WO2011111960A1 - Power source device for a chemical vapour deposition device and a method for controlling the same - Google Patents

Power source device for a chemical vapour deposition device and a method for controlling the same Download PDF

Info

Publication number
WO2011111960A1
WO2011111960A1 PCT/KR2011/001549 KR2011001549W WO2011111960A1 WO 2011111960 A1 WO2011111960 A1 WO 2011111960A1 KR 2011001549 W KR2011001549 W KR 2011001549W WO 2011111960 A1 WO2011111960 A1 WO 2011111960A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
secondary winding
switches
isolation transformer
transformer
Prior art date
Application number
PCT/KR2011/001549
Other languages
French (fr)
Korean (ko)
Inventor
유효열
Original Assignee
주식회사 다원시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 다원시스 filed Critical 주식회사 다원시스
Priority to CN2011800132753A priority Critical patent/CN102934342A/en
Publication of WO2011111960A1 publication Critical patent/WO2011111960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output
    • H02P13/06Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changing; by rearranging interconnections of windings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only

Definitions

  • the present disclosure relates to a power supply for a chemical vapor deposition (CVD) device, and more particularly, to a power supply device suitable for a CVD device for silicon crystal growth and a switching control method thereof.
  • CVD chemical vapor deposition
  • the load characteristics in a CVD apparatus reactor for silicon crystal growth are as follows.
  • the load is shown as a net resistance load, and as shown in FIG. 1, as the diameter increases, the current increases and the voltage decreases. In other words, it is a load whose equivalent resistance changes relatively with time, and requires a high voltage and a low current at an initial stage and a large current with a low voltage as time passes.
  • FIG. 2 is a block diagram of a power supply device for a CVD apparatus according to the prior art.
  • an isolation transformer 210 which insulates and transforms an input power and outputs it in multiple stages, It includes a tap-changing switch 220 to transfer to the load (R1 ⁇ R4).
  • FIG. 2 illustrates only one phase configuration of a three-phase transformer having the same phase configuration in order to avoid duplication of description.
  • each switch (S221-S225) of the tap-change switch 220 of Figure 2 is composed of a bi-directional SCR switch as shown in Figure 3, the rated voltage of each switch is selected to about 2.5 times the normal use voltage.
  • the first switch S221 it is not easy to configure a bidirectional SCR switch having a high rated voltage of about 7000 [V] or more. Therefore, a problem such as a decrease in the insulation reliability of the switch due to the high load demand voltage may occur, and furthermore, there may be a problem in the reliability of the power supply device.
  • the present disclosure is to solve the above-mentioned conventional problems, and its purpose is to maintain the reliability of the switch while satisfying the load characteristics of the CVD process for silicon crystal growth even when using a tap-change switch of a lower rated voltage than conventional ones.
  • a power supply apparatus for a chemical vapor deposition apparatus for transforming the input power to output in multiple stages;
  • a tap-change switch for respectively intermitting the multi-stage outputs;
  • An auxiliary transformer having a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer;
  • a first switch having one end connected to one end of the secondary winding of the auxiliary transformer;
  • a second switch connected between one end of the secondary winding of the isolation transformer and the other end of the first switch;
  • a third switch connected between the common connection point of the first and second switches and the common connection point between the loads, and a switching control unit controlling switching of the first to third switches and the tap change switch. It may include.
  • the first switch, the second switch, and the tap-changing switch may be configured as a bidirectional SCR (Silicon-C0ntrolled Rectifier Thyristor), the third switch may be configured as a mechanical switch, and the loads may include the auxiliary transformer. It may be connected between the other end of the secondary side winding of and the other end of the secondary side winding of the isolation transformer.
  • SCR Silicon-C0ntrolled Rectifier Thyristor
  • a switching control method of a power supply for a chemical vapor deposition apparatus in the power supply for a chemical vapor deposition apparatus configured as described above, in the method for controlling the switching of the switches A first switching step of turning on the first to third switches and turning off the remaining switches; And a second switching step of sequentially turning on from the switch intermittent to the lowest output among the tap change switches to the switch intermittent to the lowest output and turning off the remaining switches.
  • the present invention even when using a tap-change switch having a lower rated voltage than the conventional one, it is possible to maintain the high reliability of the switch while satisfying the load characteristics of the CVD process for silicon crystal growth.
  • the effect is to lower the production cost of the power supply and improve the reliability.
  • FIG. 2 is a configuration diagram of a power supply apparatus for a CVD apparatus according to the prior art
  • FIG. 3 is a configuration diagram of each switch of the tap changeover switch of FIG. 2;
  • FIG. 4 is a configuration diagram of a power supply device for a CVD apparatus according to an embodiment of the present invention.
  • 5 to 9 are equivalent circuit diagrams of switching control of each switch of FIG. 4.
  • FIG. 4 is a configuration diagram of a power supply device for a CVD apparatus according to an embodiment of the present invention. As shown in the same drawing, an isolation transformer 410, a tap change switch 420, an auxiliary transformer 430, and a first transformer are shown. To third switches 440, 450, 460, load 470, and switching controller 480.
  • the isolation transformer 410 insulates and transforms the input power of the primary side to output in multiple stages at the secondary side.
  • the output tap of the multiple stages configured at the secondary side has an output tap (Tap2) of 1750V / 557A, 870V / 1307A.
  • the tap-changing switch 420 is to control the multi-stage output of the secondary side of the isolation transformer 410, respectively, for example, the switch (S4), the second output to control the output of the first output tap (Tap2) And a switch S5 for regulating the output of the tap Tap3, a switch S6 for regulating the output of the third output tap Tap4, and a switch S7 for regulating the output of the fourth output tap Tap5.
  • the switches S4 to S7 may be configured as bidirectional SCRs.
  • the auxiliary transformer 430 has a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer 410, and the secondary winding includes an output tap Tap1 of 1750V / 557A.
  • the first switch S1, 440 has one end (eg, an input end) connected to one end of an output tap Tap1 of the secondary winding of the auxiliary transformer 430, and the other end (eg, an output end) is connected to the second switch. It is connected to the output terminal (S2, 450), for example, may be configured as a bidirectional SCR.
  • One end (eg, an input end) of the second switches S2 and 450 is connected to one end of the output tap Tap2 of the secondary winding of the isolation transformer 410, and the other end (eg, an output end) of the second switch S2 and 450 is connected to the first switch ( It is connected to the output terminal of S1, 440, for example, may be configured as a bidirectional SCR.
  • One end of the third switch S3 and 460 is connected to the common output terminal of the first switch S1 and 440 and the second switch S2 and 450, and the other end of the loads R1 to R4 and 470. It is connected to a common connection point (i.e., a connection point between R2 and R3), and may be constituted by a mechanical switch such as, for example, a vacuum circuit break (VCB).
  • a common connection point i.e., a connection point between R2 and R3
  • VFB vacuum circuit break
  • the load 470 is connected between, for example, the other end of the secondary winding of the auxiliary transformer 430 and the other end of the secondary winding of the isolation transformer 410, and is connected in series with each other.
  • loads may be included, and in this embodiment, each of the loads R1 to R4 may be a silicon pillar.
  • the switching controller 480 is configured to switch the first switch (S1, 440), the second switch (S2, 450), the third switch (S3, 460), and the tap change switch (420, S4 to S7). To control.
  • 5 to 9 are equivalent circuit diagrams of switching control of each switch of FIG. 4.
  • step 1 of FIG. 1 when the switches of S1, S2, and S3 are turned on and the other switches are turned off under the control of the switching controller 480, Tap1 at both ends of R1R2 as shown in FIG. 5.
  • the output voltage of 1750V is applied, and the output voltage of Tap2 is applied to both ends of R3R4, and as a result, 3500V is applied to both ends of the load R1R2R3R4.
  • step 2 of FIG. 1 when only the switch of S4 which intercepts the highest output of the tap changeover switch 420 is turned on and the other switches are turned off under the control of the switching controller 480, the switch shown in FIG. 6 is turned on. As shown, the output voltage of Tap2, 1750 V, is applied across the load R1R2R3R4.
  • step 3 of FIG. 1 when only the switch of S5 which controls the next higher output of the tap changeover switch 420 is turned on and the other switches are turned off, under the control of the switching controller 480, the switch is turned off.
  • the output voltage of Tap3, 870V is applied to both ends of the load R1R2R3R4.
  • step 4 of FIG. 1 if only the switch of S6 which controls the next higher output of the tap changeover switch 420 is turned on and the other switches are turned off, under the control of the switching controller 480, the switch of FIG. 8 is turned off. As shown, 480V, which is an output voltage of Tap4, is applied to both ends of the load R1R2R3R4.
  • step5 of FIG. 1 when only the switch of S7 which intercepts the lowest output of the tap changeover switch 420 is turned on and the other switches are turned off under the control of the switching controller 480, FIG. As shown, the output voltage of Tap5, 270V, is applied across the load R1R2R3R4.
  • a high voltage of 3500 V should be provided to the load R1R2R3R4 at an initial time point such as step 1 of FIG. 1.
  • all the highest voltages 3500 V are applied to the initial switch S221.
  • the switch specification can be lowered while the supply voltage is the same as in the related art.
  • the power supply for a chemical vapor deposition apparatus and its switching control method according to an aspect of the present invention is applied to a CVD apparatus for silicon crystal growth, so that silicon crystal growth can be achieved by using an initial switch having a lower rated voltage than the conventional one. It is possible to maintain the high reliability of the switch while satisfying the load characteristics of the CVD process, which is a very useful invention that lowers the production cost of the power supply and improves the reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

One embodiment of the present invention relates to a power source device for a chemical vapour deposition (CVD) device, which may comprise: an isolation transformer for isolating and transforming an input power source and outputting the resultant power in multiple stages; a tab changing switch for individually regulating the multi-stage output; an auxiliary transformer having a secondary winding in a dot direction that differs from the dot direction of the secondary winding of the isolation transformer; a first switch of which a first terminal is coupled to a first terminal of the secondary winding of the auxiliary transformer; a second switch which is coupled between the first terminal of the secondary winding of the isolation transformer and the other terminal of the first switch; and a third switch which is coupled between a shared contact point of the first and second switches and a shared contact point between loads; and comprises a switching control unit for controlling the switching of the first through third switches and also the tab changing switch. The present invention allows high switch reliability to be maintained while satisfying load characteristics for CVD processing for the purpose of silicon crystal growth even if use is made of a tab-changing initial switch having a lower rated voltage than hitherto, and thus the cost of producing power source devices is reduced and reliability is improved.

Description

화학 기상 증착 장치용 전원 장치 및 그 제어 방법Power supply apparatus for chemical vapor deposition apparatus and control method thereof
본 개시는 화학 기상 증착(Chemical Vapor Deposition: CVD) 장치용 전원 장치에 관한 것으로, 보다 상세하게는 실리콘 결정 성장을 위한 CVD 장치에 적합한 전원 장치 및 그것의 스위칭 제어 방법에 관한 것이다.TECHNICAL FIELD The present disclosure relates to a power supply for a chemical vapor deposition (CVD) device, and more particularly, to a power supply device suitable for a CVD device for silicon crystal growth and a switching control method thereof.
일반적으로, 실리콘 결정 성장을 위한 CVD 장치 반응기에서의 부하 특성은 다음과 같다.In general, the load characteristics in a CVD apparatus reactor for silicon crystal growth are as follows.
실리콘 결정 성장을 위한 CVD 공정은 한 공정이 72시간 정도 진행되며, 처음 텅스텐 선을 반응기에 넣고 전류를 흘려 1000~1200도를 유지하면 염화실란 혹은 삼염화 실란 가스 중의 실리콘 분자가 텅스텐 표면에 달라붙으며 성장한다. 따라서 둥근 막대모양의 실리콘은 시간이 지날수록 직경이 두꺼워져서 최종적으로 실리콘 잉곳을 얻게 된다. 여기서 부하는 순 저항부하로 보이며, 도 1에 도시된 바와 같이, 직경이 증가할 수록 전류는 커지고 전압은 감소하는 부하 특성을 갖게 된다. 즉 시간에 따라 등가 저항이 비교적 크게 변하는 부하로서, 초기에 높은 전압 및 낮은 전류가 필요하고 시간이 지날수록 낮은 전압의 큰 전류를 필요로 하는 부하이다.In the CVD process for silicon crystal growth, a process is performed for about 72 hours. When the first tungsten wire is put into the reactor and the current is maintained at 1000 to 1200 degrees, the silicon molecules in the chlorosilane or trichloride silane gas adhere to the tungsten surface. To grow. Therefore, the round rod-shaped silicon becomes thicker with time, and finally a silicon ingot is obtained. Here, the load is shown as a net resistance load, and as shown in FIG. 1, as the diameter increases, the current increases and the voltage decreases. In other words, it is a load whose equivalent resistance changes relatively with time, and requires a high voltage and a low current at an initial stage and a large current with a low voltage as time passes.
도 2는 종래 기술에 따른 CVD 장치용 전원 장치의 블록 구성도로서, 동 도면에 도시된 바와 같이, 입력 전원을 절연 변압하여 다단으로 출력하는 절연 변압기(210), 및 상기 다단 출력을 각기 단속하여 부하(R1~R4)로 전달하는 탭 절환 스위치(220)를 포함한다. 참고로, 도 2는 설명의 중복을 피하기 위해 각상의 구성이 동일한 3상 변압기 중 1상의 구성만을 도시한 것이다.FIG. 2 is a block diagram of a power supply device for a CVD apparatus according to the prior art. As shown in the drawing, an isolation transformer 210 which insulates and transforms an input power and outputs it in multiple stages, It includes a tap-changing switch 220 to transfer to the load (R1 ~ R4). For reference, FIG. 2 illustrates only one phase configuration of a three-phase transformer having the same phase configuration in order to avoid duplication of description.
도 1의 부하 조건을 만족하기 위해, 초기에 제 1 스위치(S221)을 도통시킴으로써 Tap1을 통하여 부하(R1-R4)에 전력을 공급하게 된다. 시간이 지남에 따라 필요 전압이 낮아 지고, 전류는 높아지게 된다. 부하 필요 전압이 Tap2에 도달하게 되면 제 1 스위치(S221)를 정지시키고, 제 2 스위치(S222)를 도통시킴으로써 Tap2를 사용하게 된다. 같은 방식으로 Tap5까지 순차 전환하게 된다. In order to satisfy the load condition of FIG. 1, power is supplied to the loads R1-R4 through Tap1 by initially conducting the first switch S221. Over time, the required voltage is lowered and the current is higher. When the load required voltage reaches Tap2, the first switch S221 is stopped and the second switch S222 conducts Tap2. In the same way, it will switch sequentially to Tap5.
그러나, 도 2의 장치는 초기에 부하(R1-R4)가 필요로 하는 전압 3500V를 공급하기 위한 제 1 스위치(S221)의 전압 사양이 높아지는 단점을 갖게 된다. 즉, 도 2의 탭 절환 스위치(220)의 각 스위치(S221-S225)는 도 3에 도시된 바와 같이 양방향 SCR 스위치로 구성되고, 각 스위치의 정격 전압은 통상 사용 전압의 2.5배 정도로 선정하게 되는데, 제 1 스위치(S221)를 위하여 약 7000[V]급 이상의 높은 정격 전압을 갖는 양방향 SCR 스위치를 구성하는 것은 쉽지 않다. 따라서, 높은 부하 요구 전압으로 인해 스위치의 절연 신뢰성이 저하되는 등의 문제가 발생할 수 있고, 나아가 전원 장치의 신뢰성에 문제가 있을 수 있다.However, the apparatus of FIG. 2 initially has the disadvantage that the voltage specification of the first switch S221 for supplying the voltage 3500V required by the loads R1-R4 is high. That is, each switch (S221-S225) of the tap-change switch 220 of Figure 2 is composed of a bi-directional SCR switch as shown in Figure 3, the rated voltage of each switch is selected to about 2.5 times the normal use voltage. For the first switch S221, it is not easy to configure a bidirectional SCR switch having a high rated voltage of about 7000 [V] or more. Therefore, a problem such as a decrease in the insulation reliability of the switch due to the high load demand voltage may occur, and furthermore, there may be a problem in the reliability of the power supply device.
본 개시는 상술된 종래의 문제점을 해결하기 위한 것으로, 그 목적은 기존보다 낮은 정격 전압의 탭 절환 스위치를 사용하여도 실리콘 결정 성장을 위한 CVD 공정의 부하 특성을 만족하면서 스위치의 신뢰성을 유지할 수 있도록 하는 화학 기상 증착 장치용 전원 장치 및 그것의 스위칭 제어 방법을 제공하는 것이다.The present disclosure is to solve the above-mentioned conventional problems, and its purpose is to maintain the reliability of the switch while satisfying the load characteristics of the CVD process for silicon crystal growth even when using a tap-change switch of a lower rated voltage than conventional ones. To provide a power supply for a chemical vapor deposition apparatus and its switching control method.
전술한 목적을 달성하기 위해 본 발명의 일 측면에 따른 화학 기상 증착 장치용 전원 장치는, 입력 전원을 절연 변압하여 다단으로 출력하는 절연 변압기; 상기 다단 출력을 각기 단속하는 탭 절환 스위치; 상기 절연 변압기의 2차측 권선의 도트 방향과 다른 도트 방향의 2차측 권선을 갖는 보조 변압기; 상기 보조 변압기의 상기 2차측 권선의 일단에 일단이 연결된 제 1 스위치; 상기 절연 변압기의 상기 2차측 권선의 일단과 상기 제 1 스위치의 타단과의 사이에 연결된 제 2 스위치; 및 상기 제 1 및 제 2 스위치의 공통접속점과 부하들간의 공통 접속점과의 사이에 연결된 제 3 스위치를 포함할 수 있고, 상기 제 1 내지 제 3 스위치 및 상기 탭 절환 스위치의 스위칭을 제어하는 스위칭 제어부를 포함할 수 있다.In order to achieve the above object, a power supply apparatus for a chemical vapor deposition apparatus according to an aspect of the present invention, the isolation transformer for transforming the input power to output in multiple stages; A tap-change switch for respectively intermitting the multi-stage outputs; An auxiliary transformer having a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer; A first switch having one end connected to one end of the secondary winding of the auxiliary transformer; A second switch connected between one end of the secondary winding of the isolation transformer and the other end of the first switch; And a third switch connected between the common connection point of the first and second switches and the common connection point between the loads, and a switching control unit controlling switching of the first to third switches and the tap change switch. It may include.
상기 제 1 스위치, 상기 제 2 스위치, 및 상기 탭 절환 스위치는 양방향 SCR(Silicon-C0ntrolled Rectifier Thyristor)로 구성될 수 있고, 상기 제 3 스위치는 기계적 스위치로 구성될 수 있으며, 상기 부하들은 상기 보조 변압기의 상기 2차측 권선의 타단과 상기 절연 변압기의 2차측 권선의 타단과의 사이에 연결될 수 있다.The first switch, the second switch, and the tap-changing switch may be configured as a bidirectional SCR (Silicon-C0ntrolled Rectifier Thyristor), the third switch may be configured as a mechanical switch, and the loads may include the auxiliary transformer. It may be connected between the other end of the secondary side winding of and the other end of the secondary side winding of the isolation transformer.
전술한 목적을 달성하기 위해 본 발명의 다른 측면에 따른 화학 기상 증착 장치용 전원 장치의 스위칭 제어 방법은, 상술된 바와 같이 구성된 화학 기상 증착 장치용 전원 장치에서, 상기 스위치들의 스위칭을 제어하는 방법에 있어서, 상기 제 1 내지 제 3 스위치를 턴-온하고 나머지 스위치는 턴-오프하는 제 1 스위칭 단계; 및 상기 탭 절환 스위치 중 최상위 출력을 단속하는 스위치부터 최하위 출력을단속하는 스위치까지 순차적으로 턴-온하고 나머지 스위치는 턴-오프하는 제 2 스위칭 단계를 포함할 수 있다.In order to achieve the above object, a switching control method of a power supply for a chemical vapor deposition apparatus according to another aspect of the present invention, in the power supply for a chemical vapor deposition apparatus configured as described above, in the method for controlling the switching of the switches A first switching step of turning on the first to third switches and turning off the remaining switches; And a second switching step of sequentially turning on from the switch intermittent to the lowest output among the tap change switches to the switch intermittent to the lowest output and turning off the remaining switches.
이상에서 설명한 바와 같이 본 발명의 다양한 측면에 따르면, 기존보다 낮은 정격 전압의 탭 절환 스위치를 사용하여도 실리콘 결정 성장을 위한 CVD 공정의 부하 특성을 만족하면서 스위치의 고 신뢰성을 유지할 수 있으며, 이로 인해 전원 장치의 생산 비용은 낮추고 신뢰성은 향상하는 효과가 창출된다.As described above, according to various aspects of the present invention, even when using a tap-change switch having a lower rated voltage than the conventional one, it is possible to maintain the high reliability of the switch while satisfying the load characteristics of the CVD process for silicon crystal growth. The effect is to lower the production cost of the power supply and improve the reliability.
도 1은 CVD 장치 반응기에서의 부하 특성을 나타내는 도면,1 shows load characteristics in a CVD apparatus reactor,
도 2는 종래 기술에 따른 CVD 장치용 전원 장치의 구성도,2 is a configuration diagram of a power supply apparatus for a CVD apparatus according to the prior art,
도 3는 도 2의 탭 절환 스위치의 각 스위치의 구성도,3 is a configuration diagram of each switch of the tap changeover switch of FIG. 2;
도 4는 본 발명의 일 실시예에 따른 CVD 장치용 전원 장치의 구성도,4 is a configuration diagram of a power supply device for a CVD apparatus according to an embodiment of the present invention;
도 5 내지 도 9는 도 4의 각 스위치의 스위칭 제어에 따른 등가 회로도이다.5 to 9 are equivalent circuit diagrams of switching control of each switch of FIG. 4.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
도 4는 본 발명의 일 실시예에 따른 CVD 장치용 전원 장치의 구성도로서, 동도면에 도시된 바와 같이, 절연 변압기(410), 탭 절환 스위치(420), 보조 변압기(430), 제 1 내지 제 3 스위치(440,450,460), 부하(470), 및 스위칭 제어부(480)를 포함한다.4 is a configuration diagram of a power supply device for a CVD apparatus according to an embodiment of the present invention. As shown in the same drawing, an isolation transformer 410, a tap change switch 420, an auxiliary transformer 430, and a first transformer are shown. To third switches 440, 450, 460, load 470, and switching controller 480.
상기 절연 변압기(410)는 1차측의 입력 전원을 절연 변압하여 2차측에서 다단으로 출력하는 것으로, 예를 들어 2차측에 구성된 다단의 출력 탭은 1750V/557A의 출력 탭(Tap2), 870V/1307A의 출력 탭(Tap3), 480V/2297A의 출력 탭(Tap4), 및 270V/3047A의 출력 탭(Tap5)을 포함한다.The isolation transformer 410 insulates and transforms the input power of the primary side to output in multiple stages at the secondary side. For example, the output tap of the multiple stages configured at the secondary side has an output tap (Tap2) of 1750V / 557A, 870V / 1307A. Output taps (Tap3), output taps (Tap4) of 480V / 2297A, and output taps (Tap5) of 270V / 3047A.
상기 탭 절환 스위치(420)는 상기 절연 변압기(410)의 2차측의 다단 출력을 각기 단속하기 위한 것으로, 예를 들어 첫 번째 출력 탭(Tap2)의 출력을 단속하는 스위치(S4), 두 번째 출력 탭(Tap3)의 출력을 단속하는 스위치(S5), 세 번째 출력 탭(Tap4)의 출력을 단속하는 스위치(S6), 및 네 번째 출력 탭(Tap5)의 출력을 단속하는 스위치(S7)를 포함하며, 이 스위치들(S4~S7)은 양방향 SCR로 구성될 수 있다.The tap-changing switch 420 is to control the multi-stage output of the secondary side of the isolation transformer 410, respectively, for example, the switch (S4), the second output to control the output of the first output tap (Tap2) And a switch S5 for regulating the output of the tap Tap3, a switch S6 for regulating the output of the third output tap Tap4, and a switch S7 for regulating the output of the fourth output tap Tap5. The switches S4 to S7 may be configured as bidirectional SCRs.
상기 보조 변압기(430)는 상기 절연 변압기(410)의 2차측 권선의 도트 방향과 다른 도트 방향의 2차측 권선을 가지며, 그 2차측 권선은 1750V/557A의 출력 탭(Tap1)을 포함한다.The auxiliary transformer 430 has a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer 410, and the secondary winding includes an output tap Tap1 of 1750V / 557A.
상기 제 1 스위치(S1, 440)는 일단(예컨대, 입력단)이 상기 보조 변압기(430)의 상기 2차측 권선의 출력 탭(Tap1)의 일단에 연결되고 타단(예컨대, 출력단)은 상기 제 2 스위치(S2, 450)의 출력단에 연결되며, 예를 들어 양방향 SCR로 구성될 수 있다.The first switch S1, 440 has one end (eg, an input end) connected to one end of an output tap Tap1 of the secondary winding of the auxiliary transformer 430, and the other end (eg, an output end) is connected to the second switch. It is connected to the output terminal (S2, 450), for example, may be configured as a bidirectional SCR.
상기 제 2 스위치(S2, 450)는 일단(예컨대, 입력단)이 상기 절연 변압기(410)의 2차측 권선의 출력 탭(Tap2)의 일단에 연결되고 타단(예컨대, 출력단)은 상기 제 1 스위치(S1, 440)의 출력단에 연결되어 있으며, 예를 들어 양방향 SCR로 구성될 수 있다.One end (eg, an input end) of the second switches S2 and 450 is connected to one end of the output tap Tap2 of the secondary winding of the isolation transformer 410, and the other end (eg, an output end) of the second switch S2 and 450 is connected to the first switch ( It is connected to the output terminal of S1, 440, for example, may be configured as a bidirectional SCR.
상기 제 3 스위치(S3, 460)는, 일단이 상기 제 1 스위치(S1, 440)와 상기 제 2 스위치(S2, 450)의 공통 출력단에 연결되고, 타단은 부하들(R1~R4, 470)간의 공통 접속점(즉, R2와 R3간의 접속점)에 연결되며, 예를 들어 VCB(Vacuum Circuit Break)와 같은 기계적 스위치로 구성될 수 있다.One end of the third switch S3 and 460 is connected to the common output terminal of the first switch S1 and 440 and the second switch S2 and 450, and the other end of the loads R1 to R4 and 470. It is connected to a common connection point (i.e., a connection point between R2 and R3), and may be constituted by a mechanical switch such as, for example, a vacuum circuit break (VCB).
상기 부하(470)는, 예를 들어, 상기 보조 변압기(430)의 2차측 권선의 타단과 상기 절연 변압기(410)의 2차측 권선의 타단과의 사이에 연결되고, 서로 직렬 연결된 R1~R4의 4개의 부하를 포함할 수 있으며, 본 실시예에서 상기 각 부하(R1~R4)는 실리콘 기둥이 될 수 있다.The load 470 is connected between, for example, the other end of the secondary winding of the auxiliary transformer 430 and the other end of the secondary winding of the isolation transformer 410, and is connected in series with each other. Four loads may be included, and in this embodiment, each of the loads R1 to R4 may be a silicon pillar.
상기 스위칭 제어부(480)는 상기 제 1 스위치(S1,440), 상기 제 2 스위치(S2,450), 상기 제 3 스위치(S3, 460) 및 상기 탭 절환 스위치(420, S4~S7)의 스위칭을 제어한다.The switching controller 480 is configured to switch the first switch (S1, 440), the second switch (S2, 450), the third switch (S3, 460), and the tap change switch (420, S4 to S7). To control.
이어, 본 발명의 일 실시예에 따른 화학 기상 증착 장치용 전원 장치의 스위칭 제어 방법에 대해 설명하되, 도 5 내지 도 9를 참조하여 도 4의 전원 장치의 동작과 병행하여 설명한다. Next, a switching control method of a power supply apparatus for a chemical vapor deposition apparatus according to an embodiment of the present invention will be described, but will be described in parallel with the operation of the power supply apparatus of FIG. 4 with reference to FIGS.
도 5 내지 도 9는 도 4의 각 스위치의 스위칭 제어에 따른 등가 회로도이다.5 to 9 are equivalent circuit diagrams of switching control of each switch of FIG. 4.
도 1의 step1과 같은 초기에는, 스위칭 제어부(480)의 제어에 따라 S1, S2 및 S3의 스위치를 턴-온하고 나머지 스위치를 턴-오프하면, 도 5에 도시된 바와 같이 R1R2의 양단에 Tap1의 출력전압인 1750V가 인가되고, R3R4의 양단에 Tap2의 출력전압인 1750V가 인가되며, 결과적으로 부하(R1R2R3R4)의 양단에 3500V가 인가된다.Initially as in step 1 of FIG. 1, when the switches of S1, S2, and S3 are turned on and the other switches are turned off under the control of the switching controller 480, Tap1 at both ends of R1R2 as shown in FIG. 5. The output voltage of 1750V is applied, and the output voltage of Tap2 is applied to both ends of R3R4, and as a result, 3500V is applied to both ends of the load R1R2R3R4.
이어 도 1의 step2의 시점에서, 스위칭 제어부(480)의 제어에 따라 탭 절환 스위치(420) 중 최상위 출력을 단속하는 S4의 스위치만 턴-온하고 나머지 스위치를 턴-오프하면, 도 6에 도시된 바와 같이 부하(R1R2R3R4)의 양단에 Tap2의 출력 전압인 1750V가 인가된다.Subsequently, at the time of step 2 of FIG. 1, when only the switch of S4 which intercepts the highest output of the tap changeover switch 420 is turned on and the other switches are turned off under the control of the switching controller 480, the switch shown in FIG. 6 is turned on. As shown, the output voltage of Tap2, 1750 V, is applied across the load R1R2R3R4.
이어 도 1의 step3의 시점에서, 스위칭 제어부(480)의 제어에 따라 탭 절환 스위치(420) 중 차상위 출력을 단속하는 S5의 스위치만 턴-온하고 나머지 스위치를 턴-오프하면, 도 7에 도시된 바와 같이 부하(R1R2R3R4)의 양단에 Tap3의 출력 전압인 870V가 인가된다.Subsequently, at the time of step 3 of FIG. 1, when only the switch of S5 which controls the next higher output of the tap changeover switch 420 is turned on and the other switches are turned off, under the control of the switching controller 480, the switch is turned off. As described above, the output voltage of Tap3, 870V, is applied to both ends of the load R1R2R3R4.
이어 도 1의 step4의 시점에서, 스위칭 제어부(480)의 제어에 따라 탭 절환 스위치(420) 중 차차상위 출력을 단속하는 S6의 스위치만 턴-온하고 나머지 스위치를 턴-오프하면, 도 8에 도시된 바와 같이 부하(R1R2R3R4)의 양단에 Tap4의 출력 전압인 480V가 인가된다.Subsequently, at the time of step 4 of FIG. 1, if only the switch of S6 which controls the next higher output of the tap changeover switch 420 is turned on and the other switches are turned off, under the control of the switching controller 480, the switch of FIG. 8 is turned off. As shown, 480V, which is an output voltage of Tap4, is applied to both ends of the load R1R2R3R4.
마지막으로 도 1의 step5의 시점에서, 스위칭 제어부(480)의 제어에 따라 탭 절환 스위치(420) 중 최하위 출력을 단속하는 S7의 스위치만 턴-온하고 나머지 스위치를 턴-오프하면, 도 9에 도시된 바와 같이 부하(R1R2R3R4)의 양단에 Tap5의 출력 전압인 270V가 인가된다.Finally, at the time of step5 of FIG. 1, when only the switch of S7 which intercepts the lowest output of the tap changeover switch 420 is turned on and the other switches are turned off under the control of the switching controller 480, FIG. As shown, the output voltage of Tap5, 270V, is applied across the load R1R2R3R4.
이상 설명한 바와 같이, 도 1의 step1과 같은 초기 시점에는 부하(R1R2R3R4)에 3500V의 고전압을 제공하여야 하는데, 도 2의 종래 전원 장치에 따르면 초기 스위치 S221에 최상위 전압 3500V가 모두 걸리는 반면, 도 4의 본 발명의 전원 장치에 따르면 초기 스위치 S1,S2에 최상위 전압의 절반인 1750V만이 걸리므로 기존과 비교하여 제공 전압은 동일하게 하면서도 스위치 사양은 낮출 수 있다.As described above, a high voltage of 3500 V should be provided to the load R1R2R3R4 at an initial time point such as step 1 of FIG. 1. According to the conventional power supply device of FIG. 2, all the highest voltages 3500 V are applied to the initial switch S221. According to the power supply device of the present invention, since the initial switches S1 and S2 take only 1750V, which is half of the highest voltage, the switch specification can be lowered while the supply voltage is the same as in the related art.
따라서, 본 발명의 일 측면에 따른 화학 기상 증착 장치용 전원 장치 및 그것의 스위칭 제어 방법은 실리콘 결정 성장을 위한 CVD 장치에 적용되어, 기존보다 낮은 정격 전압의 초기 스위치를 사용하여도 실리콘 결정 성장을 위한 CVD 공정의 부하 특성을 만족하면서 스위치의 고 신뢰성을 유지할 수 있으며, 이로 인해 전원 장치의 생산 비용은 낮추고 신뢰성은 향상하는 효과가 발생하는 매우 유용한 발명이다.Therefore, the power supply for a chemical vapor deposition apparatus and its switching control method according to an aspect of the present invention is applied to a CVD apparatus for silicon crystal growth, so that silicon crystal growth can be achieved by using an initial switch having a lower rated voltage than the conventional one. It is possible to maintain the high reliability of the switch while satisfying the load characteristics of the CVD process, which is a very useful invention that lowers the production cost of the power supply and improves the reliability.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.In the above description, it is described that all the components constituting the embodiments of the present invention are combined or operated in one, but the present invention is not necessarily limited to these embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, although all of the components may be implemented as one independent hardware, each or some of the components of the program modules are selectively combined to perform some or all of the functions combined in one or a plurality of hardware It may be implemented as a computer program having a. Codes and code segments constituting the computer program may be easily inferred by those skilled in the art. Such a computer program may be stored in a computer readable storage medium and read and executed by a computer, thereby implementing embodiments of the present invention. The storage medium of the computer program may include a magnetic recording medium, an optical recording medium, a carrier wave medium, and the like.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2010년 03월 08일 한국에 출원한 특허출원번호 제 10-2010-0020377 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority under No. 119 (a) (35 USC § 119 (a)) of the US Patent Act No. 10-2010-0020377 filed with Korea on March 08, 2010. All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason as above for a country other than the United States, all the contents thereof are incorporated into this patent application by reference.

Claims (6)

  1. 입력 전원을 절연 변압하여 다단으로 출력하는 절연 변압기; An isolation transformer for transforming the input power into output in multiple stages;
    상기 다단 출력을 각기 단속하는 탭 절환 스위치;A tap-change switch for respectively intermitting the multi-stage outputs;
    상기 절연 변압기의 2차측 권선의 도트 방향과 다른 도트 방향의 2차측 권선을 갖는 보조 변압기;An auxiliary transformer having a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer;
    상기 보조 변압기의 상기 2차측 권선의 일단에 일단이 연결된 제 1 스위치;A first switch having one end connected to one end of the secondary winding of the auxiliary transformer;
    상기 절연 변압기의 상기 2차측 권선의 일단과 상기 제 1 스위치의 타단과의 사이에 연결된 제 2 스위치; 및A second switch connected between one end of the secondary winding of the isolation transformer and the other end of the first switch; And
    상기 제 1 및 제 2 스위치의 공통접속점과 부하들간의 공통 접속점과의 사이에 연결된 제 3 스위치A third switch connected between the common connection point of the first and second switches and the common connection point between the loads;
    를 포함하는 화학 기상 증착 장치용 전원 장치.Power supply for chemical vapor deposition apparatus comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 스위치, 상기 제 2 스위치, 및 상기 탭 절환 스위치는 양방향 SCR(Silicon-C0ntrolled Rectifier Thyristor)로 구성된 것을 특징으로 하는 화학 기상 증착 장치용 전원 장치.And wherein the first switch, the second switch, and the tap change switch comprise a bidirectional SCR (Silicon-C0ntrolled Rectifier Thyristor).
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제 3 스위치는 기계적 스위치로 구성된 것을 특징으로 하는 화학 기상 증착 장치용 전원 장치.And said third switch comprises a mechanical switch.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 부하들은 상기 보조 변압기의 상기 2차측 권선의 타단과 상기 절연 변압기의 상기 2차측 권선의 타단과의 사이에 연결된 것을 특징으로 하는 화학 기상 증착 장치용 전원 장치.And the loads are connected between the other end of the secondary winding of the auxiliary transformer and the other end of the secondary winding of the isolation transformer.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 내지 제 3 스위치 및 상기 탭 절환 스위치의 스위칭을 제어하는 스위칭 제어부를 포함하는 것을 특징으로 하는 화학 기상 증착 장치용 전원 장치.And a switching control unit for controlling the switching of the first to third switches and the tap changer switch.
  6. 입력 전원을 절연 변압하여 다단으로 출력하는 절연 변압기; 상기 다단 출력을 각기 단속하는 탭 절환 스위치; 상기 절연 변압기의 2차측 권선의 도트 방향과 다른 도트 방향의 2차측 권선을 갖는 보조 변압기; 상기 보조 변압기의 상기 2차측 권선의 일단에 일단이 연결된 제 1 스위치; 상기 절연 변압기의 상기 2차측 권선의 일단과 상기 제 1 스위치의 타단과의 사이에 연결된 제 2 스위치; 및 상기 제 1 및 제 2 스위치의 공통접속점과 부하들간의 공통 접속점과의 사이에 연결된 제 3 스위치를 포함하는 화학 기상 증착 장치용 전원 장치에서, 상기 스위치들의 스위칭을 제어하는 방법에 있어서,An isolation transformer for transforming the input power into output in multiple stages; A tap-change switch for respectively intermitting the multi-stage outputs; An auxiliary transformer having a secondary winding in a dot direction different from the dot direction of the secondary winding of the isolation transformer; A first switch having one end connected to one end of the secondary winding of the auxiliary transformer; A second switch connected between one end of the secondary winding of the isolation transformer and the other end of the first switch; And a third switch connected between a common connection point of the first and second switches and a common connection point between the loads, the method of controlling switching of the switches, comprising:
    상기 제 1 내지 제 3 스위치를 턴-온하고 나머지 스위치는 턴-오프하는 제 1 스위칭 단계; 및A first switching step of turning on the first to third switches and turning off the remaining switches; And
    상기 탭 절환 스위치 중 최상위 출력을 단속하는 스위치부터 최하위 출력을단속하는 스위치까지 순차적으로 턴-온하고 나머지 스위치는 턴-오프하는 제 2 스위칭 단계A second switching step of sequentially turning on from the switch regulating the highest output to the switch regulating the lowest output among the tap-change switches and turning off the remaining switches
    를 포함하는 화학 기상 증착 장치용 전원 장치의 스위칭 제어 방법.Switching control method of a power supply for a chemical vapor deposition apparatus comprising a.
PCT/KR2011/001549 2010-03-08 2011-03-07 Power source device for a chemical vapour deposition device and a method for controlling the same WO2011111960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800132753A CN102934342A (en) 2010-03-08 2011-03-07 Power source device for chemical vapour deposition device and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0020377 2010-03-08
KR1020100020377A KR101122215B1 (en) 2010-03-08 2010-03-08 Power Supply Apparatus for Chemical Vapor Deposition Apparatus and Method of controlling the same

Publications (1)

Publication Number Publication Date
WO2011111960A1 true WO2011111960A1 (en) 2011-09-15

Family

ID=44563699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001549 WO2011111960A1 (en) 2010-03-08 2011-03-07 Power source device for a chemical vapour deposition device and a method for controlling the same

Country Status (3)

Country Link
KR (1) KR101122215B1 (en)
CN (1) CN102934342A (en)
WO (1) WO2011111960A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389457B1 (en) * 2012-12-04 2014-04-28 김종구 Overlap control power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108121A (en) * 1982-12-14 1984-06-22 Tokyo Denshi Kogyo Kk Adjusting device of alternating current voltage
JPH09305243A (en) * 1996-05-13 1997-11-28 Seikun Imoto Voltage controller
JPH11134040A (en) * 1997-10-28 1999-05-21 Nissin High Voltage Co Ltd Power unit for high-potential part
KR20030031802A (en) * 2001-10-16 2003-04-23 삼성전자주식회사 Digital Image signal Receiver capable of selectively outputting/amplifying digital image signal to be displayed
JP2009105585A (en) * 2007-10-23 2009-05-14 Toa Corp Audio power amplifier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346562C (en) * 2004-01-19 2007-10-31 南京航空航天大学 Transformer clamping zero voltage switch three level full bridge converter and its expansion circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108121A (en) * 1982-12-14 1984-06-22 Tokyo Denshi Kogyo Kk Adjusting device of alternating current voltage
JPH09305243A (en) * 1996-05-13 1997-11-28 Seikun Imoto Voltage controller
JPH11134040A (en) * 1997-10-28 1999-05-21 Nissin High Voltage Co Ltd Power unit for high-potential part
KR20030031802A (en) * 2001-10-16 2003-04-23 삼성전자주식회사 Digital Image signal Receiver capable of selectively outputting/amplifying digital image signal to be displayed
JP2009105585A (en) * 2007-10-23 2009-05-14 Toa Corp Audio power amplifier

Also Published As

Publication number Publication date
KR20110101400A (en) 2011-09-16
KR101122215B1 (en) 2012-03-20
CN102934342A (en) 2013-02-13

Similar Documents

Publication Publication Date Title
US7851943B2 (en) Direct current power transmission and distribution system
EP3242389B1 (en) Power supply device for sub-module controller of mmc converter
EP3242387B1 (en) Power control apparatus for sub-module of mmc converter
US8810978B2 (en) Superconducting fault current limiter for suppressing bus voltage drop in electric power system
WO2016108571A1 (en) Power supply apparatus for sub-module of mmc
WO2010085005A1 (en) Automatic voltage regulator and toroidal transformer
US7969265B2 (en) Zigzag autotransformer apparatus and methods
CN111478262A (en) Online ice melting device based on linear transformer
KR20100102543A (en) Device for igniting and starting silicon rods
US8441146B2 (en) Power supply arrangement with a first voltage supply device and a second voltage supply device
CN1212061A (en) Method and device for automatically switching three-phase voltage for power-saving transformer
WO2018074653A1 (en) Method for operating semiconductor transformer by using auxiliary power source and dc/dc converter using same
KR100214934B1 (en) Ac power controlling equipment
WO2011111960A1 (en) Power source device for a chemical vapour deposition device and a method for controlling the same
CN210839058U (en) Double-power switching device
US20130293010A1 (en) Current supply arrangement with a first and a second current supply device, wherein the second current supply device is connected to the first current supply device
EP2572016B1 (en) Apparatus and method for supplying electric power to a cvd-reactor
US8531262B2 (en) Multi-site spare 3-phase transformer
US7859376B2 (en) Zigzag autotransformer apparatus and methods
CN113823498A (en) Power supply circuit of polycrystalline silicon reduction furnace and control method thereof
WO2017023084A1 (en) Upfc device having one transformer
WO2009134016A2 (en) Automatic voltage regulator
CN103795065B (en) A kind of transformer station's power compensating device and power compensating method
KR100575242B1 (en) Voltage compensation apparatus
CN110616418A (en) Control method of tubular PECVD (plasma enhanced chemical vapor deposition) equipment and tubular PECVD equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013275.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753565

Country of ref document: EP

Kind code of ref document: A1