WO2011106905A1 - 一种可空间编码的并行激发系统及方法 - Google Patents

一种可空间编码的并行激发系统及方法 Download PDF

Info

Publication number
WO2011106905A1
WO2011106905A1 PCT/CN2010/000254 CN2010000254W WO2011106905A1 WO 2011106905 A1 WO2011106905 A1 WO 2011106905A1 CN 2010000254 W CN2010000254 W CN 2010000254W WO 2011106905 A1 WO2011106905 A1 WO 2011106905A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
point
control module
parallel
excitation light
Prior art date
Application number
PCT/CN2010/000254
Other languages
English (en)
French (fr)
Inventor
白净
刘飞
汪待发
张宾
陈颀潇
刘欣
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to CA2782964A priority Critical patent/CA2782964C/en
Priority to CN201080000866.2A priority patent/CN102036602B/zh
Priority to PCT/CN2010/000254 priority patent/WO2011106905A1/zh
Publication of WO2011106905A1 publication Critical patent/WO2011106905A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Definitions

  • This invention relates to optical molecular imaging techniques, and more particularly to a spatially encoded parallel excitation system and method for exciting fluorescence imaging.
  • Fluorescent molecular imaging technology is an emerging molecular imaging technology that has developed rapidly in recent years. It has broad application prospects in the fields of tumor detection, drug development and disease diagnosis.
  • the technique of exciting fluorescent molecular imaging is to label a specific molecule or cell with a fluorescent label, and when the fluorescent label is irradiated with excitation light of a specific wavelength band, the fluorescent label is excited to emit fluorescence. After scattering and absorption by the tissue, part of the fluorescence reaches the surface of the imaged object.
  • a certain device to detect the intensity of the generated fluorescence, a distribution image of the fluorescence optical properties inside the tissue can be obtained, so that normal or abnormal can be obtained at the molecular and cellular levels.
  • the spatial and temporal visual description of the biological process is a highly sensitive, non-ionizing radiation, non-invasive and low-cost imaging modality.
  • the fluorescence imaging can only obtain the local fluorescence information near the position where the excitation light source can be irradiated, and the fluorescent marker in the far distance from the excitation light source cannot be excited or excited. Weak, this leads to incomplete and inaccurate information on the acquired fluorescence image.
  • the fluorescence information of different parts can be obtained by continuously changing the position of the excitation light source several times, this greatly increases the structural complexity of the imaging system, and the imaging time is also multiplied. In practical applications, it is often necessary to observe various fluorescent signals with different temporal and spatial distribution characteristics, especially for some fast-changing fluorescent signals.
  • the traditional single-point source excitation method cannot meet the demand.
  • a spatially encoded parallel excitation system characterized in that it comprises a parallel excitation array and a spatial coding control system arranged by a plurality of single-point excitation light sources;
  • the space coding control system includes a microcontroller, a driving module, a switch control module, an output optical power control module, and an excitation time control module; wherein the switch control module controls opening or closing of each of the single-point excitation light sources;
  • Optical power control module Controlling an output optical power of each of the single-point excitation light sources;
  • the excitation time control module controls a time during which each of the single-point excitation light sources operates; the switch control module, the output optical power control module, and the excitation time control module
  • the micro-controller performs parameter setting; the micro-controller sets the working state of each single-point excitation light source in the parallel excitation array by the driving module according to the corresponding parameter setting, and realizes the spatial coding control system Spatial coding of the parallel ex
  • the single point excitation source is a high power LED or a laser diode.
  • the parallel excitation array is an array of rectangles, circles, sectors or other shapes.
  • a spatially encoded parallel excitation method based on the above system, comprising the following steps: (1) determining a required parallel excitation mode according to specific experimental conditions such as experimental purpose, experimental animal and fluorescent marker; (2) determining A good parallel excitation mode input spatial coding control system sets the working state of each single-point excitation light source through each module in the spatial coding control system to realize spatial coding of the parallel excitation array; (3) in the spatially encoded parallel excitation array Fluorescence imaging was performed under excitation.
  • the content of the parallel excitation mode includes the number, distribution, and output optical power, excitation time, and excitation order of the single-point excitation light source required for the experiment, and specifically includes the following four modes: When it is required to integrally image the whole body distribution of the fluorescent marker in the experimental animal, the plurality of the single-point excitation light sources are selected to be simultaneously excited, and the number of the single-point excitation light source is determined by the volume of the experimental animal. The output optical power and excitation time of the single-point excitation source are determined according to the specific experimental requirements. 2 When local imaging of the distribution of fluorescent markers in a small area of the experimental animal is required, the selection is based on the location of the region.
  • Exciting is performed by using one of the single-point excitation light sources, and the output optical power and excitation time of the single-point excitation light source are determined according to specific experimental requirements; 3 when it is required to track the dynamic process of fluorescent marker migration in the experimental animal, select Exciting sequentially using a plurality of said single-point excitation sources, The excitation time of the single-point excitation light source is set to coincide with the passage time of the fluorescent marker at the point, and the output optical power is determined according to specific experimental requirements; 4, according to actual needs, the selection is performed by point-by-point scanning excitation, and each row/column is sequentially excited, Interlaced/column excitation or two rows/column alternate excitation modes.
  • the invention adopts the above technical solution, and has the following advantages compared with the prior art - the invention adopts the spatial coding parallel excitation technology, and can set the working state of each single-point excitation light source in the point light source array according to actual needs, It can be used for the overall observation of the temporal and spatial characteristics of the distribution of fluorescent markers in experimental animals, as well as the close-up observation of the distribution of fluorescent markers in local regions, and can also be used to dynamically track the migration process of specific fluorescent markers. Wait.
  • the spatially encoded parallel excitation method designed by the invention has the advantages of flexibility, high efficiency, convenient use, high imaging time and high spatial resolution, and wide application range.
  • FIG. 1 is a block diagram of the structure of the present invention
  • FIG. 2 is a schematic structural view of a parallel excitation array in the present invention
  • the present invention includes a parallel excitation array 1 and a spatial encoding control system 2.
  • the parallel excitation array 1 includes a plurality of single-point excitation light sources 11 (marked as . in the figure, indicating the row where the single-point excitation light source 1 1 is located, indicating the column of the single-point excitation light source 11), and several single-point excitation light sources 1 1 Arranged into an array of > ⁇ « columns, the spacing between two adjacent columns is, the spacing between two adjacent rows is, wherein the specific values of n, d, are determined according to actual needs.
  • the spatial coding control system 2 includes a microcontroller 21, a drive module 22, a switch control module 23, an output optical power control module 24, and an excitation time control module 25.
  • the switch control module 23 controls the opening or closing of each single-point excitation light source 11; the output optical power control module 24 controls the output optical power of each single-point excitation light source 11; and the excitation time control module 25 controls the operation of each single-point excitation light source 11 time.
  • the switch control module 23, the output optical power control module 24, and the excitation time control module 25 parameterize the microcontroller 21.
  • the microcontroller 21 sets the working state of each single-point excitation light source 11 in the parallel excitation array 2 through the driving module 22 according to the corresponding parameter setting, thereby realizing the spatial encoding of the parallel excitation array 1 by the spatial coding control system 2.
  • the single-point excitation light source 11 may be a high-power LED (light-emitting secondary light) or a laser diode.
  • a plurality of single-point excitation light sources 11 may also be arranged in an array of circular, fan-shaped or other shapes according to different requirements.
  • the content of the parallel excitation mode includes the number, distribution, and output optical power, excitation time, and excitation order of the single-point excitation light source 11 required for the experiment, and specifically includes the following four modes - 1
  • it is necessary to perform an overall imaging of the whole body distribution of the fluorescent marker in the experimental animal it is possible to selectively use the ⁇ S , , ⁇ _ / single-point excitation light source 11 simultaneously.
  • the specific value of _ / is determined by the size of the experimental animal, and the output optical power and excitation time of each single-point excitation light source 11 are determined according to specific experimental requirements;
  • a single point excitation source 11 can be selected for excitation.
  • the specific value is determined by the location of the region, and the output optical power and excitation time of the single-point excitation source 11 are determined according to specific experimental requirements;
  • the content of the parallel excitation mode is input to the spatial coding control system 2, and the working states of the single-point excitation light sources 11 are set by the respective modules in the spatial coding control system 2 (
  • the spatial encoding of the parallel excitation array 1 is achieved by including whether the single-point excitation light source 11 is turned on, its output optical power and excitation time, and the excitation order between the plurality of single-point excitation light sources 11.
  • Fluorescence imaging was performed under excitation of a spatially encoded parallel excitation array 1 .
  • the working mode of the parallel excitation array 1 can be adjusted by the spatial coding control system 2 according to the new experimental requirements, and a new fluorescence imaging experiment can be performed.

Description

一种可空间编码的并行激发系统及方法 技术领域
本发明涉及光学分子成像技术, 特别是关于一种用于激发荧光成像的可 空间编码的并行激发系统及方法。
背景技术
荧光分子成像技术是近年发展迅速的一种新兴的分子成像技术, 在肿瘤 检测、 药物研发和疾病诊断等领域有着广阔的应用前景。 激发荧光分子成像 技术是利用荧光标记物标记特定的分子或细胞, 当用特定波段的激发光照射 荧光标记物时, 荧光标记物受到激发从而发出荧光。 经过组织的散射和吸收 后, 部分荧光到达成像物体表面,通过采用一定的装置检测产生的荧光强度, 就可以获得组织内部荧光光学特性的分布图像, 从而可以从分子和细胞水平 上对正常或异常的生物过程进行空间和时间上的视觉描述,是一种高灵敏度、 无电离辐射、 非侵入式和低成本的成像方式。
但是, 在传统单点光源的激发方式下, 荧光成像仅能获得激发光光源能 够照射到的位置附近的局部荧光信息, 而距离激发光光源较远区域内的荧光 标记物不能被激发或激发过弱, 这就导致获得的荧光图像信息不完整和不准 确。 尽管可以通过连续多次改变激发光光源的位置来获取不同部位的荧光信 息,但这样会大大增加成像系统的结构复杂度, 同时成像时间也会成倍增加。 在实际应用中,常常需要观测各种具有不同时间和空间分布特性的荧光信号, 尤其是一些快速动态变化的荧光信号, 传统单点光源的激发方式就不能满足 需求。
发明内容
针对以上问题, 本发明的目的是提供一种用于激发荧光成像的可空间编 码的并行激发系统及方法。
为了实现上述目的, 本发明采取以下技术方案: 一种可空间编码的并行 激发系统, 其特征在于: 它包括一由若干单点激发光源排列成的并行激发阵 列和一空间编码控制系统; 所述空间编码控制系统包括微控制器、驱动模块、 开关控制模块、 输出光功率控制模块和激发时间控制模块; 其中, 所述开关 控制模块控制各所述单点激发光源的打开或关闭; 所述输出光功率控制模块 控制各所述单点激发光源的输出光功率; 所述激发时间控制模块控制各所述 单点激发光源工作的时间; 所述开关控制模块、 输出光功率控制模块和激发 时间控制模块对所述微控制器进行参数设置; 所述微控制器根据相应的参数 设置, 通过所述驱动模块对所述并行激发阵列中各所述单点激发光源进行工 作状态设置, 实现所述空间编码控制系统对所述并行激发阵列的空间编码。
所述单点激发光源为大功率 LED或激光二极管。
所述并行激发阵列为矩形、 圆形、 扇形或其他形状的阵列。
一种基于上述系统的可空间编码的并行激发方法,其包括以下步骤: (1 ) 根据实验目的、 实验动物和荧光标记物等具体实验条件, 确定所需要的并行 激发模式; (2 ) 将确定好的并行激发模式输入空间编码控制系统, 通过空间 编码控制系统中的各模块设置各单点激发光源的工作状态, 实现对并行激发 阵列的空间编码; (3 ) 在已空间编码的并行激发阵列激发下进行荧光成像。
所述并行激发模式的内容包括实验所需的所述单点激发光源的数量、 分 布以及各所述单点激发光源的输出光功率、 激发时间和激发次序, 具体包括 以下四种模式: ①当需要对实验动物体内荧光标记物的全身分布情况进行整 体成像时, 选择使用多个所述单点激发光源同时进行激发, 所述单点激发光 源的数量由实验动物的体积大小决定, 各所述单点激发光源的输出光功率、 激发时间根据具体实验需求确定; ②当需要对实验动物体内某一较小区域中 荧光标记物的分布情况进行局部成像时, 根据该区域所处的位置决定选择使 用某一所述单点激发光源进行激发, 所述单点激发光源的输出光功率、 激发 时间根据具体实验需求确定; ③当需要对实验动物体内荧光标记物迁移的动 态过程进行追踪时, 选择使用多个所述单点激发光源依次进行激发, 各所述 单点激发光源的激发时间设置为与荧光标记物在该点的通过时间相符合, 输 出光功率根据具体实验需求确定; ④根据实际需要选择使用逐点扫描激发、 各行 /列依次激发、 隔行 /列激发或两行 /列交替激发的模式。
本发明由于采取以上技术方案, 与已有技术相比较, 其具有以下优点- 本发明采用空间编码式并行激发技术, 可根据实际需求设制点光源阵列的中 各单点激发光源的工作状态, 既能用于整体观测实验动物体内荧光标记物分 布的时间、 空间特性, 又能对局部区域中荧光标记物的分布情况进行特写观 察, 还可以用来对特定荧光标记物的迁移过程进行动态追踪等。 与现有单点 光源的激发方式相比, 本发明设计的可空间编码的并行激发方式具有灵活、 高效、 使用方便、 成像时间和空间分辨率高的优点, 适用范围广。
附图说明
图 1是本发明的结构框图
图 2是本发明中并行激发阵列结构示意图
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图 1所示, 本发明包括一并行激发阵列 1和一空间编码控制系统 2。 如图 2所示,并行激发阵列 1包括若干单点激发光源 11 (图中标记为 ., 表示单点激发光源 1 1所在行, 表示单点激发光源 11所在列), 若干单点 激发光源 1 1排列成∞行>< «列的阵列, 相邻两列间距为 , 相邻两行间距为 的 , 其中 、 n、 d、 的具体数值根据实际需要确定。
如图 1所示, 空间编码控制系统 2包括微控制器 21、 驱动模块 22、 开关 控制模块 23、 输出光功率控制模块 24和激发时间控制模块 25。 其中, 开关 控制模块 23控制各单点激发光源 11的打开或关闭; 输出光功率控制模块 24 控制各单点激发光源 11的输出光功率; 激发时间控制模块 25控制各单点激 发光源 11工作的时间。 开关控制模块 23、 输出光功率控制模块 24和激发时 间控制模块 25对微控制器 21进行参数设置。微控制器 21根据相应的参数设 置, 通过驱动模块 22对并行激发阵列 2中各单点激发光源 11进行工作状态 设置, 实现空间编码控制系统 2对并行激发阵列 1的空间编码。
上述实施例中, 单点激发光源 11可以为大功率 LED (发光二级光) 或激 光二极管。
上述实施例中, 若干单点激发光源 11也可以根据不同需求排列成圆形、 扇形或其他形状的阵列。
本发明的可空间编码的并行激发系统在激发荧光成像中的使用包括以下 歩骤:
( 1 )根据实验目的、 实验动物和荧光标记物等具体实验条件, 确定所需 要的并行激发模式。并行激发模式的内容包括实验所需的单点激发光源 11的 数量、 分布以及各单点激发光源 1 1的输出光功率、 激发时间和激发次序等, 具体包括以下四种模式- ①当需要对实验动物体内荧光标记物的全身分布情况进行整体成像时, 可以选择使用 〜 S ,, 〜 .共 _/个单点激发光源 11 同时进行激发。 其中, _ /的具体值由实验动物的体积大小决定, 各单点激发光源 11 的输 出光功率、 激发时间根据具体实验需求确定;
②当需要对实验动物体内某一较小区域中荧光标记物的分布情况进行局 部成像时, 可以选择使用 单点激发光源 11进行激发。 其中, 的具体 值由该区域所处的位置决定, 单点激发光源 11的输出光功率、激发时间根据 具体实验需求确定;
③当需要对实验动物体内荧光标记物迁移的动态过程 (假设其迁移路径 为 → → s22→ s32→ s,3→ s34 )进行追踪时,可以选择使用 、 、 s22、 s32 , S33 , &4各点依次进行激发, 各单点激发光源 11的激发时间设置为与荧 光标记物在该点的通过时间相符合, 输出光功率根据具体实验需求确定;
④还可以根据实际需要选择使用其他的并行激发模式,如逐点扫描激发、 各行 (列) 依次激发、 隔行 (列) 激发、 两行 (列) 交替激发等。
( 2 )根据具体实验需求确定所需要的并行激发模式后, 将并行激发模式 的内容输入空间编码控制系统 2, 通过空间编码控制系统 2 中的各模块设置 各单点激发光源 11的工作状态 (包括单点激发光源 11打开与否、 其输出光 功率和激发时间, 以及多个单点激发光源 11间的激发次序等), 实现对并行 激发阵列 1的空间编码。
( 3 ) 在已空间编码的并行激发阵列 1激发下进行荧光成像。
(4) 一次成像结束后, 可根据新的实验需求, 通过空间编码控制系统 2 调整并行激发阵列 1的工作模式, 进行新的荧光成像实验。
本发明仅以上述实施例进行说明, 各部件的结构、 设置位置、 及其连接 都是可以有所变化的, 在本发明技术方案的基础上, 凡根据本发明原理对个 别部件进行的改进和等同变换, 均不应排除在本发明的保护范围之外。

Claims

权 利 要 求
1、 一种可空间编码的并行激发系统, 其特征在于: 它包括一由若干单点激发 光源排列成的并行激发阵列和一空间编码控制系统;
所述空间编码控制系统包括微控制器、 驱动模块、 开关控制模块、 输出光功 率控制模块和激发时间控制模块; 其中, 所述开关控制模块控制各所述单点激发 光源的打开或关闭; 所述输出光功率控制模块控制各所述单点激发光源的输出光 功率; 所述激发时间控制模块控制各所述单点激发光源工作的时间; 所述开关控 制模块、输出光功率控制模块和激发时间控制模块对所述微控制器进行参数设置; 所述微控制器根据相应的参数设置, 通过所述驱动模块对所述并行激发阵列中各 所述单点激发光源进行工作状态设置, 实现所述空间编码控制系统对所述并行激 发阵列的空间编码。
2、 如权利要求 1所述的一种可空间编码的并行激发系统, 其特征在于: 所述 单点激发光源为大功率 LED或激光二极管。
3、 如权利要求 1或 2所述的一种可空间编码的并行激发系统, 其特征在于: 所述并行激发阵列为矩形、 圆形、 扇形或其他形状的阵列。
4、 一种基于权利要求 1〜3所述系统的可空间编码的并行激发方法, 其包括 以下歩骤:
( 1 )根据实验目的、 实验动物和荧光标记物等具体实验条件, 确定所需要的 并行激发模式;
( 2 )将确定好的并行激发模式输入空间编码控制系统, 通过空间编码控制系 统中的各模块设置各单点激发光源的工作状态, 实现对并行激发阵列的空间编码;
( 3 ) 在已空间编码的并行激发阵列激发下进行荧光成像。
5、 如权利要求 4所述的一种可空间编码的并行激发方法, 其特征在于: 所述 并行激发模式的内容包括实验所需的所述单点激发光源的数量、 分布以及各所述 单点激发光源的输出光功率、 激发时间和激发次序, 具体包括以下四种模式-
①当需要对实验动物体内荧光标记物的全身分布情况进行整体成像时, 选择 使用多个所述单点激发光源同时进行激发, 所述单点激发光源的数量由实验动物 的体积大小决定, 各所述单点激发光源的输出光功率、 激发时间根据具体实验需 求确定;
②当需要对实验动物体内某一较小区域中荧光标记物的分布情况进行局部成 像时, 根据该区域所处的位置决定选择使用某一所述单点激发光源进行激发, 所 述单点激发光源的输出光功率、 激发时间根据具体实验需求确定;
③当需要对实验动物体内荧光标记物迁移的动态过程进行追踪时, 选择使用 多个所述单点激发光源依次进行激发, 各所述单点激发光源的激发时间设置为与 荧光标记物在该点的通过时间相符合, 输出光功率根据具体实验需求确定;
④根据实际需要选择使用逐点扫描激发、 各行 /列依次激发、 隔行 /列激发或 两行 /列交替激发的模式。
PCT/CN2010/000254 2010-03-02 2010-03-02 一种可空间编码的并行激发系统及方法 WO2011106905A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2782964A CA2782964C (en) 2010-03-02 2010-03-02 Parallel excitation system capable of spatial encoding and method thereof
CN201080000866.2A CN102036602B (zh) 2010-03-02 2010-03-02 一种可空间编码的并行激发系统及方法
PCT/CN2010/000254 WO2011106905A1 (zh) 2010-03-02 2010-03-02 一种可空间编码的并行激发系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000254 WO2011106905A1 (zh) 2010-03-02 2010-03-02 一种可空间编码的并行激发系统及方法

Publications (1)

Publication Number Publication Date
WO2011106905A1 true WO2011106905A1 (zh) 2011-09-09

Family

ID=43888621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000254 WO2011106905A1 (zh) 2010-03-02 2010-03-02 一种可空间编码的并行激发系统及方法

Country Status (3)

Country Link
CN (1) CN102036602B (zh)
CA (1) CA2782964C (zh)
WO (1) WO2011106905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069647A1 (ja) * 2012-11-05 2016-09-08 全薬工業株式会社 抗体又は抗体組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113092411B (zh) * 2018-10-12 2022-11-11 上海禾赛科技有限公司 一种基于激光器阵列实现接收光强自稳定的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000666A (ja) * 1996-03-19 2006-01-05 Matsushita Electric Ind Co Ltd 蛍光診断治療装置
US20060249689A1 (en) * 2005-03-18 2006-11-09 Norbert Eustergerling Apparatus for generating 3D fluorscence of luminescence
CN100407985C (zh) * 2002-07-18 2008-08-06 莫纳基技术公司 高分辨率光纤荧光成像的方法和装置
WO2009009178A2 (en) * 2007-04-06 2009-01-15 The General Hospital Corporation Systems and methods for optical imaging using early arriving photons
CN101396262A (zh) * 2008-10-31 2009-04-01 清华大学 一种基于线性关系的荧光分子断层成像重建方法
CN101461706A (zh) * 2007-12-19 2009-06-24 坎通斯比特阿劳股份有限公司 用于分析和处理荧光图像的方法
CN101539518A (zh) * 2008-03-20 2009-09-23 中国科学院自动化研究所 一种用于自发荧光成像的空间加权的有限元重建方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000666A (ja) * 1996-03-19 2006-01-05 Matsushita Electric Ind Co Ltd 蛍光診断治療装置
CN100407985C (zh) * 2002-07-18 2008-08-06 莫纳基技术公司 高分辨率光纤荧光成像的方法和装置
US20060249689A1 (en) * 2005-03-18 2006-11-09 Norbert Eustergerling Apparatus for generating 3D fluorscence of luminescence
WO2009009178A2 (en) * 2007-04-06 2009-01-15 The General Hospital Corporation Systems and methods for optical imaging using early arriving photons
CN101461706A (zh) * 2007-12-19 2009-06-24 坎通斯比特阿劳股份有限公司 用于分析和处理荧光图像的方法
CN101539518A (zh) * 2008-03-20 2009-09-23 中国科学院自动化研究所 一种用于自发荧光成像的空间加权的有限元重建方法
CN101396262A (zh) * 2008-10-31 2009-04-01 清华大学 一种基于线性关系的荧光分子断层成像重建方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069647A1 (ja) * 2012-11-05 2016-09-08 全薬工業株式会社 抗体又は抗体組成物の製造方法

Also Published As

Publication number Publication date
CA2782964C (en) 2016-01-19
CA2782964A1 (en) 2011-09-09
CN102036602B (zh) 2012-09-05
CN102036602A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
US9279797B2 (en) Multiwell microelectrode array with optical stimulation
CN102106723B (zh) 荧光分子成像装置
JP5645504B2 (ja) 植物栽培装置および植物栽培方法
JP2003232736A (ja) 光学的像形成方法および光学的像形成装置
AU2017280025A1 (en) Super-resolution microscopy
CN102202561A (zh) 提供光刺激和结构成像的装置、设备和方法
CN1226147A (zh) 在分子诊断试剂的光激活检测中改进选择性的方法
US20130085398A1 (en) Brain-machine interface based on photonic neural probe arrays
CN101874914A (zh) 一种光动力治疗及荧光诊断定位系统
CN101869741B (zh) 多用途医用光源系统
CN114026845A (zh) 在荧光成像系统中使用多个发射器的场景的偏移照明
JP2013146535A (ja) 走査型内視鏡
CN103654849B (zh) 被检体信息获取装置
CN201727851U (zh) 一种光动力治疗及荧光诊断定位系统
CN105527265A (zh) 激光泵浦时间分辨上转换发光活体成像系统
WO2011106905A1 (zh) 一种可空间编码的并行激发系统及方法
Chang et al. Optogenetic activation during detector “dead time” enables compatible real-time fluorescence imaging
CN201731334U (zh) 多用途医用光源系统
CN104568859B (zh) 具多组异角度光源的荧光观测装置、基架及荧光显微镜
CN107101982A (zh) 荧光显微装置
KR101937789B1 (ko) 테라피 조명장치
McKendry et al. Micro-LEDs for biomedical applications
CN105572091B (zh) 一种叶绿素荧光探测装置以及探测方法
CN101268964A (zh) 带有荧光诊断功能的光动力治疗装置及其操作方法
CN103239804A (zh) 一种led血管内照射治疗仪

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080000866.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2782964

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846824

Country of ref document: EP

Kind code of ref document: A1