WO2011111162A1 - Image display device and image display method - Google Patents

Image display device and image display method Download PDF

Info

Publication number
WO2011111162A1
WO2011111162A1 PCT/JP2010/053865 JP2010053865W WO2011111162A1 WO 2011111162 A1 WO2011111162 A1 WO 2011111162A1 JP 2010053865 W JP2010053865 W JP 2010053865W WO 2011111162 A1 WO2011111162 A1 WO 2011111162A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
video
color
color space
filters
Prior art date
Application number
PCT/JP2010/053865
Other languages
French (fr)
Japanese (ja)
Inventor
堀 宏昭
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2010/053865 priority Critical patent/WO2011111162A1/en
Priority to JP2012504188A priority patent/JPWO2011111162A1/en
Publication of WO2011111162A1 publication Critical patent/WO2011111162A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0235Field-sequential colour display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed

Definitions

  • the present invention relates to a video display device and a video display method.
  • a projector that displays a color image reproduces the color of an image using, for example, three light sources of red, green, and blue.
  • Patent Document 1 describes a projector using three-color optical filters.
  • the projector described in Patent Document 1 includes a color wheel on which optical filters for a blue light transmission region, a red light transmission region, and a green light transmission region are arranged, and a projection panel.
  • An object of the present invention is to provide a video display device and a video display method that solve the above-described problems.
  • the video display device of the present invention is a video display device having a light modulation element that modulates a plurality of sequentially incident color lights based on a video signal and displays them as a video image, and a plurality of color lights for expressing a first color space.
  • a color wheel that emits light passing through the filters of the first group and the second group in a time-division manner, and an image indicated by the image signal is in the first color space.
  • Detecting means for detecting whether or not the video indicated by the video signal is within the first color space by the detecting means, the first group and the second group The light passing through the filter is incident on the light modulation element, Control means for causing the light passing through the second group of filters to enter the light modulation element when the detection means detects that the image shown in the video signal is not in the first color space; ,including.
  • the image display method of the present invention includes a plurality of first group filters that respectively pass a plurality of first group lights for expressing the first color space, and a second wider than the first color space.
  • a color wheel including a plurality of second group filters that respectively pass a plurality of second group lights for expressing a color space, and sequentially modulating a plurality of color lights incident on the basis of a video signal as an image
  • the brightness of the displayed image can be improved.
  • FIG. 3 is a diagram illustrating a configuration example of a color wheel 2.
  • 3 is a block diagram illustrating a configuration example of a detector 4.
  • FIG. 4 is a flowchart illustrating an example of a processing procedure of a video display method in the video display device 10.
  • FIG. 1 is a block diagram illustrating a configuration example of a video display device according to an embodiment of the present invention.
  • the video display device 10 is a projection display device that receives a video signal from the video signal line 5i and projects a video on a screen.
  • the video display device 10 includes a light source 1, a color wheel 2, a projection lens 3, a detector 4, a signal interface 5, a signal processing circuit 6, a drive circuit 7, a video display device 8, and a synchronization circuit 9. And comprising.
  • the light source 1 is a lamp that emits white light.
  • the light source 1 irradiates the color wheel 2 with white light under the control of the synchronization circuit 9.
  • the color wheel 2 includes a plurality of first group filters (hereinafter referred to as “broadband filters”) that respectively pass a first group of light for expressing a first color space (hereinafter referred to as “color space a”). And a plurality of second group filters that respectively pass light of the second group for expressing a second color space (hereinafter referred to as “color space b”) wider than the first color space ( Hereinafter referred to as “narrow band filter”), and the light passing through the filters of the first group and the second group is emitted in a time division manner.
  • first group filters hereinafter referred to as “broadband filters”
  • color space b second color space
  • the color wheel 2 includes first to third narrow-pass filters that pass primary color lights of red, green, and blue for expressing the color space a, red for expressing the color space b, 4th to 6th wide-area filters that allow green and blue primary color light to pass therethrough, and these filters are constituted by disks that are arranged along the circumferential direction.
  • the color wheel 2 irradiates the video display device 8 with each color light color-separated by time division. That is, the color wheel 2 switches the timing of emitting each separated color light at a constant period.
  • the synchronization circuit 9 synchronizes the timing of color separation by the color wheel 2 and the timing of light modulation by the video display device 8 with each other.
  • the synchronization circuit 9 receives a vertical synchronization signal included in the video signal from the video signal line 5i from the signal interface 5, and rotates the color wheel 2 in synchronization with the vertical synchronization signal.
  • the synchronization circuit 9 supplies a synchronization signal based on the rotation period of the color wheel 2 to the drive circuit 7.
  • the synchronization circuit 9 controls the light source 1.
  • the signal interface 5 receives an analog video signal from the video signal line 5i. When receiving the video signal from the video signal line 5i, the signal interface 5 converts the video signal into a digital signal. The signal interface 5 supplies the converted video signal of the digital signal to the detector 4, the signal processing circuit 6, and the synchronization circuit 9.
  • the detector 4 can generally be called a detection means.
  • the detector 4 detects whether or not the video indicated by the video signal is in the first color space. In this embodiment, the detector 4 indicates that the video indicated by the video signal is in the color gamut of the color space a. (Hereinafter referred to as “basic area”) or a color gamut outside the basic area (hereinafter referred to as “extended area”).
  • the basic region is a color space a of the video display device 10 in the case where each color light color-separated by a wide-area filter of three colors among a plurality of filters constituting the color wheel 2 is used as a light source.
  • the basic region is defined on the basis of tristimulus values XYZ calculated from the measurement results of RGB chromaticity points measured using light of each color separated by a three-color wide-area filter.
  • the extended region is a color gamut belonging to the color space b of the video display device 10 when each color light color-separated by the narrow-color filters of three colors is used as a light source.
  • the extended area of the color space b measures RGB chromaticity points when each color light color-separated by the narrow-color filters of three colors is used as a light source, and based on the tristimulus values XYZ calculated from the measurement results. It is prescribed.
  • FIG. 2 is an xy chromaticity diagram conceptually showing an example of the relationship between the color space a and the color space b.
  • the color space a of the video display device 10 is indicated by a shaded line
  • the boundary line of the color space b of the video display device 10 is indicated by a solid line.
  • the color gamut of the color space (hereinafter referred to as “color space c”) of the video signal input from the video signal line 5i the boundary line of the color space c1 is indicated by a broken line
  • the color space c2 is indicated by a solid line. It is shown.
  • the color space c of the video signal for example, there is a color space (third color space) defined by sRGB (standard RGB).
  • an area belonging to the color space a in the color space c1 or the color space c2 is a basic area, and a color gamut outside the basic area in the color space c1 or the color space c2 is an extended area.
  • the detector 4 holds basic information for converting from the color space a to the color space c and extended information for converting from the color space b to the color space c.
  • the detector 4 receives the video signal from the signal interface 5 and converts the video signal into the first video data based on the basic information.
  • the detector 4 detects that the video indicated by the video signal is within the basic area.
  • the detector 4 supplies the first video data to the signal processing circuit 6 when detecting that the video shown in the video signal is in the basic region.
  • the detector 4 detects that the video shown in the video signal is outside the basic area. When the detector 4 detects that the video signal is outside the basic area, the detector 4 discards the first video data.
  • the detector 4 when the detector 4 receives a video signal from the signal interface 5, the detector 4 converts the video signal into second video data based on the extended information. The detector 4 supplies the converted second video data to the signal processing circuit 6.
  • the signal processing circuit 6 can be generally referred to as control means.
  • the signal processing circuit 6 enters the light passing through the first to sixth filters into the video display device 8.
  • the detector 4 detects that the image shown in the image signal is not in the color space a, the light passing through the fourth to sixth narrow-pass filters is incident on the image display device 8.
  • the signal processing circuit 6 when receiving the first or second video data from the detector 4, the signal processing circuit 6 holds the video data.
  • the signal processing circuit 6 supplies the held video data to the drive circuit 7 in accordance with the order of the color lights that are color-separated by the color wheel 2.
  • the white light from the light source 1 is converted into a red, green, blue wide band filter, a red, green, blue narrow band filter,
  • the first video data of red, green, and blue and the second video data of red, green, and blue are supplied to the drive circuit 7 in each period that passes through, respectively.
  • the red, green, and blue second light is emitted during each period when the white light from the light source 1 passes through the red, green, and blue narrow-pass filters.
  • the video data is supplied to the drive circuit 7 respectively.
  • the drive circuit 7 receives a synchronization signal from the synchronization circuit 9. Further, the drive circuit 7 receives the first or second video data from the signal processing circuit 6. The drive circuit 7 generates a control signal for driving the video display device 8 based on the first or second video data according to the synchronization signal. The drive circuit 7 supplies the control signal to the video display device 8.
  • the video display device 8 can generally be called a light modulation element.
  • the video display device 8 modulates a plurality of sequentially incident color lights based on the video signal and displays them as a video.
  • the video display device 8 modulates each color light color-separated by the color wheel 2 based on a control signal from the drive circuit 7.
  • the video display device 8 is realized by, for example, DMD (Digital Micromirror Device).
  • the video display device 8 outputs the modulated light to the projection lens 3 as a video.
  • the projection lens 3 projects the video output from the video display device 8 onto the screen.
  • FIG. 3 is a diagram showing a configuration example of the color wheel 2.
  • the color wheel 2 includes a red wide-area filter 21 as a first filter, a green wide-area filter 22 as a second filter, a blue wide-area filter 23 as a third filter, A red narrow band filter 24 as a fifth filter, a green narrow band filter 25 as a fifth filter, and a blue narrow band filter 26 as a sixth filter.
  • the red wide-area filter 21, the green wide-area filter 22, and the blue wide-area filter 23 are wide-area filters for expressing the color space a.
  • Each of the red wide band filter 21, the green wide band filter 22 and the blue wide band filter 23 has a wider pass band than each of the red narrow band filter 24, the green narrow band filter 25 and the blue narrow band filter 26.
  • each of the red wide band filter 21, the green wide band filter 22, and the blue wide band filter 23 has a wider filter area than each of the red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26. That is, the emission period of each passing light of the red wide band filter 21, the green wide band filter 22, and the blue wide band filter 23 is longer than the emission period of each passing light of the red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26. Also long.
  • the red wide-area filter 21 passes red light having a wide wavelength band and reflects or absorbs other color lights.
  • the green wide-area filter 22 passes only green light having a wide wavelength band, and reflects or absorbs other color lights.
  • the blue wide-area filter 23 passes only blue light having a wide wavelength band and reflects or absorbs other color lights.
  • the red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26 are narrow band filters for expressing the color space b.
  • the red narrow filter 24 allows only red light having a narrow wavelength band to pass and reflects or absorbs other color light.
  • the green narrow band filter 25 allows only green light having a narrow wavelength band to pass and reflects or absorbs other color lights.
  • the blue narrow band filter 26 passes only blue light having a narrow wavelength band and reflects or absorbs other color lights.
  • the color wheel 2 rotates in synchronization with the vertical synchronization of the video, and the red wide band filter 21, the green wide band filter 22, the blue wide band filter 23, the red narrow band filter 24, the green narrow band filter 25, Each segment of the blue narrow band filter 26 sequentially passes through the optical path.
  • the signal processing circuit 6 passes through the drive circuit 7 in each period in which the filters (segments) 21 to 26 of the color wheel 2 pass through the optical path.
  • Red, green, and blue first video data (seq1) and red, green, and blue second video data (seq2) are output to the video display device 8.
  • the video display device 8 sequentially displays the red video, green video, and blue video in the basic color space a, and the red video, green video, and blue video in the expanded color space b.
  • the signal processing circuit 6 passes the second video data (seq 2) of red, green, and blue, and the narrow band filters 24 to 26 pass through the optical path. Output during the period.
  • the video display device 10 temporally superimposes the video based on the basic color space a and the video based on the expanded color space b on the basis of the video shown in the video signal. To reproduce.
  • FIG. 4 is a block diagram showing a configuration example of the detector 4.
  • the video signal supplied from the signal line 4i conforms to the sRGB standard and is subjected to gamma correction.
  • the video signal includes an R (red) signal, a G (green) signal, and a B (blue) signal.
  • the detector 4 includes gamma reverse correction units 41r, 41g and 41b, matrix circuits 42, 43, 44, 53 and 54, a limit circuit 45, gamma correction units 46r, 46g, 46b, 56r, 56g and 56b, Data generation units 47 and 57.
  • the gamma reverse correction units 41r, 41g, and 41b perform degamma correction for correcting a video signal having gamma characteristics to linear characteristics.
  • the gamma reverse correction units 41r, 41g, and 41b respectively hold lookup tables LUT1r, LUT1g, and LUT1b for converting the video signal subjected to gamma correction into linear characteristics.
  • the gamma reverse correction unit 41r When receiving the R signal from the signal line 4i, the gamma reverse correction unit 41r performs degamma correction on the R signal based on the lookup table LUT1r.
  • the gamma reverse correction unit 41g When receiving the G signal from the signal line 4i, the gamma reverse correction unit 41g performs degamma correction on the G signal based on the lookup table LUT1g.
  • the gamma reverse correction unit 41b When receiving the B signal from the signal line 4i, the gamma reverse correction unit 41b performs degamma correction on the B signal based on the lookup table LUT1b.
  • the gamma reverse correction units 41r, 41g, and 41b supply the R signal, the G signal, and the B signal subjected to the degamma correction to the matrix circuit 42 as video signals.
  • the matrix circuit 42 can be generally referred to as first conversion means.
  • the matrix circuit 42 converts the video signal from the RGB space to the XYZ space.
  • the matrix circuit 42 holds a 3 ⁇ 3 matrix M1 calculated based on the sRGB chromaticity points.
  • the matrix circuit 42 When the matrix circuit 42 receives the video signal from the gamma inverse correction units 41r, 41g, and 41b, the matrix circuit 42 converts the video signal from the RGB space to the XYZ space using the matrix M1. The matrix circuit 42 converts the video signal according to the following equation.
  • R, B, and G are video signals received from the gamma reverse correction units 41r, 41g, and 41b.
  • Xi, Yi, and Zi are converted video signals.
  • the matrix circuit 42 supplies the converted video signal to the matrix circuit 43 and the matrix circuit 53, respectively.
  • the matrix circuit 43 can be generally referred to as second conversion means.
  • the matrix circuit 43 converts the video signal from the color space a of the video display device 10 to the sRGB color space c (third color space).
  • the matrix circuit 43 holds a conversion matrix K1 as reference information (conversion information) for converting a video signal from the color space a of the video display device 10 to the sRGB color space c.
  • the conversion coefficient K1 is expressed by Equation 1.
  • P1 is a matrix in which sRGB chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) are arranged vertically.
  • the chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) are values defined by sRGB.
  • P2 is a matrix in which chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) in the color space a of the video display device 10 are arranged vertically. It is.
  • the chromaticity point of the color space a is obtained by, for example, measuring x, y, L values using a color illuminometer or the like and converting the measurement results into XYZ values.
  • the matrix circuit 43 converts the video signal from the color space a of the video display device 10 to the sRGB color space c based on the conversion matrix K1.
  • the matrix circuit 43 converts the video signal according to the following equation.
  • Xo1, Yo1, and Zo1 are converted video signals.
  • the matrix circuit 43 supplies the converted video signal to the matrix circuit 44 as a first video signal.
  • the matrix circuit 44 can be generally referred to as third conversion means.
  • the matrix circuit 44 returns the video signal from the XYZ space to the RGB space.
  • the matrix circuit 44 holds a 3 ⁇ 3 matrix M4 for converting the video signal from the XYZ space to the RGB space.
  • the matrix circuit 44 When the matrix circuit 44 receives the first video signal from the matrix circuit 43, the matrix circuit 44 converts the video signal from the XYZ space to the RGB space using the matrix M4. The matrix circuit 44 converts the video signal according to the following equation.
  • R1, G1, and B1 are converted video signals.
  • the matrix circuit 44 supplies the converted first video signal to the limit circuit 45. Since the color space a is narrower than the sRGB color space c, all colors cannot be reproduced even if they can be calculated.
  • the limit circuit 45 can be generally called a determination means.
  • the limit circuit 45 determines whether each color value of the video signal converted by the matrix circuit 44 exceeds a predetermined output range. If the color value does not exceed the predetermined output range, the video signal is in the color space a. Is detected.
  • the limit circuit 45 when the limit circuit 45 receives the first video signal from the matrix circuit 44, the limit circuit 45 discards the first video signal not included in the color space a.
  • the limit circuit 45 discards the first video signal when the signal (gradation) level of at least one of the R signal, G signal, and B signal constituting the first video signal exceeds a predetermined output range. To do.
  • the limit circuit 45 when the first video signal is represented by an 8-bit gradation, the limit circuit 45 has one of the gradation levels of the R signal, the G signal, and the B signal that is “0” or less or exceeds “255”. In this case, the gradation levels of the R, G, and B signals are all set to “0”. Thereby, the limit circuit 45 invalidates the first video signal not included in the reference area of the color space a.
  • the limit circuit 45 sends the R signal, the G signal, and the B signal constituted by the first video signal to the gamma correction units 46r, 46g, and 46b. Supply each.
  • the gamma correction units 46r, 46g, and 46b perform gamma correction for correcting the video signal based on the gamma characteristic of the video display device 10.
  • the gamma correction units 46r, 46g, and 46b respectively hold lookup tables LUT2r, LUT2g, and LUT2b for performing gamma correction.
  • the gamma correction unit 46r When the R signal is received from the limiter circuit 45, the gamma correction unit 46r performs gamma correction on the R signal based on the lookup table LUT2r.
  • the gamma correction unit 46g When receiving the G signal from the limiter circuit 45, the gamma correction unit 46g performs gamma correction on the G signal based on the lookup table LUT2g.
  • the gamma correction unit 46b performs gamma correction on the B signal based on the lookup table LUT2b.
  • the gamma correction units 46r, 46g, and 46b supply the first video signals (Rout1, Gout1, and Bout1) subjected to the gamma correction to the data generation unit 47.
  • the data generation unit 47 When the data generation unit 47 receives the first video signal from the gamma correction units 46r, 46g, and 46b, the data generation unit 47 converts the first video signal into a predetermined format and outputs it to the signal processing unit 6 as first video data (seq1). Supply.
  • the matrix circuit 53 converts the video signal from the color space b of the video display device 10 to the sRGB color space c.
  • the matrix circuit 53 holds a conversion matrix K2 as extended information for converting the video signal from the color space b of the video display device 10 to the sRGB color space c. Note that the conversion coefficient K2 can be expressed in the same manner as Equation 1.
  • the matrix circuit 53 When the matrix circuit 53 receives the video signal from the matrix circuit 52, the matrix circuit 53 converts the video signal from the color space b of the video display device 10 to the sRGB color space c using the conversion matrix K2. The matrix circuit 53 supplies the converted video signal to the matrix circuit 54 as a second video signal.
  • the matrix circuit 54 converts the second video signal from the XYZ space to the RGB space.
  • the matrix circuit 54 holds a 3 ⁇ 3 matrix M5 for converting from the XYZ space to the RGB space.
  • the matrix circuit 54 converts the second video signal from the XYZ space to the RGB space using the matrix M5.
  • the matrix circuit 54 supplies the R signal, the G signal, and the B signal constituted by the converted second video signal to the gamma correction units 56r, 56g, and 56b, respectively.
  • the gamma correction units 56r, 56g, and 56b perform gamma correction for correcting the video signal based on the gamma characteristic of the video display device 10.
  • the gamma correction units 56r, 56g, and 56b hold lookup tables LUT2r, LUT2g, and LUT2b for performing gamma correction, respectively.
  • the gamma correction unit 56r When the R signal is received from the matrix circuit 54, the gamma correction unit 56r performs gamma correction on the R signal based on the lookup table LUT2r.
  • the gamma correction unit 56g When receiving the G signal from the matrix circuit 54, the gamma correction unit 56g performs gamma correction on the G signal based on the lookup table LUT2g.
  • the gamma correction unit 56b performs gamma correction on the B signal based on the lookup table LUT2b.
  • the gamma correction units 56r, 56g, and 56b supply the second video signals (Rout2, Gout2, and Bout2) subjected to the gamma correction to the data generation unit 57.
  • the data generation unit 57 When the data generation unit 57 receives the second video signal from the gamma correction units 56r, 56g, and 56b, the data generation unit 57 converts the second video signal into a predetermined format and outputs it to the signal processing unit 6 as second video data (seq2). Supply.
  • FIG. 5 is a flowchart showing a processing procedure example of the video display method of the video display device 10.
  • the gamma reverse correction units 41r, 41g, and 41b perform degamma correction on the video signal received by the signal interface 5 (step S911).
  • the matrix circuit 42 converts the video signal from the RGB space to the XYZ space (step S912).
  • the matrix circuit 42 converts the video signal from the RGB space to the XYZ space
  • the matrix circuit 43 converts the converted video signal into the first video signal based on the conversion matrix K1 (step S913).
  • the matrix circuit 42 converts the video signal from the RGB space to the XYZ space
  • the matrix circuit 53 converts the converted video signal into the second video signal based on the conversion matrix K2 (step S914).
  • the matrix circuits 43 and 53 convert the converted video signals into the first and second video signals, respectively
  • the matrix circuits 44 and 54 convert the first and second video signals from the XYZ space to the RGB space, respectively. (Step S915).
  • the limit circuit 45 determines whether or not the first video signal exceeds a predetermined output range (step S916).
  • the limit circuit 45 discards the first video signal (step S917). Further, when the matrix circuit 54 converts the second video signal from the XYZ space to the RGB space, the gamma correction units 56r, 56g, and 56b perform gamma correction on the second video signal, and via the data generation unit 57, The second video data is supplied to the signal processing circuit 6 (step S918).
  • the drive circuit 7 controls the video display device 8 so as to modulate each color light separated by the narrow band filter based on the second video data from the signal processing circuit 6 (step S919).
  • the gamma correction units 46r, 46g, and 46b, and the gamma correction units 56r, 56g, and 56b include the first and second videos.
  • the signal is subjected to gamma correction, and the first and second video data are supplied to the signal processing circuit 6 via the data generators 47 and 57 (step S921).
  • the drive circuit 7 controls the video display device 8 so as to modulate each color light separated by the wide-area filter based on the first video data from the signal processing circuit 6 (step S922).
  • the drive circuit 7 controls the video display device 8 to modulate each color light separated by the narrow band filter based on the second video data from the signal processing circuit 6 (step S923).
  • step S919 or 923 a series of processing procedures of the video display method ends.
  • the color wheel 2 is wider than the first color space and the plurality of first group filters that respectively pass the plurality of first group lights for expressing the first color space. And a plurality of second group filters that respectively pass a plurality of second group lights for expressing the second color space, and the light passing through the first group and second group filters is emitted in a time-sharing manner. To do. For this reason, the video display device 10 has first and second color spaces different from each other.
  • the detector 4 detects whether or not the video indicated by the video signal is in the first color space. Therefore, the video display device 10 can determine whether or not the video shown in the video signal is a color of a video that is frequently projected on the screen.
  • the signal processing circuit 6 detects that the video indicated by the video signal is in the first color space by the detector 4, the first group and the second group The light passing through the filter is incident on the video display device 8.
  • the video display device 10 uses all the light passing through the filters of the first group and the second group when the video shown in the video signal is the color of the video that is projected frequently.
  • the video display device 10 uses the light from the light source 1.
  • the utilization efficiency of the emitted light can be increased. Therefore, the video display apparatus 10 can improve the brightness of the displayed video.
  • the signal processing circuit 6 passes through the second group of filters when the detector 4 detects that the video indicated by the video signal is not in the first color space. Light is incident on the video display device 8.
  • the video display device 10 uses the light passing through the second group of filters with high color purity. Video that cannot be expressed can be reproduced. For this reason, the video display apparatus 10 can maintain high color reproducibility.
  • the video display device 10 combines the first color space and the second color space in accordance with the video signal to suppress a decrease in luminance of the display image while maintaining high color reproducibility. be able to.
  • each of the first group of filters has a wider pass band than each of the second group of filters. For this reason, since the video display apparatus 10 has a second color space wider than the first color space, an image having a color gamut wider than the first color space can be reproduced.
  • the matrix circuit 42 converts the video signal indicating each color value of red, blue, and green from the RGB space to the XYZ space, and the matrix circuit 43 converts the video signal into the first color space. To the third color space of the video signal wider than the first color space. Then, the matrix circuit 44 converts the converted video signal from the XYZ space to the RGB space, and if the limit circuit 45 does not exceed the predetermined output range of each color value of the converted video signal, the video signal Is detected as being in the first color space.
  • the video display device 10 can detect whether or not the video signals indicating the respective color values of red, blue, and green are in the first color space.
  • the video display device 10 measures the color space indicating the optical characteristics of the light source configured by the light passing through the first group of filters and the light source configured by the light passing through the second group of filters.
  • the color gamut assigned to each light source is defined based on the color space.
  • the boundary of the color gamut of each light source is defined in consideration of individual differences of each light source, and basic information is generated based on the defined color gamut. Since the video display device 10 switches the light source using the reference information, the light emitted from the light source 1 can be efficiently converted into color characteristics.
  • the video display apparatus 10 can reduce a decrease in luminance due to correction of the color space.
  • this embodiment may be applied to a display system of the xvYCC standard.
  • This display system is compatible with a conventional video signal, displays an image in an expanded color gamut when an expanded video signal is detected, and displays a conventional video signal when a conventional video signal is input.
  • This is a system that displays video in the color gamut.
  • the configuration of the detector 4 can be simplified when the present embodiment is applied.
  • the color wheel 2 is used to switch between a light source having a color space with a narrow color gamut and a light source having a color space with a wide color gamut has been described.
  • switching to a plurality of light sources is possible. Possible solid light sources or the like may be used.
  • a video display device using a switchable solid-state light source when the video signal does not include an extended area, only a light source with a color space with a narrow color gamut is used, and the entire display period of one image is Assign to the usage time of light source in narrow color space.
  • the extended area when the extended area is included in the video signal, the light source of the color space with a wide color gamut and the light source of the color space with a narrow color gamut are used.
  • the usage time of the light source in a color space with a narrow color gamut is set to a certain ratio. It should be noted that the brightness of the projected image can be adjusted by adjusting the ratio of the usage times of the light source in the color space with a wide color gamut and the light source in the color space with a narrow color gamut.
  • the color wheel 2 a high-pressure mercury lamp and a solid light source may be used.
  • the high-pressure mercury lamp is a light source in a color space with a narrow color gamut
  • the solid light source is a light source in a color space with a wide color gamut.
  • the light source may be switched by widening the pass band of each of the RGB filters and narrowing the pass band of each color light by another one filter.
  • Video display apparatus 1 Light source 2 Color wheel 3 Projection lens 4 Detector 5 Signal interface 6 Signal processing circuit 7 Drive circuit 8 Video display device 9 Synchronous circuit 21-26 Filter 41r, 41g, 41b Gamma reverse correction part 42-44, 53 , 54 Matrix circuit 45 Limit circuit 46r, 46g, 46b, 56r, 56g, 56b Gamma correction unit 47, 57 Data generation unit

Abstract

In order to improve the brightness of the images displayed, disclosed is an image display device which is provided with a plurality of first-group filters (21 to 23) that allow the passage of a plurality of first-group light beams for representing a first color space, respectively, and a plurality of second-group filters (24 to 26) that allow the passage of a plurality of second-group light beams for representing a second color space wider than the first color space, respectively, and which includes a color wheel for emitting the light beams that have passed through the first and second-group filters (21 to 26) by means of time division, a detection means for detecting whether or not an image indicated by an image signal is located in the first color space, and a control means for causing the light beams that have passed the first and second-group filters (21 to 26) to be incident on a light modulation element if the detection means has detected that the image indicated by the image signal is located in the first color space, and causing the light beams that have passed the second-group filters (24 to 26) to be incident on the light modulation element if the detection means has detected that the image indicated by the image signal is not located in the first color space.

Description

映像表示装置および映像表示方法Video display device and video display method
 本発明は、映像表示装置および映像表示方法に関する。 The present invention relates to a video display device and a video display method.
 カラー画像を表示するプロジェクタは、例えば、赤色、緑色および青色の3色の光源を用いて画像の色を再現する。 A projector that displays a color image reproduces the color of an image using, for example, three light sources of red, green, and blue.
 特許文献1には、3色の光学フィルタを用いたプロジェクタが記載されている。特許文献1に記載のプロジェクタは、青色光透過領域、赤色光透過領域および緑色光透過領域の光学フィルタが配置されたカラーホイールと、投射パネルと、を備えている。 Patent Document 1 describes a projector using three-color optical filters. The projector described in Patent Document 1 includes a color wheel on which optical filters for a blue light transmission region, a red light transmission region, and a green light transmission region are arranged, and a projection panel.
 特許文献1に記載のプロジェクタでは、カラーホイールによって光源から出射された白色光が3色の光に分離され、投射パネルが、色分離された各色光を変調して映像を形成する。 In the projector described in Patent Document 1, white light emitted from a light source is separated into three colors by a color wheel, and a projection panel modulates each color light separated to form an image.
 特許文献1に記載のプロジェクタなどで表示される映像の大部分は、一般的に、特定の色域で再現されるが、一部の映像については特定の色域では再現されない場合がある。色域の広いプロジェクタを実現しようとする場合には、一般的に、色純度の高い3色の光源が必要となる。 Most of the images displayed by the projector described in Patent Document 1 are generally reproduced in a specific color gamut, but some images may not be reproduced in a specific color gamut. In order to realize a projector having a wide color gamut, generally, three color light sources with high color purity are required.
特開2004-191685号公報JP 2004-191685 A
 特許文献1に記載のプロジェクタでは、色域を広めるために各色光の色純度を高くする場合には、各色の光学フィルタの通過帯域をより狭くする必要がある。光学フィルタの通過帯域を狭くすると、光源から出射される光の利用効率が低下するため、利用効率が低下した分だけ、投射画像が暗くなってしまう。 In the projector described in Patent Document 1, when the color purity of each color light is increased in order to widen the color gamut, it is necessary to narrow the passband of the optical filter of each color. If the pass band of the optical filter is narrowed, the utilization efficiency of the light emitted from the light source is reduced, so that the projected image becomes darker by the amount that the utilization efficiency is reduced.
 このため、特定の色域で再現されない画像の色を再現するために、色域を広めると、投射画像の輝度が全体的に抑制されてしまうという問題があった。 For this reason, if the color gamut is widened in order to reproduce the color of an image that cannot be reproduced in a specific color gamut, there is a problem that the brightness of the projected image is suppressed as a whole.
 本発明の目的は、上記した課題を解決する映像表示装置および映像表示方法を提供することにある。 An object of the present invention is to provide a video display device and a video display method that solve the above-described problems.
 本発明の映像表示装置は、順次入射する複数の色光を映像信号に基づいて変調し映像として表示する光変調素子を有する映像表示装置であって、第1の色空間を表現するための複数の第1群の光をそれぞれ通過させる複数の第1群のフィルタと、前記第1の色空間よりも広い第2の色空間を表現するための複数の第2群の光をそれぞれ通過させる複数の第2群のフィルタと、を備え、前記第1群および第2群のフィルタの通過光を時分割で出射するカラーホイールと、前記映像信号に示される映像が前記第1の色空間内にあるか否かを検出する検出手段と、前記検出手段にて前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1群および第2群のフィルタの通過光を前記光変調素子に入射させ、前記検出手段にて前記映像信号に示される映像が前記第1の色空間内にないことが検出された場合には、前記第2群のフィルタの通過光を前記光変調素子に入射させる制御手段と、を含む。 The video display device of the present invention is a video display device having a light modulation element that modulates a plurality of sequentially incident color lights based on a video signal and displays them as a video image, and a plurality of color lights for expressing a first color space. A plurality of first group filters that respectively pass the first group of light, and a plurality of second group lights that respectively express a second color space wider than the first color space. A color wheel that emits light passing through the filters of the first group and the second group in a time-division manner, and an image indicated by the image signal is in the first color space. Detecting means for detecting whether or not the video indicated by the video signal is within the first color space by the detecting means, the first group and the second group The light passing through the filter is incident on the light modulation element, Control means for causing the light passing through the second group of filters to enter the light modulation element when the detection means detects that the image shown in the video signal is not in the first color space; ,including.
 本発明の映像表示方法は、第1の色空間を表現するための複数の第1群の光をそれぞれ通過させる複数の第1群のフィルタと、前記第1の色空間よりも広い第2の色空間を表現するための複数の第2群の光をそれぞれ通過させる複数の第2群のフィルタと、を備えたカラーホイールと、順次入射する複数の色光を映像信号に基づいて変調し映像として表示する光変調素子と、を有する映像表示装置における映像表示方法であって、前記第1群および第2群のフィルタの通過光を時分割で出射し、前記映像信号に示される映像が前記第1の色空間内にあるか否かを検出し、前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1群および第2群のフィルタの通過光を前記光変調素子に入射させ、前記映像信号に示される映像が前記第1の色空間内にないことが検出された場合には、前記第2群のフィルタの通過光を前記光変調素子に入射させる。 The image display method of the present invention includes a plurality of first group filters that respectively pass a plurality of first group lights for expressing the first color space, and a second wider than the first color space. A color wheel including a plurality of second group filters that respectively pass a plurality of second group lights for expressing a color space, and sequentially modulating a plurality of color lights incident on the basis of a video signal as an image An image display method in an image display device having a light modulation element to display, wherein light passing through the filters of the first group and the second group is emitted in a time division manner, and an image indicated in the image signal is the first image If the first color space is detected and it is detected that the video indicated by the video signal is in the first color space, the filters of the first group and the second group are detected. Light passing through the light modulation element, When the image shown in the signal that is detected not in the first color space is caused to enter the passing light of said second group of filter to the optical modulator.
 本発明によれば、表示される画像の輝度を向上させることが可能になる。 According to the present invention, the brightness of the displayed image can be improved.
本発明の実施形態における映像表示装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the video display apparatus in embodiment of this invention. 色空間aと色空間bとの関係例を観念的に示すxy色度図である。It is an xy chromaticity diagram conceptually showing an example of the relationship between the color space a and the color space b. カラーホイール2の一構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a color wheel 2. 検出器4の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a detector 4. FIG. 映像表示装置10における映像表示方法の処理手順例を示すフローチャートである。4 is a flowchart illustrating an example of a processing procedure of a video display method in the video display device 10.
 以下、本発明の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の実施形態における映像表示装置の構成例を示すブロック図である。 FIG. 1 is a block diagram illustrating a configuration example of a video display device according to an embodiment of the present invention.
 映像表示装置10は、映像信号線5iから映像信号を受け付けて、スクリーン上に映像を投射する投写型表示装置である。 The video display device 10 is a projection display device that receives a video signal from the video signal line 5i and projects a video on a screen.
 映像表示装置10は、光源1と、カラーホイール2と、プロジェクションレンズ3と、検出器4と、信号インターフェース5と、信号処理回路6と、駆動回路7と、映像表示デバイス8と、同期回路9と、を備える。 The video display device 10 includes a light source 1, a color wheel 2, a projection lens 3, a detector 4, a signal interface 5, a signal processing circuit 6, a drive circuit 7, a video display device 8, and a synchronization circuit 9. And comprising.
 光源1は、白色光を放射するランプである。光源1は、同期回路9の制御に従って、白色光をカラーホイール2に照射する。 The light source 1 is a lamp that emits white light. The light source 1 irradiates the color wheel 2 with white light under the control of the synchronization circuit 9.
 カラーホイール2は、第1の色空間(以下「色空間a」と称する。)を表現するための第1群の光をそれぞれ通過させる複数の第1群のフィルタ(以下「広域フィルタ」と称する。)と、第1の色空間よりも広い第2の色空間(以下「色空間b」と称する。)を表現するための第2群の光をそれぞれ通過させる複数の第2群のフィルタ(以下「狭域フィルタ」と称する。)と、を備え、第1群および第2群のフィルタの通過光を時分割で出射する。 The color wheel 2 includes a plurality of first group filters (hereinafter referred to as “broadband filters”) that respectively pass a first group of light for expressing a first color space (hereinafter referred to as “color space a”). And a plurality of second group filters that respectively pass light of the second group for expressing a second color space (hereinafter referred to as “color space b”) wider than the first color space ( Hereinafter referred to as “narrow band filter”), and the light passing through the filters of the first group and the second group is emitted in a time division manner.
 本実施形態では、カラーホイール2は、色空間aを表現するための赤、緑、青の原色光を通過させる第1ないし第3の狭域フィルタと、色空間bを表現するための赤、緑、青の原色光を通過させる第4ないし第6の広域フィルタと、を備え、これらのフィルタが、円周方向に沿って配列形成された円盤により構成される。 In the present embodiment, the color wheel 2 includes first to third narrow-pass filters that pass primary color lights of red, green, and blue for expressing the color space a, red for expressing the color space b, 4th to 6th wide-area filters that allow green and blue primary color light to pass therethrough, and these filters are constituted by disks that are arranged along the circumferential direction.
 カラーホイール2は、同期回路9の制御に従って、一定周期で回転するたびに、光源1から出射された白色光の光路に、各色の狭域フィルタおよび高域フィルタを順次挿入し、その白色光を時分割で各色光に分離する。 Each time the color wheel 2 rotates at a constant period according to the control of the synchronizing circuit 9, a narrow band filter and a high band filter of each color are sequentially inserted into the optical path of the white light emitted from the light source 1, and the white light is It is separated into each color light by time division.
 カラーホイール2は、時分割で色分離された各色光を映像表示デバイス8に照射する。すなわち、カラーホイール2は、分離された各色光を出射するタイミングを一定周期で切り替える。 The color wheel 2 irradiates the video display device 8 with each color light color-separated by time division. That is, the color wheel 2 switches the timing of emitting each separated color light at a constant period.
 同期回路9は、カラーホイール2による色分離のタイミングと、映像表示デバイス8による光変調のタイミングと、を互いに同期させる。同期回路9は、映像信号線5iからの映像信号に含まれる垂直同期信号を、信号インターフェース5から受け付けて、その垂直同期信号に同期して、カラーホイール2を回転させる。同期回路9は、カラーホイール2の回転周期に基づく同期信号を、駆動回路7に供給する。また、同期回路9は、光源1の制御を行う。 The synchronization circuit 9 synchronizes the timing of color separation by the color wheel 2 and the timing of light modulation by the video display device 8 with each other. The synchronization circuit 9 receives a vertical synchronization signal included in the video signal from the video signal line 5i from the signal interface 5, and rotates the color wheel 2 in synchronization with the vertical synchronization signal. The synchronization circuit 9 supplies a synchronization signal based on the rotation period of the color wheel 2 to the drive circuit 7. The synchronization circuit 9 controls the light source 1.
 信号インターフェース5は、映像信号線5iからアナログの映像信号を受け付ける。信号インターフェース5は、映像信号線5iから映像信号を受け付けると、その映像信号をデジタル信号に変換する。信号インターフェース5は、その変換されたデジタル信号の映像信号を、検出器4と信号処理回路6と同期回路9とに供給する。 The signal interface 5 receives an analog video signal from the video signal line 5i. When receiving the video signal from the video signal line 5i, the signal interface 5 converts the video signal into a digital signal. The signal interface 5 supplies the converted video signal of the digital signal to the detector 4, the signal processing circuit 6, and the synchronization circuit 9.
 検出器4は、一般的に検出手段と呼ぶことができる。 The detector 4 can generally be called a detection means.
 検出器4は、映像信号に示される映像が第1の色空間内にあるか否かを検出する
 本実施形態では、検出器4は、映像信号に示される映像が、色空間aの色域(以下「基本領域」と称する。)内か、基本領域外の色域(以下「拡張領域」と称する。)か、を検出する。
The detector 4 detects whether or not the video indicated by the video signal is in the first color space. In this embodiment, the detector 4 indicates that the video indicated by the video signal is in the color gamut of the color space a. (Hereinafter referred to as “basic area”) or a color gamut outside the basic area (hereinafter referred to as “extended area”).
 基本領域は、カラーホイール2を構成する複数のフィルタのうち、3色の広域フィルタによって色分離される各色光を光源とする場合の映像表示装置10の色空間aである。基本領域は、3色の広域フィルタによって色分離された各色光を光源とした場合におけるRGBの色度点を測定し、その測定結果から算出された三刺激値XYZに基づいて規定される。 The basic region is a color space a of the video display device 10 in the case where each color light color-separated by a wide-area filter of three colors among a plurality of filters constituting the color wheel 2 is used as a light source. The basic region is defined on the basis of tristimulus values XYZ calculated from the measurement results of RGB chromaticity points measured using light of each color separated by a three-color wide-area filter.
 一方、拡張領域は、3色の狭域フィルタによって色分離される各色光を光源とする場合の映像表示装置10の色空間bに属する色域である。色空間bの拡張領域は、3色の狭域フィルタによって色分離された各色光を光源とした場合におけるRGBの色度点を測定し、その測定結果から算出された三刺激値XYZに基づいて規定される。 On the other hand, the extended region is a color gamut belonging to the color space b of the video display device 10 when each color light color-separated by the narrow-color filters of three colors is used as a light source. The extended area of the color space b measures RGB chromaticity points when each color light color-separated by the narrow-color filters of three colors is used as a light source, and based on the tristimulus values XYZ calculated from the measurement results. It is prescribed.
 図2は、色空間aと色空間bとの関係例を観念的に示すxy色度図である。 FIG. 2 is an xy chromaticity diagram conceptually showing an example of the relationship between the color space a and the color space b.
 図2には、映像表示装置10の色空間aが、網掛け線により示され、映像表示装置10の色空間bの境界線が、実線により示されている。また、映像信号線5iから入力される映像信号の色空間(以下「色空間c」と称する。)の色域例として、色空間c1の境界線が破線により示され、色空間c2が実線により示されている。映像信号の色空間cとして、例えば、sRGB(standard RGB)により規定された色空間(第3の色空間)などがある。 In FIG. 2, the color space a of the video display device 10 is indicated by a shaded line, and the boundary line of the color space b of the video display device 10 is indicated by a solid line. As an example of the color gamut of the color space (hereinafter referred to as “color space c”) of the video signal input from the video signal line 5i, the boundary line of the color space c1 is indicated by a broken line, and the color space c2 is indicated by a solid line. It is shown. As the color space c of the video signal, for example, there is a color space (third color space) defined by sRGB (standard RGB).
 図2に示すように、色空間c1または色空間c2のうち色空間aに属する領域が基本領域であり、色空間c1または色空間c2のうち基本領域外の色域が、拡張領域となる。 As shown in FIG. 2, an area belonging to the color space a in the color space c1 or the color space c2 is a basic area, and a color gamut outside the basic area in the color space c1 or the color space c2 is an extended area.
 図1に戻り、検出器4は、色空間aから色空間cに変換するための基本情報と、色空間bから色空間cに変換するための拡張情報と、を保持する。 1, the detector 4 holds basic information for converting from the color space a to the color space c and extended information for converting from the color space b to the color space c.
 検出器4は、信号インターフェース5から映像信号を受け付けると、その映像信号を基本情報に基づいて第1映像データに変換する。 The detector 4 receives the video signal from the signal interface 5 and converts the video signal into the first video data based on the basic information.
 検出器4は、その変換された第1映像データが所定出力範囲内である場合には、映像信号に示される映像が基本領域内にあると検出する。検出器4は、映像信号に示される映像が基本領域内にあると検出した場合には、第1映像データを、信号処理回路6に供給する。 When the converted first video data is within the predetermined output range, the detector 4 detects that the video indicated by the video signal is within the basic area. The detector 4 supplies the first video data to the signal processing circuit 6 when detecting that the video shown in the video signal is in the basic region.
 一方、検出器4は、その変換された第1映像データが所定出力範囲を超える場合には、映像信号に示される映像が基本領域外にあると検出する。検出器4は、映像信号が基本領域外にあると検出した場合には、第1映像データを破棄する。 On the other hand, when the converted first video data exceeds the predetermined output range, the detector 4 detects that the video shown in the video signal is outside the basic area. When the detector 4 detects that the video signal is outside the basic area, the detector 4 discards the first video data.
 また、検出器4は、信号インターフェース5から映像信号を受け付けると、その映像信号を拡張情報に基づいて第2映像データに変換する。検出器4は、その変換された第2映像データを、信号処理回路6に供給する。 Further, when the detector 4 receives a video signal from the signal interface 5, the detector 4 converts the video signal into second video data based on the extended information. The detector 4 supplies the converted second video data to the signal processing circuit 6.
 信号処理回路6は、一般的に制御手段と呼ぶことができる。 The signal processing circuit 6 can be generally referred to as control means.
 信号処理回路6は、検出器4にて映像信号に示される映像が色空間a内にあることが検出された場合には、第1ないし第6のフィルタの通過光を映像表示デバイス8に入射させ、検出器4にて映像信号に示される映像が色空間a内にないことが検出された場合には、第4ないし第6の狭域フィルタの通過光を映像表示デバイス8に入射させる。 When the detector 4 detects that the video indicated by the video signal is in the color space a, the signal processing circuit 6 enters the light passing through the first to sixth filters into the video display device 8. When the detector 4 detects that the image shown in the image signal is not in the color space a, the light passing through the fourth to sixth narrow-pass filters is incident on the image display device 8.
 本実施形態では、信号処理回路6は、検出器4から第1または第2映像データを受け付けると、その映像データを保持する。信号処理回路6は、カラーホイール2によって色分離される色光の順番に従って、保持している映像データを、駆動回路7に供給する。 In the present embodiment, when receiving the first or second video data from the detector 4, the signal processing circuit 6 holds the video data. The signal processing circuit 6 supplies the held video data to the drive circuit 7 in accordance with the order of the color lights that are color-separated by the color wheel 2.
 信号処理回路6は、第1映像データおよび第2映像データを保持した場合には、光源1からの白色光が、赤、緑、青の広域フィルタと、赤、緑、青の狭域フィルタとを通過する各期間に、赤、緑、青の第1映像データと、赤、緑、青の第2映像データとを駆動回路7にそれぞれ供給する。 
 信号処理回路6は、第2映像データのみを保持した場合には、光源1からの白色光が、赤色、緑色、青色の狭域フィルタを通過する各期間に、赤、緑、青の第2映像データを駆動回路7にそれぞれ供給する。
When the signal processing circuit 6 holds the first video data and the second video data, the white light from the light source 1 is converted into a red, green, blue wide band filter, a red, green, blue narrow band filter, The first video data of red, green, and blue and the second video data of red, green, and blue are supplied to the drive circuit 7 in each period that passes through, respectively.
When the signal processing circuit 6 holds only the second video data, the red, green, and blue second light is emitted during each period when the white light from the light source 1 passes through the red, green, and blue narrow-pass filters. The video data is supplied to the drive circuit 7 respectively.
 駆動回路7は、同期回路9から同期信号を受け付ける。また、駆動回路7は、信号処理回路6から第1または第2映像データを受け付ける。駆動回路7は、同期信号に従って、映像表示デバイス8を駆動させるための制御信号を、第1または第2映像データに基づいて生成する。駆動回路7は、その制御信号を、映像表示デバイス8に供給する。 The drive circuit 7 receives a synchronization signal from the synchronization circuit 9. Further, the drive circuit 7 receives the first or second video data from the signal processing circuit 6. The drive circuit 7 generates a control signal for driving the video display device 8 based on the first or second video data according to the synchronization signal. The drive circuit 7 supplies the control signal to the video display device 8.
 映像表示デバイス8は、一般的に光変調素子と呼ぶことができる。 The video display device 8 can generally be called a light modulation element.
 映像表示デバイス8は、順次入射する複数の色光を映像信号に基づいて変調し映像として表示する。 The video display device 8 modulates a plurality of sequentially incident color lights based on the video signal and displays them as a video.
 本実施形態では、映像表示デバイス8は、カラーホイール2によって色分離された各色光を、駆動回路7からの制御信号に基づいて変調する。映像表示デバイス8は、例えば、DMD(Digital Micromirror Device)により実現される。映像表示デバイス8は、その変調した光を、映像としてプロジェクションレンズ3に出力する。 In this embodiment, the video display device 8 modulates each color light color-separated by the color wheel 2 based on a control signal from the drive circuit 7. The video display device 8 is realized by, for example, DMD (Digital Micromirror Device). The video display device 8 outputs the modulated light to the projection lens 3 as a video.
 プロジェクションレンズ3は、映像表示デバイス8から出力された映像を、スクリーンに投射する。 The projection lens 3 projects the video output from the video display device 8 onto the screen.
 図3は、カラーホイール2の一構成例を示す図である。 FIG. 3 is a diagram showing a configuration example of the color wheel 2.
 図3に示すように、カラーホイール2は、第1のフィルタとしての赤色広域フィルタ21と、第2のフィルタとしての緑色広域フィルタ22と、第3のフィルタとしての青色広域フィルタ23と、第4のフィルタとしての赤色狭域フィルタ24と、第5のフィルタとしての緑色狭域フィルタ25と、第6のフィルタとしての青色狭域フィルタ26と、を備える。 As shown in FIG. 3, the color wheel 2 includes a red wide-area filter 21 as a first filter, a green wide-area filter 22 as a second filter, a blue wide-area filter 23 as a third filter, A red narrow band filter 24 as a fifth filter, a green narrow band filter 25 as a fifth filter, and a blue narrow band filter 26 as a sixth filter.
 赤色広域フィルタ21、緑色広域フィルタ22および青色広域フィルタ23は、色空間aを表現するための広域フィルタである。赤色広域フィルタ21、緑色広域フィルタ22および青色広域フィルタ23の各々は、赤色狭域フィルタ24、緑色狭域フィルタ25および青色狭域フィルタ26の各々よりも広い通過帯域を有する。 The red wide-area filter 21, the green wide-area filter 22, and the blue wide-area filter 23 are wide-area filters for expressing the color space a. Each of the red wide band filter 21, the green wide band filter 22 and the blue wide band filter 23 has a wider pass band than each of the red narrow band filter 24, the green narrow band filter 25 and the blue narrow band filter 26.
 また、赤色広域フィルタ21、緑色広域フィルタ22および青色広域フィルタ23の各々は、赤色狭域フィルタ24、緑色狭域フィルタ25および青色狭域フィルタ26の各々よりもフィルタの領域が広い。すなわち、赤色広域フィルタ21、緑色広域フィルタ22および青色広域フィルタ23の各通過光の出射期間は、赤色狭域フィルタ24、緑色狭域フィルタ25および青色狭域フィルタ26の各通過光の出射期間よりも長い。 Further, each of the red wide band filter 21, the green wide band filter 22, and the blue wide band filter 23 has a wider filter area than each of the red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26. That is, the emission period of each passing light of the red wide band filter 21, the green wide band filter 22, and the blue wide band filter 23 is longer than the emission period of each passing light of the red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26. Also long.
 赤色広域フィルタ21は、波長帯域の広い赤色光を通過させ、その他の色光を反射または吸収する。緑色広域フィルタ22は、波長帯域の広い緑色光のみを通過させ、その他の色光を反射または吸収する。青色広域フィルタ23は、波長帯域の広い青色光のみを通過させ、その他の色光を反射または吸収する。 The red wide-area filter 21 passes red light having a wide wavelength band and reflects or absorbs other color lights. The green wide-area filter 22 passes only green light having a wide wavelength band, and reflects or absorbs other color lights. The blue wide-area filter 23 passes only blue light having a wide wavelength band and reflects or absorbs other color lights.
 赤色狭域フィルタ24、緑色狭域フィルタ25および青色狭域フィルタ26は、色空間bを表現するための狭域フィルタである。 The red narrow band filter 24, the green narrow band filter 25, and the blue narrow band filter 26 are narrow band filters for expressing the color space b.
 赤色狭域フィルタ24は、波長帯域の狭い赤色光のみを通過させ、その他の色光を反射または吸収する。緑色狭域フィルタ25は、波長帯域の狭い緑色光のみを通過させ、その他の色光を反射または吸収する。青色狭域フィルタ26は、波長帯域の狭い青色光のみを通過させ、その他の色光を反射または吸収する。 The red narrow filter 24 allows only red light having a narrow wavelength band to pass and reflects or absorbs other color light. The green narrow band filter 25 allows only green light having a narrow wavelength band to pass and reflects or absorbs other color lights. The blue narrow band filter 26 passes only blue light having a narrow wavelength band and reflects or absorbs other color lights.
 図3に示すように、カラーホイール2が、映像の垂直同期に同期して回転し、赤色広域フィルタ21、緑色広域フィルタ22、青色広域フィルタ23、赤色狭域フィルタ24、緑色狭域フィルタ25、青色狭域フィルタ26の各セグメントが順番に光路を通過する。 As shown in FIG. 3, the color wheel 2 rotates in synchronization with the vertical synchronization of the video, and the red wide band filter 21, the green wide band filter 22, the blue wide band filter 23, the red narrow band filter 24, the green narrow band filter 25, Each segment of the blue narrow band filter 26 sequentially passes through the optical path.
 例えば、検出器4が、基本領域に属する映像信号を検出すると、信号処理回路6が、駆動回路7を介して、カラーホイール2の各フィルタ(セグメント)21~26が光路を通過する各期間に、赤、緑、青の第1映像データ(seq1)と、赤、緑、青の第2映像データ(seq2)とを、映像表示デバイス8に出力する。そして、映像表示デバイス8が、基本となる色空間aの赤映像、緑映像および青映像と、拡張された色空間bの赤映像、緑映像および青映像を順次表示する。 For example, when the detector 4 detects a video signal belonging to the basic region, the signal processing circuit 6 passes through the drive circuit 7 in each period in which the filters (segments) 21 to 26 of the color wheel 2 pass through the optical path. , Red, green, and blue first video data (seq1) and red, green, and blue second video data (seq2) are output to the video display device 8. Then, the video display device 8 sequentially displays the red video, green video, and blue video in the basic color space a, and the red video, green video, and blue video in the expanded color space b.
 一方、検出器4が、拡張領域に属する映像信号を検出すると、信号処理回路6が、赤、緑、青の第2映像データ(seq2)を、狭域フィルタ24~26が光路を通過する各期間に出力する。 On the other hand, when the detector 4 detects a video signal belonging to the extended region, the signal processing circuit 6 passes the second video data (seq 2) of red, green, and blue, and the narrow band filters 24 to 26 pass through the optical path. Output during the period.
 よって、映像表示装置10は、映像信号に示される映像に基づいて、基本となる色空間aに基づく映像と、拡張された色空間bに基づく映像と、を時間的に重ね合わせることによって、映像を再現する。 Therefore, the video display device 10 temporally superimposes the video based on the basic color space a and the video based on the expanded color space b on the basis of the video shown in the video signal. To reproduce.
 次に、検出器4の構成について図面を参照して詳細に説明する。 Next, the configuration of the detector 4 will be described in detail with reference to the drawings.
 図4は、検出器4の構成例を示すブロック図である。 FIG. 4 is a block diagram showing a configuration example of the detector 4.
 図4では、信号線4iから供給される映像信号は、sRGBの規定に準拠しており、ガンマ補正が施されているものと想定する。また、映像信号は、R(赤)信号、G(緑)信号およびB(青)信号により構成される。 In FIG. 4, it is assumed that the video signal supplied from the signal line 4i conforms to the sRGB standard and is subjected to gamma correction. The video signal includes an R (red) signal, a G (green) signal, and a B (blue) signal.
 検出器4は、ガンマ逆補正部41r、41gおよび41bと、マトリックス回路42、43、44、53および54と、リミット回路45と、ガンマ補正部46r、46g、46b、56r、56gおよび56bと、データ生成部47および57と、を備える。 The detector 4 includes gamma reverse correction units 41r, 41g and 41b, matrix circuits 42, 43, 44, 53 and 54, a limit circuit 45, gamma correction units 46r, 46g, 46b, 56r, 56g and 56b, Data generation units 47 and 57.
 ガンマ逆補正部41r、41gおよび41bは、ガンマ特性を有する映像信号をリニア特性に補正するデガンマ補正を行う。ガンマ逆補正部41r、41gおよび41bは、ガンマ補正が施された映像信号をリニア特性に変換するためのルックアップテーブルLUT1r、LUT1gおよびLUT1bを、それぞれ保持する。 The gamma reverse correction units 41r, 41g, and 41b perform degamma correction for correcting a video signal having gamma characteristics to linear characteristics. The gamma reverse correction units 41r, 41g, and 41b respectively hold lookup tables LUT1r, LUT1g, and LUT1b for converting the video signal subjected to gamma correction into linear characteristics.
 ガンマ逆補正部41rは、信号線4iからR信号を受け付けると、ルックアップテーブルLUT1rに基づいて、そのR信号にデガンマ補正を施す。ガンマ逆補正部41gは、信号線4iからG信号を受け付けると、ルックアップテーブルLUT1gに基づいて、そのG信号にデガンマ補正を施す。ガンマ逆補正部41bは、信号線4iからB信号を受け付けると、ルックアップテーブルLUT1bに基づいて、そのB信号にデガンマ補正を施す。 When receiving the R signal from the signal line 4i, the gamma reverse correction unit 41r performs degamma correction on the R signal based on the lookup table LUT1r. When receiving the G signal from the signal line 4i, the gamma reverse correction unit 41g performs degamma correction on the G signal based on the lookup table LUT1g. When receiving the B signal from the signal line 4i, the gamma reverse correction unit 41b performs degamma correction on the B signal based on the lookup table LUT1b.
 ガンマ逆補正部41r、41gおよび41bは、そのデガンマ補正が施されたR信号、G信号およびB信号を、映像信号としてマトリックス回路42に供給する。 The gamma reverse correction units 41r, 41g, and 41b supply the R signal, the G signal, and the B signal subjected to the degamma correction to the matrix circuit 42 as video signals.
 マトリックス回路42は、一般的に第1変換手段と呼ぶことができる。 The matrix circuit 42 can be generally referred to as first conversion means.
 マトリックス回路42は、映像信号をRGB空間からXYZ空間へ変換する。マトリックス回路42は、sRGBの色度点に基づいて算出された3×3の行列M1を保持する。 The matrix circuit 42 converts the video signal from the RGB space to the XYZ space. The matrix circuit 42 holds a 3 × 3 matrix M1 calculated based on the sRGB chromaticity points.
 マトリックス回路42は、ガンマ逆補正部41r、41gおよび41bから映像信号を受け付けると、その映像信号を、行列M1を用いてRGB空間からXYZ空間へ変換する。マトリックス回路42は、次式により映像信号を変換する。 When the matrix circuit 42 receives the video signal from the gamma inverse correction units 41r, 41g, and 41b, the matrix circuit 42 converts the video signal from the RGB space to the XYZ space using the matrix M1. The matrix circuit 42 converts the video signal according to the following equation.
Figure JPOXMLDOC01-appb-M000001
 ここで、R、B、Gは、ガンマ逆補正部41r、41gおよび41bから受け付ける映像信号である。Xi、Yi、Ziは、変換後の映像信号である。
Figure JPOXMLDOC01-appb-M000001
Here, R, B, and G are video signals received from the gamma reverse correction units 41r, 41g, and 41b. Xi, Yi, and Zi are converted video signals.
 また、マトリックス回路42は、その変換された映像信号を、マトリックス回路43とマトリックス回路53とにそれぞれ供給する。 The matrix circuit 42 supplies the converted video signal to the matrix circuit 43 and the matrix circuit 53, respectively.
 マトリックス回路43は、一般的に第2変換手段と呼ぶことができる。 The matrix circuit 43 can be generally referred to as second conversion means.
 マトリックス回路43は、映像表示装置10の色空間aからsRGBの色空間c(第3の色空間)に映像信号を変換する。マトリックス回路43は、映像表示装置10の色空間aから、sRGBの色空間cに映像信号を変換するための基準情報(変換情報)として変換行列K1を保持する。変換係数K1は、式1により表現される。 The matrix circuit 43 converts the video signal from the color space a of the video display device 10 to the sRGB color space c (third color space). The matrix circuit 43 holds a conversion matrix K1 as reference information (conversion information) for converting a video signal from the color space a of the video display device 10 to the sRGB color space c. The conversion coefficient K1 is expressed by Equation 1.
Figure JPOXMLDOC01-appb-M000002
 ここで、P1は、sRGBの色度点R(Xr,Yr,Zr)、G(Xg,Yg,Zg)、B(Xb,Yb,Zb)をそれぞれ縦に並べた行列である。なお、色度点R(Xr,Yr,Zr)、G(Xg,Yg,Zg)、B(Xb,Yb,Zb)は、sRGBにて規定された値である。
Figure JPOXMLDOC01-appb-M000002
Here, P1 is a matrix in which sRGB chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) are arranged vertically. The chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) are values defined by sRGB.
 また、P2は、映像表示装置10の色空間aの色度点R(Xr,Yr,Zr)、G(Xg,Yg,Zg)、B(Xb,Yb,Zb)をそれぞれ縦に並べた行列である。色空間aの色度点は、例えば、色彩照度計等を用いてx,y,L値を測定しておき、その測定結果をXYZ値に変換することで求められる。 P2 is a matrix in which chromaticity points R (Xr, Yr, Zr), G (Xg, Yg, Zg), and B (Xb, Yb, Zb) in the color space a of the video display device 10 are arranged vertically. It is. The chromaticity point of the color space a is obtained by, for example, measuring x, y, L values using a color illuminometer or the like and converting the measurement results into XYZ values.
 また、マトリックス回路43は、マトリックス回路42から映像信号を受け付けると、その映像信号を、変換行列K1に基づいて映像表示装置10の色空間aからsRGBの色空間cに変換する。マトリックス回路43は、次式により映像信号を変換する。 Further, when receiving the video signal from the matrix circuit 42, the matrix circuit 43 converts the video signal from the color space a of the video display device 10 to the sRGB color space c based on the conversion matrix K1. The matrix circuit 43 converts the video signal according to the following equation.
Figure JPOXMLDOC01-appb-M000003
 ここで、Xo1、Yo1、Zo1は、変換後の映像信号である。また、マトリックス回路43は、その変換された映像信号を、第1映像信号としてマトリックス回路44に供給する。
Figure JPOXMLDOC01-appb-M000003
Here, Xo1, Yo1, and Zo1 are converted video signals. The matrix circuit 43 supplies the converted video signal to the matrix circuit 44 as a first video signal.
 マトリックス回路44は、一般的に第3変換手段と呼ぶことができる、
 マトリックス回路44は、映像信号をXYZ空間からRGB空間に戻す。マトリックス回路44は、映像信号をXYZ空間からRGB空間に変換するための3×3の行列M4を保持する。
The matrix circuit 44 can be generally referred to as third conversion means.
The matrix circuit 44 returns the video signal from the XYZ space to the RGB space. The matrix circuit 44 holds a 3 × 3 matrix M4 for converting the video signal from the XYZ space to the RGB space.
 マトリックス回路44は、マトリックス回路43から第1映像信号を受け付けると、その映像信号を、行列M4を用いてXYZ空間からRGB空間に変換する。マトリックス回路44は、次式により映像信号を変換する。 When the matrix circuit 44 receives the first video signal from the matrix circuit 43, the matrix circuit 44 converts the video signal from the XYZ space to the RGB space using the matrix M4. The matrix circuit 44 converts the video signal according to the following equation.
Figure JPOXMLDOC01-appb-M000004
 ここで、R1、G1、B1は、変換後の映像信号である。また、マトリックス回路44は、その変換された第1映像信号を、リミット回路45に供給する。なお、色空間aは、sRGBの色空間cよりも狭いため、計算上変換できても、全ての色を再現することができない。
Figure JPOXMLDOC01-appb-M000004
Here, R1, G1, and B1 are converted video signals. In addition, the matrix circuit 44 supplies the converted first video signal to the limit circuit 45. Since the color space a is narrower than the sRGB color space c, all colors cannot be reproduced even if they can be calculated.
 リミット回路45は、一般的に判断手段と呼ぶことができる。 The limit circuit 45 can be generally called a determination means.
 リミット回路45は、マトリックス回路44にて変換された映像信号の各色値が所定出力範囲を超えるか否かを判断し、所定出力範囲を超えない場合には、映像信号が色空間a内にあると検出する。 The limit circuit 45 determines whether each color value of the video signal converted by the matrix circuit 44 exceeds a predetermined output range. If the color value does not exceed the predetermined output range, the video signal is in the color space a. Is detected.
 本実施形態では、リミット回路45は、マトリックス回路44から第1映像信号を受け付けると、色空間aに含まれない第1映像信号を破棄する。リミット回路45は、第1映像信号を構成するR信号、G信号およびB信号のうち、少なくとも1つの信号の信号(階調)レベルが所定出力範囲を超える場合には、第1映像信号を破棄する。 In this embodiment, when the limit circuit 45 receives the first video signal from the matrix circuit 44, the limit circuit 45 discards the first video signal not included in the color space a. The limit circuit 45 discards the first video signal when the signal (gradation) level of at least one of the R signal, G signal, and B signal constituting the first video signal exceeds a predetermined output range. To do.
 リミット回路45は、例えば、第1映像信号が8bit階調で表わされている場合、R信号、G信号およびB信号の階調レベルのいずれかが、「0」以下または「255」を超えるときは、R信号、G信号およびB信号の階調レベルを全て「0」にする。これにより、リミット回路45は、色空間aの基準領域に含まれない第1映像信号を無効にする。 For example, when the first video signal is represented by an 8-bit gradation, the limit circuit 45 has one of the gradation levels of the R signal, the G signal, and the B signal that is “0” or less or exceeds “255”. In this case, the gradation levels of the R, G, and B signals are all set to “0”. Thereby, the limit circuit 45 invalidates the first video signal not included in the reference area of the color space a.
 一方、リミット回路45は、第1映像信号が所定出力範囲に含まれる場合には、その第1映像信号によって構成されるR信号、G信号およびB信号を、ガンマ補正部46r、46gおよび46bにそれぞれ供給する。 On the other hand, when the first video signal is included in the predetermined output range, the limit circuit 45 sends the R signal, the G signal, and the B signal constituted by the first video signal to the gamma correction units 46r, 46g, and 46b. Supply each.
 ガンマ補正部46r、46gおよび46bは、映像表示装置10の有するガンマ特性に基づいて映像信号を補正するガンマ補正を施す。ガンマ補正部46r、46gおよび46bは、ガンマ補正を施すためのルックアップテーブルLUT2r、LUT2gおよびLUT2bをそれぞれ保持する。 The gamma correction units 46r, 46g, and 46b perform gamma correction for correcting the video signal based on the gamma characteristic of the video display device 10. The gamma correction units 46r, 46g, and 46b respectively hold lookup tables LUT2r, LUT2g, and LUT2b for performing gamma correction.
 ガンマ補正部46rは、リミッタ回路45からR信号を受け付けると、ルックアップテーブルLUT2rに基づいて、そのR信号にガンマ補正を施す。ガンマ補正部46gは、リミッタ回路45からG信号を受け付けると、ルックアップテーブルLUT2gに基づいて、そのG信号にガンマ補正を施す。ガンマ補正部46bは、リミッタ回路45からからB信号を受け付けると、ルックアップテーブルLUT2bに基づいて、そのB信号にガンマ補正を施す。 When the R signal is received from the limiter circuit 45, the gamma correction unit 46r performs gamma correction on the R signal based on the lookup table LUT2r. When receiving the G signal from the limiter circuit 45, the gamma correction unit 46g performs gamma correction on the G signal based on the lookup table LUT2g. When receiving a B signal from the limiter circuit 45, the gamma correction unit 46b performs gamma correction on the B signal based on the lookup table LUT2b.
 ガンマ補正部46r、46gおよび46bは、そのガンマ補正が施された第1映像信号(Rout1、Gout1およびBout1)を、データ生成部47に供給する。 The gamma correction units 46r, 46g, and 46b supply the first video signals (Rout1, Gout1, and Bout1) subjected to the gamma correction to the data generation unit 47.
 データ生成部47は、ガンマ補正部46r、46gおよび46bから第1映像信号を受け付けると、その第1映像信号を所定フォーマットに変換して、第1映像データ(seq1)として、信号処理部6に供給する。 When the data generation unit 47 receives the first video signal from the gamma correction units 46r, 46g, and 46b, the data generation unit 47 converts the first video signal into a predetermined format and outputs it to the signal processing unit 6 as first video data (seq1). Supply.
 マトリックス回路53は、映像表示装置10の色空間bからsRGBの色空間cに映像信号を変換する。マトリックス回路53は、映像表示装置10の色空間bからsRGBの色空間cに映像信号を変換するための拡張情報として変換行列K2を保持する。なお、変換係数K2は、式1と同様に表すことができる。 The matrix circuit 53 converts the video signal from the color space b of the video display device 10 to the sRGB color space c. The matrix circuit 53 holds a conversion matrix K2 as extended information for converting the video signal from the color space b of the video display device 10 to the sRGB color space c. Note that the conversion coefficient K2 can be expressed in the same manner as Equation 1.
 マトリックス回路53は、マトリックス回路52から映像信号を受け付けると、その映像信号を、変換行列K2を用いて映像表示装置10の色空間bからsRGBの色空間cに変換する。マトリックス回路53は、その変換された映像信号を、第2映像信号としてマトリックス回路54に供給する。 When the matrix circuit 53 receives the video signal from the matrix circuit 52, the matrix circuit 53 converts the video signal from the color space b of the video display device 10 to the sRGB color space c using the conversion matrix K2. The matrix circuit 53 supplies the converted video signal to the matrix circuit 54 as a second video signal.
 マトリックス回路54は、第2映像信号をXYZ空間からRGB空間に変換する。マトリックス回路54は、XYZ空間からRGB空間に変換するための3×3の行列M5を保持する。マトリックス回路54は、マトリックス回路53から第2映像信号を受け付けると、その第2映像信号を、行列M5を用いてXYZ空間からRGB空間に変換する。 The matrix circuit 54 converts the second video signal from the XYZ space to the RGB space. The matrix circuit 54 holds a 3 × 3 matrix M5 for converting from the XYZ space to the RGB space. When receiving the second video signal from the matrix circuit 53, the matrix circuit 54 converts the second video signal from the XYZ space to the RGB space using the matrix M5.
 また、マトリックス回路54は、その変換された第2映像信号によって構成されるR信号、G信号およびB信号を、ガンマ補正部56r、56gおよび56bにそれぞれ供給する。 The matrix circuit 54 supplies the R signal, the G signal, and the B signal constituted by the converted second video signal to the gamma correction units 56r, 56g, and 56b, respectively.
 ガンマ補正部56r、56gおよび56bは、映像表示装置10の有するガンマ特性に基づいて映像信号を補正するガンマ補正を施す。ガンマ補正部56r、56gおよび56bは、ガンマ補正を施すためのルックアップテーブルLUT2r、LUT2gおよびLUT2bをそれぞれ保持する。 The gamma correction units 56r, 56g, and 56b perform gamma correction for correcting the video signal based on the gamma characteristic of the video display device 10. The gamma correction units 56r, 56g, and 56b hold lookup tables LUT2r, LUT2g, and LUT2b for performing gamma correction, respectively.
 ガンマ補正部56rは、マトリックス回路54からR信号を受け付けると、ルックアップテーブルLUT2rに基づいて、そのR信号にガンマ補正を施す。ガンマ補正部56gは、マトリックス回路54からG信号を受け付けると、ルックアップテーブルLUT2gに基づいて、そのG信号にガンマ補正を施す。ガンマ補正部56bは、マトリックス回路54からからB信号を受け付けると、ルックアップテーブルLUT2bに基づいて、そのB信号にガンマ補正を施す。 When the R signal is received from the matrix circuit 54, the gamma correction unit 56r performs gamma correction on the R signal based on the lookup table LUT2r. When receiving the G signal from the matrix circuit 54, the gamma correction unit 56g performs gamma correction on the G signal based on the lookup table LUT2g. When receiving the B signal from the matrix circuit 54, the gamma correction unit 56b performs gamma correction on the B signal based on the lookup table LUT2b.
 ガンマ補正部56r、56gおよび56bは、そのガンマ補正が施された第2映像信号(Rout2、Gout2およびBout2)を、データ生成部57に供給する。 The gamma correction units 56r, 56g, and 56b supply the second video signals (Rout2, Gout2, and Bout2) subjected to the gamma correction to the data generation unit 57.
 データ生成部57は、ガンマ補正部56r、56gおよび56bから第2映像信号を受け付けると、その第2映像信号を所定フォーマットに変換して、第2映像データ(seq2)として、信号処理部6に供給する。 When the data generation unit 57 receives the second video signal from the gamma correction units 56r, 56g, and 56b, the data generation unit 57 converts the second video signal into a predetermined format and outputs it to the signal processing unit 6 as second video data (seq2). Supply.
 次に、映像表示装置10の動作について説明する。 Next, the operation of the video display device 10 will be described.
 図5は、映像表示装置10の映像表示方法の処理手順例を示すフローチャートである。 FIG. 5 is a flowchart showing a processing procedure example of the video display method of the video display device 10.
 まず、ガンマ逆補正部41r、41gおよび41bは、信号インターフェース5にて受け付けられた映像信号にデガンマ補正を施す(ステップS911)。
ガンマ逆補正部41r、41gおよび41bが、映像信号にデガンマ補正を施すと、マトリックス回路42が、その映像信号をRGB空間からXYZ空間に変換する(ステップS912)。
First, the gamma reverse correction units 41r, 41g, and 41b perform degamma correction on the video signal received by the signal interface 5 (step S911).
When the gamma reverse correction units 41r, 41g, and 41b perform degamma correction on the video signal, the matrix circuit 42 converts the video signal from the RGB space to the XYZ space (step S912).
 マトリックス回路42が、映像信号をRGB空間からXYZ空間に変換すると、マトリックス回路43が、変換後の映像信号を、変換行列K1に基づいて第1映像信号に変換する(ステップS913)。 When the matrix circuit 42 converts the video signal from the RGB space to the XYZ space, the matrix circuit 43 converts the converted video signal into the first video signal based on the conversion matrix K1 (step S913).
 また、マトリックス回路42が、映像信号をRGB空間からXYZ空間に変換すると、マトリックス回路53が、変換後の映像信号を、変換行列K2に基づいて第2映像信号に変換する(ステップS914)。 Further, when the matrix circuit 42 converts the video signal from the RGB space to the XYZ space, the matrix circuit 53 converts the converted video signal into the second video signal based on the conversion matrix K2 (step S914).
 マトリックス回路43および53が、変換後の映像信号を、第1および第2映像信号にそれぞれ変換すると、マトリックス回路44および54が、第1および第2映像信号をXYZ空間からRGB空間にそれぞれ変換する(ステップS915)。 When the matrix circuits 43 and 53 convert the converted video signals into the first and second video signals, respectively, the matrix circuits 44 and 54 convert the first and second video signals from the XYZ space to the RGB space, respectively. (Step S915).
 マトリックス回路44が、第1映像信号をXYZ空間からRGB空間に変換すると、リミット回路45が、その第1映像信号が所定出力範囲を超えるか否かを判断する(ステップS916)。 When the matrix circuit 44 converts the first video signal from the XYZ space to the RGB space, the limit circuit 45 determines whether or not the first video signal exceeds a predetermined output range (step S916).
 リミット回路45は、第1映像信号が所定出力範囲を超えた場合には、その第1映像信号を破棄する(ステップS917)。また、マトリックス回路54が、第2映像信号を、XYZ空間からRGB空間に変換すると、ガンマ補正部56r、56gおよび56bが、第2映像信号にガンマ補正を施し、データ生成部57を介して、第2映像データを信号処理回路6に供給する(ステップS918)。 When the first video signal exceeds the predetermined output range, the limit circuit 45 discards the first video signal (step S917). Further, when the matrix circuit 54 converts the second video signal from the XYZ space to the RGB space, the gamma correction units 56r, 56g, and 56b perform gamma correction on the second video signal, and via the data generation unit 57, The second video data is supplied to the signal processing circuit 6 (step S918).
 また、駆動回路7は、信号処理回路6からの第2映像データに基づいて、狭域フィルタによって分離された各色光を変調するように映像表示デバイス8を制御する(ステップS919)。 Also, the drive circuit 7 controls the video display device 8 so as to modulate each color light separated by the narrow band filter based on the second video data from the signal processing circuit 6 (step S919).
 一方、リミット回路45が、第1映像信号が所定出力範囲を超えないと判断した後、ガンマ補正部46r、46gおよび46bと、ガンマ補正部56r、56gおよび56bとが、第1および第2映像信号にガンマ補正をそれぞれ施し、データ生成部47および57を介して、第1および第2映像データを、信号処理回路6に供給する(ステップS921)。 On the other hand, after the limit circuit 45 determines that the first video signal does not exceed the predetermined output range, the gamma correction units 46r, 46g, and 46b, and the gamma correction units 56r, 56g, and 56b include the first and second videos. The signal is subjected to gamma correction, and the first and second video data are supplied to the signal processing circuit 6 via the data generators 47 and 57 (step S921).
 また、駆動回路7は、信号処理回路6からの第1映像データに基づいて、広域フィルタによって分離された各色光を変調するように映像表示デバイス8を制御する(ステップS922)。 Further, the drive circuit 7 controls the video display device 8 so as to modulate each color light separated by the wide-area filter based on the first video data from the signal processing circuit 6 (step S922).
 続いて、駆動回路7は、信号処理回路6からの第2映像データに基づいて、狭域フィルタによって分離された各色光を変調するように映像表示デバイス8を制御する(ステップS923)。ステップS919または923の処理後、映像表示方法の一連の処理手順が終了する。 Subsequently, the drive circuit 7 controls the video display device 8 to modulate each color light separated by the narrow band filter based on the second video data from the signal processing circuit 6 (step S923). After the process of step S919 or 923, a series of processing procedures of the video display method ends.
 本実施形態によれば、カラーホイール2が、第1の色空間を表現するための複数の第1群の光をそれぞれ通過させる複数の第1群のフィルタと、第1の色空間よりも広い第2の色空間を表現するための複数の第2群の光をそれぞれ通過させる複数の第2群のフィルタと、を備え、第1群および第2群のフィルタの通過光を時分割で出射する。このため、映像表示装置10は、互いに異なる第1および第2の色空間を有する。 According to the present embodiment, the color wheel 2 is wider than the first color space and the plurality of first group filters that respectively pass the plurality of first group lights for expressing the first color space. And a plurality of second group filters that respectively pass a plurality of second group lights for expressing the second color space, and the light passing through the first group and second group filters is emitted in a time-sharing manner. To do. For this reason, the video display device 10 has first and second color spaces different from each other.
 また、本実施形態では、検出器4が、映像信号に示される映像が、第1の色空間内であるか否かを検出する。このため、映像表示装置10は、映像信号に示される映像が、スクリーンに投射される頻度の高い映像の色か否かを判断することができる。 In the present embodiment, the detector 4 detects whether or not the video indicated by the video signal is in the first color space. Therefore, the video display device 10 can determine whether or not the video shown in the video signal is a color of a video that is frequently projected on the screen.
 さらに、本実施形態では、信号処理回路6が、検出器4にて映像信号に示される映像が第1の色空間内にあることが検出された場合には、第1群および第2群のフィルタの通過光を映像表示デバイス8に入射させる。 Further, in the present embodiment, when the signal processing circuit 6 detects that the video indicated by the video signal is in the first color space by the detector 4, the first group and the second group The light passing through the filter is incident on the video display device 8.
 映像表示装置10は、映像信号に示される映像が、投射される頻度の高い映像の色である場合には、第1群および第2群のフィルタの全ての通過光を用いるため、光源1から出射される光の利用効率を高めことができる。よって、映像表示装置10は、表示される映像の輝度を向上させることができる。 Since the video display device 10 uses all the light passing through the filters of the first group and the second group when the video shown in the video signal is the color of the video that is projected frequently, the video display device 10 uses the light from the light source 1. The utilization efficiency of the emitted light can be increased. Therefore, the video display apparatus 10 can improve the brightness of the displayed video.
 また、本実施形態では、信号処理回路6が、検出器4にて映像信号に示される映像が、第1の色空間内にないことが検出された場合には、第2群のフィルタの通過光を映像表示デバイス8に入射させる。 In the present embodiment, the signal processing circuit 6 passes through the second group of filters when the detector 4 detects that the video indicated by the video signal is not in the first color space. Light is incident on the video display device 8.
 よって、映像表示装置10は、映像信号に示される映像が、第1の色空間内にない場合には、色純度の高い第2群のフィルタの通過光を用いるため、第1の色空間で表現できない映像を再現することができる。このため、映像表示装置10は、高い色再現性を維持することができる。 Therefore, when the video shown in the video signal is not in the first color space, the video display device 10 uses the light passing through the second group of filters with high color purity. Video that cannot be expressed can be reproduced. For this reason, the video display apparatus 10 can maintain high color reproducibility.
 したがって、映像表示装置10は、映像信号に応じて、第1の色空間と、第2の色空間と、を組み合わせることによって、高い色再現性を維持しつつ、表示画像の輝度低下を抑制することができる。 Therefore, the video display device 10 combines the first color space and the second color space in accordance with the video signal to suppress a decrease in luminance of the display image while maintaining high color reproducibility. be able to.
 また、本実施形態では、第1群のフィルタの各々は、第2群のフィルタの各々よりも広い通過帯域を有する。このため、映像表示装置10は、第1の色空間よりも広い第2の色空間を有することになるため、第1の色空間より広い色域の映像を再現することができる。 Further, in the present embodiment, each of the first group of filters has a wider pass band than each of the second group of filters. For this reason, since the video display apparatus 10 has a second color space wider than the first color space, an image having a color gamut wider than the first color space can be reproduced.
 また、本実施形態では、マトリックス回路42が、赤、青、緑の各色値を示す映像信号を、RGB空間からXYZ空間に変換し、マトリックス回路43が、その映像信号を、第1の色空間から当該第1の色空間よりも広い映像信号の第3の色空間に変換する。そして、マトリックス回路44が、その変換された映像信号をXYZ空間からRGB空間に変換し、リミット回路45が、その変換された映像信号の各色値が所定出力範囲を超えない場合には、映像信号に示される映像が第1の色空間内にあると検出する。 In the present embodiment, the matrix circuit 42 converts the video signal indicating each color value of red, blue, and green from the RGB space to the XYZ space, and the matrix circuit 43 converts the video signal into the first color space. To the third color space of the video signal wider than the first color space. Then, the matrix circuit 44 converts the converted video signal from the XYZ space to the RGB space, and if the limit circuit 45 does not exceed the predetermined output range of each color value of the converted video signal, the video signal Is detected as being in the first color space.
 このため、映像表示装置10は、赤、青、緑の各色値を示す映像信号が、第1の色空間内にあるか否かを検出することができる。 For this reason, the video display device 10 can detect whether or not the video signals indicating the respective color values of red, blue, and green are in the first color space.
 また、映像表示装置10では、第1群のフィルタの通過光により構成される光源と、第2群のフィルタの通過光により構成される光源と、について、光特性を示す色空間がそれぞれ測定され、その色空間に基づいて各光源に割り当てる色域が規定される。各光源の色域の境界は、各光源の個体差を考慮して規定され、その規定された色域に基づいて基本情報が生成される。映像表示装置10は、その基準情報を用いて光源の切替えを行うため、光源1から出射される光を、効率良く色特性に変換することができる。 Further, the video display device 10 measures the color space indicating the optical characteristics of the light source configured by the light passing through the first group of filters and the light source configured by the light passing through the second group of filters. The color gamut assigned to each light source is defined based on the color space. The boundary of the color gamut of each light source is defined in consideration of individual differences of each light source, and basic information is generated based on the defined color gamut. Since the video display device 10 switches the light source using the reference information, the light emitted from the light source 1 can be efficiently converted into color characteristics.
 また、一般的には、広い色空間の光源を用いて狭い色空間の映像信号を再現する場合には、色空間の補正量が大きくなり、輝度が低下してしまう。これに対し、映像表示装置10では、映像信号の第3の色空間cよりも狭い第1の色空間aによって、主に映像が再現される。このため、映像表示装置10は、色空間の補正に起因する輝度低下を低減することができる。 In general, when a video signal in a narrow color space is reproduced using a light source in a wide color space, the correction amount of the color space increases and the luminance decreases. On the other hand, in the video display device 10, video is mainly reproduced by the first color space a that is narrower than the third color space c of the video signal. For this reason, the video display apparatus 10 can reduce a decrease in luminance due to correction of the color space.
 また、本実施形態では、色空間を表現する光として、赤、緑、青の3色の原色光を用いる例について説明したが、シアン、マゼンダ、イエローの3色が用いられてもよく、4つの色が用いられてもよい。 In the present embodiment, an example in which three primary colors of red, green, and blue are used as light expressing the color space has been described, but three colors of cyan, magenta, and yellow may be used. Two colors may be used.
 なお、本実施形態は、xvYCC規格の表示システムに適用するようにしてもよい。この表示システムは、従来の映像信号と互換性があり、拡張された映像信号を検出した場合には拡大された色域で映像を表示し、従来の映像信号が入力された場合には従来の色域で映像を表示するシステムである。このシステムでは、映像信号の信号形式に基づいて基本領域と拡張領域とが検出されるため、本実施形態を適用する場合には、検出器4の構成を簡素化することができる。 Note that this embodiment may be applied to a display system of the xvYCC standard. This display system is compatible with a conventional video signal, displays an image in an expanded color gamut when an expanded video signal is detected, and displays a conventional video signal when a conventional video signal is input. This is a system that displays video in the color gamut. In this system, since the basic area and the extended area are detected based on the signal format of the video signal, the configuration of the detector 4 can be simplified when the present embodiment is applied.
 また、本実施形態では、カラーホイール2を用いて、色域の狭い色空間を有する光源と、色域の広い色空間を有する光源と、を切り換える例について説明したが、複数の光源に切換えが可能な固体光源などが用いられてもよい。 In this embodiment, the example in which the color wheel 2 is used to switch between a light source having a color space with a narrow color gamut and a light source having a color space with a wide color gamut has been described. However, switching to a plurality of light sources is possible. Possible solid light sources or the like may be used.
 切換え可能な固体光源が用いられる映像表示装置では、映像信号に拡張領域が含まれないときは、色域の狭い色空間の光源のみを使用し、1画像の表示期間の全期間を色域の狭い色空間の光源の使用時間に割り当てる。一方、映像信号に拡張領域が含まれるときは、色域の広い色空間の光源と、色域の狭い色空間の光源と、を使用し、色域の広い色空間の光源の使用時間と、色域の狭い色空間の光源の使用時間と、を一定の比率に設定する。なお、色域の広い色空間の光源と、色域の狭い色空間の光源と、のそれぞれの使用時間の比率を調整することによって、投射される映像の明るさを調整することができる。 In a video display device using a switchable solid-state light source, when the video signal does not include an extended area, only a light source with a color space with a narrow color gamut is used, and the entire display period of one image is Assign to the usage time of light source in narrow color space. On the other hand, when the extended area is included in the video signal, the light source of the color space with a wide color gamut and the light source of the color space with a narrow color gamut are used. The usage time of the light source in a color space with a narrow color gamut is set to a certain ratio. It should be noted that the brightness of the projected image can be adjusted by adjusting the ratio of the usage times of the light source in the color space with a wide color gamut and the light source in the color space with a narrow color gamut.
 また、カラーホイール2に代えて、高圧水銀ランプと固体光源とが用いられてもよい。この場合、高圧水銀ランプを、色域の狭い色空間の光源とし、固体光源を、色域の広い色空間の光源とする。また、RGBの各フィルタの通過帯域を広くしておき、他の1つのフィルタによって各色光の通過帯域を狭くすることによって光源が切り替えられてもよい。 Further, instead of the color wheel 2, a high-pressure mercury lamp and a solid light source may be used. In this case, the high-pressure mercury lamp is a light source in a color space with a narrow color gamut, and the solid light source is a light source in a color space with a wide color gamut. Alternatively, the light source may be switched by widening the pass band of each of the RGB filters and narrowing the pass band of each color light by another one filter.
 なお、本実施形態では、カラーホイールに2つの色空間を表現するための2つのフィルタ群が用いられる例について説明したが、3つ以上の色空間を表現するために3つ以上のフィルタ群が用いられてもよい。 In this embodiment, the example in which two filter groups for expressing two color spaces are used in the color wheel has been described. However, in order to express three or more color spaces, three or more filter groups are used. May be used.
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。 In each of the embodiments described above, the illustrated configuration is merely an example, and the present invention is not limited to the configuration.
 10 映像表示装置
 1 光源
 2 カラーホイール
 3 プロジェクションレンズ
 4 検出器
 5 信号インターフェース
 6 信号処理回路
 7 駆動回路
 8 映像表示デバイス
 9 同期回路
 21~26 フィルタ
 41r、41g、41b ガンマ逆補正部
 42~44、53、54 マトリックス回路
 45 リミット回路
 46r、46g、46b、56r、56g、56b ガンマ補正部
 47、57 データ生成部
DESCRIPTION OF SYMBOLS 10 Video display apparatus 1 Light source 2 Color wheel 3 Projection lens 4 Detector 5 Signal interface 6 Signal processing circuit 7 Drive circuit 8 Video display device 9 Synchronous circuit 21-26 Filter 41r, 41g, 41b Gamma reverse correction part 42-44, 53 , 54 Matrix circuit 45 Limit circuit 46r, 46g, 46b, 56r, 56g, 56b Gamma correction unit 47, 57 Data generation unit

Claims (6)

  1.  順次入射する複数の色光を映像信号に基づいて変調し映像として表示する光変調素子を有する映像表示装置であって、
     第1の色空間を表現するための複数の第1群の光をそれぞれ通過させる複数の第1群のフィルタと、前記第1の色空間よりも広い第2の色空間を表現するための複数の第2群の光をそれぞれ通過させる複数の第2群のフィルタと、を備え、前記第1群および第2群のフィルタの通過光を時分割で出射するカラーホイールと、
     前記映像信号に示される映像が前記第1の色空間内にあるか否かを検出する検出手段と、
     前記検出手段にて前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1群および第2群のフィルタの通過光を前記光変調素子に入射させ、前記検出手段にて前記映像信号に示される映像が前記第1の色空間内にないことが検出された場合には、前記第2群のフィルタの通過光を前記光変調素子に入射させる制御手段と、を含む映像表示装置。
    A video display device having a light modulation element that modulates a plurality of sequentially incident color lights based on a video signal and displays them as a video,
    A plurality of first group filters for respectively passing a plurality of first group lights for expressing the first color space, and a plurality for expressing a second color space wider than the first color space. A plurality of second group filters that respectively pass the second group of light, and a color wheel that emits light passing through the first group and second group filters in a time-sharing manner,
    Detecting means for detecting whether or not an image shown in the image signal is in the first color space;
    When the detection means detects that the image shown in the image signal is in the first color space, the light passing through the filters of the first group and the second group is transmitted to the light modulation element. When the detection means detects that the image shown in the image signal is not in the first color space, the light passing through the second group of filters is incident on the light modulation element. A video display device.
  2.  請求項1に記載の映像表示装置において、
     前記第1のフィルタ群は、第1ないし第3の原色光を通過させる第1ないし第3のフィルタにより構成され、
     前記第2のフィルタ群は、第4ないし第6の原色光を通過させる第4ないし第6のフィルタにより構成される、映像表示装置。
    The video display device according to claim 1,
    The first filter group includes first to third filters that pass the first to third primary color lights,
    The video display device, wherein the second filter group includes fourth to sixth filters that allow the fourth to sixth primary color lights to pass therethrough.
  3.  請求項1または2に記載の映像表示装置において、
     前記第1群のフィルタの各々は、前記第2群のフィルタの各々よりも広い通過帯域を有する、映像表示装置。
    The video display device according to claim 1 or 2,
    Each of the first group of filters has a wider pass band than each of the second group of filters.
  4.  請求項1から3のいずれか1項に記載の映像表示装置において、
     前記検出手段は、
     赤、青、緑の各色値を示す前記映像信号を、RGB空間からXYZ空間に変換する第1変換手段と、
     前記第1の色空間から前記映像信号の第3の色空間に変換するための変換情報を保持し、前記第1変換手段にて変換された映像信号を前記変換情報に基づいて変換する第2変換手段と、
     前記第2変換手段にて変換された映像信号を、XYZ空間からRGB空間に変換する第3変換手段と、
     前記第3変換手段にて変換された映像信号の各色値が所定出力範囲を超えるか否かを判断し、前記所定出力範囲を超えない場合には、前記映像信号が前記第1の色空間内にあると検出する判断手段と、を含み、
     前記光変調素子は、前記判断手段にて前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1群のフィルタの通過光を、前記第3変換手段にて変換された映像信号に基づいて変調する、映像表示装置。
    The video display device according to any one of claims 1 to 3,
    The detection means includes
    First conversion means for converting the video signal indicating each color value of red, blue, and green from RGB space to XYZ space;
    Second information for holding conversion information for converting from the first color space to the third color space of the video signal, and converting the video signal converted by the first conversion means based on the conversion information. Conversion means;
    Third conversion means for converting the video signal converted by the second conversion means from XYZ space to RGB space;
    It is determined whether or not each color value of the video signal converted by the third conversion means exceeds a predetermined output range. If the color value does not exceed the predetermined output range, the video signal is in the first color space. Determining means for detecting that
    When the determination unit detects that the image shown in the image signal is in the first color space, the light modulation element transmits the light passing through the first group of filters to the first group. 3. A video display device that performs modulation based on the video signal converted by the conversion means.
  5.  第1の色空間を表現するための複数の第1群の光をそれぞれ通過させる複数の第1群のフィルタと、前記第1の色空間よりも広い第2の色空間を表現するための複数の第2群の光をそれぞれ通過させる複数の第2群のフィルタと、を備えたカラーホイールと、順次入射する複数の色光を映像信号に基づいて変調し映像として表示する光変調素子と、を有する映像表示装置における映像表示方法であって、
     前記第1群および第2群のフィルタの通過光を時分割で出射し、
     前記映像信号に示される映像が前記第1の色空間内にあるか否かを検出し、
     前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1群および第2群のフィルタの通過光を前記光変調素子に入射させ、前記映像信号に示される映像が前記第1の色空間内にないことが検出された場合には、前記第2群のフィルタの通過光を前記光変調素子に入射させる、映像表示方法。
    A plurality of first group filters for respectively passing a plurality of first group lights for expressing the first color space, and a plurality for expressing a second color space wider than the first color space. A color wheel including a plurality of second group filters that respectively pass the second group of light, and a light modulation element that modulates a plurality of sequentially incident color lights based on a video signal and displays them as an image. A video display method in a video display device having:
    The light passing through the filters of the first group and the second group is emitted in a time division manner,
    Detecting whether the video indicated by the video signal is in the first color space;
    When it is detected that the video indicated by the video signal is in the first color space, the light passing through the filters of the first group and the second group is incident on the light modulation element, and the video An image display method in which, when it is detected that an image indicated by a signal is not in the first color space, light passing through the second group of filters is incident on the light modulation element.
  6.  請求項5に記載の映像表示方法において、
     前記映像表示装置は、第1ないし第3の原色光を通過させる第1ないし第3のフィルタにより構成される前記第1群のフィルタと、第4ないし第6の原色光を通過させる第4ないし第6のフィルタにより構成される前記第2群のフィルタと、を有し、
     前記第2群のフィルタの通過光を前記光変調素子に入射させることは、
     前記映像信号に示される映像が前記第1の色空間内にあることが検出された場合には、前記第1ないし第6のフィルタの通過光を前記光変調素子に入射させ、前記映像信号に示される映像が前記第1の色空間内にないことが検出された場合には、前記第4ないし第6のフィルタの通過光を前記光変調素子に入射させる、映像表示方法。
    The video display method according to claim 5,
    The video display device includes the first group of filters configured by the first to third filters that pass the first to third primary color lights, and the fourth to sixth primary color lights that pass. A second group of filters configured by a sixth filter,
    Making the light passing through the second group of filters incident on the light modulation element,
    When it is detected that the video shown in the video signal is in the first color space, the light passing through the first to sixth filters is incident on the light modulation element, and the video signal An image display method in which, when it is detected that an image to be displayed is not in the first color space, light passing through the fourth to sixth filters is incident on the light modulation element.
PCT/JP2010/053865 2010-03-09 2010-03-09 Image display device and image display method WO2011111162A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/053865 WO2011111162A1 (en) 2010-03-09 2010-03-09 Image display device and image display method
JP2012504188A JPWO2011111162A1 (en) 2010-03-09 2010-03-09 Video display device and video display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053865 WO2011111162A1 (en) 2010-03-09 2010-03-09 Image display device and image display method

Publications (1)

Publication Number Publication Date
WO2011111162A1 true WO2011111162A1 (en) 2011-09-15

Family

ID=44563008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053865 WO2011111162A1 (en) 2010-03-09 2010-03-09 Image display device and image display method

Country Status (2)

Country Link
JP (1) JPWO2011111162A1 (en)
WO (1) WO2011111162A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317528A (en) * 2003-02-27 2004-11-11 Matsushita Electric Ind Co Ltd Color wheel and color sequential display device using the same
JP2005265927A (en) * 2004-03-16 2005-09-29 Seiko Epson Corp Video display device
JP2007047766A (en) * 2005-07-11 2007-02-22 Casio Comput Co Ltd Projection display apparatus; control method and control program
JP2008026682A (en) * 2006-07-24 2008-02-07 Mitsubishi Electric Corp Color sequential image display method and device
JP2008058897A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Color sequential image display method and color sequential image display device
JP2009042744A (en) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd Illuminating unit and projection display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004317528A (en) * 2003-02-27 2004-11-11 Matsushita Electric Ind Co Ltd Color wheel and color sequential display device using the same
JP2005265927A (en) * 2004-03-16 2005-09-29 Seiko Epson Corp Video display device
JP2007047766A (en) * 2005-07-11 2007-02-22 Casio Comput Co Ltd Projection display apparatus; control method and control program
JP2008026682A (en) * 2006-07-24 2008-02-07 Mitsubishi Electric Corp Color sequential image display method and device
JP2008058897A (en) * 2006-09-04 2008-03-13 Mitsubishi Electric Corp Color sequential image display method and color sequential image display device
JP2009042744A (en) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd Illuminating unit and projection display device

Also Published As

Publication number Publication date
JPWO2011111162A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
US20190096361A1 (en) Multi-projector system, projector, method for adjusting image, and computer program product
KR100565810B1 (en) Color signal processing apparatus and method of using the same
RU2473943C2 (en) Multi-screen display
JP6212713B2 (en) Image projection apparatus and image projection method
JP2012505432A5 (en)
JP2006330070A (en) Multi-primary color display method and device
CZ2005402A3 (en) Method for processing color signal and apparatus usable with color reproducing device having wide color scale
JP5949754B2 (en) Multi-projection display and brightness adjustment method thereof
JP2005274689A5 (en)
US9621863B2 (en) Projector and light emission control method in the projector
US7477778B2 (en) Sequential color reproduction method
JP2012047827A (en) Image display device
US20120218283A1 (en) Method for Obtaining Brighter Images from an LED Projector
JP2012173669A (en) Multiple screen display device
JP2012003213A (en) Projection type display
JP2006270336A (en) Display device and display method
KR101978396B1 (en) Digital micro-mirror device control apparatus and projection display system
JP4089483B2 (en) Control of gradation characteristics of image signals representing images with mixed images of different characteristics
CN109327689B (en) Display apparatus and display method
WO2011111162A1 (en) Image display device and image display method
JP2004286963A (en) Projection display apparatus
JPH11174583A (en) Projector
JP5150183B2 (en) Projection display device
CN109324465B (en) Display apparatus and display method
JP2004286865A (en) Video display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10847394

Country of ref document: EP

Kind code of ref document: A1