WO2011108404A1 - Electrophoretic display device and method for driving display panel - Google Patents

Electrophoretic display device and method for driving display panel Download PDF

Info

Publication number
WO2011108404A1
WO2011108404A1 PCT/JP2011/053870 JP2011053870W WO2011108404A1 WO 2011108404 A1 WO2011108404 A1 WO 2011108404A1 JP 2011053870 W JP2011053870 W JP 2011053870W WO 2011108404 A1 WO2011108404 A1 WO 2011108404A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pixel
application
electrophoretic display
pulse
Prior art date
Application number
PCT/JP2011/053870
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 浜
浩之 本多
康宏 大木
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2011108404A1 publication Critical patent/WO2011108404A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration

Definitions

  • the present invention relates to an electrophoretic display using an electrophoretic display material, a method of driving a display panel using the electrophoretic display material, and the like.
  • the present invention relates to an electrophoretic display device capable of halftone display using an electrophoretic display material, a driving method of a display panel using the electrophoretic display material, and the like.
  • Such an electrophoretic display can be used as a reflective display for electronic paper and the like.
  • Such an electrophoretic display device has features such as wide viewing angle and stable memory performance and low power consumption as compared with a display device using liquid crystal.
  • the electrophoretic display device is used, for example, for display devices such as electronic price tags, and for digital signage that displays information in places such as transportation facilities, stores, public facilities, etc., such as POP (Point of purchase advertising) advertisements. It is applied to an e-book reader etc. which takes in and displays the contents of a book as electronic contents using a display device, and a communication function whose market is rapidly expanding recently.
  • books may include illustrations, photographs, and the like.
  • image information of a photo may be displayed.
  • the electrophoretic display device needs to display not only the display of a binary image of black and white such as characters but also the display of an image of intermediate gradation.
  • the display of intermediate gradations is an essential display mode as described above not only in the field of liquid crystal display devices but also in the field of electrophoretic display devices, but in general, a pulse width modulation method and a voltage modulation method are known. (See, for example, Non-Patent Document 1).
  • One object of the present invention is to solve the problem that the image can not be written sufficiently when the leak current of the electrophoretic display material is large, and to provide a novel gray scale display device and a method of driving a display panel. is there.
  • a plurality of transistors are provided, each gate electrode of the plurality of transistors is connected to any of a plurality of gate lines, and one of a source electrode and a drain electrode is connected to any of a plurality of data lines.
  • a display panel connected and the other of the source electrode and the drain electrode being connected to one of two pixel electrodes for sandwiching an electrophoretic display material, and an image to be displayed on the display panel in one frame period
  • a control unit for applying voltage pulses of the number of times corresponding to the lightness level of the pixel between the pixel electrodes corresponding to the pixel.
  • a plurality of transistors are provided, each gate electrode of the plurality of transistors is connected to any of a plurality of gate lines, and one of a source electrode and a drain electrode is any of a plurality of data lines.
  • a driving method of a display panel connected to the other, wherein the other of the source electrode and the drain electrode is connected to one of two pixel electrodes for sandwiching an electrophoretic display material Disclosed is a method of driving a display panel, characterized in that a write voltage pulse is applied between the pixel electrodes corresponding to the pixels a number of times according to the lightness level of a pixel of an image to be displayed on the display panel. .
  • the electrophoretic display device using the electrophoretic display device, it is possible to perform display using middle gradation as well as display using black and white contrast.
  • the charge supplied from the drive power supply through the thin film transistor etc. is reduced, and it is not possible to obtain the halftone display without sufficient image writing conventionally. Even, good halftone display can be obtained.
  • FIG. 1 is a functional block diagram of an electrophoretic display device according to Embodiment 1 of the present invention.
  • FIG. 6A is a schematic view and a cross-sectional view of a cross section of a gate line and a data line in the display panel of the electrophoretic display device according to the first embodiment of the present invention. It is a schematic diagram of the pixel in the display panel of the electrophoretic display concerning Embodiment 1 of the present invention.
  • FIG. 6 is an equivalent circuit diagram of pixel elements in a display panel of the electrophoretic display device according to the embodiment of the present invention. It is a figure which shows the relationship of the volume resistivity of the electrophoresis display material of the electrophoresis display device concerning embodiment of this invention, and holding time.
  • FIG. 6 is a functional block diagram of an electrophoretic display device according to Embodiment 2 of the present invention.
  • FIG. 10 is a timing chart of pulses applied to gate lines and data lines in a display panel of an electrophoretic display device according to Embodiment 2 of the invention. It is a functional block diagram of the electrophoresis display concerning a 3rd embodiment of the present invention. 10 is a timing chart of pulses applied to gate lines and data lines in a display panel of an electrophoretic display device according to Embodiment 3 of the present invention. It is a graph which shows the change of the reflectance at the time of actually operating the electrophoretic display concerning one Embodiment of this invention, and contrast.
  • FIG. 18 is a view showing the arrangement of gate lines, data lines and pixel elements in Embodiment 1-6 of the present invention.
  • Example 1 of this invention It is a figure which shows application of the voltage in Example 1 of this invention. It is a figure which shows application of the voltage in Example 2 of this invention. It is a figure which shows application of the voltage in Example 3 of this invention. It is a figure which shows application of the voltage in Example 4 of this invention. It is a figure which shows application of the voltage in Example 5 of this invention. It is a figure which shows application of the voltage in Example 6 of this invention.
  • FIG. 1 shows an example of a functional block diagram of an electrophoretic display device according to Embodiment 1 of the present invention.
  • the electrophoretic display device 100 includes a display panel 101 and a control unit 102.
  • the display panel 101 is an electrophoretic display panel in which an electrophoretic display material is held between a pair of substrates.
  • gate lines G1, G2,..., Gm and data lines D1, D2,..., Dl are arranged on a substrate on which the transistors 104 of the display panel 101 are formed.
  • One end of the gate lines G1, G2,..., Gm is connected to the gate line drive circuit 1021, and the voltage applied to each is controlled by the gate line drive circuit 1021.
  • one end of each of the data lines D1, D2, ..., Dl is connected to the data line drive circuit 1022, and the voltage applied to each is controlled by the data line drive circuit 1022.
  • an electrode is formed on the other substrate of the display panel 101 (not shown).
  • this electrode is referred to as a "substrate electrode” below.
  • the substrate electrode is connected to the substrate electrode drive circuit 1023 via a bridge electrode (not shown), and the voltage applied to the substrate electrode is controlled by the substrate electrode drive circuit 1023.
  • the number of substrate electrodes formed on one side of the substrate does not have to be one.
  • One of the substrates can be divided, and a number of substrate electrodes can be appropriately formed according to the division.
  • the display panel 101 is provided with a plurality of transistors 104.
  • the transistor 104 is disposed at the intersection of the gate line and the data line.
  • a thin film transistor (thin film transistor) or the like is used as the transistor 104.
  • the gate electrode of the transistor 104 is connected to the gate line located at the cross position, and the pixel electrode of the pixel element 105 described later is connected to the data line through the transistor 104.
  • one of the source electrode and the drain electrode is connected to the data line located at the crossing position.
  • the other of the source electrode and the drain electrode is connected to an electrode at one end of the pixel element 105.
  • An electrode (substrate electrode) at the other end of the pixel element 105 is connected to a substrate electrode drive circuit 1023.
  • an electrode (pixel electrode) at one end of the pixel element 105 and an electrode (substrate electrode) at the other end facing the electrode are collectively referred to as “pixel electrode”.
  • Each of the pair of pixel electrodes is formed on the facing surfaces of the pair of substrates, and the electrophoretic display material is sandwiched therebetween. Therefore, by applying a voltage between the pixel electrodes, a predetermined voltage is applied to the electrophoretic display material held by the pixel electrodes.
  • the pixel electrode need not be in direct contact with the electrophoretic display material.
  • the electrophoretic display material may be enclosed in a capsule, and the capsule may be disposed between the pixel electrodes.
  • FIG. 2A is an example of an enlarged schematic view of an intersecting portion between a gate line and a data line.
  • One end of the pixel element 105 is connected to the transistor 104.
  • the pixel element 105 is connected to one of the data lines D1, D2,.
  • the voltage applied to the gate line is controlled by the gate line drive circuit 1021, and when the transistor 104 is turned on, the voltage applied to the data line by the data line drive circuit 1022 and the other end of the pixel element by the substrate electrode drive circuit 1023.
  • the difference between the voltage applied to the pixel and the voltage applied to the pixel element (hereinafter referred to as the “write voltage”) is applied to the The period (hereinafter referred to as “gate selection time”) in which the transistor 104 is turned on can be set in consideration of the number (m) of gate lines G1, G2,..., Gm.
  • the gate selection time is also limited by the carrier mobility of the transistor. This is because carriers can be injected from the transistor to the pixel electrode at higher speed as the carrier mobility is higher. Since the mobility of a general amorphous silicon transistor is 0.6 to 0.8 cm 2 / (V ⁇ s), it is known that the gate selection time can be shortened to about 10 microseconds.
  • the pixel element 105 includes a pixel 201 and a storage capacitor 202.
  • the pixel 201 and the auxiliary capacitance 202 are connected in parallel.
  • the pixel 201 is configured using two pixel electrodes and an electrophoretic display material sandwiched between the pixel electrodes.
  • the auxiliary capacitance 202 is a capacitor.
  • a transistor connected to one end of the pixel element 105 is turned off, and a predetermined voltage can be continuously applied to the pixel 201 even when the voltage of the data line is not applied to the pixel element 105 Used for In the case where the pixel 201 also functions as a capacitor, the auxiliary capacitance 202 may not be used.
  • FIG. 2B illustrates an example of a cross section of the transistor 104 in the case where the display panel is cut in parallel to the data line.
  • Source / drain electrodes 214 and drain / source electrodes 215 are formed on a substrate 211.
  • "Source / drain electrode” and “drain / source electrode” mean that one electrode operates as a source electrode and the other operates as a drain electrode.
  • the source / drain electrode 214 is connected to any of the plurality of data lines D1 to D1, and the drain / source electrode 215 is connected to one of the pixel electrodes.
  • the source / drain electrode 214 and the drain / source electrode 215 are formed separately, and a channel region is formed in the semiconductor thin film between them.
  • An insulating film 212 is stacked on the source / drain electrode 214, the drain / source electrode 215, and the channel, and a gate electrode 216 is formed on the channel region.
  • the gate electrode 216 is connected to any of the plurality of gate lines G1 to Gm.
  • the thin film transistor has a top gate type in which the gate electrode is disposed on the upper side with respect to the channel region.
  • the structure of the thin film transistor is not limited to the top gate type, and may be a bottom gate type in which the gate electrode is disposed below the channel region.
  • the thin film transistor may be a silicon thin film transistor such as amorphous silicon, an oxide thin film transistor, or an organic thin film transistor.
  • a substrate electrode 218 which is the other of the pixel electrodes is formed.
  • the substrate electrode 218 is connected to the substrate electrode drive circuit 1023.
  • an electrophoretic display material is disposed and sealed between the pixel electrodes 219. Thus, the electrophoretic display material is sandwiched between the two pixel electrodes.
  • FIGS. 3A and 3B are schematic views of the cross section of the pixel 201.
  • the pixel electrode 301 is connected to the substrate electrode drive circuit 1023 and the pixel electrode 302 is connected to the drain / source electrode 215 of the transistor 104 (pixel electrode 301 may be connected to the drain / source electrode 215 of the transistor 104, and the pixel electrode 302 may be connected to the substrate electrode drive circuit 1023).
  • an electrophoretic display material is held and held between the pixel electrode 301 and the pixel electrode 302.
  • at least one of the pixel electrode 301 and the pixel electrode 302 is a transparent electrode, and the electrophoretic display material can be visually recognized from the outside of the display panel 101.
  • the pixel electrode not connected to the drain / source electrode 215 and the substrate (not shown) on which it is formed become transparent.
  • the electrophoretic display material is one in which a plurality of charged particles are dispersed in a solvent such as a liquid.
  • the plurality of charged particles have respective colors such as black and white, and charged particles of the same color are charged by charges of the same polarity. If other charged particles of different colors are present, those charged particles of different colors are charged by charges of different polarity. Therefore, when a write voltage is applied between the pixel electrode 301 and the pixel electrode 302 to generate an electric field between the pixel electrode 301 and the pixel electrode 302, charged particles of a certain color are generated by this electric field. Are migrated and moved to one side of the pixel electrode 301 and the pixel electrode 302.
  • charged particles of different colors migrate and move to the other side of the pixel electrode 301 and the pixel electrode 302.
  • charged particles of a certain color migrate to the other side of the pixel electrode 301 and the pixel electrode 302. Moving. If charged particles of different colors are present, they migrate to one of the pixel electrode 301 and the pixel electrode 302 and move.
  • the pixel electrode 301 and the substrate (not shown) on which the pixel electrode 301 is formed are transparent. It is assumed that the charged particle 303 has a black color and is charged by a positive charge. Further, it is assumed that the charged particle 304 has a white color and is charged by a negative charge.
  • a voltage is applied to the pixel electrode 301 and the pixel electrode 302 and the voltage of the pixel electrode 301 is made larger than the voltage of the pixel electrode 302, an electric field in the direction from the pixel electrode 301 to the pixel electrode 302 is generated. As shown in FIG.
  • the charged particles 303 move to the side of the pixel electrode 302, and the charged particles 304 move to the side of the pixel electrode 301.
  • the electrophoretic display material when viewed from the side of the pixel electrode 301, it looks white. That is, the pixel displayed by the pixel electrode 301 looks white.
  • the potential of the pixel electrode 302 when the potential of the pixel electrode 302 is higher than the potential of the pixel electrode 301, an electric field in the direction from the pixel electrode 302 to the pixel electrode 301 is generated, and as shown in FIG. Moves to the side of the pixel electrode 301, and the charged particles 304 move to the side of the pixel electrode 302.
  • the electrophoretic display material when viewed from the side of the pixel electrode 301, it looks black. That is, the pixel displayed by the pixel electrode 301 looks black.
  • the black charged particles 303 are present on the pixel electrode 302 side, the white charged particles 304 are present on the pixel electrode 301 side, and the black charged particles 303 are present for the pixel electrode.
  • white charged particles 304 are shown to be present on the side of the pixel electrode 302.
  • black charged particles 303 and white charged particles 304 may be mixed on the same electrode side.
  • the electrophoretic display material may appear gray when viewed from the pixel electrode 301 side.
  • the number of charged particles having white for example, present on the side of the pixel electrode 301
  • the reflectivity for white is determined.
  • the number of charged particles present on the side of the pixel electrode 301 is the distribution of charged particles before voltage is applied to the pixel electrode 301 and the pixel electrode 302, and the number of charged electrodes on the pixel electrode 301 and the pixel. It depends on the magnitude of the voltage applied to the electrode 302 and time. Therefore, the reflectance of the electrophoretic display material corresponding to the color of the charged particles is changed.
  • the “response time” of the electrophoretic display material is defined as follows. That is, a first DC voltage is applied between two electrodes sandwiching the electrophoretic display material, and the color displayed on the side of one of the electrodes is set to a first color (for example, white), and Shut off the first DC voltage. Then, after passing a state in which there is no voltage difference between the two electrodes for a predetermined time or more, a second DC voltage is applied between the two electrodes, and the color displayed on the side of one of the electrodes is Transition to the second color (eg, black).
  • a first DC voltage is applied between two electrodes sandwiching the electrophoretic display material, and the color displayed on the side of one of the electrodes is set to a first color (for example, white), and Shut off the first DC voltage. Then, after passing a state in which there is no voltage difference between the two electrodes for a predetermined time or more, a second DC voltage is applied between the two electrodes, and the color displayed on the side of one
  • the time until the reflectance of the electrophoretic display material held between the two electrodes takes the maximum value or the minimum value by the application of the second DC voltage is referred to as “response time”.
  • the reflectance refers to the reflectance of the color displayed by the electrophoretic display material.
  • the time until the color displayed by the electrophoretic display material transitions from the first color to the second color upon application of the second DC voltage is referred to as "response time”.
  • FIG. 4 shows an equivalent circuit of the pixel element 105. That is, FIG. 4 shows the pixel 201 shown in FIG. 2 and FIG. 3 by a parallel circuit of a pixel capacity and an electric resistance by the electrophoretic display material. Therefore, when the transistor is turned off after applying the write voltage to the equivalent circuit of FIG. 4, the electrophoretic display material of the pixel 201 has a voltage due to charges accumulated in the pixel 201 or the auxiliary capacitance 202 (hereinafter referred to as “ It is called “holding voltage” and is expressed as “VH”), and the charged particles move to realize white or black color display. Such transient phenomena can be numerically analyzed using an equivalent circuit. According to this, the magnitude of the holding voltage varies depending on the magnitude of the electric resistance R.
  • the magnitude of the holding voltage is the sum of the auxiliary capacitance 202 (hereinafter referred to as "Cs") and the electric capacitance of the pixel (hereinafter referred to as "C") and the electric resistance of the pixel (hereinafter referred to as R).
  • VH VH0 ⁇ EXP ( ⁇ t / TCR) (Equation 2)
  • Equation 2 VH0” is the magnitude of the holding voltage immediately after the transistor is turned off, and is approximately equal to the write voltage
  • t is an elapsed time starting from the time when the transistor is turned off It is.
  • the write voltage and the hold voltage are voltages applied to the pixel 201
  • the write voltage is a voltage applied to the pixel 201 during the gate selection time
  • the hold voltage is the transistor. Is an effective voltage applied to the pixel 201 when it is turned off.
  • the decay time corresponds to the time when the charge of the pixel leaks in the electrophoretic display material and disappears due to the current (hereinafter referred to as "leakage current"). Therefore, as shown in Equation 2, the shorter the decay time, the shorter the holding voltage (VH) will be.
  • VH / VH0 becomes 1 from Equation 2 and the holding voltage becomes an initial value.
  • VH / VH0 is 0. 0. It becomes as small as 37 and becomes almost 0 when the elapsed time t is 5 ⁇ TCR, so the charged particles do not have any voltage due to the holding voltage in the time of 5 ⁇ TCR or more, and the electric field of the charged particles has been If the migration by the response is not completed, the image can not be sufficiently written on the electrophoretic display panel.
  • the magnitude of the decay time is a problem.
  • d is the thickness of the electrophoretic display material
  • S is the area of the pixel electrode. From Equation 3, as the volume resistivity ⁇ ⁇ is larger, the decay time is longer, so that a constant holding voltage can be continuously applied to the electrophoretic display material for a long time.
  • the relationship between the time for which the magnitude of the holding voltage holds a predetermined value (for example, 90% of the initial value) (hereinafter referred to as "holding time") and the volume resistivity can be calculated using Equations 1 to 3.
  • the obtained result is shown in FIG.
  • the volume resistivity is a fixed value (for example, 10 12 ⁇ cm) or more
  • the response time for example, 400 milliseconds
  • the gate lines G1, G2 since the holding voltage is maintained at a predetermined value or more during the response time, for example, if one frame period is taken as the response time.
  • the conventional active matrix driving method of selectively scanning only and applying a voltage to each data line in synchronization therewith enables sufficient writing of an image on the electrophoretic display panel.
  • halftone display can be performed by controlling the amount of charge accumulated in the pixel capacitance and the storage capacitance.
  • the control of the charge amount can be performed by the conventional voltage modulation method or pulse width modulation method.
  • the holding time is about 1 millisecond (FIG. 6).
  • the hold voltage is nearly zero for most of the response time, as it is significantly smaller than the response time (eg, 400 ms). Therefore, even if one frame period is a response time (for example, 400 milliseconds), the gate selection time is shorter than the response time (for example, 100 microseconds), so gate lines G1, G2,.
  • the conventional active matrix driving method of selectively scanning only once and synchronously applying a voltage to each data line can not sufficiently write an image on the electrophoretic display panel.
  • the volume resistivity is as small as, for example, 10 12 ⁇ cm or less, if the holding voltage is reduced within the response time, it becomes difficult to control the brightness level of the white display itself. For this reason, it is impossible to control the gradation by the voltage modulation method or the pulse width modulation method.
  • the voltage pulse is applied several times in the order of the gate lines G1, G2,..., Gm for one frame period which is the time required to finish displaying the image of one screen If the voltage pulse is applied to the pixel 201 in synchronization with the selection of the gate lines G1, G2,..., Gm, the charge is applied to the pixel according to the number of times the voltage is applied to the pixel 201. As it is continuously supplied, the lightness level can be controlled.
  • the write voltage for the number of times corresponding to the lightness level of the pixel of the image to be displayed on the display panel is Since the brightness level can be controlled by applying between the electrodes, even when the volume resistivity is small (for example, 10 12 ⁇ cm or less), the gradation of the voltage modulation method or the pulse width modulation method is not used. It becomes possible to perform half tone display.
  • the volume resistivity of the electrophoretic display material according to the embodiment of the present invention is preferably 10 7 ⁇ cm or more and 10 12 ⁇ cm or less. If the volume resistivity is less than 10 7 ⁇ cm, the leakage current is large, and the holding time is short, so that sufficient black and white display contrast can not be obtained. Also, if the volume resistivity is larger than 10 12 ⁇ cm, as described above, since the leak current is small, the gradation control method of the normal voltage modulation method or pulse width modulation method can be effectively used.
  • the reflectance of a predetermined color is set to a minimum or maximum state or a predetermined value, and the write voltage is applied between the pixel electrode 301 and the pixel electrode 302.
  • the write voltage is applied between the pixel electrode 301 and the pixel electrode 302.
  • One of the features of the present embodiment is to control, for example, the white reflectance and the like by controlling the number of repetitions of application of voltage for a shorter period of time than the response time.
  • the change in voltage from the start of application of the write voltage to the end of application is referred to as a “write voltage pulse”.
  • the magnitude of the voltage with respect to the time of the write voltage pulse is preferably square, but depending on the operation of the voltage generation circuit or the like, it may not be a strictly square due to overshoot, undershoot or the like.
  • the pulse width of the write voltage pulse is usually the above-described gate selection time.
  • the reflectance of the color of each pixel is calculated using the history of the voltage applied between the pixel electrodes, the reflectance of the color, etc. is obtained by each pixel at the next time.
  • the number of times the write voltage pulse should be applied between the pixel electrodes can be calculated using the reflectance of the color to be used, and the write voltage can also be applied.
  • one of the pixel electrode 301 and the pixel electrode 302 is a pixel electrode corresponding to a pixel
  • the other of the pixel electrode 301 and the pixel electrode 302 is a substrate electrode corresponding to the pixel.
  • the substrate electrode is transparent, and the image can be viewed from above the substrate electrode.
  • the pixel electrode is often connected to the transistor 104.
  • the substrate electrode is often connected to the substrate electrode drive circuit 1023. Therefore, by controlling the voltages of the gate lines G1, G2, ..., Gm and the data lines D1, D2, ..., Dl, different voltages can be applied to the pixel electrodes for each individual pixel element.
  • a common voltage is applied to the substrate electrode. Note that applying a common voltage to all the substrate electrodes is not essential. For example, when a plurality of substrate electrodes are formed individually, different voltages can be applied to each of the substrate electrodes.
  • the control unit 102 applies, during one frame period, write voltage pulses of the number of times corresponding to the lightness level of the pixel of the image to be displayed on the display panel 101 between the pixel electrodes corresponding to the pixel.
  • the “one frame period” is a period in which control for displaying one still image on the display panel 101 is performed.
  • selection of the gate lines G1 to Gm is performed a predetermined number of times in order to display one still image.
  • the time required for the selection of the gate lines G1 to Gm to be performed a predetermined number of times consecutively is one frame period.
  • “one frame period” is a period from the start of the image writing process to the end thereof to display one image. That is, it is a period in which the gate lines G1, G2,..., Gm are selected a plurality of times each having a predetermined number of times (n).
  • the “one image” is an image to be displayed using the display panel 101. Usually, it is one still image.
  • the “brightness level of the pixel of the image” is a brightness level of each pixel position of the display panel 101 when the image is displayed on the display panel 101. For example, when the pixel information represents an image using 8-bit brightness for each pixel, levels of brightness from 0 to 255 exist.
  • the number of times according to the lightness level of the pixel of the image means that the color of the pixel of the display panel 101 is white at the start of one frame period when the electrophoretic display material can display, for example, the range from white to black. In some cases, the smaller the lightness of the pixels of the image, the more it will increase. In addition, when the color of the pixel of the display panel 101 is black at the start of one frame period, the larger the lightness of the pixel, the more it becomes.
  • the "brightness of an image pixel” refers to the brightness of an image pixel. For example, it is lightness when the color of a pixel of an image is expressed by hue, lightness, and saturation.
  • control unit 102 As an example of the configuration of the control unit 102, there is an example configured by an applied voltage control circuit 1025 and an application number control circuit 1024 described next.
  • the applied voltage control circuit 1025 is a circuit that generates a voltage pulse from the plurality of gate lines and the plurality of data lines and applies the voltage pulse between the pixel electrodes.
  • the control unit 102 causes the substrate electrode drive circuit 1023 to set the voltage of the substrate electrode to, for example, 0 V, and the gate line drive circuit 1021 turns on the transistor 104 for the gate lines G1, G2,.
  • the data line driver circuit 1022 to apply a voltage pulse to the source electrode or the drain electrode of the transistor to which the pulse is applied by the gate line, and the pixel electrode 301 and the pixel electrode 302
  • a write voltage pulse of a predetermined magnitude is applied during the period. For example, one frame period can be taken as response time. At this time, the gate selection time is shorter than the response time.
  • the gate selection time can be greater than 0 and less than or equal to the time obtained by dividing the response time by the value of n ⁇ m.
  • n ⁇ m is the number of times the gate line is selected during one frame time.
  • one frame period can be longer or shorter than the response time.
  • the voltage of the substrate electrode can be a constant value (for example, 0 V), or can change with time, such as an alternating voltage.
  • the gate line When a black color or a similar color is to be displayed on a pixel at an intersection position of the gate line G1 and the data line D1 of an image to be displayed on the display panel 101 as viewed from the substrate electrode side, the gate line
  • the data line driving circuit 1022 applies a voltage pulse for moving black charged particles away from the pixel electrode of the pixel connected to the data line D1. If the black charged particles 303 are charged with positive charge, a high voltage is applied to the data line D1 so that a voltage higher than the voltage of the substrate electrode is applied to the pixel electrode. For example, when the voltage of the pixel electrode is 0 V, a positive voltage (for example, 15 V) is applied to the data line D1. If the color of the solvent is black and the charged particles are white, a voltage is applied to move the charged particles away from the substrate electrode.
  • the number-of-applications control circuit 1024 applies, during one frame period, the voltage pulse the number of times according to the lightness level of the pixel of the image to the pixel electrode corresponding to the pixel.
  • a color filter may be formed on the substrate on which the substrate electrode is formed by a predetermined method, and full color display may be performed using the halftone display.
  • the charged particles are not limited to black charged particles, and charged particles of any color, such as red charged particles, may be used.
  • area color or full color display can be performed by arranging the charged particles of each color for a part of a display panel or a part of pixels. It can also be done.
  • FIG. 7 shows an example in which the control unit 102 (application number control circuit 1024) calculates the number of times of applying a voltage pulse to the application voltage control circuit 1025 according to the lightness level of the pixel of the acquired image information.
  • the control unit 102 application number control circuit 1024
  • the reflectance of the predetermined color such as white is in the minimum state, and the reflectance of the color gradually increases by applying the voltage pulse a plurality of times. Therefore, for example, when the lightness level of the pixel is 0 or more and 63 or less, a voltage is not applied to the corresponding pixel using the applied voltage control circuit 1025. In addition, if it is 64 or more and 127 or less, a voltage is applied once to the corresponding pixel using the applied voltage control circuit 1025.
  • the voltage is 128 or more and 191 or less, two voltages are applied to the corresponding pixel using the applied voltage control circuit 1025. If the voltage is 192 or more and 225 or less, the corresponding voltage control circuit 1025 is used. The number of times of voltage application is calculated as in the case where voltage is applied three times to pixels to be selected. However, although "a voltage is not applied" is described, a voltage which does not substantially change the color reflectance may be applied as in the embodiment described later.
  • the number of application of the voltage for obtaining the maximum lightness is set to three times for convenience of explanation, but may be several tens to several hundreds of times.
  • the number of times of application of the voltage for obtaining the maximum lightness also varies depending on the magnitude of the write voltage or the length of the gate selection time. For example, assuming that the gate selection time is n times the number of repetitions of sequentially selecting the gate lines G1, G2,..., Gm and applying a voltage pulse, one frame period may be divided by m ⁇ n. it can. As an example, taking one frame period as a response time (for example, 400 milliseconds), the gate selection time is about 55 microseconds when the number (m) of gate lines is 240 and the number of repetitions n is 30.
  • the gate selection time can be shortened to about 10 microseconds as described above.
  • the gate selection time can also be shortened by using a thin film transistor (for example, a polycrystalline silicon transistor, an oxide transistor, or the like) with higher mobility.
  • the number of repetitions (n) of applying the voltage pulse by sequentially selecting the gate lines G1, G2,..., Gm can be made equal to or larger than the number of application of the voltage for obtaining the maximum lightness.
  • the voltage for obtaining a predetermined brightness is 10 when the number of times of repetition is 30, the voltage is applied 10 times out of the 30 times of repetition, and the remaining 20 times The voltage may not be applied.
  • four gradation levels are illustrated in the above example, the present invention can be applied to any gradation level.
  • the brightness level of the pixel may be smaller than the reflectance of the state.
  • the number of negatives can be calculated according to the difference between the lightness level of the pixel and the level.
  • the application frequency control circuit 1024 uses the application voltage control circuit 1025 to apply a positive voltage to the negative frequency, which is opposite to the potential difference between the pixel electrode and the substrate electrode.
  • a write voltage is applied to the pixel electrode and the substrate electrode as follows. Further, it is conceivable that the number of times of application at that time is an absolute value of the number of negative times.
  • the application frequency control circuit 1024 applies 15 V to the pixel electrode and applies 0 V to the substrate electrode using the application voltage control circuit 1025 for each positive frequency.
  • -3 is calculated as the number of negative times, 0 V is applied to the pixel electrode and 15 V is applied to the substrate electrode three times.
  • FIG. 8 is an example of a flowchart illustrating the flow of processing executed by the electrophoretic display device 100 according to the present embodiment.
  • image information representing an image is acquired.
  • the image information may be transmitted from the outside of the electrophoretic display device 100 or read from a storage circuit (not shown) of the electrophoretic display device 100 or the like.
  • step S502 the lightness level of each pixel of the image represented by the acquired image information is calculated.
  • step S 503 the number of times of applying the write voltage pulse between the pixel electrode corresponding to each pixel and the substrate electrode is calculated using the calculated lightness level.
  • the application voltage control circuit 1025 is used to apply the number of write voltage pulses calculated in step S504 to the pixel electrode and the substrate electrode corresponding to each pixel.
  • FIG. 9 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,.
  • T corresponds to one frame period.
  • the gate lines G1, G2, G3,..., Gm are sequentially selected once, and one write voltage pulse is applied. Therefore, each gate line is selected n times during one frame period, and the write voltage pulse is applied to the pixel electrode and the substrate electrode the number of times calculated according to the lightness level of the pixel.
  • pulses P11, P21, P31,..., Pm1 are applied to the gate lines G1, G2, G3,.
  • pulses P1n, P2n, P3n,..., Pmn are applied to the gate lines G1, G2, G3,.
  • k are voltages that change the reflectance of the pixel (for example, 15 V or -15 V according to the sign of k), and the remaining voltages do not substantially change the reflectance of the pixel (for example, 0 V) Become.
  • the k pieces of voltage that changes the reflectance of the pixel may be the first k pieces of d 321, d 322, d 323,..., D 32 n. Alternatively, it may be the last k. Alternatively, k may be randomly selected from d321, d322, d323, ..., d32n.
  • all of the gate lines G1, G2, G3,..., Gm may be selected once each, and then all of the gate lines G1, G2, G3,. After all of the gate lines G1, G2, G3,..., Gm have been selected once each and a predetermined time has elapsed, then all of the gate lines G1, G2, G3,. It may be done. A period in which all of the gate lines G1, G2, G3,..., Gm are selected once may be referred to as "one field period".
  • each gate line is selected a plurality of times within the time of T which is one frame period.
  • the volume resistivity (for example, 10 9 ⁇ cm) of the electrophoretic display material is small by selecting each gate line once in one frame period by the normal active matrix driving, and therefore the leakage current of the electrophoretic display material is When it becomes larger, the charges injected from the data line at the time of gate line selection decrease, and the effective voltage (the above-mentioned holding voltage) applied to the electrophoretic display material decreases. For this reason, the change in reflectance becomes insufficient.
  • the inventor of the present application applies the write voltage between the pixel electrode and the substrate electrode corresponding to each pixel, paying attention to the phenomenon that the reflectance of the electrophoretic display material changes in accordance with the holding voltage.
  • the holding voltage can be increased according to the number of times, it has been found that display of intermediate gradation can be performed.
  • the write voltage pulse is applied a number of times according to the lightness level of the pixel to be displayed between the pixel electrode and the substrate electrode (between the pixel electrodes). It becomes possible to display gradation brightness and various colors.
  • an electrophoretic display device As a second embodiment of the present invention, an electrophoretic display device will be mainly described which applies a voltage for erasing a displayed image before application of a write voltage pulse by a control unit.
  • FIG. 10 shows an example of a functional block diagram of the electrophoretic display device according to the second embodiment of the present invention.
  • the electrophoretic display device 700 includes a display panel 101 and a control unit 701.
  • the control unit 701 there is an example configured to include an image erasing circuit 702, and further to use an applied voltage control circuit 1025 and an application number control circuit 1024.
  • the electrophoretic display device 700 may include an applied voltage control circuit 1025, a gate line drive circuit 1021, a data line drive circuit 1022, and a substrate electrode drive circuit 1023, as necessary. Therefore, the electrophoretic display device according to the present embodiment can be described as further including the image erasing circuit 702 in the electrophoretic display device according to the first embodiment.
  • the erase voltage of any polarity is applied between the pixel electrodes.
  • the erase voltage may be applied almost simultaneously to all of the pixel electrodes. This is because the display contents of all the pixels can be erased at one time, and the application time of the erase voltage can be shortened.
  • the applied voltage control circuit 1025, and the application frequency control circuit 1024 are provided in the control unit 701, they correspond to a plurality of pixels before the application of voltage by the application frequency control circuit 1024.
  • An erasing voltage is applied to generate a potential difference between the pixel electrode and the substrate electrode.
  • the erase voltage causes a potential difference of either polarity to occur between the pixel electrode and the substrate electrode.
  • the polarity, the magnitude, and the application time of the potential difference due to the erasing voltage are appropriately set depending on how to set the reflectance of the color in the whole pixel of the display panel 101 after the erasing voltage is applied.
  • the potentials of all the substrate electrodes are made lower than all the pixel electrodes.
  • the gate line drive circuit 1021, the data line drive circuit 1022, and the substrate electrode drive circuit 1023 are operated.
  • the substrate electrode drive circuit 1023 applies 0 V
  • the data line drive circuit 1022 applies 15 V to all data lines
  • the gate line drive circuit 1021 turns on the transistors 104 for all gate lines. Apply a voltage.
  • the erase voltage is applied to all the pixel electrodes almost simultaneously.
  • the length of time during which the gate line driver circuit 1021 applies a voltage to turn on the transistors 104 to all the gate lines is preferably equal to or longer than the response time.
  • the charged particles can not move from one electrode (for example, the pixel electrode) to the other electrode unless the application time of the erasing voltage is equal to or longer than the response time.
  • the length of time for which the voltage for turning on the transistor 104 is applied may be shorter than the response time.
  • the image erasing circuit 702 may apply the erasing voltage in one or more divided operations. For example, the application of the erase voltage is performed five times at intervals of 50 milliseconds at intervals of 100 milliseconds. Alternatively, when applying an erase voltage of 500 ms in length, there is a time in which an erase voltage of 250 ms is applied and a voltage of 100 ms is not applied, and even if an erase voltage of 250 ms is applied thereafter. Good. Alternatively, an erasing voltage of 200 milliseconds may be applied, and after a time when no voltage is applied, an erasing voltage of 300 milliseconds longer than 200 milliseconds may be applied.
  • the erase voltage of 300 milliseconds is first applied, and after the time when no voltage is applied, the erase voltage of 200 milliseconds is applied.
  • the erase voltage when the erase voltage is applied in one or a plurality of times, the sum of time lengths of application of the erase voltage depends on the condition of voltage application before applying the erase voltage or when the response time or more is preferable. Less than response time may be preferred. Note that the case where the erasing voltage is applied in a plurality of times by inserting a pause time during which voltage application is not performed during voltage application is referred to as "intermittently applying the erasing voltage".
  • applying an erasing voltage that causes a potential difference between the pixel electrode corresponding to a plurality of pixels and the substrate electrode on the basis of the voltage of the substrate electrode means that the pixel electrode has any polarity. It can be paraphrased to apply the erase voltage.
  • FIG. 11 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,.
  • gate lines G1, G2, G3, ..., Gm and data lines D1, D2, ..., Dl Before applying voltages to gate lines G1, G2, G3, ..., Gm and data lines D1, D2, ..., Dl according to the timing chart shown in Fig. 9, gate lines G1, G2, G3, ..., Gm, respectively. , Pulses pe1, pe2, pe3,..., Pem having a width of time Et are applied almost simultaneously. At the same time, pulses de1, de2, ..., del are applied to the data lines D1, D2, ..., Dl.
  • the display panel 101 displays an image of only one predetermined color, and the pulses pe1, pe2, pe3, ..., pem , De 1, de 2,..., Del are erased.
  • Et is preferably equal to or longer than the response time, but in certain cases, it may be preferable to be less than the response time.
  • the lightness level of the pixel of the acquired image information is calculated according to the flowchart of Fig. 8, and the pixel electrode and the substrate electrode are The number of times of applying the write voltage pulse is calculated, and the write voltage pulse is applied.
  • the image displayed on the display panel before that is erased and the display of a specific single color is performed, so the influence of the image displayed previously is eliminated.
  • the influence of the image displayed previously is eliminated.
  • Embodiment 3 An electrophoretic display device in which an alternating voltage is applied between a pixel electrode and a substrate electrode before application of a write voltage pulse by a control unit will be described as Embodiment 3 of the present invention.
  • FIG. 12 shows an example of functional blocks of the electrophoretic display device according to the third embodiment of the present invention.
  • the electrophoretic display device 900 includes a display panel 101 and a control unit 901. As an example of the configuration of the control unit 901, there is an example further including an alternating voltage application circuit 902, an applied voltage control circuit 1025, and an application number control circuit 1024.
  • the electrophoretic display device 700 may include a gate line drive circuit 1021, a data line drive circuit 1022, and a substrate electrode drive circuit 1023, as necessary. Therefore, it can be described that the electrophoretic display device according to the present embodiment is configured to further include the alternating voltage application circuit 902 according to the first embodiment.
  • an alternating voltage is applied between the pixel electrodes prior to the application of the write voltage pulse.
  • the alternating voltage is a voltage in which a positive voltage and a negative voltage alternate alternately at a predetermined frequency.
  • the absolute values of the positive voltage and the negative voltage are approximately equal.
  • the absolute values of the positive voltage and the negative voltage may be different. For example, at 10 Hz, 15 V and -15 V are alternately repeated.
  • the alternating voltage may be applied to all of the pixel electrodes substantially simultaneously.
  • the alternating voltage application circuit 902 is substantially arranged between the pixel electrodes corresponding to the respective pixels before application of the write voltage pulse by the application number control circuit 1024. The same voltage is applied to generate an alternating voltage.
  • the substrate electrode drive circuit 1023 applies 0 V
  • the data line drive circuit 1022 applies an alternating voltage to all data lines
  • the gate line drive circuit 1021 applies transistors to all gate lines.
  • a voltage may be applied to turn on the switch 104. Thereby, an alternating voltage is applied substantially simultaneously between all the pixel electrodes.
  • applying a voltage that generates an alternating voltage to the pixel electrode and the substrate electrode can be reworded by applying an alternating voltage to the pixel electrode, based on the voltage of the substrate electrode.
  • the magnitude, frequency, pulse width and application time of the positive voltage and the negative voltage of the alternating voltage determine how to reflect the color reflectance of the entire pixel of the display panel 101 after applying the alternating voltage, It is set appropriately depending on the
  • FIG. 13 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,.
  • the application of such pulses pa1, pa2, pa3,..., Pam, dp1, dp2,..., Dpl causes the display panel 101 to change the color reflectance at a predetermined frequency.
  • the display panel 101 displays the frequency of the alternating voltage, the maximum voltage, the minimum voltage, the application time, and the color of the reflectance in accordance with the potential of the last pulse.
  • the application time of the alternating voltage pulse is preferably equal to or less than the response time.
  • the application time of the pulse of the alternating voltage is equal to or less than the response time of the electrophoretic display material, even when the pixel is selected to be black, for example, as the polarity of the last pulse of the alternating voltage Since the response of the charged particles is insufficient and the migration distance of the charged particles is shortened, the black reflectance is higher than after applying the erasing voltage to make the pixels black as in the second embodiment. There is a case. Therefore, as described in the first embodiment, in the operation of the application frequency control circuit 1024, a negative frequency or the like needs to be used.
  • the application of the alternating voltage causes the charged particles and the ions present around the charged particles to respond to the alternating voltage. Therefore, the dispersibility of the charged particles and the like of the electrophoretic display material is enhanced, the aggregation of the charged particles is suppressed, and the movement of the charged particles between the pixel electrode and the substrate electrode becomes favorable.
  • the electrophoretic display device may have an image erasing circuit as in the electrophoretic display device according to the second embodiment.
  • the application of the erase voltage and the application of the alternating voltage are performed before the application of the write voltage pulse by the application number control circuit 1024.
  • the application of the erase voltage may be performed after the application of the erase voltage, or the application of the erase voltage may be performed after the application of the alternating voltage. However, it is preferable to apply an alternating voltage before applying the erase voltage.
  • the last pulse of the alternating voltage may be erased using the fact that the display histories of all the pixels can be erased by application to the first few voltage pulses of the alternating voltage. Can be applied as a pulse.
  • the application of the alternating voltage and the erase voltage is such that the last pulse of the voltage pulse train is applied when a voltage pulse train in which a positive voltage and a negative voltage applied alternately before the application of the write voltage pulse are alternately applied.
  • the voltage pulse train except for this is an alternating voltage and the last pulse of the voltage pulse train is a pulse of the erase voltage. Therefore, the polarity of the last pulse of the alternating voltage is opposite to the polarity of the erase voltage.
  • the application of the erasing voltage is included in the application of the alternating voltage, so that it is not necessary to further apply the erasing voltage exemplified in the second embodiment. It becomes possible to write an image to the display panel faster.
  • the absence of the display history means that the brightness of the pixel after application of the alternating voltage is not affected according to the brightness of the pixel immediately before applying the alternating voltage.
  • the application time of the erasing voltage is the same as the application time of the last voltage pulse of the alternating voltage. It may be present or long. Assuming that the application time of the erase voltage is the same as the application time of the last voltage pulse of the alternating voltage, the application of the erase voltage can be performed as the application of the alternating voltage, and the configuration of the circuit can be simplified. . In addition, since the dispersibility of the charged particles is improved due to the influence of the alternating voltage applied before the erasing voltage, the pixel is made black or white in the application time less than the response time as the application time of the erasing voltage. Therefore, it can be made equal to or less than the response time of the electrophoretic display material.
  • the movement of the charged particles between the pixel electrode and the substrate electrode is improved. Furthermore, since the last voltage pulse of the alternating voltage can be made to act as the erasing voltage, high-speed display such as halftone display of a higher quality image becomes possible.
  • FIG. 14 shows the black reflectance which is the black reflectance, the white reflectance which is the white reflectance, and the white reflectance with respect to the black reflectance with respect to the number of times that such a voltage pulse is applied to the gate line.
  • Fig. 6 shows a graph of the change with the contrast, which is the magnitude.
  • the white reflectance increases as the number of times of application of a voltage pulse having a gate selection time of 100 microseconds to the gate line increases. It can also be seen that the contrast is also rising.
  • FIG. 15 is a schematic view of a display panel commonly used in the embodiments of FIG. 16 to FIG.
  • three gate lines G1, G2 and G3 are disposed, and two data lines D1 and D2 are disposed substantially orthogonal to gate lines G1, G2 and G3.
  • the pixel elements 1, 2, 3, 4, 5, 6 are disposed at the intersections of G1 and D1, G2 and D1, G3 and D1, G1 and D2, G2 and D2, and G3 and D2, respectively.
  • one frame period T consists of nine of the field periods. Therefore, as for pixel elements 1, 2, 3, 4, 5, 6, in the first scan of the gate line, pixel elements 1 and 4, pixel elements 2 and 5, and pixel elements 3 and 6 are sequentially selected. The scan is repeated several times.
  • the application frequency control circuit 1024 can apply up to nine write voltage pulses to each pixel element using the application voltage control circuit 1025. Also, before and after the application of the maximum of nine writing voltage pulses, the change in reflectance of the pixel element 1 is the largest for the predetermined color is large, and then the pixel elements 2 and 5 are the next and the pixel element 3 and so on. The number of times of application of the write voltage pulse is controlled such that 4 continues. In addition, the pixel element 6 is controlled such that the reflectance does not change. For example, after application of a maximum of nine writing voltage pulses, pixel element 1 is white, pixel elements 2 and 5 are slightly light gray, pixel elements 3 and 4 are gray, and pixel element 6 is black. To be controlled. In the following example, the white charged particles are positively charged and the black charged particles are negatively charged. However, the same applies to the method of the present invention when the polarity of the charge is reversed. The method of applies.
  • FIG. 16 is a diagram for explaining the case where the erase voltage is applied before applying the write voltage pulse of the number of times to each pixel element. That is, the second embodiment mainly corresponds to the second embodiment.
  • an erase voltage (denoted as a reset pulse in FIG. 16) is applied prior to the application of a maximum of nine write voltage pulses.
  • a voltage pulse is simultaneously applied to all gate lines to apply a voltage pulse for turning on the transistor 104 between the pixel electrodes, and in synchronization with this, all data lines are applied. This is done by applying an erase voltage.
  • the gate selection time can be extended accordingly. For example, if the time for applying the erase voltage is about the response time, the gate selection time can also be about the response time.
  • the magnitude of the erase voltage is -V. By applying this erase voltage, all pixel elements become black.
  • the erase voltage is applied for a period of about response time.
  • the erase voltage is applied for the response time or more.
  • the reflectance is substantially minimized or substantially maximized.
  • mid-gradation display can be favorably performed by application of the write voltage pulse by the control unit.
  • the application period of the erase voltage may be less than the response time.
  • the gate lines G1, G2, G3 are sequentially scanned during T / 9, and in synchronization therewith, the desired voltages are applied to the respective pixel elements on the data lines D1, D2. , A predetermined write voltage pulse is applied, and this is repeated nine times.
  • a write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4.
  • Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6. Since the voltage of -V is applied as the erase voltage, substantial movement of the charged particles does not occur even if 0 V is applied or -V is applied.
  • the average voltage value of the application of the write voltage pulse after the application of the erase voltage is V, 2V / 3, V / 3, V / 3 for pixel elements 1 to 6, respectively. , 2V / 3, 0 or -V.
  • the lightness of each pixel element is the lightness corresponding to the average voltage value.
  • FIG. 17 is a diagram for explaining the case where the control unit intermittently applies the erase voltage one or more times before applying the write voltage pulse of the number of times to each pixel element. That is, the second embodiment mainly corresponds to the second embodiment.
  • the application of the erase voltage -V and the application of the erase voltage are alternately repeated prior to the application of the maximum of nine write voltage pulses.
  • a voltage pulse for turning on the transistor 104 is applied to all the gate lines, and in synchronization with this, a voltage pulse is applied to all the data lines.
  • the application of the erase voltage and the application of the erase voltage are alternately repeated.
  • a pulse-like erasing voltage or intermittent erasing voltage
  • the reason for using the intermittent erasing voltage is that when a DC voltage is continuously applied for a long time, the contrast is lowered due to so-called burn-in of the display or convection of the solvent.
  • the intermittent application of the erasing voltage makes it possible to shorten the application time of the DC voltage, to suppress the deterioration of the contrast due to the burn-in of the display and the convection of the solvent, and to improve the quality of the display.
  • the total of the application time of the intermittent erase voltage be about the response time.
  • the application time of the intermittent erase voltage is set to the response time or more. This is because the reflectance is substantially minimized or substantially maximized by such intermittent application of the erasing voltage.
  • the application number control circuit 1024 it is possible to satisfactorily perform half tone display.
  • the dispersibility of the charged particles is different, so the sum of the application periods of the erase voltage may be less than the response time.
  • the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, the data lines D1 and D2 are desired for each pixel element.
  • a voltage is applied, a predetermined voltage pulse is applied, which is repeated nine times.
  • a write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4.
  • Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
  • FIG. 18 is a diagram for explaining the case where an alternating voltage is applied before the control unit applies the write voltage pulse of the number of times to each pixel element. That is, this mainly corresponds to the third embodiment.
  • voltages V and -V are alternately applied before the application of the voltage up to nine times.
  • a voltage pulse for turning on the transistor 104 is applied to all gate lines, and in synchronization with this, a voltage pulse is applied to all data lines to alternate between the pixel electrodes. It does by applying a voltage.
  • the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, a predetermined voltage is applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. A pulse is applied and this is repeated nine times.
  • a write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
  • the alternating voltage is a voltage pulse that alternates between positive and negative polarities
  • the charged particles of the electrophoretic display material react to the polarity of the alternating voltage, for example, white charged particles and black charged particles. Move towards each other in the direction of the electrodes.
  • the electrophoretic display material has a predetermined reflectivity. Since the reflectance of the electrophoretic display material realized by the voltage pulse of the last polarity of the alternating voltage has the same effect as the case where the erasing voltage is applied, the alternating voltage is applied prior to the application of the writing voltage pulse.
  • the new erase voltage is selected by selecting the polarity of the last pulse of the alternating voltage as the polarity to erase the image, ie by setting the polarity of the last pulse of the alternating voltage to the polarity of the erase voltage. Can be omitted. For this reason, it is possible to perform halftone display in a short time.
  • the frequency of the alternating voltage is preferably in the range of 10 Hz to 200 Hz, and more preferably in the range of 20 Hz to 100 Hz. If the frequency of the alternating voltage is small, for example, less than 10 Hz, it may be recognized that flicker is displayed on the display panel, and the display quality may be impaired. In addition, since the ionic substance contained in the electrophoretic display material responds to a high frequency of several tens of kilohertz, if the frequency of the alternating voltage is high, for example, exceeding 200 Hz, the effect of improving the dispersibility of charged particles may be generated. However, the tracking of the charged particles to the alternating voltage is low. For this reason, the application of the write voltage pulse may make it impossible to satisfactorily perform intermediate gray scale display.
  • FIG. 19 shows the case where the alternating voltage is applied and the erase voltage is applied in the order of the alternating voltage and the erase voltage before the control unit applies the write voltage pulse of the number of times to each pixel element.
  • the electrophoretic display device according to the third embodiment has an image erasing circuit.
  • a write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
  • the application time of the erase voltage of ⁇ V applied after the application of the alternating voltage is preferably smaller than the response time. Even if the erase voltage is not applied for about the response time, since the alternating voltage is applied before the application of the erase voltage, the uniform dispersion of the charged particles is enhanced. For this reason, it is considered that movement of the charged particles by application of the erase voltage of -V becomes good within one frame period immediately after application of the alternating voltage of -V, and the erase voltage is applied smaller than the response time. Even the reflectance can be made approximately minimum or approximately maximum.
  • the application time of the erasing voltage is long, convection of the solvent of the electrophoretic display material occurs, and the reflectance may increase from the minimum reflectance or decrease from the maximum reflectance. Further, by making the application time of the erasing voltage smaller than the response time, it is possible to shorten the time required to display an image on the display panel.
  • FIG. 20 shows that an alternating voltage is applied and a pulse-like erase voltage is applied in the order of the alternating voltage and the erase voltage before the control unit applies the write voltage pulse of the number of times to each pixel element. It is a figure explaining the case where it carries out. That is, this corresponds mainly to the third embodiment.
  • the electrophoretic display device according to the third embodiment has the image erasing circuit, and the image erasing circuit applies a pulse-like erasing voltage as a modification of the second embodiment. It corresponds to the case.
  • voltages V and -V are alternately applied before application of a maximum of nine write voltage pulses per pixel element.
  • an erase voltage of -V is applied intermittently.
  • voltage pulses for turning on the transistor 104 are applied to all gate lines, and voltage pulses are applied to all data lines in synchronization with this. This is performed by intermittently applying an alternating voltage and an erase voltage between the electrodes.
  • the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, predetermined voltage pulses are applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element.
  • a write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
  • the total sum of the application time of the erasing voltage which is intermittent is smaller than the response time. Even if the intermittent erase voltage is not applied for about the response time, since the alternating voltage is applied before the application of the erase voltage, the uniform dispersion of the charged particles is enhanced. For this reason, it is considered that the movement of the charged particles due to the application of the erasing voltage is improved, and the reflectance can be substantially minimized or substantially maximized even if the erasing voltage is smaller than the response time.
  • the application of the voltage pulse by the application frequency control circuit 1024 makes it possible to achieve good gray scale display. In addition, by shortening the application time of the erasing voltage which is intermittent, it is possible to shorten the time required to display an image on the display panel.
  • FIG. 21 is a diagram for explaining a case where an alternating voltage is applied before the control unit applies the write voltage pulse of each number to each pixel element, and thereafter, a voltage pulse of -V is applied a predetermined number of times is there. That is, this corresponds mainly to the third embodiment.
  • the electrophoretic display device according to the third embodiment has an image erasing circuit.
  • voltages V and -V are alternately applied before application of a maximum of nine write voltage pulses per pixel element. Then, a voltage pulse of -V is applied a predetermined number of times, and the application of the alternating voltage is performed, for example, as described above, by applying a voltage pulse that turns on the transistor 104 to all gate lines. This is performed by applying a voltage pulse to the data line and applying an alternating voltage between the pixel electrodes. Thereafter, the gate lines G1, G2 and G3 are sequentially scanned during T / 12, and in synchronization therewith, predetermined voltage pulses are applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. Is applied, and this is repeated 11 times.
  • a write voltage pulse of -V is applied to each pixel element a predetermined number of times (twice) in the first two scannings of the gate lines, and thereafter, a write voltage pulse of V is applied to pixel element 1 each time
  • a write voltage pulse of V is applied to pixel element 1 each time
  • six write voltage pulses of V are applied to the pixel elements 2 and 5
  • three write voltage pulses of V are applied to the pixel elements 3 and 4.
  • Voltage pulses of positive polarity and negative polarity are alternately applied by the alternating voltage.
  • the electrophoretic display material responds to the polarity of the alternating voltage, and the white charged particles and the black charged particles move in opposite directions.
  • the electrophoretic display material will have a predetermined reflectivity. That is, the reflectance set by the last voltage pulse of the alternating voltage has the same effect as the application of the erase voltage, and the polarity of the plurality of voltage pulses applied by the application frequency control circuit 1024 is the alternating voltage. In the case where the polarity of the last voltage pulse is reversed, it is not necessary to apply a new erase voltage. Therefore, halftone display can be performed efficiently in a short time.
  • the reflectance obtained by the last voltage pulse of the alternating voltage does not reach a predetermined reference, and for example, the last of the alternating voltage is desired to be blackened by the erase voltage.
  • the voltage pulse may not provide the desired black state.
  • the polarity of the write voltage is made the same as that of the last voltage pulse of the alternating voltage, and the polarity of the subsequent voltage pulse is reversed to the polarity of the last voltage pulse of the alternating voltage. As a result, it is possible to display halftones efficiently.
  • the application frequency control circuit 1024 Since the alternating voltage is applied prior to application of a plurality of voltage pulses by the application frequency control circuit 1024, the dispersibility of the white charged particles of the electrophoretic display material and the black charged particles is enhanced, and the application frequency control circuit applies the voltage.
  • the desired first black state is obtained by the first few voltage pulses.
  • the time for applying the erase voltage is shorter than the response time. The same applies to other embodiments in which an alternating voltage is initially applied.
  • Electrophoretic display device 101 display panel, 102 control part, 1021 gate line drive circuit, 1022 data line drive circuit, 1023 substrate electrode drive circuit, 103 application number control circuit, 1024 application number control circuit, 1025 applied voltage control circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Provided is an electrophoretic display device which comprises: a display panel comprising a plurality of transistors, in which gate electrodes of each of the plurality of transistors are connected to any of a plurality of gate wires, and either a source electrode or a drain electrode is connected to any of a plurality of data wires, while the other of the source electrode and the drain electrode is connected to one of two pixel electrodes for holding an electrophoretic display material therebetween; and a control unit for applying, in one frame period, a voltage pulse between the pixel electrodes corresponding to pixels in an image to be displayed on the display panel, the voltage pulse being applied with a frequency that corresponds to the brightness level of the pixels.

Description

電気泳動表示装置及び表示パネルの駆動方法Electrophoretic display device and method of driving display panel
 本発明は、電気泳動表示材料を用いる電気泳動表示装置及び電気泳動表示材料を用いる表示パネルの駆動方法などに関する。特に、電気泳動表示材料を用いて中間階調表示が可能な電気泳動表示装置及び電気泳動表示材料を用いる表示パネルの駆動方法などに関する。 The present invention relates to an electrophoretic display using an electrophoretic display material, a method of driving a display panel using the electrophoretic display material, and the like. In particular, the present invention relates to an electrophoretic display device capable of halftone display using an electrophoretic display material, a driving method of a display panel using the electrophoretic display material, and the like.
 溶媒中に帯電粒子を分散させた電気泳動表示材料を電極間に挟持し、電極間に電界を発生させることにより、帯電粒子を移動させ、表示を行う電気泳動表示装置が知られている(例えば、特許文献1参照。)。 There is known an electrophoretic display device which performs display by moving charged particles by causing an electric field to be generated by sandwiching an electrophoretic display material in which charged particles are dispersed in a solvent and generating an electric field between the electrodes. Patent Document 1).
 このような電気泳動表示装置は、電子ペーパーなどのための反射型表示装置として用いることができる。そして、このような電気泳動表示装置は、液晶を用いた表示装置に比べて視野角が広く、また、メモリー性が安定に得られることから消費電力が小さいなどの特長を有している。この特長を利用して、電気泳動表示装置は、例えば、電子値札等の表示装置、POP(Point of purchase advertising)広告などを交通機関、店頭、公共施設などの場所で情報を表示するデジタルサイネージ用の表示装置、さらに最近市場が急拡大している通信機能を用いて書籍の内容を電子的なコンテンツとして取り込んで表示を行う電子ブックリーダーなどに応用がされている。 Such an electrophoretic display can be used as a reflective display for electronic paper and the like. Such an electrophoretic display device has features such as wide viewing angle and stable memory performance and low power consumption as compared with a display device using liquid crystal. Using this feature, the electrophoretic display device is used, for example, for display devices such as electronic price tags, and for digital signage that displays information in places such as transportation facilities, stores, public facilities, etc., such as POP (Point of purchase advertising) advertisements. It is applied to an e-book reader etc. which takes in and displays the contents of a book as electronic contents using a display device, and a communication function whose market is rapidly expanding recently.
 一般的に、書籍には挿絵や写真などが含まれ得る。また、広告などの表示を行なう場合には、写真の映像情報を表示する場合もある。このため、電気泳動表示装置は、文字のような白黒2値の画像の表示のみならず、中間階調の画像の表示を行う必要がある。 In general, books may include illustrations, photographs, and the like. In addition, when displaying an advertisement or the like, image information of a photo may be displayed. For this reason, the electrophoretic display device needs to display not only the display of a binary image of black and white such as characters but also the display of an image of intermediate gradation.
 中間階調の表示は、液晶表示装置の分野ばかりでなく電気泳動表示装置の分野でも、上述のとおり必須の表示形態であるが、一般的にはパルス幅変調方法や電圧変調方式などが知られている(例えば非特許文献1参照。)。 The display of intermediate gradations is an essential display mode as described above not only in the field of liquid crystal display devices but also in the field of electrophoretic display devices, but in general, a pulse width modulation method and a voltage modulation method are known. (See, for example, Non-Patent Document 1).
特開2008-139738号公報JP 2008-139738 A
 電気泳動表示装置において、薄膜トランジスタなどを用いてアクティブマトリックス駆動を行なおうとする場合、電気泳動表示材料の体積抵抗率が小さいと、薄膜トランジスタをオン状態にして供給された電荷が、薄膜トランジスタをオフ状態にした後に電気泳動表示材料中を通じてリークするために、良好な白黒コントラスト及び中間階調による画像の書き込みが十分できないという問題があることが本願発明者により見出された。したがって、従来知られている階調表示方法が必ずしも有効に使用できないという問題がある。 In the case of performing active matrix driving using thin film transistors or the like in the electrophoretic display device, when the volume resistivity of the electrophoretic display material is small, the charge supplied with the thin film transistor in the on state turns the thin film transistor in the off state It has been found by the present inventors that there is a problem that good black-and-white contrast and half-tone image writing can not be performed sufficiently to cause leakage through the electrophoretic display material afterward. Therefore, there is a problem that the conventionally known gradation display method can not always be used effectively.
 本発明の目的の一つは、電気泳動表示材料のリーク電流が大きい場合に画像の書き込みが十分できないという課題を解決し、新規な中間階調表示装置および表示パネルの駆動方法を提供することにある。 One object of the present invention is to solve the problem that the image can not be written sufficiently when the leak current of the electrophoretic display material is large, and to provide a novel gray scale display device and a method of driving a display panel. is there.
 本発明の一実施形態として、複数のトランジスタを備え、前記複数のトランジスタそれぞれのゲート電極が複数のゲート線のいずれかに接続され、ソース電極及びドレイン電極の一方が複数のデータ線のいずれかに接続され、前記ソース電極及びドレイン電極の他方が電気泳動表示材料を挟持するための2つの画素用電極の一方に接続されている表示パネルと、1フレーム期間に、前記表示パネルに表示するべき画像の画素の明度レベルに応じた回数の電圧パルスを前記画素に対応する前記画素用電極間に印加する制御部と、を有する電気泳動表示装置について開示を行なう。 As one embodiment of the present invention, a plurality of transistors are provided, each gate electrode of the plurality of transistors is connected to any of a plurality of gate lines, and one of a source electrode and a drain electrode is connected to any of a plurality of data lines. A display panel connected and the other of the source electrode and the drain electrode being connected to one of two pixel electrodes for sandwiching an electrophoretic display material, and an image to be displayed on the display panel in one frame period And a control unit for applying voltage pulses of the number of times corresponding to the lightness level of the pixel between the pixel electrodes corresponding to the pixel.
 また、本発明の一実施形態として、複数のトランジスタを備え、前記複数のトランジスタそれぞれのゲート電極が複数のゲート線のいずれかに接続され、ソース電極及びドレイン電極の一方が複数のデータ線のいずれかに接続され、前記ソース電極及びドレイン電極の他方が電気泳動表示材料を挟持するための2つの画素用電極の一方に接続されている表示パネルの駆動方法であって、1フレーム期間に、前記表示パネルに表示するべき画像の画素の明度レベルに応じた回数の書込電圧パルスを前記画素に対応する前記画素用電極間に印加することを特徴とする、表示パネルの駆動方法について開示を行なう。 In one embodiment of the present invention, a plurality of transistors are provided, each gate electrode of the plurality of transistors is connected to any of a plurality of gate lines, and one of a source electrode and a drain electrode is any of a plurality of data lines. A driving method of a display panel connected to the other, wherein the other of the source electrode and the drain electrode is connected to one of two pixel electrodes for sandwiching an electrophoretic display material, Disclosed is a method of driving a display panel, characterized in that a write voltage pulse is applied between the pixel electrodes corresponding to the pixels a number of times according to the lightness level of a pixel of an image to be displayed on the display panel. .
 本発明によれば、電気泳動表示装置を用いて、白黒コントラストを用いた表示とともに、中間階調を用いた表示を行うことができる。特に、電気泳動表示材料を通じてリークする電流が大きいために薄膜トランジスタ等を介して駆動電源から供給される電荷が減少し、従来において画像書込みを十分行なえずに中間調表示を得ることができない場合であっても、良好な中間調表示を得ることができる。 According to the present invention, using the electrophoretic display device, it is possible to perform display using middle gradation as well as display using black and white contrast. In particular, since the current leaked through the electrophoretic display material is large, the charge supplied from the drive power supply through the thin film transistor etc. is reduced, and it is not possible to obtain the halftone display without sufficient image writing conventionally. Even, good halftone display can be obtained.
本発明の実施形態1に係る電気泳動表示装置の機能ブロック図である。FIG. 1 is a functional block diagram of an electrophoretic display device according to Embodiment 1 of the present invention. 本発明の実施形態1に係る電気泳動表示装置の表示パネルにおけるゲート線とデータ線との交叉部分の模式図と断面図である。FIG. 6A is a schematic view and a cross-sectional view of a cross section of a gate line and a data line in the display panel of the electrophoretic display device according to the first embodiment of the present invention. 本発明の実施形態1に係る電気泳動表示装置の表示パネルにおける画素の模式図である。It is a schematic diagram of the pixel in the display panel of the electrophoretic display concerning Embodiment 1 of the present invention. 本発明の実施形態に係る電気泳動表示装置の表示パネルにおける画素要素の等価回路図である。FIG. 6 is an equivalent circuit diagram of pixel elements in a display panel of the electrophoretic display device according to the embodiment of the present invention. 本発明の実施形態に係る電気泳動表示装置の電気泳動表示材料の体積抵抗率と保持時間との関係を示す図である。It is a figure which shows the relationship of the volume resistivity of the electrophoresis display material of the electrophoresis display device concerning embodiment of this invention, and holding time. 本発明の実施形態に係る電気泳動表示装置の表示パネルにおける保持電圧の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the holding voltage in the display panel of the electrophoresis display concerning an embodiment of the present invention. 本発明の実施形態1に係る電気泳動表示装置において画素の明度に応じて電圧を印加する回数を算出する処理を説明するための図である。It is a figure for demonstrating the process which calculates the frequency | count of applying a voltage according to the brightness of a pixel in the electrophoretic display which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る電気泳動表示装置の駆動の処理を説明するフローチャートである。It is a flowchart explaining the process of a drive of the electrophoresis display concerning a 1st embodiment of the present invention. 発明の実施形態1に係る電気泳動表示装置の表示パネルにおけるゲート線とデータ線に印加されるパルスのタイミングチャートである。5 is a timing chart of pulses applied to gate lines and data lines in the display panel of the electrophoretic display device according to the first embodiment of the present invention. 本発明の実施形態2に係る電気泳動表示装置の機能ブロック図である。FIG. 6 is a functional block diagram of an electrophoretic display device according to Embodiment 2 of the present invention. 発明の実施形態2に係る電気泳動表示装置の表示パネルにおけるゲート線とデータ線に印加されるパルスのタイミングチャートである。10 is a timing chart of pulses applied to gate lines and data lines in a display panel of an electrophoretic display device according to Embodiment 2 of the invention. 本発明の実施形態3に係る電気泳動表示装置の機能ブロック図である。It is a functional block diagram of the electrophoresis display concerning a 3rd embodiment of the present invention. 本発明の実施形態3に係る電気泳動表示装置の表示パネルにおけるゲート線とデータ線に印加されるパルスのタイミングチャートである。10 is a timing chart of pulses applied to gate lines and data lines in a display panel of an electrophoretic display device according to Embodiment 3 of the present invention. 本発明の一実施形態に係る電気泳動表示装置を実際に動作させた場合の反射率とコントラストの変化を示すグラフである。It is a graph which shows the change of the reflectance at the time of actually operating the electrophoretic display concerning one Embodiment of this invention, and contrast. 本発明の実施例1-6におけるゲート線、データ線及び画素要素の配置を示す図である。FIG. 18 is a view showing the arrangement of gate lines, data lines and pixel elements in Embodiment 1-6 of the present invention. 本発明の実施例1における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 1 of this invention. 本発明の実施例2における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 2 of this invention. 本発明の実施例3における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 3 of this invention. 本発明の実施例4における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 4 of this invention. 本発明の実施例5における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 5 of this invention. 本発明の実施例6における電圧の印加を示す図である。It is a figure which shows application of the voltage in Example 6 of this invention.
 以下、本発明を実施するための形態について図面を参照しながら実施形態及び実施例として説明を行う。なお、本発明は以下に説明する実施形態及び実施例に限定されることはなく、その要旨を逸脱しない限り種々の変形を行なって実施することが可能である。 Hereinafter, embodiments of the present invention will be described as embodiments and examples with reference to the drawings. The present invention is not limited to the embodiments and examples described below, and various modifications can be made without departing from the scope of the invention.
 (実施形態1)
 図1は、本発明の実施形態1に係る電気泳動表示装置の機能ブロック図の一例を示す。電気泳動表示装置100は、表示パネル101と、制御部102とを備える。
(Embodiment 1)
FIG. 1 shows an example of a functional block diagram of an electrophoretic display device according to Embodiment 1 of the present invention. The electrophoretic display device 100 includes a display panel 101 and a control unit 102.
 表示パネル101は、一対の基板の間に電気泳動表示材料が挟持された電気泳動表示パネルである。図1においては、表示パネル101には、表示パネル101のトランジスタ104が形成された基板にゲート線G1、G2、…、Gmと、データ線D1、D2、…、Dlとが配置されている。ゲート線G1、G2、…、Gmの一端は、ゲート線駆動回路1021に接続され、それぞれに印加される電圧はゲート線駆動回路1021により制御される。また、データ線D1、D2、…、Dlの一端はデータ線駆動回路1022に接続され、それぞれに印加される電圧はデータ線駆動回路1022により制御される。一方、表示パネル101の他方の基板には電極が形成されている(図示せず。)。以下では、この電極を以下では「基板電極」と呼ぶ。基板電極はブリッジ電極(図示せず。)を介して基板電極駆動回路1023に接続され、基板電極に印加される電圧は基板電極駆動回路1023により制御される。なお、基板の一方の側に形成される基板電極の数は、1である必要はない。基板の一方を区分けして、その区分けに応じた数の基板電極を適宜、形成することができる。 The display panel 101 is an electrophoretic display panel in which an electrophoretic display material is held between a pair of substrates. 1, in the display panel 101, gate lines G1, G2,..., Gm and data lines D1, D2,..., Dl are arranged on a substrate on which the transistors 104 of the display panel 101 are formed. One end of the gate lines G1, G2,..., Gm is connected to the gate line drive circuit 1021, and the voltage applied to each is controlled by the gate line drive circuit 1021. Further, one end of each of the data lines D1, D2, ..., Dl is connected to the data line drive circuit 1022, and the voltage applied to each is controlled by the data line drive circuit 1022. On the other hand, an electrode is formed on the other substrate of the display panel 101 (not shown). Hereinafter, this electrode is referred to as a "substrate electrode" below. The substrate electrode is connected to the substrate electrode drive circuit 1023 via a bridge electrode (not shown), and the voltage applied to the substrate electrode is controlled by the substrate electrode drive circuit 1023. The number of substrate electrodes formed on one side of the substrate does not have to be one. One of the substrates can be divided, and a number of substrate electrodes can be appropriately formed according to the division.
 表示パネル101には、複数のトランジスタ104が配置されている。トランジスタ104は、ゲート線とデータ線との交叉位置に配置されている。トランジスタ104としては、例えば、Thin Film Transistor(薄膜トランジスタ)などが用いられる。トランジスタ104のゲート電極は、交叉位置に位置するゲート線に接続され、後述する画素要素105の画素電極が、トランジスタ104を介してデータ線に接続される。言い換えると、ソース電極またはドレイン電極の一方が交叉位置に位置するデータ線に接続される。また、ソース電極またはドレイン電極の他方が画素要素105の一端の電極に接続されている。画素要素105の他端の電極(基板電極)は、基板電極駆動回路1023に接続されている。なお、画素要素105の一端の電極(画素電極)と、その電極に対向する他端の電極(基板電極)とを合わせて「画素用電極」という。1組の画素用電極のそれぞれは、一対の基板の対向するそれぞれの面に形成され、その間に電気泳動表示材料が挟持される。したがって、画素用電極間に電圧を印加することにより、画素用電極により挟持される電気泳動表示材料に所定の電圧が印加される。なお、画素用電極が電気泳動表示材料と直接接触している必要はない。例えば、電気泳動表示材料がカプセルに封入され、そのカプセルが画素用電極間に配置されていてもよい。 The display panel 101 is provided with a plurality of transistors 104. The transistor 104 is disposed at the intersection of the gate line and the data line. For example, a thin film transistor (thin film transistor) or the like is used as the transistor 104. The gate electrode of the transistor 104 is connected to the gate line located at the cross position, and the pixel electrode of the pixel element 105 described later is connected to the data line through the transistor 104. In other words, one of the source electrode and the drain electrode is connected to the data line located at the crossing position. Further, the other of the source electrode and the drain electrode is connected to an electrode at one end of the pixel element 105. An electrode (substrate electrode) at the other end of the pixel element 105 is connected to a substrate electrode drive circuit 1023. Note that an electrode (pixel electrode) at one end of the pixel element 105 and an electrode (substrate electrode) at the other end facing the electrode are collectively referred to as “pixel electrode”. Each of the pair of pixel electrodes is formed on the facing surfaces of the pair of substrates, and the electrophoretic display material is sandwiched therebetween. Therefore, by applying a voltage between the pixel electrodes, a predetermined voltage is applied to the electrophoretic display material held by the pixel electrodes. Note that the pixel electrode need not be in direct contact with the electrophoretic display material. For example, the electrophoretic display material may be enclosed in a capsule, and the capsule may be disposed between the pixel electrodes.
 図2(A)は、ゲート線とデータ線との交叉部分の拡大模式図の一例である。画素要素105の一端はトランジスタ104に接続されている。このトランジスタ104を介して画素要素105がデータ線D1、D2、…、Dlのいずれかに接続される。ゲート線駆動回路1021によりゲート線に印加される電圧が制御され、トランジスタ104がオン状態になると、データ線駆動回路1022によりデータ線に印加される電圧と基板電極駆動回路1023により画素要素の他端に印加される電圧との差(以下、「書込電圧」という。)が、画素要素105に印加されることになる。トランジスタ104がオン状態となる期間(以下、「ゲート選択時間」という)は、ゲート線G1、G2、…、Gmの個数(m)を考慮して設定することができる。一方、ゲート選択時間は前記トランジスタのキャリア移動度によっても制限される。キャリア移動度が高いほどトランジスタから高速にキャリアを画素電極に注入できるからである。一般的な非晶質シリコントランジスタの移動度は0.6~0.8cm2/(V・s)であるので、ゲート選択時間は10マイクロ秒程度まで短くできることが知られている。 FIG. 2A is an example of an enlarged schematic view of an intersecting portion between a gate line and a data line. One end of the pixel element 105 is connected to the transistor 104. The pixel element 105 is connected to one of the data lines D1, D2,. The voltage applied to the gate line is controlled by the gate line drive circuit 1021, and when the transistor 104 is turned on, the voltage applied to the data line by the data line drive circuit 1022 and the other end of the pixel element by the substrate electrode drive circuit 1023. The difference between the voltage applied to the pixel and the voltage applied to the pixel element (hereinafter referred to as the “write voltage”) is applied to the The period (hereinafter referred to as “gate selection time”) in which the transistor 104 is turned on can be set in consideration of the number (m) of gate lines G1, G2,..., Gm. On the other hand, the gate selection time is also limited by the carrier mobility of the transistor. This is because carriers can be injected from the transistor to the pixel electrode at higher speed as the carrier mobility is higher. Since the mobility of a general amorphous silicon transistor is 0.6 to 0.8 cm 2 / (V · s), it is known that the gate selection time can be shortened to about 10 microseconds.
 図2(A)に示すように、画素要素105は、画素201と補助容量202とを備えている。また、画素201と補助容量202とは、並列に接続されている。画素201は、2つの画素用電極と、画素用電極間に挟持される電気泳動表示材料とを用いて構成されている。補助容量202は、コンデンサである。補助容量202は、画素要素105の一端に接続されているトランジスタがオフ状態となり、画素要素105にデータ線の電圧が印加されない状態でも、画素201に所定の電圧を持続的に印加可能とするなどのために用いられる。なお、画素201がコンデンサとしても機能するなどの場合には、補助容量202は用いられない場合がある。 As shown in FIG. 2A, the pixel element 105 includes a pixel 201 and a storage capacitor 202. The pixel 201 and the auxiliary capacitance 202 are connected in parallel. The pixel 201 is configured using two pixel electrodes and an electrophoretic display material sandwiched between the pixel electrodes. The auxiliary capacitance 202 is a capacitor. In the auxiliary capacitance 202, a transistor connected to one end of the pixel element 105 is turned off, and a predetermined voltage can be continuously applied to the pixel 201 even when the voltage of the data line is not applied to the pixel element 105 Used for In the case where the pixel 201 also functions as a capacitor, the auxiliary capacitance 202 may not be used.
 図2(B)は、データ線に平行に表示パネルを切断した場合のトランジスタ104の断面の一例を示す。基板211上にソース/ドレイン電極214とドレイン/ソース電極215が形成されている。「ソース/ドレイン電極」、「ドレイン/ソース電極」は、一方の電極がソース電極として動作し、他方がドレイン電極として動作することを意味する。ソース/ドレイン電極214は複数のデータ線D1~Dlのいずれかに接続され、ドレイン/ソース電極215は画素用電極の一方に接続される。 FIG. 2B illustrates an example of a cross section of the transistor 104 in the case where the display panel is cut in parallel to the data line. Source / drain electrodes 214 and drain / source electrodes 215 are formed on a substrate 211. "Source / drain electrode" and "drain / source electrode" mean that one electrode operates as a source electrode and the other operates as a drain electrode. The source / drain electrode 214 is connected to any of the plurality of data lines D1 to D1, and the drain / source electrode 215 is connected to one of the pixel electrodes.
 ソース/ドレイン電極214とドレイン/ソース電極215とは隔離されて形成され、また、その間の半導体薄膜にチャネル領域が形成される。ソース/ドレイン電極214とドレイン/ソース電極215とチャネルとの上に絶縁膜212が積層され、チャネル領域上にゲート電極216が形成される。ゲート電極216は複数のゲート線G1~Gmのいずれかに接続される。 The source / drain electrode 214 and the drain / source electrode 215 are formed separately, and a channel region is formed in the semiconductor thin film between them. An insulating film 212 is stacked on the source / drain electrode 214, the drain / source electrode 215, and the channel, and a gate electrode 216 is formed on the channel region. The gate electrode 216 is connected to any of the plurality of gate lines G1 to Gm.
 ソース/ドレイン電極214とドレイン/ソース電極215とチャネル領域とゲート電極の上には絶縁保護層213が形成され、その上に画素用電極の一方が形成される。なお、図2(B)では、薄膜トランジスタの構造は、ゲート電極がチャネル領域に対して上側に配置されているトップゲート型となっている。しかし、薄膜トランジスタの構造はトップゲート型に限定されることはなく、ゲート電極がチャネル領域に対して下側に配置されているボトムゲート型であってもよい。また、薄膜トランジスタは、非晶質シリコンなどのシリコン系薄膜トランジスタや酸化物薄膜トランジスタ、あるいは、有機薄膜トランジスタであってもよい。 An insulating protective layer 213 is formed on the source / drain electrode 214, the drain / source electrode 215, the channel region, and the gate electrode, and one of the pixel electrodes is formed thereon. Note that in FIG. 2B, the thin film transistor has a top gate type in which the gate electrode is disposed on the upper side with respect to the channel region. However, the structure of the thin film transistor is not limited to the top gate type, and may be a bottom gate type in which the gate electrode is disposed below the channel region. The thin film transistor may be a silicon thin film transistor such as amorphous silicon, an oxide thin film transistor, or an organic thin film transistor.
 また、基板211に対向する基板217には、画素用電極の他方である基板電極218が形成される。基板電極218は、基板電極駆動回路1023に接続される。また、画素用電極間219には、電気泳動表示材料が配置され封止される。これにより電気泳動表示材料が2つの画素用電極により挟持されることになる。 In addition, on the substrate 217 facing the substrate 211, a substrate electrode 218 which is the other of the pixel electrodes is formed. The substrate electrode 218 is connected to the substrate electrode drive circuit 1023. In addition, an electrophoretic display material is disposed and sealed between the pixel electrodes 219. Thus, the electrophoretic display material is sandwiched between the two pixel electrodes.
 図3(A)及び図3(B)は画素201の断面の模式図である。図3(A)及び図3(B)において、例えば、画素用電極301が基板電極駆動回路1023へ接続され、画素用電極302がトランジスタ104のドレイン/ソース電極215に接続される(画素用電極301がトランジスタ104のドレイン/ソース電極215に接続され、画素用電極302が基板電極駆動回路1023へ接続されてもよい。)。また、画素用電極301と画素用電極302との間には、電気泳動表示材料が挟持され保持されている。また、画素用電極301と画素用電極302との少なくとも一方は透明な電極であり、表示パネル101の外部より電気泳動表示材料が視認可能となっている。例えば、ドレイン/ソース電極215に接続されていない画素用電極およびそれが形成された基板(図示せず)が透明となる。 3A and 3B are schematic views of the cross section of the pixel 201. FIG. In FIGS. 3A and 3B, for example, the pixel electrode 301 is connected to the substrate electrode drive circuit 1023 and the pixel electrode 302 is connected to the drain / source electrode 215 of the transistor 104 (pixel electrode 301 may be connected to the drain / source electrode 215 of the transistor 104, and the pixel electrode 302 may be connected to the substrate electrode drive circuit 1023). In addition, an electrophoretic display material is held and held between the pixel electrode 301 and the pixel electrode 302. Further, at least one of the pixel electrode 301 and the pixel electrode 302 is a transparent electrode, and the electrophoretic display material can be visually recognized from the outside of the display panel 101. For example, the pixel electrode not connected to the drain / source electrode 215 and the substrate (not shown) on which it is formed become transparent.
 電気泳動表示材料は、複数の帯電粒子を液体などの溶媒に分散させたものである。複数の帯電粒子はそれぞれ黒、白などの色を有しており、同じ色の帯電粒子は同じ極性の電荷により帯電している。もし異なる色の帯電粒子が他に存在するならば、それらの異なる色の帯電粒子は、異なる極性の電荷により帯電している。したがって、画素用電極301と画素用電極302との間に書込電圧を印加し、画素用電極301と画素用電極302との間に電界を発生させると、この電界により、ある色の帯電粒子は、画素用電極301と画素用電極302との一方の側へ泳動して移動する。また、もし異なる色の帯電粒子が存在するならば、画素用電極301と画素用電極302との他方の側へ泳動して移動することとなる。また、逆の向きの電界を画素用電極301と画素用電極302との間に発生させると、ある色の帯電粒子は、画素用電極301と画素用電極302との他方の側へ泳動して移動する。もし異なる色の帯電粒子が存在するならば、画素用電極301と画素用電極302との一方へ泳動して移動することとなる。 The electrophoretic display material is one in which a plurality of charged particles are dispersed in a solvent such as a liquid. The plurality of charged particles have respective colors such as black and white, and charged particles of the same color are charged by charges of the same polarity. If other charged particles of different colors are present, those charged particles of different colors are charged by charges of different polarity. Therefore, when a write voltage is applied between the pixel electrode 301 and the pixel electrode 302 to generate an electric field between the pixel electrode 301 and the pixel electrode 302, charged particles of a certain color are generated by this electric field. Are migrated and moved to one side of the pixel electrode 301 and the pixel electrode 302. In addition, if charged particles of different colors are present, they migrate and move to the other side of the pixel electrode 301 and the pixel electrode 302. Also, when an electric field in the opposite direction is generated between the pixel electrode 301 and the pixel electrode 302, charged particles of a certain color migrate to the other side of the pixel electrode 301 and the pixel electrode 302. Moving. If charged particles of different colors are present, they migrate to one of the pixel electrode 301 and the pixel electrode 302 and move.
 図3(A)と図3(B)とにおいて、例えば、画素用電極301およびそれが形成された基板(図示せず)が透明であるとする。帯電粒子303が黒色を有し、プラスの極性の電荷により帯電しているとする。また、帯電粒子304が白色を有し、マイナスの極性の電荷により帯電しているとする。画素用電極301と画素用電極302とに電圧を印加し、画素用電極301の電圧を画素用電極302の電圧よりも大きくすると、画素用電極301から画素用電極302の向きの電界が発生し、図3(A)に示すように、帯電粒子303が画素用電極302の側に移動し、帯電粒子304が画素用電極301の側に移動する。これにより、画素用電極301の側から電気泳動表示材料を見た場合、白色に見える。すなわち、画素用電極301が表示する画素が白く見えることになる。一方、画素用電極302の電位を画素用電極301の電位よりも大きくすると、画素用電極302から画素用電極301の向きの電界が発生し、図3(B)に示すように、帯電粒子303が画素用電極301の側に移動し、帯電粒子304が画素用電極302の側に移動する。これにより、画素用電極301の側から電気泳動表示材料を見た場合、黒色に見える。すなわち、画素用電極301が表示する画素が黒く見えることになる。 In FIGS. 3A and 3B, for example, it is assumed that the pixel electrode 301 and the substrate (not shown) on which the pixel electrode 301 is formed are transparent. It is assumed that the charged particle 303 has a black color and is charged by a positive charge. Further, it is assumed that the charged particle 304 has a white color and is charged by a negative charge. When a voltage is applied to the pixel electrode 301 and the pixel electrode 302 and the voltage of the pixel electrode 301 is made larger than the voltage of the pixel electrode 302, an electric field in the direction from the pixel electrode 301 to the pixel electrode 302 is generated. As shown in FIG. 3A, the charged particles 303 move to the side of the pixel electrode 302, and the charged particles 304 move to the side of the pixel electrode 301. Thus, when the electrophoretic display material is viewed from the side of the pixel electrode 301, it looks white. That is, the pixel displayed by the pixel electrode 301 looks white. On the other hand, when the potential of the pixel electrode 302 is higher than the potential of the pixel electrode 301, an electric field in the direction from the pixel electrode 302 to the pixel electrode 301 is generated, and as shown in FIG. Moves to the side of the pixel electrode 301, and the charged particles 304 move to the side of the pixel electrode 302. Thus, when the electrophoretic display material is viewed from the side of the pixel electrode 301, it looks black. That is, the pixel displayed by the pixel electrode 301 looks black.
 なお、図3では、黒色の帯電粒子303が画素用電極302の側に存在するときには、白色の帯電粒子304が画素用電極301の側に存在し、また、黒色の帯電粒子303が画素用電極301の側に存在するときには、白色の帯電粒子304が画素用電極302の側に存在するように示されている。しかし、帯電粒子の存在の態様は、これらの場合に限定されることはない。例えば、電圧を印加する条件によっては、黒色の帯電粒子303と白色の帯電粒子304とが、同一の電極の側に混在する場合もある。例えば、黒色の帯電粒子303と白色の帯電粒子304とが画素用電極301の側に位置する場合、画素用電極301の側から電気泳動表示材料を見た場合、灰色に見える場合もあり得る。 In FIG. 3, when the black charged particles 303 are present on the pixel electrode 302 side, the white charged particles 304 are present on the pixel electrode 301 side, and the black charged particles 303 are present for the pixel electrode. When present on the side of 301, white charged particles 304 are shown to be present on the side of the pixel electrode 302. However, the mode of the presence of charged particles is not limited to these cases. For example, depending on the conditions for applying a voltage, black charged particles 303 and white charged particles 304 may be mixed on the same electrode side. For example, when the black charged particles 303 and the white charged particles 304 are positioned on the pixel electrode 301 side, the electrophoretic display material may appear gray when viewed from the pixel electrode 301 side.
 また、画素用電極301の側に存在する例えば白色を有する帯電粒子の数に応じて、画素用電極301の側から電気泳動表示材料を見た場合、どの程度の白色であるかが決定される。言い換えると、白色についての反射率が決定される。画素用電極301の側に存在する帯電粒子の数は、一般的には、画素用電極301と画素用電極302とに電圧が印加される前の帯電粒子の分布と、画素用電極301と画素用電極302とに印加された電圧の大きさ、時間とに依存する。したがって、電気泳動表示材料の、帯電粒子の色に対応する反射率が変化することになる。そこで、電気泳動表示材料の「応答時間」を、次のように定義する。すなわち、電気泳動表示材料を挟持する2つの電極の間に第1の直流電圧を印加して、一方の電極の側に表示される色を、第1色(例えば白色)に設定し、その後、第1の直流電圧を遮断する。そして、2つの電極の間に電圧差がない状態を一定時間以上経過させた後、2つの電極の間に第2の直流電圧を印加して、一方の電極の側に表示される色を、第2色(例えば黒色)に遷移させる。このとき、2つの電極の間に挟持されている電気泳動表示材料の反射率が、前記第2の直流電圧の印加によって最大値または最小値をとるまでの時間を、「応答時間」という。ここに、反射率とは、電気泳動表示材料が表示する色の反射率をいう。換言すると、電気泳動表示材料の表示する色が、前記第2の直流電圧の印加により第1色から第2色に遷移するまでの時間を「応答時間」という。 In addition, according to the number of charged particles having white, for example, present on the side of the pixel electrode 301, it is determined how much white the electrophoretic display material is viewed from the side of the pixel electrode 301 . In other words, the reflectivity for white is determined. In general, the number of charged particles present on the side of the pixel electrode 301 is the distribution of charged particles before voltage is applied to the pixel electrode 301 and the pixel electrode 302, and the number of charged electrodes on the pixel electrode 301 and the pixel. It depends on the magnitude of the voltage applied to the electrode 302 and time. Therefore, the reflectance of the electrophoretic display material corresponding to the color of the charged particles is changed. Therefore, the “response time” of the electrophoretic display material is defined as follows. That is, a first DC voltage is applied between two electrodes sandwiching the electrophoretic display material, and the color displayed on the side of one of the electrodes is set to a first color (for example, white), and Shut off the first DC voltage. Then, after passing a state in which there is no voltage difference between the two electrodes for a predetermined time or more, a second DC voltage is applied between the two electrodes, and the color displayed on the side of one of the electrodes is Transition to the second color (eg, black). At this time, the time until the reflectance of the electrophoretic display material held between the two electrodes takes the maximum value or the minimum value by the application of the second DC voltage is referred to as “response time”. Here, the reflectance refers to the reflectance of the color displayed by the electrophoretic display material. In other words, the time until the color displayed by the electrophoretic display material transitions from the first color to the second color upon application of the second DC voltage is referred to as "response time".
 図4は、画素要素105の等価回路を表わす。すなわち図4は、図2と図3に示した画素201を、電気泳動表示材料による画素容量と電気抵抗との並列回路で表している。したがって、図4の等価回路に前記書込電圧を印加した後、トランジスタをオフ状態にすると、画素201の電気泳動表示材料には画素201又は補助容量202に蓄積された電荷による電圧(以下、「保持電圧」といい、「VH」と表す。)が加わり、前記帯電粒子が移動し白又は黒の色表示が実現される。このような過渡現象は等価回路を用いて数値的に解析することができる。それによると前記電気抵抗Rの大きさによって前記保持電圧の大きさが異なってくる。すなわち、前記保持電圧の大きさは、補助容量202(以下、「Cs」と表わす。)と画素の電気容量(以下、「C」と表わす。)の和と前記画素の電気抵抗(以下、Rと表す。)の積である減衰時間「TCR」
    TCR=(Cs+C)×R          (式1)
を用いて、
    VH=VH0×EXP(-t/TCR)    (式2)
と表すことができる。式2において「VH0」は前記トランジスタをオフ状態にした直後の保持電圧の大きさであり、前記書込電圧にほぼ等しく、「t」は前記トランジスタをオフ状態にしたときを起点とした経過時間である。したがって、前記書込電圧も前記保持電圧も画素201に印加される電圧であるが、書き込み電圧がゲート選択時間の間、画素201に印加される電圧であるのに対して、保持電圧は前記トランジスタをオフ状態にしたときに画素201に印加される実効的な電圧である。前記減衰時間は、画素の電荷が前記電気泳動表示材料中をリークして流れる電流(以下、「リーク電流」という。)により消失する時間に対応している。したがって、式2にあるように、前記減衰時間が短いほど保持電圧(VH)が短時間に減少することとなる。
FIG. 4 shows an equivalent circuit of the pixel element 105. That is, FIG. 4 shows the pixel 201 shown in FIG. 2 and FIG. 3 by a parallel circuit of a pixel capacity and an electric resistance by the electrophoretic display material. Therefore, when the transistor is turned off after applying the write voltage to the equivalent circuit of FIG. 4, the electrophoretic display material of the pixel 201 has a voltage due to charges accumulated in the pixel 201 or the auxiliary capacitance 202 (hereinafter referred to as “ It is called "holding voltage" and is expressed as "VH"), and the charged particles move to realize white or black color display. Such transient phenomena can be numerically analyzed using an equivalent circuit. According to this, the magnitude of the holding voltage varies depending on the magnitude of the electric resistance R. That is, the magnitude of the holding voltage is the sum of the auxiliary capacitance 202 (hereinafter referred to as "Cs") and the electric capacitance of the pixel (hereinafter referred to as "C") and the electric resistance of the pixel (hereinafter referred to as R). Decay time “TCR” which is the product of
TCR = (Cs + C) × R (Equation 1)
Using,
VH = VH0 × EXP (−t / TCR) (Equation 2)
It can be expressed as. In Equation 2, “VH0” is the magnitude of the holding voltage immediately after the transistor is turned off, and is approximately equal to the write voltage, and “t” is an elapsed time starting from the time when the transistor is turned off It is. Therefore, although both the write voltage and the hold voltage are voltages applied to the pixel 201, the write voltage is a voltage applied to the pixel 201 during the gate selection time, whereas the hold voltage is the transistor. Is an effective voltage applied to the pixel 201 when it is turned off. The decay time corresponds to the time when the charge of the pixel leaks in the electrophoretic display material and disappears due to the current (hereinafter referred to as "leakage current"). Therefore, as shown in Equation 2, the shorter the decay time, the shorter the holding voltage (VH) will be.
 図5に示すように、経過時間tが0のときは式2よりVH/VH0は1となり、保持電圧は初期値となるが、例えば、経過時間tがTCRのときには、VH/VH0は0.37と小さくなり、さらに経過時間tが5×TCRのときにはほとんど0となるので、5×TCR以上の時間では前記帯電粒子には保持電圧による電圧が全くかからず、それまでに帯電粒子の電界応答による泳動が終了していなければ、前記電気泳動表示パネルへの画像の書込みが十分にできないことになる。 As shown in FIG. 5, when the elapsed time t is 0, VH / VH0 becomes 1 from Equation 2 and the holding voltage becomes an initial value. For example, when the elapsed time t is TCR, VH / VH0 is 0. 0. It becomes as small as 37 and becomes almost 0 when the elapsed time t is 5 × TCR, so the charged particles do not have any voltage due to the holding voltage in the time of 5 × TCR or more, and the electric field of the charged particles has been If the migration by the response is not completed, the image can not be sufficiently written on the electrophoretic display panel.
 したがって、前記減衰時間(TCR)の大きさが問題となる。一般的に、式1の電気抵抗Rは体積抵抗率ρを用いると、
     R = ρ×d/S             (式3)
と表すことができる。式2および式3において、dは前記電気泳動表示材料の厚み、Sは前記画素電極の面積である。式3より前記体積抵抗率ρが大きいほど、前記減衰時間が大きくなるので、長時間一定の保持電圧が電気泳動表示材料に印加し続けることができる。
Therefore, the magnitude of the decay time (TCR) is a problem. In general, the electrical resistance R of equation 1 can be calculated using volume resistivity ρ
R = ×× d / S (Equation 3)
It can be expressed as. In Equations 2 and 3, d is the thickness of the electrophoretic display material, and S is the area of the pixel electrode. From Equation 3, as the volume resistivity よ り is larger, the decay time is longer, so that a constant holding voltage can be continuously applied to the electrophoretic display material for a long time.
 前記保持電圧の大きさが所定の値(例えば、初期値の90%)を保持する時間(以下、「保持時間」という。)と体積抵抗率との関係を、式1~式3を用いて得た結果を図6に示す。
図6に示すように、体積抵抗率が一定値(例えば、1012Ωcm)以上であれば、電気泳動表示材料の応答時間(例えば、400ミリ秒)と前記保持時間が同程度の大きさとなるので、応答時間の期間、保持電圧は所定の値以上に保たれることとなるので、例えば、1フレーム期間を応答時間にとればゲート線G1、G2、…、Gmをフレーム期間中に1回のみ選択走査し、それに同期してそれぞれのデータ線に電圧を印加するという通常のアクティブマトリックス方式の駆動法によって、電気泳動表示パネルへの画像書き込みが十分できることになる。
The relationship between the time for which the magnitude of the holding voltage holds a predetermined value (for example, 90% of the initial value) (hereinafter referred to as "holding time") and the volume resistivity can be calculated using Equations 1 to 3. The obtained result is shown in FIG.
As shown in FIG. 6, when the volume resistivity is a fixed value (for example, 10 12 Ωcm) or more, the response time (for example, 400 milliseconds) of the electrophoretic display material and the holding time become comparable. Therefore, since the holding voltage is maintained at a predetermined value or more during the response time, for example, if one frame period is taken as the response time, the gate lines G1, G2,. The conventional active matrix driving method of selectively scanning only and applying a voltage to each data line in synchronization therewith enables sufficient writing of an image on the electrophoretic display panel.
 この場合において、中間調表示は、画素容量と補助容量に蓄積する電荷量を制御することによって行なうことができる。電荷量の制御は、従来の方法である電圧変調方式又はパルス幅変調方式によって行なうことができる。 In this case, halftone display can be performed by controlling the amount of charge accumulated in the pixel capacitance and the storage capacitance. The control of the charge amount can be performed by the conventional voltage modulation method or pulse width modulation method.
 一方、体積抵抗率(ρ)の大きさが1012Ωcm以下、特に10Ωcm程度の値のときは、前記保持時間の大きさは1ミリ秒程度(図6)と、電気泳動表示材料の応答時間(例えば、400ミリ秒)と比べて著しく小さくなるので、応答時間のほとんどの期間、保持電圧はほぼ0となる。したがって、1フレーム期間を応答時間(例えば、400ミリ秒)にとっても、前記ゲート選択時間は応答時間よりも短く(例えば100マイクロ秒)なるので、ゲート線G1、G2、…、Gmを1フレーム期間中に1回のみ選択走査し、それに同期してそれぞれのデータ線に電圧を印加するという通常のアクティブマトリックス方式の駆動法によっては、電気泳動表示パネルへの画像書き込みが十分できないことになる。さらに、体積抵抗率が、例えば、1012Ωcm以下と小さいために前記保持電圧が応答時間内に減少すると、白表示の明度レベルを制御すること自体が困難となる。このため、前記電圧変調方式又はパルス幅変調方式による階調の制御ができないこととなる。 On the other hand, when the size of the volume resistivity (10) is 10 12 Ωcm or less, particularly about 10 9 Ωcm, the holding time is about 1 millisecond (FIG. 6). The hold voltage is nearly zero for most of the response time, as it is significantly smaller than the response time (eg, 400 ms). Therefore, even if one frame period is a response time (for example, 400 milliseconds), the gate selection time is shorter than the response time (for example, 100 microseconds), so gate lines G1, G2,. The conventional active matrix driving method of selectively scanning only once and synchronously applying a voltage to each data line can not sufficiently write an image on the electrophoretic display panel. Furthermore, since the volume resistivity is as small as, for example, 10 12 Ωcm or less, if the holding voltage is reduced within the response time, it becomes difficult to control the brightness level of the white display itself. For this reason, it is impossible to control the gradation by the voltage modulation method or the pulse width modulation method.
 本発明の一実施形態によれば、1画面の画像を表示終えるのに必要な時間である1フレーム期間をゲート線G1、G2、…、Gmの順に電圧パルスを印加するという操作を複数回(n回)行なう時間にとれば、ゲート線G1、G2、…、Gmの選択に同期して前記画素201に電圧パルスを印加すれば画素201に電圧が印加される回数に応じて画素に電荷が継続的に供給されるので、明度レベルを制御できるようになる。したがって、体積抵抗率が小さい(例えば、1012Ωcm以下)場合であっても1フレーム期間に、前記表示パネルに表示するべき画像の画素の明度レベルに応じた回数の書込電圧を前記画素用電極間に印加し明度レベルを制御できるようになるので、体積抵抗率が小さい(例えば、1012Ωcm以下)場合であっても、前記電圧変調方式又はパルス幅変調方式の階調を用いないで中間調表示を行なうことができるようになる。 According to one embodiment of the present invention, the voltage pulse is applied several times in the order of the gate lines G1, G2,..., Gm for one frame period which is the time required to finish displaying the image of one screen If the voltage pulse is applied to the pixel 201 in synchronization with the selection of the gate lines G1, G2,..., Gm, the charge is applied to the pixel according to the number of times the voltage is applied to the pixel 201. As it is continuously supplied, the lightness level can be controlled. Therefore, even if the volume resistivity is small (for example, 10 12 Ωcm or less), the write voltage for the number of times corresponding to the lightness level of the pixel of the image to be displayed on the display panel is Since the brightness level can be controlled by applying between the electrodes, even when the volume resistivity is small (for example, 10 12 Ωcm or less), the gradation of the voltage modulation method or the pulse width modulation method is not used. It becomes possible to perform half tone display.
 本発明の一実施形態にかかる電気泳動表示材料の体積抵抗率は10Ωcm以上1012Ωcm以下が好ましい。体積抵抗率が10Ωcm未満であると前記リーク電流が大きく、そのため前記保持時間が短くなるので、十分な白黒表示コントラストが得られない。また、体積抵抗率が1012Ωcmより大きいと、上述のとおり、前記リーク電流が小さいために通常の電圧変調方式又はパルス幅変調方式の階調制御方法が有効に使用できるからである。 The volume resistivity of the electrophoretic display material according to the embodiment of the present invention is preferably 10 7 Ωcm or more and 10 12 Ωcm or less. If the volume resistivity is less than 10 7 Ωcm, the leakage current is large, and the holding time is short, so that sufficient black and white display contrast can not be obtained. Also, if the volume resistivity is larger than 10 12 Ωcm, as described above, since the leak current is small, the gradation control method of the normal voltage modulation method or pulse width modulation method can be effectively used.
 本発明の一実施形態においては、例えば、所定の色の反射率を最小または最大の状態、あるいは所定の値にしておき、画素用電極301と画素用電極302との間に前記書込電圧が印加される回数に応じて、色の反射率を制御することが可能となる。本実施形態の特徴の一つは、応答時間の長さをよりも短い時間の電圧の印加を繰り返す回数を制御することにより、例えば白色反射率などを制御することである。なお、書込電圧の印加開始から印加終了までの電圧の変化を「書込電圧パルス」という。通常は、書込電圧パルスの時間に対する電圧の大きさは方形となることが好ましいが、電圧発生回路などの動作によってはオーバーシュート、アンダーシュートなどにより、厳密な方形となっていない場合もある。書込電圧パルスのパルス幅は通常、上述したゲート選択時間となる。 In one embodiment of the present invention, for example, the reflectance of a predetermined color is set to a minimum or maximum state or a predetermined value, and the write voltage is applied between the pixel electrode 301 and the pixel electrode 302. Depending on the number of times of application, it is possible to control the reflectance of the color. One of the features of the present embodiment is to control, for example, the white reflectance and the like by controlling the number of repetitions of application of voltage for a shorter period of time than the response time. The change in voltage from the start of application of the write voltage to the end of application is referred to as a “write voltage pulse”. In general, the magnitude of the voltage with respect to the time of the write voltage pulse is preferably square, but depending on the operation of the voltage generation circuit or the like, it may not be a strictly square due to overshoot, undershoot or the like. The pulse width of the write voltage pulse is usually the above-described gate selection time.
 また、前記画素用電極間に印加した電圧の履歴などを用いて、各画素の色の反射率などが算出されていれば、その色の反射率などと、次の時点において各画素が有すべき色の反射率などとを用いて、画素用電極間に書込電圧パルスを印加するべき回数を算出し、書込電圧の印加を行うこともできる。 In addition, if the reflectance of the color of each pixel is calculated using the history of the voltage applied between the pixel electrodes, the reflectance of the color, etc. is obtained by each pixel at the next time. The number of times the write voltage pulse should be applied between the pixel electrodes can be calculated using the reflectance of the color to be used, and the write voltage can also be applied.
 なお、画素用電極301と画素用電極302との一方が画素に対応する画素電極であり、画素用電極301と画素用電極302との他方がその画素に対応する基板電極である。一般的には、基板電極は透明であり、基板電極の上方から画像を見ることができる。また、画素電極はトランジスタ104に接続される場合が多い。また、基板電極は基板電極駆動回路1023に接続される場合が多い。したがって、ゲート線G1、G2、…、Gm及びデータ線D1、D2、…、Dlの電圧を制御することにより、個々の画素要素ごとに画素電極に異なる電圧が印加可能である。一方、基板電極には共通の電圧が印加されることになる。なお、全ての基板電極に、共通の電圧が印加されることは必須ではない。例えば、複数の基板電極が個形成される場合には、基板電極それぞれに異なる電圧を印加することができる。 Note that one of the pixel electrode 301 and the pixel electrode 302 is a pixel electrode corresponding to a pixel, and the other of the pixel electrode 301 and the pixel electrode 302 is a substrate electrode corresponding to the pixel. Generally, the substrate electrode is transparent, and the image can be viewed from above the substrate electrode. In addition, the pixel electrode is often connected to the transistor 104. In addition, the substrate electrode is often connected to the substrate electrode drive circuit 1023. Therefore, by controlling the voltages of the gate lines G1, G2, ..., Gm and the data lines D1, D2, ..., Dl, different voltages can be applied to the pixel electrodes for each individual pixel element. On the other hand, a common voltage is applied to the substrate electrode. Note that applying a common voltage to all the substrate electrodes is not essential. For example, when a plurality of substrate electrodes are formed individually, different voltages can be applied to each of the substrate electrodes.
 制御部102は、1フレーム期間に、表示パネル101に表示するべき画像の画素の明度レベルに応じた回数の書込電圧パルスを前記画素に対応する前記画素用電極間に印加する。 The control unit 102 applies, during one frame period, write voltage pulses of the number of times corresponding to the lightness level of the pixel of the image to be displayed on the display panel 101 between the pixel electrodes corresponding to the pixel.
 「1フレーム期間」とは、1枚の静止画を表示パネル101に表示する制御を行なう期間である。本発明の一実施形態においては、1枚の静止画を表示するために、ゲート線G1~Gmの選択が所定の回数、行なわれる。ゲート線G1~Gmの選択が連続して所定の回数行なわれるのに要する時間が1フレーム期間となる。言い換えると、「1フレーム期間」とは、一つの画像を表示するために、画像書込の処理が開始されてから終了するまでの期間である。すなわち、ゲート線G1、G2、…、Gmがそれぞれ所定の回数(n)である複数回選択される期間である。言い換えると、トランジスタ104をオン状態にさせる電圧のパルスがゲート線G1、G2、…、Gmに印加される総数がm×nとなるまでに要する時間であり、前画像等を消去する時間や全画素をほぼ同時に選択して所定の処理を行う時間は含まれない。また「一つの画像」とは、表示パネル101を用いて表示するべき画像である。通常は、一つの静止画像である。 The “one frame period” is a period in which control for displaying one still image on the display panel 101 is performed. In one embodiment of the present invention, selection of the gate lines G1 to Gm is performed a predetermined number of times in order to display one still image. The time required for the selection of the gate lines G1 to Gm to be performed a predetermined number of times consecutively is one frame period. In other words, “one frame period” is a period from the start of the image writing process to the end thereof to display one image. That is, it is a period in which the gate lines G1, G2,..., Gm are selected a plurality of times each having a predetermined number of times (n). In other words, it is the time required for the total number of pulses applied to the gate lines G1, G2,..., Gm to turn on the transistor 104 to be m × n. It does not include the time for selecting the pixels almost simultaneously and performing the predetermined processing. The “one image” is an image to be displayed using the display panel 101. Usually, it is one still image.
 「画像の画素の明度レベル」は、画像を表示パネル101に表示する際の、表示パネル101の各画素位置の明るさのレベルである。例えば、画素情報が画素ごとの明るさに8ビットを用いて画像を表現している場合には、0から255までの明るさのレベルが存在する。 The “brightness level of the pixel of the image” is a brightness level of each pixel position of the display panel 101 when the image is displayed on the display panel 101. For example, when the pixel information represents an image using 8-bit brightness for each pixel, levels of brightness from 0 to 255 exist.
 「画像の画素の明度レベルに応じた回数」とは、電気泳動表示材料が例えば白色から黒色との範囲を表示可能である場合、1フレーム期間の開始時に表示パネル101の画素の色が白色であるときには、画像の画素の明度が小さいほど多くなる。また、1フレーム期間の開始時に表示パネル101の画素の色が黒色であるときには、画素の明度が大きいほど多くなる。「画像の画素の明度」とは、画像の画素の明るさをいう。例えば、画像の画素の色を色相、明度、彩度で表現した場合の明度である。 “The number of times according to the lightness level of the pixel of the image” means that the color of the pixel of the display panel 101 is white at the start of one frame period when the electrophoretic display material can display, for example, the range from white to black. In some cases, the smaller the lightness of the pixels of the image, the more it will increase. In addition, when the color of the pixel of the display panel 101 is black at the start of one frame period, the larger the lightness of the pixel, the more it becomes. The "brightness of an image pixel" refers to the brightness of an image pixel. For example, it is lightness when the color of a pixel of an image is expressed by hue, lightness, and saturation.
 制御部102の構成の一例としては、次に説明される印加電圧制御回路1025と印加回数制御回路1024とにより構成する例がある。 As an example of the configuration of the control unit 102, there is an example configured by an applied voltage control circuit 1025 and an application number control circuit 1024 described next.
 印加電圧制御回路1025は、前記複数のゲート線と前記複数のデータ線とにより電圧パルスを発生させて画素用電極間に印加する回路である。 The applied voltage control circuit 1025 is a circuit that generates a voltage pulse from the plurality of gate lines and the plurality of data lines and applies the voltage pulse between the pixel electrodes.
 制御部102(印加電圧制御回路1025)は、基板電極駆動回路1023に基板電極の電圧を例えば0Vに設定させ、ゲート線駆動回路1021にゲート線G1、G2、…、Gmにトランジスタ104をオン状態にさせる電圧のパルスを順次印加させ、データ線駆動回路1022には、ゲート線によりパルスが印加されるトランジスタのソース電極またはドレイン電極に電圧パルスを印加させ、画素用電極301と画素用電極302との間に所定の大きさの書込電圧パルスを印加させる。例えば1フレーム期間を応答時間にとることができる。このときゲート選択時間は、応答時間よりも短いこととなる。例えば、ゲート選択時間は、0より大きく、かつ、応答時間をn×mの値で除算した時間の長さ以下とすることができる。ここに、n×mは、1フレーム時間の間にゲート線が選択される回数である。また、1フレーム期間は応答時間より長くとることもでき、短くとることも可能である。基板電極の電圧は一定値(例えば0V)とすることもできるし、交番電圧などのように時間に応じて変動することもできる。 The control unit 102 (applied voltage control circuit 1025) causes the substrate electrode drive circuit 1023 to set the voltage of the substrate electrode to, for example, 0 V, and the gate line drive circuit 1021 turns on the transistor 104 for the gate lines G1, G2,. To the data line driver circuit 1022 to apply a voltage pulse to the source electrode or the drain electrode of the transistor to which the pulse is applied by the gate line, and the pixel electrode 301 and the pixel electrode 302 A write voltage pulse of a predetermined magnitude is applied during the period. For example, one frame period can be taken as response time. At this time, the gate selection time is shorter than the response time. For example, the gate selection time can be greater than 0 and less than or equal to the time obtained by dividing the response time by the value of n × m. Here, n × m is the number of times the gate line is selected during one frame time. Also, one frame period can be longer or shorter than the response time. The voltage of the substrate electrode can be a constant value (for example, 0 V), or can change with time, such as an alternating voltage.
 表示パネル101に表示するべき画像の、ゲート線G1とデータ線D1との交叉位置の画素に、例えば、基板電極の側から見て、黒色あるいはそれに近い色を表示するべき場合には、ゲート線G1に電圧パルスが印加される時、データ線駆動回路1022は、データ線D1に接続された画素の画素電極から黒色の帯電粒子を遠ざける電圧パルスを印加する。黒色の帯電粒子303が正の電荷により帯電していれば、画素電極に、基板電極の電圧よりも高い電圧が印加されるように、データ線D1に高い電圧を印加する。例えば、画素電極の電圧が0Vであれば、正の電圧(例えば15V)をデータ線D1に印加する。また溶媒の色が黒色で、帯電粒子が白色であれば、帯電粒子を基板電極から遠ざける電圧を印加することになる。 For example, when a black color or a similar color is to be displayed on a pixel at an intersection position of the gate line G1 and the data line D1 of an image to be displayed on the display panel 101 as viewed from the substrate electrode side, the gate line When a voltage pulse is applied to G1, the data line driving circuit 1022 applies a voltage pulse for moving black charged particles away from the pixel electrode of the pixel connected to the data line D1. If the black charged particles 303 are charged with positive charge, a high voltage is applied to the data line D1 so that a voltage higher than the voltage of the substrate electrode is applied to the pixel electrode. For example, when the voltage of the pixel electrode is 0 V, a positive voltage (for example, 15 V) is applied to the data line D1. If the color of the solvent is black and the charged particles are white, a voltage is applied to move the charged particles away from the substrate electrode.
 印加回数制御回路1024は、1フレーム期間に、画像の画素の明度レベルに応じた回数の前記電圧パルスを前記画素に対応する前記画素電極に印加する。 The number-of-applications control circuit 1024 applies, during one frame period, the voltage pulse the number of times according to the lightness level of the pixel of the image to the pixel electrode corresponding to the pixel.
 なお、画像は、基板電極が形成されている基板上に所定の方法でカラーフィルターを形成し、前記中間調表示を利用してフルカラー表示を行なうこともできる。また、前記帯電粒子は、黒色帯電粒子に限定されず、例えば赤色帯電粒子など任意の色の帯電粒子を用いても良い。前記帯電粒子として例えば赤、青、緑等の各色の帯電粒子を用いることにより、表示パネルの一部または画素の一部を各色の帯電粒子を配置することにより、エリアカラーまたはフルカラーの表示を行なうこともできる。 In the image, a color filter may be formed on the substrate on which the substrate electrode is formed by a predetermined method, and full color display may be performed using the halftone display. The charged particles are not limited to black charged particles, and charged particles of any color, such as red charged particles, may be used. By using charged particles of respective colors such as red, blue and green as the charged particles, area color or full color display can be performed by arranging the charged particles of each color for a part of a display panel or a part of pixels. It can also be done.
 図7は、制御部102(印加回数制御回路1024)が、取得した画像情報の画素の明度レベルに応じて、印加電圧制御回路1025に電圧パルスを印加させる回数を算出する一例を示す。電圧パルスを印加する前の状態においては、白色などの所定の色の反射率などが最小の状態にあり、電圧パルスを複数回印加することにより、その色の反射率などが徐々に上昇する。そこで、例えば、画素の明度レベルが0以上63以下であれば、印加電圧制御回路1025を用いて、対応する画素には、電圧を印加しない。また、64以上127以下であれば、印加電圧制御回路1025を用いて、対応する画素には1回電圧を印加する。また、128以上191以下であれば、印加電圧制御回路1025を用いて、対応する画素には2回の電圧を印加し、192以上225以下であれば、印加電圧制御回路1025を用いて、対応する画素には電圧を3回印加する、などのように電圧の印加回数を算出する。ただし、「電圧を印加しない」と記載したが、後に説明する実施例のように、色の反射率を実質的に変更しない電圧を印加する場合がある。 FIG. 7 shows an example in which the control unit 102 (application number control circuit 1024) calculates the number of times of applying a voltage pulse to the application voltage control circuit 1025 according to the lightness level of the pixel of the acquired image information. In the state before applying the voltage pulse, the reflectance of the predetermined color such as white is in the minimum state, and the reflectance of the color gradually increases by applying the voltage pulse a plurality of times. Therefore, for example, when the lightness level of the pixel is 0 or more and 63 or less, a voltage is not applied to the corresponding pixel using the applied voltage control circuit 1025. In addition, if it is 64 or more and 127 or less, a voltage is applied once to the corresponding pixel using the applied voltage control circuit 1025. If the voltage is 128 or more and 191 or less, two voltages are applied to the corresponding pixel using the applied voltage control circuit 1025. If the voltage is 192 or more and 225 or less, the corresponding voltage control circuit 1025 is used. The number of times of voltage application is calculated as in the case where voltage is applied three times to pixels to be selected. However, although "a voltage is not applied" is described, a voltage which does not substantially change the color reflectance may be applied as in the embodiment described later.
 なお、上記の例では最大明度を得られる前記電圧の印加回数を説明の便宜上3回としたが、数十回から数百回程度のこともある。前記書込電圧の大きさ又は前記ゲート選択時間の長さによっても最大明度を得られる前記電圧の印加回数は変化する。例えば、ゲート選択時間は、ゲート線G1、G2、…、Gmを順次選択して電圧パルスを印加する繰返し回数をn回とすれば、1フレーム期間をm×nで割った値にとることができる。一例として、1フレーム期間を応答時間(例えば、400ミリ秒)にとり、ゲート線の数(m)を240、繰り返し回数nを30としたときのゲート選択時間は約55マイクロ秒となる。なお、1フレーム期間を前記応答時間等に固定したときゲート選択時間は短いほどゲート線の本数を増やすことができるためより高精細な表示が可能となる。一般的に非晶質シリコントランジスタではゲート選択時間を前述のように10マイクロ秒程度まで短くとることができる。より移動度の大きい薄膜トランジスタ(例えば、多結晶シリコントランジスタ、酸化物トランジスタ等)を用いることにより、前記ゲート選択時間をより短縮することもできる。また、ゲート線G1、G2、…、Gmを順次選択して電圧パルスを印加する繰返し回数(n)は最大明度を得られる前記電圧の印加回数に等しくするか又は大きくすることができる。例えば、前記繰返し回数が30回のとき、所定の明度が得られる前記電圧の印加回数が10回である場合には、前記繰返し回数30回のうち、電圧を10回印加し、残りの20回は電圧を印加しないようにすれば良い。また、上記例では4階調レベルを例示したが、任意の階調レベルに適用することができる。 In the above example, the number of application of the voltage for obtaining the maximum lightness is set to three times for convenience of explanation, but may be several tens to several hundreds of times. The number of times of application of the voltage for obtaining the maximum lightness also varies depending on the magnitude of the write voltage or the length of the gate selection time. For example, assuming that the gate selection time is n times the number of repetitions of sequentially selecting the gate lines G1, G2,..., Gm and applying a voltage pulse, one frame period may be divided by m × n. it can. As an example, taking one frame period as a response time (for example, 400 milliseconds), the gate selection time is about 55 microseconds when the number (m) of gate lines is 240 and the number of repetitions n is 30. When one frame period is fixed to the response time or the like, the shorter the gate selection time, the more the number of gate lines can be increased. Generally, in an amorphous silicon transistor, the gate selection time can be shortened to about 10 microseconds as described above. The gate selection time can also be shortened by using a thin film transistor (for example, a polycrystalline silicon transistor, an oxide transistor, or the like) with higher mobility. Further, the number of repetitions (n) of applying the voltage pulse by sequentially selecting the gate lines G1, G2,..., Gm can be made equal to or larger than the number of application of the voltage for obtaining the maximum lightness. For example, when the number of times of application of the voltage for obtaining a predetermined brightness is 10 when the number of times of repetition is 30, the voltage is applied 10 times out of the 30 times of repetition, and the remaining 20 times The voltage may not be applied. Further, although four gradation levels are illustrated in the above example, the present invention can be applied to any gradation level.
 また、色の反射率が最小の状態に無いときには、画素の明度レベルがその状態の反射率よりも小さいレベルである場合がある。この場合には、画素の明度レベルとそのレベルとの差に応じて、負の回数を算出することもできる。この場合、負の回数の絶対値が大きいと、色の反射率が小さくなるように画素用電極間に書込電圧を印加することにする。例えば、印加回数制御回路1024は、印加電圧制御回路1025を用いて、負の回数に対しては正の回数の電圧を印加するときの画素電極と基板電極との間の電位差と逆の電位差となるように画素電極と基板電極とに書込電圧を印加する。また、その際の印加回数は、負の回数の絶対値とすることが考えられる。具体的な例を挙げると、正の回数それぞれに対して、印加回数制御回路1024が、印加電圧制御回路1025を用いて、画素電極に15Vを印加し、基板電極に0Vを印加すると仮定した場合、負の回数として-3が算出されると、画素電極に0V、基板電極に15Vを印加することを3回行なう。 When the color reflectance is not in the minimum state, the brightness level of the pixel may be smaller than the reflectance of the state. In this case, the number of negatives can be calculated according to the difference between the lightness level of the pixel and the level. In this case, when the absolute value of the negative number is large, the write voltage is applied between the pixel electrodes so that the reflectance of the color decreases. For example, the application frequency control circuit 1024 uses the application voltage control circuit 1025 to apply a positive voltage to the negative frequency, which is opposite to the potential difference between the pixel electrode and the substrate electrode. A write voltage is applied to the pixel electrode and the substrate electrode as follows. Further, it is conceivable that the number of times of application at that time is an absolute value of the number of negative times. As a specific example, it is assumed that the application frequency control circuit 1024 applies 15 V to the pixel electrode and applies 0 V to the substrate electrode using the application voltage control circuit 1025 for each positive frequency. When -3 is calculated as the number of negative times, 0 V is applied to the pixel electrode and 15 V is applied to the substrate electrode three times.
 図8は、本実施形態に係る電気泳動表示装置100により実行される処理の流れを説明するフローチャートの一例である。ステップS501において、画像を表わす画像情報を取得する。画像情報は、電気泳動表示装置100の外部から送信される場合や、電気泳動表示装置100の図示されていない記憶回路などから読出される場合もある。ステップS502においては、取得された画像情報が表わす画像の各画素の明度レベルを算出する。ステップS503において、算出された明度レベルを用いて、各画素に対応する画素電極と基板電極との間に書込電圧パルスを印加する回数を算出する。ステップS505においては、印加電圧制御回路1025を用いて、各画素に対応する画素電極と基板電極とに、ステップS504に算出された回数の書込電圧パルスを印加する。 FIG. 8 is an example of a flowchart illustrating the flow of processing executed by the electrophoretic display device 100 according to the present embodiment. In step S501, image information representing an image is acquired. The image information may be transmitted from the outside of the electrophoretic display device 100 or read from a storage circuit (not shown) of the electrophoretic display device 100 or the like. In step S502, the lightness level of each pixel of the image represented by the acquired image information is calculated. In step S 503, the number of times of applying the write voltage pulse between the pixel electrode corresponding to each pixel and the substrate electrode is calculated using the calculated lightness level. In step S505, the application voltage control circuit 1025 is used to apply the number of write voltage pulses calculated in step S504 to the pixel electrode and the substrate electrode corresponding to each pixel.
 図9は、ゲート線G1、G2、G3、…、Gmとデータ線D1、D2、…、Dlとに印加される電圧のタイミングチャートの一例を示す。図9においては、Tが1フレーム期間に対応している。Tをn分割したT/nの時間の間に、順次ゲート線G1、G2、G3、…、Gmが一回選択され、1個の書込電圧パルスが印加される。したがって、1フレーム期間の間に、各ゲート線がn回選択され、画素の明度レベルに応じて算出された回数の書込電圧パルスを画素電極と基板電極に印加する構成となっている。 FIG. 9 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,. In FIG. 9, T corresponds to one frame period. During time T / n obtained by dividing T by n, the gate lines G1, G2, G3,..., Gm are sequentially selected once, and one write voltage pulse is applied. Therefore, each gate line is selected n times during one frame period, and the write voltage pulse is applied to the pixel electrode and the substrate electrode the number of times calculated according to the lightness level of the pixel.
 図9を参照すると、1回目の印加においては、T/nの間に、ゲート線G1、G2、G3、…、Gmそれぞれは、パルスP11、P21、P31、…、Pm1が印加される。同様にn回目の印加においては、T/nの間に、ゲート線G1、G2、G3、…、Gmそれぞれは、パルスP1n、P2n、P3n、…、Pmnが印加される。 Referring to FIG. 9, in the first application, pulses P11, P21, P31,..., Pm1 are applied to the gate lines G1, G2, G3,. Similarly, in the n-th application, pulses P1n, P2n, P3n,..., Pmn are applied to the gate lines G1, G2, G3,.
 また、データ線D1、D2、…、Dlそれぞれには、ゲート線G1にP11が印加される間、d111、d121、…、d1l1の電圧が印加され、ゲート線G2にP21が印加される間、d211、d221、…、d2l1が印加される。したがって、例えば、ゲート線G3とデータ線D2との交叉位置の画素について、k回または-k回の回数を印加回数制御回路1024が算出した場合には、d321、d322、d323、…、d32nのうち、k個のものが画素の反射率を変化させる電圧(例えば、kの符号に応じて15Vや-15V)となり、残りが画素の反射率を実質的に変化させない電圧(例えば、0V)となる。画素の反射率を変化させる電圧となるk個のものは、d321、d322、d323、…、d32nのうちの最初のk個であってもよい。あるいは、最後のk個であってもよい。あるいは、ランダムにd321、d322、d323、…、d32nの中からk個が選択されてもよい。 Furthermore, while P11 is applied to the gate line G1, voltages of d111, d121,..., D11 are applied to the data lines D1, D2, ..., Dl, and P21 is applied to the gate line G2, d211, d221,..., d21 1 are applied. Therefore, for example, when the number-of-applications control circuit 1024 calculates the number of times k times or -k times for the pixel at the intersection of the gate line G3 and the data line D2, d321, d322, d323,. Among them, k are voltages that change the reflectance of the pixel (for example, 15 V or -15 V according to the sign of k), and the remaining voltages do not substantially change the reflectance of the pixel (for example, 0 V) Become. The k pieces of voltage that changes the reflectance of the pixel may be the first k pieces of d 321, d 322, d 323,..., D 32 n. Alternatively, it may be the last k. Alternatively, k may be randomly selected from d321, d322, d323, ..., d32n.
 なお、ゲート線G1、G2、G3、…、Gmの全てがそれぞれ1回選択され、次に連続してゲート線G1、G2、G3、…、Gmの全てがそれぞれ1回選択されてもよいし、ゲート線G1、G2、G3、…、Gmの全てがそれぞれ1回選択されてから所定の時間が経過した後に、次にゲート線G1、G2、G3、…、Gmの全てがそれぞれ1回選択されるようになっていてもよい。ゲート線G1、G2、G3、…、Gmの全てがそれぞれ1回選択される期間のことを「1フィールド期間」という場合がある。 Note that all of the gate lines G1, G2, G3,..., Gm may be selected once each, and then all of the gate lines G1, G2, G3,. After all of the gate lines G1, G2, G3,..., Gm have been selected once each and a predetermined time has elapsed, then all of the gate lines G1, G2, G3,. It may be done. A period in which all of the gate lines G1, G2, G3,..., Gm are selected once may be referred to as "one field period".
 図9を参照すると、1フレーム期間であるTの時間内に、各ゲート線を複数回選択されることになる。これは、通常のアクティブマトリックス駆動によって1フレーム期間に各ゲート線を1回選択するだけでは、電気泳動表示材料の体積抵抗率(例えば10Ωcm)が小さく、したがって電気泳動表示材料のリーク電流が大きくなる場合には、ゲート線選択時のデータ線から注入された電荷が減少し、電気泳動表示材料に印加される実効的な電圧(上述の保持電圧)が低下するからである。このため、反射率の変化が不十分となる。 Referring to FIG. 9, each gate line is selected a plurality of times within the time of T which is one frame period. This is because the volume resistivity (for example, 10 9 Ω cm) of the electrophoretic display material is small by selecting each gate line once in one frame period by the normal active matrix driving, and therefore the leakage current of the electrophoretic display material is When it becomes larger, the charges injected from the data line at the time of gate line selection decrease, and the effective voltage (the above-mentioned holding voltage) applied to the electrophoretic display material decreases. For this reason, the change in reflectance becomes insufficient.
 以上のように、本願発明者は、保持電圧に応じて電気泳動表示材料の反射率が変化する現象に着目し、各画素に対応する画素電極と基板電極との間に書込電圧を印加する回数に応じて保持電圧を大きくすることができることに想到し、中間階調の表示を行なうことができることを見出した。 As described above, the inventor of the present application applies the write voltage between the pixel electrode and the substrate electrode corresponding to each pixel, paying attention to the phenomenon that the reflectance of the electrophoretic display material changes in accordance with the holding voltage. In view of the fact that the holding voltage can be increased according to the number of times, it has been found that display of intermediate gradation can be performed.
 本実施形態では、表示するべき画素の明度レベルに応じた回数の書込電圧パルスが画素電極と基板電極との間(画素用電極間)に印加されるので、この印加回数に応じて、中間階調の明るさや種々の色の表示が可能となる。 In the present embodiment, the write voltage pulse is applied a number of times according to the lightness level of the pixel to be displayed between the pixel electrode and the substrate electrode (between the pixel electrodes). It becomes possible to display gradation brightness and various colors.
 (実施形態2)
 本発明の実施形態2として、制御部による書込電圧パルスの印加の前に、表示されている画像を消去するための電圧を印加する電気泳動表示装置について主に説明する。
Second Embodiment
As a second embodiment of the present invention, an electrophoretic display device will be mainly described which applies a voltage for erasing a displayed image before application of a write voltage pulse by a control unit.
 図10は、本発明の実施形態2に係る電気泳動表示装置の機能ブロック図の一例を示す。電気泳動表示装置700は、表示パネル101と、制御部701とを備える。制御部701の構成の一例としては、画像消去回路702を有し、さらに印加電圧制御回路1025と、印加回数制御回路1024とを用いて構成する例がある。また、電気泳動表示装置700は、必要に応じて、印加電圧制御回路1025と、ゲート線駆動回路1021と、データ線駆動回路1022と、基板電極駆動回路1023とを備えていてもよい。従って、本実施形態に係る電気泳動表示装置は、実施形態1に係る電気泳動表示装置がさらに画像消去回路702を備える構成となっていると説明することができる。 FIG. 10 shows an example of a functional block diagram of the electrophoretic display device according to the second embodiment of the present invention. The electrophoretic display device 700 includes a display panel 101 and a control unit 701. As an example of the configuration of the control unit 701, there is an example configured to include an image erasing circuit 702, and further to use an applied voltage control circuit 1025 and an application number control circuit 1024. In addition, the electrophoretic display device 700 may include an applied voltage control circuit 1025, a gate line drive circuit 1021, a data line drive circuit 1022, and a substrate electrode drive circuit 1023, as necessary. Therefore, the electrophoretic display device according to the present embodiment can be described as further including the image erasing circuit 702 in the electrophoretic display device according to the first embodiment.
 本実施形態においては、制御部701による書込電圧パルスの印加の前に、画素用電極間に、いずれかの極性の消去電圧が印加される。この場合、消去電圧は、画素用電極間の全てにほぼ同時に印加されるようになっていてもよい。このようにすると全画素の表示内容を一度に消去等でき消去電圧の印加時間を短縮できるからである。 In the present embodiment, before the application of the write voltage pulse by the control unit 701, the erase voltage of any polarity is applied between the pixel electrodes. In this case, the erase voltage may be applied almost simultaneously to all of the pixel electrodes. This is because the display contents of all the pixels can be erased at one time, and the application time of the erase voltage can be shortened.
 画像消去回路702と、印加電圧制御回路1025と、印加回数制御回路1024とが制御部701に備わっている場合には、印加回数制御回路1024による電圧の印加の前に、複数の画素に対応する画素電極と基板電極との間に電位差を生じさせる消去電圧を印加する。消去電圧により、いずれかの極性の電位差が画素電極と基板電極との間に生ずる。消去電圧による電位差の極性、大きさ及び印加時間は、消去電圧を印加した後の表示パネル101の画素全体における色の反射率をどのように設定するかに依存して適宜設定される。 When the image erasing circuit 702, the applied voltage control circuit 1025, and the application frequency control circuit 1024 are provided in the control unit 701, they correspond to a plurality of pixels before the application of voltage by the application frequency control circuit 1024. An erasing voltage is applied to generate a potential difference between the pixel electrode and the substrate electrode. The erase voltage causes a potential difference of either polarity to occur between the pixel electrode and the substrate electrode. The polarity, the magnitude, and the application time of the potential difference due to the erasing voltage are appropriately set depending on how to set the reflectance of the color in the whole pixel of the display panel 101 after the erasing voltage is applied.
 例えば、消去電圧を印加した後に、画素全体を黒色にしたい場合、黒色の帯電粒子が正の電荷を帯電していれば、全ての画素電極よりも全ての基板電極の電位を低くするように、ゲート線駆動回路1021、データ線駆動回路1022、基板電極駆動回路1023を動作させる。例えば、基板電極駆動回路1023は0Vを印加し、データ線駆動回路1022は、全てのデータ線に15Vを印加し、ゲート線駆動回路1021は、全てのゲート線に、トランジスタ104をオン状態にする電圧を印加する。これにより、全ての画素電極にほぼ同時に消去電圧が印加される。ゲート線駆動回路1021が、全てのゲート線に、トランジスタ104をオン状態にする電圧を印加する時間の長さは、応答時間以上とするのが好ましい。通常、消去電圧の印加時間が応答時間以上でないと前記帯電粒子が一方の電極(例えば、画素電極)から他方の電極にすべて移動することができないからである。ただし、消去電圧を印加する前の電圧の印加の状況によっては、トランジスタ104をオン状態にする電圧を印加する時間の長さは応答時間よりも短くしてもよい場合がある。 For example, if it is desired to make the whole pixel black after applying the erasing voltage, if the black charged particles have a positive charge, the potentials of all the substrate electrodes are made lower than all the pixel electrodes. The gate line drive circuit 1021, the data line drive circuit 1022, and the substrate electrode drive circuit 1023 are operated. For example, the substrate electrode drive circuit 1023 applies 0 V, the data line drive circuit 1022 applies 15 V to all data lines, and the gate line drive circuit 1021 turns on the transistors 104 for all gate lines. Apply a voltage. As a result, the erase voltage is applied to all the pixel electrodes almost simultaneously. The length of time during which the gate line driver circuit 1021 applies a voltage to turn on the transistors 104 to all the gate lines is preferably equal to or longer than the response time. Usually, the charged particles can not move from one electrode (for example, the pixel electrode) to the other electrode unless the application time of the erasing voltage is equal to or longer than the response time. However, depending on the state of application of the voltage before the erase voltage is applied, the length of time for which the voltage for turning on the transistor 104 is applied may be shorter than the response time.
 また、画像消去回路702は、消去電圧を1または複数回に分けて印加してもよい。例えば、100ミリ秒ずつ5回の消去電圧の印加を50ミリ秒の時間間隔をあけて印加する。あるいは、500ミリ秒の長さの消去電圧を印加する場合、250ミリ秒の消去電圧を印加し、100ミリ秒の電圧を印加しない時間があり、その後250ミリ秒の消去電圧を印加してもよい。あるいは、200ミリ秒の消去電圧を印加し、電圧を印加しない時間を経過した後、200ミリ秒より長い300ミリ秒の消去電圧を印加してもよい。あるいは、逆に最初に300ミリ秒の消去電圧の印加を行ない、電圧を印加しない時間を経過した後、200ミリ秒の消去電圧を印加する。また、消去電圧を1または複数回に分けて印加する場合、消去電圧の印加の時間長の和は、応答時間以上が好ましい場合や、消去電圧を印加する前の電圧印加の状況などによっては、応答時間未満が好ましい場合もある。なお、消去電圧を、電圧印加の間に、電圧印加を行なわない休止時間を、挿入して複数回に分けて印加する場合を、「消去電圧を間欠して印加する」という。 Further, the image erasing circuit 702 may apply the erasing voltage in one or more divided operations. For example, the application of the erase voltage is performed five times at intervals of 50 milliseconds at intervals of 100 milliseconds. Alternatively, when applying an erase voltage of 500 ms in length, there is a time in which an erase voltage of 250 ms is applied and a voltage of 100 ms is not applied, and even if an erase voltage of 250 ms is applied thereafter. Good. Alternatively, an erasing voltage of 200 milliseconds may be applied, and after a time when no voltage is applied, an erasing voltage of 300 milliseconds longer than 200 milliseconds may be applied. Alternatively, on the contrary, the erase voltage of 300 milliseconds is first applied, and after the time when no voltage is applied, the erase voltage of 200 milliseconds is applied. In addition, when the erase voltage is applied in one or a plurality of times, the sum of time lengths of application of the erase voltage depends on the condition of voltage application before applying the erase voltage or when the response time or more is preferable. Less than response time may be preferred. Note that the case where the erasing voltage is applied in a plurality of times by inserting a pause time during which voltage application is not performed during voltage application is referred to as "intermittently applying the erasing voltage".
 なお、基板電極の電圧を基準にすれば、「複数の画素に対応する画素電極と基板電極との間に電位差を生じさせる消去電圧を印加する」ことは、前記画素電極にいずれかの極性の消去電圧を印加すると言い換えることができる。 Note that applying an erasing voltage that causes a potential difference between the pixel electrode corresponding to a plurality of pixels and the substrate electrode on the basis of the voltage of the substrate electrode means that the pixel electrode has any polarity. It can be paraphrased to apply the erase voltage.
 図11は、本実施形態におけるゲート線G1、G2、G3、…、Gmとデータ線D1、D2,…、Dlとに印加される電圧のタイミングチャートの一例を示す。図9に示すタイミングチャートに従って、ゲート線G1、G2、G3、…、Gmとデータ線D1、D2、…、Dlとに電圧を印加するに先だって、ゲート線G1、G2、G3、…、Gmそれぞれに、時間Etの幅を有するパルスpe1、pe2、pe3、…、pemをほぼ同時に印加する。同時に、データ線D1、D2、…Dlには、パルスde1、de2、…、delを印加する。このようなパルスpe1、pe2、pe3、…、pem、de1、de2、…、delの印加により、表示パネル101は、所定の一色だけの画像が表示され、パルスpe1、pe2、pe3、…、pem、de1、de2、…、delを印加する前に表示されていた画像が消去される。なお、Etは、上述したように応答時間以上となることが好ましいが、所定の場合には応答時間未満とするのが好ましいこともある。 FIG. 11 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,. Before applying voltages to gate lines G1, G2, G3, ..., Gm and data lines D1, D2, ..., Dl according to the timing chart shown in Fig. 9, gate lines G1, G2, G3, ..., Gm, respectively. , Pulses pe1, pe2, pe3,..., Pem having a width of time Et are applied almost simultaneously. At the same time, pulses de1, de2, ..., del are applied to the data lines D1, D2, ..., Dl. By application of such pulses pe1, pe2, pe3, ..., pem, de1, de2, ..., del, the display panel 101 displays an image of only one predetermined color, and the pulses pe1, pe2, pe3, ..., pem , De 1, de 2,..., Del are erased. As described above, Et is preferably equal to or longer than the response time, but in certain cases, it may be preferable to be less than the response time.
 パルスpe1、pe2、pe3、…、pem、de1、de2、…、delを印加した後は、図8のフローチャートに従って、取得した画像情報の画素の明度レベルを算出し、画素電極と基板電極とに書込電圧パルスを印加する回数を算出し、書込電圧パルスの印加を行なう。 After applying the pulses pe1, pe2, pe3, ..., pem, de1, de2, ..., del, the lightness level of the pixel of the acquired image information is calculated according to the flowchart of Fig. 8, and the pixel electrode and the substrate electrode are The number of times of applying the write voltage pulse is calculated, and the write voltage pulse is applied.
 本実施形態によれば、画像の表示に先立って、その前に表示パネルに表示されていた画像が消去され、特定の一色の表示がされるので、前に表示されていた画像の影響を排除して中間階調を含む画像の表示を容易に行なうことができる。 According to the present embodiment, prior to the display of the image, the image displayed on the display panel before that is erased and the display of a specific single color is performed, so the influence of the image displayed previously is eliminated. Thus, it is possible to easily display an image including intermediate gradations.
 (実施形態3)
 本発明の実施形態3として、制御部による書込電圧パルスの印加の前に、画素電極と基板電極との間に交番電圧を印加する電気泳動表示装置について説明する。
(Embodiment 3)
An electrophoretic display device in which an alternating voltage is applied between a pixel electrode and a substrate electrode before application of a write voltage pulse by a control unit will be described as Embodiment 3 of the present invention.
 図12は、本発明の実施形態3に係る電気泳動表示装置の機能ブロックの一例を示す。電気泳動表示装置900は、表示パネル101と、制御部901を備える。制御部901の構成の一例としては、交番電圧印加回路902と、印加電圧制御回路1025と、印加回数制御回路1024とをさらに備える例がある。また、電気泳動表示装置700は、必要に応じて、ゲート線駆動回路1021と、データ線駆動回路1022と、基板電極駆動回路1023とを備えていてもよい。したがって、本実施形態に係る電気泳動表示装置は、実施形態1に係る電気泳動表示装置がさらに交番電圧印加回路902を備える構成となっていると説明することができる。 FIG. 12 shows an example of functional blocks of the electrophoretic display device according to the third embodiment of the present invention. The electrophoretic display device 900 includes a display panel 101 and a control unit 901. As an example of the configuration of the control unit 901, there is an example further including an alternating voltage application circuit 902, an applied voltage control circuit 1025, and an application number control circuit 1024. In addition, the electrophoretic display device 700 may include a gate line drive circuit 1021, a data line drive circuit 1022, and a substrate electrode drive circuit 1023, as necessary. Therefore, it can be described that the electrophoretic display device according to the present embodiment is configured to further include the alternating voltage application circuit 902 according to the first embodiment.
 本実施形態においては、書込電圧パルスの印加に先立って、画素用電極間に交番電圧が印加される。交番電圧とは、所定の周波数にて正の電圧と負の電圧とが交互に交替する電圧である。また、一般的には、正の電圧と負の電圧との絶対値は略等しい。ただし、正の電圧と負の電圧との絶対値は異なっていてもよい。例えば、10ヘルツにて、15Vと-15Vとが交互に繰り返される電位である。また、交番電圧は、画素電極の全てにほぼ同時に印加されるようになっていてもよい。 In the present embodiment, an alternating voltage is applied between the pixel electrodes prior to the application of the write voltage pulse. The alternating voltage is a voltage in which a positive voltage and a negative voltage alternate alternately at a predetermined frequency. Also, in general, the absolute values of the positive voltage and the negative voltage are approximately equal. However, the absolute values of the positive voltage and the negative voltage may be different. For example, at 10 Hz, 15 V and -15 V are alternately repeated. The alternating voltage may be applied to all of the pixel electrodes substantially simultaneously.
 制御部901が交番電圧印加回路902を備える場合には、交番電圧印加回路902は、印加回数制御回路1024による書込電圧パルスの印加の前に、各画素に対応する画素用電極間に、ほぼ同一に交番電圧を生じさせる電圧を印加する。 In the case where the control unit 901 includes the alternating voltage application circuit 902, the alternating voltage application circuit 902 is substantially arranged between the pixel electrodes corresponding to the respective pixels before application of the write voltage pulse by the application number control circuit 1024. The same voltage is applied to generate an alternating voltage.
 本実施形態では、例えば、基板電極駆動回路1023は0Vを印加し、データ線駆動回路1022は、全てのデータ線に交番電圧を印加し、ゲート線駆動回路1021は、全てのゲート線に、トランジスタ104をオン状態にする電圧を印加するようになっていてもよい。これにより、全ての画素用電極間にほぼ同時に交番電圧が印加される。 In the present embodiment, for example, the substrate electrode drive circuit 1023 applies 0 V, the data line drive circuit 1022 applies an alternating voltage to all data lines, and the gate line drive circuit 1021 applies transistors to all gate lines. A voltage may be applied to turn on the switch 104. Thereby, an alternating voltage is applied substantially simultaneously between all the pixel electrodes.
 なお、基板電極の電圧を基準にすれば、「画素電極と基板電極とに、交番電圧を生じさせる電圧を印加する」ことは、画素電極に交番電圧を印加すると言い換えることができる。 Note that “applying a voltage that generates an alternating voltage to the pixel electrode and the substrate electrode” can be reworded by applying an alternating voltage to the pixel electrode, based on the voltage of the substrate electrode.
 交番電圧の正の電圧と負の電圧との大きさ、周波数、パルスの幅、印加時間は、交番電圧を印加した後の表示パネル101の画素全体における色の反射率をどのようにするか、などに依存して適宜設定される。 The magnitude, frequency, pulse width and application time of the positive voltage and the negative voltage of the alternating voltage determine how to reflect the color reflectance of the entire pixel of the display panel 101 after applying the alternating voltage, It is set appropriately depending on the
 図13は、本実施形態におけるゲート線G1、G2、G3、…、Gmとデータ線D1、D2、…、Dlとに印加される電圧のタイミングチャートの一例を示す。図9に示すタイミングチャートに従って、ゲート線G1、G2、G3、…、Gmとデータ線D1、D2、…、Dlとに電圧を印加するに先だって、ゲート線G1、G2、G3、…、Gmそれぞれに、時間Ptの幅を有するパルスpa1、pa2、pa3、…、pamをほぼ同時に印加する。同時に、データ線D1、D2、…Dlには、交番電圧dp1、dp2、…、dplを印加する。このようなパルスpa1、pa2、pa3、…、pam、dp1、dp2、…、dplの印加により、表示パネル101には、色の反射率が所定の周波数にて変化することになる。交番電圧の印加の後には、表示パネル101には交番電圧の周波数、最大電圧、最小電圧、印加時間及び最後のパルスの電位に応じた反射率の一色の色が表示される。 FIG. 13 shows an example of a timing chart of voltages applied to the gate lines G1, G2, G3,..., Gm and the data lines D1, D2,. Before applying voltages to gate lines G1, G2, G3, ..., Gm and data lines D1, D2, ..., Dl according to the timing chart shown in Fig. 9, gate lines G1, G2, G3, ..., Gm, respectively. The pulses pa1, pa2, pa3,..., Pam having a width of time Pt are applied almost simultaneously. At the same time, alternating voltages dp1, dp2,..., Dpl are applied to the data lines D1, D2,. The application of such pulses pa1, pa2, pa3,..., Pam, dp1, dp2,..., Dpl causes the display panel 101 to change the color reflectance at a predetermined frequency. After application of the alternating voltage, the display panel 101 displays the frequency of the alternating voltage, the maximum voltage, the minimum voltage, the application time, and the color of the reflectance in accordance with the potential of the last pulse.
 交番電圧のパルスの印加時間は応答時間以下が好ましい。ただし、交番電圧のパルスの印加時間が前記電気泳動表示材料の応答時間以下であるときは、交番電圧の最後のパルスの極性として、前記画素が例えば黒色になるように選択した場合であっても、前記帯電粒子の応答が不十分となり、前記帯電粒子の泳動距離が短くなるので、実施形態2におけるように消去電圧を加えて前記画素を黒色にした後よりも、黒色の反射率が高くなる場合がある。したがって、実施形態1にて説明したように、印加回数制御回路1024の動作においては、負の回数などが用いられる必要がある。 The application time of the alternating voltage pulse is preferably equal to or less than the response time. However, when the application time of the pulse of the alternating voltage is equal to or less than the response time of the electrophoretic display material, even when the pixel is selected to be black, for example, as the polarity of the last pulse of the alternating voltage Since the response of the charged particles is insufficient and the migration distance of the charged particles is shortened, the black reflectance is higher than after applying the erasing voltage to make the pixels black as in the second embodiment. There is a case. Therefore, as described in the first embodiment, in the operation of the application frequency control circuit 1024, a negative frequency or the like needs to be used.
 なお、交番電圧の印加により、帯電粒子および帯電粒子の周囲に存在するイオンが交番電圧に応答する。このため、前記電気泳動表示材料の帯電粒子等の分散性が高まり、帯電粒子の凝集が抑制され、帯電粒子の画素電極と基板電極との間の移動が良好となる。 The application of the alternating voltage causes the charged particles and the ions present around the charged particles to respond to the alternating voltage. Therefore, the dispersibility of the charged particles and the like of the electrophoretic display material is enhanced, the aggregation of the charged particles is suppressed, and the movement of the charged particles between the pixel electrode and the substrate electrode becomes favorable.
 また、本実施形態に係る電気泳動表示装置は、実施形態2に係る電気泳動表示装置のように、画像消去回路を有していてもよい。この場合、印加回数制御回路1024による書込電圧パルスの印加の前に、消去電圧の印加と交番電圧の印加とが行なわれる。消去電圧の印加を行なってから、交番電圧の印加を行なってもよいし、交番電圧の印加を行なってから、消去電圧の印加を行なってもよい。ただし、消去電圧の印加の前に交番電圧の印加を行なうのが好ましい。 In addition, the electrophoretic display device according to the present embodiment may have an image erasing circuit as in the electrophoretic display device according to the second embodiment. In this case, before the application of the write voltage pulse by the application number control circuit 1024, the application of the erase voltage and the application of the alternating voltage are performed. The application of the erase voltage may be performed after the application of the erase voltage, or the application of the erase voltage may be performed after the application of the alternating voltage. However, it is preferable to apply an alternating voltage before applying the erase voltage.
 あるいは、画像消去回路を用いる代わりに、交番電圧の最初の数個の電圧パルスに印加によってすべての画素の表示履歴を消失させることができることを利用して、前記交番電圧の最後のパルスを消去電圧となるパルスとして印加することができる。この交番電圧及び消去電圧の印加は、書込電圧パルスの印加の前に印加される正の電圧と負の電圧とが交互に交替する電圧パルス列が印加されるとき、電圧パルス列の最後のパルスを除く電圧パルス列が交番電圧であり、電圧パルス列の最後のパルスが消去電圧のパルスであるとも説明ができる。したがって、交番電圧の最後のパルスの極性は、消去電圧の極性と逆の極性となる。 Alternatively, instead of using the image erasing circuit, the last pulse of the alternating voltage may be erased using the fact that the display histories of all the pixels can be erased by application to the first few voltage pulses of the alternating voltage. Can be applied as a pulse. The application of the alternating voltage and the erase voltage is such that the last pulse of the voltage pulse train is applied when a voltage pulse train in which a positive voltage and a negative voltage applied alternately before the application of the write voltage pulse are alternately applied. It can also be described that the voltage pulse train except for this is an alternating voltage and the last pulse of the voltage pulse train is a pulse of the erase voltage. Therefore, the polarity of the last pulse of the alternating voltage is opposite to the polarity of the erase voltage.
 交番電圧の最後のパルスを消去電圧となるパルスとして印加することにより、交番電圧の印加に消去電圧の印加が含まれるので、実施形態2で例示した消去電圧をさらに印加する必要がなくなるので、前記表示パネルへの画像の書き込みをより高速に行なうことができるようになる。ここで、表示履歴がないとは、交番電圧を印加する直前の画素の明度に応じて交番電圧を印加した後の画素の明度が影響を受けないことをいう。 By applying the last pulse of the alternating voltage as a pulse serving as the erasing voltage, the application of the erasing voltage is included in the application of the alternating voltage, so that it is not necessary to further apply the erasing voltage exemplified in the second embodiment. It becomes possible to write an image to the display panel faster. Here, the absence of the display history means that the brightness of the pixel after application of the alternating voltage is not affected according to the brightness of the pixel immediately before applying the alternating voltage.
 なお、上述のように交番電圧の最後の電圧パルスが消去電圧のパルスとして作用させるようになっている場合には、消去電圧の印加時間は、交番電圧の最後の電圧パルスの印加時間と同じであってもよいし、長くなっていてもよい。消去電圧の印加時間を交番電圧の最後の電圧パルスの印加時間と同じとすれば、消去電圧の印加を交番電圧の印加として行なうことができ、回路などの構成を簡略化できるなどの効果がある。また、消去電圧の印加時間は、消去電圧の前に印加される交番電圧の影響により前記帯電粒子の分散性が向上しているので前記応答時間以下の印加時間で前記画素を黒色または白色とすることができるので、前記電気泳動表示材料の応答時間の長さ以下とすることもできる。 When the last voltage pulse of the alternating voltage is made to act as the pulse of the erasing voltage as described above, the application time of the erasing voltage is the same as the application time of the last voltage pulse of the alternating voltage. It may be present or long. Assuming that the application time of the erase voltage is the same as the application time of the last voltage pulse of the alternating voltage, the application of the erase voltage can be performed as the application of the alternating voltage, and the configuration of the circuit can be simplified. . In addition, since the dispersibility of the charged particles is improved due to the influence of the alternating voltage applied before the erasing voltage, the pixel is made black or white in the application time less than the response time as the application time of the erasing voltage. Therefore, it can be made equal to or less than the response time of the electrophoretic display material.
 本実施形態では、交番電圧が印加されるので、帯電粒子の画素電極と基板電極との間の移動が良好となる。さらに、前記交番電圧の最後の電圧パルスを消去電圧として作用させることができるため、より高品質な画像の中間階調表示などの高速表示が可能となる。 In the present embodiment, since an alternating voltage is applied, the movement of the charged particles between the pixel electrode and the substrate electrode is improved. Furthermore, since the last voltage pulse of the alternating voltage can be made to act as the erasing voltage, high-speed display such as halftone display of a higher quality image becomes possible.
 (測定例)
 以上説明した実施形態に係る電気泳動表示装置を実際に動作させた場合の反射率とコントラストの変化について実際に測定を行なった。すなわち、一般的な電気泳動表示材料を、画素電極と基板電極との間に挟持するように保持して封入し、黒色の帯電粒子が基板電極の側に存在し、白色の帯電粒子が画素電極の側に存在する状態から、白色の帯電粒子が基板電極の側に存在し、黒色の帯電粒子が画素電極の側に存在する状態になるように、黒色の帯電粒子と白色の帯電粒子を移動させるために所定の書込電圧パルスを画素電極と基板電極の間に印加した。すなわち、ゲート線にゲート選択時間が100マイクロ秒の電圧パルスを印加することを100ミリ秒の時間間隔を開けて所定の回数繰り返し行ない、データ線にはゲート線の選択に同期して所定の電圧パルスを繰り返し印加した。
(Example of measurement)
The changes in reflectance and contrast when the electrophoretic display device according to the embodiment described above was actually operated were actually measured. That is, a general electrophoretic display material is held and sealed so as to be held between the pixel electrode and the substrate electrode, black charged particles are present on the substrate electrode side, and white charged particles are pixel electrode The black charged particles and the white charged particles are moved so that the white charged particles are present on the substrate electrode side and the black charged particles are present on the pixel electrode side. A predetermined write voltage pulse was applied between the pixel electrode and the substrate electrode in order to cause the problem. That is, application of a voltage pulse having a gate selection time of 100 microseconds to the gate line is repeated a predetermined number of times with a time interval of 100 milliseconds, and a predetermined voltage is applied to the data line in synchronization with the selection of the gate line. The pulse was applied repeatedly.
 図14は、ゲート線にこのような電圧パルスを印加した回数に対して、黒色の反射率である黒反射率と、白色の反射率である白反射率と、黒反射率に対する白反射率の大きさであるコントラストとの変化のグラフを示す。 FIG. 14 shows the black reflectance which is the black reflectance, the white reflectance which is the white reflectance, and the white reflectance with respect to the black reflectance with respect to the number of times that such a voltage pulse is applied to the gate line. Fig. 6 shows a graph of the change with the contrast, which is the magnitude.
 図14のグラフに示すように、ゲート線にゲート選択時間が100マイクロ秒の電圧パルスを印加する回数が増える程、白反射率が上昇していることがわかる。また、コントラストも上昇していることがわかる。 As shown in the graph of FIG. 14, it can be seen that the white reflectance increases as the number of times of application of a voltage pulse having a gate selection time of 100 microseconds to the gate line increases. It can also be seen that the contrast is also rising.
 (実施例)
 図15から図21を参照して、本発明の種々の実施例について説明を行なう。
(Example)
Various embodiments of the present invention will be described with reference to FIGS. 15-21.
 図15は、図16から図21までの実施例に共通して用いられる表示パネルの模式図である。図15を参照すると、3本のゲート線G1、G2、G3が配置され、2本のデータ線D1、D2がゲート線G1、G2、G3に略直交して配置されている。そして、G1とD1、G2とD1、G3とD1、G1とD2、G2とD2及びG3とD2との交叉位置それぞれに画素要素1、2、3、4、5、6が配置されている。図16から図21に示した実施例では、1フレーム期間Tは9個の前記フィールド期間からなる。したがって、画素要素1、2、3、4、5、6は、前記ゲート線の第一の走査では画素要素1と4、画素要素2と5、画素要素3と6が順次選択され、これが9回繰返されて走査が行なわれる。 FIG. 15 is a schematic view of a display panel commonly used in the embodiments of FIG. 16 to FIG. Referring to FIG. 15, three gate lines G1, G2 and G3 are disposed, and two data lines D1 and D2 are disposed substantially orthogonal to gate lines G1, G2 and G3. The pixel elements 1, 2, 3, 4, 5, 6 are disposed at the intersections of G1 and D1, G2 and D1, G3 and D1, G1 and D2, G2 and D2, and G3 and D2, respectively. In the embodiments shown in FIGS. 16 to 21, one frame period T consists of nine of the field periods. Therefore, as for pixel elements 1, 2, 3, 4, 5, 6, in the first scan of the gate line, pixel elements 1 and 4, pixel elements 2 and 5, and pixel elements 3 and 6 are sequentially selected. The scan is repeated several times.
 したがって、以下に説明する実施例においては、例えば印加回数制御回路1024が印加電圧制御回路1025を用いて、それぞれの画素要素に最大9回の書込電圧パルスを印加できる。また、最大9回の書込電圧パルスの印加の前後には、画素要素1が最も所定の色の反射率の変化が大きくなり、次いで、画素要素2と5が、その次が画素要素3と4が続くように書込電圧パルスの印加回数が制御される。また、画素要素6は、反射率が変化しないように制御される。例えば、最大9回の書込電圧パルスの印加の後には、画素要素1が白色となり、画素要素2と5がやや薄い灰色となり、画素要素3と4が灰色となり、画素要素6が黒色となるように制御される。なお、以下の例では、白色の帯電粒子が正に帯電し、黒色の帯電粒子が負に帯電した場合を例として説明しているが、帯電の極性が逆の場合も本発明の方法と同様の方法が適用される。 Therefore, in the embodiment described below, for example, the application frequency control circuit 1024 can apply up to nine write voltage pulses to each pixel element using the application voltage control circuit 1025. Also, before and after the application of the maximum of nine writing voltage pulses, the change in reflectance of the pixel element 1 is the largest for the predetermined color is large, and then the pixel elements 2 and 5 are the next and the pixel element 3 and so on. The number of times of application of the write voltage pulse is controlled such that 4 continues. In addition, the pixel element 6 is controlled such that the reflectance does not change. For example, after application of a maximum of nine writing voltage pulses, pixel element 1 is white, pixel elements 2 and 5 are slightly light gray, pixel elements 3 and 4 are gray, and pixel element 6 is black. To be controlled. In the following example, the white charged particles are positively charged and the black charged particles are negatively charged. However, the same applies to the method of the present invention when the polarity of the charge is reversed. The method of applies.
 (実施例1)
 図16は、それぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、消去電圧を印加する場合について説明する図である。すなわち、主に実施形態2に対応している。
Example 1
FIG. 16 is a diagram for explaining the case where the erase voltage is applied before applying the write voltage pulse of the number of times to each pixel element. That is, the second embodiment mainly corresponds to the second embodiment.
 図16に示すように、最大9回の書込電圧パルスの印加の前に、消去電圧(図16ではリセットパルスと表記されている)が印加される。消去電圧の印加は、例えば前述のとおり、全てのゲート線に同時に電圧パルスを印加して画素電極間にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に消去電圧を印加することにより行なう。なお、消去電圧を印加する期間が長くなればそれに応じてゲート選択時間を長くすることができる。例えば、消去電圧の印加をする時間が応答時間程度であればゲート選択時間も応答時間程度にとることができる。消去電圧の大きさは、-Vとなっている。この消去電圧の印加により、全ての画素要素は黒色となる。なお、消去電圧は応答時間程度の期間、印加することが好ましい。例えば、消去電圧を応答時間以上印加する。このように応答時間程度の期間、消去電圧を印加することにより、反射率が略最小または略最大となるからである。これによって、消去電圧の印加の後、制御部による書込電圧パルスの印加によって中間階調表示を良好に行なうことができる。ただし、消去電圧を印加する前の電圧印加の状況によっては帯電粒子の分散性に違いがあるので消去電圧の印加期間は応答時間未満とできる場合もある。 As shown in FIG. 16, an erase voltage (denoted as a reset pulse in FIG. 16) is applied prior to the application of a maximum of nine write voltage pulses. To apply the erase voltage, for example, as described above, a voltage pulse is simultaneously applied to all gate lines to apply a voltage pulse for turning on the transistor 104 between the pixel electrodes, and in synchronization with this, all data lines are applied. This is done by applying an erase voltage. If the period for applying the erase voltage is extended, the gate selection time can be extended accordingly. For example, if the time for applying the erase voltage is about the response time, the gate selection time can also be about the response time. The magnitude of the erase voltage is -V. By applying this erase voltage, all pixel elements become black. Preferably, the erase voltage is applied for a period of about response time. For example, the erase voltage is applied for the response time or more. By applying the erase voltage during the response time period, the reflectance is substantially minimized or substantially maximized. As a result, after application of the erase voltage, mid-gradation display can be favorably performed by application of the write voltage pulse by the control unit. However, depending on the state of voltage application before applying the erase voltage, the dispersibility of the charged particles is different, so the application period of the erase voltage may be less than the response time.
 消去電圧の印加の後、ゲート線G1、G2、G3がT/9の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要素に所望の電圧が印加されるように、所定の書込電圧パルスが印加され、これが9回繰り返される。画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回Vの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vが印加される場合とがある。-Vの電圧を消去電圧として印加されたので、0Vが印加されても、-Vが印加されても、帯電粒子の実質的な移動は発生しないからである。 After application of the erase voltage, the gate lines G1, G2, G3 are sequentially scanned during T / 9, and in synchronization therewith, the desired voltages are applied to the respective pixel elements on the data lines D1, D2. , A predetermined write voltage pulse is applied, and this is repeated nine times. A write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6. Since the voltage of -V is applied as the erase voltage, substantial movement of the charged particles does not occur even if 0 V is applied or -V is applied.
 なお、消去電圧の印加の後の書込電圧パルスの印加による平均の電圧値は、画素要素1~6について、図16に示すように、それぞれV、2V/3、V/3、V/3、2V/3、0または-Vとなる。各画素要素の明度は、この平均の電圧値に応じた明度となる。 As shown in FIG. 16, the average voltage value of the application of the write voltage pulse after the application of the erase voltage is V, 2V / 3, V / 3, V / 3 for pixel elements 1 to 6, respectively. , 2V / 3, 0 or -V. The lightness of each pixel element is the lightness corresponding to the average voltage value.
 (実施例2)
 図17は、制御部が、それぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、消去電圧を1または複数回間欠して印加する場合について説明する図である。すなわち、主に実施形態2に対応する。
(Example 2)
FIG. 17 is a diagram for explaining the case where the control unit intermittently applies the erase voltage one or more times before applying the write voltage pulse of the number of times to each pixel element. That is, the second embodiment mainly corresponds to the second embodiment.
 図17に示すように、最大9回の書込電圧パルスの印加の前に、消去電圧-Vを印加することと消去電圧の印加をしないことを交互に繰り返している。消去電圧の印加等は、例えば前述のとおり、全てのゲート線にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に電圧パルスを印加して、画素電極間に消去電圧を印加することと消去電圧を印加しないことを交互に繰り返すことにより行なう。パルス状の消去電圧(あるいは、間欠した消去電圧)を印加することにより、全ての画素要素は黒色となる。 As shown in FIG. 17, the application of the erase voltage -V and the application of the erase voltage are alternately repeated prior to the application of the maximum of nine write voltage pulses. For the application of the erase voltage, for example, as described above, a voltage pulse for turning on the transistor 104 is applied to all the gate lines, and in synchronization with this, a voltage pulse is applied to all the data lines. The application of the erase voltage and the application of the erase voltage are alternately repeated. By applying a pulse-like erasing voltage (or intermittent erasing voltage), all pixel elements become black.
 間欠した消去電圧を用いる理由は、直流電圧を連続して長時間印加すると、表示のいわゆる焼き付きや溶媒の対流によってコントラストの低下が生じるからである。間欠した消去電圧の印加により、直流電圧の印加時間を短くすることができ、表示の焼き付きや溶媒の対流によるコントラストの低下を抑制し、表示の品質を向上させることができる。 The reason for using the intermittent erasing voltage is that when a DC voltage is continuously applied for a long time, the contrast is lowered due to so-called burn-in of the display or convection of the solvent. The intermittent application of the erasing voltage makes it possible to shorten the application time of the DC voltage, to suppress the deterioration of the contrast due to the burn-in of the display and the convection of the solvent, and to improve the quality of the display.
 また、間欠した消去電圧の印加時間の総和は、応答時間程度となることが好ましい。例えば、間欠した消去電圧の印加時間を応答時間以上とする。このような間欠した消去電圧の印加により、反射率が略最小または略最大となるからである。これによって、印加回数制御回路1024による電圧パルスの印加によって中間階調表示を良好に行なうことができる。ただし、消去電圧を印加する前の電圧印加の状況によっては帯電粒子の分散性に違いがあるので消去電圧の印加期間の総和は応答時間以下とできることもある。 Moreover, it is preferable that the total of the application time of the intermittent erase voltage be about the response time. For example, the application time of the intermittent erase voltage is set to the response time or more. This is because the reflectance is substantially minimized or substantially maximized by such intermittent application of the erasing voltage. As a result, by applying the voltage pulse by the application number control circuit 1024, it is possible to satisfactorily perform half tone display. However, depending on the state of voltage application before applying the erase voltage, the dispersibility of the charged particles is different, so the sum of the application periods of the erase voltage may be less than the response time.
 1または複数回間欠した消去電圧の印加の後、ゲート線G1、G2、G3がT/9の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要素に所望の電圧が印加されるように、所定の電圧パルスが印加され、これが9回繰り返される。画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回Vの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vが印加される場合とがある。 After applying the erasing voltage intermittently one or more times, the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, the data lines D1 and D2 are desired for each pixel element. As a voltage is applied, a predetermined voltage pulse is applied, which is repeated nine times. A write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
 (実施例3)
 図18は、制御部がそれぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、交番電圧が印加される場合について説明する図である。すなわち、主に実施形態3に対応している。
(Example 3)
FIG. 18 is a diagram for explaining the case where an alternating voltage is applied before the control unit applies the write voltage pulse of the number of times to each pixel element. That is, this mainly corresponds to the third embodiment.
 図18に示すように、最大9回の電圧の印加の前に、Vと-Vとの電圧を交互に印加している。交番電圧の印加は、例えば前述のとおり、全てのゲート線にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に電圧パルスを印加して画素電極間に交番電圧を印加することにより行なう。その後、ゲート線G1、G2、G3がT/9の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要素に所望の電圧が印加されるように、所定の電圧パルスが印加され、これが9回繰り返される。画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回Vの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vが印加される場合とがある。 As shown in FIG. 18, voltages V and -V are alternately applied before the application of the voltage up to nine times. For the application of the alternating voltage, for example, as described above, a voltage pulse for turning on the transistor 104 is applied to all gate lines, and in synchronization with this, a voltage pulse is applied to all data lines to alternate between the pixel electrodes. It does by applying a voltage. Thereafter, the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, a predetermined voltage is applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. A pulse is applied and this is repeated nine times. A write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
 交番電圧は交互に正極性と負極性との間を遷移する電圧パルスであるから、電気泳動表示材料の帯電粒子は、交番電圧の極性に反応し、例えば白色の帯電粒子と黒色の帯電粒子とは互いに別の電極方向へ移動する。したがって、交番電圧の最後の電圧パルスの極性に応じて、電気泳動表示材料は、所定の反射率になる。交番電圧の最後の極性の電圧パルスによって実現される電気泳動表示材料の反射率は、消去電圧を印加した場合と同様の効果となることから、書込電圧パルスの印加に先立って交番電圧を印加するときは、交番電圧の最後のパルスの極性を、画像を消去すべき極性に選択すること、すなわち交番電圧の最後のパルスの極性が前記消去電圧の極性にすること、により、新たな消去電圧を印加することを省略することができる。このため、短時間に中間階調表示を行なうことができる。 Since the alternating voltage is a voltage pulse that alternates between positive and negative polarities, the charged particles of the electrophoretic display material react to the polarity of the alternating voltage, for example, white charged particles and black charged particles. Move towards each other in the direction of the electrodes. Thus, depending on the polarity of the last voltage pulse of the alternating voltage, the electrophoretic display material has a predetermined reflectivity. Since the reflectance of the electrophoretic display material realized by the voltage pulse of the last polarity of the alternating voltage has the same effect as the case where the erasing voltage is applied, the alternating voltage is applied prior to the application of the writing voltage pulse. The new erase voltage is selected by selecting the polarity of the last pulse of the alternating voltage as the polarity to erase the image, ie by setting the polarity of the last pulse of the alternating voltage to the polarity of the erase voltage. Can be omitted. For this reason, it is possible to perform halftone display in a short time.
 なお、交番電圧の周波数は、10ヘルツ以上200ヘルツ以下の範囲が好ましく、特に20ヘルツ以上100ヘルツ以下の範囲がより好ましい。交番電圧の周波数が小さく、例えば10ヘルツ未満であると、表示パネルにフリッカが表示されていると視認され、表示の品質が損なわれる場合がある。また、電気泳動表示材料に含まれるイオン物質が数十キロヘルツ程度の高い周波数まで応答するので、交番電圧の周波数が高く、例えば200ヘルツを超えると、帯電粒子の分散性を向上させる効果は生じるかもしれないが、帯電粒子の交番電圧への追随性が低くなる。このため、書込電圧パルスの印加によって中間階調表示が良好に行えなくなる場合がある。 The frequency of the alternating voltage is preferably in the range of 10 Hz to 200 Hz, and more preferably in the range of 20 Hz to 100 Hz. If the frequency of the alternating voltage is small, for example, less than 10 Hz, it may be recognized that flicker is displayed on the display panel, and the display quality may be impaired. In addition, since the ionic substance contained in the electrophoretic display material responds to a high frequency of several tens of kilohertz, if the frequency of the alternating voltage is high, for example, exceeding 200 Hz, the effect of improving the dispersibility of charged particles may be generated. However, the tracking of the charged particles to the alternating voltage is low. For this reason, the application of the write voltage pulse may make it impossible to satisfactorily perform intermediate gray scale display.
 (実施例4)
 図19は、制御部がそれぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、交番電圧を印加し、消去電圧を印加することを、交番電圧、消去電圧の順で行なう場合について説明する図である。すなわち、主に実施形態3に対応し、例えば実施形態3に係る電気泳動表示装置が、画像消去回路を有する場合である。
(Example 4)
FIG. 19 shows the case where the alternating voltage is applied and the erase voltage is applied in the order of the alternating voltage and the erase voltage before the control unit applies the write voltage pulse of the number of times to each pixel element. FIG. That is, this corresponds mainly to the third embodiment. For example, the electrophoretic display device according to the third embodiment has an image erasing circuit.
 図19に示すように、1画素要素あたり最大9回の書込電圧パルスの印加の前に、まず、Vと-Vとの電圧を交互に印加して交番電圧を印加し、-Vの消去電圧を印加している。交番電圧と消去電圧の印加は、例えば前述のとおり、全てのゲート線にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に電圧パルスを印加して画素電極間に交番電圧と消去電圧とをこの順に印加することにより行なう。その後、ゲート線G1、G2、G3がT/9の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要素に所望の電圧が印加されるように所定の電圧パルスが印加され、これが9回繰り返される。画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回Vの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vが印加される場合とがある。 As shown in FIG. 19, before application of a maximum of nine write voltage pulses per pixel element, first, voltages of V and -V are alternately applied to apply an alternating voltage to erase -V. A voltage is applied. For the application of the alternating voltage and the erasing voltage, for example, as described above, a voltage pulse for turning on the transistor 104 is applied to all gate lines, and a voltage pulse is applied to all data lines in synchronization with this. An alternating voltage and an erase voltage are applied in this order in the meantime. Thereafter, the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, predetermined voltage pulses are applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. Is applied, and this is repeated nine times. A write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
 なお、本実施例において、交番電圧の印加の後に印加される-Vの消去電圧の印加時間は、応答時間よりも小さいのが好ましい。その消去電圧を応答時間程度印加しなくても、その消去電圧の印加の前に交番電圧が印加されているので、帯電粒子の均一分散性が高まっている。このため、-Vの交番電圧を印加した直後から1フレーム期間内においては、-Vの消去電圧の印加による帯電粒子の移動が良好となると考えられ、応答時間よりも小さい消去電圧の印加であっても反射率を略最小または略最大とすることができる。印加回数制御回路1024による消去電圧の印加によって中間階調表示が良好に行える。もし、消去電圧の印加時間が長くなると、電気泳動表示材料の溶媒の対流などが生じ、反射率が、最小の反射率から大きくなったり、最大の反射率から小さくなったりもする。また、消去電圧の印加時間を応答時間より小さくすることにより、画像を表示パネルに表示するのに要する時間を短縮することができる。 In the present embodiment, the application time of the erase voltage of −V applied after the application of the alternating voltage is preferably smaller than the response time. Even if the erase voltage is not applied for about the response time, since the alternating voltage is applied before the application of the erase voltage, the uniform dispersion of the charged particles is enhanced. For this reason, it is considered that movement of the charged particles by application of the erase voltage of -V becomes good within one frame period immediately after application of the alternating voltage of -V, and the erase voltage is applied smaller than the response time. Even the reflectance can be made approximately minimum or approximately maximum. By applying the erase voltage by the application frequency control circuit 1024, it is possible to satisfactorily perform half tone display. If the application time of the erasing voltage is long, convection of the solvent of the electrophoretic display material occurs, and the reflectance may increase from the minimum reflectance or decrease from the maximum reflectance. Further, by making the application time of the erasing voltage smaller than the response time, it is possible to shorten the time required to display an image on the display panel.
 (実施例5)
 図20は、制御部がそれぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、交番電圧を印加し、パルス状の消去電圧を印加することを、交番電圧、消去電圧の順に行なう場合について説明する図である。すなわち、主に実施形態3に対応し、例えば実施形態3に係る電気泳動表示装置が、画像消去回路を有する場合であり、実施形態2の変形として画像消去回路がパルス状の消去電圧を印加する場合に対応している。
(Example 5)
FIG. 20 shows that an alternating voltage is applied and a pulse-like erase voltage is applied in the order of the alternating voltage and the erase voltage before the control unit applies the write voltage pulse of the number of times to each pixel element. It is a figure explaining the case where it carries out. That is, this corresponds mainly to the third embodiment. For example, the electrophoretic display device according to the third embodiment has the image erasing circuit, and the image erasing circuit applies a pulse-like erasing voltage as a modification of the second embodiment. It corresponds to the case.
 図20に示すように、1画素要素あたり最大9回の書込電圧パルスの印加の前に、Vと-Vとの電圧を交互に印加している。そして、-Vの消去電圧を間欠して印加している。交番電圧と消去電圧の間欠印加は、例えば前述のとおり、全てのゲート線にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に電圧パルスを印加して画素電極間に交番電圧と消去電圧を間欠して印加することにより行なう。その後、ゲート線G1、G2、G3がT/9の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要素に所望の電圧が印加されるように所定の電圧パルスが印加され、これが9回繰り返される。画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回Vの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vが印加される場合とがある。 As shown in FIG. 20, voltages V and -V are alternately applied before application of a maximum of nine write voltage pulses per pixel element. Then, an erase voltage of -V is applied intermittently. In intermittent application of the alternating voltage and the erasing voltage, for example, as described above, voltage pulses for turning on the transistor 104 are applied to all gate lines, and voltage pulses are applied to all data lines in synchronization with this. This is performed by intermittently applying an alternating voltage and an erase voltage between the electrodes. Thereafter, the gate lines G1, G2 and G3 are sequentially scanned during T / 9, and in synchronization therewith, predetermined voltage pulses are applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. Is applied, and this is repeated nine times. A write voltage pulse of V is applied to pixel element 1 each time, a write voltage pulse of 6 V is applied to pixel elements 2 and 5, and V times of 3 times is applied to pixel elements 3 and 4. Write voltage pulses are applied. Further, there are cases where 0 V is applied each time and -V is applied to the pixel element 6.
 なお、間欠した消去電圧の印加時間の総和は、応答時間よりも小さいのが好ましい。応答時間程度の時間、間欠した消去電圧を印加しなくても、その消去電圧の印加の前に交番電圧が印加されているので、帯電粒子の均一分散性が高まっている。このため、消去電圧の印加による帯電粒子の移動が良好となると考えられ、応答時間よりも小さい消去電圧の印加であっても反射率を略最小または略最大とすることができる。これによって印加回数制御回路1024による電圧パルスの印加によって中間階調表示が良好に行える。また、間欠した消去電圧の印加時間を小さくすることにより、画像を表示パネルに表示するのに要する時間を短縮することができる。 Preferably, the total sum of the application time of the erasing voltage which is intermittent is smaller than the response time. Even if the intermittent erase voltage is not applied for about the response time, since the alternating voltage is applied before the application of the erase voltage, the uniform dispersion of the charged particles is enhanced. For this reason, it is considered that the movement of the charged particles due to the application of the erasing voltage is improved, and the reflectance can be substantially minimized or substantially maximized even if the erasing voltage is smaller than the response time. As a result, the application of the voltage pulse by the application frequency control circuit 1024 makes it possible to achieve good gray scale display. In addition, by shortening the application time of the erasing voltage which is intermittent, it is possible to shorten the time required to display an image on the display panel.
 (実施例6)
 図21は、制御部がそれぞれの画素要素にそれぞれの回数の書込電圧パルスを印加する前に、交番電圧を印加し、その後、-Vの電圧パルスを所定回数印加する場合について説明する図である。すなわち、主に実施形態3に対応し、例えば実施形態3に係る電気泳動表示装置が、画像消去回路を有する場合である。
(Example 6)
FIG. 21 is a diagram for explaining a case where an alternating voltage is applied before the control unit applies the write voltage pulse of each number to each pixel element, and thereafter, a voltage pulse of -V is applied a predetermined number of times is there. That is, this corresponds mainly to the third embodiment. For example, the electrophoretic display device according to the third embodiment has an image erasing circuit.
 図21に示すように、1画素要素あたり最大9回の書込電圧パルスの印加の前に、Vと-Vとの電圧を交互に印加している。そして、-Vの電圧パルスを、所定回数印加し、交番電圧の印加は、例えば前述のとおり、全てのゲート線にトランジスタ104をオン状態とする電圧パルスを印加し、これに同期して全てのデータ線に電圧パルスを印加して画素電極間に交番電圧を印加することにより行なう。その後、ゲート線G1、G2、G3がT/12の間に順次走査され、それに同期してデータ線D1、D2には、おのおのの画素要
素に所望の電圧が印加されるように所定の電圧パルスが印加され、これが11回繰り返される。最初の2回のゲート線の走査で各画素要素には-Vの書込電圧パルスを、所定回数(2回)印加し、その後、画素要素1には、毎回Vの書込電圧パルスが印加され、画素要素2と5とには、6回のVの書込電圧パルスが印加され、画素要素3と4とには、3回Vの書込電圧パルスが印加される。また、画素要素6には、毎回0Vが印加される場合と-Vの書込電圧パルスが印加される場合とがある。
As shown in FIG. 21, voltages V and -V are alternately applied before application of a maximum of nine write voltage pulses per pixel element. Then, a voltage pulse of -V is applied a predetermined number of times, and the application of the alternating voltage is performed, for example, as described above, by applying a voltage pulse that turns on the transistor 104 to all gate lines. This is performed by applying a voltage pulse to the data line and applying an alternating voltage between the pixel electrodes. Thereafter, the gate lines G1, G2 and G3 are sequentially scanned during T / 12, and in synchronization therewith, predetermined voltage pulses are applied to the data lines D1 and D2 so that a desired voltage is applied to each pixel element. Is applied, and this is repeated 11 times. A write voltage pulse of -V is applied to each pixel element a predetermined number of times (twice) in the first two scannings of the gate lines, and thereafter, a write voltage pulse of V is applied to pixel element 1 each time Thus, six write voltage pulses of V are applied to the pixel elements 2 and 5, and three write voltage pulses of V are applied to the pixel elements 3 and 4. In addition, there are cases where 0 V is applied each time and a write voltage pulse of -V is applied to the pixel element 6.
 交番電圧により正極性と負極性との電圧パルスが交互に印加される。このため、電気泳動表示材料は、交番電圧の極性に反応し、白色の帯電粒子と黒色の帯電粒子は、互いに反対の方向に移動する。したがって、交番電圧の最後の電圧パルスの極性に応じて、電気泳動表示材料は所定の反射率を有することになる。すなわち、交番電圧の最後の電圧パルスによって設定された反射率は、消去電圧の印加と同等の効果を有するものとなり、印加回数制御回路1024により印加される複数回の電圧パルスの極性が交番電圧の最後の電圧パルスの極性と逆の場合には、新たに消去電圧を印加することが不要となる。したがって、より短時間に効率的に中間階調表示を行なうことができる。 Voltage pulses of positive polarity and negative polarity are alternately applied by the alternating voltage. Thus, the electrophoretic display material responds to the polarity of the alternating voltage, and the white charged particles and the black charged particles move in opposite directions. Thus, depending on the polarity of the last voltage pulse of the alternating voltage, the electrophoretic display material will have a predetermined reflectivity. That is, the reflectance set by the last voltage pulse of the alternating voltage has the same effect as the application of the erase voltage, and the polarity of the plurality of voltage pulses applied by the application frequency control circuit 1024 is the alternating voltage. In the case where the polarity of the last voltage pulse is reversed, it is not necessary to apply a new erase voltage. Therefore, halftone display can be performed efficiently in a short time.
 しかし、電気泳動表示装置の構成などによっては、交番電圧の最後の電圧パルスによって得られる反射率が所定の基準に達せず、例えば、消去電圧によって黒色の状態にしたいのに、交番電圧の最後の電圧パルスによってその所望の黒色の状態が得られないことがある。この場合であっても本実施例によれば、新たに全画素要素にほぼ同時に消去電圧を印加することなく、印加回数制御回路1024により印加される複数回の電圧パルスのうち、最初の数回の書き込み電圧の極性を交番電圧の最後の電圧パルスと同じ極性にし、それに続く他の電圧パルスの極性を交番電圧の最後の電圧パルスの極性と逆にする。これにより、効率的に中間階調の表示が行える。交番電圧を印加回数制御回路1024によって複数回の電圧パルスの印加に先立って加えているので、電気泳動表示材料の白色の帯電粒子と黒色の帯電粒子の分散性が高まり、印加回数制御回路によって印加される電圧パルスの最初の数回の電圧パルスによって所望の黒色の状態が得られる。 However, depending on the configuration of the electrophoretic display device, etc., the reflectance obtained by the last voltage pulse of the alternating voltage does not reach a predetermined reference, and for example, the last of the alternating voltage is desired to be blackened by the erase voltage. The voltage pulse may not provide the desired black state. Even in this case, according to the present embodiment, the first several times among the plurality of voltage pulses applied by the application frequency control circuit 1024 without newly applying the erase voltage to all the pixel elements substantially simultaneously. The polarity of the write voltage is made the same as that of the last voltage pulse of the alternating voltage, and the polarity of the subsequent voltage pulse is reversed to the polarity of the last voltage pulse of the alternating voltage. As a result, it is possible to display halftones efficiently. Since the alternating voltage is applied prior to application of a plurality of voltage pulses by the application frequency control circuit 1024, the dispersibility of the white charged particles of the electrophoretic display material and the black charged particles is enhanced, and the application frequency control circuit applies the voltage. The desired first black state is obtained by the first few voltage pulses.
 本実施例においては、交番電圧が最初に印加されているので、帯電粒子の周囲に存在していたイオンが帯電粒子から離れるなどの現象により帯電粒子の画素電極と基板電極との間の移動が良好となる。したがって、消去電圧を印加する時間は応答時間よりも短い時間で済むことになる。交番電圧が最初に印加されている他の実施例においても同様である。 In the present embodiment, since the alternating voltage is applied first, the movement of the charged particles between the pixel electrode and the substrate electrode occurs due to the phenomenon that ions existing around the charged particles are separated from the charged particles. It becomes good. Therefore, the time for applying the erase voltage is shorter than the response time. The same applies to other embodiments in which an alternating voltage is initially applied.
  100 電気泳動表示装置、101 表示パネル、102 制御部、1021 ゲート線駆動回路、1022 データ線駆動回路、1023 基板電極駆動回路、103 印加回数制御回路、1024 印加回数制御回路、1025 印加電圧制御回路 DESCRIPTION OF SYMBOLS 100 Electrophoretic display device, 101 display panel, 102 control part, 1021 gate line drive circuit, 1022 data line drive circuit, 1023 substrate electrode drive circuit, 103 application number control circuit, 1024 application number control circuit, 1025 applied voltage control circuit

Claims (20)

  1.  複数のトランジスタを備え、前記複数のトランジスタそれぞれのゲート電極が複数のゲート線のいずれかに接続され、ソース電極及びドレイン電極の一方が複数のデータ線のいずれかに接続され、前記ソース電極及びドレイン電極の他方が電気泳動表示材料を挟持するための2つの画素用電極の一方に接続されている表示パネルと、
     1フレーム期間に、前記表示パネルに表示するべき画像の画素の明度レベルに応じた回数の電圧パルスを前記画素に対応する前記画素用電極間に印加する制御部と、を有する電気泳動表示装置。
    A plurality of transistors are provided, the gate electrode of each of the plurality of transistors is connected to any of a plurality of gate lines, one of the source electrode and the drain electrode is connected to any of a plurality of data lines, the source electrode and the drain A display panel in which the other of the electrodes is connected to one of two pixel electrodes for sandwiching the electrophoretic display material;
    An electrophoretic display device, comprising: a control unit that applies, during one frame period, voltage pulses of the number according to the lightness level of a pixel of an image to be displayed on the display panel between the pixel electrodes corresponding to the pixel.
  2.  前記電気泳動表示材料の体積抵抗率が1012Ωcm以下であることを特徴とする請求項1に記載の電気泳動表示装置。 The electrophoretic display device according to claim 1, wherein a volume resistivity of the electrophoretic display material is 10 12 Ωcm or less.
  3.  前記制御部による前記電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に、いずれかの極性の消去電圧が印加されることを特徴とする請求項1に記載の電気泳動表示装置。 2. The electrophoretic display device according to claim 1, wherein an erasing voltage of any polarity is applied substantially simultaneously between all the pixel electrodes before the application of the voltage pulse by the control unit. .
  4.  前記消去電圧は、一つの電圧パルスまたは同じ極性の間欠した複数の電圧パルスとして印加されることを特徴とする請求項3に記載の電気泳動表示装置。 The electrophoretic display device according to claim 3, wherein the erase voltage is applied as one voltage pulse or a plurality of intermittent voltage pulses of the same polarity.
  5.  前記複数の電圧パルスの印加時間の和が前記電気泳動表示材料の応答時間以下であることを特徴とする請求項4に記載の電気泳動表示装置。 5. The electrophoretic display device according to claim 4, wherein a sum of application times of the plurality of voltage pulses is equal to or less than a response time of the electrophoretic display material.
  6.  前記制御部による前記電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に交番電圧が印加されることを特徴とする請求項1に記載の電気泳動表示装置。 The electrophoretic display device according to claim 1, wherein an alternating voltage is applied substantially simultaneously between all the pixel electrodes before the application of the voltage pulse by the control unit.
  7. 前記制御部による前記電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に、交番電圧を印加した後、いずれかの極性の消去電圧を印加することを特徴とする請求項1に記載の電気泳動表示装置。 The alternating voltage is applied between all the pixel electrodes substantially simultaneously before the application of the voltage pulse by the control unit, and then the erase voltage of any polarity is applied. Electrophoretic display device as described.
  8. 前記消去電圧は、一つの電圧パルスまたは同じ極性の間欠した複数の電圧パルスとして印加されることを特徴とし、前記複数の電圧パルスの印加時間の総和が応答時間以下であることを特徴とする請求項7に記載の電気泳動表示装置。 The erase voltage is applied as one voltage pulse or a plurality of intermittent voltage pulses of the same polarity, and a total of application times of the plurality of voltage pulses is equal to or less than a response time. The electrophoretic display device according to Item 7.
  9.  前記消去電圧の極性は、前記交番電圧の最後のパルスの極性と逆であることを特徴とする請求項7に記載の電気泳動表示装置。 8. The electrophoretic display device according to claim 7, wherein the polarity of the erase voltage is opposite to the polarity of the last pulse of the alternating voltage.
  10.  前記消去電圧の印加時間が、前記交番電圧の最後のパルスの印加時間以上であり、前記電気泳動表示材料の応答時間の長さ以下であることを特徴とする請求項7に記載の電気泳動表示装置。 8. The electrophoretic display according to claim 7, wherein the application time of the erasing voltage is equal to or more than the application time of the last pulse of the alternating voltage and equal to or less than the response time of the electrophoretic display material. apparatus.
  11.  複数のトランジスタを備え、前記複数のトランジスタそれぞれのゲート電極が複数のゲート線のいずれかに接続され、ソース電極及びドレイン電極の一方が複数のデータ線のいずれかに接続され、前記ソース電極及びドレイン電極の他方が電気泳動表示材料を挟持するための2つの画素用電極の一方に接続されている表示パネルの駆動方法であって、
     1フレーム期間に、前記表示パネルに表示するべき画像の画素の明度レベルに応じた回数の書込電圧パルスを前記画素に対応する前記画素用電極間に印加することを特徴とする、表示パネルの駆動方法。
    A plurality of transistors are provided, the gate electrode of each of the plurality of transistors is connected to any of a plurality of gate lines, one of the source electrode and the drain electrode is connected to any of a plurality of data lines, the source electrode and the drain A method of driving a display panel in which the other of the electrodes is connected to one of two pixel electrodes for sandwiching an electrophoretic display material,
    In the display panel, a write voltage pulse is applied between the pixel electrodes corresponding to the pixels a number of times according to the lightness level of the pixel of the image to be displayed on the display panel in one frame period. How to drive.
  12.  前記電気泳動表示材料の体積抵抗率が1012Ωcm以下であることを特徴とする請求項11に記載の、表示パネルの駆動方法。 The method of driving a display panel according to claim 11, wherein a volume resistivity of the electrophoretic display material is 10 12 Ωcm or less.
  13.  前記書込電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に、いずれかの極性の消去電圧が印加されることを特徴とする請求項11に記載の、表示パネルの駆動方法。 12. The method of driving a display panel according to claim 11, wherein an erase voltage of any polarity is applied between all the pixel electrodes substantially simultaneously before the application of the write voltage pulse. .
  14.  前記消去電圧は、一つの電圧パルスまたは同じ極性の間欠した複数の電圧パルスとして印加されることを特徴とする請求項13に記載の、表示パネルの駆動方法。 The method of claim 13, wherein the erase voltage is applied as one voltage pulse or a plurality of intermittent voltage pulses of the same polarity.
  15.  前記複数の電圧パルスの印加時間の和が前記電気泳動表示材料の応答時間以下であることを特徴とする請求項14に記載の、表示パネルの駆動方法。 The method according to claim 14, wherein a sum of application times of the plurality of voltage pulses is equal to or less than a response time of the electrophoretic display material.
  16.  前記書込電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に交番電圧が印加されることを特徴とする請求項11に記載の、表示パネルの駆動方法。 12. The method according to claim 11, wherein an alternating voltage is applied substantially simultaneously between all the pixel electrodes before the application of the write voltage pulse.
  17. 前記書込電圧パルスの印加の前に、全ての前記画素用電極間にほぼ同時に、交番電圧を印可した後、いずれかの極性の消去電圧を印加することを特徴とする請求項11に記載の、表示パネルの駆動方法。 The alternating voltage is applied between all the pixel electrodes substantially simultaneously before the application of the write voltage pulse, and then the erase voltage of any polarity is applied. , How to drive the display panel.
  18. 前記消去電圧は、一つの電圧パルスまたは同じ極性の間欠した複数の電圧パルスとして印加されることを特徴とし、前記複数の電圧パルスの印加時間の総和が応答時間以下であることを特徴とする請求項17に記載の、表示パネルの駆動方法。 The erase voltage is applied as one voltage pulse or a plurality of intermittent voltage pulses of the same polarity, and a total of application times of the plurality of voltage pulses is equal to or less than a response time. Item 18. A method of driving a display panel according to item 17.
  19.  前記消去電圧の極性は、前記交番電圧の最後のパルスの極性と逆であることを特徴とする請求項17に記載の、表示パネルの駆動方法。 The method of claim 17, wherein the polarity of the erase voltage is opposite to the polarity of the last pulse of the alternating voltage.
  20.  前記消去電圧の印加時間が、前記交番電圧の最後のパルスの印加時間以上であり、前記電気泳動表示材料の応答時間の長さ以下であることを特徴とする請求項17に記載の、表示パネルの駆動方法。 The display panel according to claim 17, wherein the application time of the erase voltage is equal to or more than the application time of the last pulse of the alternating voltage and equal to or less than the response time of the electrophoretic display material. Driving method.
PCT/JP2011/053870 2010-03-02 2011-02-22 Electrophoretic display device and method for driving display panel WO2011108404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045060A JP2011180409A (en) 2010-03-02 2010-03-02 Electrophoretic display device and method of driving display panel
JP2010-045060 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108404A1 true WO2011108404A1 (en) 2011-09-09

Family

ID=44542060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053870 WO2011108404A1 (en) 2010-03-02 2011-02-22 Electrophoretic display device and method for driving display panel

Country Status (2)

Country Link
JP (1) JP2011180409A (en)
WO (1) WO2011108404A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088510A (en) * 2011-10-14 2013-05-13 Japan Display East Co Ltd Display unit and driving method thereof
WO2014178330A1 (en) * 2013-04-30 2014-11-06 三菱鉛筆株式会社 Method for driving electrophoretic display device, and electrophoretic display device
JP2015018117A (en) * 2013-07-11 2015-01-29 大日本印刷株式会社 Driving method of reflection type display device
JP2017198877A (en) * 2016-04-28 2017-11-02 ソニー株式会社 Display device, drive method, and electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069411A (en) * 2007-09-12 2009-04-02 Mitsubishi Pencil Co Ltd Electrophoretic display device, controller, applying method, program, and applying device
JP2010026159A (en) * 2008-07-17 2010-02-04 Seiko Epson Corp Electrophoresis device, driving method of electrophoresis device, and electronic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069411A (en) * 2007-09-12 2009-04-02 Mitsubishi Pencil Co Ltd Electrophoretic display device, controller, applying method, program, and applying device
JP2010026159A (en) * 2008-07-17 2010-02-04 Seiko Epson Corp Electrophoresis device, driving method of electrophoresis device, and electronic device

Also Published As

Publication number Publication date
JP2011180409A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP4609168B2 (en) Driving method of electrophoretic display device
JP3716823B2 (en) Electro-optical device, driving method of electro-optical device, and electronic apparatus
JP2007206267A (en) Electrophoresis display device and electronic equipment
JP7079845B2 (en) How to drive an electro-optic display
JP2004029477A (en) Driving method of liquid crystal display, and liquid crystal display
WO2011108404A1 (en) Electrophoretic display device and method for driving display panel
JP4269605B2 (en) Dispersion system drive circuit drive method and electrophoretic display device drive method
JP2009098302A (en) Electrophoretic display device, electronic apparatus and method of driving electrophoretic display device
JP2008158243A (en) Display device
JP2010231226A (en) Electrophoretic display, controller, method of driving the electrophoretic display, and electronic paper
JP2013186409A (en) Driving device for image display medium, image display device and driving program
US11450262B2 (en) Electro-optic displays, and methods for driving same
JP2021511542A (en) Electro-optic displays and how to drive them
KR102659779B1 (en) Methods for driving electro-optical displays
KR20230003578A (en) Electro-optical displays and methods for driving them
JP5512409B2 (en) Electrophoretic display device and driving method thereof
JPH06301011A (en) Matrix display device and its driving method
TW201317957A (en) Driving method of a bistable display panel
JP4141185B2 (en) Liquid crystal display
JP6001466B2 (en) Image display medium drive device, image display device, and drive program
JP2011013685A (en) Electrophoretic display, controller, and electronic device
KR101394923B1 (en) LCD and drive method thereof
WO2018084188A1 (en) Image display device
JP5024461B2 (en) Electrophoretic display device, electronic apparatus, driving method of electrophoretic display device, and controller
JPWO2006095437A1 (en) Method for driving liquid crystal display device and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750516

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750516

Country of ref document: EP

Kind code of ref document: A1