d'helice
FR3005684B1 (fr) * 2013-05-17 2015-06-05 Snecma Pivot de pale d'helice
FR3005686B1 (fr) * 2013-05-17 2015-05-22 Snecma Pivot pour pale d'helice de soufflante non carenee
FR3008676B1 (fr) * 2013-07-19 2018-04-20 Safran Aircraft Engines Pivot de pale d'helice aerienne
FR3015570B1 (fr) * 2013-12-19 2016-02-05 Snecma Moyens de support radiaux comprenant un dispositif de decouplage axial entre un carter interne et un carter externe d'helice pour turbomachine a ensemble d'helices contrarotatives non carenees
GB201408103D0 (en) 2014-05-08 2014-06-25 Rolls Royce Plc A system
FR3034465B1 (fr) 2015-04-03 2017-05-05 Snecma Turbomoteur comportant deux flux de ventilation distincts
FR3036093B1 (fr) 2015-05-12 2017-06-02 Snecma Dispositif a bras de levier pour la commande de l'orientation des pales de soufflante d'une turbomachine a soufflante non carenee
FR3046404B1 (fr) * 2016-01-05 2018-02-09 Safran Aircraft Engines Dispositif de commande de l'orientation des pales de soufflante d'un turbopropulseur
FR3055354B1 (fr) * 2016-08-26 2019-08-23 Safran Aircraft Engines Turbomachine comprenant des moyens d'etancheite et procede de montage de la turbomachine correspondant
FR3055350B1 (fr) * 2016-08-26 2020-06-05 Safran Aircraft Engines Roue de turbomachine
EP3366584B1 (fr) * 2017-02-27 2019-04-17 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Dispositif de commande de pas pour un fenestron d'un giravion
US10550338B2 (en) * 2017-09-20 2020-02-04 Uop Llc Process for recovering hydrocracked effluent
CN109533316B (zh) * 2018-11-15 2020-08-14 中国直升机设计研究所 一种可差动变距桨叶及直升机旋翼系统
US11834965B2 (en) 2020-08-25 2023-12-05 General Electric Company Blade dovetail and retention apparatus
CN112646942A (zh) * 2020-12-22 2021-04-13 广西钢铁集团有限公司 一种高炉trt启机并网过程的控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869221A (en) * 1973-02-16 1975-03-04 Mtu Muenchen Gmbh Rotor wheel fan blade adjusting apparatus for turbojet engines and the like
US4657484A (en) * 1984-09-04 1987-04-14 General Electric Company Blade pitch varying means
US4842484A (en) * 1983-08-29 1989-06-27 General Electric Company Blade gearing and pitch changing mechanisms for coaxial counterrotating propellers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946010B1 (fr) * 2009-05-29 2011-06-24 Snecma Dispositif a verin fixe pour la commande des pales de soufflante d'un turbopropulseur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869221A (en) * 1973-02-16 1975-03-04 Mtu Muenchen Gmbh Rotor wheel fan blade adjusting apparatus for turbojet engines and the like
US4842484A (en) * 1983-08-29 1989-06-27 General Electric Company Blade gearing and pitch changing mechanisms for coaxial counterrotating propellers
US4657484A (en) * 1984-09-04 1987-04-14 General Electric Company Blade pitch varying means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377695A (zh) * 2013-06-17 2016-03-02 斯内克马公司 球冠形状的空气螺旋桨叶片枢轴
CN105377695B (zh) * 2013-06-17 2018-01-23 斯内克马公司 球冠形状的空气螺旋桨叶片枢轴

Also Published As

Publication number Publication date
US20130011259A1 (en) 2013-01-10
GB2490852A (en) 2012-11-14
GB201216378D0 (en) 2012-10-31
FR2957329B1 (fr) 2012-08-03
FR2957329A1 (fr) 2011-09-16
US9227723B2 (en) 2016-01-05
GB2490852B (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2011113821A1 (fr) Mecanisme de calage variable de pales pour systeme d'helices contrarotatives et systeme d'helices contrarotatives comportant au moins un tel mecanisme
CA2850702C (fr) Turbomachine a helice(s) pour aeronef avec systeme pour changer le pas de l'helice
EP2435302B1 (fr) Dispositif a verin fixe pour la commande de l'orientation des pales de soufflante d'un turbopropulseur
EP2396525B1 (fr) Système d'hélices contrarotatives à encombrement réduit
WO2012131271A1 (fr) Systeme pour changer le pas d'helices contrarotatives d'un turbomoteur
EP3049327B1 (fr) Dispositif d'alimentation en fluide hydraulique d'un verin et mecanisme de commande de pas des pales d'une helice de turbomoteur comportant le verin
WO2010136686A2 (fr) Dispositif pour la commande de l'orientation des pales de soufflante d'un turbopropulseur
FR2977862A1 (fr) Dispositif de commande de l'orientation des pales de soufflante d'un turbopropulseur
EP3444444A1 (fr) Système d'aubes a calage variable de compresseur pour turbomachine
FR3066558A1 (fr) Module de soufflante a pales a calage variable
FR3036093A1 (fr) Dispositif a bras de levier pour la commande de l'orientation des pales de soufflante d'une turbomachine a soufflante non carenee
EP2619417B1 (fr) Dispositif d'etancheite
EP4073366B1 (fr) Système propulsif aéronautique à faible débit de fuite et rendement propulsif amélioré
EP4380858A1 (fr) Module de soufflante a pales a calage variable
FR3046407A1 (fr) Dispositif a verin fixe pour systeme de commande de l'orientation des pales de soufflante d'une turbomachine
FR3046405A1 (fr) Dispositif de commande de l'orientation des pales de soufflante d'un turbopropulseur
FR3139551A1 (fr) Module de soufflante a pales a calage variable
FR3046406A1 (fr) Dispositif de commande de l'orientation des pales de soufflante d'un turbopropulseur
FR3126017A1 (fr) Module de soufflante a pales a calage variable
FR2965021A1 (fr) Verin hydraulique pour systeme de commande de l'orientation des pales de soufflante d'un turbopropulseur.
WO2024089375A1 (fr) Mecanisme de changement de pas avec dispositif de verrouillage de pas en porte-a-faux
FR3137062A1 (fr) Mecanisme de changement de pas avec dispositif de verrouillage de pas comprenant une vis a rouleaux satellites
WO2023247907A1 (fr) Mécanisme de changement de pas avec dispositif de verrouillage de pas comprenant une vis à rouleaux satellites
FR3139795A1 (fr) Module de soufflante a pales a calage variable
WO2023247906A1 (fr) Mecanisme de changement de pas avec verin entourant un palier de transfert de fluide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11708263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1216378

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110315

WWE Wipo information: entry into national phase

Ref document number: 1216378.8

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13635048

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11708263

Country of ref document: EP

Kind code of ref document: A1