WO2011113120A1 - Usina processadora de resíduos urbanos - Google Patents

Usina processadora de resíduos urbanos Download PDF

Info

Publication number
WO2011113120A1
WO2011113120A1 PCT/BR2010/000292 BR2010000292W WO2011113120A1 WO 2011113120 A1 WO2011113120 A1 WO 2011113120A1 BR 2010000292 W BR2010000292 W BR 2010000292W WO 2011113120 A1 WO2011113120 A1 WO 2011113120A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
water
waste
silo
gas
Prior art date
Application number
PCT/BR2010/000292
Other languages
English (en)
French (fr)
Inventor
Antonio Carlos Nunes Da Silva
Vera Maria Da Rocha Rodrigues
Original Assignee
Antonio Carlos Nunes Da Silva
Vera Maria Da Rocha Rodrigues
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Carlos Nunes Da Silva, Vera Maria Da Rocha Rodrigues filed Critical Antonio Carlos Nunes Da Silva
Publication of WO2011113120A1 publication Critical patent/WO2011113120A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices

Definitions

  • the present invention relates to an urban waste processing plant which aims once and for all to eliminate large concentrations of open-air waste, life-time landfills and other harmful forms of storage or incineration.
  • PI 9608306-9 describes a method and device for the combined treatment of domestic effluent and / or wastewater and biodegradable waste.
  • the treatment method for the liquid phase of the tailings is mechanical treatment (squeegee, sand collector, etc.), primary aerobic treatment (BOD5 and COD removal and nitrification, secondary anaerobic treatment (denitrification, phosphorus removal) and tertiary treatment.
  • the treatment method for the solid phase of the tailings together with the different sludges is primary anaerobic treatment in a hydrolysis device.
  • Document PI 0602209-0 describes a process of simultaneous production of gas and fertilizer from organic compost from urban (domestic and commercial) waste recycling, developed through the following steps: aeration, biodigestion, coercing, drying and gas purification . After receiving the garbage, discharged in a receiving belt, the aeration step. Then begins the digestion (4), with use in batch tank in the absence of oxygen (anaerobic system) where the organic compound turns into methane gas and fertilizer. The part from the biodigesters (dark paste) goes through the process of coercion in which the resulting mass goes through the heating and drying process to eliminate moisture and finally the gas purification, which occurs through the procedure in which methane gas collected in the Biodigestion tanks.
  • PI 8004894 describes a process for the production of energy in the form of methane gas and consequent final disposal of municipal waste. These objectives are achieved in a series of steps, the main one of which is the anaerobic digestion of the cited waste, done under defined and optimized conditions. The process also leads to the formation of a good quality soil conditioner obtained after settling and filtering the digester effluent.
  • Document PI 9303557-8 describes a plant that uses organic waste (solid raw material) for the production of methane gas and fertilizer, the first being as fuel and the second for planting in general by fermentation processing. of this organic waste from households, factories and others, located in urban or rural areas, the waste being previously treated, as in conventional processes, to then be sent to the plant concerned, which employs, in terms of construction, three distinct cells, however, integrated with each other, namely: fermentation accumulator assembly, inside which the waste is processed, which is transported by a conveyor belt placed next to this accumulator, which carries a movable bell in the plane.
  • fermentation accumulator assembly inside which the waste is processed, which is transported by a conveyor belt placed next to this accumulator, which carries a movable bell in the plane.
  • a municipal waste treatment plant which are selected from all kinds of papers, disposable diapers, organic food material, biological material and so on.
  • FIGURES Figure 1 depicts the arrival of garbage trucks along the access ramp at the plant where they will be weighed immediately. Immediately after weighing, the garbage trucks will deposit all types of urban waste from the manure filtration grid (01). from the collection itself, including the leachate that may have already formed in the trucks, which will pass through the Grille and go to the place to receive it. From there, an equipment, preferably a mechanical hand, which is used to place the material into the Receiving Funnel (02), will do so gradually.
  • Figure 2 depicts the first part of the belt (03) that is used to receive the waste, thus starting the work of the pickers, separating and tearing the bags, spreading all kinds of waste.
  • FIG. 3 depicts the continuation of the treadmill (03). This process characterizes the first stage of separation of each type of waste. After separation of this material, the work of collecting the biodegradable material will begin.
  • Figure 4 depicts a belt segment where at this point they separate and receive magnetized plates (04) to separate iron, steel and so on. of the rest of the material that will follow yours. down the conveyor belt, thus continuing the process of separating biological and non-biological material deposited there.
  • Figure 5 depicts the Crusher Silo, Mixer, used to receive the previously separated biological material which is intended to assist in the decomposition process of the material deposited therein using the crusher blades (07) and 50% heated water. by means of copper tubes (06) that bypass it, transforming the containing of the same into pasty mass that will go to another equipment, with gradual control to the next phase.
  • FIG. 6 depicts the Biodigester which is the equipment used to initiate the process of digestion, or rather anaerobic digestion. This process occurs by the decomposition of organic matter, already inside the Biodigestor, by living organisms, that is, anaerobic bacteria.
  • the Biodigestor will also feature spiral-shaped copper pipes (14) for the previously heated water to circulate, keeping it warm and its internal blades (15) to mix the biomass throughout, thus collaborating with the the entire process. Once this is done, the material already processed passes to the Vibratory Dryer (17), used to receive, separate and forward all treated material and slurry.
  • FIG 7 depicts the Solar Heater (9) and Water Reservoir Tank (10), which will be used to heat and reserve, respectively, the water surrounding the Crusher, Mixer Silo ( Figure 5) and the Biodigester ( figure 6).
  • Figure 8 describes the set of reservoirs, which are: Manure Reservoir, used to receive the manure coming from the biodigester (figure 6) and the trucks that bring the garbage and dump it in the Filter Grate (01), coming from own plumbing up to this. When its capacity is at its limit, the material is purged to the Treatment Pool (19) which is used to treat all the slurry that arrives there, as well as rainwater. This liquid will be treated and will become reusable later in the Reusable Water Reservoir, becoming potable water, remaining in the reservoir destined for it, that is, the Drinking Water Reservoir (24).
  • garbage trucks Once the garbage trucks arrive at the plant site, they will be immediately weighed. Soon after weighing, the garbage trucks will deposit in a leaky iron container all kinds of urban waste from the collection itself, including the slurry, where it will have another way (a reservoir for the treatment of it). From there, a mechanical hand will place all the material in the receiving funnel, thus starting the recycling of the material. We emphasize that every area of gathering and selection of all material will be covered.
  • the first part of the waste pickers' work begins to separate each type of waste. On the treadmill will have a magnetized plate. Such process is characterized by separation techniques of each type of waste. After separation of this material, the work of collecting the biodegradable material will begin. Thorough separation of previously separated biodegradable material by directing it to the Crusher and Mixer Silo. If another type of material passes, it will be collected by the pickers to another destination. At this stage the biological material will be introduced into the Mixer and Crusher Silo, where it is required to 50% amount of heated water from the Reservoir, thus becoming a pasty mass, which will soon follow to the biodigester. The process of anaerobic fermentation (biodigestion) in the Biodigester is started, thus obtaining methane gas and fertilizer.
  • the fertilizer After the digestion, the fertilizer will be transported to a Vibratory Dryer and its entire bottom will be leaked so that the slurry on the floor (drains) will be taken to a Reservoir, being concentrated there for later reuse in the Mixing Silo.
  • the water used in the Biodigester and Silo Mixer will have its heating coming from our Solar Heater that will keep it heated in the Reservoir and circulating throughout their internal piping keeping them warm.
  • the leachate leaving the Biodigestor will proceed to the Chorume reservoir meeting the leachate that arrives at the plant while still in the pipeline trucks to this reservoir. When its capacity for such a process is no longer required, it will be purged into a Treatment Pool where this liquid will become reusable later in the Reusable Water Container which will undergo treatment making potable water remaining in the reservoir for it.
  • the gas extracted from the Biodigester will go to the Cylinder (Pressure Vessel) where it will be stored waiting for its potential to be used in thermoelectric, industrial or automotive.
  • Sheds for the storage of recycled material (pet flack, styrofoam flakes, industrial cardboard etc.) and compost (which will be used in agriculture, tile manufacturing, bricks, chipboard etc).
  • thermoelectric thermoelectric
  • industrial and automotive the very energy necessary for the good operation of the plant will be by its own means.
  • the biodigester thus has a copper tube heating system that speeds up the digestion process, which runs on solar or common heater energy.
  • This process of biodigestion will generate besides gas, fertilizer that can be used in agriculture, manufacturing of tiles, bricks, pressed wood among others.
  • the present process for urban waste treatment eliminates the need for any other step, thus receiving the waste "in natura” and thus within a single complex obtaining: Potable water, Fertilizer for (agriculture, brick making, tiles and the like) , Gas (for any purpose) and electric power. All generated through only one biodigester.
  • the mentioned plant has the advantage of its implantation even in urban area.
  • eucalyptus eucalyptus
  • the entire area occupied by the plant will be reforested with eucalyptus (eucalyptus), as it is an easily adaptable plant and has the primary property of dehydrating the soil and will be used as a repellent for flies and other animals. cause of the aroma it exudes.
  • All waste disposal area will be cleaned daily, as well as all trucks that dump all the waste contents. This will prevent clumps of flies and other parasites susceptible to the site.
  • the plant will need a building, where all employees who will work there will be distributed, depending on the professional qualification.
  • This building will include: Board, chemical engineers, biologists, study and meeting rooms and especially the data processing center, because all the body will be computerized; auditorium for lectures on general subjects and especially on the environment.
  • Step # 1 The area to mount it should have in its origin a sharp terrain relief. This incline will be obligatory so that the following phases take place according to the gravitational needs that your equipment needs.
  • Step 3 When emptying its contents in the slurry filtering grille (01), the material will pass through a receiving hopper (02), thereafter, give shall be opened to recycle the material received.
  • Step 4 After the material discharged by a follow primáha belt (03), which is further divided into other 02 tracks (each track the measurement should have a width of 3.00 m). In this phase an electromagnet top plate (04) will be implanted that will immediately separate iron and steel.
  • Step 5 Part non - organic scavenging.
  • the pickers remove materials that may have passed in the front parts such as packaging, paper, plastics and aluminum.
  • the previous conveyor belt will open on two 3.00 m crawler tracks, each one and will have pickers in a space of at least 10 m. In the background, the treadmills are once again becoming one.
  • Step 6 Arrival of the biological material.
  • the treadmill has a small ramp, where it will introduce the material in the Crusher silo (05), (which should contain 50% of water, for the total ton per day collected by the city).
  • Silo this copper tube compound (06) around its walls, which keeps heated water circulation to accelerate the material decomposition process and crusher blades (07) that also accelerate this process.
  • the fertilizer It will not only be used for the agricultural part, but will be used for making bricks, tiles and if possible pressed wood. Part of this fertilizer will be used for the composition of natural areas. For every project, by our way of thinking, should have something destined for nature.
  • thermoelectric The gas produced here has as its primary future purpose the construction of a thermoelectric.
  • Step 7 The process of Biodigestion
  • Biodigesters are closed chambers where organic waste is anaerobically fermented transforming this biomass into fuel gas and fertilizer.
  • biogas produces not only electrical energy but also thermal energy in the form of water or hot air from the heat generated by the combustion process in biogas converted engines / generators.
  • Biodigestion or rather, Anaerobic Biodigestion. This process occurs by the decomposition of organic matter by living organisms - bacteria in the absence of oxygen. In this decomposition organic matter is transformed into CO2, CH4, H2O and BIOMASS, through reactions that comprise four phases, called the methanization process:
  • Hydrolysis As we know, this is where molecules break down by water; In this process, the organic material is converted to lower molecular weight dissolved compounds. Exo enzymes are excreted by fermentative bacteria because the process itself requires this interference. Amino acids are formed through proteins degraded by (poly) peptides. Lipids turn into glycerine and long carbon chain fatty acids (C15 to C17) and carbohydrates are converted to soluble sugars (mono and disaccharides). The rate of hydrolysis, in many cases in practice, may be the limiting step for the entire process of anaerobic digestion.
  • Acidogenesis - soluble products of the first stage are metabolized within the cells of fermentative bacteria.
  • Acidogenic fermentation is performed by a diverse group of bacteria, where the majority is mandatory anaerobic. However, there are optional species that can oxidatively metabolize organic material. This importance is given in anaerobic sewage treatment systems. Optional acidogenic bacteria remove any oxygen present before it becomes toxic to methanogenic bacteria.
  • VFAs short chain volatile fatty acids
  • latic acid long chain volatile fatty acids
  • alcohols organic substances
  • mineral compounds such as NH3. , H2S, CO2, H2, etc.
  • Acetogenesis - Acetogenic bacteria are responsible for the oxidation of products generated in the acidogenic phase in an ideal substrate for methanogenic bacteria, thus forming part of an intermediate group.
  • Hydrogen, carbon dioxide and acetate are products generated by acetogenic bacteria. A large amount of hydrogen is formed, thus decreasing the pH value in the aqueous medium decreases. This process occurs during the formation of acetic and propionic acids. Only hydrogen and acetate can be used directly by methanogens from all products. metabolized by acidogenic bacteria.
  • Methanogenesis - final step with methane (CH4) and carbon dioxide (CO2) production is a step with methane (CH4) and carbon dioxide (CO2) production.
  • Methane is produced by acetotrophic bacteria by reducing acetic acid or by hydrogenotrophic bacteria by reducing carbon dioxide. Have the following catabolic reactions:
  • Methanogenic bacterial substrates are converted to methane according to the following reactions:
  • biodegradable organic material present in the dump is converted to biogas (about 70 to 90%), which is removed from the liquid phase and leaves the reactor in gaseous form. Only a small portion of the organic material is converted to microbial biomass (about 5 to 15%), thus constituting the system's excess sludge. (CHERNICHARO, 1997).
  • Carbon / nitrogen ratio the ratio is essential for acid formation that will be transformed by methanogenic bacteria into biogas.
  • the ideal ratio is around 01h30min or 01h20min. Thus there are no significant losses.
  • Ph The pH has to be controlled, as being too acidic, the meianogenic bacteria will be eliminated.
  • Toxic Substances The presence of toxic substances in the substrate is extremely harmful to the functioning of the Biodigester.
  • Retention time Depending on the physical quantity of the matter and the capacity of the biodigester.
  • reaction biodegradables biochemical enzymes or hydrochloric acid
  • Part 1 an internal silo (1 1) will be constructed of steel, the rounded shape, with a diameter of 8 meters radius of 4 meters and a height of 9 m.
  • 2nd part an external silo to be built (12) in the thickness of concrete 30cm 15cm away from the inner silo.
  • Part 3 Between the two bins over a distance of 15 cm along its entire length will be filled with water (13).
  • Part 4 In the inner silo wall all have a heating system of copper pipes (14) spiral-shaped, where the heated water will circulate making the inside remain warm.
  • Part 6 base of the inner bin, to a height of 8m, enters a pipe of about 30cm ,. Where will have 05 (five) pairs of blades (15) that will mix the waste contained there, 24 hours a day.
  • Part 7 In the inner walls of the silo there will be two sensors (16) (copper tubes) of 10 cm diameter which will lead the captured gas to the pressure vessel.
  • Part 8 Because the pipe-laying system should overcome the digester bottom, it will be required to have a rubber seal (industrial). Because there may be a need to replace some component as well as maintenance.
  • Machine room will be built below the digester as well as in mixers, and have enough space for movement of professionals in maintenance and installation of machines.
  • Part 11 After 30 days, the first use of the digester and every 07 days after this period of fermentation, all the material that was in digestion, can leave daily from the device and should remain in its capacity by 50%.
  • Your cover will also be made of the same material. Its shape will be like a cone (hat), where there will be the storage of gas, produced there in (biodigester).
  • This housing will have on its surface (ceiling), pressure relief devices (21) and a safety sensor that will prevent pressure buildup thereon; when the lamp has reached its maximum capacity.
  • the basic structure in mounting the housing will comprise:
  • the thickness, ie the width of this cut should not be greater than 30cm, remembering that this fit in the duet, can not hold the bulb.
  • the rotating blade system (15) will be mounted within the biodigester. These blades will start from the bottom up, 1, 75m apart. Noting that the blades should not stop moving for as long as necessary to operate the appliance.
  • the external walls of the biodigester will have to contain apparatus indicating the amount of methane concentrated there (pressure gauges). Upon verifying that the concentration has reached 49% (safety margin), the apparatus will have to release the gas, leading it to a pressure vessel, or if it already has an electric term working there, which is released more gas for greater impulse of the reactors that will be powered by the gas.
  • the water that will cause the inner side structure of the biodigester to remain heated will be made of copper pipes (06) that will pass behind the 1 ⁇ 2 "blade. As its mounting will be spiral shaped, it will bypass its entire length. will have a spiral with a horizontal cut, thus giving large volume of heat.
  • the system that will make this full-time circulating water transfer is simple: It will be in the form of a return source.
  • This power supply will remain in a space that can be heated with an electrical current (resistance) system, where it will reach a heat of about 100 ° C. Because it is circulating water, as much as there is a loss in evaporation of water with heat, this outer container need not be so large, but large enough for its proper functioning.
  • the plant will generally be monitored through computers.
  • this appliance will run over rails and is always used horizontally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

A presente invenção se refere a uma usina de tratamento de resíduos urbanos, os quais sâo selecionados dentre papéis de todo tipo, fraldas descartáveis, material orgânico alimentício, material biológico e etc.

Description

TÍTULO: USINA PROCESSADORA DE RESÍDUOS URBANOS
CAMPO TÉCNICO DA INVENÇÃO
A presente invenção se refere a uma usina processadora de resíduos urbanos, que visa de uma vez por todas, acabar com as grandes concentrações de lixo atirado a céu aberto, aterros sanitários com vida útil e outras formas nocivas de armazenamento ou incineração.
ANTECEDENTES DA INVENÇÃO
Com pensamentos voltados positivamente para o meio ambiente, que vem sofrendo muitas mudanças bruscas e cruéis, estamos colaborando com uma solução para um fator preocupante - o lixo. A Usina visa de uma vez por todas, acabar com as grandes concentrações de lixo atirado a céu aberto e também extinguir a necessidade de queimá-lo.
O documento PI 9608306-9 descreve um método e um dispositivo para o tratamento combinado de efluente doméstico e/ou águas servidas e lixo biodegradável. O método de tratamento para a fase líquida do rejeito é feito por tratamento mecânico (rodo, coletor de areia, etc), tratamento aeróbico primário (remoção de BOD5 e COD e nitrificação, tratamento anaeróbico secundário (desnitrificação, remoção de fósforo) e tratamento terciário de esterilização. O método de tratamento para a fase sólida do rejeito junto com as diferentes lamas (lama de efluente doméstico bruta ou lama primário, lama secundária do tratamento primário, lama terciária do tratamento secundário) é o tratamento anaeróbico primário em um dispositivo de hidrólise, anaeróbico secundário junto com as gorduras e graxas em um dispositivo de fermentador de metano, aeróbico terciário em um dispositivo de drenagem e/ou secagem, e formar adubo de forma pelo menos aeróbica com os componentes de madeira picados em um dispositivo de formação adubo. As energias naturais (energia térmica solar, gravidade) disponíveis no local bem como a energia produzida pelo método e dispositivo (pressão de gaseificação, excesso de calor catabópco aeróbico) é usada para as funções da usina para evitar equipamentos onerosos.
O documento PI 0602209-0 descreve um processo de produção simultânea de gás e fertilizante a partir de composto orgânico oriundo da reciclagem do lixo urbano (doméstico e comercial), desenvolvido através das etapas sendo: aerações, biodigestão, coagem, secagem e purificação do gás. Após recepção do lixo, descarregado em esteira receptora, a etapa da aeração. Em seguida inicia-se a biodigestão (4), com uso em tanque tipo batelada na ausência de oxigénio (sistema anaeróbico) onde o composto orgânico se transforma em gás metano e fertilizante. A parte oriunda dos biodigestores (pasta escura) passa por processo de coagem em que a massa resultante passa por processo de aquecimento e secagem para eliminação da umidade e finalmente a purificação do gás, que se dá através do procedimento em que o gás metano coletado nos tanques de biodigestão.
O documento PI 8004894 descreve um processo para a produção de energia na forma de gás metano e consequente disposição final dos resíduos urbanos. Esses objetivos são atingidos numa série de etapas, das quais a principal consiste na digestão anaeróbica dos resíduos citados, feitas em condições definidas e otimizadas. O processo leva ainda à formação de um condicionador de solo de boa qualidade obtido após decantação e filtração do efluente do digestor.
O documento PI 9303557-8 descreve uma usina que utiliza lixo orgânico (matéria-prima sólida) para a produção do gás metano e de adubo, sendo o primeiro como combustível e o segundo para a plantação de um modo geral, mediante o processamento de fermentação desse lixo orgânico, proveniente de residências, fábricas e outros, localizadas nas áreas urbanas ou rurais, sendo o referido lixo previamente tratado, como nos processos convencionais, para então ser encaminhado para a usina em causa, a qual emprega, em termos de construção, três células distintas, porém, integradas entre si, a saber: conjunto acumulador de fermentação, no interior do qual se processa o lixo, que é transportado por uma esteira rolante postada junto a esse acumulador, o qual é portador de uma campana deslocável no plano vertical, própria para comprimir o gás metano oriundo da fermentação do lixo em decomposição; conjunto de filtragem e compressão, próprio para a limpeza e a compressão do gás metano, antes de seguir para o terceiro conjunto, formado pelos reservatórios. Todas as células que formam a dita usina estão interligadas por uma tubulação, na qual são instaladas as válvulas, registros, manómetros e outros elementos de controle de uso comum.
SUMÁRIO DA INVENÇÃO
De acordo com a presente invenção, é fornecida uma usina de tratamento de resíduos urbanos, os quais são selecionados dentre papéis de todo tipo, fraldas descartáveis, material orgânico alimentício, material biológico e etc.
DESCRIÇÃO DAS FIGURAS A figura 1 descreve a chegada dos caminhões de lixo pela rampa de acesso na usina onde serão pesados de imediato. Logo após a pesagem, os caminhões de lixo depositarão na Grelha de Filtragem de Chorume (01 ) todo tipo de resíduo urbano proveniente . da própria coleta, inclusive o chorume, que possa já ter se formado nos caminhões, chorume este que passará pela Grelha e irá para o local destinado a recebê-lo. A partir daí, um equipamento, preferencialmente uma mão mecânica, que é utilizada para colocar o material no Funil Receptor (02), o fará gradativamente.
A Figura 2 descreve a primeira parte da esteira (03) que é utilizada para receber o lixo, iniciando assim o trabalho dos catadores, separando e rasgando os sacos, espalhando todo tipo de resíduo.
A Figura 3 descreve a continuação da esteira (03). Esse processo caracteriza a primeira etapa de separação de cada tipo de resíduo. Após a separação deste material, começará o trabalho da catação do material biodegradável.
A Figura 4 descreve um segmento da esteira, onde nesse ponto elas se separam e recebem placas imantadas (04) para que haja a separação de ferro, aço e etc. do restante do material que seguirá seu . caminho pela esteira, continuando assim o processo de separação do material biológico e do não biológico ali depositado.
A Figura 5 descreve o Silo Triturador, Misturador, utilizado para receber o material biológico, previamente separado, que tem como finalidade ajudar no processo de decomposição do material ali depositado, utilizando-se das lâminas trituradoras (07) e de 50% de água aquecida através de tubos de cobre (06) que o contornam, transformando o contendo do mesmo em massa pastosa que seguirá para outro equipamento, com controle, gradativamente, para a fase seguinte.
A Figura 6 descreve o Biodigestor que é o equipamento utilizado para dar inicio ao processo da biodigestão, ou melhor, biodigestão anaeróbica. Esse processo se dá pela decomposição de matéria orgânica, já no interior do Biodigestor, por organismos vivos, ou seja, as bactérias anaeróbicas. O Biodigestor também contará com canos de cobre (14) em forma de espiral para que a água previamente aquecida circule, mantendo-o aquecido e suas jâminas internas (15) misturarão a biomassa por todo tempo, colaborando assim com o todo o processo. Feito isso, o material já processado passa para o Secador Vibratório (17), utilizado para receber, separar e encaminhar todo o material tratado e o chorume.
A Figura 7 descreve o Aquecedor Solar (9) e o Tanque Reservatório de Água (10), conjunto este que será utilizado para aquecer e reservar, respectivamente, a água que irá circundar o Silo Triturador, Misturador (figura 5) e o Biodigestor (figura 6).
Nos dias em que não for possível tal aquecimento, este será obtido através de energia elétrica gerada pela própria usina.
A Figura 8 descreve o conjunto de reservatórios, que são estes: Reservatório de Chorume, utilizado para receber o chorume que vem do biodigestor (figura 6) e dos caminhões que trazem o lixo e o despejam na Grelha de Filtragem (01), vindo por encanamento próprio até este. Quando sua capacidade está no limite, o material é expurgado para a Piscina de Tratamento (19) que é utilizada para tratar todo o chorume que ali chegar, bem como águas pluviais. Esse líquido sofrerá um tratamento e se tornará reutilizável mais adiante, no Reservatório de Água Reutilizável, se tornando água potável, permanecendo no reservatório destinado para a mesma, isto é Reservatório de Água Potável (24).
DESCRIÇÃO DA INVENÇÃO
Assim que os caminhões de lixo chegarem ao local da usina, estes serão de imediato pesados. Logo após a pesagem, os caminhões de lixo depositarão em um recipiente vazado de ferro todo tipo de resíduo urbano proveniente da própria coleta inclusive o chorume, onde este terá outro caminho (um reservatório para o tratamento do mesmo). A partir daí, uma mão mecânica colocará todo o material no funil receptor, dando assim início a reciclagem do material. Salientamos que toda área de cataçâo e seleção de todo material será coberta.
Inicia-se, então, a primeira parte do trabalho dos catadores para a separação de cada tipo de resíduo. Sobre a esteira terá uma placa imantada. Tal processo se caracteriza em técnicas de separação de cada tipo de resíduo. Após a separação deste material, começará o trabalho da catação do material biodegradável. Separação minuciosa do material biodegradável anteriormente já separado encaminhando-o para o Silo Triturador e Misturador. Caso ocorra a passagem de outro tipo de material, este será recolhido pelos catadores para outro destino. Nesta fase que o material biológico será introduzido no Silo Misturador e Triturador, onde tem por obrigação a quantidade de 50% de água aquecida proveniente do Reservatório, tornando-se desta forma uma massa pastosa, que logo seguirá para o biodigestor. Inicia-se o processo de fermentação anaeróbica (biodigestão) no Biodigestor obtendo-se assim gás metano e adubo.
Após a biodigestão, o adubo será transportado para um Secador Vibratório sendo todo seu fundo vazado para que o chorume ao cair ao chão (ralos) seja levado para um Reservatório do mesmo, ficando ali concentrado para posteriormente ser reutilizado no Silo Misturador. A água utilizada no Biodigestor e No Silo Misturador terá seu aquecimento procedente de nosso Aquecedor Solar que a manterá aquecida no Reservatório e circulando por todo encanamento interno dos mesmos mantendo-os aquecidos.
Nos dias em que não for possível tal aquecimento, este será obtido através de energia elétrica gerada pela própria usina.
O chorume que sai do Biodigestor seguirá para o reservatório de Chorume encontrando-se com o chorume que chega na usina ainda nos caminhões que segue por encanamento até este reservatório. Quando sua capacidade para tal processo não for mais necessário, será expurgado para Piscina de tratamento onde este líquido se tornará mais adiante reutilizável, no Recipiente de Água Reutilizável que sofrerá um tratamento tornando a água potável permanecendo no reservatório para a mesma.
O gás extraído do Biodigestor irá para o Cilindro (Vaso de Pressão) onde ficará armazenado aguardando seu potencial seja utilizado em termoelétricas, indústria ou automotivo.
Construção de Galpões para o armazenamento do material reciclado (flackes de pet, flocos de isopor, papelão industrial etc) e adubo (que será utilizado em agricultura, fabricação de telhas, tijolos, madeiras prensadas etc).
Em toda área da usina terá plantações de Eucaliptos no intuito de aromatizar a área, afugentar insetos entre outras funções.
Nenhum dos documentos do estado da técnica cita o tratamento de chorume e águas pluviais para a reutilização da mesma nas instalações da própria usina, inclusive com o fornecimento de água potável.
A produção do gás tendo como objetivo o funcionamento de uma termoelétrica, indústria e automotiva, porém cabe-se frisar que a própria energia necessária ao bom funcionamento da usina se dará por meios próprios. O biodigestor possui com isso um sistema de aquecimento com tubos de cobre que acelera o processo de biodigestão, que funciona com energia do aquecedor solar ou comum.
Este processo de biodigestão gerará além de gás, adubo que poderá ser usado na agricultura, fabricação de telhas, tijolos, madeira prensada entre outros.
O presente processo para tratamento de resíduos urbanos elimina a necessidade de outra qualquer etapa, recebendo assim os resíduos "in natura" e deste modo dentro de um só cornplexo obtendo: Água potável, Adubo para (agricultura, confecção de tijolos, telhas e afins), Gás (para qualquer finalidade) e energia elétrica. Tudo gerado através de apenas um biodigestor.
Local: A área onde ocorre a implantação da estrutura da usina, nem sempre terá a necessidade de ser íngreme ao fundo, assim, atendendo com mais facilidade as montagens e performances de todo o trabalho a ser executado.
A usina citada tem como vantagem a sua implatação inclusive em área urbana.
Importante: Meta Informal
Independente ou não de haver necessidade de desmatamento, toda área ocupada pela usina, será reflorestada com eucalipto (eucalyptus), pois é uma planta de fácil adaptação e tem a propriedade primordial em desidratar o solo e servirá de repelente para as moscas e outros animais por causa do aroma que o mesmo exala.
Cabe ainda:
Toda área destinada ao tratamento do lixo será diariamente higienizada, como também todos os caminhões que ao despejar todo o conteúdo do lixo. Desta forma, evitaremos aglomerações de moscas e outros parasitos suscetíveis ao local.
ACOMODAÇÃO TÉCNICA DA USINA
Cabe aqui frisar que a usina necessitará de um prédio, onde serão distribuídos todos os funcionários que ali trabalharão, dependendo da qualificação profissional. Neste prédio estará compreendido: Diretoria, engenheiros químicos, biólogos, salas de estudos e reuniões e principalmente o centro de processamento de dados, pois todo corpo da mesma será informatizado; auditório para palestras sobre assuntos gerais e principalmente sobre meio ambiente. FASES DO PROCESSAMENTO DOS RESÍDUOS
1a Fase: A área para montagem da mesma deverá ter na sua origem um relevo acentuado do terreno. Este aclive se fará obrigatório para que as fases seguintes se dêem de acordo com as necessidades gravitacionais, que suas aparelhagens precisam.
2a Fase: Para um bom e perfeito andamento da usina, todos os caminhões ao entrarem nas dependências da mesma, de imediato, terão a necessidade de serem pesados para que possamos estabelecer o total, ao final de cada dia, do material a ser tratado. Após descarregar todo o seu conteúdo, deverão também ser lavados.
3a Fase: Ao descarregar todo o seu conteúdo na Grelha de filtragem de Chorume(01 ), este material passará por um funil receptor(02), a partir daí, dar-se-á início a reciclagem do material recebido.
4a Fase: Depois de descarregado o material seguirá por uma esteira primáha(03), onde adiante será divida em outras 02 esteiras (cada esteira deverá tèr a medida de 3.00 m de largura). Nesta fase será implantada uma placa superior de eletroímã(04) que de imediato separará ferro e aço.
5a Fase: Parte de catação não biológica. Nesta fase os catadores retiram materiais que por ventura tenham passados nas partes anteriores tais como: embalagens, papéis, plásticos e alumínio. A esteira anterior abrir-se-á em 02 duas esteiras de 3.00 m, cada uma e terá funcionários catadores no espaço de pelo menos 10 m. Ao fundo, as esteira se encontram voltando a ser apenas uma.
6a Fase: Chegada do material biológico. A esteira encontra-se com uma pequena rampa, onde introduzirá o material no silo Triturador(05), ( que deverá conter 50 % de água, para o total de tonelada dia pela cidade arrecadada). Silo este composto de tubo cobre(06) em torno de suas paredes, que mantém circulação de água aquecida para acelerar o processo de decomposição do material e lâminas trituradoras(07) que também aceleram esse processo.
Todo material será triturado no misturador até se tornar uma massa pastosa. Ao fingi de cada dia, tudo depois de misturado passará à fase seguinte.
Área que tem a obrigação de ser coberta
Observação: Toda área de catagem e seleção de material, deverá ser toda coberta. Subproduto da Usina
O gás: será extraído do próprio lixo, onde seu aproveitamento estará voltado para o funcionamento futuro, (termo elétrica), se a demanda for além da estimativa, pela qualidade, buscaremos negociar seu uso também como automotivo.
O adubo: Sua utilização não só se dará para a parte agrícola, mas terá utilização para confecção de tijolos, telhas e se possível madeira prensada. Uma parte desse adubo será destinada para a composição de áreas naturais. Pois cada projeto, pela nossa maneira de pensar, deveria ter algo destinado à natureza.
A energia elétrica: O gás aqui produzido tem como finalidade futura primordial, a construção de uma termoelétrica.
AQUECEDOR SOLAR
Processo da montagem deste Aquecedor Solar:
1- Será construído com canos de cobre(08) nas duas superfícies com a medida de majs ou menos 4. Daí será todo transpassado com tubos de ½ (09), soldados a ambos. A entrada de água será pela parte inferior e a saída será no tubo superior, no alto do aclive. Medindo 10 m por 30 m.
2- Para servir como base deste aparelho será construída uma estrutura em concreto. Este partirá de 0 (zero) até atingir 30 cm na cabeceira. Sua extensão será toda coberta com brita. E a cada (5 x 5 m) neste concreto, deverá ter um pino fixado ao chão com mgis ou menos 10 cm de altura.
3- O aparelho descerá entre estes pinos, e sobre o mesmo deverá ter uma cobertura total de vidro pintado da cor preta.
4- A água, ao sair do Aquecedor, irá para um reservatório(10) onde permanecerá aquecida por 55°C, para ser utilizada no silo triturador(05) e nos biodigestores(1 1 ).
SILO: MISTURADOR E TRITURADOR
Dando como exemplo uma cidade com mais ou menos 500 mil habitantes, o volume em toneladas dia seja de 400 toneladas isto corresponde a mais ou menos: 270 m3 em lixo.
O padrão abaixo apresentado atenderá satisfatoriamente a demanda apresentada. Porém cabe aqui frisar que o silo abaixo terá uma capacidade para 451 m3. Com o passar dos anos, ainda que esta cidade dobre sua população em número de habitantes e volume de lixo, não haverá problemas, pois o silo misturador continuará atendendo perfeitamente.
Como ocorre de período em período um aumento quantitativo nas populações urbanas, na usina aqui projetada, não existirá aquele famoso período de vida útil.
Pois haverá sempre um silo reserva, não só para aumento populacional mais sim em caso de reparo, estaremos aptos a dar continuidade em nossos trabalhos, atendendo assim qualquer problemática que possa ocorrer.
MONTAGEM DO SILO
Construído com 8 metros de diâmetro, e um raio de 4 metros, por 7 metros de altura. Será construído em chapa de aço.
Será construído em chapa de aço de 0,5 in. Aço este que deverá receber um tratamento de pintura marítima de boa qualidade. Seu volume receberá um aquecimento de 55Ç°. Este silo deverá permanecer com 50 % de água.
De baixo para cima, terá um eixo que será acoplado lâminas(07) que misturarão e também triturarão todo material ali depositado. Este aparelho somente liberará o material para o biodigestor(1 1 ) no final de cada dia e após atingir seu volume máximo de material somente será liberado após 23 horas ininterruptas em movimento.
Após todo material ser misturado, este será levado pela tubulação inferior ao aparelho Biodigestor onde deverá ali permanecer por até 30 dias no primeiro uso, após este, poderá ser trocado a cada 07 dias, tempo este suficiente para o processo de fermentação.
7a Fase: Processo da Biodigestão
Em linhas simples, Biodigestores são câmaras fechadas onde os resíduos orgânicos são fermentados anaerobiamente transformando esta biomassa em gás combustível e fertilizante. Além disso, é neste processo que o biogás produz, não apenas energia elétrica, mas também energia térmica na forma de água ou ar quente, proveniente do calor gerado pelo processo de combustão em motores/geradores convertidos à biogás.
Ocorre nos Biodigestores processo chamado Biodigestão, ou melhor, Biodigestão Anaeróbica. Processo este que se dá pela decomposição da matéria orgânica por organismos vivos - as bactérias, na ausência de oxigénio. Nessa decomposição a matéria orgânica é transformada em C02, CH4, H20 e BIOMASSA, através de reações que compreendem quatro fases, chamado de processo de metanização:
Hidrólise - como sabemos, é onde ocorre a quebra das moléculas por água; Neste processo, o material orgânico é convertido em compostos dissolvidos de menor peso molecular. As exo enzimas são excretadas pelas bactérias fermentativas, pois o próprio processo requer esta interferência. Os aminoácidos são formados através das proteínas degradadas através de (poli) peptídeos. Os lipídios se transformam em glicerina e ácidos graxos de longa cadeia de carbono (C15 a C17) e os carboidratos são convertidos em açúcares solúveis (mono e dissacarídeos). A velocidade da hidrólise, em muitos casos, na prática, pode ser a etapa limitativa para todo o processo da digestão anaeróbia.
Acidogenese - os produtos solúveis provenientes da 1a fase (hidrólise) são metabolizados no interior das células das bactérias fermentativas.
A fermentação acidogênica é realizada por um diverso grupo de bactérias, onde a majoria é anaeróbia obrigatória. Entretanto, existem espécies facultativas que podem metabolizar o material orgânico por via oxidativa. Esta importância se dá nos sistemas de tratamento anaeróbio de esgoto. As bactérias acidogênicas facultativas removem o oxigénio eventualmente presente, antes que o mesmo se torne uma substância tóxica para as bactérias metanogênicas.
Os compostos dissolvidos, gerados no processo de hidrólise, são absorvidos nas células das bactérias fermentativas e, após a acidogênese, são excretadas como substâncias orgânicas simples como ácidos graxos voláteis de cadeias curtas (AGV), ácido látieq, álcoois, e compostos minerais como NH3, H2S, C02, H2, etc.
Acetogenese - As bactérias acetogênicas são responsáveis pela oxidação dos produtos gerados na fase acidogênica em substrato ideal para as bactérias metanogênicas, fazendo parte assim de um grupo intermediário, o O hidrogénio, o dióxido de carbono e o acetato são produtos gerados pelas bactérias acetogênicas. Uma grande quantidade de hidrogénio é formada, logo diminuindo o valor do pH no meio aquoso diminui. Esse processo ocorre durante a formação dos ácidos acéticos e propiônico. Apenas o hidrogénio e o acetato podem ser utilizados diretamente pelas metanogênicas, de todos os produtos metabolizados pelas bactérias acidogênicas.
Metanogênese - etapa final com produção de metano (CH4) e dióxido de carbono (C02).
O metano é produzido pelas bactérias acetotróficas, através da redução de ácido acético, ou pelas bactérias hidrogenotróficas, através da redução de dióxido de carbono. Têrrir-se as seguintes reações catabólicas:
Metanogênese acetotrófíca ou acetoclástica:
Figure imgf000013_0002
Metanogênese hidrogenotrófíca:
Figure imgf000013_0003
Os substratos de bactérias metanogênicas são convertidos a metano, de acordo com as seguintes reações:
Figure imgf000013_0001
Figure imgf000014_0001
A sequência de processos na digestão anaeróbia de macro moléculas complexas.
Nos sistemas anaeróbios, verifica-se que a maior parte do material orgânico biodegradável presente no despejo é convertida em biogás (cerca de 70 a 90%), que é removido da fase líquida e deixa o reator na forma gasosa. Apenas uma pequena parcela do material orgânico é convertida em biomassa microbiana (cerca de 5 a 15%), vindo a se constituir o lodo excedente do sistema. (CHERNICHARO, 1997).
Padrões de qualidade a serem mantidos no corpo receptor
Figure imgf000014_0002
À necessidade do controle do Biodigestor:
Quantidade de água: O Biodigestor funciona por carga hidráulica. Portanto, tal matéria orgânica tem que atingir uma relação propícia com a quantidade de água. Essa relação se dá de acordo com o tipo de matéria.
Relação carbono/nitrogénio: a relação é essencial para a formação dos ácidos orgânicos que serão transformados pelas bacterias metanogênicas em biogás. A proporção ideal está em torno de 01 h30min ou 01 h20min. Sendo assim não havendo perdas significativas.
Ph: O pH tem que ser controlado, pois ele estando muito ácido, as bactérias meianogênicas serão eliminadas.
Substâncias tóxicas: a presença de substâncias tóxicas no substrato é extremamente nociva ao funcionamento do Biodigestor.
Tempo de retenção: Dependendo da quantidade física da matéria e da capâcidade do Biodigestor.
Temperatura: Extremo controle, pois qualquer alteração brusca superior a 3C° já é o suficiente para a eliminação das bactérias.
Cabe se frisar que: Caso haja necessidade com as variações diversidade da matéria prima que são recebidas, o sistema prevê o uso de biodegradáveis dè reação (enzimas bioquímicas ou acido clorídrico), para garantir a vazão do processo.
Biodigestor
1 a parte: Será construído um silo interno(1 1 ) de aço, na forma arredondada, com um diâmetro de 8 metros, raio de 4 metros e por 9 m de altura.
2a parte: será construído um silo externo(12) de concreto na espessura dé 30cm afastado do silo interno 15cm.
3a parte: Entre os dois silos, na distância de 15 cm, será em toda sua extensão preenchido com água(13).
4a parte: No silo interno, toda parede terá um sistema de aquecimento por canos de cobre(14) em forma de espiral, onde a água aquecida circulará fazendo ò interior permanecer quente.
5a parte: Toda parte interna (paredes e fundo) será construído em aço inox de ½",
(sofrerá um tratamento com pintura marítima de boa qualidade).
6a parte: Da base do silo interno, até a altura de 8m, deverá entrar um tubo de mais ou menos 30cm,. Onde terá 05 (cinco)pares de lâminas(15) que misturarão o lixo ali contido, 24 horas por dia. 7a parte: Nas paredes do silo interno existirão dois captadores(16) (tubos de cobre) de 10cm de diâmetro que levarão o gás captado até o vaso de pressão.
8a parte: Como o sistema de colocação de tubos deverá ultrapassar do fundo do biodigestor, este será obrigado a ter uma borracha de vedação (industrial). Pois poderá haver necessidade de troca de algum componente como também manutenção.
9a parte: Casa de máquinas: será construída abaixo do biodigestor como também nos misturadores, e terá espaço suficiente para movimentação de profissionais em manutenção e para colocação de maquinários.
10a parte: Saída do material já tratado e chorume: Sairá do fundo do biodigestor, por um cano mais ou menos de 30cm e será todo depositado numa esteira vibrátõria(17) que estará adiante do aparelho. Esta esteira correrá sobre trilhos caso haja necessidade de mais de um biodigestor. O solo onde esta passar tem a necessidade de ralo em toda sua extensão, pois o material que ultrapassar pela esteira cairá no ralo e daí levado para o tanque de chorume(18) e aguardará para ser reutilizado pelo aparelho triturador. Este material já tem bactérias suficientes para aguardo, logo, pela sua qualidade este se dará mais rápido.
Observação: Quando este tanque estiver no limite máximo de chorume, ò mesmo liberará o material excedente para a piscina de filtragem(19), tornando este liquido reutilizável.
11a Parte: Após 30 dias, do primeiro uso do biodigestor e a cada 07 dias após este período de fermentação, todo material que se encontrava em biodigestão, poderá sair diariamente do aparelho, devendo permanecer em sua capacidade em 50%.
Câmpula dos Biodigestores(20)
Estas deverão também ser feitas com chapa em aço de 1/2", e deverá ser pintada com tinta marítima de boa qualidade.
Terá formato esférico (redondo), seu fundo será vazado para poder flutuar entre as paredes de concreto, que serão preenchidas até sua borda com água.
Sua cobertura será também feita com o mesmo material. Seu formato será como um cone (chapéu), onde haverá o armazenamento do gás, produzido áii dentro (biodigestor).
Pelo material ali contido, esta terá uma rigorosa inspeção para que o mesmo não tenha vazamento o que não seria aceito em hipótese alguma.
Importante: Toda a câmpula, após ser montada e antes de acoplada, no local onde deverá ser utilizada para o trabalho nos biodigestores, sofrerá uma inspeção minuciosa com aparelho de raios-X, que verificará se existe ou não espaço que poderá ter vazamento de gás do mesmo.
Esta câmpula terá na sua superfície (teto), dispositivos(21 )para eliminação de pressão e um sensor de segurança que evitará o acumulo de pressão nas mesmas; quando a câmpula estiver com sua capacidade máxima atingida.
Montagem da câmpula
Corpo Interno:
A estrutura básica na montagem da câmpula compreenderá:
- 18 peças medindo 9 metros de altura, tendo a largura de 12 cm e a espessura de 10 cm. Estes serão utilizados verticalmente.
- 18 peças medindo 2 metros de altura, tendo a largura de 12 cm e a espessura de 10 cm. Estes serão utilizados no teto.
- 02 peças medindo 25 metros e 12 cm, onde serão feitas 02 duas circunferências cujo raio será de 04 metros.
Cobertura e Fechamento
Em toda extensão do corpo interno após montado, serão utilizados chapâ de aço onde deverá obedecer a seguinte dimensão, ½". Esta chapa deverá no primeiro pâsso ser toda parafusada nas hastes do corpo; logo após serão soldadas, pois em hipótese alguma pode ocorrer passagem ou vazamento de ar, interior para exterior e vice versâ. Esta verificação se fará com aparelhos de raios-X.
A câmpula a o Aquecimento da Água
Pelo fato desta, apresentar uma forma de cone, sua extensão deverá atingir nas bordas laterais cerca de 5 metros de comprimento e terá a seguinte obrigação: Partindo de cima para baixo ate atingir 5 metros. Haja vista logo abaixo da mesma, passará um ducto(22) de mais ou menos 30cm que levará o material trazido do triturador até atingir o alto da câmpula, local este onde entrará o material para o biodigestor.
A espessura, ou seja, a largura deste corte não deverá ser tão maior que as 30cm, lembrando que este encaixe no dueto, não poderá prender a câmpula.
Chegada do material ao Biodigestor
Será montado o sistema rotatório das lâminas(15) dentro do biodigestor. Estas lâminas partirão de baixo para cima, afastadas 1 ,75m uma das outras. Ressaltando que as lâminas não devam parar de se movimentar pelo tempo necessário do funcionamento do aparelho.
Sistema de segurança da Câmpula
Como se trata de um dispositivo de alta complexidade é necessárla muita segurança dentro do biodigestor devido ao acúmulo que se fará de metano. Pelo tamanho tomado como exemplo do biodigestor e capacidade em m3 neste apresentado, calcula-se uma demanda de mais ou menos um volume de 2.500 m3 (Duas toneladas e meia de gás diário). Esta câmpula terá obrigação em ter nas suas laterais, 02 duas correntes dé grosso calibre, onde sua função será de não permitir que a elevação ultrapasse 2 metros dé altura de concentração de metano. Estas correntes serão fixadas nas paredes externas do biodigestor ligadas ao seu topo.
Para esta finalidade, as paredes externas do biodigestor, terão obrigação de conter aparelhagens que indiquem a quantidade de metano ali concentrada (manómetros). Ao verificarem que a concentração atingiu os 49% (margem de segurança), a aparelhagem terá obrigação de liberar o gás, levando-o a um vaso de pressão, ou caso já tenha uma termo elétrica ali funcionando, que seja liberado mais gás para maior impulso dos reatores que serão pelo gás alimentado.
Aquecimento da água
A água que fará com que a estrutura lateral interna do biodigestor permaneça aquecida, será realizada por canos de cobre(06) que passarão por trás da lâmina de ½". Como sua montagem será em forma espiral, contornará toda sua extensão. No fundo, terá um espiral com um corte horizontal, dando desta forma grande volume de calor. O sistema que fará esta transferência de água circulando em tempo integral em toda sua extensão é simples: Será em forma de fonte de retorno.
Esta fonte permanecerá em um espaço que seja capaz de ser aquecida com sistema de corrente elétrica (resistência), onde a mesma atingirá um calor de mais ou menos de 100 °C. Pelo fato de se tratar de água em circulação, por mais que haja perda na evaporação de água com o calor, este recipiente externo não terá necessidade de ser tão grande, mas sim de tamanho suficiente, para o bom funcionamento da mesma.
Monitoramento técnico de toda aparelhagem que será utilizada em toda usina.
A usina de um modo geral será toda monitorada por meio de computadores.
Segundo informações por nós capitadas espera-se que devido à qualidade de gás que neste serão produzidos, para cada 1 , ½ m3 será igual a mais ou menos 1 litro de gasolina de boa qualidade.
Em tempo:
Cabe-se frisar a necessidade em ter um depurador de gás, devido à oxidação causada pelo metano.
Secador vibratório(17)
Todo material após passar pela biodigestão, agora transformado em adubo, será depositado sobre este secador vibratório que deverá ter a seguinte medida: 10 m x 10 m. Quanto à altura, estará a 01 (um) metro do chão.
Dependendo da quantidade de biodigestores, este aparelho correrá por cima de trilhos sendo sempre usado na horizontal.
O piso abaixo deste secador, terá em toda sua extensão um ralo, pois todo chorume que cair ao chão, vai direto para um depósito, onde este líquido fermentado por alguns dias terá bactérias suficientes, isto é, estará propício para uma nova biodigestão. Mantendo-se aquecido.
Não poderá ter cobertura
O local onde os biodigestores serão instalados, deverá ficar a céu aberto, visto que, o próprio calor solar, ajudará na biodigestão.
Piscina de tratamento da água(19)(Nossa invenção) A área em que a usina funcionará, deverá também ter, um poço (piscina), com as seguintes medidas: 10 m x 8 m e 6.00m de profundidade. Esta será de concreto e toda preparada, com as seguintes camadas:
Fundo - 1a camada: Carvão
2a camada: pedra de mão
3a camada: areia
4a Brita
A partir daí retorna o mesmo trabalho até sua superfície, onde as águas pluviais e outras da própria usina sejam ali tratadas.
Esta terá em seu fundo 03 saídas com filtro levando água para outro reservatório que poderá ter a seguinte medida: 8.00 m x 6.00 m com 4.00 m de profundidade. Na parte bem superior da usina, haverá uma caixa d 'agua, onde também será tratada para consumo potável.
Tratamento da Água
Como toda estrutura da usina tem a finalidade de tudo ser aproveitado* criamos dentro deste projeto um sistema de reaproveitamento de toda água principalmente a fluvial, e toda aquela que for utilizada, tornando-a reaproveitável. A água a ser usada na usina, terá um tratamento de reutilização e outro de torná-la potável.
Em quase toda área que o lixo é tratado, existirão ralos inteiriços no solo, com drenos que a levam até a piscina de filtragem de toda água ali passada.
Numa fase seguinte: Esta água ao sair da piscina de filtragem, vai diretamente para um outro tanque de estocagem(23), fazendo a purificação do mesmo. A partir da purificação, será levada ao sistema de tratamento(24) tornando-a potável.
GALPÕES
Necessidade da construção de galpões
Pelo fato da usina receber diariamente grandes quantidades de material que será reciclado, o projeto prevê a construção de 03 (três), galpões onde será feita a estocágem de materiais diversos.
Dimensão: Terão a necessidade de no mínimo obedecer as seguintes medidas:
Área individual destes:
20 metros de largura por 30 metros de extensão e uma altura mínima de 12 metros. Neste espaço existirá grande movimentação de veículos acoplados a guindastes visando alcançar: altura e volume de material ali estocado.
Individualização dos galpões e a que se destinam:
01 - Pet em geral
Cobre chumbo, metal, aço, alumínio e vidro.
Processamento de biomassa.
Material Reciclável Processado:
- Pompa de celulose.
- Plásticos peletizados.
- Flocos de pet.
- Papelão industrial.
Será evidente a uma pessoa versada na técnica que a presente invenção hão está limitada aos exemplos ilustrativos precedentes e que pode ser concretizada erh outras formas específicas, sem fugir dos atributos essenciais da mesma. É, portanto, desejado que os exemplos sejam considerados em todos os aspectos, como ilustrativos e não restritivos, sendo feita referência às reivindicações anexas e todas as alterações que possam encontrar-se dentro do significado e faixa de equivalência das reivindicações e, desta forma, destinadas a serem incluídas aqui.

Claims

REIVINDICAÇÕES
1. Usina Processadora de Resíduos Urbanos, CARACTERIZADA por compreender
- um relevo acentuado do terreno;
- carregamento do conteúdo dos caminhões na Grelha de filtragem de Chorume(01), este material passará por um funil receptor(02), a partir daí, dar-se-á início a reciclagem do material recebido;
- depois de descarregado o material seguirá por uma esteira primária(03), onde adiante será divida em outras 02 esteiras, onde existe uma placa superior de eletroímã(04) que de imediato separará ferro e aço;
- os catadores retiram materiais que por ventura tenham passado nas partes anteriores tais como: embalagens, papéis, plásticos e alumínio
- a esteira anterior se abre em duas esteiras de 3.00 m, cada uma e terá funcionários catadores no espaço de pelo menos 10 m, ao fundo, as esteiras se encontram voltando a ser apenas uma.
- a esteira encontra-se com uma pequena rampa, onde introduzirá o material no silo Triturador (05), que deverá conter 50 % de água, para o total de tonelada dia pela cidade arrecadada;
- o silo é composto de tubo de cobre(06) em torno de suas paredes, que mantém circulação de água aquecida para acelerar o processo de decomposição do material e lâminas trituradoras(07) que também aceleram esse processo.
2. Usina, de acordo com a reivindicação 1 , CARACTERIZADA pelo fato de que em quase toda área que o lixo é tratado, existem ralos inteiriços no solo, com drenos que a levam até a piscina de filtragem de toda água ali passada.
3. Usina, de acordo com a reivindicação 1 , CARACTERIZADA pelo fato de que o gás é extraído do próprio lixo.
4. Usina, de acordo com a reivindicação 1 , CARACTERIZADA pelo fato de que o adubo terá utilização para confecção de tijolos, telhas e se possível madeira prensada. Uma parte desse adubo será destinada para a composição de áreas naturais.
5. Usina, de acordo com a reivindicação 1 ou 3, CARACTERIZADA peio fato de que o gás produzido tem como finalidade a construção de uma termoelétrica.
PCT/BR2010/000292 2009-09-01 2010-09-01 Usina processadora de resíduos urbanos WO2011113120A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI0903206-1 2009-09-01
BRPI0903206-1 BRPI0903206E2 (pt) 2009-09-01 2009-09-01 Unidade processadora e método de processamento de fraldas e absorventes

Publications (1)

Publication Number Publication Date
WO2011113120A1 true WO2011113120A1 (pt) 2011-09-22

Family

ID=44080324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2010/000292 WO2011113120A1 (pt) 2009-09-01 2010-09-01 Usina processadora de resíduos urbanos

Country Status (2)

Country Link
BR (1) BRPI0903206E2 (pt)
WO (1) WO2011113120A1 (pt)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8004894A (pt) 1980-08-05 1982-03-30 Inst Pesquisas Tech Producao de gas combustivel pela digestao anaerobica de residuos urbanos
US5249690A (en) * 1991-10-15 1993-10-05 Patterson Gill R Apparatus and method for sorting commingled waste materials for recycling
US5263591A (en) * 1991-12-12 1993-11-23 Taormina Industries, Inc. Refuse recycling system
BR9303557A (pt) 1993-09-29 1995-05-30 De Oliveira Everaldo Goncalves Usina empregada na obtenção de gás natural, bem como adubo de origem orgânica
BR9602209A (pt) 1995-05-10 1998-04-07 Pfizer Compostos composição farmacêutica e método para tratar uma condição para aumentar o teor de carne para tratar doenças da próstata perturbações da motilidade intestinal depressão dislipidemia e afecções inflamatórias das vias respiratórias
BR9608306A (pt) 1995-05-02 1999-11-30 Ulrich Braun Método e dispositivo para um tratamento de efluente doméstico e lixo biodegradável doméstico.
FR2924038A1 (fr) * 2007-11-28 2009-05-29 Ile Dlmr Soc Civ Soc Civ Procede de traitement des dechets associant une phase de traitement par methanisation et une phase de traitement aerobie thermophile
WO2009087080A2 (de) * 2008-01-04 2009-07-16 Wolf Eberhard Nill Verfahren zur reinigung organischer reststoffe, in einer separationsstufe, vor der durchführung einer verölung durch thermolyse und vorrichtung hierzu

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8004894A (pt) 1980-08-05 1982-03-30 Inst Pesquisas Tech Producao de gas combustivel pela digestao anaerobica de residuos urbanos
US5249690A (en) * 1991-10-15 1993-10-05 Patterson Gill R Apparatus and method for sorting commingled waste materials for recycling
US5263591A (en) * 1991-12-12 1993-11-23 Taormina Industries, Inc. Refuse recycling system
BR9303557A (pt) 1993-09-29 1995-05-30 De Oliveira Everaldo Goncalves Usina empregada na obtenção de gás natural, bem como adubo de origem orgânica
BR9608306A (pt) 1995-05-02 1999-11-30 Ulrich Braun Método e dispositivo para um tratamento de efluente doméstico e lixo biodegradável doméstico.
BR9602209A (pt) 1995-05-10 1998-04-07 Pfizer Compostos composição farmacêutica e método para tratar uma condição para aumentar o teor de carne para tratar doenças da próstata perturbações da motilidade intestinal depressão dislipidemia e afecções inflamatórias das vias respiratórias
FR2924038A1 (fr) * 2007-11-28 2009-05-29 Ile Dlmr Soc Civ Soc Civ Procede de traitement des dechets associant une phase de traitement par methanisation et une phase de traitement aerobie thermophile
WO2009087080A2 (de) * 2008-01-04 2009-07-16 Wolf Eberhard Nill Verfahren zur reinigung organischer reststoffe, in einer separationsstufe, vor der durchführung einer verölung durch thermolyse und vorrichtung hierzu

Also Published As

Publication number Publication date
BRPI0903206E2 (pt) 2015-07-28
BRPI0903206A2 (pt) 2011-10-18

Similar Documents

Publication Publication Date Title
Mutungwazi et al. Biogas digester types installed in South Africa: A review
CN101460413B (zh) 用于动物废物稳定化和生物气回收的厌氧消化系统
Deng et al. Biogas technology
Abbasi et al. Biogas energy
Samer Biogas plant constructions
CN201538737U (zh) 一种集成化禽畜养殖场粪污生物处理系统
AU2009311220A1 (en) A primary treatment unit and system for maximising the amount of methane-containing biogas collected from sewage
CN106957130A (zh) 一种生活污水和有机固体废弃物的处理方法
Ronteltap et al. Overview of treatment technologies
CN101629139B (zh) 规模化太阳能中温固液联合厌氧发酵和储气装置
CN101250556A (zh) 固体废物高效益厌氧发酵方法
CN106698877A (zh) 一种用于公共厕所污染治理的方法
CN206232578U (zh) 一种污水处理系统以及污水处理地下结构
CN102329721A (zh) 垃圾与污水联合发酵处理沼气池
Williams et al. Microturbine operation with biogas from a covered dairy manure lagoon
WO2011113120A1 (pt) Usina processadora de resíduos urbanos
Sharma et al. Anaerobic biotechnology and developing countries—I. Technical status
Youcai et al. Biomethane production from vegetable and water hyacinth waste
PT1931602E (pt) Sistema de tratamento de água residual
Khune Biogas production from solid food waste and its use for electricity production
Patil et al. Performance evaluation of bioreactor landfills with leachate recirculation: an experimental study
WO2014076725A2 (en) Linear synergistic system of digestion, dehydration and composting (ldcc)
Baltrėnas et al. The types, structure and design of small-scale bioreactors producing biogas
CN110127936B (zh) 一种生活垃圾的集成处理设备
CN201762325U (zh) 生活垃圾生物处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10768854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10768854

Country of ref document: EP

Kind code of ref document: A1