WO2011111378A1 - Ceramic electronic component and production method for same - Google Patents

Ceramic electronic component and production method for same Download PDF

Info

Publication number
WO2011111378A1
WO2011111378A1 PCT/JP2011/001370 JP2011001370W WO2011111378A1 WO 2011111378 A1 WO2011111378 A1 WO 2011111378A1 JP 2011001370 W JP2011001370 W JP 2011001370W WO 2011111378 A1 WO2011111378 A1 WO 2011111378A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
sintered body
electronic component
ceramic sintered
glass
Prior art date
Application number
PCT/JP2011/001370
Other languages
French (fr)
Japanese (ja)
Inventor
則隆 吉田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011111378A1 publication Critical patent/WO2011111378A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a ceramic electronic component having an electrode and a ceramic material and a method for manufacturing the same.
  • common mode noise which is said to cause this radiation noise, is removed by a common mode noise filter.
  • a ceramic material having a low dielectric constant is used for the following reason.
  • the common mode noise filter is a dielectric with two coils wound in the same direction. Normally, when a current is passed through a coil, a magnetic field is generated, and a braking effect is caused by self-induction.
  • the common mode noise filter blocks the passage of the common mode noise current by utilizing the interaction of the two coils. Specifically, when a signal current of common mode noise is passed through two coils, both flow in the same direction, so the magnetic fluxes generated in the coils are combined and strengthened. As a result, a stronger braking action works due to the electromotive force due to the self-induction action, and the passage of the common mode noise current can be prevented.
  • a ceramic material that is a dielectric having a low dielectric constant is desired as an LTCC material that has a high signal propagation speed and can efficiently transmit signals. Even in these ceramic materials, the characteristics are not stable if the dielectric constant varies. Therefore, it is desired to suppress variations in dielectric characteristics of ceramic materials.
  • Patent Document 1 discloses a ceramic electronic component in which pores are provided inside a ceramic sintered body using an inorganic foaming agent in order to lower the dielectric constant, and a method for manufacturing the same.
  • the dielectric characteristics of the ceramic electronic component may vary as a result.
  • the electronic component is designed in consideration of a capacitance value formed between Ag electrodes. Therefore, stabilization of the capacitance value is indispensable for stabilizing the characteristics of the electronic component.
  • the capacitance value C is expressed by the following equation by the dielectric constant ⁇ 0 of vacuum, the dielectric constant ⁇ r of the ceramic material, the area S of the electrodes, and the distance d between the electrodes.
  • the manufacturing process is optimized so that the electrode area S and the inter-electrode distance d are constant.
  • the dielectric constant ⁇ r of the ceramic material varies, variations in the capacitance value C, and hence variations in the characteristics of the electronic components, are unavoidable.
  • the ceramic electronic component includes a ceramic sintered body and an electrode containing Ag in contact with the ceramic sintered body.
  • the ceramic sintered body has a glass material made of borosilicate glass.
  • the glass material is provided with a plurality of closed pores distributed substantially uniformly.
  • FIG. 1 is a schematic cross-sectional view of a ceramic electronic component according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the composition and physical properties of the ceramic sintered body of the ceramic electronic component according to the embodiment of the present invention.
  • FIG. 3A is a schematic cross-sectional view showing a method for manufacturing a ceramic electronic component according to an embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view showing the method for manufacturing the ceramic electronic component according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a dielectric constant of a sample of a ceramic sintered body of a ceramic electronic component according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a ceramic electronic component 100 according to an embodiment of the present invention.
  • the ceramic electronic component 100 includes a ceramic sintered body 1, an electrode 2 provided on the surface 101 of the ceramic sintered body 1, and an electrode 502 provided inside the ceramic sintered body 1.
  • the ceramic sintered body 1 includes a glass material 6 and a plurality of fillers 5 dispersed in the glass material 6.
  • a plurality of open pores 3, a plurality of open pores 503, and a plurality of closed pores 4 are formed in the glass material 6 of the ceramic sintered body 1.
  • the glass material 6 is made of borosilicate glass.
  • the electrode 2 contacts the portion 101A of the surface 101 of the ceramic sintered body 1.
  • the plurality of open pores 3 are open to the portion 101 ⁇ / b> A of the ceramic sintered body 1.
  • the electrode 502 contacts the portion 501A in the ceramic sintered body 1.
  • the plurality of open pores 3 are open to the portion 101 ⁇ / b> A of the ceramic sintered body 1.
  • the plurality of open pores 503 are open to the portion 501 ⁇ / b> A of the ceramic sintered body 1.
  • the ceramic electronic component 100 constitutes a capacitor component by the electrodes 2 and 502 facing each other with the ceramic sintered body 1 interposed therebetween.
  • Ceramic electronic component 100 in the embodiment may constitute an inductor component such as a common mode noise filter whose electrodes function as an inductor.
  • Ceramic electronic component 100 in the embodiment may not include one of electrodes 2 and 502.
  • the plurality of closed pores 4 are uniformly distributed in the ceramic sintered body 1.
  • a value obtained by dividing the total volume of the closed pores 4 in a certain part by the total volume of the ceramic sintered body 1 is defined as the closed porosity of that part.
  • the plurality of closed pores 4 are distributed in the ceramic sintered body 1 so that the porosity is uniform.
  • the plurality of closed pores 4 are distributed so that the number per unit volume in each portion in the ceramic sintered body 1 is uniform, and the diameters of the plurality of closed pores 4 are substantially the same. It is. Thereby, the closed porosity becomes uniform in the ceramic sintered body 1.
  • the closed pores 4 are pores inside the ceramic sintered body 1 and not communicating with the outside of the ceramic sintered body 1.
  • the closed pores 4 may be independent pores existing alone in the ceramic sintered body 1 or may be so-called continuous vent holes in which a plurality of pores are connected.
  • the open pores 3 are pores that partially communicate with the outside of the ceramic sintered body 1.
  • the open pores 3 may be independent pores that exist independently in the ceramic sintered body 1 or may be continuous vent holes in which a plurality of pores are connected.
  • the composition of the borosilicate glass constituting the glass material 6 will be described below.
  • Embodiment 1 it is desirable to use a borosilicate glass having a crystallization rate of 90% or less as the glass material 6.
  • a crystallized glass having a crystallization rate exceeding 90% the decrease in viscosity at the softening point or higher is not so great that the formation of the open pores 3, 503 and the closed pores 4 is inhibited, and the closed pores 4 are difficult to be uniformly distributed. There is a case.
  • the glass composition of the borosilicate glass may be made of a material containing at least one selected from Al 2 O 3 , ZnO, alkaline earth metal oxide, and alkali metal oxide in addition to SiO 2 and B 2 O 3. It is desirable to contain an alkaline earth metal oxide or an alkali metal oxide. In consideration of the influence on the environment, it is desirable that PbO is not substantially contained.
  • the glass bending point is a temperature that changes from expansion to contraction while the temperature of the glass is raised, and thermomechanical analysis (TMA) measurement of a glass rod-shaped sample (measured with TMA8310 manufactured by Rigaku Corporation). Can be obtained.
  • TMA thermomechanical analysis
  • the filler 5 is made of a SiO 2 filler. Thereby, the fixed form property after baking can be maintained, keeping the dielectric constant of the ceramic sintered compact 1 low.
  • the inorganic foaming agent is preferably CaCO 3 or SrCO 3, but may be a mixture obtained by mixing CaCO 3 and SrCO 3 .
  • various carbonates, nitrates, sulfates and the like can be used as long as they decompose at 600 to 1000 ° C., for example, BaCO 3 , Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 or the like can be used.
  • the decomposition completion temperature of the inorganic foaming agent is above the yield point of the borosilicate glass powder.
  • the decomposition completion temperature of the foaming agent is preferably 600 ° C to 1000 ° C, more preferably 700 ° C to 1000 ° C. If the decomposition completion temperature is within this range, the gas generated during the heating process during firing is suitably trapped in the ceramic sintered body 1.
  • the decomposition completion temperature is the temperature at which weight reduction is completed in the thermogravimetric (TG) chart of the raw material powder used as the foaming agent, and differential thermal-thermogravimetric simultaneous measurement of the raw material powder (TG-DTA) (TG8120, manufactured by Rigaku Corporation). Can be obtained by measurement). At this temperature, decomposition of the foaming agent is completed, and the closed pores 4 and the open pores 3 and 503 can be formed in the glass material 6.
  • TG thermogravimetric
  • TG-DTA differential thermal-thermogravimetric simultaneous measurement of the raw material powder
  • the addition amount of the inorganic foaming agent is preferably 3 wt% or less. If the inorganic foaming agent is 3 wt% or more, the majority of the open pores 3, 503 and the closed pores 4 are connected to each other to form so-called continuous vents, which is not preferable because the water absorption rate increases.
  • the Ag added to the ceramic sintered body 1 is preferably about 1 wt% to 3 wt% with respect to the borosilicate glass.
  • Ag is less than 1 wt%, the diffusion of Ag from the electrodes 2 and 502 into the glass material 6 cannot be sufficiently suppressed.
  • Ag is more than 3 wt%, the electrical insulating property of the ceramic sintered body 1 is inferior.
  • it is desirable that Ag is uniformly dissolved in the glass when the glass constituting the ceramic sintered body 1 is produced by a melting method.
  • Ag can be mixed with glass by mixing and baking Ag fine powder or the salt fine powder containing Ag.
  • a small amount of Ag is added to the ceramic sintered body 1 in order to suppress excessive diffusion of Ag from the electrodes 2 and 502 mainly composed of Ag. Since Ag has a small ion radius, it is easy to be taken into the glass network and to move in the glass melt. By moving Ag ions uniformly into the ceramic sintered body 1 in advance, the movement of Ag from the electrodes 2 and 502 to the ceramic sintered body 1 can be suppressed. Further, by adding a small amount of Ag to the ceramic sintered body 1, the viscosity of the glass melt decreases during sintering, and the fluidity increases, so that the closed pores 4 can be uniformly distributed in the borosilicate glass phase. It becomes.
  • the electrodes 2 and 502 are made of Ag as a conductor, but may be an alloy containing Ag as a main component, such as Ag—Pt or Ag—Pd.
  • the electrodes 2 and 502 and the ceramic sintered body 1 can be firmly bonded. More specifically, the open pores 3 and 503 are formed in the portions 101A and 501A of the ceramic sintered body 1 in contact with the electrodes 2 and 502, and the electrodes 2 and 502 enter the open pores 3 and 503 during simultaneous firing. Thus, the ceramic sintered body 1 is firmly joined.
  • the formation method of the electrodes 2 and 502 in this embodiment is not particularly limited, and may be formed by an Ag paste using a printing method such as screen printing that is usually used, or a transfer method. You may form with Ag foil.
  • sample of ceramic electronic component 100 A sample of ceramic electronic component 100 was prepared by the method described below.
  • FIG. 2 is a diagram showing the composition and physical properties of samples Nos. 1 to 8 of the ceramic sintered body 1.
  • 3A and 3B are schematic cross-sectional views showing a method for manufacturing the ceramic electronic component 100.
  • a borosilicate glass SiO 2 —B 2 O 3 —Al 2 O 3 —MgO—CaO—K 2 O-based glass having a yield point of 600 ° C.
  • a quartz SiO 2
  • an inorganic foaming agent CaCO 3
  • SrCO 3 SrCO 3
  • Ag powder were weighed and mixed at a predetermined ratio shown in FIG. 2 to prepare a mixture.
  • a plurality of ceramic green sheets 51 containing the mixture as a main component were formed by a doctor blade method using a slurry of the mixture.
  • a plurality of ceramic green sheets 51 were laminated to produce a ceramic green sheet laminate 51A.
  • a conductive material 52 containing Ag which is an Ag paste, serving as a meander pattern electrode 2 having a line width of 150 ⁇ m is formed on the surface of the ceramic green sheet laminate 51A (ceramic green sheet 51).
  • a printed laminate was produced.
  • a laminate in which the conductive material 52 was not applied to the surface of the ceramic green sheet laminate 51A was produced.
  • a ceramic sintered body is printed by printing a conductive material 52 on a ceramic green sheet 51 and then laminating a ceramic green sheet laminate 51A (ceramic green sheet 51) so as to cover the conductive material 52.
  • the ceramic electronic component provided with the electrode 502 provided in 1 can be created.
  • the samples fired without applying the Ag paste were subjected to defoaming treatment in water after measuring the dry weight, and the weight in water and the water content were measured.
  • the specific gravity by the Archimedes method was calculated using the weight value, and the water absorption rate was calculated.
  • the closed porosity and open porosity were also calculated.
  • the closed porosity is obtained by dividing the total volume of the closed pores by the total volume of the ceramic sintered body 1, and the open porosity is the total volume of the open pores obtained by sintering the ceramic. Divided by the total volume of the body 1.
  • sample of the ceramic sintered body 1 produced in this example can be integrally sintered with, for example, ferrite or a kind of ceramic material having different characteristics.
  • FIG. 4 is a diagram showing an average value and a standard deviation of measured values of the dielectric constant of the ceramic sintered body 1 sample.
  • a glass material having a dielectric constant of about 3 it is preferable to suppress variations in dielectric constant within plus or minus 0.1. If it varies further, the design of the ceramic electronic component 100 becomes extremely difficult, and the yield is greatly reduced. Therefore, in a glass material having a dielectric constant of about 3, the standard deviation of the dielectric constant is desirably 0.05 or less. In the ceramic electronic component 100 according to the present embodiment, it is possible to keep variation within this range.
  • the ceramic electronic component according to the present invention has a stable dielectric constant and is useful for various high-frequency components such as a common mode noise filter.

Abstract

A ceramic electronic component is provided with a ceramic sintered compact, and an electrode which abuts the ceramic sintered compact and which contains Ag. The ceramic sintered compact comprises glass material made from borosilicate glass. A plurality of closed pores are distributed in a substantially uniform manner throughout the glass material. The ceramic electronic component has a stable dielectric constant even if the ceramic sintered compact and the electrode have been fired simultaneously.

Description

セラミック電子部品とその製造方法Ceramic electronic component and manufacturing method thereof
 本発明は、電極とセラミック材料とを有するセラミック電子部品とその製造方法に関する。 The present invention relates to a ceramic electronic component having an electrode and a ceramic material and a method for manufacturing the same.
 近年、例えばUSBやHDMIなどの高速インターフェースのさらなる高速化にともない放射ノイズ対策が問題となっている。そこで、この放射ノイズの原因となるといわれているコモンモードノイズをコモンモードノイズフィルタで除去する。例えば、このコモンモードノイズフィルタにおいては、以下に述べる理由で低誘電率のセラミック材料が用いられる。 In recent years, for example, countermeasures against radiated noise have become a problem as the speed of high-speed interfaces such as USB and HDMI is further increased. Therefore, common mode noise, which is said to cause this radiation noise, is removed by a common mode noise filter. For example, in this common mode noise filter, a ceramic material having a low dielectric constant is used for the following reason.
 コモンモードノイズフィルタは誘電体に2本のコイルを同じ向きに巻いたものである。通常、電流をコイルに流すと磁場が発生し、自己誘導作用によりブレーキ効果が起こる。コモンモードノイズフィルタは、2本のコイルの相互作用を利用してコモンモードノイズ電流の通過を阻止する。具体的には、2本のコイルにコモンモードノイズの信号電流を流すと、両者は同じ方向に流れるので、コイルに発生する磁束は合成されて強めあう。そしてその結果、自己誘導作用による起電力により、より強いブレーキ作用が働き、コモンモードノイズ電流の通過を阻止することができる。 The common mode noise filter is a dielectric with two coils wound in the same direction. Normally, when a current is passed through a coil, a magnetic field is generated, and a braking effect is caused by self-induction. The common mode noise filter blocks the passage of the common mode noise current by utilizing the interaction of the two coils. Specifically, when a signal current of common mode noise is passed through two coils, both flow in the same direction, so the magnetic fluxes generated in the coils are combined and strengthened. As a result, a stronger braking action works due to the electromotive force due to the self-induction action, and the passage of the common mode noise current can be prevented.
 2本のコイルを互いに近づけることによりコイルに発生する磁束を合成し、強めあうことでより強いブレーキ作用を働かせ、コモンモードノイズフィルタとしての機能をより良好に発揮させることができる。しかしながら、2本のコイルを近づけるとコイル間の浮遊容量が高くなってしまうので、共振現象が発生し、信号電流の通過が阻害されてしまう。そこで、2本のコイル間の距離を短くし、かつ、コイル間の浮遊容量を小さくするために、コイルが配置されている誘電体の誘電体の誘電率を低くすることが必要である。 ¡By synthesizing and strengthening the magnetic flux generated in the coils by bringing the two coils close to each other, a stronger braking action can be exerted and the function as a common mode noise filter can be exhibited better. However, when the two coils are brought close to each other, the stray capacitance between the coils increases, so that a resonance phenomenon occurs and the passage of the signal current is hindered. Therefore, in order to shorten the distance between the two coils and reduce the stray capacitance between the coils, it is necessary to lower the dielectric constant of the dielectric in which the coil is disposed.
 コモンモードノイズフィルタの複数の製品で誘電体の誘電率がばらつくと、コイル間の浮遊容量がばらつき、結果としてコモンモードノイズフィルタとしての特性がばらつく。また、その他の高周波デバイスや高速伝送ライン用基板などにおいても、信号の伝播速度が速く、信号を効率良く伝送できるLTCC材料として、誘電率が低い誘電体であるセラミック材料が望まれている。これらのセラミック材料においても、誘電率がばらつくと特性が安定しない。そこで、セラミック材料の誘電特性のばらつきを抑えることが望まれている。 When the dielectric constant of the dielectric varies among multiple common mode noise filter products, the stray capacitance between the coils varies, resulting in variations in the characteristics of the common mode noise filter. In other high-frequency devices and high-speed transmission line substrates, a ceramic material that is a dielectric having a low dielectric constant is desired as an LTCC material that has a high signal propagation speed and can efficiently transmit signals. Even in these ceramic materials, the characteristics are not stable if the dielectric constant varies. Therefore, it is desired to suppress variations in dielectric characteristics of ceramic materials.
 特許文献1には、誘電率を低くするために無機発泡剤を用いてセラミック焼結体内部に気孔を設けたセラミック電子部品とその製造方法が開示されている。 Patent Document 1 discloses a ceramic electronic component in which pores are provided inside a ceramic sintered body using an inorganic foaming agent in order to lower the dielectric constant, and a method for manufacturing the same.
 その方法でセラミック焼結体を製造すると、その結果としてセラミック電子部品の誘電特性がばらつく場合がある。 If a ceramic sintered body is manufactured by this method, the dielectric characteristics of the ceramic electronic component may vary as a result.
 内部に2層以上のAg電極を備えた電子部品においては、Ag電極間で形成されるコンデンサ容量値を勘案して電子部品が設計される。したがってその容量値の安定化が、電子部品の特性の安定化に不可欠である。容量値Cは、真空の誘電率ε、セラミック材料の誘電率ε、電極の面積S、電極間の距離dにより次の式で示される。 In an electronic component having two or more layers of Ag electrodes therein, the electronic component is designed in consideration of a capacitance value formed between Ag electrodes. Therefore, stabilization of the capacitance value is indispensable for stabilizing the characteristics of the electronic component. The capacitance value C is expressed by the following equation by the dielectric constant ε 0 of vacuum, the dielectric constant ε r of the ceramic material, the area S of the electrodes, and the distance d between the electrodes.
 C=ε・ε・S/d
 容量値Cを安定させるため、電極面積S及び電極間距離dが一定値となるよう、製造プロセスの最適化が図られる。しかし、それらをいかに安定させようとも、セラミック材料の誘電率εがばらつくと、容量値Cのばらつき、ひいては電子部品の特性のばらつきは避けられない。
C = ε 0 · ε r · S / d
In order to stabilize the capacitance value C, the manufacturing process is optimized so that the electrode area S and the inter-electrode distance d are constant. However, no matter how stable they are, if the dielectric constant ε r of the ceramic material varies, variations in the capacitance value C, and hence variations in the characteristics of the electronic components, are unavoidable.
 上述のように、誘電率がばらついている場合、Ag電極間の容量値Cを設計通りに制御することは極めて困難であり、誘電率εの局所的なばらつきを抑えることが望まれる。 As described above, when the dielectric constant varies, it is extremely difficult to control the capacitance value C between the Ag electrodes as designed, and it is desired to suppress local variations in the dielectric constant ε r .
特開2002-193691号公報JP 2002-193691 A
 セラミック電子部品は、セラミック焼結体と、セラミック焼結体に当接するAgを含有する電極とを備える。セラミック焼結体は、硼珪酸ガラスよりなるガラス材を有する。ガラス材には、実質的に均一に分布する複数の閉気孔が設けられている。 The ceramic electronic component includes a ceramic sintered body and an electrode containing Ag in contact with the ceramic sintered body. The ceramic sintered body has a glass material made of borosilicate glass. The glass material is provided with a plurality of closed pores distributed substantially uniformly.
 このセラミック電子部品は、セラミック焼結体と電極とを同時焼成した場合においても誘電率が安定している。 This ceramic electronic component has a stable dielectric constant even when the ceramic sintered body and the electrode are fired simultaneously.
図1は本発明の実施の形態におけるセラミック電子部品の模式断面図である。FIG. 1 is a schematic cross-sectional view of a ceramic electronic component according to an embodiment of the present invention. 図2は本発明の実施の形態におけるセラミック電子部品のセラミック焼結体の組成と物性を示す図である。FIG. 2 is a diagram showing the composition and physical properties of the ceramic sintered body of the ceramic electronic component according to the embodiment of the present invention. 図3Aは本発明の実施の形態におけるセラミック電子部品の製造方法を示す模式断面図である。FIG. 3A is a schematic cross-sectional view showing a method for manufacturing a ceramic electronic component according to an embodiment of the present invention. 図3Bは本発明の実施の形態におけるセラミック電子部品の製造方法を示す模式断面図である。FIG. 3B is a schematic cross-sectional view showing the method for manufacturing the ceramic electronic component according to the embodiment of the present invention. 図4は本発明の実施の形態におけるセラミック電子部品のセラミック焼結体の試料の誘電率を示す図である。FIG. 4 is a diagram showing a dielectric constant of a sample of a ceramic sintered body of a ceramic electronic component according to an embodiment of the present invention.
 図1は本発明の実施の形態におけるセラミック電子部品100の模式断面図である。セラミック電子部品100は、セラミック焼結体1と、セラミック焼結体1の表面101上に設けられた電極2と、セラミック焼結体1の内部に設けられた電極502とを備える。セラミック焼結体1は、ガラス材6と、ガラス材6内に分散する複数のフィラー5とを備える。セラミック焼結体1のガラス材6には複数の開気孔3と複数の開気孔503と複数の閉気孔4とが形成されている。ガラス材6は硼珪酸ガラスよりなる。電極2はセラミック焼結体1の表面101の部分101Aに当接する。複数の開気孔3はセラミック焼結体1の部分101Aに開口している。電極502はセラミック焼結体1内の部分501Aに当接する。複数の開気孔3はセラミック焼結体1の部分101Aに開口している。複数の開気孔503はセラミック焼結体1の部分501Aに開口している。セラミック電子部品100は、セラミック焼結体1を介して互いに対向する電極2、502によりコンデンサ部品を構成する。実施の形態におけるセラミック電子部品100は、電極がインダクタとして機能するコモンモードノイズフィルタ等のインダクタ部品を構成していてもよい。実施の形態におけるセラミック電子部品100は、電極2、502のうちの一方を備えていなくてもよい。 FIG. 1 is a schematic cross-sectional view of a ceramic electronic component 100 according to an embodiment of the present invention. The ceramic electronic component 100 includes a ceramic sintered body 1, an electrode 2 provided on the surface 101 of the ceramic sintered body 1, and an electrode 502 provided inside the ceramic sintered body 1. The ceramic sintered body 1 includes a glass material 6 and a plurality of fillers 5 dispersed in the glass material 6. A plurality of open pores 3, a plurality of open pores 503, and a plurality of closed pores 4 are formed in the glass material 6 of the ceramic sintered body 1. The glass material 6 is made of borosilicate glass. The electrode 2 contacts the portion 101A of the surface 101 of the ceramic sintered body 1. The plurality of open pores 3 are open to the portion 101 </ b> A of the ceramic sintered body 1. The electrode 502 contacts the portion 501A in the ceramic sintered body 1. The plurality of open pores 3 are open to the portion 101 </ b> A of the ceramic sintered body 1. The plurality of open pores 503 are open to the portion 501 </ b> A of the ceramic sintered body 1. The ceramic electronic component 100 constitutes a capacitor component by the electrodes 2 and 502 facing each other with the ceramic sintered body 1 interposed therebetween. Ceramic electronic component 100 in the embodiment may constitute an inductor component such as a common mode noise filter whose electrodes function as an inductor. Ceramic electronic component 100 in the embodiment may not include one of electrodes 2 and 502.
 複数の閉気孔4はセラミック焼結体1内に均一に分布している。ある部分での閉気孔4の体積の計をセラミック焼結体1の全体積で除して得られた値をその部分の閉気孔率と定義する。複数の閉気孔4は、セラミック焼結体1内で気孔率が均一なように分布している。もしくは、複数の閉気孔4は、セラミック焼結体1内の各部分での単位体積当りの数が均一になるように分布しており、さらに、複数の閉気孔4の径は実質的に同じである。これによりセラミック焼結体1内で閉気孔率が均一となる。 The plurality of closed pores 4 are uniformly distributed in the ceramic sintered body 1. A value obtained by dividing the total volume of the closed pores 4 in a certain part by the total volume of the ceramic sintered body 1 is defined as the closed porosity of that part. The plurality of closed pores 4 are distributed in the ceramic sintered body 1 so that the porosity is uniform. Alternatively, the plurality of closed pores 4 are distributed so that the number per unit volume in each portion in the ceramic sintered body 1 is uniform, and the diameters of the plurality of closed pores 4 are substantially the same. It is. Thereby, the closed porosity becomes uniform in the ceramic sintered body 1.
 なお、閉気孔4はセラミック焼結体1内部にあって、セラミック焼結体1の外部と通じていない気孔である。閉気孔4は、セラミック焼結体1内部に単独で存在する独立気孔であってもよく、複数の気孔が連なったようないわゆる連通気孔であってもよい。開気孔3は、その一部がセラミック焼結体1の外部と通じている気孔である。開気孔3は、セラミック焼結体1内に単独で存在する独立気孔であってもよく、複数の気孔が連なったような連通気孔であってもよい。 The closed pores 4 are pores inside the ceramic sintered body 1 and not communicating with the outside of the ceramic sintered body 1. The closed pores 4 may be independent pores existing alone in the ceramic sintered body 1 or may be so-called continuous vent holes in which a plurality of pores are connected. The open pores 3 are pores that partially communicate with the outside of the ceramic sintered body 1. The open pores 3 may be independent pores that exist independently in the ceramic sintered body 1 or may be continuous vent holes in which a plurality of pores are connected.
 特許文献1に開示されている従来の方法でセラミック焼結体を製造すると、Ag電極と同時焼成した際、閉気孔は均一に分布せず、Ag電極近傍に気孔が集まる。したがって、セラミック焼結体のうちのAg電極近傍の部分の誘電率が他の部分より低くなり、その結果としてセラミック電子部品の誘電特性がばらつく場合がある。 When a ceramic sintered body is manufactured by a conventional method disclosed in Patent Document 1, closed pores are not uniformly distributed when fired simultaneously with an Ag electrode, and the pores gather near the Ag electrode. Therefore, the dielectric constant of the portion near the Ag electrode in the ceramic sintered body is lower than that of other portions, and as a result, the dielectric characteristics of the ceramic electronic component may vary.
 閉気孔が内部に均一に分布されておらず、電極近傍の部分と遠い部分で誘電率が異なる場合、電極間の容量値を設計通りに制御することは極めて困難であるので、誘電率の局所的なばらつきを抑えることが必要である。 If the closed pores are not uniformly distributed in the interior and the dielectric constant differs between the part near and far from the electrode, it is extremely difficult to control the capacitance between the electrodes as designed. It is necessary to suppress general variations.
 ガラス材6を構成する硼珪酸ガラスの組成について以下に述べる。 The composition of the borosilicate glass constituting the glass material 6 will be described below.
 実施の形態1ではガラス材6として結晶化率が90%以下の硼珪酸ガラスを使用することが望ましい。結晶化率が90%を超える結晶化ガラスでは、軟化点以上での粘度の低下があまり大きくないので開気孔3、503と閉気孔4の形成が阻害され、閉気孔4を均一に分布させにくくなる場合がある。 In Embodiment 1, it is desirable to use a borosilicate glass having a crystallization rate of 90% or less as the glass material 6. In a crystallized glass having a crystallization rate exceeding 90%, the decrease in viscosity at the softening point or higher is not so great that the formation of the open pores 3, 503 and the closed pores 4 is inhibited, and the closed pores 4 are difficult to be uniformly distributed. There is a case.
 硼珪酸ガラスのガラス組成はSiO、Bに加え、Al、ZnO、アルカリ土類金属酸化物、アルカリ金属酸化物より選ばれるいずれか1種類以上含有する材料からなることが望ましく、特にアルカリ土類金属酸化物、乃至アルカリ金属酸化物を含有することが望ましい。また、環境への影響を考慮し、PbOは実質的に含まないことが望ましい。 The glass composition of the borosilicate glass may be made of a material containing at least one selected from Al 2 O 3 , ZnO, alkaline earth metal oxide, and alkali metal oxide in addition to SiO 2 and B 2 O 3. It is desirable to contain an alkaline earth metal oxide or an alkali metal oxide. In consideration of the influence on the environment, it is desirable that PbO is not substantially contained.
 ガラス材6に用いるガラス屈服点は550℃以上、750℃以下が望ましい。ガラス屈服点が550℃未満の場合、焼成時のガラス材6の変形が著しく、また、耐薬品性が劣るためメッキ等のプロセスで問題が生じる場合がある。また、ガラス屈服点が750℃を越えた場合、Agよりなる電極2、502と同時焼成可能な温度域でガラス材6の緻密化が不十分となる。 The glass bending point used for the glass material 6 is desirably 550 ° C. or higher and 750 ° C. or lower. When the glass bending point is lower than 550 ° C., the glass material 6 is significantly deformed at the time of firing, and problems such as plating may occur due to poor chemical resistance. In addition, when the glass bending point exceeds 750 ° C., the densification of the glass material 6 is insufficient in a temperature range in which simultaneous firing with the electrodes 2 and 502 made of Ag is possible.
 ここで、ガラス屈服点とは、ガラスの温度を上げていく間で膨張から収縮に転じる温度であり、ガラスの棒状試料の熱機械分析(TMA)測定((株)リガク製 TMA8310にて測定)で求めることができる。 Here, the glass bending point is a temperature that changes from expansion to contraction while the temperature of the glass is raised, and thermomechanical analysis (TMA) measurement of a glass rod-shaped sample (measured with TMA8310 manufactured by Rigaku Corporation). Can be obtained.
 フィラー5はSiO系フィラーからなる。これにより、セラミック焼結体1の誘電率を低く保ちつつ、焼成後の定型性も保つことができる。 The filler 5 is made of a SiO 2 filler. Thereby, the fixed form property after baking can be maintained, keeping the dielectric constant of the ceramic sintered compact 1 low.
 また、本実施の形態において無機発泡剤はCaCOまたはSrCOが望ましいが、CaCOとSrCOを混合して得られた混合物でもよい。無機発泡剤は、600℃から1000℃で分解するものであれば、各種炭酸塩、硝酸塩、硫酸塩などが使用可能であり、例えば、BaCO、Al(SO、Ce(SOなどを用いることができる。無機発泡剤の分解完了温度は硼珪酸ガラス粉末の屈服点以上である。上記発泡剤の分解完了温度は600℃から1000℃、より好ましくは700℃から1000℃であることが望ましい。分解完了温度がこの範囲内であれば、焼成での昇温過程で発生したガスがセラミック焼結体1に好適にトラップされる。 In this embodiment, the inorganic foaming agent is preferably CaCO 3 or SrCO 3, but may be a mixture obtained by mixing CaCO 3 and SrCO 3 . As the inorganic foaming agent, various carbonates, nitrates, sulfates and the like can be used as long as they decompose at 600 to 1000 ° C., for example, BaCO 3 , Al 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 or the like can be used. The decomposition completion temperature of the inorganic foaming agent is above the yield point of the borosilicate glass powder. The decomposition completion temperature of the foaming agent is preferably 600 ° C to 1000 ° C, more preferably 700 ° C to 1000 ° C. If the decomposition completion temperature is within this range, the gas generated during the heating process during firing is suitably trapped in the ceramic sintered body 1.
 分解完了温度とは、発泡剤として用いる原料粉末の熱重量(TG)チャートにおいて減量の完了する温度であり、原料粉末の示差熱‐熱重量同時測定(TG-DTA)((株)リガク製 TG8120にて測定)で求めることができる。この温度では発泡剤の分解が完了し、ガラス材6に閉気孔4や開気孔3、503を形成することができる。 The decomposition completion temperature is the temperature at which weight reduction is completed in the thermogravimetric (TG) chart of the raw material powder used as the foaming agent, and differential thermal-thermogravimetric simultaneous measurement of the raw material powder (TG-DTA) (TG8120, manufactured by Rigaku Corporation). Can be obtained by measurement). At this temperature, decomposition of the foaming agent is completed, and the closed pores 4 and the open pores 3 and 503 can be formed in the glass material 6.
 なお、無機発泡剤の添加量は3wt%以下が好ましい。無機発泡剤が3wt%以上になると、大多数の開気孔3、503と閉気孔4がお互いの繋がった、いわゆる連通気孔となり、吸水率が高くなり好ましくない。 In addition, the addition amount of the inorganic foaming agent is preferably 3 wt% or less. If the inorganic foaming agent is 3 wt% or more, the majority of the open pores 3, 503 and the closed pores 4 are connected to each other to form so-called continuous vents, which is not preferable because the water absorption rate increases.
 得られた試料の断面を電子顕微鏡で確認したところ、発泡剤を用いて作製した試料において気孔が均一に形成されていることを確認した。 When the cross section of the obtained sample was confirmed with an electron microscope, it was confirmed that the pores were uniformly formed in the sample prepared using the foaming agent.
 そして、セラミック焼結体1に添加するAgは硼珪酸ガラスに対して1wt%~3wt%程度がよい。Agが1wt%より少ない場合、電極2、502からのAgのガラス材6への拡散を十分抑制することができない。Agが3wt%より多い場合、セラミック焼結体1の電気絶縁性が劣る。なお、セラミック焼結体1内へのAgの導入方法では、セラミック焼結体1を構成するガラスを溶融法により作製する際にガラス中に均質にAgを溶かし込んでおくことが望ましい。または、フィラー5とガラス粉末を混合する際に、Ag微粉末或いはAgを含有する塩微粉末を混合して焼成することで、Agをガラスに混合することができる。 The Ag added to the ceramic sintered body 1 is preferably about 1 wt% to 3 wt% with respect to the borosilicate glass. When Ag is less than 1 wt%, the diffusion of Ag from the electrodes 2 and 502 into the glass material 6 cannot be sufficiently suppressed. When Ag is more than 3 wt%, the electrical insulating property of the ceramic sintered body 1 is inferior. In the method of introducing Ag into the ceramic sintered body 1, it is desirable that Ag is uniformly dissolved in the glass when the glass constituting the ceramic sintered body 1 is produced by a melting method. Or when mixing the filler 5 and glass powder, Ag can be mixed with glass by mixing and baking Ag fine powder or the salt fine powder containing Ag.
 ここで、セラミック焼結体1にAgを少量添加するのはAgを主成分とする電極2、502からのAgの過剰な拡散を抑制するためである。Agはイオン半径が小さいので、ガラスネットワーク内部に取り込まれやすく、また、ガラス融液中を移動しやすい。あらかじめセラミック焼結体1内にAgイオンを均質に入れ込んでおくことで電極2、502からセラミック焼結体1へのAgの移動を抑制することができる。また、セラミック焼結体1中にAgを少量添加することで焼結時にガラス融液の粘性が下がり、流動性が高まることで硼珪酸ガラス相中に閉気孔4を均一に分布することが可能となる。 Here, a small amount of Ag is added to the ceramic sintered body 1 in order to suppress excessive diffusion of Ag from the electrodes 2 and 502 mainly composed of Ag. Since Ag has a small ion radius, it is easy to be taken into the glass network and to move in the glass melt. By moving Ag ions uniformly into the ceramic sintered body 1 in advance, the movement of Ag from the electrodes 2 and 502 to the ceramic sintered body 1 can be suppressed. Further, by adding a small amount of Ag to the ceramic sintered body 1, the viscosity of the glass melt decreases during sintering, and the fluidity increases, so that the closed pores 4 can be uniformly distributed in the borosilicate glass phase. It becomes.
 また、本実施の形態において、電極2、502は導体としてAgよりなるが、Ag-Pt、Ag-Pd等のAgを主成分とする合金であってもよい。電極2、502とセラミック焼結体1を空気中で同時焼成することで、電極2、502とセラミック焼結体1とを強固に接合させることができる。より詳しくは、電極2、502に当接するセラミック焼結体1の部分101A、501Aに開気孔3、503が形成され、同時焼成の間に電極2、502が開気孔3、503内に入りこむことで、セラミック焼結体1と強固に接合する。 In the present embodiment, the electrodes 2 and 502 are made of Ag as a conductor, but may be an alloy containing Ag as a main component, such as Ag—Pt or Ag—Pd. By simultaneously firing the electrodes 2 and 502 and the ceramic sintered body 1 in the air, the electrodes 2 and 502 and the ceramic sintered body 1 can be firmly bonded. More specifically, the open pores 3 and 503 are formed in the portions 101A and 501A of the ceramic sintered body 1 in contact with the electrodes 2 and 502, and the electrodes 2 and 502 enter the open pores 3 and 503 during simultaneous firing. Thus, the ceramic sintered body 1 is firmly joined.
 さらに、本実施の形態において電極2、502の形成方法は特に限定されるものではなく、通常用いられるスクリーン印刷などの印刷法を用いてAgペーストにより形成しても良いし、転写法を用いてAg箔により形成しても良い。 Furthermore, the formation method of the electrodes 2 and 502 in this embodiment is not particularly limited, and may be formed by an Ag paste using a printing method such as screen printing that is usually used, or a transfer method. You may form with Ag foil.
 (実施例)
 (1)セラミック電子部品100の試料の作製
 セラミック電子部品100の試料を以下に述べる方法で作製した。
(Example)
(1) Preparation of sample of ceramic electronic component 100 A sample of ceramic electronic component 100 was prepared by the method described below.
 図2はセラミック焼結体1の試料番号1~8の試料の組成と物性を示す図である。図3Aと図3Bはセラミック電子部品100の製造方法を示す模式断面図である。 FIG. 2 is a diagram showing the composition and physical properties of samples Nos. 1 to 8 of the ceramic sintered body 1. 3A and 3B are schematic cross-sectional views showing a method for manufacturing the ceramic electronic component 100.
 本実施例のセラミック焼結体1は、AgあるいはAgを主原料とする電極2、502(例えば、Ag-Pt、Ag-Pd等の合金)との一体同時焼結を可能とした低誘電率の低温焼結セラミックである。 The ceramic sintered body 1 of this example has a low dielectric constant that enables integral and simultaneous sintering with electrodes 2 and 502 (for example, alloys such as Ag—Pt and Ag—Pd) mainly composed of Ag or Ag. Is a low-temperature sintered ceramic.
 まず、屈服点600℃の硼珪酸ガラス(SiO-B-Al-MgO-CaO-KO系ガラス)と、石英(SiO)フィラーと、無機発泡剤(CaCOまたはSrCO)と、Ag粉末を図2に示す所定の比率で秤量して混合し、混合物を作製した。その混合物を主成分とする複数のセラミックグリーンシート51を、その混合物のスラリーを用いてドクターブレード法により成形した。 First, a borosilicate glass (SiO 2 —B 2 O 3 —Al 2 O 3 —MgO—CaO—K 2 O-based glass) having a yield point of 600 ° C., a quartz (SiO 2 ) filler, and an inorganic foaming agent (CaCO 3). Alternatively, SrCO 3 ) and Ag powder were weighed and mixed at a predetermined ratio shown in FIG. 2 to prepare a mixture. A plurality of ceramic green sheets 51 containing the mixture as a main component were formed by a doctor blade method using a slurry of the mixture.
 次に、複数のセラミックグリーンシート51を積層し、セラミックグリーンシート積層体51Aを作製した。そして、図3Aに示すように、このセラミックグリーンシート積層体51A(セラミックグリーンシート51)の表面に、ライン幅150μmのミアンダパターンの電極2となる、AgペーストであるAgを含有する導電材52を印刷した積層体を作製した。同様に、セラミックグリーンシート積層体51Aの表面に導電材52を塗布しない積層体を作製した。これらの積層体を空気中で焼成してセラミック焼結体の試料を作製した。図3Bに示すように、セラミックグリーンシート51に導電材52を印刷し、その後、導電材52を覆うようにセラミックグリーンシート積層体51A(セラミックグリーンシート51)を積層することで、セラミック焼結体1内に設けられた電極502を備えたセラミック電子部品を作成することができる。 Next, a plurality of ceramic green sheets 51 were laminated to produce a ceramic green sheet laminate 51A. Then, as shown in FIG. 3A, a conductive material 52 containing Ag, which is an Ag paste, serving as a meander pattern electrode 2 having a line width of 150 μm is formed on the surface of the ceramic green sheet laminate 51A (ceramic green sheet 51). A printed laminate was produced. Similarly, a laminate in which the conductive material 52 was not applied to the surface of the ceramic green sheet laminate 51A was produced. These laminates were fired in air to produce ceramic sintered body samples. As shown in FIG. 3B, a ceramic sintered body is printed by printing a conductive material 52 on a ceramic green sheet 51 and then laminating a ceramic green sheet laminate 51A (ceramic green sheet 51) so as to cover the conductive material 52. The ceramic electronic component provided with the electrode 502 provided in 1 can be created.
 得られたセラミック焼結体1の試料のうち、Agペーストを塗布せずに焼成した試料に関し、乾燥重量を測定後、水中で脱泡処理し、水中重量及び含水重量を測定した。それらの重量の値を用いてアルキメデス法による比重を算出すると共に、吸水率を算出した。併せて、閉気孔率及び開気孔率も算出した。なお、閉気孔率とは全閉気孔の体積の計をセラミック焼結体1の全体積で除して得られたたものであり、開気孔率とは全開気孔の体積の計をセラミック焼結体1の全体積で除したものである。 Among the samples of the ceramic sintered body 1 obtained, the samples fired without applying the Ag paste were subjected to defoaming treatment in water after measuring the dry weight, and the weight in water and the water content were measured. The specific gravity by the Archimedes method was calculated using the weight value, and the water absorption rate was calculated. In addition, the closed porosity and open porosity were also calculated. The closed porosity is obtained by dividing the total volume of the closed pores by the total volume of the ceramic sintered body 1, and the open porosity is the total volume of the open pores obtained by sintering the ceramic. Divided by the total volume of the body 1.
 それらセラミック焼結体1の試料の物性である比重、吸水率、開気孔率、閉気孔率を図2に併記する。 The specific gravity, water absorption, open porosity, and closed porosity, which are physical properties of the ceramic sintered body 1, are also shown in FIG.
 なお、本実施例で作製したセラミック焼結体1の試料は例えばフェライト、さらには特性の異なる一種のセラミック材料との一体同時焼結も可能である。 It should be noted that the sample of the ceramic sintered body 1 produced in this example can be integrally sintered with, for example, ferrite or a kind of ceramic material having different characteristics.
 (2)誘電率の測定
 得られたセラミック焼結体1の試料のうち、Agペーストを塗布せずに単体で焼成した試料に関しては、片面を鏡面研磨し、誘電率を測定した。また、Agペーストを塗布して同時焼成したものに関しては、電極2が形成されている面を研磨して電極2を除去し、鏡面研磨し、誘電率を測定した。両試料共に、鏡面研磨した面をプローブに真空吸着させ、近接場法にて6GHzにおける誘電率を測定した。なお、測定した試料の数は各試料番号について20個であり、誘電率の測定値の平均値及び標準偏差を算出した。
(2) Measurement of dielectric constant Among the obtained ceramic sintered body 1 samples, one surface of the sintered ceramic body 1 without being coated with Ag paste was mirror-polished on one side and the dielectric constant was measured. In addition, for the case where the Ag paste was applied and fired at the same time, the surface on which the electrode 2 was formed was polished to remove the electrode 2, mirror-polished, and the dielectric constant was measured. In both samples, the mirror-polished surface was vacuum-adsorbed to the probe, and the dielectric constant at 6 GHz was measured by the near-field method. The number of samples measured was 20 for each sample number, and the average value and standard deviation of the measured values of dielectric constant were calculated.
 図4はセラミック焼結体1の試料の誘電率の測定値の平均値及び標準偏差を示す図である。10GHz程度の周波数帯域で使用するデバイスでは、誘電率3程度のガラス材料を適用するのであれば、誘電率のばらつきはプラスマイナス0.1以内に抑えることが好ましい。それ以上ばらつくとセラミック電子部品100の設計が極めて困難になり、また歩留まりも大きく低下してしまう。そのため、誘電率3程度のガラス材料においては、誘電率の標準偏差は0.05以下が望ましい。本実施の形態におけるセラミック電子部品100においては、この範囲内にばらつきを留めることが可能である。 FIG. 4 is a diagram showing an average value and a standard deviation of measured values of the dielectric constant of the ceramic sintered body 1 sample. In a device used in a frequency band of about 10 GHz, if a glass material having a dielectric constant of about 3 is applied, it is preferable to suppress variations in dielectric constant within plus or minus 0.1. If it varies further, the design of the ceramic electronic component 100 becomes extremely difficult, and the yield is greatly reduced. Therefore, in a glass material having a dielectric constant of about 3, the standard deviation of the dielectric constant is desirably 0.05 or less. In the ceramic electronic component 100 according to the present embodiment, it is possible to keep variation within this range.
 図4に示すように、セラミック焼結体1中に発泡剤、Ag粉末を1wt%添加した試料番号6~8の試料では、単体で焼成した試料と電極と同時焼成した試料とで誘電率の標準偏差はほとんど差がなく、誘電率が安定している。 As shown in FIG. 4, in the samples Nos. 6 to 8 in which 1 wt% of the foaming agent and Ag powder are added to the ceramic sintered body 1, the permittivity of the sample fired alone and the sample fired simultaneously with the electrode There is almost no difference in standard deviation, and the dielectric constant is stable.
 一方、セラミック焼結体1中にAg粉末を添加していない試料番号2~4の試料では、電極との同時焼成を行うと、誘電率の標準偏差が大きくなっている。よって、これらの試料では誘電率がばらついている。 On the other hand, in the samples of Sample Nos. 2 to 4 where no Ag powder is added to the ceramic sintered body 1, the standard deviation of the dielectric constant becomes large when co-firing with the electrodes. Therefore, the dielectric constant varies in these samples.
 以上より、閉気孔が緻密で均一に分布されたセラミック電子部品100の誘電率は安定化している。 From the above, the dielectric constant of the ceramic electronic component 100 in which the closed pores are densely and uniformly distributed is stabilized.
 本発明によれるセラミック電子部品は安定な誘電率を有し、コモンモードノイズフィルタ等の各種高周波部品に有用である。 The ceramic electronic component according to the present invention has a stable dielectric constant and is useful for various high-frequency components such as a common mode noise filter.
1  セラミック焼結体
2  電極
3  開気孔
4  閉気孔
5  フィラー
6  ガラス材
51  セラミックグリーンシート
52  導電材
DESCRIPTION OF SYMBOLS 1 Ceramic sintered body 2 Electrode 3 Open pore 4 Close pore 5 Filler 6 Glass material 51 Ceramic green sheet 52 Conductive material

Claims (5)

  1. セラミック焼結体と、
    前記セラミック焼結体に当接する、Agを含有する電極と、
    を備え、
    前記セラミック焼結体は、硼珪酸ガラスよりなるガラス材と、前記ガラス材に分散する複数のフィラーとを有し、
    前記ガラス材には、実質的に均一に分布する複数の閉気孔が設けられている、セラミック電子部品。
    Ceramic sintered body,
    An electrode containing Ag in contact with the ceramic sintered body;
    With
    The ceramic sintered body has a glass material made of borosilicate glass and a plurality of fillers dispersed in the glass material,
    A ceramic electronic component in which the glass material is provided with a plurality of closed pores distributed substantially uniformly.
  2. 前記複数のフィラーはSiO系フィラーよりなる、請求項1に記載のセラミック電子部品。 The ceramic electronic component according to claim 1, wherein the plurality of fillers are made of SiO 2 filler.
  3. 前記ガラス材には、複数の開気孔と、前記複数の閉気孔とが設けられている、請求項1に記載のセラミック電子部品。 The ceramic electronic component according to claim 1, wherein the glass material is provided with a plurality of open pores and the plurality of closed pores.
  4. 硼珪酸ガラス粉末と、フィラーと、前記硼珪酸ガラス粉末のガラス屈服点以上の分解完了温度を有する無機発泡剤と、Agとを含有するセラミックグリーンシートを準備するステップと、
    前記セラミックグリーンシートにAgを含有する導電材を設けるステップと、
    前記セラミックグリーンシートと前記導電材とを空気中で同時に焼成するステップと、
    を含む、セラミック電子部品の製造方法。
    Preparing a ceramic green sheet containing a borosilicate glass powder, a filler, an inorganic foaming agent having a decomposition completion temperature equal to or higher than a glass yield point of the borosilicate glass powder, and Ag;
    Providing a conductive material containing Ag on the ceramic green sheet;
    Firing the ceramic green sheet and the conductive material simultaneously in air;
    A method for manufacturing a ceramic electronic component, comprising:
  5. 前記無機発泡剤はCaCOとSrCOの少なくとも一方を含む、請求項4に記載のセラミック電子部品の製造方法。 The method for manufacturing a ceramic electronic component according to claim 4, wherein the inorganic foaming agent includes at least one of CaCO 3 and SrCO 3 .
PCT/JP2011/001370 2010-03-10 2011-03-09 Ceramic electronic component and production method for same WO2011111378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-052680 2010-03-10
JP2010052680A JP2011187772A (en) 2010-03-10 2010-03-10 Ceramic electronic component, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011111378A1 true WO2011111378A1 (en) 2011-09-15

Family

ID=44563210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001370 WO2011111378A1 (en) 2010-03-10 2011-03-09 Ceramic electronic component and production method for same

Country Status (2)

Country Link
JP (1) JP2011187772A (en)
WO (1) WO2011111378A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102393287B1 (en) * 2015-07-28 2022-05-02 (주)샘씨엔에스 Ceramic composition for electrostatic chuck and electrostatic chuck using the same
JP6696795B2 (en) * 2016-02-26 2020-05-20 京セラ株式会社 Wiring board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203242A (en) * 1988-02-10 1989-08-16 Ngk Spark Plug Co Ltd Substrate sintered at low temperature
JPH02239168A (en) * 1989-03-13 1990-09-21 Shoei Chem Ind Co Production of circuit board
JPH07138045A (en) * 1993-11-09 1995-05-30 Nippon Electric Glass Co Ltd Production of hollow glass bead
JPH07144935A (en) * 1993-10-31 1995-06-06 ▲広▼岡 恒夫 Inorganic glass foamed body and its production
JP2002193691A (en) * 2000-12-26 2002-07-10 Kyocera Corp Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same
JP2005123460A (en) * 2003-10-17 2005-05-12 Hitachi Metals Ltd Manufacturing method of multilayer ceramic substrate
JP2008004514A (en) * 2006-05-24 2008-01-10 Murata Mfg Co Ltd Conductive paste, and manufacturing method of ceramic multilayer board using it
JP2008059771A (en) * 2006-08-29 2008-03-13 Samsung Sdi Co Ltd Plasma display panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203242A (en) * 1988-02-10 1989-08-16 Ngk Spark Plug Co Ltd Substrate sintered at low temperature
JPH02239168A (en) * 1989-03-13 1990-09-21 Shoei Chem Ind Co Production of circuit board
JPH07144935A (en) * 1993-10-31 1995-06-06 ▲広▼岡 恒夫 Inorganic glass foamed body and its production
JPH07138045A (en) * 1993-11-09 1995-05-30 Nippon Electric Glass Co Ltd Production of hollow glass bead
JP2002193691A (en) * 2000-12-26 2002-07-10 Kyocera Corp Low-permittivity ceramic sintered-compact, method for manufacturing the same, and wiring board using the same
JP2005123460A (en) * 2003-10-17 2005-05-12 Hitachi Metals Ltd Manufacturing method of multilayer ceramic substrate
JP2008004514A (en) * 2006-05-24 2008-01-10 Murata Mfg Co Ltd Conductive paste, and manufacturing method of ceramic multilayer board using it
JP2008059771A (en) * 2006-08-29 2008-03-13 Samsung Sdi Co Ltd Plasma display panel

Also Published As

Publication number Publication date
JP2011187772A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
TWI708751B (en) Low k dielectric compositions for high frequency applications
KR101586137B1 (en) Dielectric ceramic compostion, electronic element, and composite electric element
JP6293704B2 (en) Glass ceramic sintered body and wiring board
JP5974262B2 (en) Common mode noise filter and manufacturing method thereof
JPWO2009034824A1 (en) Multilayer coil component and manufacturing method thereof
JP2016155746A (en) Glass ceramic composition and coil electronic component
JP2013166687A (en) Dielectric ceramic and electronic component using the same
JP4863975B2 (en) Ceramic powder for green sheet and multilayer ceramic substrate
US7682998B2 (en) Ceramic powder for a green sheet and multilayer ceramic substrate
WO2011111378A1 (en) Ceramic electronic component and production method for same
JP2000319066A (en) Low temperature simultaneously firing dielectric ceramic composition
JP5229323B2 (en) Multilayer coil component and manufacturing method thereof
JP2004339049A (en) Lead-free glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric and method of producing laminated dielectric
WO2014196348A1 (en) Composition for ceramic substrates and ceramic circuit component
WO2011111356A1 (en) Ceramic electronic component and method of manufacturing same
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
WO2000076938A1 (en) Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JP2010150051A (en) Magnetic composition, inductor, and substrate for electronic circuit
KR20010006693A (en) Low-Temperature Cofiring Dielectric Ceramic Composition
JP4872990B2 (en) Ceramic powder for green sheet, multilayer ceramic substrate, and method for producing multilayer ceramic substrate
JP4442077B2 (en) Porcelain composition for high frequency components
JP2006298716A (en) Glass, glass-ceramic composition, and dielectric
JP4345458B2 (en) Glass ceramic substrate
JP2009158522A (en) Wiring board and method of manufacturing the same
JP2006265033A (en) Low-temperature fired substrate material and multilayer wiring board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753042

Country of ref document: EP

Kind code of ref document: A1