WO2011111158A1 - Light source device and projection image display device - Google Patents

Light source device and projection image display device Download PDF

Info

Publication number
WO2011111158A1
WO2011111158A1 PCT/JP2010/053839 JP2010053839W WO2011111158A1 WO 2011111158 A1 WO2011111158 A1 WO 2011111158A1 JP 2010053839 W JP2010053839 W JP 2010053839W WO 2011111158 A1 WO2011111158 A1 WO 2011111158A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
laser light
rod integrator
light
emitted
Prior art date
Application number
PCT/JP2010/053839
Other languages
French (fr)
Japanese (ja)
Inventor
田中 健一
青木 雅博
創 大歳
田中 俊明
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2010/053839 priority Critical patent/WO2011111158A1/en
Publication of WO2011111158A1 publication Critical patent/WO2011111158A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to a light source device including a plurality of laser light sources and a projection-type image display device.
  • the light source device is a projection type image display device (hereinafter referred to as “projector”).
  • a light emitting device Light Emitting Diode: LED
  • a laser light source is used as the light source device, and a method of displaying an image by raster scanning (hereinafter referred to as “projector”) has attracted attention.
  • the projector uses a light source of RGB three primary colors (red, blue, and green), projects the light emitted from each light source on a screen and superimposes them, and modulates the emitted light to form a color display image. Therefore, the three-color light source for projectors displays white when the beam positions of all colors overlap on the screen.
  • Patent Document 1 discloses a light source device and a projection type image display device using such a laser light source.
  • Patent Document 1 a light emitting element 1 including wavelengths corresponding to three primary colors of red R, green G, and blue B is used as a light source, and emitted light from each RGB light emitting element 1 passes through a condenser lens system 3 to a rod integrator 4.
  • a structure is disclosed in which the emitted light from each light emitting element 1 is radially arranged starting from a point on the incident surface of the condensing lens system 3 rod integrator 4 so as to be incident on the incident surface (Patent Document). 1 paragraph number 0032).
  • the angle at which the emitted light (optical axis) from each light emitting element 1 enters the incident surface of the rod integrator is set to a maximum of 30 degrees (paragraph number 0037 in Patent Document 1). Further, it is described that the rod integrator 4 has a shape surrounded by four reflecting surfaces (paragraph number 0024 in Patent Document 1). Then, according to Embodiment 1 of Patent Document 1, it is possible to obtain an illumination light beam that is excellent in uniformity at the exit end face of the rod integrator 4 and has a shape substantially equal to a desired illumination area. (Patent Document 1, paragraph number 0041).
  • Patent Document 1 the irradiated beam spot diameter was large and the luminance was low. That is, high luminance light resolution could not be realized. This is considered to be caused by the low parallelism of the collimated light.
  • An object of the present invention is to improve the resolution of a light source device using a plurality of light emitting elements.
  • the present application includes a plurality of means that can achieve the above-mentioned object. If representative means are given, they are the means described in the claims.
  • the irradiation beam resolution of a light source device including a plurality of laser light sources can be improved.
  • FIG. 3 is a transmission configuration diagram of the light source device according to the first embodiment. It is a figure explaining that three lasers from the light source device of Example 1 enter into a rod integrator, and are irradiated to a screen as one beam light.
  • FIG. 5 is a diagram showing a simulation result for a beam irradiated on a screen 1.5 m away from the rod integrator 11.
  • FIG. 6 is a diagram showing a simulation result for a beam irradiated on a screen 2 m away from the rod integrator 11.
  • the light source device of Example 1 it is a figure which shows the result of having simulated the beam overlap condition of the RGB light source, when the emitted light from a rod integrator is irradiated on the screen 1.5m and 2.0m away.
  • FIG. 6 is a diagram defining parameters relating to a relative position between the rod integrator 11 and the B light source 103.
  • FIG. 6 is a diagram showing a parameter range related to the arrangement between the rod integrator 11 and the B light source 103.
  • FIG. 6 is a diagram showing a parameter range related to the arrangement between the rod integrator 11 and the B light source 103.
  • the light source wavelength is 650 nm and 450 nm
  • it is a diagram showing the relationship between the angle ⁇ of the light beam incident on the rod integrator and the position of the light beam emitted from the light source device (evaluated by the amount of deviation from the optical axis).
  • FIG. 10 is a transmission diagram of the light source device according to the eighth embodiment. 10 is a simplified cross-sectional view of a projection apparatus according to Embodiment 9. FIG. FIG. 11 is a simplified cross-sectional view of a projection apparatus according to Example 10.
  • FIG. 1 is a transmission configuration diagram of the light source device according to the first embodiment.
  • FIG. 2 (a) is a diagram for explaining that the light emitted from the light source device according to the first embodiment is irradiated on the screen as one beam light.
  • FIG. 2B is a diagram illustrating that three laser beams are incident on the rod integrator in the light source device according to the first embodiment.
  • the light source device 800 includes a red laser as the R light source 101, a green laser as the G light source 102, a blue laser as the B light source 103, a rod integrator 11, and lenses 12a, 12b, and 12c as optical elements.
  • these are used equivalently.
  • Each light source 101, 102, 103 is mounted on a pedestal on a pyramidal or pyramidal frustum-shaped can stem whose apex extends toward the vicinity of the center of the incident surface (upper bottom surface) of the rod integrator 11.
  • a triangular pyramid (pyramid type) is adopted.
  • the rod integrator 11 is fixed to the housing 30 by a support holder 11-5.
  • the lenses 12a, 12b, and 12c as optical elements are fixed to the housing 30 by a support holder.
  • a plurality of light beams emitted from the firing points (emission surfaces) of the RGB laser light sources 101, 102, and 103 are incident on the rod integrator 11 almost simultaneously.
  • the angles ⁇ R, ⁇ G, and ⁇ B formed with the central axis of the rod integrator 11 that is the central normal of 11-1 are all 23 °, and are incident on positions that are 0.09 mm away from the center of the rod integrator 11.
  • the light sources 101, 102, and 103 are arranged. These angles can be changed within a range described later.
  • the incident RGB three-color laser light repeatedly propagates multiple reflections in the rod integrator 11 and is emitted from the lower bottom surface of the rod integrator 11.
  • the light emitted from the rod integrator 11 being mixed in the rod integrator 11 not only becomes a beam having a wide light intensity half-value region, but also the directivity in the central axis direction of the rod integrator 11 is enhanced.
  • the emitted light from the rod integrator 11 becomes collimated light having a higher degree of parallelism by the lens 12a as an optical element, and then condensed by the lens 12b as an optical element, and then by the lens 12c as an optical element, The spot is converted again into collimated light (parallel light) having a small beam diameter, and is emitted to the outside.
  • the beam light emitted from the light source device 800 to the outside is irradiated onto the screen 40a as one beam spot.
  • the outgoing lights 101a, 102a, and 103a from the RGB light sources 101, 102, and 103 are applied to the upper bottom surface of the rod integrator 11 from the oblique direction inclined from the normal line of the incident surface.
  • Incident light not only makes the optical axes of the outgoing lights 101a, 102a, 103a of the RGB light sources 101, 102, 103 substantially coincide, but also outputs collimated light with high directivity in the outgoing direction and high parallelism. Therefore, strict optical axis adjustment using a conventional dichroic mirror is not required, and high-resolution beam irradiation with high brightness and a small beam spot diameter is possible.
  • 3 and 4 are diagrams showing the intensity distribution of the emitted light of each light source and the beam state (diameter) on the screen at the position where the central axis of the rod integrator 11 hits the screen in the light source device of the first embodiment. .
  • FIG. 3 is a simulation result for a beam irradiated on a screen 1.5 m away from the rod integrator 11 and FIG. 4 is 2 m away from the rod integrator 11.
  • each of the optical axes is distributed around a position where the central axis of the rod integrator 11 hits the screen 1.5 m away. That is, it can be seen that the maximum beam output intensity is on the optical axis, and the collimated light has a high degree of parallelism.
  • the emitted light 101a from the R (red) light source 101, the emitted light 102a from the G (green) light source 102, and the emitted light from the B (blue) light source 103 are output.
  • the width of each beam diameter at which the intensity value of each emitted light of the emitted light 103a becomes a half value is 1.8 mm, 1.5 mm, and 0.97 mm, respectively. From this result, when the light emitted from RGB light sources with different wavelengths is incident on the multiple axes at an angle with respect to the central axis of the top and bottom surfaces 11-1 of the rod integrator 11, all the light beams are 1.5m apart. Since the maximum intensity is obtained at the same position on the screen, the optical axes are substantially matched.
  • the screen of 2.0m away from the screen with the center axis of the rod integrator 11 being 2.0m away is the same as the case of the screen 1.5m away. It can be seen that the distribution is centered on the hit position.
  • the widths of the beam diameters at which the intensity values of the emitted lights of the emitted light 103a are half values are 0.74 mm, 0.61 mm, and 0.51 mm, respectively. From this result, when light from RGB light sources with different wavelengths is incident on the plurality of light sources at an angle with respect to the central axis of the upper bottom surface 11-1 of the rod integrator 11, the light beams are all 2.0m apart. From the above, it can be seen that the optical axes substantially coincide with each other because the optical axis has the maximum intensity at the center.
  • FIG. 5 is a diagram showing a result of simulating the beam overlapping state of the RGB light source when the light emitted from the rod integrator is irradiated onto a screen 1.5 m and 2.0 m away from the light source device of the first embodiment. It is.
  • the diameter of the region where the RGB three color beams overlap is 0.97 mm
  • the diameter of the region where the RGB color beams overlap is 0.51 mm. This is because the beam diameter is smaller than before and the luminance per unit area is considerably high.
  • Example 2 shows the allowable range of each parameter applied in Example 1.
  • FIG. 6 is a diagram defining parameters relating to the relative position between the rod integrator 11 and the B light source 103.
  • Reference numeral 60 denotes a beam light introduction portion in the rod integrator
  • reference numeral 61 denotes an intersection between the central axis of the rod integrator and the outgoing optical axis of the laser light source.
  • the rod integrator 11 is arranged in the + Z direction, and the light input surface which is the upper bottom surface 11-1 of the rod integrator 11 is parallel to the XY plane.
  • Vectors 103b and 103c indicate the projection of the vector 103a of the light emitted from the laser light source onto the YZ plane and the projection onto the XZ plane, respectively.
  • the projection vector 103c has an inclination of angle ⁇
  • the projection vector 100b has an inclination of angle ⁇ .
  • the angle ⁇ has the same value as the angle ⁇ of the first embodiment when the angle ⁇ is 0.
  • FIG. 7 and 8 are diagrams showing parameter ranges relating to the arrangement between the rod integrator 11 and the B light source 103.
  • FIG. 7 and 8 are diagrams showing parameter ranges relating to the arrangement between the rod integrator 11 and the B light source 103.
  • FIG. 7 shows the incident angles ⁇ and ⁇ between the B light source 103 and the rod integrator 11 of Example 2 and the deviation amount of the emitted light 103a from the central axis of the rod integrator 11.
  • FIGS. 7B and 7D show the angles ⁇ (see FIG. 7A) and ⁇ (see FIG. 7C) defined in FIG. 6 in the direction of the light emitted from the B light source, and the rod. The relationship of the maximum intensity position of the beam light emitted from the integrator 11 is shown.
  • FIG. 7 (b) shows the dependence of the position where the maximum intensity of the emitted light is the intensity (in the case where the optical axis is the origin on the origin) on the angle ⁇ (FIG. 7 (a)). Yes.
  • the absolute value of the angle ⁇ is 20 degrees to 27 degrees, the deviation of the center of the optical axis is within 0.1 mm, and the maximum intensity position of the emitted light is almost the central axis of the rod integrator 11, that is, the pixels that overlap each RGB light source It shows that it is in the center.
  • the optimum value (absolute value) is 21 to 25 degrees.
  • FIG. 7 (d) shows the dependence of the maximum intensity position of the emitted light on the angle ⁇ (FIG. 7 (c)) of the maximum intensity position of the emitted light (represented by the deviation from the origin position when the optical axis is the origin).
  • the angle ⁇ is between -2 degrees and +2 degrees, that is, within an absolute value of 2 degrees
  • the deviation variation of the optical axis center is within 0.1 mm
  • the maximum intensity position of the emitted light is approximately the center of the rod integrator 11
  • the axis that is, the pixel center where the RGB light sources overlap is shown.
  • the optimum value is 0 degrees.
  • FIG. 8 (b) and 8 (d) show the distances x (see FIG. 8 (a)) and y (see FIG. 8 (c)) defined in FIG. 6 and the rod integrator 11 in the direction of the light emitted from the light source.
  • emitted from is shown.
  • FIG. 8 (b) shows the dependence of the maximum intensity position of the emitted light (in the case where the optical axis is the origin, the amount of deviation from the origin position) on the distance x (see FIG. 8 (a)).
  • the distance x shown in FIG. 8 (a) is in the range of -0.075mm to -0.085mm in order to make the deviation from the optical axis center within 0.1mm. Recognize.
  • the optimum value is -0.08mm. That is, it can be seen that the maximum intensity position of the emitted light is preferably slightly shifted from the central axis of the rod integrator 11.
  • FIG. 8 (d) shows the dependence of the maximum intensity position of the emitted light on the distance y (see FIG. 8 (c)) of the maximum intensity position of the emitted light (represented by the amount of deviation from the origin position when the optical axis is the origin).
  • FIG. 8D shows that when the distance y shown in FIG. 8C is 0 mm, that is, the origin, the maximum intensity position of the emitted light is on the optical axis.
  • FIG. 8 (b) shows that the light beam emitted from the rod integrator is set as the optical axis by arranging the light source at the optimum position even when the emission end face of the input light to the rod integrator is not at the center of the optical axis. It shows that they can be matched.
  • FIG. 9 shows the relationship between the angle ⁇ of the beam light incident on the rod integrator and the position of the beam light emitted from the light source device (evaluated by the amount of deviation from the optical axis) when the light source wavelengths are 650 nm and 450 nm. Yes.
  • the deviation from the optical axis is within 0.1 when ⁇ 22 degrees ⁇ ⁇ ⁇ ⁇ 25.5 degrees, and ⁇ 22.5 degrees ⁇ ⁇ ⁇ ⁇ 25 degrees. If there is, it can be almost zero.
  • a mounting space must be secured. That is, it is preferable that the absolute value of ⁇ is smaller. Therefore, when the light source wavelength is 650 nm,
  • 22.5 degrees is the optimum angle for mounting.
  • the light source device emits light from each wavelength light source. It can be seen that ⁇ R> ⁇ G> ⁇ B is established when ⁇ R, ⁇ G, and ⁇ B are angles formed by the direction of the light beam and the optical axis.
  • FIG. 10 roughly shows the outline of three types of rod integrator shapes classified into type I, type II, and type III.
  • Type I shown in FIG. 10 is a rod integrator 11 comprising a taper type 11a in which the cross-sectional area of the lower bottom surface 11-2 that is the light exit surface is larger than the cross-sectional area of the upper bottom surface 11-1 that is the light incident surface. 11 is shown.
  • a straight type 11b is connected to an incident surface of a type I rod integrator (taper type 11a).
  • a straight type 11c is connected to the exit surface of a type II rod integrator (taper type 11a).
  • taper type 11a type II rod integrator
  • Types I to III has a truncated cone shape, and that the end surface on the upper bottom surface 11-1 side is the entrance surface and the end surface on the lower bottom surface 11-2 side is the exit surface. It is.
  • FIG. 11 shows the direction of the beam light emitted from the light source prepared for input to the rod integrator and the size of the upper bottom surface 11-1 that is the light introducing surface of the rod integrator at that time in the light source device according to the fifth embodiment. It is a figure explaining the relationship.
  • the light beam is a light beam having a specific spread angle.
  • a light beam 100b having a divergence angle from a light source is an angle ⁇ and a direction from an emission position 100 (a distance s from the optical axis, a distance t from the upper bottom surface 11-1 that is the input surface of the rod integrator). Released at 100a. Further, at this time, the light beam 100b is a laser beam having a spread angle ⁇ .
  • FIG. 12A is a schematic diagram showing the mounting form of a plurality of light sources
  • FIG. 12B is a schematic diagram showing the mounting form of the laser light source
  • FIG. 12C is a diagram of the laser light source and the collimating lens holder. A schematic diagram showing the implementation is shown.
  • FIG. 12A shows a diagram in which a stage having a pyramid shape of laser light sources 101 (red), 102 (green), and 103 (blue) of RGB three primary colors is mounted on a can stem.
  • FIG. 12B is a schematic diagram showing a form in which the laser light source 200 is mounted on the laser light source mounting submount substrate 201.
  • FIG. 12C is a schematic diagram showing a form in which the laser light source mounting submount substrate 201 and the lens component 203 for collimating and condensing the light emitted from the laser light source 200 are mounted on the laser mounting mount substrate 202.
  • FIG. 13 (a) is a schematic view showing a mounting form of a plurality of light sources
  • FIG. 13 (b) is a schematic view showing a mounting form of a wavelength conversion laser composed of a fundamental laser light source and a wavelength conversion element. .
  • the laser light sources 101 (red), 102 (green), and 103 (blue) of RGB three primary colors are mounted on a stage on a cantem that has a pyramid shape.
  • the introduction angle ⁇ of the laser beam to the rod integrator can be controlled by the tilt angle of the stage, so that adjustment becomes easy.
  • FIG. 13B is a schematic diagram showing a mounting form of the laser light source 102 (green).
  • the wavelength conversion element 206 uses a nonlinear crystal
  • the laser light source 200 uses the laser light source 102 that emits infrared light having a wavelength of 1060 nm
  • wavelength conversion is performed by the wavelength conversion element 206, so that green light having a wavelength of 530 nm is emitted. Emitted.
  • the above-described stage and can stem can be applied to four or more laser light sources.
  • FIG. 14 shows a transmission diagram of the light source device of Example 8.
  • the rod integrator 11 and the lenses 12a, 12b, and 12c are in the transmission type housing (can stem) 30a, and the pyramid stage 40 is on the housing 30a. 50 is retained and built-in.
  • a predetermined angle with respect to the incident surface of the rod integrator 11 can be obtained by simply mounting the edge emitting laser on a plane. This makes it easy to mount a laser light source incident on.
  • rod integrator 11 that emits the beam light serving as the collimated light is any one of the seventh embodiment.
  • FIG. 15 is a simplified cross-sectional view of the projection apparatus according to the ninth embodiment.
  • the projection apparatus 900 of this embodiment includes a light source device 800, a beam scanning unit 901, and a housing with an extraction port 902.
  • the collimated beam light emitted from the light source device 800 is raster scanned by the beam scanning unit 901 and projected from the extraction port 902.
  • the beam scanning unit 901 uses a raster scan type method using a MEMS (Micro Electro Mechanical Systems) mirror.
  • the light source constituting the light source device 800 is a laser light source that irradiates ultraviolet light having a wavelength near 250 nm
  • the collimated beam light emitted from the light source device 800 is subjected to raster scanning in the beam scanning unit 901.
  • a sterilization apparatus that can sterilize adherent bacteria in a desired region (such as a wall) as in a bioclean room can be realized.
  • FIG. 16 is a simplified cross-sectional view of the projection apparatus according to the tenth embodiment.
  • the projection apparatus includes a light source device 800, a spatial modulator 903, and a beam magnifying lens 904.
  • Example 1 is used as the light source device 800, in application, the refractive indexes of the lenses 12a, 12b, and 12c of the light source device 800 are adjusted so that the beam light emitted from the light source gradually becomes a beam light that expands. It is.
  • Spatial modulator 903 is composed of a liquid crystal display module.
  • the RGB primary color laser light emitted from the light source that constitutes the light source device 800 can realize a color image projection device that projects an image in color display on the screen 909 by the spatial modulator 903 and the beam magnifying lens 904. .
  • the light source constituting the light source device 800 is a laser light source that emits ultraviolet light having a wavelength of about 250 nm
  • the collimated beam light emitted from the light source device 800 is modulated by the spatial modulator 903.
  • a sterilization apparatus that can sterilize adherent bacteria in a desired region (such as a wall) with a predetermined strength, such as a bioclean room, can be realized.
  • the plurality of laser light sources used in Examples 1 to 7 are laser light sources having the same wavelength. With this configuration, one beam light that is overlapped and mixed can be changed from low output power to high output power by the tapered rod integrator.
  • the laser light source used in the above embodiments is either a semiconductor laser that oscillates in a single mode, a wavelength conversion laser light source that consists of a nonlinear crystal as a wavelength conversion element, or a semiconductor laser light source that oscillates in a single mode.
  • optical element used in this specification refers to an element that gives some optical action (for example, reflection, transmission, refraction, diffraction, etc.) to incident light, such as a lens or a diffraction grating. It is a concept that includes
  • the rod integrator includes any of an optical fiber, a liquid fiber, a light guide plate, a light tunnel, and a light pipe.
  • R light source 101 from R light source 101 , 102a: emitted light from the G light source 102, 103a: emitted light from the B light source 103, 11-1: upper bottom surface of the rod integrator 11, 11-2: lower bottom surface of the rod integrator 11, 40a: screen, 60: Beam light introduction point in the rod integrator, 61: Intersection of the central axis of the rod integrator and the output optical axis of the laser light source, 11a: Tapered type, 11b: Straight type, 11c: Straight type, 100b: Beam light, 100 ... Emission position, s ... Distance from optical axis, t ... Distance from rod integrator input port, ⁇ ... Angle, 100a ... Direction, ⁇ ... Angle, 200 ...
  • Laser light source 201 ... Laser light source mounted submount substrate, 202 ... Laser light source mounting, 203 ... Laser light source Lens components for collimating and condensing 00 output light, 204... Lens components for collimating and condensing output light of the laser light source 200, 205.
  • Collimating and condensing output light of the laser light source 200 Lens parts, 206 ... wavelength conversion element, 30a ... housing (can stem), 40 ... stage, 900 ... projection device, 901 ... beam scanning section, 902 ... take-out port, 909 ... screen, 903 ... spatial modulator, 904 ... beam Magnifying lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

Disclosed is a light source device which is provided with a plurality of laser light sources and has improved beam resolution. The light source device is provided with the plurality of laser light sources, and a conical trapezoidal rod integrator which is disposed such that the upper bottom surface is formed as a light incoming surface from which light emitted from the laser light sources enters and the lower bottom surface is formed as a light outgoing surface. The laser light sources are disposed such that the optical axes of the outgoing light, which is emitted from the laser light sources and enters the incoming surface of the rod integrator, form an angle (θ), i.e., an acute angle, with respect to the center axis of the rod integrator.

Description

光源装置及び投射型画像表示装置Light source device and projection type image display device
 本発明は、レーザ光源を複数備えた光源装置及び投射型画像表示装置に関する。 The present invention relates to a light source device including a plurality of laser light sources and a projection-type image display device.
従来技術Conventional technology
 光源装置の主用途の一つとして、投射型画像表示装置(以下、「プロジェクタ」という)がある。近年、この光源装置として発光素子(Light Emitting Diode:LED)やレーザ光源を用い、ラスタースキャンして画像を表示する方式 (以下、「プロジェクタ」という)が注目されている。プロジェクタは、RGB3原色(赤、青、緑)の光源を用い、各光源から出射される光をスクリーンに投写して重ね合わせ、出射光を変調することによりカラー表示画像を形成する。したがって、プロジェクタ用の3色光源においては、スクリーン上で全ての色のビーム位置が重なり合った場合に、白色表示する。 One of the main uses of the light source device is a projection type image display device (hereinafter referred to as “projector”). In recent years, a light emitting device (Light Emitting Diode: LED) or a laser light source is used as the light source device, and a method of displaying an image by raster scanning (hereinafter referred to as “projector”) has attracted attention. The projector uses a light source of RGB three primary colors (red, blue, and green), projects the light emitted from each light source on a screen and superimposes them, and modulates the emitted light to form a color display image. Therefore, the three-color light source for projectors displays white when the beam positions of all colors overlap on the screen.
 このようなレーザ光源を用いた光源装置や投射型画像表示装置が特許文献1に開示されている。 Patent Document 1 discloses a light source device and a projection type image display device using such a laser light source.
 特許文献1は、赤R、緑G、青Bの3原色に相当する波長を含む発光素子1を光源とし、各RGB発光素子1からの出射光が集光レンズ系3を介してロッドインテグレータ4の入射面に入射するように、各発光素子1からの出射光が集光レンズ系3ロッドインテグレータ4の入射面上の点を起点として放射状に配置されている構造が開示されている(特許文献1段落番号0032)。各発光素子1からの出射光(光軸)がロッドインテグレータの入射面に入射する角度を最大30度として設定することが記載されている(特許文献1段落番号0037)。さらに、このロッドインテグレータ4は、4面の反射面で囲まれた形状とすることが記載されている(特許文献1段落番号0024)。そして、特許文献1の実施の形態1によれば、「ロッドインテグレータ4の射出端面では均一性に優れ、かつ所望の照明領域とほぼ等しい形状の照明光束を得ることが可能となる。」と記載されている(特許文献1段落番号0041)。 In Patent Document 1, a light emitting element 1 including wavelengths corresponding to three primary colors of red R, green G, and blue B is used as a light source, and emitted light from each RGB light emitting element 1 passes through a condenser lens system 3 to a rod integrator 4. A structure is disclosed in which the emitted light from each light emitting element 1 is radially arranged starting from a point on the incident surface of the condensing lens system 3 rod integrator 4 so as to be incident on the incident surface (Patent Document). 1 paragraph number 0032). It is described that the angle at which the emitted light (optical axis) from each light emitting element 1 enters the incident surface of the rod integrator is set to a maximum of 30 degrees (paragraph number 0037 in Patent Document 1). Further, it is described that the rod integrator 4 has a shape surrounded by four reflecting surfaces (paragraph number 0024 in Patent Document 1). Then, according to Embodiment 1 of Patent Document 1, it is possible to obtain an illumination light beam that is excellent in uniformity at the exit end face of the rod integrator 4 and has a shape substantially equal to a desired illumination area. (Patent Document 1, paragraph number 0041).
特開2007-114603号公報Japanese Unexamined Patent Publication No. 2007-114603
 特許文献1では、照射したビームスポット径が大きく、輝度が低かった。つまり、高輝度光解像が実現できていなかった。これは、コリメート光の平行度が低いことが原因であると考える。 In Patent Document 1, the irradiated beam spot diameter was large and the luminance was low. That is, high luminance light resolution could not be realized. This is considered to be caused by the low parallelism of the collimated light.
 本発明の目的は、複数の発光素子を用いた光源装置の解像度を改善することにある。 An object of the present invention is to improve the resolution of a light source device using a plurality of light emitting elements.
 本願は、上記目的を達成することができる複数の手段を含むものである。代表的な手段を挙げるならば、請求の範囲に記載した手段となる。 The present application includes a plurality of means that can achieve the above-mentioned object. If representative means are given, they are the means described in the claims.
 本発明によれば、複数のレーザ光源を備えた光源装置の照射ビーム解像度を向上することができる。 According to the present invention, the irradiation beam resolution of a light source device including a plurality of laser light sources can be improved.
実施例1の光源装置の透過構成図である。FIG. 3 is a transmission configuration diagram of the light source device according to the first embodiment. 実施例1の光源装置からの3つのレーザがロッドインテグレータに入射され、スクリーンに1つのビーム光として照射されることを説明する図である。It is a figure explaining that three lasers from the light source device of Example 1 enter into a rod integrator, and are irradiated to a screen as one beam light. ロッドインテグレータ11から1.5m離れたスクリーン上に照射されたビームに対するシミュレーション結果を示す図である。FIG. 5 is a diagram showing a simulation result for a beam irradiated on a screen 1.5 m away from the rod integrator 11. ロッドインテグレータ11から2m離れたスクリーン上に照射されたビームに対するシミュレーション結果を示す図である。FIG. 6 is a diagram showing a simulation result for a beam irradiated on a screen 2 m away from the rod integrator 11. 実施例1の光源装置において、ロッドインテグレータからの出射光が1.5m、および2.0m離れたスクリーン上に照射される場合に、RGB光源のビーム重なり具合を、シミュレーションした結果を示す図である。In the light source device of Example 1, it is a figure which shows the result of having simulated the beam overlap condition of the RGB light source, when the emitted light from a rod integrator is irradiated on the screen 1.5m and 2.0m away. ロッドインテグレータ11とB光源103との間の相対的な位置に関するパラメータを規定した図である。FIG. 6 is a diagram defining parameters relating to a relative position between the rod integrator 11 and the B light source 103. ロッドインテグレータ11とB光源103との間の配置に関するパラメータ範囲を示す図である。FIG. 6 is a diagram showing a parameter range related to the arrangement between the rod integrator 11 and the B light source 103. ロッドインテグレータ11とB光源103との間の配置に関するパラメータ範囲を示す図である。FIG. 6 is a diagram showing a parameter range related to the arrangement between the rod integrator 11 and the B light source 103. 光源波長が650nmと450nmの場合、ロッドインテグレータへ入射するビーム光の角度αと光源装置から出射されるビーム光の位置(光軸からのズレ量にて評価)の関係を示す図である。When the light source wavelength is 650 nm and 450 nm, it is a diagram showing the relationship between the angle α of the light beam incident on the rod integrator and the position of the light beam emitted from the light source device (evaluated by the amount of deviation from the optical axis). 大別して、タイプI、タイプII、タイプIIIに分類した3種類のロッドインテグレータ形状の概要を示す図である。It is a figure which shows the outline of three types of rod integrator shapes classified roughly into type I, type II, and type III. 実施例5に係る光源装置における光源位置とロッドインテグレータの光導入面である上底面11-1のサイズとの関係について説明する図である。It is a figure explaining the relationship between the light source position in the light source device which concerns on Example 5, and the size of the upper bottom face 11-1 which is the light introduction surface of a rod integrator. 実施例6に係る光源装置における複数の光源の実装形態および手段について説明する図である。It is a figure explaining the mounting form and means of the several light source in the light source device which concerns on Example 6. FIG. 実施例7に係る光源装置における複数の光源の実装形態および手段について説明する図である。It is a figure explaining the mounting form and means of the some light source in the light source device which concerns on Example 7. FIG. 実施例8の光源装置の透過図である。FIG. 10 is a transmission diagram of the light source device according to the eighth embodiment. 実施例9の投写装置の簡易断面図である。10 is a simplified cross-sectional view of a projection apparatus according to Embodiment 9. FIG. 実施例10の投写装置の簡易断面図である。FIG. 11 is a simplified cross-sectional view of a projection apparatus according to Example 10.
 以下、諸々の実施形態の構成及び作用について、図面を参照して具体的に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。 Hereinafter, the configuration and operation of various embodiments will be specifically described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.
 まず、図1を参照して、本発明の一実施の形態に係る光源装置の構成について説明する。 First, the configuration of a light source device according to an embodiment of the present invention will be described with reference to FIG.
 図1は、実施例1の光源装置の透過構成図である。 FIG. 1 is a transmission configuration diagram of the light source device according to the first embodiment.
 図2(a)は、実施例1の光源装置からの出射光がスクリーンに1つのビーム光として照射されることを説明する図である。図2(b)は、実施例1の光源装置において、ロッドインテグレータに3つのレーザ光が入射されることを説明する図である。 FIG. 2 (a) is a diagram for explaining that the light emitted from the light source device according to the first embodiment is irradiated on the screen as one beam light. FIG. 2B is a diagram illustrating that three laser beams are incident on the rod integrator in the light source device according to the first embodiment.
 光源装置800は、R光源101である赤色レーザ、G光源102である緑色レーザ、B光源103である青色レーザ、ロッドインテグレータ11、光学要素としてのレンズ12a、12b、12cから構成されている。 The light source device 800 includes a red laser as the R light source 101, a green laser as the G light source 102, a blue laser as the B light source 103, a rod integrator 11, and lenses 12a, 12b, and 12c as optical elements.
 ロッドインテグレータ11は、例えば第1の半径R1=0.15mmを有する円形の上底面と第2の半径R2=0.5mm(>R1)を有する円形の下底面を有する円錐台の形状をしている。従って、上底面と下底面とが平行で、同じ中心点を通る中心軸を有し、中心軸に沿って上底面から下底面に向かって所定角度で一様に、又は湾曲して広がるテーパ側面を備えている。出射光の光軸は、この中心軸と一致する。以後、これらを等価的に用いる。 The rod integrator 11 has, for example, a truncated cone shape having a circular upper surface having a first radius R1 = 0.15 mm and a circular lower surface having a second radius R2 = 0.5 mm (> R1). Therefore, the upper bottom surface and the lower bottom surface are parallel and have a central axis passing through the same center point, and the tapered side surface spreads uniformly or curved at a predetermined angle from the upper bottom surface to the lower bottom surface along the central axis. It has. The optical axis of the emitted light coincides with this central axis. Hereinafter, these are used equivalently.
 各光源101,102,103は、ロッドインテグレータ11の入射面(上底面)の中心近傍に向かって頂点が伸びる方錐形状又は方錐台形状のキャンステム上の台座に搭載されている。本実施例では三角錐体(ピラミッド型)を採用している。ロッドインテグレータ11は、支持ホルダー11-5により筐体30に固定されている。光学要素としてのレンズ12a、12b、12cも同様に、支持ホルダーにより筐体30に固定されている。 Each light source 101, 102, 103 is mounted on a pedestal on a pyramidal or pyramidal frustum-shaped can stem whose apex extends toward the vicinity of the center of the incident surface (upper bottom surface) of the rod integrator 11. In this embodiment, a triangular pyramid (pyramid type) is adopted. The rod integrator 11 is fixed to the housing 30 by a support holder 11-5. Similarly, the lenses 12a, 12b, and 12c as optical elements are fixed to the housing 30 by a support holder.
 図1及び図2(a)に示すとおり、RGBの各レーザ光源101,102,103の発火点(出射面)から出射された複数のビーム光は、ほぼ同時にロッドインテグレータ11に入射される。 As shown in FIGS. 1 and 2A, a plurality of light beams emitted from the firing points (emission surfaces) of the RGB laser light sources 101, 102, and 103 are incident on the rod integrator 11 almost simultaneously.
 図2(b)に示すように、図1のR光源101からの出射光101a、G光源102からの出射光102a及びB光源103からの出射光103aの各光軸とロッドインテグレータ11の上底面11-1の中心法線であるロッドインテグレータ11の中心軸とのなす角度θR、θG、θBが全て23°となるように、そして、ロッドインテグレータ11の中心から0.09mmずれた位置にそれぞれ入射するように光源101、102、103が配置されている。なお、これらの角度は後述する範囲で変更可能である。 As shown in FIG. 2B, the optical axes of the emitted light 101a from the R light source 101, the emitted light 102a from the G light source 102, and the emitted light 103a from the B light source 103 in FIG. The angles θR, θG, and θB formed with the central axis of the rod integrator 11 that is the central normal of 11-1 are all 23 °, and are incident on positions that are 0.09 mm away from the center of the rod integrator 11. Thus, the light sources 101, 102, and 103 are arranged. These angles can be changed within a range described later.
 入射されたRGB3色のレーザ光は、ロッドインテグレータ11において、各々多重反射を繰り返し伝播し、ロッドインテグレータ11の下底面から出射する。 The incident RGB three-color laser light repeatedly propagates multiple reflections in the rod integrator 11 and is emitted from the lower bottom surface of the rod integrator 11.
 ロッドインテグレータ11から出射された光は、ロッドインテグレータ11において混じり合わされた結果として、光強度半値領域が広いビームになるだけでなく、ロッドインテグレータ11の中心軸方向への指向性が強められる。その後、ロッドインテグレータ11からの出射光は、光学要素としてのレンズ12aによりさらに平行度の高いコリメート光となり、その後、光学要素としてのレンズ12bにより集光された後、光学要素としてのレンズ12cにより、再度ビーム径の小さいコリメート光(平行光)にスポット変換され、外部に出射する。 As a result of the light emitted from the rod integrator 11 being mixed in the rod integrator 11, not only becomes a beam having a wide light intensity half-value region, but also the directivity in the central axis direction of the rod integrator 11 is enhanced. After that, the emitted light from the rod integrator 11 becomes collimated light having a higher degree of parallelism by the lens 12a as an optical element, and then condensed by the lens 12b as an optical element, and then by the lens 12c as an optical element, The spot is converted again into collimated light (parallel light) having a small beam diameter, and is emitted to the outside.
 そして、図2(a)に示すように、光源装置800から外部に出射されたビーム光がスクリーン40aに1つのビームスポットとして照射される。 Then, as shown in FIG. 2 (a), the beam light emitted from the light source device 800 to the outside is irradiated onto the screen 40a as one beam spot.
 このように、実施例1の光源装置は、RGB光源101、102、103からのそれぞれの出射光101a、102a、103aを、入射面の法線から傾いた斜め方向からロッドインテグレータ11の上底面に入射することにより、各RGB光源101、102、103の出射光101a、102a、103aの光軸をほぼ一致させるだけでなく、出射方向への指向性が強い、平行度の高いコリメート光として出力できているので、従来方式のダイクロイックミラーを用いた厳密な光軸調整を必要とせず、高輝度でビームスポット径の小さな高解像度なビーム照射が可能となる。 As described above, in the light source device of the first embodiment, the outgoing lights 101a, 102a, and 103a from the RGB light sources 101, 102, and 103 are applied to the upper bottom surface of the rod integrator 11 from the oblique direction inclined from the normal line of the incident surface. Incident light not only makes the optical axes of the outgoing lights 101a, 102a, 103a of the RGB light sources 101, 102, 103 substantially coincide, but also outputs collimated light with high directivity in the outgoing direction and high parallelism. Therefore, strict optical axis adjustment using a conventional dichroic mirror is not required, and high-resolution beam irradiation with high brightness and a small beam spot diameter is possible.
 次に、本実施例1の光源装置の特性を定量的に説明する。 Next, the characteristics of the light source device of the first embodiment will be described quantitatively.
 図3及び図4は、実施例1の光源装置において、ロッドインテグレータ11の中心軸がスクリーンに当たる位置における各光源の出射光の強度分布と、スクリーン上でのビーム状態(径)を示す図である。 3 and 4 are diagrams showing the intensity distribution of the emitted light of each light source and the beam state (diameter) on the screen at the position where the central axis of the rod integrator 11 hits the screen in the light source device of the first embodiment. .
 図3はロッドインテグレータ11から1.5m、図4はロッドインテグレータ11から2m離れたスクリーン上に照射されたビームに対するシミュレーション結果である。 3 is a simulation result for a beam irradiated on a screen 1.5 m away from the rod integrator 11 and FIG. 4 is 2 m away from the rod integrator 11.
 図3(a)(c)(e)に示すとおり、赤色(R)光源101からの出射光101a、緑色(G)光源102からの出射光102a及び青色(B)光源103からの出射光103aの各光軸は、ロッドインテグレータ11の中心軸が1.5m離れたスクリーン上当たる位置を中心に分布していることがわかる。つまり、ビーム出力強度最大は光軸にあり、高い平行度のコリメート光になっていることがわかる。そして、図3(b)(d)(f)に示すとおり、R(赤色)光源101からの出射光101a、G(緑色)光源102からの出射光102a及びB(青色)光源103からの出射光103aの各出射光の強度値が半値となる各ビーム径の幅はそれぞれ、1.8mm、1.5mm、0.97mmとなっている。この結果から、複数の光源を波長の異なるRGB光源からの各出射光をロッドインテグレータ11の上底面11-1の中心軸に対して傾けて入射させた場合、それぞれのビーム光は全て1.5m離れたスクリーン上で同じ位置で最大強度をもつことから光軸が実質的に一致していることがわかる。 As shown in FIGS. 3A, 3C and 3E, the emitted light 101a from the red (R) light source 101, the emitted light 102a from the green (G) light source 102, and the emitted light 103a from the blue (B) light source 103 are shown. It can be seen that each of the optical axes is distributed around a position where the central axis of the rod integrator 11 hits the screen 1.5 m away. That is, it can be seen that the maximum beam output intensity is on the optical axis, and the collimated light has a high degree of parallelism. 3 (b), (d), and (f), the emitted light 101a from the R (red) light source 101, the emitted light 102a from the G (green) light source 102, and the emitted light from the B (blue) light source 103 are output. The width of each beam diameter at which the intensity value of each emitted light of the emitted light 103a becomes a half value is 1.8 mm, 1.5 mm, and 0.97 mm, respectively. From this result, when the light emitted from RGB light sources with different wavelengths is incident on the multiple axes at an angle with respect to the central axis of the top and bottom surfaces 11-1 of the rod integrator 11, all the light beams are 1.5m apart. Since the maximum intensity is obtained at the same position on the screen, the optical axes are substantially matched.
 2.0m離れたスクリーンの場合も、図4(a)、(c)、(e)に示すとおり、1.5m離れたスクリーンの場合と同様に、ロッドインテグレータ11の中心軸が2.0m離れたスクリーン上当たる位置を中心に分布していることがわかる。 As shown in FIGS. 4 (a), 4 (c), and 4 (e), the screen of 2.0m away from the screen with the center axis of the rod integrator 11 being 2.0m away is the same as the case of the screen 1.5m away. It can be seen that the distribution is centered on the hit position.
 そして、図4(b)(d)(f)に示すとおり、赤色(R)光源101からの出射光101a、緑色(G)光源102からの出射光102a及び青色(B)光源103からの出射光103aの各出射光の強度値が半値となるビーム径の幅はそれぞれ、0.74mm、0.61mm、0.51mmとなっている。この結果から、複数の光源を波長の異なるRGB光源からの光をロッドインテグレータ11の上底面11-1の中心軸に対して傾けて入射させた場合、それぞれのビーム光は全て2.0m離れたスクリーン上で光軸中心に最大強度をもつことから光軸が実質的に一致していることがわかる。 4 (b) (d) (f), the emitted light 101a from the red (R) light source 101, the emitted light 102a from the green (G) light source 102, and the emitted light from the blue (B) light source 103, respectively. The widths of the beam diameters at which the intensity values of the emitted lights of the emitted light 103a are half values are 0.74 mm, 0.61 mm, and 0.51 mm, respectively. From this result, when light from RGB light sources with different wavelengths is incident on the plurality of light sources at an angle with respect to the central axis of the upper bottom surface 11-1 of the rod integrator 11, the light beams are all 2.0m apart. From the above, it can be seen that the optical axes substantially coincide with each other because the optical axis has the maximum intensity at the center.
 図5は、実施例1の光源装置において、ロッドインテグレータからの出射光が1.5m、および2.0m離れたスクリーン上に照射される場合に、RGB光源のビーム重なり具合を、シミュレーションした結果を示す図である。 FIG. 5 is a diagram showing a result of simulating the beam overlapping state of the RGB light source when the light emitted from the rod integrator is irradiated onto a screen 1.5 m and 2.0 m away from the light source device of the first embodiment. It is.
 1.5m離れたスクリーンの場合RGB3色のビームが重なる領域の直径は0.97mm、2.0m離れたスクリーンの場合RGB色のビームが重なる領域の直径は0.51mmとなっている。これは、従来よりもビーム径が小さく、単位面積当たりの輝度もかなり高くなっている。 In the case of a screen 1.5 m away, the diameter of the region where the RGB three color beams overlap is 0.97 mm, and in the case of the screen 2.0 m away, the diameter of the region where the RGB color beams overlap is 0.51 mm. This is because the beam diameter is smaller than before and the luminance per unit area is considerably high.
 実施例1で適用した各パラメータの許容範囲を示すのが実施例2である。 Example 2 shows the allowable range of each parameter applied in Example 1.
 図6は、ロッドインテグレータ11とB光源103との間の相対的な位置に関するパラメータを規定した図である。符号60は、ロッドインテグレータにおけるビーム光導入箇所、符号61は、ロッドインテグレータの中心軸とレーザ光源との出射光軸との交点を示している。 FIG. 6 is a diagram defining parameters relating to the relative position between the rod integrator 11 and the B light source 103. Reference numeral 60 denotes a beam light introduction portion in the rod integrator, and reference numeral 61 denotes an intersection between the central axis of the rod integrator and the outgoing optical axis of the laser light source.
 図6に示すとおり、ロッドインテグレータ11は+Z方向に配置され、ロッドインテグレータ11の上底面11-1である光入力面は、XY面と平行となっている。B光源103の出射面は、(Z,Y,Z)=(0,0,0)に位置している。ベクトル103bおよび103cは、それぞれレーザ光源からの出射光のベクトル103aのYZ平面への射影およびXZ平面への射影を示している。そして、射影ベクトル103cは角度αの傾きをもち、射影ベクトル100bは角度βの傾きをもつことを示している。角度αは、角度βが0であるときに、実施例1の角度θと同じ値となる。 As shown in FIG. 6, the rod integrator 11 is arranged in the + Z direction, and the light input surface which is the upper bottom surface 11-1 of the rod integrator 11 is parallel to the XY plane. The emission surface of the B light source 103 is located at (Z, Y, Z) = (0,0,0). Vectors 103b and 103c indicate the projection of the vector 103a of the light emitted from the laser light source onto the YZ plane and the projection onto the XZ plane, respectively. The projection vector 103c has an inclination of angle α, and the projection vector 100b has an inclination of angle β. The angle α has the same value as the angle θ of the first embodiment when the angle β is 0.
 図7及び図8は、ロッドインテグレータ11とB光源103との間の配置に関するパラメータ範囲を示す図である。 7 and 8 are diagrams showing parameter ranges relating to the arrangement between the rod integrator 11 and the B light source 103. FIG.
 図7に、実施例2のB光源103とロッドインテグレータ11との入射角α、βと、出射光103aのロッドインテグレータ11の中心軸からのズレ量を示す。 FIG. 7 shows the incident angles α and β between the B light source 103 and the rod integrator 11 of Example 2 and the deviation amount of the emitted light 103a from the central axis of the rod integrator 11.
 図7(b)、(d)は、B光源から出射される光の方向において、図6で定義した角度α(図7(a)参照)およびβ(図7(c)参照)と、ロッドインテグレータ11から出射されるビーム光の最大強度位置の関係を示している。 FIGS. 7B and 7D show the angles α (see FIG. 7A) and β (see FIG. 7C) defined in FIG. 6 in the direction of the light emitted from the B light source, and the rod. The relationship of the maximum intensity position of the beam light emitted from the integrator 11 is shown.
 図7(b)は、出射光の最大が強度となる位置(光軸を原点とした場合、その原点位置からのズレ量で表す)の角度α(図7(a))依存性を示している。なお、他のパラメータは、角度β=0、x=-0.08mm、y=0mmとした。 FIG. 7 (b) shows the dependence of the position where the maximum intensity of the emitted light is the intensity (in the case where the optical axis is the origin on the origin) on the angle α (FIG. 7 (a)). Yes. The other parameters were set to angles β = 0, x = −0.08 mm, and y = 0 mm.
 角度αの絶対値が20度から27度の場合、光軸中心のズレ変動が0.1mm以内となり、出射光の最大強度位置はほぼロッドインテグレータ11の中心軸、つまり、RGBの各光源を重ねる画素中心にあることを示している。最適値(絶対値)は21度から25度である。 When the absolute value of the angle α is 20 degrees to 27 degrees, the deviation of the center of the optical axis is within 0.1 mm, and the maximum intensity position of the emitted light is almost the central axis of the rod integrator 11, that is, the pixels that overlap each RGB light source It shows that it is in the center. The optimum value (absolute value) is 21 to 25 degrees.
 図7(d)は、出射光最大強度位置(光軸を原点とした場合、その原点位置からのズレ量で表す)の角度β(図7(c))依存性を示している。なお、他のパラメータは、角度α=-22.5、x=-0.08mm、y=0mmとした。 FIG. 7 (d) shows the dependence of the maximum intensity position of the emitted light on the angle β (FIG. 7 (c)) of the maximum intensity position of the emitted light (represented by the deviation from the origin position when the optical axis is the origin). The other parameters were an angle α = −22.5, x = −0.08 mm, and y = 0 mm.
 角度βが-2度から+2度の間、つまり、絶対値2度以内であるならば、光軸中心のズレ変動が0.1mm以内となり、出射光の最大強度位置はほぼロッドインテグレータ11の中心軸、つまり、RGBの各光源を重ねる画素中心にあることを示している。最適値は0度である。 If the angle β is between -2 degrees and +2 degrees, that is, within an absolute value of 2 degrees, the deviation variation of the optical axis center is within 0.1 mm, and the maximum intensity position of the emitted light is approximately the center of the rod integrator 11 The axis, that is, the pixel center where the RGB light sources overlap is shown. The optimum value is 0 degrees.
 図8(b)、(d)は、光源から出射される光の方向において、図6で定義した距離x(図8(a)参照)およびy(図8(c)参照)とロッドインテグレータ11から出射されるビーム光の最大強度位置の関係を示している。 8 (b) and 8 (d) show the distances x (see FIG. 8 (a)) and y (see FIG. 8 (c)) defined in FIG. 6 and the rod integrator 11 in the direction of the light emitted from the light source. The relationship of the maximum intensity position of the beam light radiate | emitted from is shown.
 図8(b)は、出射光最大強度位置(光軸を原点とした場合、その原点位置からのズレ量で表す)の距離x(図8(a)参照)依存性を示している。なお、他のパラメータは、角度α=-22.5、角度β=0、y=0mmとした。 FIG. 8 (b) shows the dependence of the maximum intensity position of the emitted light (in the case where the optical axis is the origin, the amount of deviation from the origin position) on the distance x (see FIG. 8 (a)). The other parameters were an angle α = −22.5, an angle β = 0, and y = 0 mm.
 図8(b)から、光軸中心からのズレ量を0.1mm以内にするためには、図8(a)に示す距離xが-0.075mmから-0.085mmの範囲にすることが好ましいことがわかる。最適値は-0.08mmである。つまり、出射光の最大強度位置はロッドインテグレータ11の中心軸から若干ずらすことが好ましいことがわかる。 From FIG. 8 (b), it is preferable that the distance x shown in FIG. 8 (a) is in the range of -0.075mm to -0.085mm in order to make the deviation from the optical axis center within 0.1mm. Recognize. The optimum value is -0.08mm. That is, it can be seen that the maximum intensity position of the emitted light is preferably slightly shifted from the central axis of the rod integrator 11.
 図8(d)は、出射光最大強度位置(光軸を原点とした場合、その原点位置からのズレ量で表す)の距離y(図8(c)参照)依存性を示す。なお、他のパラメータは、角度α=-22.5、角度β=0、x=-0.08mmとした。 FIG. 8 (d) shows the dependence of the maximum intensity position of the emitted light on the distance y (see FIG. 8 (c)) of the maximum intensity position of the emitted light (represented by the amount of deviation from the origin position when the optical axis is the origin). The other parameters were an angle α = −22.5, an angle β = 0, and x = −0.08 mm.
 図8(d)は、図8(c)に示す距離yが0mmつまり原点の場合、出射光の最大強度位置は光軸にあることを示している。 FIG. 8D shows that when the distance y shown in FIG. 8C is 0 mm, that is, the origin, the maximum intensity position of the emitted light is on the optical axis.
 図8(b)の結果は、ロッドインテグレータへの入力光の出射端面が光軸中心にない場合でも、最適な位置に光源を配置することにより、ロッドインテグレータから出射されるビーム光を光軸と一致させることができることを示している。 The result of FIG. 8 (b) shows that the light beam emitted from the rod integrator is set as the optical axis by arranging the light source at the optimum position even when the emission end face of the input light to the rod integrator is not at the center of the optical axis. It shows that they can be matched.
 図9は、光源波長が650nmと450nmの場合、ロッドインテグレータへ入射するビーム光の角度αと光源装置から出射されるビーム光の位置(光軸からのズレ量にて評価)の関係を示している。 FIG. 9 shows the relationship between the angle α of the beam light incident on the rod integrator and the position of the beam light emitted from the light source device (evaluated by the amount of deviation from the optical axis) when the light source wavelengths are 650 nm and 450 nm. Yes.
 図9からわかるように、光源波長が450nmの場合、-20度≧α≧-27度であれば、光軸からのズレ量が0.1以内となり、-21度≧α≧-25度であれば、ほぼ0とすることができる。複数の光源からの出射光をロッドインテグレータに入力することを考慮すると実装スペースを確保しなければならない。つまり、αの絶対値は小さい方が好ましいことになる。よって、光源波長450nmの場合は、|α|=21度が実装上の最適角度となる。 As can be seen from FIG. 9, when the light source wavelength is 450 nm, if −20 degrees ≧ α ≧ −27 degrees, the deviation from the optical axis is within 0.1, and if −21 degrees ≧ α ≧ −25 degrees. , Can be almost zero. Considering that light emitted from a plurality of light sources is input to the rod integrator, a mounting space must be secured. That is, a smaller absolute value of α is preferable. Therefore, when the light source wavelength is 450 nm, | α | = 21 degrees is the optimum angle for mounting.
 また、図9からわかるように、光源波長が650nmの場合、-22度≧α≧-25.5度であれば、光軸からのズレ量が0.1以内となり、-22.5度≧α≧-25度であれば、ほぼ0とすることができる。複数の光源からの出射光をロッドインテグレータに入力することを考慮すると実装スペースを確保しなければならない。つまり、βの絶対値は小さい方が好ましいことになる。よって、光源波長650nmの場合は、|β|=22.5度が実装上の最適角度となる。 As can be seen from FIG. 9, when the light source wavelength is 650 nm, the deviation from the optical axis is within 0.1 when −22 degrees ≧ α ≧ −25.5 degrees, and −22.5 degrees ≧ α ≧ −25 degrees. If there is, it can be almost zero. In consideration of inputting light emitted from a plurality of light sources to the rod integrator, a mounting space must be secured. That is, it is preferable that the absolute value of β is smaller. Therefore, when the light source wavelength is 650 nm, | β | = 22.5 degrees is the optimum angle for mounting.
 以上を考慮すると、本光源装置において、ロッドインテグレータに入力するレーザ光源の波長がλR=650nm(赤色)、λG=530nm(緑色)、λB=450nm(青色)の場合、それぞれの波長の光源から出射されるビーム光の方向と光軸がなす角度をαR、αG,αBは、αR>αG>αBが成立することがわかる。 Considering the above, when the wavelength of the laser light source input to the rod integrator is λR = 650 nm (red), λG = 530 nm (green), or λB = 450 nm (blue), the light source device emits light from each wavelength light source. It can be seen that αR> αG> αB is established when αR, αG, and αB are angles formed by the direction of the light beam and the optical axis.
 次に、図10を用いて、光源装置におけるロッドインテグレータの形状に関して説明する。 Next, the shape of the rod integrator in the light source device will be described with reference to FIG.
 図10は、大別して、タイプI、タイプII、タイプIIIに分類した3種類のロッドインテグレータ形状の概要を示している。 FIG. 10 roughly shows the outline of three types of rod integrator shapes classified into type I, type II, and type III.
 図10に記載のタイプIは、ロッドインテグレータ11において、光入射面である上底面11-1の断面積より光出射面である下底面11-2の断面積が大きいテーパ型11aからなるロッドインテグレータ11を示している。 Type I shown in FIG. 10 is a rod integrator 11 comprising a taper type 11a in which the cross-sectional area of the lower bottom surface 11-2 that is the light exit surface is larger than the cross-sectional area of the upper bottom surface 11-1 that is the light incident surface. 11 is shown.
 図10に記載のタイプIIは、タイプIのロッドインテグレータ(テーパ型11a)の入射面に、ストレート型11bが接続された構造である。 10 is a structure in which a straight type 11b is connected to an incident surface of a type I rod integrator (taper type 11a).
 図10に記載のタイプIIIは、タイプIIのロッドインテグレータ(テーパ型11a)の出射面に、ストレート型11cが接続された構造である。ただし、ストレート型11cの長さはテーパ型11aの効果を妨げるようであってはならない。 10 is a structure in which a straight type 11c is connected to the exit surface of a type II rod integrator (taper type 11a). However, the length of the straight mold 11c should not interfere with the effect of the taper mold 11a.
 ここでタイプI~IIIに共通するのは、円錐台形状を備えている点であり、上底面11-1側の端面を入射面とし、下底面11-2側の端面を出射面としている点である。 Here, what is common to Types I to III is that it has a truncated cone shape, and that the end surface on the upper bottom surface 11-1 side is the entrance surface and the end surface on the lower bottom surface 11-2 side is the exit surface. It is.
 次に、図11を用いて、実施例5に係る光源装置における光源位置とロッドインテグレータの光導入面である上底面11-1のサイズとの関係について説明する。 Next, the relationship between the light source position in the light source device according to the fifth embodiment and the size of the upper bottom surface 11-1 that is the light introduction surface of the rod integrator will be described with reference to FIG.
 図11は、実施例5に係る光源装置において、ロッドインテグレータへ入力する目的で用意した光源から出射されたビーム光の方向とその際のロッドインテグレータの光導入面である上底面11-1のサイズとの関係を説明する図である。なお、このときビーム光は特定の広がり角度を有するビーム光とする。 FIG. 11 shows the direction of the beam light emitted from the light source prepared for input to the rod integrator and the size of the upper bottom surface 11-1 that is the light introducing surface of the rod integrator at that time in the light source device according to the fifth embodiment. It is a figure explaining the relationship. At this time, the light beam is a light beam having a specific spread angle.
 図11において、光源からの拡がり角を有するビーム光100bは、出射位置100(光軸からの距離s,ロッドインテグレータの入力面である上底面11-1からの距離t)からαの角度、方向100aで放出される。さらに、このとき、ビーム光100bは拡がり角度θのレーザ光とする。 In FIG. 11, a light beam 100b having a divergence angle from a light source is an angle α and a direction from an emission position 100 (a distance s from the optical axis, a distance t from the upper bottom surface 11-1 that is the input surface of the rod integrator). Released at 100a. Further, at this time, the light beam 100b is a laser beam having a spread angle θ.
 図11において、レーザ光源100の出射光がすべてロッドインテグレータに入る条件として、ロッドインテグレータの入力面である上底面11-1の直径をLとすると以下のようになる。 In FIG. 11, as a condition that all the light emitted from the laser light source 100 enters the rod integrator, assuming that the diameter of the upper bottom surface 11-1 that is the input surface of the rod integrator is L, the condition is as follows.
 図11において、角度θがαよりも大きい(つまり、θ≧α)場合、L≧2×{t×tan(α+θ)-s}となる。角度θがαよりも小さい(つまり、θ<α)場合、L≧2×{t×tan(2θ)-s}となる。 In FIG. 11, when the angle θ is larger than α (that is, θ ≧ α), L ≧ 2 × {t × tan (α + θ) −s}. When the angle θ is smaller than α (that is, θ <α), L ≧ 2 × {t × tan (2θ) −s}.
 次に、図12を用いて、実施例6に係る光源装置における複数の光源の実装形態および手段について説明する。 Next, a plurality of light source mounting forms and means in the light source device according to the sixth embodiment will be described with reference to FIG.
 図12(a)は複数の光源の実装形態を表した概要図を、図12(b)はレーザ光源の実装形態を表した概要図を、図12(c)はレーザ光源とコリメートレンズホルダの実装を表した概要図を示している。 FIG. 12A is a schematic diagram showing the mounting form of a plurality of light sources, FIG. 12B is a schematic diagram showing the mounting form of the laser light source, and FIG. 12C is a diagram of the laser light source and the collimating lens holder. A schematic diagram showing the implementation is shown.
 図12(a)は、RGB3原色のレーザ光源101(赤色)、102(緑色)、103(青色)をピラミッド形状をしたステージがキャンステム上に搭載されている図を示している。このようなステージを用いることにより、ロッドインテグレータへのレーザ光の導入角度αが、ステージの傾斜角度により制御できるので、調整が容易になる。 FIG. 12A shows a diagram in which a stage having a pyramid shape of laser light sources 101 (red), 102 (green), and 103 (blue) of RGB three primary colors is mounted on a can stem. By using such a stage, the introduction angle α of the laser beam to the rod integrator can be controlled by the tilt angle of the stage, so that adjustment becomes easy.
 図12(b)は、レーザ光源200をレーザ光源搭載サブマウント基板201に実装した形態を表す概略図である。 FIG. 12B is a schematic diagram showing a form in which the laser light source 200 is mounted on the laser light source mounting submount substrate 201.
 図12(c)は、レーザ光源搭載サブマウント基板201とレーザ光源200の出射光をコリメート・集光するためのレンズ部品203とをレーザ搭載マウント基板202へ搭載した形態を表す概要図である。 FIG. 12C is a schematic diagram showing a form in which the laser light source mounting submount substrate 201 and the lens component 203 for collimating and condensing the light emitted from the laser light source 200 are mounted on the laser mounting mount substrate 202.
 本実施例では、3つのレーザ光源の場合について述べたが、4つ以上の複数のレーザ光源に対しても上記のステージおよびキャンステムを適用することができる。 In this embodiment, the case of three laser light sources has been described. However, the above-described stage and cancel system can be applied to four or more laser light sources.
 次に、図13を用いて、実施例7に係る光源装置における複数の光源の実装形態および手段について説明する。 Next, a plurality of light source mounting forms and means in the light source device according to the seventh embodiment will be described with reference to FIG.
 図13(a)は複数の光源の実装形態を表した概要図を、図13(b)は基本波レーザ光源と波長変換素子からなる波長変換レーザの実装形態を表した概要図を示している。 FIG. 13 (a) is a schematic view showing a mounting form of a plurality of light sources, and FIG. 13 (b) is a schematic view showing a mounting form of a wavelength conversion laser composed of a fundamental laser light source and a wavelength conversion element. .
 RGB3原色のレーザ光源101(赤色)、102(緑色)、103(青色)がピラミッド形状をしたキャンステム上のステージに搭載されている。このようなステージを用いることにより、ロッドインテグレータへのレーザ光の導入角度αが、ステージの傾斜角度により制御できるので、調整が容易になる。 The laser light sources 101 (red), 102 (green), and 103 (blue) of RGB three primary colors are mounted on a stage on a cantem that has a pyramid shape. By using such a stage, the introduction angle α of the laser beam to the rod integrator can be controlled by the tilt angle of the stage, so that adjustment becomes easy.
 図13(b)は、レーザ光源102(緑色)の実装形態を表す概略図である。 FIG. 13B is a schematic diagram showing a mounting form of the laser light source 102 (green).
 レーザ光源200を実装したレーザ光源搭載サブマウント基板201と、レーザ光源200の出射光をコリメート・集光するためのレンズ部品204、205と、波長変換素子206とがレーザ搭載マウント基板202に搭載されている。 A laser light source mounting submount substrate 201 on which the laser light source 200 is mounted, lens components 204 and 205 for collimating and condensing the light emitted from the laser light source 200, and a wavelength conversion element 206 are mounted on the laser mounting mount substrate 202. ing.
 波長変換素子206は非線形結晶が用いられ、レーザ光源200は波長1060nmの赤外光が出射するレーザ光源102が用いられ、波長変換素子206で波長変換が行なわれることにより、波長530nmの緑色光が出射される。 The wavelength conversion element 206 uses a nonlinear crystal, the laser light source 200 uses the laser light source 102 that emits infrared light having a wavelength of 1060 nm, and wavelength conversion is performed by the wavelength conversion element 206, so that green light having a wavelength of 530 nm is emitted. Emitted.
 4つ以上のレーザ光源に対しても上記のステージおよびキャンステムを適用することができる。 The above-described stage and can stem can be applied to four or more laser light sources.
 図14に実施例8の光源装置の透過図を示す。 FIG. 14 shows a transmission diagram of the light source device of Example 8.
 透過型の筺体(キャンステム)30aの中に、ロッドインテグレータ11、レンズ12a、12b、12cがあり、筺体30aの上にピラミッド型のステージ40があり、このピラミッド型ステージ40のテーパ面にレーザ光源50が保持、内蔵されている。 The rod integrator 11 and the lenses 12a, 12b, and 12c are in the transmission type housing (can stem) 30a, and the pyramid stage 40 is on the housing 30a. 50 is retained and built-in.
 ピラミッド型のステージ40のテーパ角度を、ロッドインテグレータ11の中心軸(出射光軸)に対する所定角度としておくことで、端面発光レーザを平面実装するだけで、ロッドインテグレータ11の入射面に対して所定角度で入射するレーザ光源の実装が容易になる。 By setting the taper angle of the pyramid-type stage 40 to a predetermined angle with respect to the central axis (emitted optical axis) of the rod integrator 11, a predetermined angle with respect to the incident surface of the rod integrator 11 can be obtained by simply mounting the edge emitting laser on a plane. This makes it easy to mount a laser light source incident on.
 なお、コリメート光となるビーム光を出射するロッドインテグレータ11は、実施例7のいずれかである。 Note that the rod integrator 11 that emits the beam light serving as the collimated light is any one of the seventh embodiment.
 図15は、実施例9の投写装置の簡易断面図である。 FIG. 15 is a simplified cross-sectional view of the projection apparatus according to the ninth embodiment.
 本実施例の投写装置900は、光源装置800、ビーム走査部901、取り出し口902付きの筺体を備えている。 The projection apparatus 900 of this embodiment includes a light source device 800, a beam scanning unit 901, and a housing with an extraction port 902.
 光源装置800を構成している光源として、RGB3原色のレーザ光源を用い、光源装置800から出射されたコリメート状態のビーム光を、ビーム走査部901でラスタスキャンし、取り出し口902より投写することですることで、スクリーン909にカラー表示で画像投写する画像投射装置が実現できる。なお、ビーム走査部901は、MEMS(Micro Electro Mechanical Systems)ミラーを用いたラスタースキャン型手法を用いている。 By using a laser light source of RGB three primary colors as a light source constituting the light source device 800, the collimated beam light emitted from the light source device 800 is raster scanned by the beam scanning unit 901 and projected from the extraction port 902. Thus, an image projection apparatus that projects an image on the screen 909 in a color display can be realized. The beam scanning unit 901 uses a raster scan type method using a MEMS (Micro Electro Mechanical Systems) mirror.
 また、この光源装置800を構成している光源として、波長250nm近傍の紫外光を照射するレーザ光源とした場合、光源装置800から出射されたコリメート状態のビーム光は、ビーム走査部901におけるラスタスキャンにより、例えば、バイオクリーンルームのように、所望の領域(壁等)の付着菌を滅菌することができる滅菌装置が実現できる。 Further, when the light source constituting the light source device 800 is a laser light source that irradiates ultraviolet light having a wavelength near 250 nm, the collimated beam light emitted from the light source device 800 is subjected to raster scanning in the beam scanning unit 901. Thus, a sterilization apparatus that can sterilize adherent bacteria in a desired region (such as a wall) as in a bioclean room can be realized.
 図16は、実施例10の投写装置の簡易断面図である。 FIG. 16 is a simplified cross-sectional view of the projection apparatus according to the tenth embodiment.
 本実施例の投写装置は、光源装置800、空間変調器903、ビーム拡大レンズ904から構成される。 The projection apparatus according to this embodiment includes a light source device 800, a spatial modulator 903, and a beam magnifying lens 904.
 光源装置800として実施例1を用いるが、適用するにあたり、光源装置800のレンズ12a、12b、12cの屈折率を、光源から出射されるビーム光が徐々に拡大するビーム光となるように調整してある。 Although Example 1 is used as the light source device 800, in application, the refractive indexes of the lenses 12a, 12b, and 12c of the light source device 800 are adjusted so that the beam light emitted from the light source gradually becomes a beam light that expands. It is.
 空間変調器903は、液晶表示モジュールで構成されている。 Spatial modulator 903 is composed of a liquid crystal display module.
 光源装置800を構成している光源から出射されるRGB3原色のレーザ光は、空間変調器903とビーム拡大レンズ904により、スクリーン909にカラー表示で画像投写するカラー画像投写装置を実現することができる。 The RGB primary color laser light emitted from the light source that constitutes the light source device 800 can realize a color image projection device that projects an image in color display on the screen 909 by the spatial modulator 903 and the beam magnifying lens 904. .
 また、この光源装置800を構成している光源として、波長250nm近傍の紫外光を照射するレーザ光源とした場合、光源装置800から出射されたコリメート状態のビーム光は、空間変調器903における変調により、所定の強度で、例えば、バイオクリーンルームのように、所望の領域(壁等)の付着菌を滅菌することができる滅菌装置が実現できる。 Further, when the light source constituting the light source device 800 is a laser light source that emits ultraviolet light having a wavelength of about 250 nm, the collimated beam light emitted from the light source device 800 is modulated by the spatial modulator 903. A sterilization apparatus that can sterilize adherent bacteria in a desired region (such as a wall) with a predetermined strength, such as a bioclean room, can be realized.
 <変形例>
 実施例1乃至7で用いた複数のレーザ光源を同一波長のレーザ光源とすることは、本発明の好ましい態様である。この構成により、テーパ型ロッドインテグレータにより、重なり・混じりあった1つのビーム光は、低出力パワーから高出力パワーにすることができる。
<Modification>
It is a preferable aspect of the present invention that the plurality of laser light sources used in Examples 1 to 7 are laser light sources having the same wavelength. With this configuration, one beam light that is overlapped and mixed can be changed from low output power to high output power by the tapered rod integrator.
 また、以上の実施例で用いたレーザ光源は、シングルモード発振する半導体レーザと波長変換素子としての非線形結晶からなる波長変換レーザ光源、シングルモード発振する半導体レーザ光源のいずれかである。 The laser light source used in the above embodiments is either a semiconductor laser that oscillates in a single mode, a wavelength conversion laser light source that consists of a nonlinear crystal as a wavelength conversion element, or a semiconductor laser light source that oscillates in a single mode.
 また、本明細書で用いた「光学要素」とは、入射する光に対して何らかの光学的作用(例えば、反射、透過、屈折、回折等)を与えるものをいい、例えば、レンズや回折格子などを含む概念である。 The “optical element” used in this specification refers to an element that gives some optical action (for example, reflection, transmission, refraction, diffraction, etc.) to incident light, such as a lens or a diffraction grating. It is a concept that includes
 また、ロッドインテグレータは、光ファイバ、リキッドファイバ、導光板、ライトトンネル、及びライトパイプのいずれかを含む。 The rod integrator includes any of an optical fiber, a liquid fiber, a light guide plate, a light tunnel, and a light pipe.
800…光源装置、101…R光源、102…G光源、103…B光源、11…ロッドインテグレータ、12a、12b、12c…光学要素としてのレンズ、11-5…支持ホルダー、101a…R光源101からの出射光、102a…G光源102からの出射光、103a…B光源103からの出射光、11-1…ロッドインテグレータ11の上底面、11-2…ロッドインテグレータ11の下底面、40a…スクリーン、60…ロッドインテグレータにおけるビーム光導入箇所、61…ロッドインテグレータの中心軸とレーザ光源との出射光軸との交点、11a…テーパ型、11b…ストレート型、11c…ストレート型、100b…ビーム光、100…出射位置、s…光軸からの距離、t…ロッドインテグレータ入力口からの距離、α…角度、100a…方向、θ…角度、200…レーザ光源、201…レーザ光源搭載サブマウント基板、202…レーザ光源搭載マウント、203…レーザ光源200の出射光をコリメート・集光するためのレンズ部品、204…レーザ光源200の出射光をコリメート・集光するためのレンズ部品、205…レーザ光源200の出射光をコリメート・集光するためのレンズ部品、206…波長変換素子、30a…筺体(キャンステム)、40…ステージ、900…投写装置、901…ビーム走査部、902…取り出し口、909…スクリーン、903…空間変調器、904…ビーム拡大レンズ
 
800 ... light source device, 101 ... R light source, 102 ... G light source, 103 ... B light source, 11 ... rod integrator, 12a, 12b, 12c ... lens as optical element, 11-5 ... support holder, 101a ... from R light source 101 , 102a: emitted light from the G light source 102, 103a: emitted light from the B light source 103, 11-1: upper bottom surface of the rod integrator 11, 11-2: lower bottom surface of the rod integrator 11, 40a: screen, 60: Beam light introduction point in the rod integrator, 61: Intersection of the central axis of the rod integrator and the output optical axis of the laser light source, 11a: Tapered type, 11b: Straight type, 11c: Straight type, 100b: Beam light, 100 ... Emission position, s ... Distance from optical axis, t ... Distance from rod integrator input port, α ... Angle, 100a ... Direction, θ ... Angle, 200 ... Laser light source, 201 ... Laser light source mounted submount substrate, 202 ... Laser light source mounting, 203 ... Laser light source Lens components for collimating and condensing 00 output light, 204... Lens components for collimating and condensing output light of the laser light source 200, 205. Collimating and condensing output light of the laser light source 200 Lens parts, 206 ... wavelength conversion element, 30a ... housing (can stem), 40 ... stage, 900 ... projection device, 901 ... beam scanning section, 902 ... take-out port, 909 ... screen, 903 ... spatial modulator, 904 ... beam Magnifying lens

Claims (14)

  1.  複数のレーザ光源と、
     上底面を前記レーザ光源からの出射光が入射する入射面、下底面を出射面となるように配置された、少なくとも一部に円すい台形状を有するロッドインテグレータとを備え、
     前記複数のレーザ光源から前記ロッドインテグレータの入射面に入射する出射光の光軸は前記ロッドインテグレータの中心軸に対して鋭角となる角度θをなすように前記レーザ光源が配置されていることを特徴とする光源装置。
    A plurality of laser light sources;
    A rod integrator having a conical trapezoidal shape at least partially disposed on an upper surface on an incident surface on which light emitted from the laser light source enters, and on a lower surface on the lower surface;
    The laser light source is arranged such that an optical axis of outgoing light incident on an incident surface of the rod integrator from the plurality of laser light sources forms an acute angle θ with respect to a central axis of the rod integrator. A light source device.
  2.  請求項1において、
     前記複数のレーザ光源がn個の異なる波長のレーザ光源を備え、
     波長λがλ1>λ2>λ3>・・・>λnの関係を満たす場合、
     角度θ1>θ2>θ3>・・・>θnとなることを特徴とする光源装置。
    (λn…第nレーザ光源の波長、θn…第nレーザ光源の出射光の光軸がなす前記角度θ)
    In claim 1,
    The plurality of laser light sources comprises n light sources of different wavelengths;
    When the wavelength λ satisfies the relationship of λ1>λ2>λ3>.
    A light source device having an angle θ1>θ2>θ3>.
    (Λn: wavelength of the nth laser light source, θn: the angle θ formed by the optical axis of the emitted light of the nth laser light source)
  3.  請求項1において、
     前記複数のレーザ光源は、同一波長の光源を含むことを特徴とする請求項1に記載の光源装置。
    In claim 1,
    The light source device according to claim 1, wherein the plurality of laser light sources include light sources having the same wavelength.
  4.  請求項1において、
     前記レーザ光源は、シングルモード発振するレーザ光源、およびシングルモード発振するレーザ光源と波長変換素子から構成される波長変換レーザ光源のいずれかであることを特徴とする光源装置。
    In claim 1,
    The laser light source is one of a laser light source that oscillates in a single mode and a wavelength conversion laser light source that includes a laser light source that oscillates in a single mode and a wavelength conversion element.
  5.  請求項1において、
     前記レーザ光源及び前記ロッドインテグレータが1パッケージにモジュール化され、前記モジュールがキャンステムに搭載されていることを特徴とする光源装置。
    In claim 1,
    The light source device, wherein the laser light source and the rod integrator are modularized in one package, and the module is mounted on a can stem.
  6.  請求項1において、
     テーパ面を有する台座を有するキャンステムを有し、
     前記レーザ光源は、前記ロッドインテグレータと前記レーザ光源とが前記角度θをなすように前記台座のテーパ面に搭載されていることを特徴とする光源装置。
    In claim 1,
    A can stem having a pedestal having a tapered surface;
    The laser light source is mounted on a taper surface of the pedestal so that the rod integrator and the laser light source form the angle θ.
  7.  請求項1において、
     前記ロッドインテグレータは、光ファイバ、リキッドファイバ、導光板、ライトトンネル、及びライトパイプのいずれかを有することを特徴とする光源装置。 
    In claim 1,
    The rod integrator includes any one of an optical fiber, a liquid fiber, a light guide plate, a light tunnel, and a light pipe.
  8.  レーザ光源装置から出射されたレーザ光をスキャンしながら投射する投射型画像表示装置であって、
     前記レーザ光源装置は、
     複数のレーザ光源と、
     上底面を前記レーザ光源からの出射光が入射する入射面、下底面を出射面となるように配置された、少なくとも一部に円すい台形状を有するロッドインテグレータとを備え、
     前記複数のレーザ光源から前記ロッドインテグレータの入射面に入射する出射光の光軸は前記ロッドインテグレータの中心軸に対して鋭角となる角度θをなすように前記レーザ光源が配置されていることを特徴とする投射型画像表示装置。
    A projection-type image display device that projects while scanning laser light emitted from a laser light source device,
    The laser light source device
    A plurality of laser light sources;
    A rod integrator having a conical trapezoidal shape at least partially disposed on an upper surface on an incident surface on which light emitted from the laser light source enters, and on a lower surface on the lower surface;
    The laser light source is arranged such that an optical axis of outgoing light incident on an incident surface of the rod integrator from the plurality of laser light sources forms an acute angle θ with respect to a central axis of the rod integrator. Projection type image display device.
  9.  請求項8において、
     前記複数のレーザ光源がn個の異なる波長のレーザ光源を備え、
     波長λがλ1>λ2>λ3>・・・>λnの関係を満たす場合、
     角度θ1>θ2>θ3>・・・>θnとなることを特徴とする投射型画像表示装置。
    (λn…第nレーザ光源の波長、θn…第nレーザ光源の出射光の光軸がなす前記角度θ)
    In claim 8,
    The plurality of laser light sources comprises n light sources of different wavelengths;
    When the wavelength λ satisfies the relationship of λ1>λ2>λ3>.
    An angle θ1>θ2>θ3>...> Θn.
    (Λn: wavelength of the nth laser light source, θn: the angle θ formed by the optical axis of the emitted light of the nth laser light source)
  10.  請求項8において、
     前記複数のレーザ光源は、同一波長の光源を含むことを特徴とする投射型画像表示装置。
    In claim 8,
    The plurality of laser light sources include a light source having the same wavelength.
  11.  請求項8において、
     前記レーザ光源は、シングルモード発振するレーザ光源、およびシングルモード発振するレーザ光源と波長変換素子から構成される波長変換レーザ光源のいずれかであることを特徴とする投射型画像表示装置。
    In claim 8,
    The projection type image display device, wherein the laser light source is any one of a laser light source that oscillates in a single mode and a wavelength conversion laser light source that includes a laser light source that oscillates in a single mode and a wavelength conversion element.
  12.  請求項8において、
     前記レーザ光源及び前記ロッドインテグレータが1パッケージにモジュール化され、
     前記モジュールがキャンステムに搭載されていることを特徴とする投射型画像表示装置。
    In claim 8,
    The laser light source and the rod integrator are modularized in one package,
    A projection-type image display device, wherein the module is mounted on a can stem.
  13.  請求項8において、
     テーパ面を有する台座を備えた、
     前記レーザ光源は、前記テーパ面に搭載され、
     前記ロッドインテグレータと前記レーザ光源とが前記角度θをなすように配置されていることを特徴とする投射型画像表示装置。
    In claim 8,
    With a pedestal having a tapered surface,
    The laser light source is mounted on the tapered surface,
    A projection type image display device, wherein the rod integrator and the laser light source are arranged so as to form the angle θ.
  14.  請求項8において、
     前記ロッドインテグレータは光ファイバ、リキッドファイバ、導光板、ライトトンネル、及びライトパイプのいずれかを有することを特徴とする投射型画像表示装置。 
     
    In claim 8,
    The rod integrator includes any one of an optical fiber, a liquid fiber, a light guide plate, a light tunnel, and a light pipe.
PCT/JP2010/053839 2010-03-09 2010-03-09 Light source device and projection image display device WO2011111158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053839 WO2011111158A1 (en) 2010-03-09 2010-03-09 Light source device and projection image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053839 WO2011111158A1 (en) 2010-03-09 2010-03-09 Light source device and projection image display device

Publications (1)

Publication Number Publication Date
WO2011111158A1 true WO2011111158A1 (en) 2011-09-15

Family

ID=44563005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053839 WO2011111158A1 (en) 2010-03-09 2010-03-09 Light source device and projection image display device

Country Status (1)

Country Link
WO (1) WO2011111158A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088466A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Laser light source apparatus and image display apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066369A (en) * 2001-08-28 2003-03-05 Canon Inc Image display device, controlling method for image display device and image processing system
JP2004347681A (en) * 2003-05-20 2004-12-09 Seiko Epson Corp Projection type display device and illuminator
JP2005128236A (en) * 2003-10-23 2005-05-19 Seiko Epson Corp Light source device, illuminating device, and projector
JP2005242298A (en) * 2004-01-30 2005-09-08 Seiko Epson Corp Illumination device, display device and projective display device
JP2006010741A (en) * 2004-06-22 2006-01-12 Plus Vision Corp Light source device including light emitting element and image display device using same
JP2006085150A (en) * 2004-09-17 2006-03-30 Koen Kagi Kofun Yugenkoshi Optical system for light emitting apparatus
WO2007108504A1 (en) * 2006-03-23 2007-09-27 Matsushita Electric Industrial Co., Ltd. Projection type display device and light source device
JP2007537486A (en) * 2004-05-14 2007-12-20 スリーエム イノベイティブ プロパティズ カンパニー Illumination system with separate light paths for different color channels
JP2008180839A (en) * 2007-01-24 2008-08-07 Mitsubishi Electric Corp Projector
JP2009529220A (en) * 2006-03-06 2009-08-13 イノベーションズ イン オプティクス, インコーポレイテッド Light emitting diode projection system
JP2009530671A (en) * 2006-03-17 2009-08-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical projection device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066369A (en) * 2001-08-28 2003-03-05 Canon Inc Image display device, controlling method for image display device and image processing system
JP2004347681A (en) * 2003-05-20 2004-12-09 Seiko Epson Corp Projection type display device and illuminator
JP2005128236A (en) * 2003-10-23 2005-05-19 Seiko Epson Corp Light source device, illuminating device, and projector
JP2005242298A (en) * 2004-01-30 2005-09-08 Seiko Epson Corp Illumination device, display device and projective display device
JP2007537486A (en) * 2004-05-14 2007-12-20 スリーエム イノベイティブ プロパティズ カンパニー Illumination system with separate light paths for different color channels
JP2006010741A (en) * 2004-06-22 2006-01-12 Plus Vision Corp Light source device including light emitting element and image display device using same
JP2006085150A (en) * 2004-09-17 2006-03-30 Koen Kagi Kofun Yugenkoshi Optical system for light emitting apparatus
JP2009529220A (en) * 2006-03-06 2009-08-13 イノベーションズ イン オプティクス, インコーポレイテッド Light emitting diode projection system
JP2009530671A (en) * 2006-03-17 2009-08-27 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical projection device
WO2007108504A1 (en) * 2006-03-23 2007-09-27 Matsushita Electric Industrial Co., Ltd. Projection type display device and light source device
JP2008180839A (en) * 2007-01-24 2008-08-07 Mitsubishi Electric Corp Projector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088466A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Laser light source apparatus and image display apparatus
CN103988125A (en) * 2011-12-12 2014-08-13 三菱电机株式会社 Laser light source apparatus and image display apparatus
JPWO2013088466A1 (en) * 2011-12-12 2015-04-27 三菱電機株式会社 Laser light source device and video display device
US9411220B2 (en) 2011-12-12 2016-08-09 Mitsubishi Electric Corporation Laser light source apparatus and image display apparatus therewith

Similar Documents

Publication Publication Date Title
US9743053B2 (en) Light source apparatus and image display apparatus
US9188709B2 (en) Optical multiplexing apparatus and projector
US6318863B1 (en) Illumination device and image projection apparatus including the same
US8573779B2 (en) Lighting device with plural light sources illuminating distinct regions of integrator
US7537347B2 (en) Method of combining dispersed light sources for projection display
CN104460202B (en) Illumination system and projection apparatus
JP5436097B2 (en) Condensing optical system and projection-type image display device
US20060238720A1 (en) Illumination unit and image projection apparatus having the same
US7943893B2 (en) Illumination optical system and image projection device having a rod integrator uniformizing spatial energy distribution of diffused illumination beam
CN102884478A (en) Lighting optical system and projector using same
JP6894235B2 (en) Lighting device and display device
KR102595295B1 (en) Projector
CN110431482A (en) Light supply apparatus, projector and speckle reduction method
US20060126031A1 (en) Illumination optical system of projection apparatus
JP6364916B2 (en) Light source device and image display device
JP2007047707A (en) Illuminator, optical modulation device, and projection type display device
CN112424687B (en) Illumination device and projector
CN110955104B (en) Light source system and projection system
JPWO2008111275A1 (en) Illumination device and image projection device
US11098871B2 (en) Headlamp for vehicles
JP2010511187A (en) Projection display with LED-based illumination module
CN211826877U (en) Illumination system and projection device
CN210199482U (en) Lens module and projection device
CN111722462A (en) Illumination system and projection device
WO2011111158A1 (en) Light source device and projection image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP