WO2011106918A1 - 基于云计算的电子信息系统机房能源管理控制系统及方法 - Google Patents

基于云计算的电子信息系统机房能源管理控制系统及方法 Download PDF

Info

Publication number
WO2011106918A1
WO2011106918A1 PCT/CN2010/001366 CN2010001366W WO2011106918A1 WO 2011106918 A1 WO2011106918 A1 WO 2011106918A1 CN 2010001366 W CN2010001366 W CN 2010001366W WO 2011106918 A1 WO2011106918 A1 WO 2011106918A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy consumption
energy
parameters
cloud computing
management control
Prior art date
Application number
PCT/CN2010/001366
Other languages
English (en)
French (fr)
Inventor
姜永东
Original Assignee
朗德华信(北京)自控技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朗德华信(北京)自控技术有限公司 filed Critical 朗德华信(北京)自控技术有限公司
Publication of WO2011106918A1 publication Critical patent/WO2011106918A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to the field of energy management control technologies, and in particular, to a cloud computing electronic information system room energy management control system and method. BACKGROUND OF THE INVENTION With the increasing shortage of energy worldwide, energy management control systems that achieve energy efficiency are becoming more and more important.
  • the energy management control system in the prior art usually adopts traditional electrical automation technology to perform energy management control on various energy-consuming devices of a single object (such as an electronic information room, a shopping mall, a store, a hotel, an office building industrial plant). Field level control.
  • Different management and energy-saving platforms used by factories are different. They are usually not incompatible and lack communication with each other. Therefore, it is impossible to form a unified platform to conduct unified energy management control to maximize energy conservation.
  • TRIDIUM has developed a unified platform system for energy management, which is compatible with other energy management platforms and provides users with energy consumption reference data.
  • the inventors have found that they still have the following problems:
  • the system does not have comprehensive energy statistics, analysis and management control from energy factors, energy policies, energy indicators, management systems, energy benchmarks, energy performance, energy statistics, energy optimization, etc. Provided to the user, let the user modify the on-site control mode according to the statistical results, so that the optimal configuration of the energy cannot be realized.
  • Cloud computing is a network technology developed in recent years. It distributes computing tasks on resource pools composed of a large number of computers, enabling various application systems to acquire computing power, storage space, and various software services as needed.
  • Major IT companies have launched their own cloud computing-based cloud platform services, such as Google (G00GLE), Microsoft, Yahoo, Amazon, etc., summed up the following characteristics of cloud computing: (1) Very large scale. "Cloud” is quite large. Google Cloud Computing has more than 1 million servers. The “clouds” of Amazon, IBM, Microsoft, Yahoo, etc. all have hundreds of thousands of servers. Enterprise private clouds typically have hundreds of thousands of servers, and “clouds” give users unprecedented computing power.
  • Cloud computing allows users to access application services from any location and from any location.
  • the requested resource comes from a "cloud” rather than a fixed tangible entity.
  • the app runs somewhere in the "cloud", but in reality the user doesn't need to know or worry about where the app is running. With just one laptop or one phone, you can do everything we need through web services, even tasks like supercomputing.
  • Cloud computing is not targeted at specific applications. Under the support of "cloud”, it can construct ever-changing applications. The same “cloud” can support different application operations at the same time.
  • the size of the "cloud” can be dynamically scaled to meet the needs of application and user growth.
  • Cloud is a huge pool of resources that you can buy on demand; clouds can be billed like tap water, electricity, and gas.
  • an object of the present invention is to provide a cloud computing-based electronic information system room energy management control system and method, which can be compatible with energy-saving platforms of all different manufacturers, and is compatible under a unified platform.
  • the present invention provides a cloud computing-based electronic information system room energy management control system, including:
  • a field controller configured to perform on-site control on each energy-consuming device of the electronic information system room according to the user setting parameter, and transmit the user setting parameter to the cloud computing management control platform;
  • An energy consumption parameter collector is configured to collect parameters related to energy consumption of the respective energy-consuming devices and transmit the parameters to the cloud computing management control platform; the cloud computing management control platform is configured to use the collected energy and the respective energy The parameters related to the energy consumption of the device and the user setting parameters adjust the field control mode of the field controller to the respective energy consuming devices.
  • the cloud computing management control platform specifically includes:
  • a receiving unit configured to receive, by the energy consumption parameter collector, a parameter related to energy consumption of each energy consuming device and the user setting parameter;
  • a first determining unit configured to determine whether the collected parameters related to energy consumption of the respective energy-consuming devices and the user-set parameters match and produce a determination result
  • An energy consumption model generating unit configured to generate a corresponding energy consumption model according to parameters related to energy consumption of each energy-consuming device when the determination result of the first determining unit is a match; a historical energy consumption model database, configured to store Various historical energy consumption models;
  • a second determining unit configured to determine whether the generated energy consumption model matches a corresponding historical energy consumption model in the historical energy consumption model database, and generates a determination result
  • a control mode adjusting unit configured to adjust a field control mode of the field controller to each of the energy-consuming devices when the determination result of the first determining unit or the second determining unit is a mismatch.
  • said parameters relating to energy consumption of said respective energy consuming devices comprise real time energy consumption parameters, operating parameters and safety parameters.
  • the real-time energy consumption parameter generally refers to the power parameter of each energy-consuming device directly collected by the electrical metering device, and the operating parameters include temperature, humidity, air volume, running time, frequency, and the like, and the parameters related to the operation of each energy-consuming device, the safety parameters include Parameters related to each energy-consuming device in the case of operating conditions, faults, alarms, etc.
  • the corresponding historical energy consumption model in the historical energy consumption model database refers to a historical energy consumption model that matches the energy consumption constraint parameter with the generated energy consumption model, and the energy consumption constraint parameter includes the respective energy consumption One or a combination of application environment parameters, design parameters, application site type parameters, and energy supply type parameters of the device.
  • Historical energy consumption model There are various historical energy consumption models in the database that conform to industry standards (design standards). These historical energy consumption models consider the evaluation criteria such as energy consumption benchmark, efficiency benchmark, and performance benchmark. The energy consumption is relatively reasonable. The establishment of the historical energy consumption model is usually restricted by the energy consumption constraint parameters, and the energy consumption constraint parameters are different, and the corresponding historical energy consumption models are different.
  • the application environment parameters of each energy-consuming equipment include geographic location, meteorological parameters, etc.
  • the design parameters include design power, measurement range, design energy consumption parameters, design energy efficiency, etc.
  • application site type parameters include shopping malls, supermarkets, hotels, office buildings. , exhibition halls, computer rooms, industrial plants, houses, national grids, etc. (in the present invention, electronic information system rooms), energy supply type parameters include coal, electricity, natural gas, petroleum, biomass, heat, renewable energy, and the like. Of course, there are other energy constraint parameters, such as control mode and so on.
  • the user setting parameter and the collected parameters related to the energy consumption of each energy-consuming device are transmitted to the cloud computing management control platform through a communication network, and the communication network is a wireless INTERNET network or a wired INTERNET network. Any of GPRS and 3G networks.
  • the field controller comprises a switch network controller
  • the energy consumption parameter collector comprises a switch network traffic detection sensor and a switch energy consumption detection sensor
  • the control mode adjustment unit is configured to detect sensors and switches according to the switch network traffic. The data collected by the energy consumption detecting sensor adjusts the control mode of the switch network controller.
  • the present invention also provides a cloud computing-based electronic information system room energy management control method, including:
  • S11 Perform on-site control on each energy-consuming device according to the user-set parameter and transmit the user setting parameter to the cloud computing management control platform;
  • S12 collecting parameters related to energy consumption of each energy-consuming device and transmitting the parameters to the cloud computing management control platform;
  • the step S13 specifically includes: S131: determining whether the collected parameters related to the energy consumption of the respective energy-consuming devices and the user-set parameters match; if not, performing step S135, if yes, performing step S132;
  • S132 Generate a corresponding energy consumption model according to parameters related to energy consumption of each energy-consuming device
  • step S133 determining whether the generated energy consumption model matches the corresponding historical energy consumption model in the historical energy consumption model database; if not, performing step S135, if yes, performing step S134 to maintain the control mode of the field controller ;
  • the method further includes the step S136, adding the generated energy consumption model to the historical energy consumption model database.
  • the invention has the beneficial effects that the energy-saving platform of all different manufacturers can be compatible, and centralized energy management control is performed on a plurality of electronic information system rooms under a unified platform, thereby realizing maximum energy saving management and network automatic control. Thereby achieving optimal energy allocation and achieving better energy savings.
  • FIG. 1 is a schematic structural diagram of a cloud computing-based electronic information system room energy management control system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a cloud computing-based electronic information system room energy management control method according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a cloud computing-based electronic information system room energy management control method according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a cloud computing-based electronic information system room energy management control system according to an embodiment of the present invention, and a cloud computing-based electronic information system room energy management control system includes:
  • the field controller 11 is configured to perform on-site control of each energy-consuming device 10 according to user setting parameters and transmit the user setting parameters to the cloud computing management control platform 13;
  • the field controller 11 includes a user parameter setting unit 111, It is used for user setting parameters.
  • the energy consumption device is an air conditioner
  • the user sets parameters such as temperature and air volume of the air conditioner as needed, and transmits the set parameters to the cloud computing management control platform 13.
  • the field controller 11 usually used in the electronic information system room includes a network water valve, a damper controller, a network motor controller, a network humidification controller, a network air conditioner controller, a network electromechanical device controller, a network security protection controller, and a network. Security, access control, alarm controller, switch network traffic, energy controller, etc., various combinations are used to control the room switch, computer room cooling equipment and end, computer room air volume, computer room lighting system.
  • An energy consumption parameter collector 12 is configured to collect parameters related to energy consumption of the respective energy consumption devices 10 and transmit the parameters to the cloud computing management control platform 13; parameters related to energy consumption of the respective energy consumption devices include real-time energy Consumption parameters, operating parameters and safety parameters.
  • the real-time energy consumption parameter generally refers to the power parameter of each energy-consuming device directly collected by the electrical metering device, and the operating parameters include temperature, humidity, air volume, running time, frequency, etc., related parameters of each energy-consuming device during operation, and the safety parameters include Parameters related to each energy-consuming device in the case of operating conditions, faults, alarms, etc.
  • the energy consumption parameter collector 12 is generally composed of various types of sensors with network transmission functions, data statistics and summary units, data analysis and uploading units, etc., to complete data collection and preliminary statistical analysis functions, and the actual number is set according to needs. As determined, there may be many energy consumption parameter collectors.
  • the sensors can be various network temperature sensors, network humidity sensors, network air volume sensors, network energy metering sensors, network wind speed sensors, network air ⁇ entropy sensors, and the like.
  • the collected energy consumption parameters are transmitted to the cloud computing management control platform through the communication network, and the communication network can be wireless.
  • INTERNET wired Internet
  • GPRS global positioning reference system
  • 3G 3rd Generation Partnership Project
  • the cloud computing management control platform 13 is configured to adjust the field controller 11 to the respective energy-consuming devices according to the collected parameters related to the energy consumption of the respective energy-consuming devices 10 and the user setting parameters. 10 on-site control mode. The purpose of the adjustment is to achieve optimal energy allocation and reduce energy consumption.
  • the cloud computing management control platform 13 of this embodiment specifically includes: The receiving unit 131 is configured to receive parameters related to energy consumption of the energy consuming devices 10 and the user setting parameters collected by the energy consumption parameter collector 12;
  • the first determining unit 132 is configured to determine whether the collected parameters related to the energy consumption of the respective energy-consuming devices 10 and the user-set parameters match and produce a determination result; the energy consumption model generating unit 133, And generating a corresponding energy consumption model according to parameters related to energy consumption of each energy-consuming device when the determination result of the first determining unit is a match; the energy consumption model includes indicators such as overall energy consumption and operating energy consumption.
  • the historical energy consumption model database 130 is used for storing various historical energy consumption models; the historical energy consumption model database contains various historical energy consumption models conforming to industry standards (design standards) and is agreed or recognized by relevant specifications and standards.
  • the optimal energy consumption model which takes into account the evaluation criteria of energy consumption benchmark, efficiency benchmark, performance benchmark, etc., is the most reasonable energy consumption.
  • the second determining unit 134 is configured to determine whether the generated energy consumption model matches the corresponding historical energy consumption model in the historical energy consumption model database and generate a determination result; the establishment of the historical energy consumption model is generally restricted by the energy consumption constraint parameter
  • the energy consumption constraint parameters are different, and the corresponding historical energy consumption models are different.
  • the energy consumption constraint parameter includes one or a combination of application environment parameters, design parameters, application site type parameters, and energy supply type parameters of the respective energy consuming devices, and a combination with other constraint parameters (eg, control modes).
  • the application environment parameters of each energy-consuming equipment include geographical location, meteorological parameters, etc.
  • the design parameters include design power, measurement range, design energy consumption parameters, design energy efficiency, etc.
  • the application site type parameters include shopping malls, supermarkets, hotels, office buildings.
  • energy supply type parameters include coal, electricity, natural gas, petroleum, biomass, heat, renewable energy, and the like.
  • the user inputs the energy consumption constraint parameters of the currently generated energy consumption model through the energy consumption constraint parameter setting unit 14, and then finds the corresponding historical energy consumption model (ie, the energy consumption constraint) in the historical energy consumption model database 130 according to the energy consumption constraint parameters.
  • the historical energy consumption model matching the generated energy consumption model, and then determining whether the generated energy consumption model matches the corresponding historical energy consumption model. If the mismatch indicates that the energy consumption is unreasonable, adjustment is needed.
  • the annual energy consumption per unit area of the generated energy consumption model is 20 (T300 kWh, and the annual energy consumption per unit area of the historical energy consumption model with the same energy consumption constraint parameter is about 100 kWh, which indicates that the energy consumption is unreasonable and needs to be adjusted.
  • the control mode adjustment unit 135 is configured to adjust the field control mode of the field device 11 to each of the energy consuming devices 10 when the determination result of the first determining unit 132 or the second determining unit 134 is not matched. . Mismatch indicates that the energy consumption does not meet the requirements, and the field control mode needs to be adjusted to reduce the energy consumption until the energy consumption is matched, thereby achieving optimal configuration of energy consumption.
  • the determination result of the first determining unit 132 When the determination result of the first determining unit 132 is not matched, it indicates that the energy consumption cannot meet the requirement set by the user, and the adjustment needs to be directly performed; when the judgment result of the second determining unit 134 is not matched, the description indicates that Although the consumption can meet the user setting requirements, it is not optimal. It does not consider the evaluation criteria such as energy consumption benchmark, efficiency benchmark, performance benchmark, etc. It is necessary to adjust to further reduce energy consumption. If the judgment result of the second judging unit 134 is a match, indicating that the energy consumption model of the production is reasonably compliant, the generated energy consumption model is added to the historical energy consumption model database, enriching the history. Data, providing a reference for subsequent energy management control. For example, the control mode adjusting unit 135 calls the historical model to adjust the control mode of the room switch network controller, the room cooling device and the end controller, the room air volume controller, the room lighting system controller, and the like according to the corresponding feedback data.
  • the most important feature of the electronic information system room is that it has a switch, which is a relatively important energy-consuming device, and therefore requires special energy management control.
  • the field controller 11 includes a switch network controller, and the energy consumption parameter collector 12 includes a switch network traffic detection sensor and a switch energy consumption detection sensor.
  • One main function of the control mode adjustment unit 135 is to be used according to a switch network. The data collected by the traffic detection sensor and the switch energy detection sensor adjusts the control mode of the switch network controller, that is, dynamically monitors the switch, so that the energy consumption of the switch is as reasonable as possible, thereby reducing the energy consumption of the entire electronic information system room.
  • the cloud computing management control platform 13 has a variety of control modes for the field controller 11, and the above embodiment only gives one of them.
  • the cloud computing-based electronic information system room energy management control system of the embodiment can be made into an intuitive display interface, and the user only needs to perform management control through the display interface.
  • cloud computing management control platform 13 for energy management control.
  • the scale and scalability of cloud computing make it possible to achieve centralized control of ultra-large-scale energy consumption. In theory, it can realize any kind of energy in the world.
  • Management control, package Including the electronic information system room energy management control, power transportation energy management control, etc. the application scope is wider; the virtualization characteristics of cloud computing enable each user to perform energy management control without separately configuring an independent energy management control platform. It is obtained on demand in the "cloud", which greatly reduces the cost; the resource sharing characteristics of cloud computing make the historical data in the entire control platform very rich, and can match the best historical data as a reference to achieve optimal energy allocation.
  • the following takes the energy management control of an electronic information system room as an example to illustrate the application process of the cloud computing-based electronic information system room energy management control system of this embodiment.
  • the machine room belongs to a 24-hour machine room with a total construction area of about 30,000 square meters. It is located in a certain place.
  • the structure is designed as a reinforced concrete frame, a core tube structure and a columnless structure.
  • the energy consumption equipment is mainly divided into a cold source system and an air conditioning ventilation system. Lighting socket systems, elevator systems, large power equipment systems, switches, etc.
  • the general energy consumption of an electronic information system room is about 100 kWh per unit area.
  • the energy management control system of the electronic information system room based on cloud computing controls the energy management process as follows:
  • All signals are directly connected to the IP network through the switch, and are uploaded to the data collection, storage, statistics and analysis database of the cloud computing-based electronic information system room energy management control system via the Internet (wireless or wired).
  • the energy-consuming equipment and related design parameters of the building are registered through the cloud computing platform, and the information enters the equipment signal acquisition, storage, statistics, analysis and model database of the cloud computing energy management and control system.
  • the whole system architecture is based on Ethernet (Lan/Wlan), using TCP/IP protocol.
  • the cloud computing management control platform can communicate with the field system (field controller and energy parameter collector) through OBIX, SNMP, XML and other protocols to obtain data. . Mainly get the following data:
  • the field level controller implements on-site level control of the corresponding equipment according to the detection signal and the user's target setting parameters, and uploads various types of signals to the cloud computing energy management and control system for device signal acquisition, storage, statistics and Analyze the database.
  • the on-site controller can control the air conditioning unit:
  • the humidity is also carried out;
  • Control of fresh air volume Air volume control through wind regulation, maintaining air volume of 40 cubic meters / person / hour;
  • E. Energy-saving control of the motor The adjustment of the inverter is realized by the controller. When the required air supply volume changes, the motor speed is reduced as much as possible to achieve energy-saving control on the basis of ensuring the fresh air volume.
  • the cloud computing control analysis platform judges whether the collected parameters are compared with the parameters set by the user, and if so, the existing control mode is maintained, and the total energy consumption of the entire building and the energy consumption of each parameter index are calculated to generate energy consumption. Model; if it does not match, you need to adjust the control mode in time.
  • the main parameters considered are:
  • Lighting system energy consumption indicators :
  • the cloud computing operation data model platform it is judged whether the generated energy consumption model conforms to the industry standard. If it is not met, the control mode needs to be adjusted to further reduce the energy consumption.
  • the cloud computing operational data model platform there are various historical energy consumption models that conform to industry standards (design standards), and the generated energy consumption models are compared with the corresponding historical energy consumption models, if the energy consumption is higher than the historical energy consumption model. Then, the control mode needs to be adjusted. If it is lower than the historical energy consumption model, the existing control mode is kept unchanged, and the generated energy consumption model is added as the historical energy consumption model.
  • A. Indoor temperature and humidity control model According to different machine room types, different temperature and humidity control models with different control details are constructed to improve control accuracy. Mainly based on the thermal load compensation curve to set the floating set point (no longer a single fixed point), that is, more effective automatic adjustment of the indoor temperature set value, so as to save energy as much as possible within the load allowable range.
  • the field controller includes a network temperature and humidity controller; the energy consumption parameter collector includes a network temperature and humidity sensor; and the control mode adjusting unit adjusts the control mode of the network temperature and humidity controller to compensate according to the heat load.
  • the curve is dynamically set to set the temperature and humidity values.
  • the change of indoor temperature and humidity is closely related to building energy conservation. According to the statistics of the National Bureau of Standards, if the set temperature is lowered by 1 °C in summer, it will increase the energy consumption by 9%. If the set temperature is raised by 1 °C in winter, it will increase the energy consumption by 12%. . Therefore, it is an effective measure to save energy in the air conditioner by controlling the indoor temperature and humidity within the set value accuracy range.
  • the indoor temperature and humidity control accuracy can be achieved as follows: temperature is ⁇ 1. 5 ° C, humidity is ⁇ 5% variation range. In this way, it is possible to avoid excessive cooling as much as possible, thereby achieving energy saving and consumption reduction.
  • the cloud computing energy management and control platform changes the indoor temperature setting according to the outdoor temperature and humidity and seasonal changes in different geographical environments of the equipment room, so that it can better meet the needs of the equipment room and give full play to the air conditioning equipment.
  • the function For example, in the northern region, when the outdoor temperature reaches a suitable devaluation in winter, the outdoor cooling tower can be directly used as a cold source, and the chilled water can be cooled by a heat exchanger to maximize the utilization of natural energy to achieve the goal of energy saving.
  • the adjustment temperature is mainly completed by the table cold valve. If the adjustment of the air valve is also based on the temperature, then two devices are controlled. At the same time, influenced by one parameter and trying to stabilize the parameters at the same time, the result is that the system generates self-excitation, and it is not or difficult to achieve stability, so it can amplify the dead zone value of the fresh air regulation temperature, so that the damper is coarsely adjusted, water
  • the valve is fine-tuned.
  • the percentage of fresh air in the air conditioning system should not be less than 10%. Regardless of the size of each room, the amount of fresh air is greater than or equal to 30m3/h.
  • the cloud computing management control platform can shorten the unnecessary air-conditioning start-stop tolerance time and achieve energy-saving purposes while ensuring the environment is comfortable;
  • the new air damper is closed, which not only reduces the capacity of the equipment, but also reduces the energy consumption of cooling or heating by acquiring fresh air.
  • the intermittent control method of the fan can be considered. If used properly, the fan will only run for 40 to 50 minutes per hour, and the energy-saving effect is obvious. After the air-conditioning equipment adopts the energy-saving operation algorithm, the running time is more reasonable.
  • the data records show that the cumulative time of actual energy supply per 24 hours a day is only about 2 hours.
  • the time switch control is applied to the public lighting equipment, and the pre-range dimming control and the window dimming control according to the working time and the outdoor light can greatly reduce the energy consumption.
  • the cloud computing energy management and control platform system has developed a reasonable ice storage cooling control strategy, and at the peak of power consumption, choose to remove some relatively unimportant electromechanical equipment to reduce the peak load, or put into emergency Measures such as generators and the release of stored cooling capacity to achieve peak avoidance operation and reduce operating costs.
  • the water of a certain flow is exchanged with the airflow driven by the fan through the air cooler, so the efficiency of energy exchange is not only related to the influence of the wind speed and the temperature of the air cooler on the thermal efficiency, but also the cold. Hot water supply flow is related to thermal efficiency.
  • the cloud computing management control platform measures the flow and control effects of the air conditioners at the farthest and most proximal ends of the air conditioning system (relative to the air conditioning system for returning moisture and sump) in different energizing states and different operating states.
  • the analysis of the parameters shows that the air conditioning system has obvious dynamic characteristics.
  • the cloud computing energy management and control system dynamically adjusts the regulating valves of each air conditioner according to the actual needs of the heat exchange, and the control flow changes accordingly, so the total supply
  • the return water flow value is also constantly changing. In response to this change, the supply and return water pressure difference must be adjusted to achieve a new balance.
  • a mathematical model (algorithm) of variable flow control is established through experiments and historical data to change the air conditioning supply and return system from an open loop system to a closed loop system.
  • the measured data indicates that when the flow rate of the air handler reaches the rated flow condition, the pressure at both ends of the regulating valve is only 0.66 kg/cm2-lkg/cm2.
  • the equipment is dynamically adjusted to effectively overcome the energy waste caused by the equipment capacity and power redundancy brought by the HVAC design. According to statistics, the effective adoption of climate compensation can save 3% to 5% of energy, and the heating part of the system can automatically detect outdoor The temperature and the temperature of the collection chamber are used as an important basis for the heating load. The energy in the heating season is not less than 5%.
  • model algorithms in the cloud computing management control platform, which are mainly divided into periodic algorithms and event triggering algorithms.
  • the periodic algorithms include: algebraic calculation, total value calculation, device running time, Boolean Boolean operation, data integration, piecewise linear function. , maximum and minimum records, etc.
  • event triggering algorithms include: report tasks and display events, site group control, regional or group alarms, alarms of combined structures, and so on. When using, select an algorithm according to specific needs and establish a control model.
  • FIG. 2 is a flowchart of a cloud computing-based electronic information system room energy management control method according to an embodiment of the present invention, the method comprising:
  • S11 Perform on-site control on each energy-consuming device according to the user-set parameter and transmit the user setting parameter to the cloud computing management control platform;
  • the parameters related to energy consumption of each energy-consuming device include real-time energy consumption parameters, operating parameters, and Safety parameters.
  • the real-time energy consumption parameter generally refers to the power parameter of each energy-consuming device directly collected by the electrical metering device, and the operating parameters include temperature, humidity, air volume, running time, frequency, etc., related parameters of each energy-consuming device during operation, and the safety parameters include Parameters related to each energy-consuming device in the case of operating conditions, faults, alarms, etc.
  • the parameters related to the energy consumption of each energy-consuming device are transmitted to the cloud computing management control platform through any one of a wireless internet network, a wired internet network, a GPRS, and a 3G network.
  • cloud computing management control platform for energy management control, the scale and scalability of cloud computing make it possible to achieve centralized control of ultra-large-scale energy consumption. In theory, it can realize any kind of energy management control worldwide. Including building energy management control, power transportation energy management control, etc., the application scope is wider; the virtualization characteristics of cloud computing enable each user to perform energy management control without separate configuration independent
  • the energy management control platform is obtained on demand in the "cloud", which greatly reduces the cost; the resource sharing characteristics of cloud computing make the historical data in the entire control platform very rich, and can match the best historical data as a reference to achieve energy Optimized configuration.
  • FIG. 3 is a flowchart of a method for controlling energy management of a cloud computing-based electronic information system room according to another embodiment of the present invention, which is illustrated in the cloud computing-based electronic information system room energy management control method shown in FIG.
  • the step S13 specifically includes:
  • S132 Generate a corresponding energy consumption model according to parameters related to energy consumption of each energy-consuming device
  • the historical energy consumption model in the historical energy consumption model database refers to a historical energy consumption model that matches the energy consumption constraint parameter with the generated energy consumption model, and the energy consumption constraint parameter includes the One or a combination of application environment parameters, design parameters, application site type parameters, and energy supply type parameters.
  • the method further includes the step S136, adding the generated energy consumption model to the historical energy consumption model database, enriching historical data, and providing reference for subsequent energy consumption management control.
  • the method of the embodiment is based on the energy management control method of the cloud computing-based electronic information system room shown in FIG. 2, and specifically how to adjust the control mode of the field controller under the cloud computing management control platform
  • the method fully utilizes the rich historical characteristics of the cloud computing management control platform, further optimizes the energy consumption model, and reduces energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Description

基于云计算的电子信息系统机房能源管理控制系统及方法 技术领域 本发明涉及能源管理控制技术领域,尤其涉及一种云计算的电子 信息系统机房能源管理控制系统及方法。 背景技术 随着全世界范围内能源越来越紧缺,能够实现节能的能源管理控 制系统也就越来越重要。
现有技术中的能源管理控制系统通常采用传统的电气自动化技 术, 对单个对象(如电子化信息机房、 商场、 商店、 酒店、 办公楼工 业厂房) 的各个耗能设备进行能耗管理控制, 属于现场级的控制。 厂 家不同其使用的管理节能平台也不同, 通常无法不兼容, 相互之间也 缺乏通信,从而无法形成一个统一的平台集中进行统一的能耗管理控 制, 以最大程度地实现节能的目的。
美国 TRIDIUM公司首次开发了统一平台系统进行能源管理,其可 以兼容其它能源管理平台, 为用户提供能耗参考数据。但本发明人发 现其仍然存在以下问题:
1、 系统在处理大量历史数据时遇到处理速度不迅速、 数据保护 无法实现的问题;
2、 系统没有从能源因素、 能源方针、 能源指标、 管理体系、 能 耗基准标杆、 能源绩效、 能源统计、 能源优化等方面进行综合的能源 统计、 分析和管理控制, 仅仅是将能耗统计结果提供给用户, 让用户 自己根据统计结果去修正现场控制模式,从而无法实现能源的最优化 配置。
云计算是近几年发展起来的网络技术,它是将计算任务分布在大 量计算机构成的资源池上,使得各种应用系统能够根据需要获取计算 力、 存储空间和各种软件服务。 各大 IT公司纷纷推出自己的基于云 计算的云计算的平台服务, 如谷歌 (G00GLE)、 微软、 雅虎、 亚马逊 (Amazon) 等等, 总结起来云计算具有以下特点: (1) 超大规模。 "云"具有相当的规模, Google云计算已经拥有 100多万台服务器, Amazon、 IBM, 微软、 Yahoo等的 "云"均拥有几 十万台服务器。 企业私有云一般拥有数百上千台服务器, "云"能赋 予用户前所未有的计算能力。
(2) 虚拟化。云计算支持用户在任意位置、使用各种终端获取应 用服务。 所请求的资源来自 "云 ", 而不是固定的有形的实体。 应用 在"云"中某处运行, 但实际上用户无需了解、 也不用担心应用运行 的具体位置。只需要一台笔记本或者一个手机, 就可以通过网络服务 来实现我们需要的一切, 甚至包括超级计算这样的任务。
(3) 高可靠性。 "云"使用了数据多副本容错、 计算节点同构可 互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可 罪。
(4) 通用性。 云计算不针对特定的应用, 在"云"的支撑下可以 构造出千变万化的应用, 同一个 "云"可以同时支撑不同的应用运行。
(5) 高可扩展性。 "云" 的规模可以动态伸缩, 满足应用和用户 规模增长的需要。
(6) 按需服务。 "云"是一个庞大的资源池, 你按需购买; 云可 以象自来水, 电, 煤气那样计费。
(7) 极其廉价。 由于"云"的特殊容错措施可以采用极其廉价的 节点来构成云, "云" 的自动化集中式管理使大量企业无需负担日益 高昂的数据中心管理成本, "云" 的通用性使资源的利用率较之传统 系统大幅提升, 因此用户可以充分享受"云"的低成本优势, 经常只 要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才 能完成的任务。 发明内容 为了解决现有技术的上述问题,本发明的目的是提供一种基于云 计算的电子信息系统机房能源管理控制系统及方法,能够兼容所有不 同厂家的节能平台,在一个统一的平台下对很多个电子信息系统机房 集中进行能源管理控制,实现最大限度的节能降耗管理和网络化自动 控制, 从而实现能源的最优化配置, 达到更好的节能效果。 为了实现上述目的,本发明提供了一种基于云计算的电子信息系 统机房能源管理控制系统, 包括:
现场控制器,用于根据用户设定参数对电子信息系统机房的各个 能耗设备进行现场控制并将所述用户设定参数传送给云计算管理控 制平台;
能耗参数采集器,用于采集与所述各个能耗设备的能耗有关的参 数并传送给云计算管理控制平台; 云计算管理控制平台, 用于根据所 述采集到的与所述各个能耗设备的能耗有关的参数和所述用户设定 参数调整所述现场控制器对所述各个能耗设备的现场控制模式。
作为优选, 所述云计算管理控制平台具体包括:
接收单元,用于接收所述能耗参数采集器采集到的与所述各个能 耗设备的能耗有关的参数和所述用户设定参数;
第一判断单元,用于判断所述采集到的与所述各个能耗设备的能 耗有关的参数和所述用户设定参数是否匹配并生产判断结果;
能耗模型生成单元,用于当所述第一判断单元的判断结果为匹配 时根据所述各个能耗设备的能耗有关的参数生成相应的能耗模型; 历史能耗模型数据库, 用于存储各种历史能耗模型;
第二判断单元,用于判断所述生成的能耗模型与历史能耗模型数 据库中对应的历史能耗模型是否匹配并生成判断结果;
控制模式调整单元,用于当所述第一判断单元或所述第二判断单 元的判断结果为不匹配时调整所述现场控制器对所述各个能耗设备 的现场控制模式。
作为优选,所述的与所述各个能耗设备的能耗有关的参数包括实 时能耗参数、运行参数和安全参数。 其中, 实时能耗参数通常指电计 量设备直接采集的各个能耗设备的电量参数, 运行参数包括温度、湿 度、 风量、 运行时间、 频率等等各个能耗设备运行时相关的参数, 安 全参数包括运行状态、故障、报警等情况下各个能耗设备相关的参数。
作为优选,所述历史能耗模型数据库中对应的历史能耗模型是指 能耗约束参数与所述生成的能耗模型匹配的历史能耗模型,所述能耗 约束参数包括所述各个能耗设备的应用环境参数、设计参数、应用场 所类型参数和能源供应类型参数中的一种或者其组合。历史能耗模型 数据库中存有各种符合行业标准(设计标准)的历史能耗模型, 这些 历史能耗模型考虑了能耗标杆、 效率标杆、 绩效标杆等评价标准的, 能耗相对来讲是最合理的。历史能耗模型的建立通常受到能耗约束参 数的制约, 能耗约束参数不同, 对应的历史能耗模型就不同。 各个能 耗设备的应用环境参数包括地理位置、气象参数等等, 设计参数包括 设计功率、 测量范围而、 设计能耗参数、 设计能效等等, 应用场所类 型参数包括商场、 超市、 酒店、 办公楼、 展览馆、 机房、 工业厂房、 住宅、 国家电网等等 (本发明中为电子信息系统机房), 能源供应类 型参数包括煤炭、 电力、 天然气、 石油、 生物质能、 热能、 再生能源 等等。 当然, 还有其他能耗约束参数, 比如控制模式等等。
作为优选,所述用户设定参数和采集到的与所述各个能耗设备的 能耗有关的参数均通过通讯网络传送给云计算管理控制平台,所述通 讯网络为无线 INTERNET网、 有线 INTERNET网、 GPRS和 3G网中的任 一种。
作为优选, 所述现场控制器包括交换机网络控制器, 所述能耗参 数采集器包括交换机网络流量检测传感器和交换机能耗检测传感器, 所述控制模式调整单元用于根据交换机网络流量检测传感器和交换 机能耗检测传感器采集的数据调整所述交换机网络控制器的控制模 式。
为了实现上述目的,本发明还提供了一种基于云计算的电子信息 系统机房能源管理控制方法, 包括:
S11 : 根据用户设定参数对各个能耗设备进行现场控制并将所述 用户设定参数传送给云计算管理控制平台;
S12 : 采集与所述各个能耗设备的能耗有关的参数并传送给云计 算管理控制平台;
S13 : 在云计算管理控制平台下根据所述采集到的与所述各个能 耗设备的能耗有关的参数和所述用户设定参数调整对所述各个能耗 设备的现场控制模式。
作为优选, 所述 S13步骤具体包括: S131 :判断所述采集到的与所述各个能耗设备的能耗有关的参数 和所述用户设定参数是否匹配; 如果不匹配, 执行 S135步骤, 如果 匹配, 执行 S132步骤;
S132 :根据所述各个能耗设备的能耗有关的参数生成相应的能耗 模型;
S133 :判断所述生成的能耗模型与历史能耗模型数据库中对应的 历史能耗模型是否匹配; 如果不匹配, 执行 S135步骤, 如果匹配, 执行 S134步骤, 保持所述现场控制器的控制模式;
S135 : 调整对所述各个能耗设备的现场控制模式。
作为优选, 执行所述 S134步骤后, 还包括 S136步骤, 将所述生 成的能耗模型加入到所述历史能耗模型数据库中。 本发明的有益效果在于, 能够兼容所有不同厂家的节能平台, 在 一个统一的平台下对很多个电子信息系统机房进行集中进行能源管 理控制, 实现最大限度的节能降耗管理和网络化自动控制, 从而实现 能源的最优化配置, 达到更好的节能效果。 附图说明 图 1 是本发明实施例的基于云计算的电子信息系统机房能源管 理控制系统的结构示意图;
图 2 是本发明一个实施例的基于云计算的电子信息系统机房能 源管理控制方法的流程图;
图 3 是本发明另一个实施例的基于云计算的电子信息系统机房 能源管理控制方法的流程图。 具体实舫式 下面结合附图详细说明本发明的实施例。
如图 1所示的本发明实施例的基于云计算的电子信息系统机房 能源管理控制系统的结构示意图,基于云计算的电子信息系统机房能 源管理控制系统包括: 现场控制器 11, 用于根据用户设定参数对各个能耗设备 10进行 现场控制并将所述用户设定参数传送给云计算管理控制平台 13; 现 场控制器 11包括用户参数设定单元 111, 其用于用户设定参数。 比 如能耗设备是空调, 则用户根据需要设定空调的温度、 风量等参数, 并将设定的参数传送给云计算管理控制平台 13。 通常用于电子信息 系统机房的现场控制器 11包括网络水阀、 风阀控制器, 网络电机控 制器, 网络加湿控制器, 网络空调控制器, 网络机电设备控制器, 网 络安全保护控制器, 网络安防、 门禁、报警控制器,交换机网络流量、 能耗控制器等等, 各种组合分别用于控制机房交换机、机房制冷设备 和末端、 机房风量、 机房照明系统等。
能耗参数采集器 12, 用于采集与所述各个能耗设备 10的能耗有 关的参数并传送给云计算管理控制平台 13; 与所述各个能耗设备的 能耗有关的参数包括实时能耗参数、 运行参数和安全参数。其中, 实 时能耗参数通常指电计量设备直接采集的各个能耗设备的电量参数, 运行参数包括温度、 湿度、 风量、 运行时间、 频率等等各个能耗设备 运行时相关的参数, 安全参数包括运行状态、 故障、 报警等情况下各 个能耗设备相关的参数。 能耗参数采集器 12—般由各类带网络传输 功能的传感器、 数据统计和汇总单元、 数据分析和上传单元等组成, 完成数据的采集和初步统计分析功能,其实际数量是根据需要而设定 的, 可能有很多个能耗参数采集器。传感器可以是各种网络温度传感 器、 网络湿度传感器、 网络风量传感器、 网络电度计量传感器、 网络 风速传感器、 网络空气焓熵值传感器等等。将采集到的能耗参数通过 通讯网络传输到云计算管理控制平台 13, 通讯网络可以是无线
INTERNET网、 有线 INTERNET网、 GPRS和 3G网或者更先进的下一代 传输网络等等。
云计算管理控制平台 13, 用于根据所述采集到的与所述各个能 耗设备 10的能耗有关的参数和所述用户设定参数调整所述现场控制 器 11对所述各个能耗设备 10的现场控制模式。调整的目的是实现能 源的最优化配置, 降低能耗。 本实施例的云计算管理控制平台 13具 体包括: 接收单元 131, 用于接收所述能耗参数采集器 12采集到的与所 述各个能耗设备 10的能耗有关的参数和所述用户设定参数;
第一判断单元 132, 用于判断所述采集到的与所述各个能耗设备 10的能耗有关的参数和所述用户设定参数是否匹配并生产判断结果; 能耗模型生成单元 133, 用于当所述第一判断单元的判断结果为 匹配时根据所述各个能耗设备的能耗有关的参数生成相应的能耗模 型; 能耗模型包括整体耗能和运行耗能等等指标。
历史能耗模型数据库 130, 用于存储各种历史能耗模型; 历史能 耗模型数据库中存有各种符合行业标准(设计标准)的历史能耗模型 以及被相关规范、标准等文件约定或承认的最优能耗模型, 这些历史 能耗模型是考虑了能耗标杆、 效率标杆、 绩效标杆等评价标准的, 能 耗相对来讲是最合理的。
第二判断单元 134, 用于判断所述生成的能耗模型与历史能耗模 型数据库中对应的历史能耗模型是否匹配并生成判断结果;历史能耗 模型的建立通常受到能耗约束参数的制约, 能耗约束参数不同, 对应 的历史能耗模型就不同。所述能耗约束参数包括所述各个能耗设备的 应用环境参数、设计参数、应用场所类型参数和能源供应类型参数中 的一种或者其组合以及与其他约束参数(如控制模式) 的组合。 各个 能耗设备的应用环境参数包括地理位置、气象参数等等, 设计参数包 括设计功率、 测量范围而、 设计能耗参数、 设计能效等等, 应用场所 类型参数包括商场、超市、酒店、 办公楼、展览馆、机房、工业厂房、 住宅、 国家电网等等 (本发明中为电子信息系统机房), 能源供应类 型参数包括煤炭、 电力、 天然气、 石油、 生物质能、 热能、 再生能源 等等。 用户通过能耗约束参数设定单元 14输入当前生成的能耗模型 的能耗约束参数,然后根据这些能耗约束参数在历史能耗模型数据库 130中找到对应的历史能耗模型(即能耗约束参数与所述生成的能耗 模型匹配的历史能耗模型), 再判断生成的能耗模型与对应的历史能 耗模型是否匹配, 如果不匹配说明能耗不合理, 需要调整。例如生成 的能耗模型单位面积年耗能 20(T300kWh, 而具有相同能耗约束参数 的历史能耗模型单位面积年耗能 lOOkWh左右, 则说明能耗不合理, 需要进行调整。 控制模式调整单元 135, 用于当所述第一判断单元 132或所述第 二判断单元 134的判断结果为不匹配时调整所述现场控制器 11对所 述各个能耗设备 10的现场控制模式。 不匹配说明能耗不符合要求, 需要对现场控制模式进行调整以降低能耗, 直到能耗匹配为止, 从而 实现能耗的最优化配置。当所述第一判断单元 132的判断结果为不匹 配时, 说明能耗无法达到用户设定的要求, 需要直接进行调整; 当所 述第二判断单元 134的判断结果为不匹配时,说明能耗虽然能够达到 用户设定要求, 但还不是最优的, 没有考虑能耗标杆、 效率标杆、 绩 效标杆等评价标准, 有必要进行调整从而进一步降低能耗。如果所述 第二判断单元 134的判断结果为匹配时,说明生产的能耗模型是合理 的符合要求的,则将所述生成的能耗模型加入到所述历史能耗模型数 据库中, 丰富历史数据, 为后续能耗管理控制提供参考。 比如控制模 式调整单元 135根据相应的反馈数据,调用历史模型来调整机房交换 机网络控制器, 机房制冷设备和末端控制器、机房风量控制器、机房 照明系统控制器等的控制模式。
电子信息系统机房的最大特点是具有交换机,其是相对主要的能 耗设备, 因此需要特别进行能源管理控制。 所述现场控制器 11包括 交换机网络控制器, 所述能耗参数采集器 12包括交换机网络流量检 测传感器和交换机能耗检测传感器,所述控制模式调整单元 135的一 个主要功能是用于根据交换机网络流量检测传感器和交换机能耗检 测传感器采集的数据调整所述交换机网络控制器的控制模式,即动态 监控交换机, 使得交换机的能耗尽可能合理, 从而降低整个电子信息 系统机房的能耗。
当然,云计算管理控制平台 13对现场控制器 11的控制模式有很 多种, 上述实施例仅仅给出了其中的一种。
为了用户使用方便,本实施例的基于云计算的电子信息系统机房 能源管理控制系统可以做成直观的显示界面,用户只需要通过显示界 面进行管理控制即可。
使用云计算管理控制平台 13进行能源管理控制的优势很明显, 云计算的规模性和可扩展性的特点使得超大规模能耗集中控制可以 实现, 理论上讲可以实现全球范围内的任何种类的能源管理控制, 包 括电子信息系统机房能耗管理控制、 电力运输能耗管理控制等等, 应 用范围更广;云计算的虚拟化的特点使得各个用户进行能耗管理控制 时无需单独配置独立的能源管理控制平台,而是在 "云"中按需获得, 大大降低了成本;云计算的资源共享的特点使得整个控制平台内历史 数据十分丰富, 可以匹配最佳历史数据作为参考, 从而实现能源的最 优化配置。
下面以某电子信息系统机房的能耗管理控制为例,说明本实施例 的基于云计算的电子信息系统机房能源管理控制系统的应用过程。
该机房属于 24小时机房, 总建筑面积约 30, 000平方米, 位于某 地, 结构设计为钢筋混凝土框架一核心筒结构、 无柱结构, 能耗设备 主要分为冷源系统、 空调通风系统、 照明插座系统、 电梯系统、 大型 动力设备系统、 交换机等。 部分设计参考标准如下:
1、 室内环境标准
Figure imgf000011_0001
2、 室外参数参考值:
夏季空调室外计算干球温度 33. 2 °C
夏季空调室外计算湿球温度 26. 4
夏季通风室外计算温度 30 °C
夏季室外平均风速 1. 9m/s
冬季空调室外计算干球温度 -12 °C
冬季空调室外计算相对湿度 45%
冬季采暖室外计算干球温度 -9 °C
冬季通风室外计算温度 -5 °C 冬季室外平均风速 2. 8m/s
3、 耗能要求
比如电子信息系统机房的一般能耗为单位面积年电耗 lOOkWh左 右。
基于云计算的电子信息系统机房能源管理控制系统对其进行能 源管理控制过程如下:
一、 通过现场设备层完成检测传感器和数据信息登录工作 现场设备层: 包括能耗参数采集器 12 (—般是各类传感器、 数据 统计和汇总单元、 数据分析和上传单元等组成。) 和现场控制器 11, 能耗参数采集器 12主要完成各类信号采集,现场控制器 11主要对相 应的能耗设备进行现场控制。
所有信号通过交换机直接接入 IP网络,通过 internet (无线或者 有线方式皆可)上传至基于云计算的电子信息系统机房能源管理控制 系统的信号的采集、 存储、 统计和分析数据库。
能耗设备以及建筑的相关设计参数通过云计算平台登录, 信息进 入云计算能源管理和控制系统的设备信号采集、存储、 统计、 分析和 模型数据库。
整个系统架构基于以太网 (Lan/Wlan), 采用 TCP/IP 协议, 云计 算管理控制平台可通过 OBIX, SNMP, XML等协议与现场系统(现场控 制器和能耗参数采集器) 通讯并获得数据。 主要获取以下数据:
♦ 控制点的各种详细状态、 故障、 运行等等数据,
♦ 报警总表
♦ 通过电计量传感器或者通过计算记录各个设备能源消耗数据 ♦ 所有能耗设备以及建筑的相关设计参数
二、 通过控制和分析层实现数据的分析以及相关的控制
现场级别的控制器在现场根据检测信号以及用户的目标设定参 数对相应的设备实现现场级别的控制,并将各类信号上传至云计算能 源管理和控制系统的设备信号采集、 存储、 统计和分析数据库。
以使用空调机组的温度控制为例, 现场控制器可以对空调机组实 现控制的内容包括:
A、 启停控制: 按照启停命令信号完成启停控制; Β、温度、湿度的调节控制: ^ ¾内或送风温度高于设定值 (T=23 °C) , 通过 PID控制关小水阀, 当 内或送风温度低于设定值时开大 水阀。 湿度同样进行;
C、 新风量的控制: 通过风 调节实现风量控制, 保持风 量 40立方米 /人 /小时;
D、 对机组运行时间的累计计 启动次数、 运行时间、 电机的 电计量等信号进行记录和上传; 主要信号如下:
♦ 送回风机运行状态、 风机气流状态、 手自动状态监测、
Figure imgf000013_0001
停控制;
♦ 送回风机变频器反馈、 变频器监测、 变频器调节控制
♦ 回风温 /湿度测量、 回风 C02浓度测量;
♦ 送风温 /湿度测量;
♦ 冷、 热水盘管水阀调节控制;
♦ 新、 回风阀调节控制;
♦ 加湿阀调节控制。
E、 电机的节能控制: 通过控制器对变频器的调节实现, 当: 内 需要的送风量发生变化的情况下,在保证新风量的基础上尽可能降低 电机转速从而实现节能控制。
三、 基于云计算的电子信息系统机房能源管理控制
首先在云计算控制分析平台判断采集到的参数和用户设定的参 数比较是否匹配, 如果匹配则保持现有的控制模式, 计算叠加整个建 筑总能耗及各个参数指标的能耗, 生成能耗模型; 如果不匹配则需要 及时调整控制模式。 主要考虑的参数指标有:
■ 建筑能耗总量指标;
■ 常规能耗总量指标;
■ 特殊区域能耗总量指标;
■ 暖通空调系统能耗指标:
1 ) 空调通风系统能耗指标;
照明系统能耗指标:
1 ) 普通照明; 2 ) 应急照明 3 ) 景观照明;
■ 室内设备能耗指标; ■ 综合服务系统能耗指标;
■ 建筑水耗总量指标; 等等。
然后在云计算运行数据模型平台判断生成的能耗模型是否符合 行业标准, 如果不符合, 还需要调整控制模式, 以进一步降低能耗。 在云计算运行数据模型平台中存有各种符合行业标准(设计标准)的 历史能耗模型, 将生成的能耗模型和对应的历史能耗模型进行对比, 如果耗能高于历史能耗模型, 则需要调整控制模式, 如果低于历史能 耗模型, 则保持现有控制模式不变, 并把生成的能耗模型加入为历史 能耗模型。 以下给出几种常见的控制模型作为参考:
A、 室内温湿度控制模型: 根据不同的机房类型, 分别构建控制 细节不同的温湿度控制模型, 提高控制精度。主要依据为热负荷补偿 曲线来设置浮动的设定点 (不再是单一的定点), 即更加有效的自动 调整室内温度设定值, 使其在负荷允许的范围内尽可能的节省能量。 这种情况下现场控制器包括网络温湿度控制器;所述能耗参数采集器 包括网络温湿度传感器;所述控制模式调整单元将所述网络温湿度控 制器的控制模式调整为根据热负荷补偿曲线动态设置设定温湿度值。
室内温湿度的变化与建筑节能有着紧密的相关性。据美国国家标 准局统计资料表明, 如果在夏季将设定值温度下调 1 °C, 将增加 9% 的能耗, 如果在冬季将设定值温度上调 1 °C, 将增加 12%的能耗。 因 此将室内温湿度控制在设定值精度范围内是空调节能的有效措施。
在可能的情况下对室内温湿度控制精度可以实现要求为:温度为 ± 1. 5°C, 湿度为 ± 5%的变化范围。 这样尽可能避免出现过冷现象, 从而实现节能降耗。
B、 室外气候补偿调节模型: 云计算能源管理和控制平台根据机 房不同地理环境下室外温湿度的和季节变化情况,改变室内温度的设 定, 使其更加满足机房设备的需要, 充分发挥空调设备的功能。如在 北方地区当冬季室外温度达到适宜焓值时,可以直接利用室外冷却塔 作为冷源, 并通过热交换器对冷冻水进行降温, 最大限度的利用自然 能源实现节能降耗的目标。
C、 新风量的控制模型
根据卫生要求, 建筑内每人都必须保证有一定的新风量。但新风 量取得过多, 将增加新风耗能量。 在设计工况 (夏季室外温 26 °C, 相对温度 60%, 冬季室温 22 °C, 相对湿度 55%) 下, 处理一公斤 (千 克)室外新风量需冷量 6. 5kWh, 热量 12. 7kWh, 故在满足室内卫生要 求的前提下, 减少新风量, 有显着的节能效果。 实施新风量控制模型 主要几种控制要素:
1 ) 根据室内允许二氧化碳 (C02 ) 浓度来确定新风量, C02允许 浓度值一般取 0. 1% ( 1000ppm) o 根据室内或回风中的 C02浓度, 自 动调节新风量, 以保证室内空气的新鲜度, 控制功能较完善的建筑设 备自动化系统可以满足这些控制要求。根据二氧化碳浓度调节风量风 速, 反映了室内的实际情况, 能最大限度地节能。
2 ) 根据人员的变动规律, 采用统计学的方法, 建立新风风阀控 制模型, 以相应的时间而确定运行程序进行过程控制新风风阀, 以达 到对新风风量的控制。
3 ) 使用新风和回风比来调整、 影响被控温度并不是调节新风阀 的主要依据, 调节温度主要由表冷阀完成, 如果风阀的调节也基于温 度, 那么在控制上, 两个设备同时受一个参数的影响并且都同时努力 使参数趋于稳定, 结果就是系统产生自激, 不会或很难达到稳定, 所 以可以放大新风调节温度的死区值, 使风阀为粗调, 水阀为精调。 空 调系统中的新风占送风量的百分比不应低于 10%。 不论每人占房间体 积多少, 新风量按大于等于 30m3/h.人采用。
D、 对机电设备最佳启停的控制模型:
云计算管理控制平台通过对空调设备的最佳启停时间的计算和 自适应控制, 可以在保证环境舒适的前提下, 缩短不必要的空调启停 宽容时间, 达到节能的目的; 同时在预冷或预热时, 关闭新风风阀, 不仅可以减少设备容量,而且可以减少获取新风而带来冷却或加热的 能量消耗。对于小功率的风机或者带软启动的风机可以考虑风机间歇 式的控制方法, 如果使用得当, 一般每一个小时风机只运行 40〜50分 钟, 节能效果比较明显。 空调设备采用节能运行算法后, 运行时间更 趋合理。 数据记录表明, 每台空调机一天 24小时中实际供能工作的 累计时间仅仅 2小时左右。
E、 灯光照明系统控制模型 对公共照明设备实行定时开关控制,按照作息时间和室外光线进 行预程调光控制和窗际调光控制, 可以极大降低能源消耗。
F、 峰谷值电价差控制模型:
充分利用峰谷电价的政策,云计算能源管理和控制平台系统制定 出合理的冰蓄冷控制策略, 并在用电高峰时, 选择卸除某些相对不重 要的机电设备减少高峰负荷,或投入应急发电机以及释放存储的冷量 等措施, 实现避峰运行, 降低运行费用。
G、 对空调水系统平衡与变流量的控制:
根据空调系统的热交换本质:一定流量的水通过表冷器与风机驱 动的送风气流进行能量交换,因此能量交换的效率不但与风速和表冷 器温度对热效率的影响有关, 同时更与冷热供水流量与热效率相关。
云计算管理控制平台通过对空调系统最远端和最近端(相对于空 调系统供回水分、集水器而言)的空调机在不同供能状态和不同运行 状态下的流量和控制效果的测量参数的分析可知空调系统具有明显 的动态特点,运行状态中云计算能源管理和控制系统按照热交换的实 际需要动态地调节着各台空调机的调节阀, 控制流量进行相应变化, 因此总的供回水流量值也始终处于不断变化的中, 为了响应这种变 化, 供回水压力差必须随的有所调整以求得新的平衡。通过实验和历 史数据建立变流量控制数学模型 (算法), 将空调供回水系统由开环 系统变为闭环系统。
实测数据表明, 当空气处理机流量达到额定流量工况时, 调节阀 两端压力仅为 0. 66kg/cm2-lkg/cm2。 根据空气处理机实际运行台数 和运行流量工况动态调整供水泵投入运行的台数,并辅助旁通阀的微 调来达到变流量控制的方式, 可以避免泄漏, 提高控制精度, 并减少 不必要的流量损失和动力冗余, 从而带来明显的节能效果。据实际数 据计算, 节能效果在 25%以上。 并且将供回水流量动态参数作为反馈 量, 调整冷水机组的运行工况, 实现明显的节能降耗效果。
由于智能建筑科学地运用云计算管理控制平台的节能控制模式 和算法, 动态调整设备运行, 有效地克服由于暖通设计带来的设备容 量和动力冗余而造成的能源浪费。据统计, 有效采纳气候补偿方式就 可以节省 3 %〜5 %的能源, 并且本系统供热部分能够自动检测室外 温度和采集室内温度, 以其为供热负荷的重要依据, 在供暖季节省的 能量不低于 5 %。
H、 充分多利用自然冷却方式, 与电制冷方式进行最优组合, 最 大限度的利用大自然资源, 实现节能降耗效果。
云计算管理控制平台的模型算法种类有很多种,主要分为定期算 法和事件触发算法, 其中定期算法包括: 代数计算、 总值计算、 设备 运行时间、 布尔 Boolean运算、 数据整合、 分段线性函数、 最大及最 小值记录等, 事件触发算法包括: 报表任务和显示事件、 站点组群控 制、 区域或组群报警、 组合结构的报警等。使用时根据具体需要选择 算法, 建立控制模型。
如图 2 所示的本发明一个实施例的基于云计算的电子信息系统 机房能源管理控制方法的流程图, 该方法包括:
S11 : 根据用户设定参数对各个能耗设备进行现场控制并将所述 用户设定参数传送给云计算管理控制平台;
S12 : 采集与所述各个能耗设备的能耗有关的参数并传送给云计 算管理控制平台;所述的与所述各个能耗设备的能耗有关的参数包括 实时能耗参数、 运行参数和安全参数。其中, 实时能耗参数通常指电 计量设备直接采集的各个能耗设备的电量参数, 运行参数包括温度、 湿度、 风量、 运行时间、 频率等等各个能耗设备运行时相关的参数, 安全参数包括运行状态、故障、报警等情况下各个能耗设备相关的参 数。 所述与各个能耗设备的能耗有关的参数通过无线 INTERNET网、 有线 INTERNET网、 GPRS和 3G网中的任一种传送给云计算管理控制 平台。
S13 : 在云计算管理控制平台下根据所述采集到的与所述各个能 耗设备的能耗有关的参数和所述用户设定参数调整对所述各个能耗 设备的现场控制模式。
由于使用了云计算管理控制平台进行能源管理控制,云计算的规 模性和可扩展性的特点使得超大规模能耗集中控制可以实现,理论上 讲可以实现全球范围内的任何种类的能源管理控制,包括建筑物能耗 管理控制、 电力运输能耗管理控制等等, 应用范围更广; 云计算的虚 拟化的特点使得各个用户进行能耗管理控制时无需单独配置独立的 能源管理控制平台, 而是在 "云"中按需获得, 大大降低了成本; 云 计算的资源共享的特点使得整个控制平台内历史数据十分丰富,可以 匹配最佳历史数据作为参考, 从而实现能源的最优化配置。
如图 3 所示的本发明另一个实施例的基于云计算的电子信息系 统机房能源管理控制方法的流程图,该方法在图 2所示的基于云计算 的电子信息系统机房能源管理控制方法的基础上,所述 S13步骤具体 包括:
S131 :判断所述采集到的与所述各个能耗设备的能耗有关的参数 和所述用户设定参数是否匹配; 如果不匹配, 执行 S135步骤, 如果 匹配, 执行 S132步骤;
S132 :根据所述各个能耗设备的能耗有关的参数生成相应的能耗 模型;
S133 :判断所述生成的能耗模型与历史能耗模型数据库中对应的 历史能耗模型是否匹配; 如果不匹配, 执行 S135步骤, 如果匹配, 执行 S134步骤, 保持所述现场控制器的控制模式; 所述历史能耗模 型数据库中对应的历史能耗模型是指能耗约束参数与所述生成的能 耗模型匹配的历史能耗模型,所述能耗约束参数包括所述各个能耗设 备的应用环境参数、设计参数、应用场所类型参数和能源供应类型参 数中的一种或者其组合。
S135 : 调整对所述各个能耗设备的现场控制模式。
执行所述 S134步骤后, 还包括 S136步骤, 将所述生成的能耗模 型加入到所述历史能耗模型数据库中, 丰富历史数据, 为后续能耗管 理控制提供参考。
更加详细的介绍请参考上述基于云计算的电子信息系统机房能 源管理控制系统实施例中的表述。
本实施例的方法在图 2 所示的基于云计算的电子信息系统机房 能源管理控制方法的基础上,具体给出了一种在云计算管理控制平台 下如何调整所述现场控制器的控制模式的方法,其充分利用了云计算 管理控制平台历史数据丰富的特点, 进一步优化了能耗模型, 降低了 能耗。 以上实施例仅为本发明的示例性实施例, 不用于限制本发明, 本 发明的保护范围由附加的权利要求书限定。本领域技术人员可以在本 发明的实质和保护范围内, 对本发明做出各种修改或等同替换, 这种 修改或等同替换也应视为落在本发明的保护范围内。

Claims

权利要求
1、 一种基于云计算的电子信息系统机房能源管理控制系统, 其 特征在于, 包括:
现场控制器,用于根据用户设定参数对电子信息系统机房的各个 能耗设备进行现场控制并将所述用户设定参数传送给云计算管理控 制平台;
能耗参数采器,用于采集与所述各个能耗设备的能耗有关的参数 并传送给云计算管理控制平台;
云计算管理控制平台,用于根据所述采集到的与所述各个能耗设 备的能耗有关的参数和所述用户设定参数调整所述现场控制器对所 述各个能耗设备的现场控制模式。
2、 根据权利要求 1所述的基于云计算的电子信息系统机房能源 管理控制系统, 其特征在于, 所述云计算管理控制平台具体包括: 接收单元,用于接收所述能耗参数采集器采集到的与所述各个能 耗设备的能耗有关的参数和所述用户设定参数;
第一判断单元,用于判断所述采集到的与所述各个能耗设备的能 耗有关的参数和所述用户设定参数是否匹配并生产判断结果;
能耗模型生成单元,用于当所述第一判断单元的判断结果为匹配 时根据所述各个能耗设备的能耗有关的参数生成相应的能耗模型; 历史能耗模型数据库, 用于存储各种历史能耗模型;
第二判断单元,用于判断所述生成的能耗模型与历史能耗模型数 据库中对应的历史能耗模型是否匹配并生成判断结果;
控制模式调整单元,用于当所述第一判断单元或所述第二判断单 元的判断结果为不匹配时调整所述现场控制器对所述各个能耗设备 的现场控制模式。
3、 根据权利要求 1或 2所述的基于云计算的电子信息系统机房 能源管理控制系统, 其特征在于, 所述的与所述各个能耗设备的能耗 有关的参数包括实时能耗参数、 运行参数和安全参数。
4、 根据权利要求 2所述的基于云计算的电子信息系统机房能源 管理控制系统, 其特征在于, 所述历史能耗模型数据库中对应的历史 能耗模型是指能耗约束参数与所述生成的能耗模型匹配的历史能耗 模型, 所述能耗约束参数包括所述各个能耗设备的应用环境参数、设 计参数、 应用场所类型参数和能源供应类型参数中的一种或者其组 合。
5、 根据权利要求 1或 2所述的基于云计算的电子信息系统机房 能源管理控制系统, 其特征在于, 所述用户设定参数和采集到的与所 述各个能耗设备的能耗有关的参数均通过通讯网络传送给云计算管 理控制平台, 所述通讯网络为无线 INTERNET网、 有线 INTERNET网、 GPRS和 3G网中的任一种。
6、 根据权利要求 2所述的基于云计算的电子信息系统机房能源 管理控制系统,其特征在于,所述现场控制器包括交换机网络控制器, 所述能耗参数采集器包括交换机网络流量检测传感器和交换机能耗 检测传感器,所述控制模式调整单元用于根据交换机网络流量检测传 感器和交换机能耗检测传感器采集的数据调整所述交换机网络控制 器的控制模式。
7、 一种基于云计算的电子信息系统机房能源管理控制方法, 其 特征在于, 包括:
S11 : 根据用户设定参数对电子信息系统机房的各个能耗设备进 行现场控制并将所述用户设定参数传送给云计算管理控制平台;
S12 : 采集与所述各个能耗设备的能耗有关的参数并传送给云计 算管理控制平台;
S13 : 在云计算管理控制平台下根据所述采集到的与所述各个能 耗设备的能耗有关的参数和所述用户设定参数调整对所述各个能耗 设备的现场控制模式。
8、 根据权利要求 8所述的基于云计算的电子信息系统机房能源 管理控制方法, 其特征在于, 所述 S13步骤具体包括:
S131 :判断所述采集到的与所述各个能耗设备的能耗有关的参数 和所述用户设定参数是否匹配; 如果不匹配, 执行 S135步骤, 如果 匹配, 执行 S132步骤;
S132 :根据所述各个能耗设备的能耗有关的参数生成相应的能耗 模型; S133 :判断所述生成的能耗模型与历史能耗模型数据库中对应的 历史能耗模型是否匹配; 如果不匹配, 执行 S135步骤, 如果匹配, 执行 S134步骤, 保持所述各个能耗设备的控制模式;
S135 : 调整对所述各个能耗设备的现场控制模式。
9、 根据权利要求 9所述的基于云计算的电子信息系统机房能源 管理控制方法, 其特征在于, 执行所述 S134步骤后, 还包括 S136步 骤, 将所述生成的能耗模型加入到所述历史能耗模型数据库中。
PCT/CN2010/001366 2010-03-05 2010-09-07 基于云计算的电子信息系统机房能源管理控制系统及方法 WO2011106918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010120078.9 2010-03-05
CN2010101200789A CN102193527B (zh) 2010-03-05 2010-03-05 基于云计算的电子信息系统机房能源管理控制系统及方法

Publications (1)

Publication Number Publication Date
WO2011106918A1 true WO2011106918A1 (zh) 2011-09-09

Family

ID=44541606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001366 WO2011106918A1 (zh) 2010-03-05 2010-09-07 基于云计算的电子信息系统机房能源管理控制系统及方法

Country Status (2)

Country Link
CN (1) CN102193527B (zh)
WO (1) WO2011106918A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102902885A (zh) * 2012-09-26 2013-01-30 珠海优华节能技术有限公司 数字城市能源精细化服务系统
WO2013040855A1 (zh) * 2011-09-20 2013-03-28 Jiang Yongdong 基于云计算的绿色建筑设施设备管理控制系统及方法
CN103064389A (zh) * 2012-12-27 2013-04-24 无锡博欧节能科技有限公司 一种智能能耗管理支撑系统
CN103064390A (zh) * 2012-12-28 2013-04-24 南通大学 基于物联网的机房环境远程监控系统及其监控方法
CN103412529A (zh) * 2013-07-25 2013-11-27 北汽福田汽车股份有限公司 混凝土泵送机械油耗控制方法、设备、系统
WO2014124353A1 (en) * 2013-02-11 2014-08-14 Siemens Aktiengesellschaft Cloud enabled building automation system
CN104580535A (zh) * 2015-02-06 2015-04-29 巫立斌 基于云端服务器的酒店信息化管理系统
US9535411B2 (en) 2012-03-05 2017-01-03 Siemens Aktiengesellschaft Cloud enabled building automation system
CN107154979A (zh) * 2017-05-19 2017-09-12 成都鼎智汇科技有限公司 一种增强云计算环境节能方法
WO2019112592A1 (en) * 2017-12-07 2019-06-13 Optimum Energy, Llc Remote automated deployment of hvac optimization software

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520785B (zh) * 2011-12-27 2015-04-15 东软集团股份有限公司 一种云数据中心能耗管理方法及系统
CN102799108B (zh) * 2012-07-27 2014-12-17 中国海洋大学 基于低频能耗信息的能耗解聚合方法及家庭能源管理系统
CN105091934A (zh) * 2014-05-13 2015-11-25 上海宽带技术及应用工程研究中心 基于机房微环境采集系统的通信机房节能量参数测量系统
CN106774087B (zh) * 2017-01-12 2019-07-16 河北辛大洲环保科技有限公司 基于云计算的电子信息系统机房能源管理控制系统
CN106873512A (zh) * 2017-03-01 2017-06-20 国电南瑞科技股份有限公司 一种大滞后系统的以节能为目标函数的综合监控控制方法
CN107105028B (zh) * 2017-04-18 2020-04-28 浙江中烟工业有限责任公司 一种基于云计算的机房环境智能调节系统
CN111399420A (zh) * 2020-03-31 2020-07-10 北京天成冠通能源科技有限公司 一种idc机房能源控制方法及系统
CN113341786A (zh) * 2021-04-29 2021-09-03 重庆中烟工业有限责任公司 设备能耗控制方法、装置及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201281811Y (zh) * 2008-10-13 2009-07-29 四川新能电子技术有限公司 办公室单体设备能耗实时监测、远程控制及统计分析系统
CN101557551A (zh) * 2009-05-11 2009-10-14 成都市华为赛门铁克科技有限公司 一种移动终端访问云服务的方法、装置和通信系统
CN101582916A (zh) * 2009-06-19 2009-11-18 武汉钢铁(集团)公司 一种基于p2p的网络应用系统及其应用方法
US20090300210A1 (en) * 2008-05-28 2009-12-03 James Michael Ferris Methods and systems for load balancing in cloud-based networks
CN101621881A (zh) * 2009-08-05 2010-01-06 长江水利委员会长江勘测规划设计研究院上海分院 基于云计算系统的动态道路照明节能系统
US20100050172A1 (en) * 2008-08-22 2010-02-25 James Michael Ferris Methods and systems for optimizing resource usage for cloud-based networks

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812187U (zh) * 2010-03-05 2011-04-27 姜永东 基于云计算的电子信息系统机房能源管理控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090300210A1 (en) * 2008-05-28 2009-12-03 James Michael Ferris Methods and systems for load balancing in cloud-based networks
US20100050172A1 (en) * 2008-08-22 2010-02-25 James Michael Ferris Methods and systems for optimizing resource usage for cloud-based networks
CN201281811Y (zh) * 2008-10-13 2009-07-29 四川新能电子技术有限公司 办公室单体设备能耗实时监测、远程控制及统计分析系统
CN101557551A (zh) * 2009-05-11 2009-10-14 成都市华为赛门铁克科技有限公司 一种移动终端访问云服务的方法、装置和通信系统
CN101582916A (zh) * 2009-06-19 2009-11-18 武汉钢铁(集团)公司 一种基于p2p的网络应用系统及其应用方法
CN101621881A (zh) * 2009-08-05 2010-01-06 长江水利委员会长江勘测规划设计研究院上海分院 基于云计算系统的动态道路照明节能系统

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013040855A1 (zh) * 2011-09-20 2013-03-28 Jiang Yongdong 基于云计算的绿色建筑设施设备管理控制系统及方法
US9535411B2 (en) 2012-03-05 2017-01-03 Siemens Aktiengesellschaft Cloud enabled building automation system
CN102902885A (zh) * 2012-09-26 2013-01-30 珠海优华节能技术有限公司 数字城市能源精细化服务系统
CN103064389A (zh) * 2012-12-27 2013-04-24 无锡博欧节能科技有限公司 一种智能能耗管理支撑系统
CN103064390A (zh) * 2012-12-28 2013-04-24 南通大学 基于物联网的机房环境远程监控系统及其监控方法
WO2014124353A1 (en) * 2013-02-11 2014-08-14 Siemens Aktiengesellschaft Cloud enabled building automation system
CN103412529A (zh) * 2013-07-25 2013-11-27 北汽福田汽车股份有限公司 混凝土泵送机械油耗控制方法、设备、系统
CN103412529B (zh) * 2013-07-25 2016-02-10 北汽福田汽车股份有限公司 混凝土泵送机械油耗控制方法、设备、系统
CN104580535A (zh) * 2015-02-06 2015-04-29 巫立斌 基于云端服务器的酒店信息化管理系统
CN107154979A (zh) * 2017-05-19 2017-09-12 成都鼎智汇科技有限公司 一种增强云计算环境节能方法
CN107154979B (zh) * 2017-05-19 2020-09-11 国网江苏省电力有限公司信息通信分公司 一种增强云计算环境节能方法
WO2019112592A1 (en) * 2017-12-07 2019-06-13 Optimum Energy, Llc Remote automated deployment of hvac optimization software
US11946659B2 (en) 2017-12-07 2024-04-02 Optimum Energy, Llc Remote automated deployment of HVAC optimization software

Also Published As

Publication number Publication date
CN102193527A (zh) 2011-09-21
CN102193527B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2011106918A1 (zh) 基于云计算的电子信息系统机房能源管理控制系统及方法
WO2011106914A1 (zh) 基于云计算的设备监控系统及方法
WO2011106917A1 (zh) 基于云计算的能源管理控制系统及方法
CN201765486U (zh) 基于云计算的设备监控系统
CN201812187U (zh) 基于云计算的电子信息系统机房能源管理控制系统
CN102052739B (zh) 基于无线传感器网络的中央空调智能控制系统及方法
CN1293346C (zh) 节能型中央空调系统
CN105135636B (zh) 中央空调变流量优化系统
CN103062861B (zh) 用于中央空调的节能监控方法及系统
WO2021249461A1 (zh) 制冷设备控制方法、装置、计算机设备和计算机可读介质
CN101216207B (zh) 26℃管理中央空调智能节能系统
CN101655272A (zh) 一种网络中央空调节能控制管理系统及其方法
WO2021208313A1 (zh) 一种供热、供电、制冷一体自然能源智慧系统及控制方法
WO2012048443A1 (zh) 一种冷冻机房节能优化控制系统及方法
CN104238531B (zh) 一种铁路车站能源管理系统和节能控制方法
CN109059195B (zh) 用于削减电网负荷峰值的中央空调的控制方法及控制系统
CN102980276B (zh) 一种基站节能用智能新风系统
WO2011106915A1 (zh) 基于云计算的智慧家居能源管理控制系统及方法
CN107274303A (zh) 城市供热能耗智慧化管理与控制技术平台
Song et al. An IoT-based smart controlling system of air conditioner for high energy efficiency
WO2013040855A1 (zh) 基于云计算的绿色建筑设施设备管理控制系统及方法
CN101922783A (zh) 一种基于焓值控制的空调节能控制方法及系统
CN112432314A (zh) 一个基于气象大数据暖通群控智能物联系统
CN214536620U (zh) 地铁车站空调风水协调节能控制装置的网络架构
Ma et al. Intelligent Building Equipment Control Technology and Energy Saving Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846837

Country of ref document: EP

Kind code of ref document: A1