WO2011111826A1 - Mold release film and method for manufacturing mold release film - Google Patents

Mold release film and method for manufacturing mold release film Download PDF

Info

Publication number
WO2011111826A1
WO2011111826A1 PCT/JP2011/055798 JP2011055798W WO2011111826A1 WO 2011111826 A1 WO2011111826 A1 WO 2011111826A1 JP 2011055798 W JP2011055798 W JP 2011055798W WO 2011111826 A1 WO2011111826 A1 WO 2011111826A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
surface layer
film
release
layer
Prior art date
Application number
PCT/JP2011/055798
Other languages
French (fr)
Japanese (ja)
Inventor
洋祐 中尾
弘丈 松本
靖志 五藤
雅弘 土谷
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201180013457.0A priority Critical patent/CN102791480B/en
Priority to KR1020127026625A priority patent/KR101873071B1/en
Priority to JP2011513562A priority patent/JP5719290B2/en
Publication of WO2011111826A1 publication Critical patent/WO2011111826A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a release film that is excellent in releasability, excellent in followability to a substrate surface, and can suppress the flow of adhesive during hot press molding.
  • a release film is used when a copper-clad laminate or a copper foil is hot-pressed on a board via a prepreg or a heat-resistant film.
  • the cover lay film is hot-press bonded to the flexible printed circuit board body on which the copper circuit is formed with a thermosetting adhesive or a thermosetting adhesive sheet
  • Release films are widely used to prevent the hot press plate from adhering.
  • release film for example, heat resistance that can withstand hot press molding, release properties for printed wiring boards and hot press plates, ease of disposal, and the like are required.
  • non-contamination to the copper circuit is also important for improving the product yield during hot press molding.
  • a fluorine-based film As a release film, a fluorine-based film, a silicone-coated polyethylene terephthalate film, a polymethylpentene film, a polypropylene film, and the like have been used (for example, Patent Document 1).
  • the fluorine-based film is excellent in heat resistance, releasability, and non-contamination, but is expensive and hardly burns when incinerated in the disposal process, and generates toxic gas.
  • the silicone-coated polyethylene terephthalate film and the polymethylpentene film may cause contamination of a printed wiring board, particularly a copper circuit, due to migration of a low molecular weight substance in silicone or a constituent component, and may impair quality.
  • a polypropylene film is inferior in heat resistance, and its mold release property is also insufficient.
  • release films made of polyester resins such as polybutylene terephthalate have been studied. Such release films are excellent in heat resistance, ease of disposal, and non-contamination, but release. There is room for improvement in terms of sex.
  • the applicant of the present application invented a release film composed of a polyester-based resin and a predetermined amount of polypropylene as a release film having excellent non-contamination properties and excellent release properties. Is disclosed.
  • the release film is subjected to heat treatment. Is effective. However, such heat treatment is performed at a high temperature and requires a long time, which may increase the cost.
  • the release film subjected to heat treatment is reduced in flexibility as a whole film, the followability to the unevenness of the substrate surface (embedding property) is reduced, for example, a void is generated during hot press molding,
  • the adhesive formed on the coverlay film may flow out to the electrode portion of the flexible printed circuit board, which may cause problems such as an obstacle to the plating treatment of the electrode portion. Therefore, there is a demand for a release film having a further excellent releasability without impairing the ability to follow irregularities on the substrate surface.
  • An object of this invention is to provide the release film which is excellent in mold release property, is excellent in the followable
  • the first aspect of the present invention is a release film having a surface layer, wherein the release treatment layer is observed only in a region from the surface layer to a thickness of 50 to 300 nm.
  • this invention is a release film which has a surface layer containing a polyester-type resin, Comprising: In the area
  • the release film has a proportion of carbonyl groups oriented in parallel to 45% or more.
  • the third aspect of the present invention is a release film having a surface layer, wherein the surface layer has a surface roughness Rz of 250 to 450 nm, a surface distortion Rsk of +0.3 to +1.1, and a surface edge Rku of The release film is 5-11.
  • the present invention is described in detail below.
  • the inventors of the present invention have the following three surface layers: (1) a surface layer where a predetermined release treatment layer is observed, and (2) a ratio of carbonyl groups oriented parallel to the plane satisfies a predetermined range.
  • the release film having any one of the surface layer and (3) the surface roughness Rz, the surface distortion Rsk, and the surface edge Rku satisfying a predetermined range does not impair the followability to the substrate surface.
  • the present inventors have found that an excellent release property can be exhibited at the same time while suppressing the flow of the adhesive during hot press molding, and have completed the present invention.
  • the release film of the first aspect of the present invention has a surface layer, and the release treatment layer is observed only in a region from the surface of the surface layer to a thickness of 50 to 300 nm.
  • the release treatment layer means a layer having an appearance different from that of other regions in the surface layer and excellent in releasability.
  • the release treatment layer includes not only a case where the entire layer has a uniform appearance, but also a portion having a part having a different appearance as a whole. This includes cases where
  • 1, 2 and 3 are cross-sectional views schematically showing a part of the surface layer of the release film of the first invention. 1, 2 and 3, the upper side is the surface of the surface layer, that is, the surface of the release film. A part of the surface layer shown in FIGS. 1, 2, and 3 has a release treatment layer 1 on the surface side where a streak pattern parallel to the surface is observed.
  • the other region 2 in the surface layer has a sand-like pattern
  • the other region 2 ′ in the surface layer has a spiral pattern
  • the other region 2 ′′ in the surface layer has other non-uniform patterns.
  • the release treatment layer observed in this way has a high density and acts as a barrier layer, the surface layer can suppress the penetration of the epoxy adhesive, for example, when in contact with the epoxy adhesive. it can. Therefore, the release film of the first aspect of the present invention can exhibit excellent release properties.
  • the method of observing the release treatment layer is not particularly limited, but a method of observing a cross section obtained by cutting in the thickness direction using a microtome or the like with a transmission electron microscope is preferable.
  • a method for observing the release treatment layer a method of observing a cross section obtained by cutting in the thickness direction using a microtome or the like with a polarizing microscope, an atomic force microscope, or the like may be used.
  • the transmission electron microscope is not particularly limited, and examples thereof include a Hitachi transmission electron microscope (model H-9500, manufactured by Hitachi High-Technology Corporation).
  • the microtome is not particularly limited, and examples thereof include a sliding microtome (model SM2000-R, manufactured by Ikeda Rika Co., Ltd.).
  • the release film of the first aspect of the present invention has a release treatment layer only in the region from the surface layer surface to a thickness of 50 to 300 nm. Unlike the conventional release film, the flexibility of the entire film can be maintained even if it has excellent release properties. Therefore, the release film of the first aspect of the present invention has excellent followability to the substrate surface, and can suppress the flow of adhesive during hot press molding.
  • the thickness of the release treatment layer is less than 50 nm from the surface of the surface layer, the surface layer cannot sufficiently suppress the penetration of the epoxy adhesive when contacting the epoxy adhesive, for example.
  • the release film thus obtained has a low release property.
  • the thickness of the release treatment layer exceeds 300 nm from the surface of the surface layer, the resulting release film is less flexible, the followability to the substrate surface is lowered, and the adhesive flows out during hot press molding. Is difficult to suppress.
  • the thickness of the release treatment layer is preferably 70 nm or more from the surface of the surface layer, and preferably 250 nm or less from the surface of the surface layer.
  • the release film of the second aspect of the present invention has a surface layer containing a polyester resin.
  • the proportion of carbonyl groups oriented parallel to the surface of the carbonyl groups contained in the polyester resin is 45%. That's it.
  • A represents the peak intensity of the carbonyl group oriented in parallel to the plane obtained by X-ray analysis
  • B represents the perpendicular to the plane obtained by X-ray analysis. It represents the peak intensity of the oriented carbonyl group.
  • being parallel or perpendicular to the surface means being parallel or perpendicular to the surface of the release film.
  • the release film of the second aspect of the present invention can exhibit excellent release properties. This is presumed to be because the hydrophobicity of the surface of the surface layer is increased by increasing the proportion of carbonyl groups oriented parallel to the surface in the region from the surface of the surface layer to a thickness of 1 ⁇ m.
  • the region in which the ratio of the carbonyl group oriented parallel to the surface is within the above range is a region from the surface of the surface layer to a thickness of 1 ⁇ m.
  • the release film of the second aspect of the present invention is excellent in followability to the substrate surface, and can suppress the flow of adhesive during hot press molding.
  • the ratio of the carbonyl group oriented in parallel to the plane is less than 45%, the hydrophobicity of the surface of the surface layer is lowered, so that the obtained release film has a reduced release property.
  • the proportion of carbonyl groups oriented parallel to the plane is preferably 55% or more.
  • the upper limit of the proportion of carbonyl groups oriented parallel to the plane is not particularly limited, and may be 100%, but is preferably 90% or less.
  • the proportion of carbonyl groups oriented parallel to the plane exceeds 90%, for example, the amount of work energy of friction treatment when producing a release film becomes too large, so that the obtained release film is wrinkled. Damage such as scratches may occur.
  • the proportion of carbonyl groups oriented parallel to the plane is more preferably 70% or less.
  • Examples of the method for performing the X-ray analysis include a method for measuring diffraction of X-rays obliquely incident on the surface of the surface layer (In-PLane).
  • the X-ray analysis apparatus for performing the X-ray analysis is not particularly limited, and examples thereof include a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation).
  • the release film of the third aspect of the present invention has a surface layer, and the surface layer has a lower limit of the surface roughness Rz of 250 nm.
  • the surface roughness Rz is less than 250 nm, the obtained surface layer becomes smooth, the contact area of the surface layer increases, and the releasability decreases.
  • a preferable lower limit of the surface roughness Rz is 280 nm.
  • the upper limit of the surface roughness Rz is 450 nm. When the surface roughness Rz exceeds 450 nm, the resulting surface layer has unevenness. For example, when used for adherends with high fluidity or flexibility such as epoxy adhesive, contact with the adherend The area increases and the releasability decreases.
  • the surface roughness Rz means that the surface height of the surface layer is Yp1, Yp2, Yp3, Yp4 and Yp5, which are the deepest from the highest peak to the fifth highest in the reference length L, respectively.
  • the elevation of the valley bottom from the valley bottom to the fifth depth is Yv1, Yv2, Yv3, Yv4 and Yv5, it means a value obtained by the following formula (2), and the larger the value, the rougher the surface, A smaller value means a smoother surface as a whole.
  • the lower limit of the surface distortion Rsk is +0.3.
  • the convex component of the obtained surface layer is decreased, the contact area of the surface layer is increased, the releasability is lowered, and the appearance of the obtained surface layer is poor.
  • a preferable lower limit of the surface distortion Rsk is +0.5, and a more preferable lower limit is +0.8.
  • the upper limit of the surface distortion Rsk is +1.1. When the surface distortion Rsk exceeds 1.1, the resulting surface layer has an increased convex component. For example, when used for an adherend having high fluidity or flexibility such as an epoxy adhesive, the adherend This increases the contact area with the material and causes a decrease in releasability.
  • the surface distortion Rsk means a value obtained by the following formula (3) when the root mean square roughness is Rq and the peak height is Yi, and is a positive value. If so, it means that there are many convex components with respect to the average line on the surface, and a negative value means there are many concave components with respect to the average line on the surface.
  • the surface layer has a lower limit of the surface edge Rku of 5.
  • the preferable lower limit of the surface sharpness Rku is 6, and the more preferable lower limit is 7.
  • the upper limit of the surface sharpness Rku is 11. When the surface sharpness Rku exceeds 11, the resulting surface layer becomes smooth and the contact area of the surface layer increases, and the releasability decreases.
  • the surface sharpness Rku means the value obtained by the following formula (4) when the root mean square roughness is Rq and the height of the mountain is Yi, and the value is large.
  • the convex shape becomes sharper, the flat portion with respect to the average line increases, and as the value decreases, the convex shape becomes gentler and the flat portion with respect to the average line decreases.
  • the release film of the first aspect of the present invention in order for the release treatment layer to be observed only in the region from the surface surface to a thickness of 50 to 300 nm, for example, surface treatment such as friction treatment on the surface layer. It is preferable to carry out. Moreover, in order to make the ratio of the carbonyl group oriented parallel to the plane in the release film of the second invention within the above range, the surface satisfying the above range in the release film of the third invention Similarly, in order to impart a surface shape such as roughness Rz, it is preferable to perform surface treatment such as friction treatment on the surface layer.
  • Ar represents an area (m 2 ) where the friction processing device performs friction processing
  • J represents a work amount per unit time (KJ / min) for friction processing
  • W is subjected to friction processing.
  • LS represents the line speed (m / min) of the film being rubbed.
  • the area Ar (m 2 ) on which the friction processing device performs friction processing is the area of the film on which the friction processing device performs friction processing.
  • the amount of work J (KJ / min) per unit time for the friction processing is the amount of load energy per unit time (the friction power source of the friction processing device generated by the friction processing device applying pressure to the film). It is obtained by multiplying the amount of applied load energy) and the number of times of friction treatment.
  • the width W (m) of the film to be subjected to friction processing is the width of the film to be subjected to friction processing by the friction processing device.
  • the line speed LS (m / min) of the film subjected to the friction treatment is a speed at which the film passes through the friction treatment apparatus.
  • the work energy En (KJ) When the work energy En (KJ) is less than 50 KJ, no release treatment layer is observed in the region from the surface surface to the thickness of 50 to 300 nm as described above, or the film is oriented parallel to the surface. In some cases, the ratio of the carbonyl group may not be within the above range, or the surface shape such as the surface roughness Rz that satisfies the above range may not be imparted, and the obtained release film It may not be possible to impart excellent releasability. When the amount of work energy En (KJ) exceeds 500 KJ, the resulting release film has reduced flexibility, followability to the substrate surface due to damage such as wrinkles and scratches, In some cases, the flow of adhesive during hot press molding cannot be sufficiently suppressed.
  • the friction treatment is more preferably performed such that the upper limit of the work energy amount En (KJ) represented by the above formula (5) is 300 KJ.
  • the fabric fiber used as the material of the surface of the friction treatment material has a preferable lower limit of tensile strength of 1.0 g / d and a preferable upper limit of 5.0 g / d.
  • the tensile strength of the fiber is less than 1.0 g / d, the fiber may be stretched in the friction treatment, and the fiber may adhere to the obtained release film. If the tensile strength of the fiber exceeds 5.0 g / d, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, causing the adhesive to flow out during hot press molding. May not be sufficiently suppressed.
  • the upper limit with more preferable tensile strength of the said fiber is 3.0 g / d.
  • the tensile strength of a fiber means the tensile strength of a single fiber obtained by a method based on JIS-L-1095.
  • the fiber has a preferred lower limit of elongation of 1% and a preferred upper limit of 30%.
  • the fiber When the elongation of the fiber is less than 1%, the fiber may be stretched in the friction treatment, and the fiber may adhere to the obtained release film. If the elongation of the fibers exceeds 30%, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, allowing the adhesive to flow out sufficiently during hot press molding. It may not be possible to suppress.
  • a more preferable upper limit of the elongation of the fiber is 29%.
  • the fiber elongation means the tensile elongation of a single fiber determined by a method based on JIS-L-1095.
  • the fiber include PET, rayon, cotton, wool, and acetate.
  • Rayon and wool are preferred because the attached fibers can be reduced.
  • the fabric used for the material of the friction treatment material has a preferable lower limit of the friction coefficient of 0.1 and a preferable upper limit of 0.8. If the friction coefficient of the woven fabric is less than 0.1, the release property of the obtained release film may be lowered. If the friction coefficient of the woven fabric exceeds 0.8, the resulting release film will be damaged, such as wrinkles and scratches, the followability to the substrate surface will be reduced, and the adhesive will flow sufficiently during hot press molding. May not be suppressed.
  • the minimum with a more preferable friction coefficient of the said textile fabric is 0.3, and a more preferable upper limit is 0.7.
  • the coefficient of friction of the fabric means the coefficient of friction of the fabric against a 2 mm polycarbonate plate obtained by a method according to JIS-K-7125.
  • the woven fabric has a preferable lower limit of the elastic modulus of 0.1 MPa and a preferable upper limit of 4.0 MPa.
  • the elastic modulus of the woven fabric is less than 0.1 MPa, the release property of the obtained release film may be lowered. If the elastic modulus of the woven fabric exceeds 4.0 MPa, the resulting release film will be damaged, such as wrinkles and scratches, the followability to the substrate surface will be reduced, and the adhesive will flow sufficiently during hot press molding May not be suppressed.
  • the more preferable lower limit of the elastic modulus of the woven fabric is 0.7 MPa, and the more preferable upper limit is 3.9 MPa.
  • the elastic modulus of the fabric means the hardness of the fabric obtained by a method according to JIS-K-7127.
  • the fabric has a preferred lower limit of tensile strength of 1.5 N / 10 mm and a preferred upper limit of 2.5 N / 10 mm. If the tensile strength of the woven fabric is less than 1.5 N / 10 mm, the fibers may be stretched in the friction treatment, and the fibers may adhere to the resulting release film. If the tensile strength of the woven fabric exceeds 2.5 N / 10 mm, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, causing the adhesive to flow out during hot press molding. May not be sufficiently suppressed.
  • the more preferable lower limit of the tensile strength of the woven fabric is 1.6 N / 10 mm, the more preferable upper limit is 2.3 N / 10 mm, and the still more preferable upper limit is 1.8 N / 10 mm.
  • the tensile strength of the fabric means the tensile strength of the fabric determined by a method according to JIS-K-7127.
  • the friction processing apparatus for performing the above-described friction processing is not particularly limited, and examples thereof include a polishing processing apparatus (model YCM-150M, manufactured by Yamagata Machine Co., Ltd.).
  • the surface layer contains a polyester resin.
  • the surface layer is not particularly limited, but preferably contains a polyester resin.
  • release film of the present invention when the release film of the present invention is simply referred to, it means that it corresponds to any of the first, second and third release films of the present invention.
  • the polyester resin is not particularly limited.
  • the obtained release film can exhibit excellent mechanical performance, in particular, excellent mechanical performance in a temperature range of about 170 ° C. in which normal hot press molding is performed.
  • the obtained release film reduces the environmental load during incineration and is economically advantageous.
  • the polyester resin has a small amount of low molecular weight components, the resulting release film is excellent in non-contaminating property, and the low molecular weight component bleed-out due to hot pressing causes plating defects on the electrode portion of the flexible printed circuit board. This problem can also be suppressed.
  • polyester-based resin for example, a crystalline aromatic polyester resin is preferable.
  • the said crystalline aromatic polyester resin is not specifically limited,
  • the crystalline aromatic polyester resin etc. which are obtained by making aromatic dicarboxylic acid or its ester-forming derivative, and low molecular weight aliphatic diol react are mentioned.
  • the crystalline aromatic polyester resin a crystalline aromatic polyester resin (hereinafter referred to as “polyester”) obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol and a high molecular weight diol.
  • a crystalline aromatic polyester resin having an ether skeleton in the main chain a crystalline aromatic polyester resin obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol;
  • Examples thereof include a crystalline aromatic polyester resin obtained by dissolving in caprolactone monomer and then ring-opening polymerization of caprolactone (hereinafter also referred to as “crystalline aromatic polyester resin having a polycaprolactone skeleton in the main chain”).
  • the release film obtained is more heat resistant than when a crystalline aromatic polyester resin obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol is used.
  • the crystalline aromatic polyester resin having a polyether skeleton in the main chain and the crystalline aromatic polyester resin having a polycaprolactone skeleton in the main chain are preferable because they are excellent in flexibility and releasability while maintaining the above.
  • aromatic dicarboxylic acid or its ester-forming derivative examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, paraphenylene dicarboxylic acid, dimethyl terephthalate, dimethyl isophthalate, dimethyl orthophthalate, dimethyl naphthalenedicarboxylate, And dimethyl paraphenylene dicarboxylate. These may be used alone or in combination of two or more.
  • Examples of the low molecular weight aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and 1,5-pentane.
  • Examples thereof include diol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like. These may be used alone or in combination of two or more.
  • high molecular weight diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyhexamethylene glycol. These may be used alone or in combination of two or more.
  • examples of the crystalline aromatic polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, butanediol terephthalate-polytetramethylene glycol copolymer. And butanediol terephthalate-polycaprolactone copolymer. These may be used alone or in combination of two or more. Among these, polybutylene terephthalate is preferable because the obtained release film is particularly excellent in non-contamination and crystallinity.
  • the crystalline aromatic polyester resin preferably has a melting point of 200 ° C. or higher measured using a differential scanning calorimeter.
  • a resin having such a high melting point the obtained release film does not melt even during hot press molding and has releasability. And breakage during hot press molding is suppressed.
  • An example of the differential scanning calorimeter is DSC 2920 (manufactured by TA Instruments).
  • the resulting release film has low heat resistance and may melt during hot press molding. More preferably, the crystalline aromatic polyester resin has a melting point of 220 ° C. or higher measured using a differential scanning calorimeter.
  • the crystalline aromatic polyester resin having a melting point of 200 ° C. or higher measured using the differential scanning calorimeter is not particularly limited.
  • the surface layer may contain a stabilizer.
  • the said stabilizer is not specifically limited, For example, a hindered phenolic antioxidant, a heat stabilizer, etc. are mentioned.
  • the hindered phenol antioxidant is not particularly limited.
  • Examples include spiro [5,5] undecane.
  • the heat stabilizer is not particularly limited, and examples thereof include tris (2,4-di-t-butylphenyl) phosphite, trilauryl phosphite, 2-t-butyl- ⁇ - (3-t-butyl-4- Hydroxyphenyl) -p-cumenylbis (p-nonylphenyl) phosphite, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, pentaerythryltetrakis (3-laurylthiopropio) Nate) and ditridecyl 3,3′-thiodipropionate.
  • the said surface layer may also contain additives, such as a fiber, an inorganic filler, a flame retardant, an ultraviolet absorber, an antistatic agent, an inorganic substance, a higher fatty acid salt, in the range which does not impair the effect of this invention.
  • additives such as a fiber, an inorganic filler, a flame retardant, an ultraviolet absorber, an antistatic agent, an inorganic substance, a higher fatty acid salt, in the range which does not impair the effect of this invention.
  • the fiber may be an inorganic fiber or an organic fiber.
  • the inorganic fiber is not particularly limited, and examples thereof include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, alumina fiber, amorphous fiber, and silicon-titanium-carbon fiber.
  • the said organic fiber is not specifically limited, For example, an aramid fiber etc. are mentioned.
  • the inorganic filler is not particularly limited, and examples thereof include calcium carbonate, titanium oxide, mica and talc.
  • the flame retardant is not particularly limited, and examples thereof include hexabromocyclododecane, tris- (2,3-dichloropropyl) phosphate, pentabromophenyl allyl ether, and the like.
  • the ultraviolet absorber is not particularly limited, and examples thereof include pt-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2,4,5-tri And hydroxybutyrophenone.
  • the antistatic agent is not particularly limited, and examples thereof include N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, and alkyl sulfonate.
  • the inorganic material is not particularly limited, and examples thereof include barium sulfate, alumina, and silicon oxide.
  • the higher fatty acid salt is not particularly limited, and examples thereof include sodium stearate, barium stearate, and sodium palmitate.
  • the surface layer may contain a thermoplastic resin and a rubber component in order to modify the properties of the surface layer.
  • the thermoplastic resin is not particularly limited, and examples thereof include polyolefin, modified polyolefin, polystyrene, polyvinyl chloride, polyamide, polycarbonate, polysulfone, and polyester.
  • the rubber component is not particularly limited.
  • natural rubber for example, natural rubber, styrene-butadiene copolymer, polybutadiene, polyisoprene, acrylonitrile-butadiene copolymer, ethylene-propylene copolymer (EPM, EPDM), polychloroprene, butyl rubber Acrylic rubber, silicone rubber, urethane rubber, olefin thermoplastic elastomer, styrene thermoplastic elastomer, vinyl chloride thermoplastic elastomer, ester thermoplastic elastomer, amide thermoplastic elastomer, and the like.
  • the surface layer may also contain an inorganic compound having a large aspect ratio.
  • an inorganic compound having a large aspect ratio By including an inorganic compound having a large aspect ratio, the release film obtained has improved release properties at high temperatures, and further, additives, low molecular weight substances, etc. contained in the release film are brought to the release film surface. Bleed-out can be suppressed, and cleanliness during hot press molding is improved.
  • the inorganic compound having a large aspect ratio is not particularly limited, and examples thereof include layered silicates such as clay and layered double hydrates such as hydrotalcite.
  • the surface layer preferably has a crystallinity of 25% or less. When the crystallinity exceeds 25%, the followability of the obtained release film may be lowered.
  • the crystallinity of the surface layer is more preferably 20 to 23%.
  • the degree of crystallinity means a value obtained from a peak intensity ratio between a crystalline part and an amorphous part obtained by an X-ray diffraction method.
  • the surface layer may be subjected to a heat treatment in order to further improve the heat resistance, dimensional stability, and release property of the obtained release film as long as the effects of the present invention are not impaired.
  • a heat treatment is not specifically limited, For example, the method of passing a film between the rolls heated to fixed temperature, the method of heating a film with a heater, etc. are preferable.
  • the temperature of the heat treatment is not particularly limited as long as it is not lower than the glass transition temperature and not higher than the melting point of the resin contained in the surface layer such as the polyester resin, but a preferable lower limit is 120 ° C. and a preferable upper limit is 200 ° C.
  • the temperature of the heat treatment is less than 120 ° C., the effect of improving the releasability by the heat treatment may be hardly obtained. If the temperature of the heat treatment exceeds 200 ° C., the surface layer tends to be deformed during the heat treatment, and a release film may not be produced.
  • the more preferable lower limit of the heat treatment temperature is 170 ° C., and the more preferable upper limit is 190 ° C.
  • the thickness of the said surface layer is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 20 micrometers.
  • a preferable minimum is 5 micrometers and a preferable upper limit is 20 micrometers.
  • the thickness of the surface layer is less than 5 ⁇ m, the strength of the surface layer is impaired, and the surface layer may be destroyed at the time of hot press molding or peeling of the release film.
  • the thickness of the surface layer exceeds 20 ⁇ m, the obtained release film is less flexible, the followability to the substrate surface is lowered, and the flow of the adhesive during hot press molding cannot be sufficiently suppressed. is there.
  • the more preferable lower limit of the thickness of the surface layer is 10 ⁇ m, and the more preferable upper limit is 15 ⁇ m.
  • the release film of the present invention may be a single-layer film or a multi-layer film having two or more layers as long as it has the surface layer.
  • the release film of the present invention When the release film of the present invention is a multilayer film, it may have an intermediate layer.
  • the intermediate layer preferably contains a polyolefin resin having a melting point of 60 ° C. or higher and lower than 130 ° C. measured using a differential scanning calorimeter.
  • the obtained intermediate layer starts to soften at a temperature near the temperature at which the adhesive of the coverlay film starts to melt. Therefore, the release film having such an intermediate layer is applied to the substrate surface. It has excellent followability and has sufficient followability even with respect to a flexible printed circuit board having a fine copper circuit pitch of, for example, 100 ⁇ m or less, and can suppress the flow of adhesive.
  • the melting point of the polyolefin resin measured with a differential scanning calorimeter is less than 60 ° C., the intermediate layer resin melts and stains when the release film is stored and the ambient temperature is 50 to 60 ° C. May cause blocking.
  • the melting point of the polyolefin resin measured using a differential scanning calorimeter is 130 ° C. or higher, the resulting release film may have a poor followability to the substrate surface.
  • the melting point of the polyolefin resin measured by using a differential scanning calorimeter is more preferably 65 ° C. or higher and 100 ° C. or lower.
  • polystyrene resin examples include polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, ethylene-methyl methacrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer. And an ethylene-acrylic acid copolymer. These may be used alone or in combination of two or more. Among these, low density polyethylene, linear low density polyethylene, ethylene-methyl methacrylate copolymer, and ethylene-vinyl acetate copolymer are preferable.
  • the intermediate layer preferably further contains a resin having a melting point of 130 ° C. or higher measured using a differential scanning calorimeter.
  • a resin having a low softening temperature such as a polyolefin resin having a melting point of 60 ° C. or higher and lower than 130 ° C. measured using the above differential scanning calorimeter is used for the intermediate layer
  • the release temperature depends on the pressure during hot press molding. The resin may ooze out from the intermediate layer at the end of the mold film and may contaminate the printed wiring board, the hot press plate, and the like.
  • the resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter is not particularly limited, and examples thereof include polypropylene and crystalline aromatic polyester resin.
  • the amount of such a resin is not particularly limited, but a preferred lower limit in the intermediate layer is 5% by weight.
  • the preferred upper limit is 50% by weight.
  • the blending amount of the resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter is less than 5% by weight, the resin stain from the intermediate layer generated at the end of the release film during hot press molding The effect of suppressing the ejection may not be sufficiently obtained.
  • the blending amount of the resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter exceeds 50% by weight, the resulting release film may have a low followability to the substrate surface.
  • middle layer may contain additives, such as a fiber, an inorganic filler, a flame retardant, a ultraviolet absorber, an antistatic agent, an inorganic substance, and a higher fatty acid salt similarly to the said surface layer.
  • additives such as a fiber, an inorganic filler, a flame retardant, a ultraviolet absorber, an antistatic agent, an inorganic substance, and a higher fatty acid salt similarly to the said surface layer.
  • middle layer is not specifically limited, A preferable minimum is 10 micrometers and a preferable upper limit is 200 micrometers.
  • the thickness of the intermediate layer is less than 10 ⁇ m, the intermediate layer is too thin, and when the intermediate layer is softened during hot press molding, a portion where the intermediate layer does not exist partially occurs, and the press pressure is uniformly applied to the substrate. May not be able to load.
  • the thickness of the intermediate layer exceeds 200 ⁇ m, the intermediate layer is unnecessarily thick, so that the resin exudation from the intermediate layer that occurs at the end of the film during hot press molding may not be suppressed.
  • a more preferable lower limit of the thickness of the intermediate layer is 20 ⁇ m, and a more preferable upper limit is 100 ⁇ m.
  • the release film of the present invention preferably has a dimensional change rate of 1.5% or less when pressed at 170 ° C. with a load of 3 MPa for 60 minutes. If the dimensional change rate exceeds 1.5%, the circuit pattern of the flexible printed circuit board may be damaged during hot press molding.
  • the dimensional change rate is more preferably 1.0% or less.
  • the dimensional change rate of the width direction (henceforth TD) and length direction (henceforth MD) of the release film of this invention is the same direction and is equivalent grade.
  • the vertical and horizontal dimensional changes are different such that one (for example, MD) contracts and the other (for example, TD) expands, the release film damages the circuit pattern of the flexible printed circuit board during hot press molding. Sometimes.
  • the release film of the present invention is formed by hot press molding a copper clad laminate or a copper foil on a substrate via a prepreg or a heat-resistant film
  • the release film of the present invention is obtained by bonding a coverlay film to a substrate on which a copper circuit is formed via a thermosetting adhesive by hot press molding, It is also preferred to be used for preventing adhesion with the coverlay film or adhesion between the coverlay films.
  • the release film of the present invention is also preferably used for preventing adhesion between a molding die and a mold resin when a semiconductor mold is produced by hot press molding.
  • the method for producing the release film of the present invention is not particularly limited, but a method in which after the film having the surface layer is formed, the surface treatment such as friction treatment as described above is performed on the surface layer is more preferable.
  • the surface of the surface layer is subjected to a friction treatment with a friction treatment material, and the material of the surface of the friction treatment material is made of fibers having a tensile strength of 1.0 to 5.0 g / d. It is a woven fabric, and the friction treatment is preferably performed such that the work energy amount En (KJ) represented by the above formula (5) is 50 to 500 KJ.
  • the film forming method of the release film of the present invention is not particularly limited.
  • a water-cooled or air-cooled co-extrusion inflation method a method of forming a film by a co-extrusion T-die method, and after producing the above surface layer
  • examples thereof include a method of laminating layers by an extrusion lamination method, a method of dry lamination of the above-described surface layer film and an intermediate layer film, a solvent casting method, a hot press molding method, and the like.
  • a method of forming a film by a coextrusion T-die method is preferable because of excellent thickness control of each layer.
  • an anchor layer is undercoated on a film serving as an intermediate layer, and then a resin composition serving as a surface layer in which the polyester resin or the like is dissolved in a solvent is coated on the anchor layer.
  • the coating film is uniformly heated and dried to form a surface layer.
  • middle layer are piled up and hot-press-molded, for example.
  • the mold release film which is excellent in mold release property, is excellent in the followable
  • Example 1 Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.)
  • the film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 ⁇ m and an intermediate layer thickness of 80 ⁇ m.
  • the melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA
  • the surface of the surface layer of the obtained film was subjected to a friction treatment device (abrasion treatment device, model YCM-150M, manufactured by Yamagata Kikai Co., Ltd.) using a friction treatment material having a woven fabric composed of fibers shown in Table 1 as a surface material.
  • Friction treatment was performed so that the amount of work energy (KJ) shown in Table 1 was obtained, and a release film was obtained.
  • the amount of work energy is the area Ar (m 2 ) where the friction processing device performs friction processing, the amount of work J (KJ / min) per unit time for friction processing, and the width W (m) of the film subjected to friction processing.
  • the line speed LS (m / min) of the film subjected to the friction treatment was calculated by applying the equation (5).
  • the obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies).
  • TEM transmission electron microscope
  • the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 1.
  • An image observed with a transmission electron microscope in Example 1 is shown in FIG. Further, the degree of crystallinity (%) of the surface layer was calculated from the peak intensity ratio between the crystal part and the non-crystal part obtained by the X-ray diffraction method.
  • Example 2 A release film was obtained in the same manner as in Example 1 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 1.
  • the obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies).
  • TEM transmission electron microscope
  • the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 1.
  • FIG. 5 shows an image observed with a transmission electron microscope in Example 2
  • FIG. 6 shows an image observed with a transmission electron microscope in Example 3
  • FIG. 6 shows an image observed with a transmission electron microscope in Example 5. This is shown in FIG. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
  • Example 1 A release film was obtained in the same manner as in Example 1 except that the friction treatment was not performed.
  • the obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies).
  • TEM transmission electron microscope
  • the mold release layer was not observed.
  • An image observed with a transmission electron microscope is shown in FIG. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
  • a release film was obtained in the same manner as in Example 1 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 2.
  • the obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies).
  • TEM transmission electron microscope
  • the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 2. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
  • Example 6 Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.)
  • the film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 ⁇ m and an intermediate layer thickness of 80 ⁇ m.
  • the melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA
  • the surface of the surface layer of the obtained film was subjected to a friction treatment device (abrasion treatment device, model YCM-150M, manufactured by Yamagata Machinery Co., Ltd.) using a friction treatment material having a woven fabric composed of fibers shown in Table 3 as a surface material.
  • Friction treatment was performed so that the amount of work energy (KJ) shown in Table 3 was obtained, and a release film was obtained.
  • the amount of work energy is the area Ar (m 2 ) where the friction processing device performs friction processing, the amount of work J (KJ / min) per unit time for friction processing, and the width W (m) of the film subjected to friction processing.
  • the line speed LS (m / min) of the film subjected to the friction treatment was calculated by applying the equation (5).
  • the region from the surface of the obtained release film to the thickness of 1 ⁇ m is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation).
  • the ratio (%) of carbonyl groups oriented in parallel was determined.
  • the ratio (%) of the carbonyl group oriented parallel to the plane was obtained by X-ray analysis, and the peak intensity A of the carbonyl group oriented parallel to the plane was aligned perpendicular to the plane.
  • the peak intensity B of the carbonyl group was calculated by applying the formula (1).
  • the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
  • Example 7 A release film was obtained in the same manner as in Example 6 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 3.
  • the region from the surface of the obtained release film to the thickness of 1 ⁇ m is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation). The ratio (%) of carbonyl groups oriented in parallel was determined. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 6.
  • Example 4 A release film was obtained in the same manner as in Example 6 except that the friction treatment was not performed. The region from the surface of the obtained release film to the thickness of 1 ⁇ m is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation). The ratio (%) of carbonyl groups oriented in parallel was determined. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 6.
  • Example 10 Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.)
  • the film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 ⁇ m and an intermediate layer thickness of 80 ⁇ m.
  • the melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA
  • the surface layer of the obtained film is a friction made of a woven fabric made of cotton as the surface material so that the work energy (KJ) shown in Table 4 is obtained.
  • KJ work energy
  • a release film having a surface roughness Rz of 250 nm, a surface distortion Rsk of +0.80, and a surface edge Rku of 8 was obtained by friction treatment with the treatment material.
  • the surface roughness Rz, the surface distortion Rsk, and the surface edge Rku were calculated using the above formulas (2), (3), and (4), respectively. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
  • Example 11 Except that the amount of work energy (KJ) was changed as shown in Table 4, the surface roughness Rz of the surface layer was 250 nm, the surface distortion Rsk was +0.30, and the surface sharpness Rku was the same as in Example 10. A release film of 5 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
  • Example 12 The amount of work energy (KJ) was changed as shown in Table 4, except that it was friction-treated with a friction treatment material with a woven fabric made of wool as a surface material instead of a friction treatment material with a woven fabric made of cotton as a surface material.
  • KJ work energy
  • Example 13 The surface roughness Rz of the surface layer is the same as in Example 10, except that the friction treatment is performed using the wool woven fabric as the surface material instead of the cotton woven fabric as the surface treatment. A release film having 430 nm, surface distortion Rsk of +1.10, and surface edge Rku of 11 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
  • Example 5 A release film having a surface roughness Rz of 200 nm, a surface distortion Rsk of +0.50, and a surface edge Rku of 3 was obtained in the same manner as in Example 10 except that the friction treatment was not performed. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
  • an evaluation sample having a width of 30 mm and a length of 150 mm was cut out from the sample after curing, and this evaluation sample was peeled at a peeling speed of 500 mm / min and a peeling angle of 180 ° using Tensilon (STA-1150, manufactured by A & D). The peel force (N / 30 mm) was measured.
  • the FPC evaluation sample and the release film were taken out, and the length of the adhesive flowed out was measured by observing the adhesive flow-out amount evaluation hole on the coverlay film with a microscope.
  • the mold release film which is excellent in mold release property, is excellent in the followable

Abstract

Disclosed is a mold release film, which has excellent mold releasability and excellent conforming characteristics to the substrate surface, and which can suppress flow out of an adhesive in heat press molding. The mold release film has a surface layer, and a mold release layer is observed only in a region within a thickness of 50-300 nm from the surface of the surface layer.

Description

離型フィルム及び離型フィルムの製造方法Release film and method for producing release film
本発明は、離型性に優れ、かつ、基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することのできる離型フィルムに関する。 The present invention relates to a release film that is excellent in releasability, excellent in followability to a substrate surface, and can suppress the flow of adhesive during hot press molding.
プリント配線基板、フレキシブルプリント基板、多層プリント配線板等の製造工程においては、プリプレグ又は耐熱フィルムを介して基板に銅張積層板又は銅箔を熱プレスする際に離型フィルムが使用されている。また、フレキシブルプリント基板の製造工程においては、銅回路を形成したフレキシブルプリント基板本体に、熱硬化型接着剤又は熱硬化型接着シートによってカバーレイフィルムを熱プレス接着する際にも、カバーレイフィルムと熱プレス板とが接着するのを防止するために離型フィルムが広く使用されている。 In the manufacturing process of a printed wiring board, a flexible printed board, a multilayer printed wiring board, and the like, a release film is used when a copper-clad laminate or a copper foil is hot-pressed on a board via a prepreg or a heat-resistant film. In the manufacturing process of the flexible printed circuit board, when the cover lay film is hot-press bonded to the flexible printed circuit board body on which the copper circuit is formed with a thermosetting adhesive or a thermosetting adhesive sheet, Release films are widely used to prevent the hot press plate from adhering.
離型フィルムに対しては、例えば、熱プレス成形に耐え得る耐熱性、プリント配線基板及び熱プレス板に対する離型性、廃棄処理の容易性等の性能が求められる。また、熱プレス成形時の製品歩留り向上のため、銅回路に対する非汚染性も重要である。 For the release film, for example, heat resistance that can withstand hot press molding, release properties for printed wiring boards and hot press plates, ease of disposal, and the like are required. In addition, non-contamination to the copper circuit is also important for improving the product yield during hot press molding.
従来、離型フィルムとしては、フッ素系フィルム、シリコーン塗布ポリエチレンテレフタレートフィルム、ポリメチルペンテンフィルム、ポリプロピレンフィルム等が用いられてきた(例えば、特許文献1)。
しかしながら、フッ素系フィルムは、耐熱性、離型性、非汚染性に優れているが、高価であるうえ、廃棄処理において焼却する際に燃焼しにくく、有毒ガスを発生する。また、シリコーン塗布ポリエチレンテレフタレートフィルム及びポリメチルペンテンフィルムは、シリコーン又は構成成分中の低分子量体が移行することによってプリント配線基板とりわけ銅回路の汚染を引き起こし、品質を損なうおそれがある。また、ポリプロピレンフィルムは耐熱性に劣り、離型性も不充分である。
Conventionally, as a release film, a fluorine-based film, a silicone-coated polyethylene terephthalate film, a polymethylpentene film, a polypropylene film, and the like have been used (for example, Patent Document 1).
However, the fluorine-based film is excellent in heat resistance, releasability, and non-contamination, but is expensive and hardly burns when incinerated in the disposal process, and generates toxic gas. In addition, the silicone-coated polyethylene terephthalate film and the polymethylpentene film may cause contamination of a printed wiring board, particularly a copper circuit, due to migration of a low molecular weight substance in silicone or a constituent component, and may impair quality. Moreover, a polypropylene film is inferior in heat resistance, and its mold release property is also insufficient.
また、ポリブチレンテレフタレート等のポリエステル系樹脂からなる離型フィルムも検討されているが、このような離型フィルムは、耐熱性、廃棄処理の容易性、非汚染性には優れているが離型性の面では改善の余地がある。 In addition, release films made of polyester resins such as polybutylene terephthalate have been studied. Such release films are excellent in heat resistance, ease of disposal, and non-contamination, but release. There is room for improvement in terms of sex.
これに対し、本願出願人は、非汚染性に優れ、かつ、離型性にも優れた離型フィルムとして、ポリエステル系樹脂と所定量のポリプロピレンとからなる離型フィルムを発明し、特許文献2に開示している。ここで、特許文献2に記載されているような離型フィルムの離型性を更に飛躍的に向上させるためには、特許文献2にも記載されているように、離型フィルムに熱処理を施すことが有効である。
しかしながら、このような熱処理は高温で行われ、また、長時間を必要とすることから、コストの増大を招く場合がある。更に、熱処理の施された離型フィルムはフィルム全体としての柔軟性が低下することから、基板表面の凹凸に対する追従性(埋め込み性)が低下し、例えば、熱プレス成形時にボイドが発生したり、フレキシブルプリント基板の電極部にカバーレイフィルムに形成された接着剤が流れ出し、電極部のめっき処理の障害となったりする等の不具合を生じることがある。従って、基板表面の凹凸に対する追従性を損なうことなく、更に優れた離型性を有する離型フィルムが求められている。
On the other hand, the applicant of the present application invented a release film composed of a polyester-based resin and a predetermined amount of polypropylene as a release film having excellent non-contamination properties and excellent release properties. Is disclosed. Here, in order to further improve the releasability of the release film as described in Patent Document 2, as described in Patent Document 2, the release film is subjected to heat treatment. Is effective.
However, such heat treatment is performed at a high temperature and requires a long time, which may increase the cost. Furthermore, since the release film subjected to heat treatment is reduced in flexibility as a whole film, the followability to the unevenness of the substrate surface (embedding property) is reduced, for example, a void is generated during hot press molding, The adhesive formed on the coverlay film may flow out to the electrode portion of the flexible printed circuit board, which may cause problems such as an obstacle to the plating treatment of the electrode portion. Therefore, there is a demand for a release film having a further excellent releasability without impairing the ability to follow irregularities on the substrate surface.
特開平5-283862号公報JP-A-5-283862 特開2009-132806号公報JP 2009-132806 A
本発明は、離型性に優れ、かつ、基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することのできる離型フィルムを提供することを目的とする。 An object of this invention is to provide the release film which is excellent in mold release property, is excellent in the followable | trackability to a substrate surface, and can suppress the outflow of the adhesive agent at the time of hot press molding.
第1の本発明は、表層を有する離型フィルムであって、前記表層の表面から厚み50~300nmまでの領域のみに離型処理層が観察される離型フィルムである。
第2の本発明は、ポリエステル系樹脂を含有する表層を有する離型フィルムであって、前記表層の表面から厚み1μmまでの領域において、前記ポリエステル系樹脂に含まれるカルボニル基のうちの面に対して平行に配向したカルボニル基の割合が45%以上である離型フィルムである。
第3の本発明は、表層を有する離型フィルムであって、前記表層は、表面粗さRzが250~450nm、表面のゆがみRskが+0.3~+1.1、かつ、表面のとがりRkuが5~11である離型フィルムである。
以下、本発明を詳述する。
The first aspect of the present invention is a release film having a surface layer, wherein the release treatment layer is observed only in a region from the surface layer to a thickness of 50 to 300 nm.
2nd this invention is a release film which has a surface layer containing a polyester-type resin, Comprising: In the area | region from the surface of the said surface layer to thickness 1 micrometer, it is with respect to the surface among the carbonyl groups contained in the said polyester-type resin. The release film has a proportion of carbonyl groups oriented in parallel to 45% or more.
The third aspect of the present invention is a release film having a surface layer, wherein the surface layer has a surface roughness Rz of 250 to 450 nm, a surface distortion Rsk of +0.3 to +1.1, and a surface edge Rku of The release film is 5-11.
The present invention is described in detail below.
本発明者らは、以下の3つの表層、即ち、(1)所定の離型処理層が観察される表層、(2)面に対して平行に配向したカルボニル基の割合が所定の範囲を満たす表層、並びに、(3)表面粗さRz、表面のゆがみRsk及び表面のとがりRkuが所定の範囲を満たす表層のうちのいずれかを有する離型フィルムは、基板表面への追従性を損なうことなく、熱プレス成形時の接着剤の流れ出しを抑制しながら、同時に、優れた離型性を発現できることを見出し、本発明を完成させるに至った。 The inventors of the present invention have the following three surface layers: (1) a surface layer where a predetermined release treatment layer is observed, and (2) a ratio of carbonyl groups oriented parallel to the plane satisfies a predetermined range. The release film having any one of the surface layer and (3) the surface roughness Rz, the surface distortion Rsk, and the surface edge Rku satisfying a predetermined range does not impair the followability to the substrate surface. The present inventors have found that an excellent release property can be exhibited at the same time while suppressing the flow of the adhesive during hot press molding, and have completed the present invention.
第1の本発明の離型フィルムは、表層を有しており、前記表層の表面から厚み50~300nmまでの領域のみに離型処理層が観察される。
本明細書中、離型処理層とは、表層中の他の領域と比べて異なった見た目を有する、離型性に優れた層を意味する。また、本明細書中、離型処理層には、層全体が一様な見た目を有する場合だけではなく、部分的には別の見た目を有する箇所を有するものの全体として1つの層を成している場合も含む。
The release film of the first aspect of the present invention has a surface layer, and the release treatment layer is observed only in a region from the surface of the surface layer to a thickness of 50 to 300 nm.
In the present specification, the release treatment layer means a layer having an appearance different from that of other regions in the surface layer and excellent in releasability. Further, in the present specification, the release treatment layer includes not only a case where the entire layer has a uniform appearance, but also a portion having a part having a different appearance as a whole. This includes cases where
上記離型処理層では、上記表層中の他の領域と比べて、異なった模様が観察される。上記離型処理層において観察される模様として、例えば、面に対して平行な筋状の模様等が挙げられる。上記表層中の他の領域において観察される模様は特に限定されないが、例えば、砂状、渦状等の模様、及び、これら以外の不均一な模様等が挙げられる。
図1、2及び3に、第1の本発明の離型フィルムの表層の一部を模式的に示した断面図を示す。図1、2及び3においては、上側が表層の表面、即ち、離型フィルムの表面である。図1、2及び3に示す表層の一部は、表面側に、面に対して平行な筋状の模様が観察される離型処理層1を有している。図1においては、表層中の他の領域2は砂状の模様を有しており、図2においては、表層中の他の領域2’は渦状の模様を有しており、図3においては、表層中の他の領域2”はその他の不均一な模様を有している。
In the release treatment layer, a different pattern is observed as compared with other regions in the surface layer. Examples of the pattern observed in the release treatment layer include a streak pattern parallel to the surface. Although the pattern observed in the other area | region in the said surface layer is not specifically limited, For example, sandy patterns, spiral patterns, and other non-uniform patterns are mentioned.
1, 2 and 3 are cross-sectional views schematically showing a part of the surface layer of the release film of the first invention. 1, 2 and 3, the upper side is the surface of the surface layer, that is, the surface of the release film. A part of the surface layer shown in FIGS. 1, 2, and 3 has a release treatment layer 1 on the surface side where a streak pattern parallel to the surface is observed. In FIG. 1, the other region 2 in the surface layer has a sand-like pattern, and in FIG. 2, the other region 2 ′ in the surface layer has a spiral pattern, The other region 2 ″ in the surface layer has other non-uniform patterns.
このようにして観察される離型処理層は高密度であり、バリア層として働くことから、上記表層は、例えば、エポキシ系接着剤と接する場合に、エポキシ系接着剤の浸透を抑制することができる。従って、第1の本発明の離型フィルムは優れた離型性を発現することができる。
上記離型処理層を観察する方法は特に限定されないが、ミクロトーム等を用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察する方法が好ましい。また、上記離型処理層を観察する方法として、ミクロトーム等を用いて厚み方向に切断して得られた断面を偏光顕微鏡、原子間力顕微鏡等により観察する方法を用いてもよい。上記透過型電子顕微鏡(TEM)は特に限定されず、例えば、日立透過電子顕微鏡(型式H-9500、日立ハイテクノロジー社製)等が挙げられる。また、上記ミクロトームは特に限定されず、例えば、滑走式ミクロトーム(型式SM2000-R、池田理化社製)等が挙げられる。
Since the release treatment layer observed in this way has a high density and acts as a barrier layer, the surface layer can suppress the penetration of the epoxy adhesive, for example, when in contact with the epoxy adhesive. it can. Therefore, the release film of the first aspect of the present invention can exhibit excellent release properties.
The method of observing the release treatment layer is not particularly limited, but a method of observing a cross section obtained by cutting in the thickness direction using a microtome or the like with a transmission electron microscope is preferable. Moreover, as a method for observing the release treatment layer, a method of observing a cross section obtained by cutting in the thickness direction using a microtome or the like with a polarizing microscope, an atomic force microscope, or the like may be used. The transmission electron microscope (TEM) is not particularly limited, and examples thereof include a Hitachi transmission electron microscope (model H-9500, manufactured by Hitachi High-Technology Corporation). The microtome is not particularly limited, and examples thereof include a sliding microtome (model SM2000-R, manufactured by Ikeda Rika Co., Ltd.).
また、第1の本発明の離型フィルムは、上記表層の表面から厚み50~300nmまでの領域のみに離型処理層を有することから、離型性の改善のために例えば熱処理等が施された従来の離型フィルムとは異なり、優れた離型性を有していてもフィルム全体としての柔軟性を維持することができる。そのため、第1の本発明の離型フィルムは基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することができる。 In addition, the release film of the first aspect of the present invention has a release treatment layer only in the region from the surface layer surface to a thickness of 50 to 300 nm. Unlike the conventional release film, the flexibility of the entire film can be maintained even if it has excellent release properties. Therefore, the release film of the first aspect of the present invention has excellent followability to the substrate surface, and can suppress the flow of adhesive during hot press molding.
上記離型処理層の厚みが上記表層の表面から50nm未満であると、上記表層は、例えば、エポキシ系接着剤と接する場合にエポキシ系接着剤の浸透を充分に抑制することができず、得られる離型フィルムは離型性が低下する。上記離型処理層の厚みが上記表層の表面から300nmを超えると、得られる離型フィルムは柔軟性が低下し、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを抑制することが困難となる。
上記離型処理層の厚みは、上記表層の表面から70nm以上であることが好ましく、上記表層の表面から250nm以下であることが好ましい。
When the thickness of the release treatment layer is less than 50 nm from the surface of the surface layer, the surface layer cannot sufficiently suppress the penetration of the epoxy adhesive when contacting the epoxy adhesive, for example. The release film thus obtained has a low release property. When the thickness of the release treatment layer exceeds 300 nm from the surface of the surface layer, the resulting release film is less flexible, the followability to the substrate surface is lowered, and the adhesive flows out during hot press molding. Is difficult to suppress.
The thickness of the release treatment layer is preferably 70 nm or more from the surface of the surface layer, and preferably 250 nm or less from the surface of the surface layer.
第2の本発明の離型フィルムは、ポリエステル系樹脂を含有する表層を有する。
第2の本発明の離型フィルムは、上記表層の表面から厚み1μmまでの領域において、上記ポリエステル系樹脂に含まれるカルボニル基のうちの面に対して平行に配向したカルボニル基の割合が45%以上である。
本明細書中、ポリエステル系樹脂に含まれるカルボニル基のうちの面に対して平行に配向したカルボニル基の割合Xは、下記式(1)により算出される。
X={A/(A+B)}×100   (1)
The release film of the second aspect of the present invention has a surface layer containing a polyester resin.
In the release film of the second aspect of the present invention, in the region from the surface layer to the thickness of 1 μm, the proportion of carbonyl groups oriented parallel to the surface of the carbonyl groups contained in the polyester resin is 45%. That's it.
In the present specification, the ratio X of carbonyl groups oriented parallel to the surface of the carbonyl groups contained in the polyester resin is calculated by the following formula (1).
X = {A / (A + B)} × 100 (1)
式(1)中、Aは、X線解析により得られた、面に対して平行に配向したカルボニル基のピーク強度を表し、Bは、X線解析により得られた、面に対して垂直に配向したカルボニル基のピーク強度を表す。本明細書中、面に対して平行又は垂直であるとは、離型フィルムの表面に対して平行方向又は垂直方向に向いていることを意味する。 In formula (1), A represents the peak intensity of the carbonyl group oriented in parallel to the plane obtained by X-ray analysis, and B represents the perpendicular to the plane obtained by X-ray analysis. It represents the peak intensity of the oriented carbonyl group. In this specification, being parallel or perpendicular to the surface means being parallel or perpendicular to the surface of the release film.
上記面に対して平行に配向したカルボニル基の割合が上記範囲内であることにより、第2の本発明の離型フィルムは優れた離型性を発現することができる。これは、上記表層の表面から厚み1μmまでの領域において、面に対して平行に配向したカルボニル基の割合が増加することにより、上記表層の表面の疎水性が増すためであると推測される。 When the ratio of the carbonyl group oriented parallel to the plane is within the above range, the release film of the second aspect of the present invention can exhibit excellent release properties. This is presumed to be because the hydrophobicity of the surface of the surface layer is increased by increasing the proportion of carbonyl groups oriented parallel to the surface in the region from the surface of the surface layer to a thickness of 1 μm.
また、第2の本発明の離型フィルムは、上記面に対して平行に配向したカルボニル基の割合が上記範囲内である領域が上記表層の表面から厚み1μmまでの領域であることから、離型性の改善のために例えば熱処理等が施された従来の離型フィルムとは異なり、優れた離型性を有していてもフィルム全体としての柔軟性を維持することができる。そのため、第2の本発明の離型フィルムは基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することができる。 Further, in the release film of the second aspect of the present invention, the region in which the ratio of the carbonyl group oriented parallel to the surface is within the above range is a region from the surface of the surface layer to a thickness of 1 μm. Unlike conventional release films that have been subjected to heat treatment or the like to improve moldability, the flexibility of the entire film can be maintained even with excellent release properties. Therefore, the release film of the second aspect of the present invention is excellent in followability to the substrate surface, and can suppress the flow of adhesive during hot press molding.
上記面に対して平行に配向したカルボニル基の割合が45%未満であると、上記表層の表面の疎水性が低下することから、得られる離型フィルムは離型性が低下する。
上記面に対して平行に配向したカルボニル基の割合は、55%以上であることが好ましい。
When the ratio of the carbonyl group oriented in parallel to the plane is less than 45%, the hydrophobicity of the surface of the surface layer is lowered, so that the obtained release film has a reduced release property.
The proportion of carbonyl groups oriented parallel to the plane is preferably 55% or more.
上記面に対して平行に配向したカルボニル基の割合の上限は特に限定されず、100%であってもよいが、90%以下であることが好ましい。上記面に対して平行に配向したカルボニル基の割合が90%を超えると、例えば、離型フィルムを製造する際の摩擦処理の仕事エネルギー量が大きくなりすぎるため、得られる離型フィルムにシワ、傷等の損傷が生じることがある。
上記面に対して平行に配向したカルボニル基の割合は、70%以下であることがより好ましい。
The upper limit of the proportion of carbonyl groups oriented parallel to the plane is not particularly limited, and may be 100%, but is preferably 90% or less. When the proportion of carbonyl groups oriented parallel to the plane exceeds 90%, for example, the amount of work energy of friction treatment when producing a release film becomes too large, so that the obtained release film is wrinkled. Damage such as scratches may occur.
The proportion of carbonyl groups oriented parallel to the plane is more preferably 70% or less.
上記X線解析を行う方法として、例えば、上記表層の表面に対して斜入射させたX線の回折を測定する方法(In-PLane)等が挙げられる。また、上記X線解析を行うためのX線解析装置は特に限定されず、例えば、薄膜評価用試料水平型X線回折装置(型式Smart Lab、リガク社製)等が挙げられる。 Examples of the method for performing the X-ray analysis include a method for measuring diffraction of X-rays obliquely incident on the surface of the surface layer (In-PLane). The X-ray analysis apparatus for performing the X-ray analysis is not particularly limited, and examples thereof include a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation).
第3の本発明の離型フィルムは、表層を有しており、上記表層は、表面粗さRzの下限が250nmである。上記表面粗さRzが250nm未満であると、得られる表層が平滑となって表層の接触面積が増大し、離型性が低下する。上記表面粗さRzの好ましい下限は280nmである。
また、上記表面粗さRzの上限は450nmである。上記表面粗さRzが450nmを超えると、得られる表層は凹凸が増加し、例えば、エポキシ接着剤等の流動性又は柔軟性の高い被着体に対して用いられる場合、被着体との接触面積が増大し、離型性が低下する原因となる。
The release film of the third aspect of the present invention has a surface layer, and the surface layer has a lower limit of the surface roughness Rz of 250 nm. When the surface roughness Rz is less than 250 nm, the obtained surface layer becomes smooth, the contact area of the surface layer increases, and the releasability decreases. A preferable lower limit of the surface roughness Rz is 280 nm.
The upper limit of the surface roughness Rz is 450 nm. When the surface roughness Rz exceeds 450 nm, the resulting surface layer has unevenness. For example, when used for adherends with high fluidity or flexibility such as epoxy adhesive, contact with the adherend The area increases and the releasability decreases.
本明細書中、表面粗さRzとは、表層の表面について、基準長さLにおいて最も高い山頂から高さが5番目までの山頂の標高をそれぞれYp1、Yp2、Yp3、Yp4及びYp5、最も深い谷底から深さが5番目までの谷底の標高をそれぞれYv1、Yv2、Yv3、Yv4及びYv5としたとき、下記式(2)によって求められる値を意味し、値が大きいほど表面が全体として粗く、値が小さいほど表面が全体として平滑であることを意味する。 In the present specification, the surface roughness Rz means that the surface height of the surface layer is Yp1, Yp2, Yp3, Yp4 and Yp5, which are the deepest from the highest peak to the fifth highest in the reference length L, respectively. When the elevation of the valley bottom from the valley bottom to the fifth depth is Yv1, Yv2, Yv3, Yv4 and Yv5, it means a value obtained by the following formula (2), and the larger the value, the rougher the surface, A smaller value means a smoother surface as a whole.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
上記表層は、表面のゆがみRskの下限が+0.3である。上記表面のゆがみRskが+0.3未満であると、得られる表層の凸成分が減少して表層の接触面積が増大し、離型性が低下したり、得られる表層の外観不良が生じたりする。上記表面のゆがみRskの好ましい下限は+0.5、より好ましい下限は+0.8である。
また、上記表面のゆがみRskの上限は+1.1である。上記表面のゆがみRskが1.1を超えると、得られる表層は凸成分が増加し、例えば、エポキシ接着剤等の流動性又は柔軟性の高い被着体に対して用いられる場合、被着体との接触面積が増大し、離型性が低下する原因となる。
In the surface layer, the lower limit of the surface distortion Rsk is +0.3. When the surface distortion Rsk is less than +0.3, the convex component of the obtained surface layer is decreased, the contact area of the surface layer is increased, the releasability is lowered, and the appearance of the obtained surface layer is poor. . A preferable lower limit of the surface distortion Rsk is +0.5, and a more preferable lower limit is +0.8.
The upper limit of the surface distortion Rsk is +1.1. When the surface distortion Rsk exceeds 1.1, the resulting surface layer has an increased convex component. For example, when used for an adherend having high fluidity or flexibility such as an epoxy adhesive, the adherend This increases the contact area with the material and causes a decrease in releasability.
本明細書中、表面のゆがみRskとは、表層の表面について、二乗平均粗さをRq、山の高さをYiとしたとき、下記式(3)によって求められる値を意味し、プラスの値であれば表面の平均線に対して凸成分が多く、マイナスの値であれば表面の平均線に対して凹成分が多いことを意味する。 In the present specification, the surface distortion Rsk means a value obtained by the following formula (3) when the root mean square roughness is Rq and the peak height is Yi, and is a positive value. If so, it means that there are many convex components with respect to the average line on the surface, and a negative value means there are many concave components with respect to the average line on the surface.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
上記表層は、表面のとがりRkuの下限が5である。上記表面のとがりRkuが5未満であると、得られる表層の凸形状が緩やかになって表層の接触面積が増大し、離型性が低下する。上記表面のとがりRkuの好ましい下限は6、より好ましい下限は7である。
また、上記表面のとがりRkuの上限は11である。上記表面のとがりRkuが11を超えると、得られる表層が平滑となって表層の接触面積が増大し、離型性が低下する。
The surface layer has a lower limit of the surface edge Rku of 5. When the surface sharpness Rku is less than 5, the resulting convex shape of the surface layer becomes gradual, the contact area of the surface layer increases, and the releasability decreases. The preferable lower limit of the surface sharpness Rku is 6, and the more preferable lower limit is 7.
The upper limit of the surface sharpness Rku is 11. When the surface sharpness Rku exceeds 11, the resulting surface layer becomes smooth and the contact area of the surface layer increases, and the releasability decreases.
本明細書中、表面のとがりRkuとは、表層の表面について、二乗平均粗さをRq、山の高さをYiとしたとき、下記式(4)によって求められる値を意味し、値が大きいほど、凸形状がシャープになるとともに平均線に対して平らな部分が増加し、値が小さいほど、凸形状が緩やかになるとともに平均線に対して平らな部分が減少することを意味する。 In the present specification, the surface sharpness Rku means the value obtained by the following formula (4) when the root mean square roughness is Rq and the height of the mountain is Yi, and the value is large. As the convex shape becomes sharper, the flat portion with respect to the average line increases, and as the value decreases, the convex shape becomes gentler and the flat portion with respect to the average line decreases.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
第1の本発明の離型フィルムにおいて、前記表層の表面から厚み50~300nmまでの領域のみに離型処理層が観察されるためには、例えば、上記表層に対して摩擦処理等の表面処理を行うことが好ましい。また、第2の本発明の離型フィルムにおいて上記面に対して平行に配向したカルボニル基の割合を上記範囲内とするためにも、第3の本発明の離型フィルムにおいて上記範囲を満たす表面粗さRz等の表面形状を付与するためにも、同様に、上記表層に対して摩擦処理等の表面処理を行うことが好ましい。
上記摩擦処理は特に限定されないが、下記式(5)で表される仕事エネルギー量En(KJ)が50~500KJとなるように行われることが好ましい。
En=(Ar×J)/(W×LS)    (5)
In the release film of the first aspect of the present invention, in order for the release treatment layer to be observed only in the region from the surface surface to a thickness of 50 to 300 nm, for example, surface treatment such as friction treatment on the surface layer. It is preferable to carry out. Moreover, in order to make the ratio of the carbonyl group oriented parallel to the plane in the release film of the second invention within the above range, the surface satisfying the above range in the release film of the third invention Similarly, in order to impart a surface shape such as roughness Rz, it is preferable to perform surface treatment such as friction treatment on the surface layer.
The friction treatment is not particularly limited, but is preferably performed so that the work energy amount En (KJ) represented by the following formula (5) is 50 to 500 KJ.
En = (Ar × J) / (W × LS) (5)
式(5)中、Arは摩擦処理装置が摩擦処理する面積(m)を表し、Jは摩擦処理するための単位時間あたりの仕事量(KJ/分)を表し、Wは摩擦処理されるフィルムの巾(m)を表し、LSは摩擦処理されるフィルムのライン速度(m/分)を表す。 In the formula (5), Ar represents an area (m 2 ) where the friction processing device performs friction processing, J represents a work amount per unit time (KJ / min) for friction processing, and W is subjected to friction processing. Represents the width (m) of the film, and LS represents the line speed (m / min) of the film being rubbed.
上記式(5)において、上記摩擦処理装置が摩擦処理する面積Ar(m)は、摩擦処理装置が摩擦処理するフィルムの面積である。
また、上記摩擦処理するための単位時間あたりの仕事量J(KJ/分)は、単位時間あたりの負荷エネルギー量(摩擦処理装置がフィルムに圧力を加えることより生じた摩擦処理装置の動力源に加わる負荷エネルギー量)と摩擦処理した回数とを掛け算することにより求められる。
また、上記摩擦処理されるフィルムの巾W(m)は、摩擦処理装置が摩擦処理するフィルムの巾である。
更に、上記摩擦処理されるフィルムのライン速度LS(m/分)は、フィルムが摩擦処理装置を通過する速度である。
In the above formula (5), the area Ar (m 2 ) on which the friction processing device performs friction processing is the area of the film on which the friction processing device performs friction processing.
Further, the amount of work J (KJ / min) per unit time for the friction processing is the amount of load energy per unit time (the friction power source of the friction processing device generated by the friction processing device applying pressure to the film). It is obtained by multiplying the amount of applied load energy) and the number of times of friction treatment.
Further, the width W (m) of the film to be subjected to friction processing is the width of the film to be subjected to friction processing by the friction processing device.
Further, the line speed LS (m / min) of the film subjected to the friction treatment is a speed at which the film passes through the friction treatment apparatus.
上記仕事エネルギー量En(KJ)が50KJ未満であると、上述したような上記表層の表面から厚み50~300nmまでの領域に離型処理層が観察されなかったり、上記面に対して平行に配向したカルボニル基の割合を上記範囲内とすることができなかったり、又は、上記範囲を満たす表面粗さRz等の表面形状を付与することができなかったりすることがあり、得られる離型フィルムに優れた離型性を付与することができないことがある。上記仕事エネルギー量En(KJ)が500KJを超えると、得られる離型フィルムは、柔軟性が低下したり、シワ、傷等の損傷が生じたりすることよって基板表面への追従性が低下し、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。
上記摩擦処理は、上記式(5)で表される仕事エネルギー量En(KJ)の上限が300KJとなるように行われることがより好ましい。
When the work energy En (KJ) is less than 50 KJ, no release treatment layer is observed in the region from the surface surface to the thickness of 50 to 300 nm as described above, or the film is oriented parallel to the surface. In some cases, the ratio of the carbonyl group may not be within the above range, or the surface shape such as the surface roughness Rz that satisfies the above range may not be imparted, and the obtained release film It may not be possible to impart excellent releasability. When the amount of work energy En (KJ) exceeds 500 KJ, the resulting release film has reduced flexibility, followability to the substrate surface due to damage such as wrinkles and scratches, In some cases, the flow of adhesive during hot press molding cannot be sufficiently suppressed.
The friction treatment is more preferably performed such that the upper limit of the work energy amount En (KJ) represented by the above formula (5) is 300 KJ.
上記摩擦処理において、摩擦処理材の表面の素材に用いられる織物の繊維は、引張強度の好ましい下限が1.0g/d、好ましい上限が5.0g/dである。上記繊維の引張強度が1.0g/d未満であると、上記摩擦処理において繊維が伸び切れ、得られる離型フィルムに繊維が付着することがある。上記繊維の引張強度が5.0g/dを超えると、得られる離型フィルムにシワ、傷等の損傷が生じ、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記繊維の引張強度のより好ましい上限は3.0g/dである。
なお、本明細書中、繊維の引張強度とは、JIS-L-1095に準拠する方法により求められる繊維一本の引張強度を意味する。
In the friction treatment, the fabric fiber used as the material of the surface of the friction treatment material has a preferable lower limit of tensile strength of 1.0 g / d and a preferable upper limit of 5.0 g / d. When the tensile strength of the fiber is less than 1.0 g / d, the fiber may be stretched in the friction treatment, and the fiber may adhere to the obtained release film. If the tensile strength of the fiber exceeds 5.0 g / d, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, causing the adhesive to flow out during hot press molding. May not be sufficiently suppressed. The upper limit with more preferable tensile strength of the said fiber is 3.0 g / d.
In this specification, the tensile strength of a fiber means the tensile strength of a single fiber obtained by a method based on JIS-L-1095.
上記繊維は、伸度の好ましい下限が1%、好ましい上限が30%である。上記繊維の伸度が1%未満であると、上記摩擦処理において繊維が伸び切れ、得られる離型フィルムに繊維が付着することがある。上記繊維の伸度が30%を超えると、得られる離型フィルムにシワ、傷等の損傷が生じ、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記繊維の伸度のより好ましい上限は29%である。
なお、本明細書中、繊維の伸度とは、JIS-L-1095に準拠する方法により求められる繊維一本の引張伸度を意味する。
The fiber has a preferred lower limit of elongation of 1% and a preferred upper limit of 30%. When the elongation of the fiber is less than 1%, the fiber may be stretched in the friction treatment, and the fiber may adhere to the obtained release film. If the elongation of the fibers exceeds 30%, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, allowing the adhesive to flow out sufficiently during hot press molding. It may not be possible to suppress. A more preferable upper limit of the elongation of the fiber is 29%.
In the present specification, the fiber elongation means the tensile elongation of a single fiber determined by a method based on JIS-L-1095.
上記繊維として、具体的には、例えば、PET、レイヨン、綿、ウール、アセテート等が挙げられる。なかでも、摩擦処理を行うことによって離型フィルムに生じるシワ、傷等の損傷をより抑制して、基板表面への追従性に優れた離型フィルムを得ることができ、また、離型フィルムに付着する繊維を低減できることから、レイヨン、ウールが好ましい。 Specific examples of the fiber include PET, rayon, cotton, wool, and acetate. In particular, it is possible to obtain a release film excellent in followability to the substrate surface by further suppressing damage such as wrinkles and scratches generated in the release film by performing a friction treatment. Rayon and wool are preferred because the attached fibers can be reduced.
また、上記摩擦処理材の表面の素材に用いられる織物は、摩擦係数の好ましい下限が0.1、好ましい上限が0.8である。上記織物の摩擦係数が0.1未満であると、得られる離型フィルムの離型性が低下することがある。上記織物の摩擦係数が0.8を超えると、得られる離型フィルムにシワ、傷等の損傷が生じ、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記織物の摩擦係数のより好ましい下限は0.3、より好ましい上限は0.7である。
なお、本明細書中、織物の摩擦係数とは、JIS-K-7125に準拠する方法により求められる2mmのポリカーボネート板に対しての織物の摩擦係数を意味する。
In addition, the fabric used for the material of the friction treatment material has a preferable lower limit of the friction coefficient of 0.1 and a preferable upper limit of 0.8. If the friction coefficient of the woven fabric is less than 0.1, the release property of the obtained release film may be lowered. If the friction coefficient of the woven fabric exceeds 0.8, the resulting release film will be damaged, such as wrinkles and scratches, the followability to the substrate surface will be reduced, and the adhesive will flow sufficiently during hot press molding. May not be suppressed. The minimum with a more preferable friction coefficient of the said textile fabric is 0.3, and a more preferable upper limit is 0.7.
In this specification, the coefficient of friction of the fabric means the coefficient of friction of the fabric against a 2 mm polycarbonate plate obtained by a method according to JIS-K-7125.
上記織物は、弾性率の好ましい下限が0.1MPa、好ましい上限が4.0MPaである。上記織物の弾性率が0.1MPa未満であると、得られる離型フィルムの離型性が低下することがある。上記織物の弾性率が4.0MPaを超えると、得られる離型フィルムにシワ、傷等の損傷が生じ、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記織物の弾性率のより好ましい下限は0.7MPa、より好ましい上限は3.9MPaである。
なお、本明細書中、織物の弾性率とは、JIS-K-7127に準拠する方法により求められる織物の硬さを意味する。
The woven fabric has a preferable lower limit of the elastic modulus of 0.1 MPa and a preferable upper limit of 4.0 MPa. When the elastic modulus of the woven fabric is less than 0.1 MPa, the release property of the obtained release film may be lowered. If the elastic modulus of the woven fabric exceeds 4.0 MPa, the resulting release film will be damaged, such as wrinkles and scratches, the followability to the substrate surface will be reduced, and the adhesive will flow sufficiently during hot press molding May not be suppressed. The more preferable lower limit of the elastic modulus of the woven fabric is 0.7 MPa, and the more preferable upper limit is 3.9 MPa.
In this specification, the elastic modulus of the fabric means the hardness of the fabric obtained by a method according to JIS-K-7127.
上記織物は、引張強度の好ましい下限が1.5N/10mm、好ましい上限が2.5N/10mmである。上記織物の引張強度が1.5N/10mm未満であると、上記摩擦処理において繊維が伸び切れ、得られる離型フィルムに繊維が付着することがある。上記織物の引張強度が2.5N/10mmを超えると、得られる離型フィルムにシワ、傷等の損傷が生じ、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記織物の引張強度のより好ましい下限は1.6N/10mm、より好ましい上限は2.3N/10mm、更に好ましい上限は1.8N/10mmである。
なお、本明細書中、織物の引張強度とは、JIS-K-7127に準拠する方法により求められる織物の引張強度を意味する。
The fabric has a preferred lower limit of tensile strength of 1.5 N / 10 mm and a preferred upper limit of 2.5 N / 10 mm. If the tensile strength of the woven fabric is less than 1.5 N / 10 mm, the fibers may be stretched in the friction treatment, and the fibers may adhere to the resulting release film. If the tensile strength of the woven fabric exceeds 2.5 N / 10 mm, the resulting release film will be damaged, such as wrinkles and scratches, and the followability to the substrate surface will be reduced, causing the adhesive to flow out during hot press molding. May not be sufficiently suppressed. The more preferable lower limit of the tensile strength of the woven fabric is 1.6 N / 10 mm, the more preferable upper limit is 2.3 N / 10 mm, and the still more preferable upper limit is 1.8 N / 10 mm.
In the present specification, the tensile strength of the fabric means the tensile strength of the fabric determined by a method according to JIS-K-7127.
上記摩擦処理を行うための摩擦処理装置は特に限定されず、例えば、研磨処理装置(型式YCM-150M、山縣機械社製)等が挙げられる。 The friction processing apparatus for performing the above-described friction processing is not particularly limited, and examples thereof include a polishing processing apparatus (model YCM-150M, manufactured by Yamagata Machine Co., Ltd.).
第2の本発明の離型フィルムにおいて、上記表層は、ポリエステル系樹脂を含有する。第1及び第3の本発明の離型フィルムにおいては、上記表層は特に限定さないが、ポリエステル系樹脂を含有することが好ましい。 In the release film of the second aspect of the present invention, the surface layer contains a polyester resin. In the release films of the first and third inventions, the surface layer is not particularly limited, but preferably contains a polyester resin.
以下、第1、第2及び第3の本発明の離型フィルムに共通する事項について詳述する。なお、本明細書中、単に本発明の離型フィルムというときは、第1、第2及び第3の本発明の離型フィルムのいずれにも該当することを意味する。 Hereinafter, matters common to the release films of the first, second and third inventions will be described in detail. In the present specification, when the release film of the present invention is simply referred to, it means that it corresponds to any of the first, second and third release films of the present invention.
上記ポリエステル系樹脂は特に限定されない。上記ポリエステル系樹脂を用いることで、得られる離型フィルムは優れた機械的性能、とりわけ、通常熱プレス成形を行う170℃程度の温度域において優れた機械的性能を発現することができる。また、上記ポリエステル系樹脂を用いることで、得られる離型フィルムは焼却処理する際の環境負荷が軽減され、経済的にも有利である。更に、上記ポリエステル系樹脂は低分子量成分が少ないことから、得られる離型フィルムは非汚染性に優れ、熱プレスに伴う低分子量成分のブリードアウトによってフレキシブルプリント基板の電極部のメッキ不良が生じる等の問題も抑制することができる。 The polyester resin is not particularly limited. By using the polyester-based resin, the obtained release film can exhibit excellent mechanical performance, in particular, excellent mechanical performance in a temperature range of about 170 ° C. in which normal hot press molding is performed. In addition, by using the polyester resin, the obtained release film reduces the environmental load during incineration and is economically advantageous. Furthermore, since the polyester resin has a small amount of low molecular weight components, the resulting release film is excellent in non-contaminating property, and the low molecular weight component bleed-out due to hot pressing causes plating defects on the electrode portion of the flexible printed circuit board. This problem can also be suppressed.
上記ポリエステル系樹脂として、例えば、結晶性芳香族ポリエステル樹脂が好ましい。
上記結晶性芳香族ポリエステル樹脂は特に限定されないが、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と、低分子量脂肪族ジオールとを反応させて得られる結晶性芳香族ポリエステル樹脂等が挙げられる。
また、上記結晶性芳香族ポリエステル樹脂として、芳香族ジカルボン酸又はそのエステル形成性誘導体と、低分子量脂肪族ジオール及び高分子量ジオールとを反応させて得られる結晶性芳香族ポリエステル樹脂(以下、「ポリエーテル骨格を主鎖中に有する結晶性芳香族ポリエステル樹脂」ともいう)、芳香族ジカルボン酸又はそのエステル形成性誘導体と、低分子量脂肪族ジオールとを反応させて得られる結晶性芳香族ポリエステル樹脂をカプロラクトンモノマーに溶解させた後、カプロラクトンを開環重合させて得られる結晶性芳香族ポリエステル樹脂(以下、「ポリカプロラクトン骨格を主鎖中に有する結晶性芳香族ポリエステル樹脂」ともいう)等も挙げられる。
As the polyester-based resin, for example, a crystalline aromatic polyester resin is preferable.
Although the said crystalline aromatic polyester resin is not specifically limited, For example, the crystalline aromatic polyester resin etc. which are obtained by making aromatic dicarboxylic acid or its ester-forming derivative, and low molecular weight aliphatic diol react are mentioned.
As the crystalline aromatic polyester resin, a crystalline aromatic polyester resin (hereinafter referred to as “polyester”) obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol and a high molecular weight diol. A crystalline aromatic polyester resin having an ether skeleton in the main chain ”), a crystalline aromatic polyester resin obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol; Examples thereof include a crystalline aromatic polyester resin obtained by dissolving in caprolactone monomer and then ring-opening polymerization of caprolactone (hereinafter also referred to as “crystalline aromatic polyester resin having a polycaprolactone skeleton in the main chain”). .
なかでも、芳香族ジカルボン酸又はそのエステル形成性誘導体と、低分子量脂肪族ジオールとを反応させて得られる結晶性芳香族ポリエステル樹脂を用いた場合に比べて、得られる離型フィルムが、耐熱性を維持しながら柔軟性及び離型性に優れることから、ポリエーテル骨格を主鎖中に有する結晶性芳香族ポリエステル樹脂、ポリカプロラクトン骨格を主鎖中に有する結晶性芳香族ポリエステル樹脂が好ましい。 Among them, the release film obtained is more heat resistant than when a crystalline aromatic polyester resin obtained by reacting an aromatic dicarboxylic acid or an ester-forming derivative thereof with a low molecular weight aliphatic diol is used. The crystalline aromatic polyester resin having a polyether skeleton in the main chain and the crystalline aromatic polyester resin having a polycaprolactone skeleton in the main chain are preferable because they are excellent in flexibility and releasability while maintaining the above.
上記芳香族ジカルボン酸又はそのエステル形成性誘導体として、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸、パラフェニレンジカルボン酸、テレフタル酸ジメチル、イソフタル酸ジメチル、オルトフタル酸ジメチル、ナフタレンジカルボン酸ジメチル、パラフェニレンジカルボン酸ジメチル等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。 Examples of the aromatic dicarboxylic acid or its ester-forming derivative include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalene dicarboxylic acid, paraphenylene dicarboxylic acid, dimethyl terephthalate, dimethyl isophthalate, dimethyl orthophthalate, dimethyl naphthalenedicarboxylate, And dimethyl paraphenylene dicarboxylate. These may be used alone or in combination of two or more.
上記低分子量脂肪族ジオールとして、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。 Examples of the low molecular weight aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and 1,5-pentane. Examples thereof include diol, 1,6-hexanediol, 1,4-cyclohexanedimethanol and the like. These may be used alone or in combination of two or more.
上記高分子量ジオールとして、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリヘキサメチレングリコール等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。 Examples of the high molecular weight diol include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyhexamethylene glycol. These may be used alone or in combination of two or more.
上記結晶性芳香族ポリエステル樹脂として、より具体的には、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、テレフタル酸ブタンジオール-ポリテトラメチレングリコール共重合体、テレフタル酸ブタンジオール-ポリカプロラクトン共重合体等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、得られる離型フィルムが非汚染性及び結晶性に特に優れることから、ポリブチレンテレフタレートが好ましい。 More specifically, examples of the crystalline aromatic polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, butanediol terephthalate-polytetramethylene glycol copolymer. And butanediol terephthalate-polycaprolactone copolymer. These may be used alone or in combination of two or more. Among these, polybutylene terephthalate is preferable because the obtained release film is particularly excellent in non-contamination and crystallinity.
上記結晶性芳香族ポリエステル樹脂は、示差走査熱量計を用いて測定した融点が200℃以上であることが好ましい。
通常、熱プレス成形は200℃未満で行われることから、このような融点の高い樹脂を用いることで、得られる離型フィルムは、熱プレス成形時にも溶融することがなく離型性を有することができ、熱プレス成形時の破壊が抑制される。なお、示差走査熱量計として、例えば、DSC 2920(TAインスツルメント社製)等が挙げられる。
The crystalline aromatic polyester resin preferably has a melting point of 200 ° C. or higher measured using a differential scanning calorimeter.
Usually, since hot press molding is performed at less than 200 ° C., by using a resin having such a high melting point, the obtained release film does not melt even during hot press molding and has releasability. And breakage during hot press molding is suppressed. An example of the differential scanning calorimeter is DSC 2920 (manufactured by TA Instruments).
上記結晶性芳香族ポリエステル樹脂の示差走査熱量計を用いて測定した融点が200℃未満であると、得られる離型フィルムは耐熱性が低下し、熱プレス成形時に溶融することがある。上記結晶性芳香族ポリエステル樹脂は、示差走査熱量計を用いて測定した融点が220℃以上であることがより好ましい。 When the melting point of the crystalline aromatic polyester resin measured using a differential scanning calorimeter is less than 200 ° C., the resulting release film has low heat resistance and may melt during hot press molding. More preferably, the crystalline aromatic polyester resin has a melting point of 220 ° C. or higher measured using a differential scanning calorimeter.
上記示差走査熱量計を用いて測定した融点が200℃以上である結晶性芳香族ポリエステル樹脂は特に限定されず、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、テレフタル酸ブタンジオール-ポリテトラメチレングリコール共重合体等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。これらのなかでは、得られる離型フィルムが非汚染性及び結晶性に優れることから、ポリブチレンテレフタレートが好ましい。 The crystalline aromatic polyester resin having a melting point of 200 ° C. or higher measured using the differential scanning calorimeter is not particularly limited. For example, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, polyethylene naphthalate, polybutylene Examples thereof include phthalates and butanediol terephthalate-polytetramethylene glycol copolymers. These may be used alone or in combination of two or more. Of these, polybutylene terephthalate is preferred because the resulting release film is excellent in non-staining and crystallinity.
上記表層は、安定剤を含有してもよい。上記安定剤は特に限定されず、例えば、ヒンダードフェノール系酸化防止剤、熱安定剤等が挙げられる。
上記ヒンダードフェノール系酸化防止剤は特に限定されず、例えば、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス{2-〔3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニロキシ〕-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。
上記熱安定剤は特に限定されず、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、トリラウリルホスファイト、2-t-ブチル-α-(3-t-ブチル-4-ヒドロキシフェニル)-p-クメニルビス(p-ノニルフェニル)ホスファイト、ジミリスチル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスチリルテトラキス(3-ラウリルチオプロピオネート)、ジトリデシル3,3’-チオジプロピオネート等が挙げられる。
The surface layer may contain a stabilizer. The said stabilizer is not specifically limited, For example, a hindered phenolic antioxidant, a heat stabilizer, etc. are mentioned.
The hindered phenol antioxidant is not particularly limited. For example, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, 3 , 9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionyloxy] -1,1-dimethylethyl} -2,4,8,10-tetraoxa Examples include spiro [5,5] undecane.
The heat stabilizer is not particularly limited, and examples thereof include tris (2,4-di-t-butylphenyl) phosphite, trilauryl phosphite, 2-t-butyl-α- (3-t-butyl-4- Hydroxyphenyl) -p-cumenylbis (p-nonylphenyl) phosphite, dimyristyl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, pentaerythryltetrakis (3-laurylthiopropio) Nate) and ditridecyl 3,3′-thiodipropionate.
上記表層はまた、本発明の効果を損なわない範囲で、繊維、無機充填剤、難燃剤、紫外線吸収剤、帯電防止剤、無機物、高級脂肪酸塩等の添加剤を含有してもよい。 The said surface layer may also contain additives, such as a fiber, an inorganic filler, a flame retardant, an ultraviolet absorber, an antistatic agent, an inorganic substance, a higher fatty acid salt, in the range which does not impair the effect of this invention.
上記繊維は、無機繊維であってもよく、有機繊維であってもよい。上記無機繊維は特に限定されず、例えば、ガラス繊維、炭素繊維、ボロン繊維、炭化珪素繊維、アルミナ繊維、アモルファス繊維、シリコン-チタン-炭素系繊維等が挙げられる。上記有機繊維は特に限定されず、例えば、アラミド繊維等が挙げられる。 The fiber may be an inorganic fiber or an organic fiber. The inorganic fiber is not particularly limited, and examples thereof include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, alumina fiber, amorphous fiber, and silicon-titanium-carbon fiber. The said organic fiber is not specifically limited, For example, an aramid fiber etc. are mentioned.
上記無機充填剤は特に限定されず、例えば、炭酸カルシウム、酸化チタン、マイカ、タルク等が挙げられる。
上記難燃剤は特に限定されず、例えば、ヘキサブロモシクロドデカン、トリス-(2,3-ジクロロプロピル)ホスフェート、ペンタブロモフェニルアリルエーテル等が挙げられる。
The inorganic filler is not particularly limited, and examples thereof include calcium carbonate, titanium oxide, mica and talc.
The flame retardant is not particularly limited, and examples thereof include hexabromocyclododecane, tris- (2,3-dichloropropyl) phosphate, pentabromophenyl allyl ether, and the like.
上記紫外線吸収剤は特に限定されず、例えば、p-t-ブチルフェニルサリシレート、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2,4,5-トリヒドロキシブチロフェノン等が挙げられる。
上記帯電防止剤は特に限定されず、例えば、N,N-ビス(ヒドロキシエチル)アルキルアミン、アルキルアリルスルホネート、アルキルスルファネート等が挙げられる。
The ultraviolet absorber is not particularly limited, and examples thereof include pt-butylphenyl salicylate, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2,4,5-tri And hydroxybutyrophenone.
The antistatic agent is not particularly limited, and examples thereof include N, N-bis (hydroxyethyl) alkylamine, alkylallyl sulfonate, and alkyl sulfonate.
上記無機物は特に限定されず、例えば、硫酸バリウム、アルミナ、酸化珪素等が挙げられる。
上記高級脂肪酸塩は特に限定されず、例えば、ステアリン酸ナトリウム、ステアリン酸バリウム、パルミチン酸ナトリウム等が挙げられる。
The inorganic material is not particularly limited, and examples thereof include barium sulfate, alumina, and silicon oxide.
The higher fatty acid salt is not particularly limited, and examples thereof include sodium stearate, barium stearate, and sodium palmitate.
上記表層は、該表層の性質を改質するために、熱可塑性樹脂及びゴム成分を含有してもよい。
上記熱可塑性樹脂は特に限定されず、例えば、ポリオレフィン、変性ポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリアミド、ポリカーボネート、ポリスルフォン、ポリエステル等が挙げられる。 
上記ゴム成分は特に限定されず、例えば、天然ゴム、スチレン-ブタジエン共重合体、ポリブタジエン、ポリイソプレン、アクリルニトリル-ブタジエン共重合体、エチレン-プロピレン共重合体(EPM、EPDM)、ポリクロロプレン、ブチルゴム、アクリルゴム、シリコンゴム、ウレタンゴム、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー、エステル系熱可塑性エラストマー、アミド系熱可塑性エラストマー等が挙げられる。
The surface layer may contain a thermoplastic resin and a rubber component in order to modify the properties of the surface layer.
The thermoplastic resin is not particularly limited, and examples thereof include polyolefin, modified polyolefin, polystyrene, polyvinyl chloride, polyamide, polycarbonate, polysulfone, and polyester.
The rubber component is not particularly limited. For example, natural rubber, styrene-butadiene copolymer, polybutadiene, polyisoprene, acrylonitrile-butadiene copolymer, ethylene-propylene copolymer (EPM, EPDM), polychloroprene, butyl rubber Acrylic rubber, silicone rubber, urethane rubber, olefin thermoplastic elastomer, styrene thermoplastic elastomer, vinyl chloride thermoplastic elastomer, ester thermoplastic elastomer, amide thermoplastic elastomer, and the like.
上記表層はまた、アスペクト比の大きい無機化合物を含有してもよい。
上記アスペクト比の大きい無機化合物を含有することにより、得られる離型フィルムは高温での離型性が向上し、更に、離型フィルムに含まれる添加剤、低分子量物等が離型フィルム表面へブリードアウトすることを抑制することができ、熱プレス成形時のクリーン性が向上する。
上記アスペクト比の大きい無機化合物は特に限定されず、例えば、クレイ等の層状ケイ酸塩、ハイドロタルサイト等の層状複水和物等が挙げられる。
The surface layer may also contain an inorganic compound having a large aspect ratio.
By including an inorganic compound having a large aspect ratio, the release film obtained has improved release properties at high temperatures, and further, additives, low molecular weight substances, etc. contained in the release film are brought to the release film surface. Bleed-out can be suppressed, and cleanliness during hot press molding is improved.
The inorganic compound having a large aspect ratio is not particularly limited, and examples thereof include layered silicates such as clay and layered double hydrates such as hydrotalcite.
上記表層は、結晶化度が25%以下であることが好ましい。上記結晶化度が25%を超えると、得られる離型フィルムは追従性が低下することがある。上記表層の結晶化度は、20~23%であることがより好ましい。
なお、本明細書中、結晶化度とは、X線回折法により得られた結晶部分と非結晶部分とのピーク強度比から求められる値を意味する。
The surface layer preferably has a crystallinity of 25% or less. When the crystallinity exceeds 25%, the followability of the obtained release film may be lowered. The crystallinity of the surface layer is more preferably 20 to 23%.
In the present specification, the degree of crystallinity means a value obtained from a peak intensity ratio between a crystalline part and an amorphous part obtained by an X-ray diffraction method.
上記表層は、本発明の効果を損なわない範囲で、得られる離型フィルムの耐熱性、寸法安定性、離型性を更に向上させるために、熱処理が施されていてもよい。
上記熱処理の方法は特に限定されないが、例えば、一定の温度に加熱したロールの間にフィルム通す方法、ヒーターによりフィルムを加熱する方法等が好ましい。
また、上記熱処理の温度は、上記ポリエステル系樹脂等の上記表層に含まれる樹脂のガラス転移温度以上かつ融点以下であれば特に限定されないが、好ましい下限は120℃、好ましい上限は200℃である。上記熱処理の温度が120℃未満であると、熱処理による離型性の向上効果がほとんど得られないことがある。上記熱処理の温度が200℃を超えると、熱処理時に上記表層が変形しやすくなり、離型フィルムを製造できないことがある。上記熱処理の温度のより好ましい下限は170℃、より好ましい上限は190℃である。
The surface layer may be subjected to a heat treatment in order to further improve the heat resistance, dimensional stability, and release property of the obtained release film as long as the effects of the present invention are not impaired.
Although the method of the said heat processing is not specifically limited, For example, the method of passing a film between the rolls heated to fixed temperature, the method of heating a film with a heater, etc. are preferable.
The temperature of the heat treatment is not particularly limited as long as it is not lower than the glass transition temperature and not higher than the melting point of the resin contained in the surface layer such as the polyester resin, but a preferable lower limit is 120 ° C. and a preferable upper limit is 200 ° C. If the temperature of the heat treatment is less than 120 ° C., the effect of improving the releasability by the heat treatment may be hardly obtained. If the temperature of the heat treatment exceeds 200 ° C., the surface layer tends to be deformed during the heat treatment, and a release film may not be produced. The more preferable lower limit of the heat treatment temperature is 170 ° C., and the more preferable upper limit is 190 ° C.
上記表層の厚さは特に限定されないが、好ましい下限は5μm、好ましい上限は20μmである。上記表層の厚さが5μm未満であると、上記表層は強度が損なわれ、熱プレス成形時又は離型フィルムの剥離時に破壊することがある。上記表層の厚さが20μmを超えると、得られる離型フィルムは柔軟性が低下し、基板表面への追従性が低下して、熱プレス成形時の接着剤の流れ出しを充分に抑制できないことがある。上記表層の厚さのより好ましい下限は10μm、より好ましい上限は15μmである。 Although the thickness of the said surface layer is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 20 micrometers. When the thickness of the surface layer is less than 5 μm, the strength of the surface layer is impaired, and the surface layer may be destroyed at the time of hot press molding or peeling of the release film. When the thickness of the surface layer exceeds 20 μm, the obtained release film is less flexible, the followability to the substrate surface is lowered, and the flow of the adhesive during hot press molding cannot be sufficiently suppressed. is there. The more preferable lower limit of the thickness of the surface layer is 10 μm, and the more preferable upper limit is 15 μm.
本発明の離型フィルムは、上記表層を有していれば、単層フィルムであってもよく、2層以上の複数層のフィルムであってもよい。 The release film of the present invention may be a single-layer film or a multi-layer film having two or more layers as long as it has the surface layer.
本発明の離型フィルムは、複数層のフィルムである場合、中間層を有していてもよい。
上記中間層は、示差走査熱量計を用いて測定した融点が60℃以上130℃未満であるポリオレフィン系樹脂を含有することが好ましい。
上記ポリオレフィン系樹脂を用いることで、得られる中間層はカバーレイフィルムの接着剤が溶融を開始する温度付近で軟化を開始することから、このような中間層を有する離型フィルムは基板表面への追従性に優れ、例えば100μm以下等の微細な銅回路ピッチを有するフレキシブルプリント基板に対しても充分な追従性を有し、接着剤の流れ出しを抑制することができる。
When the release film of the present invention is a multilayer film, it may have an intermediate layer.
The intermediate layer preferably contains a polyolefin resin having a melting point of 60 ° C. or higher and lower than 130 ° C. measured using a differential scanning calorimeter.
By using the polyolefin-based resin, the obtained intermediate layer starts to soften at a temperature near the temperature at which the adhesive of the coverlay film starts to melt. Therefore, the release film having such an intermediate layer is applied to the substrate surface. It has excellent followability and has sufficient followability even with respect to a flexible printed circuit board having a fine copper circuit pitch of, for example, 100 μm or less, and can suppress the flow of adhesive.
上記ポリオレフィン系樹脂の示差走査熱量計を用いて測定した融点が60℃未満であると、離型フィルムの保管中、雰囲気温度が50~60℃となる場合に上記中間層樹脂が溶融して染み出し、ブロッキングを起こすことがある。上記ポリオレフィン系樹脂の示差走査熱量計を用いて測定した融点が130℃以上であると、得られる離型フィルムは基板表面への追従性が低下することがある。上記ポリオレフィン系樹脂の示差走査熱量計を用いて測定した融点は、65℃以上100℃以下であることがより好ましい。 When the melting point of the polyolefin resin measured with a differential scanning calorimeter is less than 60 ° C., the intermediate layer resin melts and stains when the release film is stored and the ambient temperature is 50 to 60 ° C. May cause blocking. When the melting point of the polyolefin resin measured using a differential scanning calorimeter is 130 ° C. or higher, the resulting release film may have a poor followability to the substrate surface. The melting point of the polyolefin resin measured by using a differential scanning calorimeter is more preferably 65 ° C. or higher and 100 ° C. or lower.
上記ポリオレフィン系樹脂として、具体的には、例えば、ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、エチレン-メチルメタクリレート共重合体、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-アクリル酸共重合体等が挙げられる。これらは単独で用いられてもよく、2種類以上が併用されてもよい。なかでも、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-メチルメタクリレート共重合体、エチレン-酢酸ビニル共重合体が好ましい。 Specific examples of the polyolefin resin include polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, ethylene-methyl methacrylate copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer. And an ethylene-acrylic acid copolymer. These may be used alone or in combination of two or more. Among these, low density polyethylene, linear low density polyethylene, ethylene-methyl methacrylate copolymer, and ethylene-vinyl acetate copolymer are preferable.
上記中間層は、更に、示差走査熱量計を用いて測定した融点が130℃以上である樹脂を含有することが好ましい。
上記中間層に上記示差走査熱量計を用いて測定した融点が60℃以上130℃未満であるポリオレフィン系樹脂のような軟化温度の低い樹脂を用いる場合には、熱プレス成形時の圧力によって、離型フィルムの端部で上記中間層から樹脂が染み出し、プリント配線基板、熱プレス板等を汚染してしまうことがある。これに対し、更に上記示差走査熱量計を用いて測定した融点が130℃以上である樹脂を併用することで、熱プレス成形時に離型フィルムの端部で生じる上記中間層からの樹脂の染み出しを抑制することができる。
上記示差走査熱量計を用いて測定した融点が130℃以上である樹脂は特に限定されず、例えば、ポリプロピレン、結晶性芳香族ポリエステル樹脂等が挙げられる。
The intermediate layer preferably further contains a resin having a melting point of 130 ° C. or higher measured using a differential scanning calorimeter.
When a resin having a low softening temperature such as a polyolefin resin having a melting point of 60 ° C. or higher and lower than 130 ° C. measured using the above differential scanning calorimeter is used for the intermediate layer, the release temperature depends on the pressure during hot press molding. The resin may ooze out from the intermediate layer at the end of the mold film and may contaminate the printed wiring board, the hot press plate, and the like. On the other hand, by using a resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter, the resin oozes out from the intermediate layer generated at the end of the release film during hot press molding. Can be suppressed.
The resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter is not particularly limited, and examples thereof include polypropylene and crystalline aromatic polyester resin.
上記中間層が上記示差走査熱量計を用いて測定した融点が130℃以上である樹脂を含有する場合、このような樹脂の配合量は特に限定されないが、中間層中の好ましい下限が5重量%、好ましい上限が50重量%である。上記示差走査熱量計を用いて測定した融点が130℃以上である樹脂の配合量が5重量%未満であると、熱プレス成形時に離型フィルムの端部で生じる上記中間層からの樹脂の染み出しを抑制する効果が充分に得られないことがある。上記示差走査熱量計を用いて測定した融点が130℃以上である樹脂の配合量が50重量%を超えると、得られる離型フィルムは、基板表面への追従性が低下することがある。 When the intermediate layer contains a resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter, the amount of such a resin is not particularly limited, but a preferred lower limit in the intermediate layer is 5% by weight. The preferred upper limit is 50% by weight. When the blending amount of the resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter is less than 5% by weight, the resin stain from the intermediate layer generated at the end of the release film during hot press molding The effect of suppressing the ejection may not be sufficiently obtained. When the blending amount of the resin having a melting point of 130 ° C. or higher measured using the differential scanning calorimeter exceeds 50% by weight, the resulting release film may have a low followability to the substrate surface.
上記中間層は、上記表層と同様に、繊維、無機充填剤、難燃剤、紫外線吸収剤、帯電防止剤、無機物、高級脂肪酸塩等の添加剤を含有してもよい。 The said intermediate | middle layer may contain additives, such as a fiber, an inorganic filler, a flame retardant, a ultraviolet absorber, an antistatic agent, an inorganic substance, and a higher fatty acid salt similarly to the said surface layer.
上記中間層の厚さは特に限定されないが、好ましい下限は10μm、好ましい上限は200μmである。上記中間層の厚さが10μm未満であると、上記中間層が薄すぎ、熱プレス成形時において中間層が軟化すると、部分的に中間層が存在しない箇所が発生し、プレス圧力を基板に均一に荷重することができないことがある。上記中間層の厚さが200μmを超えると、上記中間層が必要以上に厚いため、熱プレス成形時におけるフィルム端部で生じる上記中間層からの樹脂の染み出しを抑制できないことがある。上記中間層の厚さのより好ましい下限は20μm、より好ましい上限は100μmである。 Although the thickness of the said intermediate | middle layer is not specifically limited, A preferable minimum is 10 micrometers and a preferable upper limit is 200 micrometers. When the thickness of the intermediate layer is less than 10 μm, the intermediate layer is too thin, and when the intermediate layer is softened during hot press molding, a portion where the intermediate layer does not exist partially occurs, and the press pressure is uniformly applied to the substrate. May not be able to load. If the thickness of the intermediate layer exceeds 200 μm, the intermediate layer is unnecessarily thick, so that the resin exudation from the intermediate layer that occurs at the end of the film during hot press molding may not be suppressed. A more preferable lower limit of the thickness of the intermediate layer is 20 μm, and a more preferable upper limit is 100 μm.
本発明の離型フィルムは、170℃において荷重3MPaで60分間加圧した場合の寸法変化率が1.5%以下であることが好ましい。上記寸法変化率が1.5%を超えると、熱プレス成形時にフレキシブルプリント基板の回路パターンを損なうことがある。上記寸法変化率は、1.0%以下であることがより好ましい。
また、本発明の離型フィルムは、離型フィルムの巾方向(以下、TDという)と長さ方向(以下、MDという)の寸法変化率が同方向かつ同等程度であることが好ましい。一方(例えば、MD)が収縮し、他方(例えば、TD)が伸長するというように、縦横の寸法変化が異なる場合には、離型フィルムにより、熱プレス成形時にフレキシブルプリント基板の回路パターンを損なうことがある。
The release film of the present invention preferably has a dimensional change rate of 1.5% or less when pressed at 170 ° C. with a load of 3 MPa for 60 minutes. If the dimensional change rate exceeds 1.5%, the circuit pattern of the flexible printed circuit board may be damaged during hot press molding. The dimensional change rate is more preferably 1.0% or less.
Moreover, it is preferable that the dimensional change rate of the width direction (henceforth TD) and length direction (henceforth MD) of the release film of this invention is the same direction and is equivalent grade. When the vertical and horizontal dimensional changes are different such that one (for example, MD) contracts and the other (for example, TD) expands, the release film damages the circuit pattern of the flexible printed circuit board during hot press molding. Sometimes.
本発明の離型フィルムの用途は特に限定されないが、例えば、本発明の離型フィルムは、プリプレグ又は耐熱フィルムを介して基板に銅張積層板又は銅箔を熱プレス成形し、プリント配線基板、フレキシブルプリント基板又は多層プリント配線板を製造する際に、熱プレス板と、得られたプリント配線基板、フレキシブルプリント基板又は多層プリント配線板との接着を防ぐために用いられることが好ましい。
また、本発明の離型フィルムは、熱硬化性接着剤を介して、銅回路を形成した基板にカバーレイフィルムを熱プレス成形により接着し、フレキシブルプリント基板を製造する際に、熱プレス板と上記カバーレイフィルムとの接着、又は、上記カバーレイフィルム同士の接着を防ぐために用いられることも好ましい。
更に、本発明の離型フィルムは、熱プレス成形により半導体用モールドを製造する際に、成形金型とモールド樹脂との接着を防ぐために用いられることも好ましい。
Although the use of the release film of the present invention is not particularly limited, for example, the release film of the present invention is formed by hot press molding a copper clad laminate or a copper foil on a substrate via a prepreg or a heat-resistant film, When manufacturing a flexible printed circuit board or a multilayer printed wiring board, it is preferably used for preventing adhesion between the hot press board and the obtained printed wiring board, flexible printed circuit board or multilayer printed wiring board.
In addition, the release film of the present invention is obtained by bonding a coverlay film to a substrate on which a copper circuit is formed via a thermosetting adhesive by hot press molding, It is also preferred to be used for preventing adhesion with the coverlay film or adhesion between the coverlay films.
Furthermore, the release film of the present invention is also preferably used for preventing adhesion between a molding die and a mold resin when a semiconductor mold is produced by hot press molding.
本発明の離型フィルムを製造する方法は特に限定されないが、上記表層を有するフィルムを製膜した後、上記表層に対して上述したような摩擦処理等の表面処理を行う方法が好ましく、より具体的には、例えば、上記表層の表面を摩擦処理材で摩擦処理する工程を有し、上記摩擦処理材の表面の素材は、引張強度が1.0~5.0g/dである繊維からなる織物であり、上記摩擦処理を、上記式(5)で表される仕事エネルギー量En(KJ)が50~500KJとなるように行う方法が好ましい。 The method for producing the release film of the present invention is not particularly limited, but a method in which after the film having the surface layer is formed, the surface treatment such as friction treatment as described above is performed on the surface layer is more preferable. Specifically, for example, the surface of the surface layer is subjected to a friction treatment with a friction treatment material, and the material of the surface of the friction treatment material is made of fibers having a tensile strength of 1.0 to 5.0 g / d. It is a woven fabric, and the friction treatment is preferably performed such that the work energy amount En (KJ) represented by the above formula (5) is 50 to 500 KJ.
本発明の離型フィルムの製膜方法は特に限定されず、例えば、水冷式又は空冷式共押出インフレーション法、共押出Tダイ法で製膜する方法、上記表層を作製した後、この表層に中間層を押出ラミネーション法にて積層する方法、上記表層となるフィルムと、中間層となるフィルムとをドライラミネーションする方法、溶剤キャスティング法、熱プレス成形法等が挙げられる。なかでも、本発明の離型フィルムが複数層のフィルムである場合には、各層の厚み制御に優れることから、共押出Tダイ法で製膜する方法が好ましい。 The film forming method of the release film of the present invention is not particularly limited. For example, a water-cooled or air-cooled co-extrusion inflation method, a method of forming a film by a co-extrusion T-die method, and after producing the above surface layer, Examples thereof include a method of laminating layers by an extrusion lamination method, a method of dry lamination of the above-described surface layer film and an intermediate layer film, a solvent casting method, a hot press molding method, and the like. In particular, when the release film of the present invention is a film having a plurality of layers, a method of forming a film by a coextrusion T-die method is preferable because of excellent thickness control of each layer.
上記溶剤キャスティング法では、例えば、中間層となるフィルム上にアンカー層を下塗り処理した後、このアンカー層上に、例えば上記ポリエステル系樹脂等を溶剤に溶解した表層となる樹脂組成物を塗工し、塗膜を均一に加熱し乾燥させて表層を形成する。
また、上記熱プレス成形法では、例えば、上記表層となるフィルムと中間層となるフィルムとを重ね合わせて熱プレス成形する。
In the solvent casting method, for example, an anchor layer is undercoated on a film serving as an intermediate layer, and then a resin composition serving as a surface layer in which the polyester resin or the like is dissolved in a solvent is coated on the anchor layer. The coating film is uniformly heated and dried to form a surface layer.
Moreover, in the said hot press molding method, the film used as the said surface layer and the film used as an intermediate | middle layer are piled up and hot-press-molded, for example.
本発明によれば、離型性に優れ、かつ、基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することのできる離型フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the mold release film which is excellent in mold release property, is excellent in the followable | trackability to a substrate surface, and can suppress the outflow of the adhesive agent at the time of hot press molding can be provided.
第1の本発明の離型フィルムの表層の一部を模式的に示した断面図である。It is sectional drawing which showed typically a part of surface layer of the release film of 1st this invention. 第1の本発明の離型フィルムの表層の一部を模式的に示した断面図である。It is sectional drawing which showed typically a part of surface layer of the release film of 1st this invention. 第1の本発明の離型フィルムの表層の一部を模式的に示した断面図である。It is sectional drawing which showed typically a part of surface layer of the release film of 1st this invention. 実施例1で得られた離型フィルムについて、ミクロトームを用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察して得られた画像である。It is the image obtained by observing the cross section obtained by cut | disconnecting the thickness direction using a microtome about the release film obtained in Example 1 with a transmission electron microscope. 実施例2で得られた離型フィルムについて、ミクロトームを用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察して得られた画像である。It is the image obtained by observing the cross section obtained by cut | disconnecting the thickness direction using a microtome about the release film obtained in Example 2 with a transmission electron microscope. 実施例3で得られた離型フィルムについて、ミクロトームを用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察して得られた画像である。It is the image obtained by observing the cross section obtained by cut | disconnecting the thickness direction using a microtome about the release film obtained in Example 3 with a transmission electron microscope. 実施例5で得られた離型フィルムについて、ミクロトームを用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察して得られた画像である。It is the image obtained by observing the cross section obtained by cut | disconnecting the thickness direction using a microtome about the release film obtained in Example 5 with a transmission electron microscope. 比較例1で得られた離型フィルムについて、ミクロトームを用いて厚み方向に切断して得られた断面を透過型電子顕微鏡により観察した得られた画像である。It is the obtained image which observed the cross section obtained by cut | disconnecting the thickness direction using a microtome about the release film obtained in the comparative example 1 with the transmission electron microscope.
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
なお、以下の実施例及び比較例において、摩擦処理材の表面の素材として用いられている東レ社製「トレシー」及び帝人ファイバー社製「テトロン」はPETである。
Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
In the following examples and comparative examples, “Toraysee” manufactured by Toray and “Tetron” manufactured by Teijin Fibers, which are used as the material of the surface of the friction treatment material, are PET.
(実施例1)
表層用の結晶性芳香族ポリエステル樹脂としてポリブチレンテレフタレート(ノバデュラン5010R5、三菱エンジニアリングプラスチックス社製、融点224℃)を、中間層用のポリオレフィン系樹脂として直鎖状低密度ポリエチレン(エクセレンFX(CX5501)、住友化学社製、融点66℃)とエチレン-メチルメタクリレート共重合体(アクリフト(WH401)、住友化学社製、融点86℃)とポリプロピレン(PS207A、サンアロマー社製、融点160℃)とを、共押出成形機に投入し、Tダイスより共押出成形して、表層の厚さ10μm、中間層の厚さ80μmのフィルムを得た。なお、融点は、示差走査熱量計(DSC 2920、TAインスツルメント社製)を用いて測定した。
Example 1
Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.) The film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 μm and an intermediate layer thickness of 80 μm. The melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA Instruments).
得られたフィルムの表層の表面を、表1に示す繊維からなる織物を表面素材とする摩擦処理材を用いた摩擦処理装置(研磨処理装置、型式YCM-150M、山縣機械社製)を用いて、表1に示す仕事エネルギー量(KJ)となるように摩擦処理し、離型フィルムを得た。
なお、仕事エネルギー量は、摩擦処理装置が摩擦処理する面積Ar(m)、摩擦処理するための単位時間あたりの仕事量J(KJ/分)、摩擦処理されるフィルムの巾W(m)及び摩擦処理されるフィルムのライン速度LS(m/分)を、式(5)に当てはめることにより算出した。
The surface of the surface layer of the obtained film was subjected to a friction treatment device (abrasion treatment device, model YCM-150M, manufactured by Yamagata Kikai Co., Ltd.) using a friction treatment material having a woven fabric composed of fibers shown in Table 1 as a surface material. Friction treatment was performed so that the amount of work energy (KJ) shown in Table 1 was obtained, and a release film was obtained.
The amount of work energy is the area Ar (m 2 ) where the friction processing device performs friction processing, the amount of work J (KJ / min) per unit time for friction processing, and the width W (m) of the film subjected to friction processing. And the line speed LS (m / min) of the film subjected to the friction treatment was calculated by applying the equation (5).
得られた離型フィルムについて、滑走式ミクロトーム(型式SM2000R、池田理化社製)を用いて厚み方向に切断して得られた断面を透過型電子顕微鏡(TEM)(型式H-9500、日立ハイテクノロジーズ社製)により観察すると、表層の表面から表1に示す厚み(nm)までの領域のみに離型処理層が観察された。実施例1において透過型電子顕微鏡により観察された画像を図4に示した。また、X線回折法により得られた結晶部分と非結晶部分とのピーク強度比から、表層の結晶化度(%)を算出した。 The obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies). When observed by the company), the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 1. An image observed with a transmission electron microscope in Example 1 is shown in FIG. Further, the degree of crystallinity (%) of the surface layer was calculated from the peak intensity ratio between the crystal part and the non-crystal part obtained by the X-ray diffraction method.
(実施例2~5)
摩擦処理材の表面の素材と仕事エネルギー量(KJ)とを表1に示すように変更したこと以外は実施例1と同様にして、離型フィルムを得た。
得られた離型フィルムについて、滑走式ミクロトーム(型式SM2000R、池田理化社製)を用いて厚み方向に切断して得られた断面を透過型電子顕微鏡(TEM)(型式H-9500、日立ハイテクノロジーズ社製)により観察すると、表層の表面から表1に示す厚み(nm)までの領域のみに離型処理層が観察された。実施例2において透過型電子顕微鏡により観察された画像を図5に、実施例3において透過型電子顕微鏡により観察された画像を図6に、実施例5において透過型電子顕微鏡により観察された画像を図7に示した。また、実施例1と同様にして表層の結晶化度(%)を算出した。
(Examples 2 to 5)
A release film was obtained in the same manner as in Example 1 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 1.
The obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies). When observed by the company), the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 1. FIG. 5 shows an image observed with a transmission electron microscope in Example 2, FIG. 6 shows an image observed with a transmission electron microscope in Example 3, and FIG. 6 shows an image observed with a transmission electron microscope in Example 5. This is shown in FIG. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
(比較例1)
摩擦処理を行わなかったこと以外は実施例1と同様にして、離型フィルムを得た。
得られた離型フィルムについて、滑走式ミクロトーム(型式SM2000R、池田理化社製)を用いて厚み方向に切断して得られた断面を透過型電子顕微鏡(TEM)(型式H-9500、日立ハイテクノロジーズ社製)により観察すると、離型処理層は観察されなかった。透過型電子顕微鏡により観察された画像を図8に示した。また、実施例1と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 1)
A release film was obtained in the same manner as in Example 1 except that the friction treatment was not performed.
The obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies). The mold release layer was not observed. An image observed with a transmission electron microscope is shown in FIG. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
(比較例2~3)
摩擦処理材の表面の素材と仕事エネルギー量(KJ)とを表2に示すように変更したこと以外は実施例1と同様にして、離型フィルムを得た。
得られた離型フィルムについて、滑走式ミクロトーム(型式SM2000R、池田理化社製)を用いて厚み方向に切断して得られた断面を透過型電子顕微鏡(TEM)(型式H-9500、日立ハイテクノロジーズ社製)により観察すると、表層の表面から表2に示す厚み(nm)までの領域のみに離型処理層が観察された。また、実施例1と同様にして表層の結晶化度(%)を算出した。
(Comparative Examples 2-3)
A release film was obtained in the same manner as in Example 1 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 2.
The obtained release film was cut in the thickness direction using a sliding microtome (model SM2000R, manufactured by Ikeda Rika Co., Ltd.), and the cross section was obtained by using a transmission electron microscope (TEM) (model H-9500, Hitachi High Technologies). When observed by the company), the release treatment layer was observed only in the region from the surface of the surface layer to the thickness (nm) shown in Table 2. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
(実施例6)
表層用の結晶性芳香族ポリエステル樹脂としてポリブチレンテレフタレート(ノバデュラン5010R5、三菱エンジニアリングプラスチックス社製、融点224℃)を、中間層用のポリオレフィン系樹脂として直鎖状低密度ポリエチレン(エクセレンFX(CX5501)、住友化学社製、融点66℃)とエチレン-メチルメタクリレート共重合体(アクリフト(WH401)、住友化学社製、融点86℃)とポリプロピレン(PS207A、サンアロマー社製、融点160℃)とを、共押出成形機に投入し、Tダイスより共押出成形して、表層の厚さ10μm、中間層の厚さ80μmのフィルムを得た。なお、融点は、示差走査熱量計(DSC 2920、TAインスツルメント社製)を用いて測定した。
(Example 6)
Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.) The film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 μm and an intermediate layer thickness of 80 μm. The melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA Instruments).
得られたフィルムの表層の表面を、表3に示す繊維からなる織物を表面素材とする摩擦処理材を用いた摩擦処理装置(研磨処理装置、型式YCM-150M、山縣機械社製)を用いて、表3に示す仕事エネルギー量(KJ)となるように摩擦処理し、離型フィルムを得た。
なお、仕事エネルギー量は、摩擦処理装置が摩擦処理する面積Ar(m)、摩擦処理するための単位時間あたりの仕事量J(KJ/分)、摩擦処理されるフィルムの巾W(m)及び摩擦処理されるフィルムのライン速度LS(m/分)を、式(5)に当てはめることにより算出した。
The surface of the surface layer of the obtained film was subjected to a friction treatment device (abrasion treatment device, model YCM-150M, manufactured by Yamagata Machinery Co., Ltd.) using a friction treatment material having a woven fabric composed of fibers shown in Table 3 as a surface material. Friction treatment was performed so that the amount of work energy (KJ) shown in Table 3 was obtained, and a release film was obtained.
The amount of work energy is the area Ar (m 2 ) where the friction processing device performs friction processing, the amount of work J (KJ / min) per unit time for friction processing, and the width W (m) of the film subjected to friction processing. And the line speed LS (m / min) of the film subjected to the friction treatment was calculated by applying the equation (5).
得られた離型フィルムの表層の表面から厚み1μmまでの領域について、薄膜評価用試料水平型X線回折装置(型式Smart Lab、リガク社製)を用いてX線解析を行い、面に対して平行に配向したカルボニル基の割合(%)を求めた。
なお、面に対して平行に配向したカルボニル基の割合(%)は、X線解析により得られた、面に対して平行に配向したカルボニル基のピーク強度A及び面に対して垂直に配向したカルボニル基のピーク強度Bを、式(1)に当てはめることにより算出した。また、実施例1と同様にして表層の結晶化度(%)を算出した。
The region from the surface of the obtained release film to the thickness of 1 μm is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation). The ratio (%) of carbonyl groups oriented in parallel was determined.
In addition, the ratio (%) of the carbonyl group oriented parallel to the plane was obtained by X-ray analysis, and the peak intensity A of the carbonyl group oriented parallel to the plane was aligned perpendicular to the plane. The peak intensity B of the carbonyl group was calculated by applying the formula (1). Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
(実施例7~9)
摩擦処理材の表面の素材と仕事エネルギー量(KJ)とを表3に示すように変更したこと以外は実施例6と同様にして、離型フィルムを得た。
得られた離型フィルムの表層の表面から厚み1μmまでの領域について、薄膜評価用試料水平型X線回折装置(型式Smart Lab、リガク社製)を用いてX線解析を行い、面に対して平行に配向したカルボニル基の割合(%)を求めた。また、実施例6と同様にして表層の結晶化度(%)を算出した。
(Examples 7 to 9)
A release film was obtained in the same manner as in Example 6 except that the material on the surface of the friction treatment material and the amount of work energy (KJ) were changed as shown in Table 3.
The region from the surface of the obtained release film to the thickness of 1 μm is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation). The ratio (%) of carbonyl groups oriented in parallel was determined. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 6.
(比較例4)
摩擦処理を行わなかったこと以外は実施例6と同様にして、離型フィルムを得た。
得られた離型フィルムの表層の表面から厚み1μmまでの領域について、薄膜評価用試料水平型X線回折装置(型式Smart Lab、リガク社製)を用いてX線解析を行い、面に対して平行に配向したカルボニル基の割合(%)を求めた。また、実施例6と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 4)
A release film was obtained in the same manner as in Example 6 except that the friction treatment was not performed.
The region from the surface of the obtained release film to the thickness of 1 μm is subjected to X-ray analysis using a sample horizontal X-ray diffractometer for thin film evaluation (model Smart Lab, manufactured by Rigaku Corporation). The ratio (%) of carbonyl groups oriented in parallel was determined. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 6.
(実施例10)
表層用の結晶性芳香族ポリエステル樹脂としてポリブチレンテレフタレート(ノバデュラン5010R5、三菱エンジニアリングプラスチックス社製、融点224℃)を、中間層用のポリオレフィン系樹脂として直鎖状低密度ポリエチレン(エクセレンFX(CX5501)、住友化学社製、融点66℃)とエチレン-メチルメタクリレート共重合体(アクリフト(WH401)、住友化学社製、融点86℃)とポリプロピレン(PS207A、サンアロマー社製、融点160℃)とを、共押出成形機に投入し、Tダイスより共押出成形して、表層の厚さ10μm、中間層の厚さ80μmのフィルムを得た。なお、融点は、示差走査熱量計(DSC 2920、TAインスツルメント社製)を用いて測定した。
(Example 10)
Polybutylene terephthalate (Novaduran 5010R5, manufactured by Mitsubishi Engineering Plastics Co., Ltd., melting point 224 ° C.) as the crystalline aromatic polyester resin for the surface layer, and linear low-density polyethylene (Excellen FX (CX5501) as the polyolefin resin for the intermediate layer , Sumitomo Chemical Co., Ltd., melting point 66 ° C.) and ethylene-methyl methacrylate copolymer (Aklift (WH401), Sumitomo Chemical Co., Ltd., melting point 86 ° C.) and polypropylene (PS207A, Sun Allomer Co., Ltd., melting point 160 ° C.) The film was put into an extruder and coextruded from a T-die to obtain a film having a surface layer thickness of 10 μm and an intermediate layer thickness of 80 μm. The melting point was measured using a differential scanning calorimeter (DSC 2920, manufactured by TA Instruments).
得られたフィルムの表層を、摩擦処理装置(型式YCM-150M、山縣機械社製)を用い、表4に示す仕事エネルギー量(KJ)となるように、綿からなる織物を表面素材とする摩擦処理材によって摩擦処理することにより、表層の表面粗さRzが250nm、表面のゆがみRskが+0.80、表面のとがりRkuが8である離型フィルムを得た。なお、表層の表面粗さRz、表面のゆがみRsk及び表面のとがりRkuは、それぞれ、上記式(2)、(3)及び(4)を用いて算出した。また、実施例1と同様にして表層の結晶化度(%)を算出した。 Using a friction processing device (model YCM-150M, manufactured by Yamagata Machinery Co., Ltd.), the surface layer of the obtained film is a friction made of a woven fabric made of cotton as the surface material so that the work energy (KJ) shown in Table 4 is obtained. A release film having a surface roughness Rz of 250 nm, a surface distortion Rsk of +0.80, and a surface edge Rku of 8 was obtained by friction treatment with the treatment material. The surface roughness Rz, the surface distortion Rsk, and the surface edge Rku were calculated using the above formulas (2), (3), and (4), respectively. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 1.
(実施例11)
仕事エネルギー量(KJ)を表4に示すように変更したこと以外は、実施例10と同様にして、表層の表面粗さRzが250nm、表面のゆがみRskが+0.30、表面のとがりRkuが5である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Example 11)
Except that the amount of work energy (KJ) was changed as shown in Table 4, the surface roughness Rz of the surface layer was 250 nm, the surface distortion Rsk was +0.30, and the surface sharpness Rku was the same as in Example 10. A release film of 5 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(実施例12)
仕事エネルギー量(KJ)を表4に示すように変更し、綿からなる織物を表面素材とする摩擦処理材の代わりにウールからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが380nm、表面のゆがみRskが+0.85、表面のとがりRkuが7である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Example 12)
The amount of work energy (KJ) was changed as shown in Table 4, except that it was friction-treated with a friction treatment material with a woven fabric made of wool as a surface material instead of a friction treatment material with a woven fabric made of cotton as a surface material. In the same manner as in Example 10, a release film having a surface roughness Rz of 380 nm, a surface distortion Rsk of +0.85, and a surface sharpness Rku of 7 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(実施例13)
綿からなる織物を表面素材とする摩擦処理材の代わりにウールからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが430nm、表面のゆがみRskが+1.10、表面のとがりRkuが11である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Example 13)
The surface roughness Rz of the surface layer is the same as in Example 10, except that the friction treatment is performed using the wool woven fabric as the surface material instead of the cotton woven fabric as the surface treatment. A release film having 430 nm, surface distortion Rsk of +1.10, and surface edge Rku of 11 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(比較例5)
摩擦処理を行わなかったこと以外は実施例10と同様にして、表層の表面粗さRzが200nm、表面のゆがみRskが+0.50、表面のとがりRkuが3である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 5)
A release film having a surface roughness Rz of 200 nm, a surface distortion Rsk of +0.50, and a surface edge Rku of 3 was obtained in the same manner as in Example 10 except that the friction treatment was not performed. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(比較例6)
仕事エネルギー量(KJ)を表4に示すように変更し、綿からなる織物を表面素材とする摩擦処理材の代わりにPETからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが258nm、表面のゆがみRskが-0.34、表面のとがりRkuが3である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 6)
The amount of work energy (KJ) was changed as shown in Table 4, except that the friction processing material with a surface fabric made of PET was used instead of the friction processing material with a surface fabric made of cotton. In the same manner as in Example 10, a release film having a surface roughness Rz of 258 nm, a surface distortion Rsk of −0.34, and a surface edge Rku of 3 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(比較例7)
仕事エネルギー量(KJ)を表4に示すように変更し、綿からなる織物を表面素材とする摩擦処理材の代わりにPETからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが280nm、表面のゆがみRskが+0.29、表面のとがりRkuが3である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 7)
The amount of work energy (KJ) was changed as shown in Table 4, except that the friction processing material with a surface fabric made of PET was used instead of the friction processing material with a surface fabric made of cotton. In the same manner as in Example 10, a release film having a surface roughness Rz of 280 nm, a surface distortion Rsk of +0.29, and a surface sharpness Rku of 3 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(比較例8)
仕事エネルギー量(KJ)を表4に示すように変更し、綿からなる織物を表面素材とする摩擦処理材の代わりにウールからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが240nm、表面のゆがみRskが+0.25、表面のとがりRkuが4である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 8)
The amount of work energy (KJ) was changed as shown in Table 4, except that it was friction-treated with a friction treatment material with a woven fabric made of wool as a surface material instead of a friction treatment material with a woven fabric made of cotton as a surface material. In the same manner as in Example 10, a release film having a surface roughness Rz of 240 nm, a surface distortion Rsk of +0.25, and a surface sharpness Rku of 4 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(比較例9)
仕事エネルギー量(KJ)を表4に示すように変更し、綿からなる織物を表面素材とする摩擦処理材の代わりにウールからなる織物を表面素材とする摩擦処理材によって摩擦処理したこと以外は、実施例10と同様にして、表層の表面粗さRzが460nm、表面のゆがみRskが+1.15、表面のとがりRkuが12である離型フィルムを得た。また、実施例10と同様にして表層の結晶化度(%)を算出した。
(Comparative Example 9)
The amount of work energy (KJ) was changed as shown in Table 4, except that it was friction-treated with a friction treatment material with a woven fabric made of wool as a surface material instead of a friction treatment material with a woven fabric made of cotton as a surface material. In the same manner as in Example 10, a release film having a surface roughness Rz of 460 nm, a surface distortion Rsk of +1.15, and a surface sharpness Rku of 12 was obtained. Further, the crystallinity (%) of the surface layer was calculated in the same manner as in Example 10.
(評価)
実施例、比較例で得られた離型フィルムについて、以下の評価を行った。結果を表1~4に示す。
(Evaluation)
The following evaluation was performed about the release film obtained by the Example and the comparative example. The results are shown in Tables 1 to 4.
(1)離型性(剥離力)
200mm角に切り抜いたカバーレイフィルム(CISV-2535、ニッカン工業社製)のエポキシ接着剤面と、得られた離型フィルムの表層面とを重ね、スライド式真空ヒータープレス(MKP-3000v-MH-ST、ミカドテクノス社製)を用いて、圧力30kgf、180℃、6分間でプレスを行った後、23℃、50%RHの条件で1日養生した。その後、養生後のサンプルから巾30mm、長さ150mmの評価サンプルを切り出し、この評価サンプルについて、テンシロン(STA-1150、エーアンドデー社製)を用いて、剥離速度500mm/分、剥離角度180°で剥離力(N/30mm)を測定した。
(1) Releasability (peeling force)
Overlay the epoxy adhesive surface of the coverlay film (CISV-2535, manufactured by Nikkan Kogyo Co., Ltd.) cut into 200 mm square and the surface layer of the obtained release film, and slide vacuum heater press (MKP-3000v-MH- ST, manufactured by Mikado Technos Co., Ltd.) was pressed at a pressure of 30 kgf and 180 ° C. for 6 minutes, and then cured at 23 ° C. and 50% RH for 1 day. Thereafter, an evaluation sample having a width of 30 mm and a length of 150 mm was cut out from the sample after curing, and this evaluation sample was peeled at a peeling speed of 500 mm / min and a peeling angle of 180 ° using Tensilon (STA-1150, manufactured by A & D). The peel force (N / 30 mm) was measured.
(2)追従性(埋め込み性)
銅貼積層板(20cm×20cm、ポリイミド厚25μm、銅箔18μm、以下、「CCL」という)、カバーレイフィルム(20cm×20cm、ポリイミド厚12μm、エポキシ系樹脂接着剤層15μm)、及び、得られた離型フィルムを下からこの順番に積み上げ、真空プレスを用いて160℃、30kg/cm、30分の条件でプレスし、CCLとカバーレイフィルムとからなるFPC評価サンプルを作製した。なお、カバーレイフィルムには、予め接着剤流れ出し量評価用のパターン(200μmピッチ、100μmピッチ)を作製しておいた。
その後、FPC評価サンプル及び離型フィルムを取り出し、カバーレイフィルム上の接着剤流れ出し量評価用の穴を顕微鏡で観察することにより、流れ出した接着剤の長さを測定した。流れ出した接着剤の長さが10μm未満であった場合を◎と、10μm以上20μm未満であった場合を○と、20μm以上30μm未満であった場合を△と、30μm以上であった場合を×として評価した。
(2) Follow-up (embeddability)
Copper-clad laminate (20 cm × 20 cm, polyimide thickness 25 μm, copper foil 18 μm, hereinafter referred to as “CCL”), coverlay film (20 cm × 20 cm, polyimide thickness 12 μm, epoxy resin adhesive layer 15 μm), and obtained The release films were stacked in this order from the bottom, and pressed under the conditions of 160 ° C., 30 kg / cm 2 , 30 minutes using a vacuum press to prepare an FPC evaluation sample composed of CCL and a coverlay film. Note that a pattern (200 μm pitch, 100 μm pitch) for evaluating the adhesive flow-out amount was prepared in advance on the coverlay film.
Thereafter, the FPC evaluation sample and the release film were taken out, and the length of the adhesive flowed out was measured by observing the adhesive flow-out amount evaluation hole on the coverlay film with a microscope. The case where the length of the flowed-out adhesive was less than 10 μm, ◯, the case where it was 10 μm or more and less than 20 μm, the case where it was 20 μm or more and less than 30 μm, Δ, and the case where it was 30 μm or more × As evaluated.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
本発明によれば、離型性に優れ、かつ、基板表面への追従性に優れ、熱プレス成形時の接着剤の流れ出しを抑制することのできる離型フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the mold release film which is excellent in mold release property, is excellent in the followable | trackability to a substrate surface, and can suppress the outflow of the adhesive agent at the time of hot press molding can be provided.
1  離型処理層
2、2’、2”  表層中の他の領域
1 Release processing layer 2, 2 ', 2 "Other area in surface layer

Claims (8)

  1. 表層を有する離型フィルムであって、
    前記表層の表面から厚み50~300nmまでの領域のみに離型処理層が観察される
    ことを特徴とする離型フィルム。
    A release film having a surface layer,
    A release film, wherein a release treatment layer is observed only in a region from the surface of the surface layer to a thickness of 50 to 300 nm.
  2. ポリエステル系樹脂を含有する表層を有する離型フィルムであって、
    前記表層の表面から厚み1μmまでの領域において、前記ポリエステル系樹脂に含まれるカルボニル基のうちの面に対して平行に配向したカルボニル基の割合が45%以上である
    ことを特徴とする離型フィルム。
    A release film having a surface layer containing a polyester resin,
    In the region from the surface of the surface layer to a thickness of 1 μm, the release film is characterized in that the proportion of carbonyl groups oriented parallel to the surface of the carbonyl groups contained in the polyester resin is 45% or more .
  3. 表層を有する離型フィルムであって、
    前記表層は、表面粗さRzが250~450nm、表面のゆがみRskが+0.3~+1.1、かつ、表面のとがりRkuが5~11である
    ことを特徴とする離型フィルム。
    A release film having a surface layer,
    The release film is characterized in that the surface layer has a surface roughness Rz of 250 to 450 nm, a surface distortion Rsk of +0.3 to +1.1, and a surface edge Rku of 5 to 11.
  4. 表層は、ポリエステル系樹脂を含有することを特徴とする請求項1又は3記載の離型フィルム。 The release layer according to claim 1 or 3, wherein the surface layer contains a polyester resin.
  5. 表層は、結晶化度が25%以下であることを特徴とする請求項1、2、3又は4記載の離型フィルム。 The mold release film according to claim 1, 2, 3, or 4, wherein the surface layer has a crystallinity of 25% or less.
  6. プリプレグ又は耐熱フィルムを介して基板に銅張積層板又は銅箔を熱プレス成形し、プリント配線基板、フレキシブルプリント基板又は多層プリント配線板を製造する際に、熱プレス板と、得られたプリント配線基板、フレキシブルプリント基板又は多層プリント配線板との接着を防ぐために用いられることを特徴とする請求項1、2、3、4又は5記載の離型フィルム。 When a printed wiring board, a flexible printed board or a multilayer printed wiring board is manufactured by hot press molding a copper-clad laminate or copper foil on a board through a prepreg or a heat-resistant film, and the obtained printed wiring 6. The release film according to claim 1, wherein the release film is used for preventing adhesion to a substrate, a flexible printed circuit board or a multilayer printed wiring board.
  7. 熱硬化性接着剤を介して、銅回路を形成した基板にカバーレイフィルムを熱プレス成形により接着し、フレキシブルプリント基板を製造する際に、熱プレス板と前記カバーレイフィルムとの接着、又は、前記カバーレイフィルム同士の接着を防ぐために用いられることを特徴とする請求項1、2、3、4又は5記載の離型フィルム。 When a cover lay film is bonded to a substrate on which a copper circuit is formed by hot press molding via a thermosetting adhesive, and a flexible printed circuit board is manufactured, the bonding between the hot press plate and the cover lay film, or The release film according to claim 1, 2, 3, 4 or 5, which is used for preventing adhesion between the coverlay films.
  8. 熱プレス成形により半導体用モールドを製造する際に、成形金型とモールド樹脂との接着を防ぐために用いられることを特徴とする請求項1、2、3、4又は5記載の離型フィルム。 6. The release film according to claim 1, wherein the mold release film is used for preventing adhesion between a molding die and a molding resin when a semiconductor mold is manufactured by hot press molding.
PCT/JP2011/055798 2010-03-12 2011-03-11 Mold release film and method for manufacturing mold release film WO2011111826A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180013457.0A CN102791480B (en) 2010-03-12 2011-03-11 Mold release film and method for manufacturing mold release film
KR1020127026625A KR101873071B1 (en) 2010-03-12 2011-03-11 Mold release film and method for manufacturing mold release film
JP2011513562A JP5719290B2 (en) 2010-03-12 2011-03-11 Release film and method for producing release film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010056620 2010-03-12
JP2010-056622 2010-03-12
JP2010056622 2010-03-12
JP2010-056621 2010-03-12
JP2010-056620 2010-03-12
JP2010056621 2010-03-12

Publications (1)

Publication Number Publication Date
WO2011111826A1 true WO2011111826A1 (en) 2011-09-15

Family

ID=44563624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055798 WO2011111826A1 (en) 2010-03-12 2011-03-11 Mold release film and method for manufacturing mold release film

Country Status (5)

Country Link
JP (2) JP5719290B2 (en)
KR (1) KR101873071B1 (en)
CN (1) CN102791480B (en)
TW (1) TWI540051B (en)
WO (1) WO2011111826A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213493A (en) * 2013-04-24 2014-11-17 三井化学東セロ株式会社 Mold release film, and method for producing semiconductor device-sealed body
WO2015019933A1 (en) * 2013-08-05 2015-02-12 積水化学工業株式会社 Mold release film
JP2015077783A (en) * 2013-09-10 2015-04-23 東レ株式会社 Biaxial orientation polyester film for release
JP2016064638A (en) * 2014-09-17 2016-04-28 東レ株式会社 White polyester film
JP2016089150A (en) * 2014-10-31 2016-05-23 東レ株式会社 Polyester film for manufacturing optical film
JP6014680B2 (en) * 2012-11-19 2016-10-25 タツタ電線株式会社 Laminated film and shield printed wiring board
WO2021060151A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 Release film
US11608410B2 (en) 2019-12-23 2023-03-21 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163938B (en) * 2013-04-30 2018-01-30 住友电木株式会社 The application method of mold release film and mold release film
SG11201607466TA (en) * 2014-03-07 2016-10-28 Asahi Glass Co Ltd Mold release film, process for its production and process for producing semiconductor package
JP2018167458A (en) * 2017-03-29 2018-11-01 日本メクトロン株式会社 Release film and method for manufacturing flexible printed board
CN111819228B (en) * 2018-03-19 2023-09-19 积水化学工业株式会社 Release film
CN112586096A (en) 2018-07-06 2021-03-30 拓自达电线株式会社 Adhesive film for printed circuit substrate
CN111019148B (en) * 2019-12-10 2021-10-01 河南科技学院 Modified foamed copper material and preparation method and application thereof
KR102304403B1 (en) 2019-12-18 2021-09-17 황진상 Resin composition for mold cleaning and manufacturing method thereof
KR102325676B1 (en) 2019-12-18 2021-11-11 황진상 Resin composition for mold cleaning and manufacturing method thereof
CN117858800A (en) * 2021-08-31 2024-04-09 东洋纺株式会社 Release film for molding resin sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030466A1 (en) * 2003-09-30 2005-04-07 Sekisui Chemical Co., Ltd. Multi-layer sheet
WO2009038118A1 (en) * 2007-09-21 2009-03-26 Sekisui Chemical Co., Ltd. Mold release film
WO2009145083A1 (en) * 2008-05-28 2009-12-03 株式会社クレハ Release film comprising polyphenylene sulfide resin and laminate
JP2010046964A (en) * 2008-08-25 2010-03-04 Unitika Ltd Peelable polyester film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03240658A (en) * 1990-02-01 1991-10-28 Teijin Ltd Lid material
JPH05283862A (en) 1992-03-31 1993-10-29 Sony Corp Manufacture of laminated printed board
JP4818541B2 (en) * 2001-08-07 2011-11-16 三菱樹脂株式会社 Polyester film
JP2003192987A (en) * 2001-12-26 2003-07-09 Toray Ind Inc Solventless polysiloxane-based coating agent and release film
JP3791458B2 (en) * 2002-05-23 2006-06-28 旭硝子株式会社 Release film
JP2005212453A (en) * 2004-02-02 2005-08-11 Sekisui Chem Co Ltd Release film and manufacturing process of release film
KR100879003B1 (en) * 2005-05-26 2009-01-15 주식회사 코오롱 Release Film
JP2007237497A (en) * 2006-03-07 2007-09-20 Teijin Dupont Films Japan Ltd Mold release film
CN101415546A (en) * 2006-04-05 2009-04-22 旭硝子株式会社 Mold release film, mold release cushion material, and process for manufacturing printed board
JP2009132806A (en) 2007-11-30 2009-06-18 Sekisui Chem Co Ltd Mold release film
JP5492542B2 (en) * 2009-12-24 2014-05-14 積水化学工業株式会社 Release film production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030466A1 (en) * 2003-09-30 2005-04-07 Sekisui Chemical Co., Ltd. Multi-layer sheet
WO2009038118A1 (en) * 2007-09-21 2009-03-26 Sekisui Chemical Co., Ltd. Mold release film
WO2009145083A1 (en) * 2008-05-28 2009-12-03 株式会社クレハ Release film comprising polyphenylene sulfide resin and laminate
JP2010046964A (en) * 2008-08-25 2010-03-04 Unitika Ltd Peelable polyester film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014680B2 (en) * 2012-11-19 2016-10-25 タツタ電線株式会社 Laminated film and shield printed wiring board
JP2014213493A (en) * 2013-04-24 2014-11-17 三井化学東セロ株式会社 Mold release film, and method for producing semiconductor device-sealed body
WO2015019933A1 (en) * 2013-08-05 2015-02-12 積水化学工業株式会社 Mold release film
JP2015077783A (en) * 2013-09-10 2015-04-23 東レ株式会社 Biaxial orientation polyester film for release
JP2016064638A (en) * 2014-09-17 2016-04-28 東レ株式会社 White polyester film
JP2016089150A (en) * 2014-10-31 2016-05-23 東レ株式会社 Polyester film for manufacturing optical film
WO2021060151A1 (en) * 2019-09-25 2021-04-01 積水化学工業株式会社 Release film
US11608410B2 (en) 2019-12-23 2023-03-21 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same
US11840602B2 (en) 2019-12-23 2023-12-12 Chang Chun Plastics Co., Ltd. Laminate, circuit board, and liquid crystal polymer film applied to the same
US11926698B2 (en) 2019-12-23 2024-03-12 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same
US11945907B2 (en) 2019-12-23 2024-04-02 Chang Chun Plastics Co., Ltd. Liquid crystal polymer film and laminate comprising the same

Also Published As

Publication number Publication date
CN102791480A (en) 2012-11-21
CN102791480B (en) 2015-06-17
JPWO2011111826A1 (en) 2013-06-27
JP5837976B2 (en) 2015-12-24
TWI540051B (en) 2016-07-01
JP2015083379A (en) 2015-04-30
KR101873071B1 (en) 2018-06-29
TW201144072A (en) 2011-12-16
KR20130043623A (en) 2013-04-30
JP5719290B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5837976B2 (en) Release film and method for producing release film
JP5862740B1 (en) Release film and method of using release film
JP5792904B2 (en) Release film
JP6391554B2 (en) Release film
JP2011062919A (en) Multi-layer release film
JP2016112729A (en) Release film
JP4598644B2 (en) Multilayer release film and method for producing multilayer release film
JP2010155451A (en) Release film
JP2015202662A (en) Production method of release film
JP6318836B2 (en) Substrate for transfer and transfer sheet
JP2016168688A (en) Release film
JP5492542B2 (en) Release film production method
JP2010194841A (en) Release film and method for manufacturing the same
JP6481396B2 (en) Release film
JP5438367B2 (en) Multi-layer release film
JP6383165B2 (en) Polyolefin-based resin laminated film
JP2011252094A (en) Release film
JP6605095B2 (en) Polyolefin-based resin laminated film
JP2007276336A (en) Multi-layer release film
JP2006321112A (en) Multilayered mold release film
JP5804137B1 (en) Release film
JP2006321114A (en) Multilayered mold release film
JP2014069385A (en) Heat-resistant release film
JP2021054071A (en) Release film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013457.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011513562

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026625

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11753484

Country of ref document: EP

Kind code of ref document: A1