WO2011105581A1 - Optical low-pass filter and digital camera - Google Patents

Optical low-pass filter and digital camera Download PDF

Info

Publication number
WO2011105581A1
WO2011105581A1 PCT/JP2011/054392 JP2011054392W WO2011105581A1 WO 2011105581 A1 WO2011105581 A1 WO 2011105581A1 JP 2011054392 W JP2011054392 W JP 2011054392W WO 2011105581 A1 WO2011105581 A1 WO 2011105581A1
Authority
WO
WIPO (PCT)
Prior art keywords
pass filter
polarized light
optical low
linearly polarized
separation
Prior art date
Application number
PCT/JP2011/054392
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 小柳
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012501897A priority Critical patent/JPWO2011105581A1/en
Publication of WO2011105581A1 publication Critical patent/WO2011105581A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0077Types of the still picture apparatus
    • H04N2201/0084Digital still camera

Definitions

  • the present invention relates to an optical low-pass filter and a digital camera, and more particularly to a digital camera equipped with a solid-state imaging device such as a CCD or CMOS, and more particularly to a digital camera capable of taking a moving image and a still image.
  • Image sensors such as CCDs and CMOSs used in imaging devices such as video cameras and digital cameras convert the amount of light and darkness that is input as external signals into the amount of electric charge, so-called photoelectric conversion, and the electrical signals are sequentially A digital image is generated by processing.
  • image sensor it is known that distortion caused by sampling occurs in an image having a spatial frequency finer than the pixel pitch of incident light, and a pattern (moire) or false color different from the original image is generated. Yes.
  • the imaging device is configured with an optical low-pass filter (OLPF: Optical Low Pass Pass Filter).
  • OLPF optical Low Pass Pass Filter
  • a specific OLPF has a birefringent plate such as quartz and separates an incident two-dimensional image by a small distance in the horizontal direction and / or the vertical direction, thereby entering a pixel pitch incident on an image sensor (imaging device).
  • imaging device has a function of cutting the vicinity of the frequency (sampling frequency), and has been devised so as not to cause moiré and false color phenomena.
  • Such an OLPF separates an incident two-dimensional image by a specific distance in accordance with a pixel pitch necessary for imaging, but the number of pixels necessary for imaging differs between a still image and a moving image.
  • the appropriate distance to be separated is different. Therefore, in order to support both still images and moving images, it is required to appropriately control the separation distance (hereinafter referred to as “separation distance”).
  • separation distance for digital cameras and digital single lens reflex cameras that can shoot not only still images but also moving images, high-precision image quality is required for both still images and moving images.
  • digital SLR cameras for example, still images have an image quality of 10 million pixels or more, while moving images are greatly different from about 2 million pixels even if they are compatible with Full HD (HD: High Definition). For this mode, it is required to appropriately reduce the moire and false color phenomenon.
  • Patent Document 1 An optical low-pass filter that eliminates moire has been reported (Patent Document 1).
  • the optical low-pass filter of Patent Document 1 needs to include two types of an OLPF element corresponding to a still image and an OLPF element corresponding to a moving image. Therefore, it is necessary to provide a mechanical mechanism for inserting or removing either one of the OLPF elements in the optical path, and since the space of the optical low-pass filter itself is required, it is difficult to obtain high reliability. There was a problem that miniaturization could not be realized.
  • the present invention has been made in view of the above points, and includes a first separation element, a polarization control unit, a second separation element, and a voltage control unit that controls a voltage applied to the polarization control unit.
  • the first separation element has a separation distance between the first linearly polarized light and the second linearly polarized light orthogonal to the first linearly polarized light among the incident light. Whether the polarization control unit changes the polarization state of the incident first linearly polarized light and the second linearly polarized light according to the voltage applied by the voltage control unit, separated by L 1 (> 0).
  • the incident first linearly polarized light is modulated into the second linearly polarized light
  • the incident second linearly polarized light is modulated into the first linearly polarized light
  • the second separation element includes the first linearly polarized light and the second linearly polarized light.
  • the separation distance L 2 (> 0) only provides an optical low-pass filter that separates the separation distance L 1 separating direction and the parallel direction.
  • the ratio between the separation distance L 1 and the separation distance L 2 is in the range of 1.3 to 3, and the first separation element is emitted by the voltage applied by the voltage controller.
  • L S corresponding to the,
  • L M corresponding to the separation distance between the light
  • L M corresponding to L 1 + L 2
  • L M corresponding to the separation distance between the light
  • L M corresponding to L 1 + L 2
  • L 1 -L 2 Provided is the above optical low-pass filter in which L M > L S , 10 ⁇ m ⁇ L M ⁇ 32 ⁇ m, and 2 ⁇ m ⁇ L S ⁇ 10 ⁇ m.
  • providing the separation distance L 1 between the separation distance L 2 is equal to the above of the optical low-pass filter.
  • the polarization control unit provides the above-described optical low-pass filter including a liquid crystal element having a liquid crystal layer.
  • the first separation element has a thickness d 1 , an angle formed by the thickness direction and the extraordinary refractive index axis direction is ⁇ 1 , and birefringence having an ordinary refractive index no 1 and an extraordinary refractive index ne 1 .
  • the separation distance L 1 is given by the following equation (1):
  • the second separation element has a thickness d 2 , an angle formed by the thickness direction and the extraordinary refractive index axis direction is ⁇ 2 , and has a normal refractive index no 2 and an extraordinary refractive index ne 2 .
  • the separation distance L 2 is given by the following equation (2):
  • the liquid crystal element when no voltage is applied, the liquid crystal element is aligned in a direction in which the liquid crystal molecules of the liquid crystal layer are substantially parallel to the plane of the liquid crystal layer and the major axis directions of the liquid crystal molecules of the opposing surface are substantially orthogonal. are, are about 90 ° twisted in the thickness direction to the axis, when the direction in which said theta 1 in the thickness direction of the first separation element as a reference and positive, the second separation element, said theta 2 of the code provides the above optical low-pass filter disposed in a direction to be negative.
  • optical low-pass filter is provided in which the liquid crystal layer is sandwiched and integrated by the first separation element and / or the second separation element.
  • the optical low-pass filter includes a first optical low-pass filter including the first separation element, a first polarization control unit that is the polarization control unit, and the second separation element; A polarization conversion element; and a second optical low-pass filter, wherein the polarization conversion element converts the incident first linearly polarized light and the second linearly polarized light into the first linearly polarized light, respectively.
  • the second optical low-pass filter modulates the second optical low-pass filter with light having a ratio of the linearly polarized light component to the second linearly polarized light component in a range of 3: 7 to 7: 3. a first linear polarized light and the light of the second linearly polarized light, which provides the above optical low-pass filter for separating in a direction intersecting the direction of the separation distance L 1 and the separation distance L 2.
  • the optical low-pass filter includes a first optical low-pass filter including the first separation element, a first polarization control unit that is the polarization control unit, and the second separation element; And a second optical low-pass filter, a second optical low-pass filter, said a first linear polarized light and the light of the second linearly polarized light, the separation distance L 1 and the separating distance provides the aforementioned optical low-pass filter for separating direction intersecting at an angle not orthogonal to the direction of L 2.
  • the second optical low-pass filter includes a third separation element, a second polarization control unit, and a fourth separation element.
  • the third separation element is the first linearly polarized light.
  • the second linearly polarized light are separated from each other by a separation distance L 3 (> 0) in a direction intersecting the direction of the separation distance L 1 and the separation distance L 2.
  • the unit does not change the polarization state of the incident first linearly polarized light and the second linearly polarized light according to the voltage applied by the voltage control unit, or the incident first linearly polarized light.
  • the incident second linearly polarized light is modulated into the first linearly polarized light
  • the fourth separation element the a light of a first linear polarization, and the light of the second linearly polarized light, the separation distance L 4 (> 0 Only provides the above optical low-pass filter that separates the separation direction parallel direction of the separation distance L 3.
  • the ratio between the separation distance L 3 and the separation distance L 4 is in the range of 1.3 to 3, and the first separation element is emitted by the voltage applied by the voltage controller.
  • the separation distance between the linearly polarized light and the second linearly polarized light is L MX corresponding to L 3 + L 4 and L SX corresponding to
  • the second polarization control unit provides the optical low-pass filter including a liquid crystal element having a liquid crystal layer.
  • the third separation element the birefringence having a thickness d 3, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta 3, and the ordinary refractive index n o3, the extraordinary refractive index n e3
  • the separation distance L 3 is given by the following equation (3):
  • the liquid crystal molecules of the liquid crystal layer of the second polarization controller are substantially parallel to the plane of the liquid crystal layer of the second polarization controller when no voltage is applied. Further, the major axis direction of the liquid crystal molecules on the opposite surface is aligned in a direction substantially orthogonal to each other, twisted about 90 ° about the thickness direction, and the ⁇ direction with respect to the thickness direction of the third separation element When the direction of 3 is positive, the fourth separation element provides the above-described optical low-pass filter arranged in a direction in which the sign of the ⁇ 4 is negative.
  • optical low-pass filter described above in which the liquid crystal layer of the second polarization controller is sandwiched and integrated by the third separation element and / or the fourth separation element.
  • the second optical low-pass filter includes a third separation element, and the third separation element separates the first linearly polarized light and the second linearly polarized light.
  • the optical low-pass filter described above is separated by a separation distance L FX in a direction crossing the separation direction of the distance L 1 and the separation distance L 2 .
  • the first polarization control unit and the second polarization control unit are incident on the orthogonally polarized second linearly polarized light by a voltage applied by the voltage control unit, separated by a separation distance L A (> 0).
  • the polarization state of the first linearly polarized light and the second linearly polarized light is not changed, or the incident first linearly polarized light is modulated into the second linearly polarized light.
  • the second linearly polarized light incident thereon is modulated into the first linearly polarized light, and the second separation element Of the incident light, the light of the first linear polarized light, and the light of the second linearly polarized light, the separation distance L B (> 0) only, the separation distance separating direction parallel direction L 1
  • the third separation element is separated from the incident light by the separation distance L C (> 0) between the first linearly polarized light and the second linearly polarized light.
  • L 1 is separated from the separation direction of L 1 (L A ⁇ L B ⁇ L C ), and any one of the separation distance L A , the separation distance L B, and the separation distance L C is the remaining two
  • an optical low-pass filter that is controlled by the voltage control unit so that the separation distance of light emitted from the third separation element is equal to a sum value and at least three values including zero.
  • the first polarization control unit and the second polarization control unit provide the optical low-pass filter including a liquid crystal element having a liquid crystal layer.
  • the first separation element has a thickness d A , an angle formed by the thickness direction and the extraordinary refractive index axis direction is ⁇ A , and birefringence having an ordinary refractive index noA and an extraordinary refractive index neA.
  • the separation distance L A is given by the following equation (5):
  • the second separation element, the thickness d B, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta B, and the ordinary refractive index n oB, birefringent material having an extraordinary refractive index n eB
  • the separation distance L B is given by the following equation (6):
  • the third separation element has a thickness d C , an angle between the thickness direction and the extraordinary refractive index axis direction becomes ⁇ C , and a birefringent material having an ordinary refractive index noC and an extraordinary refractive index neC And the separation distance L C is given by the following equation (7):
  • the liquid crystal layer of the first polarization control unit is integrated with at least one of the first separation element and the second separation element, and the liquid crystal layer of the second polarization control unit is integrated with the second separation element.
  • the optical low-pass filter is integrated with at least one of the separation element and the third separation element.
  • a digital camera including the above-described optical low-pass filter and an image sensor is provided.
  • an image sensor when imaging a still image is the separation distance between L S, when imaging a video to provide digital camera to the separation distance between L M.
  • the present invention can provide an optical low-pass filter that can switch the separation distance between two values with accuracy or three values including zero, has no mechanical moving parts, and can be downsized, and can be added to a still image.
  • an optical low-pass filter that can switch the separation distance between two values with accuracy or three values including zero, has no mechanical moving parts, and can be downsized, and can be added to a still image.
  • Schematic diagram showing an example of an optical low-pass filter (first embodiment) Schematic diagram showing another example of an optical low-pass filter (first embodiment) Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when no voltage is applied) Schematic diagram showing an example of an optical low-pass filter (second embodiment) Sectional drawing which shows the example of a 2nd optical low-pass filter Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) Schematic
  • Schematic diagram illustrating an example of an optical low-pass filter (sixth embodiment) Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when no voltage is applied)
  • FIG. 1A and 1B are conceptual diagrams illustrating a configuration example of an optical low-pass filter according to the present embodiment.
  • the optical low-pass filter 10 of FIG. 1A has a first separation element 11, a polarization control unit 20, and a second separation element 12, and light from the outside is incident in this order (Z direction).
  • the optical low-pass filter 10 separates first (linear) polarized light and second (linear) polarized light that are orthogonal to each other.
  • the light separation direction by the first separation element 11 and the second separation element 12 is parallel and is described here as the Y direction parallel to the paper surface, it may be the X direction.
  • the polarization controller 20 has a light modulation function that emits light without changing the polarization state of incident light or changes the polarization state depending on the magnitude of the voltage applied from the voltage controller 13.
  • a liquid crystal element in which the alignment state of liquid crystal molecules is changed by an applied voltage is used.
  • FIG. 1A is an example in which the polarization control unit 20 is a liquid crystal element.
  • transparent electrodes 22a and 22b and alignment films 23a and 23b are provided on the opposing surfaces of the transparent substrates 21a and 21b, respectively.
  • the liquid crystal layer 24 is sandwiched.
  • the voltage control part 13 which applies a voltage to the liquid-crystal layer 24 via transparent electrode 22a, 22b is provided.
  • the transparent substrates 21a and 21b are transparent to incident light, various materials such as a resin plate and a resin film can be used. However, when an optically isotropic material such as glass or quartz glass is used, This is preferable because the transmitted light is not affected by birefringence. Further, for example, if the transparent substrates 21a and 21b are provided with an antireflection film made of a multilayer film at the interface with air, light reflection loss due to Fresnel reflection can be reduced.
  • the transparent electrodes 22a and 22b are made of an oxide such as ITO (Indium ⁇ Tin Oxide), AZO (Aluminum Zinc Oxide), GZO (Gallium Zinc Oxide), for example, high transparency and conductivity Is preferable.
  • ITO Indium ⁇ Tin Oxide
  • AZO Alluminanium Zinc Oxide
  • GZO Gaallium Zinc Oxide
  • the polarization controller 20 is provided with alignment films 23a and 23b for aligning the liquid crystal molecules of the liquid crystal layer 24, and between the transparent electrode 22a and the alignment film 23a, and between the transparent electrode 22b and the alignment film 23b.
  • the alignment films 23a and 23b are formed by rubbing a resin film such as polyimide, an oblique vapor deposition film formed by oblique vapor deposition of an inorganic material such as silicon oxide, and ultraviolet rays or the like on an organic film.
  • a photo-alignment film that generates alignment ability by irradiation can be used.
  • the insulating film for example, SiO 2, SiON or the like is used.
  • the first separation element 11 and / or the second separation element 12, and the transparent substrate 21a and / or the transparent substrate 21b may be integrated respectively.
  • the polarization controller 20 have been described in detail configuration of a liquid crystal element is not limited thereto, using the inorganic crystal LiNbO 3 or the like polarization controller 20 is an electro-optic crystal, the voltage control unit 13 The polarization state of the transmitted light may be controlled by the voltage applied by the above, and the same can be used in the following embodiments.
  • FIG. 1B shows the configuration of the optical low-pass filter 15, and the same parts as those of the optical low-pass filter 10 are denoted by the same reference numerals.
  • the optical low-pass filter 15 has a configuration in which the first separation element 11 and the second separation element 12 include the function of the transparent substrates 21 a and 21 b of the optical low-pass filter 10, that is, the function of sandwiching the liquid crystal layer 24.
  • the polarization control unit 25 is configured by a portion of the optical low-pass filter 10 excluding the transparent substrate 21a and the transparent substrate 21b of the polarization control unit 20.
  • one of the first separation element 11 and the second separation element 12 may be configured to include the function of the transparent substrate 21a or the transparent substrate 21b.
  • the optical low-pass filter is preferably as thin as possible because the thickness of the element increases when various functions are included as will be described later.
  • the thickness may be 5 mm or less, preferably 3 mm or less, and more preferably 2 mm or less.
  • an optical low-pass filter may be used as a cover glass used for image sensors such as CMOS and CCD, and may be integrated with an infrared absorption filter for blocking infrared rays incident on the image sensor. .
  • the first separation element 11 and the second separation element 12 are made of, for example, a birefringent material, and in this case, have an extraordinary refractive index axis in an oblique direction with respect to the thickness (Z-axis) direction.
  • a material constituting the first separation element 11 and the second separation element 12 as a crystal material, quartz, yttrium orthovanadate (YVO 4 ) crystal, calcite (calcite: CaCO 3 ), rutile ( TiO 2 ) and lithium niobate (LiNbO 3 ).
  • polyimide polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulosic plastics, polyolefin and the like.
  • it may be a liquid crystal material including a polymer liquid crystal capable of obtaining birefringence, and can be similarly used in the following embodiments.
  • the first separation element 11 and the second separation element 12 are not limited to those made of a birefringent material having an extraordinary refractive index axis in a direction oblique to the thickness direction.
  • the angle of refraction with respect to the second polarized light orthogonal to the first polarized light may be different, and the incident light is orthogonal to the first polarized light with respect to the thickness direction.
  • a material in which the in-plane refractive index is uniform and the distribution of the in-plane refractive index orthogonal to the thickness direction is inclined with respect to the light of the second polarization orthogonal to the first polarization.
  • the in-plane refractive index distribution may be divided into blaze shapes so that the inclination angle is uniform in a plane orthogonal to the thickness direction.
  • a separation element composed of a polarizing diffraction grating that transmits straightly without diffracting the first polarized light and diffracts the second polarized light.
  • a polarizing diffraction grating for example, a birefringence having a normal light refractive index n 1 and an extraordinary light refractive index n 2 (n 1 ⁇ n 2 ) as a material corresponding to a convex portion of a diffraction grating whose cross section has periodic unevenness.
  • the concave portion has an isotropic material with a refractive index of n s so as to fill the material and the unevenness.
  • the cross-sectional shape of the diffraction grating may be a blazed shape or a pseudo-blazed shape approximating the blazed shape to a staircase shape.
  • the first separation element 11 and the second separation element 12 are made of a birefringent material having an extraordinary light refractive index axis in an oblique direction.
  • the thickness of the first separation element 11 is d 1
  • the ordinary light refractive index is n o1
  • the extraordinary light refractive index is n e1
  • the incident light enters the extraordinary light refractive index axis 11 a.
  • the separation distance L 1 can be expressed by Expression (1). The same applies to the optical low-pass filter 15 in FIG. 1B.
  • the thickness of the second separation element 12 is d 2
  • the ordinary light refractive index is n o2
  • the extraordinary light refractive index is ne 2
  • the extraordinary light refractive index axis 12 a travels in the incident light direction (first).
  • the separation distance L 2 can be expressed by Expression (2). As will be described later, in this embodiment, it is set to be different values from the separation distance L 1 and the separation distance L 2.
  • ⁇ 1 and ⁇ 2 have signs, and here, the inclination in the + Y direction is considered to be positive and the inclination in the ⁇ Y direction is considered to be negative with respect to the Z-axis direction in which light is incident.
  • the polarization controllers 20 and 25 are liquid crystal elements.
  • the liquid crystal of the liquid crystal layer 24 nematic phase liquid crystal is preferably used.
  • horizontal alignment in which the major axis direction of the liquid crystal molecules is substantially parallel to the surfaces of the alignment films 23a and 23b;
  • vertical alignment homeotropic alignment
  • either mode may be used.
  • a liquid crystal material having positive dielectric anisotropy ( ⁇ > 0) may be used, and in the case of vertical alignment, a liquid crystal material having negative dielectric anisotropy ( ⁇ ⁇ 0) may be used.
  • a spherical spacer made of an inorganic material such as SiO 2 or an organic material such as resin may be used in the liquid crystal layer 24, for example.
  • the voltage control unit 13 may be capable of applying a DC voltage or an AC voltage to the liquid crystal layer 24, but it is preferable that an AC voltage can be applied in order to prevent deterioration of the liquid crystal.
  • the liquid crystal is a twisted nematic (TN) liquid crystal that is aligned in a direction in which the major axis direction of the liquid crystal molecules on the surfaces of the opposing alignment films 23a and 23b is substantially orthogonal and twisted about 90 ° about the thickness direction.
  • TN twisted nematic
  • the major axis direction of the liquid crystal molecules is aligned parallel to the thickness direction.
  • a liquid crystal imparting a bistable state can be used. In this case, for example, the orientation state of the liquid crystal can be maintained even after the voltage is cut off, so that power saving can be realized.
  • the liquid crystal layer 24 when the liquid crystal molecules in the liquid crystal layer 24 are vertically aligned when no voltage is applied, the liquid crystal layer 24 operates so as to be opposite to the horizontal alignment. That is, when a voltage of a certain value or more is applied from the voltage controller 13, the liquid crystal molecules are aligned in the direction parallel to the alignment films 23a and 23b.
  • the liquid crystal molecules of the liquid crystal layer 24 when a voltage is applied, the liquid crystal molecules of the liquid crystal layer 24 are twisted by about 90 ° about the thickness direction by making the major axis direction of the liquid crystal molecules on the surfaces of the alignment films 23a and 23b facing each other substantially orthogonal. Oriented.
  • the polarization direction of the incident light has a characteristic that the alignment direction is different. It is possible to control whether the light is emitted while changing the state, or the light is emitted without changing.
  • FIG. 2A and 2B are schematic views showing the path and polarization state of light incident on the optical low-pass filter 10, where the liquid crystal molecules of the liquid crystal layer 24 are horizontally aligned when no voltage is applied and the liquid crystal molecules
  • FIG. 2A is a schematic diagram showing a light path and a polarization state when a voltage is applied. At this time, the major axis direction of the liquid crystal molecules is aligned with the thickness direction.
  • FIG. 2B is a schematic diagram showing a light path and a polarization state when no voltage is applied. At this time, the major axis direction of the liquid crystal molecules is horizontally aligned and 90 ° about the thickness direction. Twisted.
  • linearly polarized light incident on the first separation element 11 along the Z-axis direction is separated into linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction.
  • the separation distance is determined based on the above equation (1).
  • linearly polarized light in the X-axis direction may be expressed as first linearly polarized light
  • linearly polarized light in the Y-axis direction may be expressed as second linearly polarized light.
  • linearly polarized light in the X-axis direction is transmitted straight through the first separation element 11, and the traveling direction of linearly polarized light in the Y-axis direction is changed.
  • Linearly polarized light of the first separation device 11 X-axis direction of the linearly polarized light emitted from the light and the Y-axis direction enters the polarization control unit 20 at a separation distance L 1.
  • the major axis direction of the liquid crystal molecules is aligned in the thickness direction of the liquid crystal layer 24, so that any linearly polarized light is emitted from the polarization controller 20 without changing the polarization state.
  • the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 12.
  • the linearly polarized light in the X-axis direction passes straight, and the linearly polarized light in the Y-axis direction passes through the first separation element 11 with reference to the optical path of the linearly polarized light in the X-axis direction.
  • the direction of travel is changed to the direction opposite to the + Y direction separated in step 1, that is, the ⁇ Y direction, and the light is emitted. Therefore, the separation distance of the entire optical low-pass filter 10 when a voltage is applied is
  • the light of linear polarization of light and the Y-axis direction of the first separation element 11 emits the X-axis direction of the linearly polarized light is incident on the polarization control unit 20 at a separation distance L 1, the liquid crystal molecules are liquid crystal Since it is oriented so as to be twisted by 90 ° in the layer 24, linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and linearly polarized light in the Y-axis direction. Is converted (rotated) into linearly polarized light in the X-axis direction.
  • the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 12, but the linearly polarized light in the X-axis direction is transmitted straight through.
  • the linearly polarized light in the Y-axis direction is emitted with the traveling direction changed.
  • the separation distance of the entire optical low-pass filter 10 when no voltage is applied is L 1 + L 2 . Therefore, the separation distance can be switched between
  • a digital camera or a digital single lens reflex camera It is better to design to switch between video mode and still image mode.
  • FIGS. 2A and 2B are examples illustrating a configuration in which the major axis direction of the liquid crystal molecules when no voltage is applied is horizontal alignment, the liquid crystal molecules are vertically aligned when no voltage is applied. May be.
  • the angle theta 1 of the first extraordinary refractive index axis 11a of the separating element 11, but the sign of the angle theta 2 of the second extraordinary refractive index axis 12a of the separating element 12 has been described different example, in this Not limited to this, ⁇ 1 and ⁇ 2 may have the same sign.
  • L 1 and L 2 may be designed so that the image mode can be switched according to an appropriate separation distance
  • the digital camera and the digital single lens reflex camera are designed to be in the still image mode when no voltage is applied.
  • an image sensor such as a CCD (not shown) is disposed at the subsequent stage of the second separation element 12, but when applying a voltage based on FIG. A still image mode with a large number of images and a moving image mode with a relatively small number of pixels can be obtained when no voltage is applied based on FIG. 2B. 2B, when the liquid crystal molecules of the liquid crystal layer 24 have an orientation direction twisted by 90 °, among the incident light, linearly polarized light in the X-axis direction becomes linearly polarized light in the Y-axis direction.
  • linearly polarized light in the direction cannot be converted 100% into linearly polarized light in the X-axis direction. That is, when no voltage is applied in FIG. 2B, linearly polarized light in the X direction is incident on the polarization controller 20 and is not converted to 100% light in the Y direction, and is slightly ⁇ % (> 0). In the case where only the component is transmitted as linearly polarized light in the X-axis direction, this ⁇ % component is transmitted straight through the second separation element 12. Similarly, when no voltage is applied in FIG. 2B, linearly polarized light in the Y direction is incident on the polarization control unit 20 and is not converted to 100% light in the X direction, and is slightly ⁇ % (> 0). When only the component is transmitted as linearly polarized light in the Y-axis direction, only the ⁇ % component is emitted by the second separation element 12 while changing the traveling direction in the ⁇ Y direction.
  • the separation distance L 1 + L 2 generated by the optical low-pass filter 10 corresponds to, for example, the size of a moving image pixel of a digital camera or a digital single lens reflex camera, and
  • the ⁇ % component is generated in the moving image mode based on FIG. 2B, that is, in the case where the separation distance is L 1 + L 2.
  • the light of the ⁇ % component is the separation distance, L 1 + L 2. It reaches inside, that is, within one pixel and does not reach other pixels as noise.
  • the digital camera and the digital single-lens reflex camera have a configuration of an optical low-pass filter that obtains a large separation distance that is a moving image mode. Moire and false colors can be sufficiently eliminated, which is more preferable.
  • the liquid crystal molecules of the liquid crystal layer 24 are vertically aligned when no voltage is applied and twisted 90 degrees (horizontal alignment) when a voltage is applied, the light incident on the liquid crystal layer 24 is sufficiently polarized and converted when the voltage is applied.
  • noise components may be generated.
  • the noise component does not reach other pixels in the moving image mode, which is preferable, and further, the still image mode is applied when no voltage is applied, and the moving image mode is applied when the voltage is applied. In many digital cameras and digital single-lens reflex cameras, power saving can be realized.
  • the digital single-lens reflex camera has an optical low-pass filter function corresponding to about 10 million pixels to about 30 million pixels for still images, and about 1 million pixels to about 2 million pixels corresponding to full HD images and HD images for moving images. It is required to reduce moire and false color by switching the optimal optical low-pass filter function.
  • the size of image sensors (imaging devices) such as CCDs and CMOSs used in digital single-lens reflex cameras ranges from about 17.3 mm ⁇ 13.0 mm of the Four Thirds size to about 23.4 mm ⁇ 16 of the APS-C size. A size of about 36 mm ⁇ 24 mm corresponding to 0.7 mm and a 35 mm film is used.
  • the pixel interval applied to a still image is in the range of about 2 ⁇ m to about 10 ⁇ m, while the pixel interval applied to a full HD image or HD image moving image is about 10 to about 10 ⁇ m.
  • the range is about 32 ⁇ m.
  • the first separation element 11 and the second separation element 12 are designed so that the separation distance is long and can be varied over a wide range.
  • L S the separation distance for still images
  • L M the separation distance for moving images
  • L M has a separation distance of about 2 to 10 ⁇ m
  • L M Preferably has a separation distance of 10 to 32 ⁇ m.
  • the separation relationship L 1 generated by the first separation element 11 and the separation distance L 2 generated by the second separation element 12 are not limited in magnitude as long as they are different. That is, L 1 > L 2 or L 1 ⁇ L 2 may be satisfied. Also, of the L 1 and L 2, when relative to the separation distance smaller, as the separation distance greater is in the range from 1.3 to 3, formula (1) and adjusting the formula (2) It is preferable to do.
  • FIG. 3 is a conceptual diagram illustrating a configuration example of the optical low-pass filter 50 according to the present embodiment.
  • a polarization conversion element 51 is provided between the optical low-pass filter 10 and the optical low-pass filter 30 according to the first embodiment.
  • the optical low-pass filter 10 is the first optical low-pass filter 10 having the light separation ability in the Y-axis direction
  • the optical low-pass filter 30 is the second optical separation ability having the light separation ability in the X-axis direction.
  • the optical low-pass filter 30 will be described.
  • FIG. 4 is a schematic cross-sectional view of the second optical low-pass filter 30 extracted from the optical low-pass filter 50, and particularly shows the XZ plane.
  • the third separation element 31 having a thickness d 3 has an extraordinary refractive index axis that is inclined in the + X direction and has an angle ⁇ 3 with respect to the Z-axis direction.
  • the fourth separation element 32 having the thickness d 4 has an extraordinary refractive index axis having an angle ⁇ 4 with an inclination in the ⁇ X direction with respect to the Z-axis direction.
  • the thickness of the third separation element 31 is d 3
  • the ordinary light refractive index is n o3
  • the extraordinary light refractive index is n e3
  • the direction in which the incident light travels with the extraordinary light refractive index axis 31 a third separation element.
  • the thickness of the fourth separation element 32 is d 4
  • the ordinary light refractive index is n o4
  • the extraordinary light refractive index is n e4
  • the direction in which the incident light travels with the extraordinary light refractive index axis 32 a fourth separation element.
  • the separation distance L 4 can be expressed by Expression (4).
  • the separation distance L 3 and the separation distance L 4 are set to be different from each other, and ⁇ 3 and ⁇ 4 also have signs, and here, the Z-axis direction in which light is incident is used as a reference. , + X direction inclination is considered as positive, and ⁇ X direction inclination is considered as negative.
  • the thicknesses d 3 and d 4 and the angles ⁇ 3 and ⁇ 4 can be arbitrarily given.
  • the signs of ⁇ 3 and ⁇ 4 are different, and
  • the description will be made on the assumption that the Z axis direction is the same as that rotated 90 ° about the rotation axis.
  • the optical low-pass filter 10 according to the first embodiment provides light separation only in one direction (Y-axis direction), but the optical low-pass filter 50 according to the present embodiment has the first optical low-pass filter.
  • the filter 10 and the second optical low-pass filter 30 overlap light can be separated two-dimensionally.
  • the same part is attached
  • the second optical low-pass filter 30, between the thickness d 3 of the third separation device 31 and the thickness d 4 of the fourth separation device 32 includes a (second) polarization control unit 40
  • the polarization control unit 40 includes transparent electrodes 42a and 42b and alignment films 43a and 43b as opposed to the transparent substrates 41a and 41b as a pair of transparent substrates, and the liquid crystal layer 44 is sandwiched therebetween.
  • the voltage control part 52 which applies a voltage to the liquid crystal layer 44 via the transparent electrodes 42a and 42b is provided.
  • the voltage control unit 52 can apply a voltage to the liquid crystal layer 24 in common via the transparent electrodes 22a and 22b.
  • the polarization conversion element 51 is configured to transmit X-axis direction linearly polarized light (first linearly polarized light) and Y-axis direction linearly polarized light (second linearly polarized light) transmitted through the second separation element 12, respectively.
  • the first linearly polarized light component and the second linearly polarized light component have a function of converting into substantially the same light. Specifically, it may have a function to become a broadband half-wave plate or a function to become a broadband quarter-wave plate for incident visible light. That is, in the case of a broadband 1 ⁇ 2 wavelength plate, preferably, the vibration direction of the incident linearly polarized light is converted to linearly polarized light that is rotated by an angle that is an odd multiple of 45 °.
  • incident linearly polarized light is converted into circularly polarized light.
  • the ratio of the light component in the X-axis direction and the light component in the Y-axis direction out of the light emitted from the polarization conversion element 51 is approximately the same for light in the visible light region from 7: 3 to 3: 7. Of 6: 4 to 4: 6 is preferable, and the closer to the ratio of 5: 5, the more preferable.
  • the polarization conversion element 51 is a broadband 1 ⁇ 2 wavelength plate or a broadband 1 ⁇ 4 wavelength plate, for example, the polarization conversion element 51 has an optical axis parallel to a plane orthogonal to the direction in which light enters, and the optical axis is thick.
  • a plurality of wave plates made of birefringent materials aligned in the direction may be stacked so that the optical axes intersect. Further, one or a plurality of wave plates whose optical axis directions are spiraled about the thickness direction may be configured.
  • the material of the wave plate include inorganic materials such as quartz and LiNbO 3 and organic materials such as resin, liquid crystal, and polymer liquid crystal.
  • FIGS. 5A to 5C are schematic diagrams showing the path and polarization state of light incident on the optical low-pass filter 50.
  • the liquid crystal molecules of the liquid crystal layers 24 and 44 are horizontally aligned when no voltage is applied, respectively.
  • FIG. 5A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis directions of the liquid crystal molecules in the liquid crystal layers 24 and 44 are aligned in the thickness direction.
  • FIG. 5A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis directions of the liquid crystal molecules in the liquid crystal layers 24 and 44 are aligned in the thickness direction.
  • 5B shows the positions and polarization states of the light 10a and the light 10b on the emission surface of the first optical low-pass filter 10 when a voltage is applied.
  • 5C shows the positions and polarization states of the light 30a, the light 30b, the light 30c, and the light 30d on the emission surface of the second optical low-pass filter 30 when a voltage is applied. This is the optical low-pass filter. It corresponds to the one showing 50 light separation states.
  • the first optical low-pass filter 10 separates the light of the linearly polarized light in the X-axis direction (first linearly polarized light) and the light of the linearly polarized light in the Y-axis direction (second linearly polarized light).
  • the light is transmitted by a distance LSY .
  • 'S' in the separation distance L SY is a still image mode
  • 'Y' means the separation direction is the Y-axis direction
  • 'M' is the moving image mode
  • 'X' is the separation direction X. It means the axial direction.
  • the first linearly polarized light and the second linearly polarized light are separated by the first optical low-pass filter 10 and emitted from the respective positions 10a and 10b.
  • the separation distance LSY corresponds to the separation distance LSY .
  • the light separated into the optical path 53 a of the first linearly polarized light and the optical path 54 a of the second linearly polarized light enters the polarization conversion element 51.
  • the polarization state of the light incident on the polarization conversion element 51 is converted so that the light component of the first linearly polarized light and the light component of the second linearly polarized light are mixed.
  • the light corresponding to the optical path 53a follows the optical path 53b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low pass.
  • the light enters the filter 30.
  • the light corresponding to the optical path 54 a follows the optical path 54 b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low-pass filter 30. Is incident on.
  • the second optical low-pass filter 30 is configured to emit light of linearly polarized light (first linearly polarized light) in the X-axis direction and light of linearly polarized light (second linearly polarized light) in the Y-axis direction.
  • first linearly polarized light first linearly polarized light
  • second linearly polarized light second linearly polarized light
  • the separation distance L SX corresponds to
  • light corresponding to the optical path 53b is separated by the second optical low-pass filter 30 and is emitted from the respective positions 30a and 30b, and the interval corresponds to the separation distance LSX .
  • the light corresponding to the optical path 54b is separated by the second optical low-pass filter 30 and emitted from the respective positions 30c and 30d, and the interval thereof also corresponds to the separation distance LSX .
  • the reason for making the separation directions orthogonal in this way is that the pixels of the image sensor are two-dimensionally arranged, and therefore the pixel arrangement direction in order to reduce moiré and false colors in the two orthogonal directions arranged It is made to separate according to. Further, the separation distance varies depending on the pixel pitch and the spatial frequency to be cut. When the pixel shape is a square, it is effective to make the separation distance in the X-axis direction and the separation distance in the Y-axis direction the same. For example, in the case of an image sensor having vertically long pixels (the length of one pixel in the Y-axis direction> the length of one pixel in the X-axis direction), priority is given to the prevention of moire and false colors in the X-axis direction. For this reason, the separation distance between the X-axis direction and the Y-axis direction is different, and the quadrilateral formed by connecting the four points to be separated is not limited to a square, and may be a parallelogram.
  • FIG. 6A shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when a voltage is applied
  • FIG. 6D shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when a voltage is applied
  • FIG. 6B shows the light on the exit surface of the second optical low-pass filter 30 when a voltage is applied.
  • 5B and FIG. 5C respectively show the same position and polarization state.
  • FIG. 6C shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when no voltage is applied
  • the voltage control unit 52 is configured to be able to apply a common voltage to the (first) liquid crystal layer 24 and the (second) liquid crystal layer 44. The voltage may be applied independently to the layer 24 and the liquid crystal layer 44.
  • the separation distances L SY , L MY , and the separation distances L SX , L MX are related to the relationship of L MY > L SY and L MX > L SX . It is preferable that L SY and L SX have a separation distance of about 2 to 10 ⁇ m, and L MY and L MX have a separation distance of 10 to 32 ⁇ m.
  • the larger separation distance is in the range of 1.3 to 3
  • the smaller separation of L 3 and L 4 is smaller.
  • the birefringent material, thickness, and extraordinary refractive index axis angle of each separation element may be adjusted so that the larger separation distance is in the range of 1.3 to 3.
  • FIG. 7 is a conceptual diagram illustrating a configuration example of the optical low-pass filter 60 according to the present embodiment, and includes the optical low-pass filter 10 according to the first embodiment, the polarization conversion element 51, and the optical low-pass filter 62.
  • the optical low-pass filter 10 is the first optical low-pass filter 10 having light separation in the Y-axis direction
  • the optical low-pass filter 62 is the second optical low-pass filter having light separation in the X-axis direction.
  • the optical low-pass filter 62 will be described.
  • the present embodiment is different from the second embodiment in that the second optical low-pass filter 62 does not include a liquid crystal layer and the separation distance is fixed.
  • the second optical low-pass filter 62 has the same configuration as that of the first separation element 11 and is arranged by being rotated 90 ° with respect to the first separation element 11 about the Z-axis direction as a rotation axis. It may be equivalent.
  • FIG. 8A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis direction of the liquid crystal molecules in the liquid crystal layer 24 is aligned with the thickness direction.
  • FIG. 8A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis direction of the liquid crystal molecules in the liquid crystal layer 24 is aligned with the thickness direction.
  • the light incident on the optical low-pass filter 60 is in a random polarization state and travels along the Z-axis direction. Similar to the second embodiment, in the first optical low-pass filter 10, linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction are transmitted with a separation distance LSY therebetween. Further, in the schematic diagram shown in FIG. 8B, the first linearly polarized light and the second linearly polarized light are separated by the first optical low-pass filter 10 and emitted from the respective positions 10a and 10b. The interval corresponds to the separation distance LSY .
  • the light separated into the optical path 63 a of the first linearly polarized light and the optical path 64 a of the second linearly polarized light is incident on the polarization conversion element 51.
  • the light corresponding to the optical path 63a is transmitted through the optical path 63b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner. Traces and enters the second optical low-pass filter 62.
  • the light corresponding to the optical path 64a follows the optical path 64b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low-pass filter 62. Is incident on.
  • the second optical low-pass filter 62 separates the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction so as to be separated by a separation distance L FX in the X-axis direction.
  • “F” in the separation distance L FX means that the separation distance is fixed.
  • light corresponding to the optical path 63b is separated by the second optical low-pass filter 62 and emitted from the respective positions 62a and 62b, and the interval corresponds to the separation distance L FX .
  • the light corresponding to the optical path 64b is separated by the second optical low-pass filter 62 and emitted from the respective positions 62c and 62d, and the interval thereof also corresponds to the separation distance LFX .
  • This embodiment can also reduce moiré and false color two-dimensionally with respect to the image sensor as in the second embodiment.
  • moiré or false in the Y-axis direction compared to the X-axis direction can be used.
  • an optical low-pass filter 60 that varies the separation distance in the Y-axis direction and fixes the separation distance in the X-axis direction as in the present embodiment may be used.
  • the entire optical low-pass filter can be downsized, and moire and false colors can be reduced two-dimensionally.
  • the direction in which the separation distance is fixed is not limited to the X-axis direction, and may be the Y-axis direction.
  • the optical low-pass filter located in the first optical low-pass filter 10 has a separation distance.
  • the optical low-pass filter positioned in the second optical low-pass filter 62 may have a function of varying the separation distance.
  • the first optical low-pass filter 10 separates the first linearly polarized light and the second linearly polarized light with a separation distance larger than that when a voltage is applied, as in the first embodiment. Separate the light.
  • 9A to 9D show the positions and polarization states of light on the exit surface of the first optical low-pass filter 10 and the exit surface of the second optical low-pass filter 62 when the voltage is applied to the optical low-pass filter 60 and when no voltage is applied.
  • FIG. 9A shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when a voltage is applied
  • FIG. 9B shows the light on the exit surface of the second optical low-pass filter 62 when a voltage is applied. This shows the same position and polarization state as in FIGS. 8B and 8C.
  • FIG. 9A and 9B shows the position and polarization state of the light on the exit surface of the first optical low-pass filter 10 when no voltage is applied
  • the separation distances L SY and L MY satisfy the relationship of L MY > L SY and L SY is about 2 to 10 ⁇ m. has a distance, L MY is may have a separation distance of 10 ⁇ 32 [mu] m. Further, the birefringent material, the thickness, and the thickness of each separation element are set so that the larger separation distance is 1.3 to 3 with reference to the smaller separation distance of L 1 and L 2 . The angle of the extraordinary light refractive index axis may be adjusted.
  • FIGS. 10A and 10B are schematic diagrams illustrating a configuration example of the optical low-pass filter 70 according to the present embodiment, and a light path and a polarization state in the optical low-pass filter 70.
  • the optical low-pass filter 70 includes a first separation element 71, a polarization control unit 20, and a second separation element 72, and light from the outside is incident in this order (Z direction).
  • FIG. 10A is a schematic diagram showing a light path and a polarization state when a voltage is applied. At this time, the major axis direction of the liquid crystal molecules is aligned with the thickness direction.
  • FIG. 10B is a schematic diagram showing a light path and a polarization state when no voltage is applied. At this time, the major axis direction of the liquid crystal molecules is horizontally aligned and 90 ° with the thickness direction as an axis. ° Twisted.
  • Randomly polarized light incident on the first separation element 71 along the Z-axis direction includes linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction according to the above equation (1). based enters the polarization control unit 20 at a separation distance L 1 in. At the time of voltage application, the major axis direction of the liquid crystal molecules is aligned in the thickness direction of the liquid crystal layer 24, so that any linearly polarized light is emitted from the polarization controller 20 without changing the polarization state.
  • the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 72.
  • the linearly polarized light in the X-axis direction is transmitted in a straight line
  • the linearly polarized light in the Y-axis direction is transmitted through the first separation element 71 with reference to the optical path of the linearly polarized light in the X-axis direction.
  • the direction of travel is changed to the direction opposite to the + Y direction separated in step 1, that is, the ⁇ Y direction, and the light is emitted. Therefore, the separation distance of the entire optical low-pass filter 70 when a voltage is applied is
  • the separation distance is substantially zero.
  • the optical action is the same as that of the optical low-pass filter 10 according to the first embodiment. That is, in the polarization controller 20, the liquid crystal molecules are aligned so as to be twisted by 90 ° in the liquid crystal layer 24, so that linearly polarized light in the X-axis direction is converted into linearly polarized light in the Y-axis direction (optical rotation). At the same time, the linearly polarized light in the Y-axis direction is converted (rotated) into linearly polarized light in the X-axis direction.
  • the linearly polarized light incident on the polarization controller 20 is rotated by 90 ° and emitted, so that the first separation element 71 follows the trajectory shown in FIG. 10B.
  • the separation distance can be switched between 0 and 2 ⁇ L 1 when the voltage is applied and when the voltage is not applied.
  • the separation distance is set to 0 and the optical low-pass filter is substantially passed to obtain a highly accurate image. It can be in a state that does not.
  • the separation distance can be set to 2 ⁇ L 1 so that the moire or false color can be appropriately reduced.
  • switching the separation distance between 0 and 2 ⁇ L 1 is not limited to the still image mode but may be the moving image mode. Further, the separation distance 0 may be set to the still image mode, and the separation distance 2 ⁇ L 1 may be set to the moving image mode.
  • switching the separation distance between 0 and 2 ⁇ L 1 is not limited to the separation in the Y-axis direction as in the optical low-pass filter 70 shown in FIGS. 10A and 10B.
  • the present embodiment can be applied based on the optical low-pass filter 50 according to the second embodiment. That is, two optical low-pass filters 70 are arranged in the optical path, and a polarization conversion element is arranged in the optical path between the two optical low-pass filters 70.
  • One optical low-pass filter is arranged in the Y-axis direction and the other optical low-pass filter is arranged in the optical path.
  • the filter may have a function of separating light in the X-axis direction.
  • one of the two optical low-pass filters 70 corresponds to a positional relationship in which the other is rotated 90 ° with the Z-axis direction as the rotation axis.
  • a two-dimensional optical low-pass filter that can similarly switch the separation distance between 0 and a finite value in the X-axis direction can be obtained.
  • the present embodiment can be applied based on the optical low-pass filter 60 according to the third embodiment. That is, the optical low-pass filter 70 and the optical low-pass filter corresponding to the second optical low-pass filter 62 of the third embodiment are disposed, and the polarization conversion element is disposed therebetween, and one optical low-pass filter is disposed.
  • FIGS. 11 to 13 are schematic diagrams illustrating a configuration example of the optical low-pass filter 80 according to the present embodiment, and a light path and a polarization state in the optical low-pass filter 80.
  • the optical low-pass filter 80 includes a first separation element 81, a first polarization control unit 91, a second separation element 82, a second polarization control unit 92, and a third separation element 83. It is assumed that light is incident in this order (Z direction). Further, the first polarization control unit 91 and the second polarization control unit 92 emit light without changing the polarization state of incident light or change the polarization state depending on the voltage applied from the voltage control unit 93.
  • the first polarization control unit 91 and the second polarization control unit 92 have the same configuration as the polarization control unit 20 of the optical low-pass filter 10 according to the first embodiment, and liquid crystal is applied when no voltage is applied.
  • the major axis direction of the molecule is assumed to be horizontally oriented and twisted by 90 ° about the thickness direction.
  • the first separation element 81 has a thickness d A , an ordinary light refractive index n oA , an extraordinary light refractive index n eA , and an extraordinary light refractive index axis and a Z-axis direction that is a direction in which incident light travels.
  • the angle is ⁇ A
  • the following equation (5) can be used as the separation distance L A.
  • the angle of theta B that when the separation distance L B may use a formula (6) below
  • the extraordinary refractive index is n eC and the angle between the extraordinary refractive index axis and the Z-axis direction, which is the direction in which incident light travels, is ⁇ C
  • the separation distance L C is expressed by the following equation (7). Can be used.
  • the first separation element 81, the second separation element 82, and the third separation element 83 are made of the same birefringent material and, for example, the first separation element 81
  • the thickness of the element 81 is the same as the sum of the thickness of the second separation element 82 and the thickness of the third separation element 83.
  • L a L B + L C .
  • L A it may be a L B + L C.
  • the magnitude relationship is d A > d B > d C , and at the same time, L A > L B > L C.
  • the optical low-pass filter 80 having such a configuration obtains separation distances of at least three different values by the voltage control unit 93 according to the voltages applied to the first polarization control unit 91 and the second polarization control unit 92. Can do.
  • a configuration in which the signs of the extraordinary refractive index axes ⁇ A , ⁇ B and ⁇ C are the same is considered, but the signs of these angles can be arbitrarily set.
  • FIG. 11 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 and the second polarization control unit 92 are at the time of voltage application.
  • the major axis direction is aligned with the thickness direction.
  • the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light). It enters the first polarization control unit 91 at a separation distance L a on the basis of 5). Then, the first polarization controller 91 emits any linearly polarized light without changing the polarization state, and enters the second separation element 82.
  • the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction.
  • the second polarization control unit 92 based on and enters the second polarization control unit 92 at a separation distance L B in the + Y direction. Note that the separation distance at this time is L A + L B. Then, the second polarization controller 92 emits any linearly polarized light without changing the polarization state and enters the third separation element 83.
  • linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction. based on, and emits at a separation distance L C in the + Y direction.
  • the first polarization control unit 91 and the second polarization control unit 92 at the time of any voltage applied, as the separation distance of the entire optical low-pass filter 80, it is possible to obtain the L A + L B + L C .
  • FIG. 12 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 and the second polarization control unit 92 are at the time of non-voltage application, both of which are the lengths of liquid crystal molecules.
  • the axial direction is horizontally oriented and twisted by 90 ° about the thickness direction.
  • the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light). It enters the first polarization control unit 91 at a separation distance L a on the basis of 5).
  • the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and the linearly polarized light in the Y-axis direction is converted in the X-axis direction.
  • the light is converted (rotated) into linearly polarized light, emitted, and incident on the second separation element 82.
  • the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction.
  • the second polarization control unit 92 based on and enters the second polarization control unit 92 at a separation distance L B in the + Y direction. Note that the separation distance at this time is
  • the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and the linearly polarized light in the Y-axis direction is converted in the X-axis direction.
  • the light is converted (rotated) into linearly polarized light, emitted, and incident on the third separation element 83.
  • linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction.
  • FIG. 13 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 is not applying voltage and the second polarization control unit 92 is applying voltage.
  • the major axis direction of the liquid crystal molecules is horizontally aligned and twisted by 90 ° about the thickness direction.
  • the second polarization control unit 92 the liquid crystal molecules Are aligned in the thickness direction.
  • the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light).
  • the first polarization control unit 91 It enters the first polarization control unit 91 at a separation distance L a on the basis of 5).
  • the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction
  • the linearly polarized light in the Y-axis direction is converted in the X-axis direction.
  • the light is converted (rotated) into linearly polarized light, emitted, and incident on the second separation element 82.
  • the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction.
  • the second polarization control unit 92 emits any linearly polarized light without changing the polarization state and enters the third separation element 83.
  • linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction. based on, and emits at a separation distance L C in the + Y direction. Therefore, when the first polarization control unit 91 is not applied with voltage and the second polarization control unit 92 is applied with voltage, the separation distance of the entire optical low-pass filter 80 is
  • the separation distance is set to at least three values by alternately arranging the three separation elements and the two polarization control units and controlling the voltage supplied from the voltage control unit 93 to these polarization control units.
  • the separation distance L SY
  • the optical low-pass filter 80 can obtain a configuration with a high degree of freedom according to each mode.
  • the direction of separation for each linearly polarized light component is the Y-axis direction, but the present invention is not limited to this.
  • the present embodiment can be applied as in the second embodiment. That is, two optical low-pass filters 80 are disposed in the optical path, and a polarization conversion element is disposed in the optical path between the two optical low-pass filters 80.
  • One optical low-pass filter is disposed in the Y-axis direction and the other optical low-pass filter is disposed in the optical path.
  • the filter may have a function of separating light in the X-axis direction.
  • one of the two optical low-pass filters 80 corresponds to a positional relationship in which the other is rotated by 90 ° about the Z-axis direction as a rotation axis.
  • a two-dimensional optical low-pass filter that can similarly switch the separation distance to three values including 0 in the X-axis direction can be obtained.
  • FIG. 14 shows a configuration example of the optical low-pass filter 120 according to the present embodiment, which is a two-dimensional optical low-pass filter.
  • the optical low-pass filter 80 described above is the first optical low-pass filter 80
  • the optical low-pass filter 120 includes the first optical low-pass filter 80, the polarization conversion element 51, and the second optical low-pass filter 100. It is assumed that light from the outside is incident in this order (Z direction).
  • the second optical low-pass filter 100 includes a fourth separation element 104, a third polarization control unit 113, a fifth separation element 105, a fourth polarization control unit 114, and a sixth separation element 106. However, light from the outside enters in this order (Z direction).
  • the polarization conversion element 51 gives the same effect as the polarization conversion element 51 of the second embodiment, and a description thereof is omitted.
  • the third polarization control unit 113 and the fourth polarization control unit 114 emit light without changing the polarization state of incident light or change the polarization state depending on the voltage applied from the voltage control unit 115. It has a light modulation function that emits light by changing.
  • the voltage control unit 115 is considered to include the function of the voltage control unit 93.
  • the third polarization control unit 113 and the fourth polarization control unit 114 each indicate an optical path when a voltage is applied. It is a thing.
  • the third polarization control unit 113 and the fourth polarization control unit 114 have the same configuration as the polarization control unit 20 of the optical low-pass filter 10 according to the first embodiment, and liquid crystal is applied when no voltage is applied.
  • the major axis direction of the molecule is assumed to be horizontally oriented and twisted by 90 ° about the thickness direction.
  • the fourth separation element 104 has a thickness of d D , an ordinary light refractive index of n oD , an extraordinary light refractive index of n eD , and an extraordinary light refractive index axis and a Z-axis direction that is a direction in which incident light travels.
  • the angle is ⁇ D
  • the following equation (8) can be used as the separation distance L D.
  • the fifth separation element 105 has a thickness d E , an ordinary light refractive index n oE , an extraordinary light refractive index n eE , an anomalous light refractive index axis, and a Z-axis direction that is a direction in which incident light travels.
  • the separation distance L E is an angle formed by ⁇ E
  • the following distance ( E ) can be used as the separation distance L E
  • the sixth separation element 106 has a thickness d F , an ordinary refractive index n oF
  • the separation distance L F is expressed by the following equation (10): Can be used.
  • ⁇ D , ⁇ E and ⁇ E are angles formed by the thickness direction and the extraordinary light refractive index axis direction in the XZ plane.
  • the fourth separation element 104, the fifth separation element 105, and the sixth separation element 106 are made of the same birefringent material.
  • the thickness of the fourth separation element 104 is the same as the sum of the thickness of the fifth separation element 105 and the thickness of the sixth separation element 106.
  • L D L E + L F.
  • the magnitude relationship is d D > d E > d F , and at the same time, L D > L E > L F.
  • the second optical low-pass filter 100 having such a configuration has at least a voltage applied to the third polarization control unit 113 and the fourth polarization control unit 114 by the voltage control unit 115 with respect to the X-axis direction. Three different values of separation distance can be obtained. Further, an example in which the signs of the extraordinary refractive index axes ⁇ D , ⁇ E, and ⁇ F are the same has been described, but this is not a limitation, and the orientation state of liquid crystal molecules at the time of voltage application / voltage non-application is considered.
  • the optical low-pass filter according to this embodiment can switch at least three separation distance values in at least the same separation direction, while at least three separation elements and at least two liquid crystal elements serving as a polarization control unit.
  • One, and the thickness increases. Therefore, for example, based on the configuration of the low-pass filter 15 according to the first embodiment, a configuration in which the liquid crystal layer of the liquid crystal element is sandwiched by a separation element such as a crystal is preferable because the thickness can be reduced.
  • the present embodiment can be applied not only to the optical low-pass filter 120 as shown in FIG. 14 but also based on the third embodiment. That is, the optical low-pass filter 80 and the optical low-pass filter corresponding to the second optical low-pass filter 62 of the third embodiment are disposed, and the polarization conversion element is disposed therebetween, and one optical low-pass filter is disposed. Has a function of switching to three separation distance values including 0 in the Y-axis direction, and the other optical low-pass filter has a function of separating light by a certain separation distance ( ⁇ 0) in the X-axis direction. It may be.
  • one separation direction can be switched between three values including a separation distance 0, and the other separation direction is It may be one that can switch between binary values including or not including the separation distance 0. And each separation distance of each separation direction can be designed suitably.
  • FIG. 15 is a schematic diagram illustrating a configuration example of the optical low-pass filter 130 according to the present embodiment.
  • the optical low-pass filter 130 includes a first optical low-pass filter 10 and a second optical low-pass filter 30, which are the first optical low-pass filter 10 and the second optical low-pass filter 50 in the optical low-pass filter 50 of the second embodiment.
  • the same as the optical low-pass filter 30 of FIG. therefore, each part which comprises the 1st optical low-pass filter 10 and the 2nd optical low-pass filter 30 attaches
  • the optical low-pass filter 130 does not arrange a polarization conversion element between the first optical low-pass filter 10 and the second optical low-pass filter 30. Then, when considering the separation direction of the first linearly polarized light and the second linearly polarized light, the separation direction of the first optical low-pass filter 10, the separation direction of the second optical low-pass filter 30, and Are not parallel and non-orthogonal, that is, they intersect at a non-orthogonal angle. Specifically, the relationship between the angles formed by these separation directions may be 20 ° to 70 °, preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and most preferably 45 °. preferable.
  • the relationship between the angles formed by the separation direction approaches 45 ° because the intensity of light separated by the second optical low-pass filter 30 becomes substantially equal. Further, in this case, there is an effect on moire generated with respect to a vertical stripe image and a horizontal stripe image.
  • the angle formed by the separation direction is 60 °, it can be applied to an image sensor having a honeycomb arrangement.
  • the first optical low-pass filter 10 is arranged so as to separate the first linearly polarized light and the second linearly polarized light orthogonal to each other in the Y direction.
  • the second optical low-pass filter 30 is arranged so as to separate two orthogonally polarized light beams in a direction that forms an angle of 45 ° with respect to the Y direction on the XY plane. . That is, the second optical low-pass filter 30 corresponds to a position rotated by 45 ° with respect to the position of the second optical low-pass filter 30 in the second embodiment with the Z-axis direction as the rotation axis.
  • the two linearly polarized light beams separated by the second optical low-pass filter 30 are defined as a third linearly polarized light beam and a fourth linearly polarized light beam.
  • the optical low-pass filter 130 First, light incident on the optical low-pass filter 130 has a random polarization state and travels along the Z-axis direction.
  • the first optical low-pass filter 10 the light of the first linearly polarized light (linearly polarized light in the X-axis direction) and the light of the second linearly polarized light (linearly polarized light in the Y-axis direction) are The light is transmitted through a separation distance LSY .
  • the two lights transmitted through the first optical low-pass filter 10 are incident on the second optical low-pass filter 30 as the first linearly polarized light and the second linearly polarized light, respectively.
  • the position and polarization state of light on the emission surface of the first optical low-pass filter 10 correspond to those shown in FIG. 6A.
  • FIG. 16A shows the positions 130a, 130b, 130c and 130d of light on the exit surface of the second optical low-pass filter 30 and the polarization state when a voltage is applied. This is the separation of the light of the optical low-pass filter 130. It corresponds to the one indicating the state.
  • the first linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30, and is emitted from the respective positions 130a and 130b. It corresponds to the same interval as SX .
  • the second linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30 and emitted from the respective positions 130c and 130d, and the distance between them is also the separation distance L SX.
  • the optical low-pass filter 130 according to the present embodiment can be separated into four points of light without disposing a polarization conversion element.
  • the first optical low-pass filter 10 the voltage at the time of non-application, as in the first embodiment, and separated by a large separation distance L MY than when a voltage is applied, the first linear polarized light and the second linear Separates polarized light.
  • the position and polarization state of light on the emission surface of the first optical low-pass filter 10 correspond to those shown in FIG. 6B.
  • FIG. 16B shows the positions 130e, 130f, 130g, and 130h of light on the exit surface of the second optical low-pass filter 30 and the polarization state when no voltage is applied. Corresponds to the separation state.
  • the first linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30, and is emitted from the respective positions 130e and 130f. It corresponds to the same interval as MX .
  • the second linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30 and emitted from the respective positions 130g and 130h, and the distance between them is also the separation distance L MX.
  • the optical low-pass filter 130 according to the present embodiment can be separated into four points of light without disposing a polarization conversion element.
  • the optical low-pass filter according to the present embodiment in which no polarization conversion element is disposed has been described based on the configuration of the second embodiment, but is not limited thereto. That is, if the separation direction of the first optical low-pass filter and the separation direction of the second optical low-pass filter are not parallel or orthogonal, that is, if they are arranged so that they intersect at a non-orthogonal angle, the third implementation is performed. Any one of the separation distances may be fixed based on the configuration of the form. Furthermore, it may be based on the configuration of the optical low-pass filter 120 which is the configuration of the fifth embodiment.
  • Example 1 the optical low-pass filter 10 according to the first embodiment will be described.
  • a quartz glass substrate is used as the transparent substrates 21a and 21b, and an ITO film is formed as the transparent electrodes 22a and 22b on one surface of each quartz glass substrate.
  • a polyimide film formed by applying and curing polyimide is rubbed in a certain direction to form alignment films 23a and 23b.
  • the alignment film 23a and the alignment film 23b are opposed to each other, and the alignment directions of the alignment films are arranged so as to be orthogonal to each other, and the periphery is sealed so as to have a gap of about 7 ⁇ m.
  • the polarization controller 20 has a liquid crystal layer 24 in which the major axis direction of the liquid crystal molecules is twisted by 90 ° about the thickness direction when no voltage is applied. A liquid crystal element corresponding to is obtained.
  • quartz having an extraordinary refractive index axis inclined by 45 ° with respect to the thickness direction is used as the first separation element 11 and the second separation element 12.
  • the quartz crystal used as the first separation element 11 has a thickness of about 2.05 mm
  • the quartz crystal used as the second separation element 12 has a thickness of about 1.11 mm.
  • the first separation element 11 is arranged on the transparent substrate 21a side so that the extraordinary refractive index axis is inclined 45 ° in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction.
  • the two separation elements 12 are arranged on the transparent substrate 21b side so that the extraordinary refractive index axis is inclined by 45 ° in the ⁇ Y-axis direction on the YZ plane, thereby obtaining the optical low-pass filter 10.
  • Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm.
  • the separation distance L 1 in the first separation element 11 is about 12.0 ⁇ m
  • the separation distance L 2 in the second separation element 12 is about 6.5 ⁇ m.
  • an optical low-pass filter 50 according to the second embodiment will be described.
  • the first optical low-pass filter 10 and the second optical low-pass filter 30 are the same as the optical low-pass filter 10 of the first embodiment.
  • the polarization conversion element 51 a birefringent material that generates a phase difference substantially equal to that of the quarter-wave plate for light having a wavelength in the visible light region is used.
  • the polarization conversion element 51 an element whose optical axis is parallel to the surface of the polarization conversion element 51 and aligned in the thickness direction is used.
  • the first optical low-pass filter 10, the polarization conversion element 51, and the second optical low-pass filter 30 are arranged in this order with the thickness direction aligned in the Z-axis direction.
  • the first optical low-pass filter 10 is disposed so as to correspond to a position rotated by 90 ° with the Z-axis direction as the rotation axis.
  • the first optical low-pass filter 10 separates light in the Y-axis direction
  • the second optical low-pass filter 30 separates light in the X-axis direction.
  • the polarization conversion element 51 is arranged such that its optical axis is at an angle of 45 ° with respect to the X-axis direction (or Y-axis direction) in the XY plane.
  • Example 3 an optical low-pass filter 60 according to the third embodiment will be described.
  • the first optical low-pass filter 10 is the same as the optical low-pass filter 10 of the first embodiment. Further, the same polarization conversion element 51 as that of the second embodiment is used.
  • the second optical low-pass filter 62 uses a crystal having a thickness of about 0.94 mm and an extraordinary refractive index axis inclined by 45 ° with respect to the thickness direction.
  • the first optical low-pass filter 10, the polarization conversion element 51, and the second optical low-pass filter 62 are arranged in this order with the thickness direction aligned in the Z-axis direction.
  • the second optical low-pass filter 62 is arranged so that the extraordinary light refractive index axis is inclined by 45 ° in the + X-axis direction, and the polarization conversion element 51 has an optical axis in the X-axis direction (or Y-axis) on the XY plane. It is arranged so as to have an angle of 45 ° with respect to (direction).
  • Example 4 an optical low-pass filter 70 according to the fourth embodiment will be described.
  • the liquid crystal element corresponding to the polarization controller 20 is the same as that in the first embodiment.
  • As the first separation element 71 and the second separation element 72 a crystal whose extraordinary refractive index axis is inclined by 45 ° with respect to the thickness direction is used. Both the quartz crystal that becomes the first separation element 71 and the quartz crystal that becomes the second separation element 72 have a thickness of about 0.46 mm.
  • the first separation element 71 is arranged on the transparent substrate 21a side so that the extraordinary refractive index axis is inclined by 45 ° in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction.
  • the second separation element 72 is arranged on the transparent substrate 21b side so that the extraordinary refractive index axis is inclined by 45 ° in the ⁇ Y-axis direction on the YZ plane, whereby the optical low-pass filter 70 is obtained.
  • Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm.
  • the separation distance L 2 in the separation distance L 1 and the second separation element 72 in the first separation element 71 is approximately 2.7 .mu.m.
  • this optical low-pass filter By placing this optical low-pass filter in front of the image sensor of the digital camera, for example, when shooting an image without moire or false color, a voltage is applied and when shooting an image with moire or false color. By not applying a voltage, it is possible to take an image in which moire and false colors are reduced.
  • Example 5 an optical low-pass filter 80 according to the fifth embodiment will be described.
  • the liquid crystal elements corresponding to the first polarization control unit 91 and the second polarization control unit 92 are the same as the liquid crystal elements of the polarization control unit 20 of the first embodiment.
  • As the first separation element 81, the second separation element 82, and the third separation element 83 a crystal whose extraordinary refractive index axis is inclined by 45 ° with respect to the thickness direction is used.
  • the quartz crystal serving as the first separation element 81 is about 1.58 mm thick
  • the quartz crystal serving as the second separation element 82 is about 1.11 mm thick
  • the quartz crystal serving as the third separation element 83 is thick.
  • the thickness is about 0.47 mm.
  • the first separation element 81, the second separation element 82, and the third separation element 83 all have an extraordinary refractive index axis of 45 in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction.
  • the optical low-pass filter 80 is obtained by arranging it so as to be inclined. Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm.
  • the separation distance L A in the first separation element 81 is about 9.25 ⁇ m
  • the separation distance L B in the second separation element 82 is about 6.50 ⁇ m
  • separation distance L C is about 2.75.
  • the separation distance is about 5.5 ⁇ m.
  • the voltage controller 93 does not apply a voltage to the liquid crystal layer of the first polarization controller 91 and a rectangular AC wave of about 10 V is applied to the liquid crystal layer of the second polarization controller 92, the first linearly polarized light is applied.
  • the separation distance in the Y-axis direction between this light and the second linearly polarized light is about 0 ⁇ m.
  • this optical low-pass filter in front of the image sensor of the digital camera, for example, when shooting a still image without moire or false color, when shooting a still image with moire or false color, and When shooting moving images with moiré or false colors, you can switch to and shoot images.
  • the optical low-pass filter according to the present invention can accurately switch the separation distance between two values or three values including zero, has no mechanical movable part, and can be downsized.
  • Digital cameras and digital single-lens reflex cameras using this optical low-pass filter can shoot both still images and moving images, and can appropriately reduce the moire phenomenon according to these shooting modes, as well as mechanically movable parts. And miniaturization can be realized with high accuracy.

Abstract

Disclosed are an optical low-pass filter and a digital camera capable of switching between two or more desired separation distances for separating incident light without a mechanical mechanism. Specifically disclosed is an optical low-pass filter which comprises a first separating element (11) and a second separating element (12) that separate incident light into a first polarized beam and a second polarized beam orthogonal to the first polarized beam, that have the same separation direction, and that have separation distances differing from each other; and a polarization control unit (20) disposed between the separating elements so as to change the polarization state of the incident light or to allow passage of the incident light therethrough without changing the polarization state by adjusting the amplitude of voltage to be applied by a voltage control unit (13). Since the first separating element (11) has a separation distance L1 and the second separating element (12) has a separation distance L2, two separation distances of L1 + L2 and |L1 - L2| can be obtained using the voltage of the voltage control unit (13). When the optical low-pass filter is applied to a digital camera, moiré fringes or false colors that occur in still images and moving images can be appropriately reduced.

Description

光学ローパスフィルタおよびデジタルカメラOptical low-pass filter and digital camera
 本発明は、光学ローパスフィルタおよびデジタルカメラに関するものであり、CCD、CMOS等の固体撮像素子を備えたデジタルカメラ、とくに、動画像と静止画像とが撮影可能なデジタルカメラに関する。 The present invention relates to an optical low-pass filter and a digital camera, and more particularly to a digital camera equipped with a solid-state imaging device such as a CCD or CMOS, and more particularly to a digital camera capable of taking a moving image and a still image.
 ビデオカメラ、デジタルカメラなどの撮像機器に使用されるCCDおよびCMOSなどのイメージセンサは、外部信号として入る光の明暗の量を電荷の量に変換する、いわゆる光電変換をし、その電気信号を順次処理することによってデジタル画像を生成する。このようなイメージセンサは、入射する光の画素ピッチよりも細かい空間周波数を有する画像に対してサンプリングによる歪みが生じ、本来の画像と異なる模様(モアレ)や偽色が発生することが知られている。 Image sensors such as CCDs and CMOSs used in imaging devices such as video cameras and digital cameras convert the amount of light and darkness that is input as external signals into the amount of electric charge, so-called photoelectric conversion, and the electrical signals are sequentially A digital image is generated by processing. In such an image sensor, it is known that distortion caused by sampling occurs in an image having a spatial frequency finer than the pixel pitch of incident light, and a pattern (moire) or false color different from the original image is generated. Yes.
 このようなモアレや偽色を防止するため、撮像機器は、光学ローパスフィルタ(OLPF:Optical Low Pass Filter)を付随させて構成される。具体的なOLPFは、水晶などの複屈折板を有し、入射する2次元画像を水平方向または/および垂直方向に僅かな距離だけ分離することによって、イメージセンサ(撮像素子)に入射する画素ピッチの周波数(サンプリング周波数)付近をカットする機能を有し、モアレや偽色の現象を生じさせない工夫が施されている。 In order to prevent such moire and false color, the imaging device is configured with an optical low-pass filter (OLPF: Optical Low Pass Pass Filter). A specific OLPF has a birefringent plate such as quartz and separates an incident two-dimensional image by a small distance in the horizontal direction and / or the vertical direction, thereby entering a pixel pitch incident on an image sensor (imaging device). Has a function of cutting the vicinity of the frequency (sampling frequency), and has been devised so as not to cause moiré and false color phenomena.
 このようなOLPFは、撮像に必要な画素ピッチに合わせて、入射する2次元画像を特定の距離だけ分離させるが、静止画と動画との間で、撮像に必要な画素数が異なることから、分離させる適切な距離がそれぞれ異なる。そのため、静止画および動画、これら両方に対応させるためには、分離する距離(以下、「分離距離」という。)を適切に制御することが要求される。とくに、静止画だけでなく動画も撮影できる、デジタルカメラ、デジタル一眼レフカメラについては、静止画および動画ともに、高精度の画質が要求される。デジタル一眼レフカメラにおいて、例えば、静止画では、1000万画素以上の画質であるのに対し、動画では、フルHD(HD:High Definition)対応であっても約200万画素と大きく異なるため、これらのモードに対し、適切なモアレや偽色の現象の低減が要求される。 Such an OLPF separates an incident two-dimensional image by a specific distance in accordance with a pixel pitch necessary for imaging, but the number of pixels necessary for imaging differs between a still image and a moving image. The appropriate distance to be separated is different. Therefore, in order to support both still images and moving images, it is required to appropriately control the separation distance (hereinafter referred to as “separation distance”). In particular, for digital cameras and digital single lens reflex cameras that can shoot not only still images but also moving images, high-precision image quality is required for both still images and moving images. In digital SLR cameras, for example, still images have an image quality of 10 million pixels or more, while moving images are greatly different from about 2 million pixels even if they are compatible with Full HD (HD: High Definition). For this mode, it is required to appropriately reduce the moire and false color phenomenon.
 そこで、静止画と動画との間で、分離距離を適宜変化させるために、カメラの光路中に、分離距離が異なる、静止画用のOLPF素子と動画用のOLPF素子とを入れ換えることによって、適切にモアレを解消する光学的ローパスフィルタが報告されている(特許文献1)。 Therefore, in order to appropriately change the separation distance between the still image and the moving image, it is possible to appropriately change the OLPF element for still images and the OLPF element for moving images having different separation distances in the optical path of the camera. An optical low-pass filter that eliminates moire has been reported (Patent Document 1).
日本国特許第4306022号公報Japanese Patent No. 4306002
 しかしながら、特許文献1の光学的ローパスフィルタは、静止画対応のOLPF素子と動画対応のOLPF素子の2種類を備える必要がある。そのため、光路中にいずれか一方のOLPF素子を出し入れする機械的機構を備える必要があり、また、光学的ローパスフィルタそのもののスペースが要求されるため、高い信頼性を得ることが困難であるとともに、小型化が実現できないという問題があった。 However, the optical low-pass filter of Patent Document 1 needs to include two types of an OLPF element corresponding to a still image and an OLPF element corresponding to a moving image. Therefore, it is necessary to provide a mechanical mechanism for inserting or removing either one of the OLPF elements in the optical path, and since the space of the optical low-pass filter itself is required, it is difficult to obtain high reliability. There was a problem that miniaturization could not be realized.
 本発明は、以上の点を鑑みてなされたものであって、第1の分離素子と、偏光制御部と、第2の分離素子と、前記偏光制御部に印加する電圧を制御する電圧制御部とを備え、前記第1の分離素子は、入射する光のうち、第1の直線偏光の光と、前記第1の直線偏光の光と直交する第2の直線偏光の光と、に分離距離L(>0)だけ隔て、前記偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、前記第2の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔てる光学ローパスフィルタを提供する。 The present invention has been made in view of the above points, and includes a first separation element, a polarization control unit, a second separation element, and a voltage control unit that controls a voltage applied to the polarization control unit. The first separation element has a separation distance between the first linearly polarized light and the second linearly polarized light orthogonal to the first linearly polarized light among the incident light. Whether the polarization control unit changes the polarization state of the incident first linearly polarized light and the second linearly polarized light according to the voltage applied by the voltage control unit, separated by L 1 (> 0). Alternatively, the incident first linearly polarized light is modulated into the second linearly polarized light, and the incident second linearly polarized light is modulated into the first linearly polarized light, Of the incident light, the second separation element includes the first linearly polarized light and the second linearly polarized light. And light, the separation distance L 2 (> 0) only provides an optical low-pass filter that separates the separation distance L 1 separating direction and the parallel direction.
 また、前記分離距離Lと前記分離距離Lとの比が、1.3~3の範囲であり、前記電圧制御部の印加電圧により、前記第2の分離素子を出射する、前記第1の直線偏光の光と前記第2の直線偏光の光との分離距離が、L+Lに相当するLと、|L-L|に相当するLと、を与えたとき、L>Lであるとともに、10μm≦L≦32μmであり、かつ、2μm≦L≦10μmである上記の光学ローパスフィルタを提供する。 The ratio between the separation distance L 1 and the separation distance L 2 is in the range of 1.3 to 3, and the first separation element is emitted by the voltage applied by the voltage controller. when given with L S corresponding to the, | separation distance between the light, and L M corresponding to L 1 + L 2, and the linear polarized light and the second linearly polarized light | L 1 -L 2 Provided is the above optical low-pass filter in which L M > L S , 10 μm ≦ L M ≦ 32 μm, and 2 μm ≦ L S ≦ 10 μm.
 また、前記分離距離Lと前記分離距離Lとが等しい上記の光学ローパスフィルタを提供する。 Also, providing the separation distance L 1 between the separation distance L 2 is equal to the above of the optical low-pass filter.
 また、前記偏光制御部は、液晶層を有する液晶素子からなる上記の光学ローパスフィルタを提供する。 Further, the polarization control unit provides the above-described optical low-pass filter including a liquid crystal element having a liquid crystal layer.
 また、前記第1の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no1、異常光屈折率ne1を有する複屈折性材料からなり、前記分離距離Lが下記の(1)式で与えられ、 The first separation element has a thickness d 1 , an angle formed by the thickness direction and the extraordinary refractive index axis direction is θ 1 , and birefringence having an ordinary refractive index no 1 and an extraordinary refractive index ne 1 . The separation distance L 1 is given by the following equation (1):
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 前記第2の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no2、異常光屈折率ne2を有する複屈折性材料からなり、前記分離距離Lが下記の(2)式で与えられる、 The second separation element has a thickness d 2 , an angle formed by the thickness direction and the extraordinary refractive index axis direction is θ 2 , and has a normal refractive index no 2 and an extraordinary refractive index ne 2 . And the separation distance L 2 is given by the following equation (2):
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記の光学ローパスフィルタを提供する。 Provide the above optical low-pass filter.
 また、前記液晶素子は、電圧非印加時において、前記液晶層の液晶分子が、前記液晶層の面内に略平行でかつ、対向する面の液晶分子の長軸方向が略直交する方向に配向され、厚さ方向を軸に約90°ツイストされており、前記第1の分離素子の厚さ方向を基準として前記θとなる方向をプラスとするとき、前記第2の分離素子は、前記θの符号がマイナスとなる方向に配置される上記の光学ローパスフィルタを提供する。 In addition, when no voltage is applied, the liquid crystal element is aligned in a direction in which the liquid crystal molecules of the liquid crystal layer are substantially parallel to the plane of the liquid crystal layer and the major axis directions of the liquid crystal molecules of the opposing surface are substantially orthogonal. are, are about 90 ° twisted in the thickness direction to the axis, when the direction in which said theta 1 in the thickness direction of the first separation element as a reference and positive, the second separation element, said theta 2 of the code provides the above optical low-pass filter disposed in a direction to be negative.
 また、前記液晶層が、前記第1の分離素子および/または前記第2の分離素子によって挟持、一体化される上記の光学ローパスフィルタを提供する。 Further, the optical low-pass filter is provided in which the liquid crystal layer is sandwiched and integrated by the first separation element and / or the second separation element.
 また、前記光学ローパスフィルタは、前記第1の分離素子と、前記偏光制御部である第1の偏光制御部と、前記第2の分離素子と、を有する第1の光学ローパスフィルタと、
 偏光変換素子と、第2の光学ローパスフィルタと、を有し、前記偏光変換素子は、入射する前記第1の直線偏光の光および前記第2の直線偏光の光、をそれぞれ、前記第1の直線偏光の光の成分と前記第2の直線偏光の光の成分との比が3:7~7:3の割合の範囲となる光に変調し、前記第2の光学ローパスフィルタは、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と交差する方向に分離する上記の光学ローパスフィルタを提供する。
The optical low-pass filter includes a first optical low-pass filter including the first separation element, a first polarization control unit that is the polarization control unit, and the second separation element;
A polarization conversion element; and a second optical low-pass filter, wherein the polarization conversion element converts the incident first linearly polarized light and the second linearly polarized light into the first linearly polarized light, respectively. The second optical low-pass filter modulates the second optical low-pass filter with light having a ratio of the linearly polarized light component to the second linearly polarized light component in a range of 3: 7 to 7: 3. a first linear polarized light and the light of the second linearly polarized light, which provides the above optical low-pass filter for separating in a direction intersecting the direction of the separation distance L 1 and the separation distance L 2.
 また、前記光学ローパスフィルタは、前記第1の分離素子と、前記偏光制御部である第1の偏光制御部と、前記第2の分離素子と、を有する第1の光学ローパスフィルタと、
 第2の光学ローパスフィルタと、を有し、前記第2の光学ローパスフィルタは、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と直交しない角度で交差する方向に分離する上記の光学ローパスフィルタを提供する。
The optical low-pass filter includes a first optical low-pass filter including the first separation element, a first polarization control unit that is the polarization control unit, and the second separation element;
And a second optical low-pass filter, a second optical low-pass filter, said a first linear polarized light and the light of the second linearly polarized light, the separation distance L 1 and the separating distance provides the aforementioned optical low-pass filter for separating direction intersecting at an angle not orthogonal to the direction of L 2.
 また、前記第2の光学ローパスフィルタは、第3の分離素子と、第2の偏光制御部と、第4の分離素子とを有し、前記第3の分離素子は、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と交差する方向に分離距離L(>0)だけ隔て、前記第2の偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、前記第4の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔てる上記の光学ローパスフィルタを提供する。 The second optical low-pass filter includes a third separation element, a second polarization control unit, and a fourth separation element. The third separation element is the first linearly polarized light. And the second linearly polarized light are separated from each other by a separation distance L 3 (> 0) in a direction intersecting the direction of the separation distance L 1 and the separation distance L 2. The unit does not change the polarization state of the incident first linearly polarized light and the second linearly polarized light according to the voltage applied by the voltage control unit, or the incident first linearly polarized light. Is modulated into the second linearly polarized light, the incident second linearly polarized light is modulated into the first linearly polarized light, and the fourth separation element the a light of a first linear polarization, and the light of the second linearly polarized light, the separation distance L 4 (> 0 Only provides the above optical low-pass filter that separates the separation direction parallel direction of the separation distance L 3.
 また、前記分離距離Lと前記分離距離Lとの比が、1.3~3の範囲であり、前記電圧制御部の印加電圧により、前記第4の分離素子を出射する、前記第1の直線偏光の光と前記第2の直線偏光の光との分離距離が、L+Lに相当するLMXと、|L-L|に相当するLSXと、を与えたとき、LMX>LSXであるとともに、10μm≦LMX≦32μmであり、かつ、2μm≦LSX≦10μmである上記の光学ローパスフィルタを提供する。 The ratio between the separation distance L 3 and the separation distance L 4 is in the range of 1.3 to 3, and the first separation element is emitted by the voltage applied by the voltage controller. When the separation distance between the linearly polarized light and the second linearly polarized light is L MX corresponding to L 3 + L 4 and L SX corresponding to | L 3 −L 4 |, Provided is the above optical low-pass filter in which L MX > L SX , 10 μm ≦ L MX ≦ 32 μm, and 2 μm ≦ L SX ≦ 10 μm.
 また、前記分離距離Lと前記分離距離Lとが等しい上記の光学ローパスフィルタを提供する。 Also, providing the separation distance L 3 between the separation distance L 4 equal aforementioned optical low-pass filter.
 また、記第2の偏光制御部は、液晶層を有する液晶素子からなる上記の光学ローパスフィルタを提供する。 The second polarization control unit provides the optical low-pass filter including a liquid crystal element having a liquid crystal layer.
 また、前記第3の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no3、異常光屈折率ne3を有する複屈折性材料からなり、前記分離距離Lが下記の(3)式で与えられ、 Further, the third separation element, the birefringence having a thickness d 3, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta 3, and the ordinary refractive index n o3, the extraordinary refractive index n e3 The separation distance L 3 is given by the following equation (3):
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 前記第4の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no4、異常光屈折率ne4を有する複屈折性材料からなり、前記分離距離Lが下記の(4)式で与えられる、 It said fourth separation element, the thickness d 4, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta 4, and the ordinary refractive index n o4, birefringent material having an extraordinary refractive index n e4 And the separation distance L 4 is given by the following equation (4):
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 上記の光学ローパスフィルタを提供する。 Provide the above optical low-pass filter.
 前記第2の偏光制御部の液晶素子は、電圧非印加時において、前記第2の偏光制御部の液晶層の液晶分子が、前記第2の偏光制御部の液晶層の面内に略平行でかつ、対向する面の液晶分子の長軸方向が略直交する方向に配向され、厚さ方向を軸に約90°ツイストされており、前記第3の分離素子の厚さ方向を基準として前記θとなる方向をプラスとするとき、前記第4の分離素子は、前記θの符号がマイナスとなる方向に配置される上記の光学ローパスフィルタを提供する。 In the liquid crystal element of the second polarization controller, the liquid crystal molecules of the liquid crystal layer of the second polarization controller are substantially parallel to the plane of the liquid crystal layer of the second polarization controller when no voltage is applied. Further, the major axis direction of the liquid crystal molecules on the opposite surface is aligned in a direction substantially orthogonal to each other, twisted about 90 ° about the thickness direction, and the θ direction with respect to the thickness direction of the third separation element When the direction of 3 is positive, the fourth separation element provides the above-described optical low-pass filter arranged in a direction in which the sign of the θ 4 is negative.
 また、前記第2の偏光制御部の液晶層が、前記第3の分離素子および/または前記第4の分離素子によって挟持、一体化される上記の光学ローパスフィルタを提供する。 Also provided is the optical low-pass filter described above in which the liquid crystal layer of the second polarization controller is sandwiched and integrated by the third separation element and / or the fourth separation element.
 また、前記第2の光学ローパスフィルタは、第3の分離素子からなり、前記第3の分離素子は、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの分離方向と交差する方向に分離距離LFXだけ隔てる上記の光学ローパスフィルタを提供する。 The second optical low-pass filter includes a third separation element, and the third separation element separates the first linearly polarized light and the second linearly polarized light. The optical low-pass filter described above is separated by a separation distance L FX in a direction crossing the separation direction of the distance L 1 and the separation distance L 2 .
 また、第1の分離素子と、第1の偏光制御部と、第2の分離素子と、第2の偏光制御部と、第3の分離素子と、前記第1の偏光制御部および前記第2の偏光制御部に印加する電圧を制御する電圧制御部とを備え、前記第1の分離素子は、入射する光のうち、第1の直線偏光の光と、前記第1の直線偏光の光と直交する第2の直線偏光の光と、に分離距離L(>0)だけ隔て、前記第1の偏光制御部および前記第2の偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、前記第2の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔て、前記第3の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔て(L≠L≠L)、前記分離距離Lと前記分離距離Lと前記分離距離Lのうち、いずれか1つは、残り2つの和の値に等しく、前記第3の分離素子を出射する光の分離距離が、0を含む少なくとも3つの値に前記電圧制御部によって制御する光学ローパスフィルタを提供する。 In addition, the first separation element, the first polarization control unit, the second separation element, the second polarization control unit, the third separation element, the first polarization control unit, and the second A voltage control unit that controls a voltage applied to the polarization control unit, and the first separation element includes a first linearly polarized light and a first linearly polarized light among the incident light. The first polarization control unit and the second polarization control unit are incident on the orthogonally polarized second linearly polarized light by a voltage applied by the voltage control unit, separated by a separation distance L A (> 0). The polarization state of the first linearly polarized light and the second linearly polarized light is not changed, or the incident first linearly polarized light is modulated into the second linearly polarized light. The second linearly polarized light incident thereon is modulated into the first linearly polarized light, and the second separation element Of the incident light, the light of the first linear polarized light, and the light of the second linearly polarized light, the separation distance L B (> 0) only, the separation distance separating direction parallel direction L 1 The third separation element is separated from the incident light by the separation distance L C (> 0) between the first linearly polarized light and the second linearly polarized light. L 1 is separated from the separation direction of L 1 (L A ≠ L B ≠ L C ), and any one of the separation distance L A , the separation distance L B, and the separation distance L C is the remaining two Provided is an optical low-pass filter that is controlled by the voltage control unit so that the separation distance of light emitted from the third separation element is equal to a sum value and at least three values including zero.
 また、前記第1の偏光制御部および前記第2の偏光制御部は、液晶層を有する液晶素子からなる上記の光学ローパスフィルタを提供する。 The first polarization control unit and the second polarization control unit provide the optical low-pass filter including a liquid crystal element having a liquid crystal layer.
 また、前記第1の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noA、異常光屈折率neAを有する複屈折性材料からなり、前記分離距離Lが下記の(5)式で与えられ、 The first separation element has a thickness d A , an angle formed by the thickness direction and the extraordinary refractive index axis direction is θ A , and birefringence having an ordinary refractive index noA and an extraordinary refractive index neA. The separation distance L A is given by the following equation (5):
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 前記第2の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noB、異常光屈折率neBを有する複屈折性材料からなり、前記分離距離Lが下記の(6)式で与えられ、 The second separation element, the thickness d B, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta B, and the ordinary refractive index n oB, birefringent material having an extraordinary refractive index n eB The separation distance L B is given by the following equation (6):
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 前記第3の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noC、異常光屈折率neCを有する複屈折性材料からなり、前記分離距離Lが下記の(7)式で与えられる、 The third separation element has a thickness d C , an angle between the thickness direction and the extraordinary refractive index axis direction becomes θ C , and a birefringent material having an ordinary refractive index noC and an extraordinary refractive index neC And the separation distance L C is given by the following equation (7):
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 上記の光学ローパスフィルタを提供する。 Provide the above optical low-pass filter.
 また、前記第1の偏光制御部の液晶層が、前記第1の分離素子および前記第2の分離素子の少なくとも一方に一体化され、前記第2の偏光制御部の液晶層が、前記第2の分離素子および前記第3の分離素子の少なくとも一方に一体化される上記の光学ローパスフィルタを提供する。 The liquid crystal layer of the first polarization control unit is integrated with at least one of the first separation element and the second separation element, and the liquid crystal layer of the second polarization control unit is integrated with the second separation element. The optical low-pass filter is integrated with at least one of the separation element and the third separation element.
 また、上記の光学ローパスフィルタと、イメージセンサとを備えるデジタルカメラを提供する。 Also, a digital camera including the above-described optical low-pass filter and an image sensor is provided.
 さらに、上記の光学ローパスフィルタと、イメージセンサとを備え、静止画を撮像するときは前記分離距離をLとし、動画を撮像するときは前記分離距離をLとするデジタルカメラを提供する。 Further comprising an optical low-pass filter described above, an image sensor, when imaging a still image is the separation distance between L S, when imaging a video to provide digital camera to the separation distance between L M.
 本発明は、分離距離を精度よく2つの値または、ゼロを含む3つの値で切り替えができるとともに、機械的可動部が無く、小型化が実現できる光学ローパスフィルタを提供できるとともに、静止画に加えて動画も撮影できるデジタルカメラ、デジタル一眼レフカメラについて、静止画、動画いずれも適切にモアレや偽色の現象を低減させることができるものである。 The present invention can provide an optical low-pass filter that can switch the separation distance between two values with accuracy or three values including zero, has no mechanical moving parts, and can be downsized, and can be added to a still image. With regard to digital cameras and digital single-lens reflex cameras that can also shoot moving images, both still images and moving images can appropriately reduce the phenomenon of moiré and false colors.
光学ローパスフィルタの例を示す模式図(第1の実施形態)Schematic diagram showing an example of an optical low-pass filter (first embodiment) 光学ローパスフィルタの他の例を示す模式図(第1の実施形態)Schematic diagram showing another example of an optical low-pass filter (first embodiment) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when no voltage is applied) 光学ローパスフィルタの例を示す模式図(第2の実施形態)Schematic diagram showing an example of an optical low-pass filter (second embodiment) 第2の光学ローパスフィルタの例を示す断面図Sectional drawing which shows the example of a 2nd optical low-pass filter 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when no voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when no voltage is applied) 光学ローパスフィルタの例を示す模式図(第3の実施形態)Schematic diagram showing an example of an optical low-pass filter (third embodiment) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) 第1の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the position and polarization state of light emitted from the first optical low-pass filter (when no voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when no voltage is applied) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when voltage is applied) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from an optical low-pass filter (when no voltage is applied) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(第1の偏光制御部、第2の偏光制御部いずれも電圧印加時)Schematic diagram showing the optical path and polarization state of light that enters and separates into the optical low-pass filter (when voltage is applied to both the first polarization controller and the second polarization controller) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(第1の偏光制御部、第2の偏光制御部いずれも電圧非印加時)Schematic diagram showing the optical path and polarization state of light incident on and separated from the optical low-pass filter (when no voltage is applied to both the first polarization control unit and the second polarization control unit) 光学ローパスフィルタに入射して、分離する光の光路および偏光状態を示す模式図(第1の偏光制御部が非電圧印加時、第2の偏光制御部が電圧印加時)Schematic diagram showing the optical path and polarization state of light that enters and is separated into the optical low-pass filter (when the first polarization control unit applies a non-voltage and the second polarization control unit applies a voltage) 第5の実施形態に係る他の光学ローパスフィルタの構成および光学特性の例を示す模式図。The schematic diagram which shows the example of a structure and optical characteristic of the other optical low-pass filter which concerns on 5th Embodiment. 光学ローパスフィルタの例を示す模式図(第6の実施形態)Schematic diagram illustrating an example of an optical low-pass filter (sixth embodiment) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when voltage is applied) 第2の光学ローパスフィルタを出射する光の位置および偏光状態を示す模式図(電圧非印加時)Schematic diagram showing the position and polarization state of light emitted from the second optical low-pass filter (when no voltage is applied)
 (第1の実施形態)
  図1A、図1Bは、本実施形態に係る光学ローパスフィルタの構成例を示す概念図である。具体的に、図1Aの光学ローパスフィルタ10は、第1の分離素子11、偏光制御部20、第2の分離素子12を有し、外部からの光はこの順(Z方向)に入射するものとする。そして、光学ローパスフィルタ10は、後述するが、互いに直交する、第1の(直線)偏光の光と第2の(直線)偏光の光と、を分離する。また、第1の分離素子11、第2の分離素子12による光の分離方向は、平行し、ここでは、紙面に平行なY方向として説明するが、X方向であってもよい。
(First embodiment)
1A and 1B are conceptual diagrams illustrating a configuration example of an optical low-pass filter according to the present embodiment. Specifically, the optical low-pass filter 10 of FIG. 1A has a first separation element 11, a polarization control unit 20, and a second separation element 12, and light from the outside is incident in this order (Z direction). And As will be described later, the optical low-pass filter 10 separates first (linear) polarized light and second (linear) polarized light that are orthogonal to each other. In addition, although the light separation direction by the first separation element 11 and the second separation element 12 is parallel and is described here as the Y direction parallel to the paper surface, it may be the X direction.
 偏光制御部20は、電圧制御部13より印加する電圧の大きさによって、入射する光の偏光状態を変えずに出射するかまたは、偏光状態を変えて出射する光変調機能を有するものである。偏光制御部20には、例えば、印加する電圧により液晶分子の配向状態が変化する液晶素子が用いられる。図1Aは、偏光制御部20を液晶素子とする例であり、一対の透明基板として、透明基板21a、21bのそれぞれ対向する面に、透明電極22a、22b、配向膜23a、23bを有し、液晶層24が挟持される。そして、透明電極22a、22bを介して液晶層24に電圧を印加する電圧制御部13を備える。 The polarization controller 20 has a light modulation function that emits light without changing the polarization state of incident light or changes the polarization state depending on the magnitude of the voltage applied from the voltage controller 13. For the polarization controller 20, for example, a liquid crystal element in which the alignment state of liquid crystal molecules is changed by an applied voltage is used. FIG. 1A is an example in which the polarization control unit 20 is a liquid crystal element. As a pair of transparent substrates, transparent electrodes 22a and 22b and alignment films 23a and 23b are provided on the opposing surfaces of the transparent substrates 21a and 21b, respectively. The liquid crystal layer 24 is sandwiched. And the voltage control part 13 which applies a voltage to the liquid-crystal layer 24 via transparent electrode 22a, 22b is provided.
 透明基板21a、21bは、入射する光に対して透明であれば、樹脂板、樹脂フィルムなど種々の材料を用いることができるが、ガラスや石英ガラスなどの光学的等方性材料を用いると、透過光に複屈折性の影響を与えないため好ましい。また、透明基板21a、21bなどは、例えば、空気との界面に、多層膜による反射防止膜を備えると、フレネル反射による光反射損失を低減できる。また、透明電極22a、22bは、例えば、ITO(Indium Tin Oxide)、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)等の酸化物である透明導電膜を用いると、高い透明性、導電性が得られるので好ましい。 As long as the transparent substrates 21a and 21b are transparent to incident light, various materials such as a resin plate and a resin film can be used. However, when an optically isotropic material such as glass or quartz glass is used, This is preferable because the transmitted light is not affected by birefringence. Further, for example, if the transparent substrates 21a and 21b are provided with an antireflection film made of a multilayer film at the interface with air, light reflection loss due to Fresnel reflection can be reduced. Further, when the transparent electrodes 22a and 22b are made of an oxide such as ITO (Indium で Tin Oxide), AZO (Aluminum Zinc Oxide), GZO (Gallium Zinc Oxide), for example, high transparency and conductivity Is preferable.
 偏光制御部20は、液晶層24の液晶分子を配向する配向膜23a、23bが施されており、また、透明電極22aと配向膜23aとの間、透明電極22bと配向膜23bとの間には、透明な誘電体材料からなる図示しない絶縁膜を有してもよい。配向膜23a、23bとしては、ポリイミド等の樹脂膜をラビング処理して形成されるもの、酸化シリコン等の無機物材料を斜方蒸着して形成される斜方蒸着膜、有機物の膜に紫外線等を照射して配向能を発生させる光配向膜等を用いることができる。そして、絶縁膜としては、例えば、SiO、SiON等が用いられる。また、光学ローパスフィルタ10は、第1の分離素子11および/または第2の分離素子12と、透明基板21aおよび/または透明基板21bとが、それぞれ、一体化されてもよい。なお、偏光制御部20が液晶素子である場合の詳細な構成について説明したが、これに限らず、偏光制御部20が電気光学結晶であるLiNbO等の無機物結晶を用いて、電圧制御部13により印加する電圧によって透過する光の偏光状態を制御するものであってもよく、以降の各実施形態においても、同様に用いることができる。 The polarization controller 20 is provided with alignment films 23a and 23b for aligning the liquid crystal molecules of the liquid crystal layer 24, and between the transparent electrode 22a and the alignment film 23a, and between the transparent electrode 22b and the alignment film 23b. May have an insulating film (not shown) made of a transparent dielectric material. The alignment films 23a and 23b are formed by rubbing a resin film such as polyimide, an oblique vapor deposition film formed by oblique vapor deposition of an inorganic material such as silicon oxide, and ultraviolet rays or the like on an organic film. A photo-alignment film that generates alignment ability by irradiation can be used. Then, as the insulating film, for example, SiO 2, SiON or the like is used. In the optical low-pass filter 10, the first separation element 11 and / or the second separation element 12, and the transparent substrate 21a and / or the transparent substrate 21b may be integrated respectively. Although the polarization controller 20 have been described in detail configuration of a liquid crystal element is not limited thereto, using the inorganic crystal LiNbO 3 or the like polarization controller 20 is an electro-optic crystal, the voltage control unit 13 The polarization state of the transmitted light may be controlled by the voltage applied by the above, and the same can be used in the following embodiments.
 図1Bは、光学ローパスフィルタ15の構成を示すものであり、光学ローパスフィルタ10と同じ部位には、同じ符号を付する。光学ローパスフィルタ15は、第1の分離素子11および第2の分離素子12が、光学ローパスフィルタ10の透明基板21a、21bの機能、つまり、液晶層24を挟持する機能も含む構成であって、これによって小型化が実現できる。この場合、偏光制御部25は、光学ローパスフィルタ10のうち、偏光制御部20の透明基板21aおよび透明基板21bを除く部分で構成される。なお、図示しないが、第1の分離素子11と第2の分離素子12のうちいずれか一方が、透明基板21aまたは透明基板21bの機能を含む構成であってもよい。 FIG. 1B shows the configuration of the optical low-pass filter 15, and the same parts as those of the optical low-pass filter 10 are denoted by the same reference numerals. The optical low-pass filter 15 has a configuration in which the first separation element 11 and the second separation element 12 include the function of the transparent substrates 21 a and 21 b of the optical low-pass filter 10, that is, the function of sandwiching the liquid crystal layer 24. As a result, downsizing can be realized. In this case, the polarization control unit 25 is configured by a portion of the optical low-pass filter 10 excluding the transparent substrate 21a and the transparent substrate 21b of the polarization control unit 20. Although not shown, one of the first separation element 11 and the second separation element 12 may be configured to include the function of the transparent substrate 21a or the transparent substrate 21b.
 また、光学ローパスフィルタは、後述するように様々な機能を含めると素子の厚さが大きくなるので、できるだけ薄い方が好ましい。例えば、デジタル一眼レフカメラに光学ローパスフィルタを用いる場合、厚さが5mm以下であればよく、3mm以下であれば好ましく、2mm以下であればより好ましい。また、スペースの点からCMOSおよびCCDなどのイメージセンサに用いられるカバーガラスとして光学ローパスフィルタを用いてもよく、イメージセンサに入射する赤外線を遮断する目的の赤外線吸収フィルターと一体化されていてもよい。 Also, the optical low-pass filter is preferably as thin as possible because the thickness of the element increases when various functions are included as will be described later. For example, when an optical low-pass filter is used for a digital single lens reflex camera, the thickness may be 5 mm or less, preferably 3 mm or less, and more preferably 2 mm or less. Further, from the viewpoint of space, an optical low-pass filter may be used as a cover glass used for image sensors such as CMOS and CCD, and may be integrated with an infrared absorption filter for blocking infrared rays incident on the image sensor. .
 第1の分離素子11、第2の分離素子12は、例えば、複屈折性材料から構成され、この場合、厚さ(Z軸)方向に対して斜め方向に異常光屈折率軸を有する。また、第1の分離素子11、第2の分離素子12を構成する材料としては、結晶材料として、水晶、イットリウム・オルトバナデート(YVO)結晶、方解石(カルサイト:CaCO)やルチル(TiO)、ニオブ酸リチウム(LiNbO)などが挙げられる。また、樹脂材料であれば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリケトンサルファイド、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、アクリル樹脂、ポリビニルアルコール、ポリプロピレン、セルロース系プラスチックス、ポリオレフィンなどが挙げられる。また、複屈折性が得られる高分子液晶を含む液晶材料であってもよく、以降の各実施形態においても、同様に用いることができる。 The first separation element 11 and the second separation element 12 are made of, for example, a birefringent material, and in this case, have an extraordinary refractive index axis in an oblique direction with respect to the thickness (Z-axis) direction. In addition, as a material constituting the first separation element 11 and the second separation element 12, as a crystal material, quartz, yttrium orthovanadate (YVO 4 ) crystal, calcite (calcite: CaCO 3 ), rutile ( TiO 2 ) and lithium niobate (LiNbO 3 ). For resin materials, polyimide, polyamideimide, polyamide, polyetherimide, polyetheretherketone, polyetherketone, polyketonesulfide, polyethersulfone, polysulfone, polyphenylenesulfide, polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate , Polyethylene naphthalate, polyacetal, polycarbonate, polyarylate, acrylic resin, polyvinyl alcohol, polypropylene, cellulosic plastics, polyolefin and the like. Further, it may be a liquid crystal material including a polymer liquid crystal capable of obtaining birefringence, and can be similarly used in the following embodiments.
 また、第1の分離素子11、第2の分離素子12は、厚さ方向に対して斜め方向に異常光屈折率軸を有する複屈折性材料から構成されるものに限らない。例えば、第1の偏光の光と直交する第2の偏光の光に対して屈折する角度が異なっていてもよく、入射する光のうち第1の偏光の光に対して、厚さ方向に直交する面内屈折率が一様になっているとともに、第1の偏光と直交する第2の偏光の光に対して、厚さ方向に直交する面内屈折率の分布が傾斜を有する材料を用いたり、このような特性を与える構成をなしたりすることによって、一方の偏光の光を屈折させる分離素子であってもよい。また、面内屈折率分布の傾斜角および厚さを制御するために厚さ方向に直交する面内で傾斜角が一様になるように面内屈折率分布をブレーズ形状に分割してもよい。これらは、以降の各実施形態においても、同様に用いることができる。 The first separation element 11 and the second separation element 12 are not limited to those made of a birefringent material having an extraordinary refractive index axis in a direction oblique to the thickness direction. For example, the angle of refraction with respect to the second polarized light orthogonal to the first polarized light may be different, and the incident light is orthogonal to the first polarized light with respect to the thickness direction. A material in which the in-plane refractive index is uniform and the distribution of the in-plane refractive index orthogonal to the thickness direction is inclined with respect to the light of the second polarization orthogonal to the first polarization. Alternatively, it may be a separation element that refracts light of one polarized light by providing a configuration that gives such characteristics. Further, in order to control the inclination angle and thickness of the in-plane refractive index distribution, the in-plane refractive index distribution may be divided into blaze shapes so that the inclination angle is uniform in a plane orthogonal to the thickness direction. . These can be similarly used in the following embodiments.
 さらに、第1の偏光の光に対して回折せずに直進透過し、第2の偏光の光に対して回折する偏光性回折格子からなる分離素子であってもよい。偏光性回折格子としては、例えば、断面が周期的凹凸を有する回折格子の凸部に相当する材料として常光屈折率n、異常光屈折率n(n≠n)となる複屈折性材料、そして凹凸を充填するように、凹部には屈折率nの等方性材料を有し、例えば、nとnとを略等しくすることで、常光屈折率の偏光の光を透過させ、異常光屈折率の偏光の光を回折させることができる。また、この場合、回折効率を高くするために、回折格子の断面形状がブレーズ形状またはブレーズ形状を階段状に近似した擬似ブレーズ形状あるとよい。なお、以下、第1の分離素子11、第2の分離素子12は、斜め方向に異常光屈折率軸を有する複屈折性材料から構成されるものとして説明する。 Further, it may be a separation element composed of a polarizing diffraction grating that transmits straightly without diffracting the first polarized light and diffracts the second polarized light. As a polarizing diffraction grating, for example, a birefringence having a normal light refractive index n 1 and an extraordinary light refractive index n 2 (n 1 ≠ n 2 ) as a material corresponding to a convex portion of a diffraction grating whose cross section has periodic unevenness. The concave portion has an isotropic material with a refractive index of n s so as to fill the material and the unevenness. For example, by making n 1 and n s substantially equal, light of polarized light having an ordinary refractive index is transmitted. And polarized light having an extraordinary refractive index can be diffracted. In this case, in order to increase the diffraction efficiency, the cross-sectional shape of the diffraction grating may be a blazed shape or a pseudo-blazed shape approximating the blazed shape to a staircase shape. In the following description, it is assumed that the first separation element 11 and the second separation element 12 are made of a birefringent material having an extraordinary light refractive index axis in an oblique direction.
 図1Aの光学ローパスフィルタ10において、第1の分離素子11の厚さをd、常光屈折率をno1、異常光屈折率をne1、異常光屈折率軸11aと入射する光が進行する方向(第1の分離素子11の厚さ方向)であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、式(1)で表すことができる。なお、図1Bの光学ローパスフィルタ15においても同じである。 In the optical low-pass filter 10 of FIG. 1A, the thickness of the first separation element 11 is d 1 , the ordinary light refractive index is n o1 , the extraordinary light refractive index is n e1 , and the incident light enters the extraordinary light refractive index axis 11 a. When the angle formed by the Z-axis direction, which is the direction (thickness direction of the first separation element 11), is θ 1 , the separation distance L 1 can be expressed by Expression (1). The same applies to the optical low-pass filter 15 in FIG. 1B.
Figure JPOXMLDOC01-appb-M000015
     
    
Figure JPOXMLDOC01-appb-M000015
     
    
 また、図1Aにおいて、第2の分離素子12の厚さをd、常光屈折率をno2、異常光屈折率をne2、異常光屈折率軸12aと入射する光が進行する方向(第2の分離素子12の厚さ方向)であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、式(2)で表すことができる。また、後述するが、本実施形態では、分離距離Lと分離距離Lとは互いに異なる値となるように設定される。なお、θとθは符号を有するものであって、ここでは、光が入射するZ軸方向を基準に、+Y方向の傾斜をプラス、-Y方向の傾斜をマイナスとして考える。 In FIG. 1A, the thickness of the second separation element 12 is d 2 , the ordinary light refractive index is n o2 , the extraordinary light refractive index is ne 2 , and the extraordinary light refractive index axis 12 a travels in the incident light direction (first). When the angle formed by the Z-axis direction, which is the thickness direction of the two separation elements 12, is θ 2 , the separation distance L 2 can be expressed by Expression (2). As will be described later, in this embodiment, it is set to be different values from the separation distance L 1 and the separation distance L 2. Note that θ 1 and θ 2 have signs, and here, the inclination in the + Y direction is considered to be positive and the inclination in the −Y direction is considered to be negative with respect to the Z-axis direction in which light is incident.
Figure JPOXMLDOC01-appb-M000016
     
    
Figure JPOXMLDOC01-appb-M000016
     
    
 次に、偏光制御部20、25が液晶素子である場合について説明する。液晶層24の液晶としては、ネマティック相液晶を用いることが好ましい。また、液晶分子の配向方向としては、液晶層24に電圧が印加されていないとき、液晶分子の長軸方向が配向膜23a、23b面に対して略平行となる水平配向(ホモジニアス配向)と、液晶分子の長軸方向が配向膜23a、23b面に対して略垂直となる垂直配向(ホメオトロピック配向)と、の2つのモードがあるが、いずれのモードであってもよい。なお、水平配向の場合、正の誘電異方性(Δε>0)を有する液晶材料を用い、垂直配向の場合、負の誘電異方性(Δε<0)を有する液晶材料を用いるとよい。また、液晶層24は特定の厚さを保持するため、液晶層24内に、例えば、SiOなどの無機物、樹脂などの有機物からなる球状のスペーサを用いてもよい。そして、電圧制御部13は、液晶層24に直流電圧、交流電圧を印加できるものであってもよいが、液晶の劣化を防ぐため、交流電圧が印加できることが好ましい。 Next, the case where the polarization controllers 20 and 25 are liquid crystal elements will be described. As the liquid crystal of the liquid crystal layer 24, nematic phase liquid crystal is preferably used. In addition, as the alignment direction of the liquid crystal molecules, when no voltage is applied to the liquid crystal layer 24, horizontal alignment (homogeneous alignment) in which the major axis direction of the liquid crystal molecules is substantially parallel to the surfaces of the alignment films 23a and 23b; There are two modes: vertical alignment (homeotropic alignment) in which the major axis direction of the liquid crystal molecules is substantially perpendicular to the planes of the alignment films 23a and 23b, and either mode may be used. In the case of horizontal alignment, a liquid crystal material having positive dielectric anisotropy (Δε> 0) may be used, and in the case of vertical alignment, a liquid crystal material having negative dielectric anisotropy (Δε <0) may be used. In order to maintain a specific thickness for the liquid crystal layer 24, a spherical spacer made of an inorganic material such as SiO 2 or an organic material such as resin may be used in the liquid crystal layer 24, for example. The voltage control unit 13 may be capable of applying a DC voltage or an AC voltage to the liquid crystal layer 24, but it is preferable that an AC voltage can be applied in order to prevent deterioration of the liquid crystal.
 ここで、まず、液晶層24の液晶分子が、電圧非印加時において水平配向となる場合について考える。このとき、液晶は、対向する配向膜23a、23b面の液晶分子の長軸方向が略直交する方向に配向され、厚さ方向を軸に約90°ツイストされた、ツイステッドネマティック(TN)液晶とする。そして、電圧制御部13より一定値以上の電圧を印加すると(「電圧印加時」という。)、液晶分子の長軸方向が厚さ方向と平行に配向される。また、双安定状態を付与する液晶を用いることもでき、この場合、例えば、電圧を遮断した後でも液晶の配向状態を保持させて、省電力化を実現することもできる。 Here, first, consider the case where the liquid crystal molecules of the liquid crystal layer 24 are horizontally aligned when no voltage is applied. At this time, the liquid crystal is a twisted nematic (TN) liquid crystal that is aligned in a direction in which the major axis direction of the liquid crystal molecules on the surfaces of the opposing alignment films 23a and 23b is substantially orthogonal and twisted about 90 ° about the thickness direction. To do. When a voltage of a certain value or more is applied from the voltage control unit 13 (referred to as “when voltage is applied”), the major axis direction of the liquid crystal molecules is aligned parallel to the thickness direction. In addition, a liquid crystal imparting a bistable state can be used. In this case, for example, the orientation state of the liquid crystal can be maintained even after the voltage is cut off, so that power saving can be realized.
 一方、液晶層24の液晶分子が電圧非印加時に垂直配向となる場合は、水平配向の場合と逆になるように動作する。つまり、電圧制御部13より一定値以上の電圧を印加すると、液晶分子が配向膜23a、23bと平行方向に配向されるようになる。ここで、電圧印加時に、対向する配向膜23a、23b面の液晶分子の長軸方向が略直交する方向とすることで、液晶層24の液晶分子が厚さ方向を軸に約90°ツイストして配向される。このように、電圧非印加状態の配向方向に応じて、電圧制御部13より液晶層24に印加する電圧の大きさを制御することによって、配向方向が異なる特性を有し、入射する光の偏光状態を変えて出射するかまたは、変えないまま出射させるか、制御することができる。 On the other hand, when the liquid crystal molecules in the liquid crystal layer 24 are vertically aligned when no voltage is applied, the liquid crystal layer 24 operates so as to be opposite to the horizontal alignment. That is, when a voltage of a certain value or more is applied from the voltage controller 13, the liquid crystal molecules are aligned in the direction parallel to the alignment films 23a and 23b. Here, when a voltage is applied, the liquid crystal molecules of the liquid crystal layer 24 are twisted by about 90 ° about the thickness direction by making the major axis direction of the liquid crystal molecules on the surfaces of the alignment films 23a and 23b facing each other substantially orthogonal. Oriented. Thus, by controlling the magnitude of the voltage applied to the liquid crystal layer 24 from the voltage control unit 13 according to the alignment direction in the voltage non-applied state, the polarization direction of the incident light has a characteristic that the alignment direction is different. It is possible to control whether the light is emitted while changing the state, or the light is emitted without changing.
 次に、光学ローパスフィルタ10の動作について説明する。図2A、図2Bは、光学ローパスフィルタ10に入射した光の経路および偏光状態を示す模式図であり、ここでは、電圧非印加時に液晶層24の液晶分子が水平配向されているとともに液晶分子の長軸方向が厚さ方向を軸に90°ツイストされているTN液晶が用いられているものとして説明する。図2Aは、電圧印加時における光の経路および偏光状態を示す模式図であって、このとき、液晶分子の長軸方向は、厚さ方向に揃っている。一方、図2Bは、電圧非印加時における光の経路および偏光状態を示す模式図であって、このとき、液晶分子の長軸方向は、水平配向されているとともに厚さ方向を軸に90°ツイストしている。 Next, the operation of the optical low-pass filter 10 will be described. 2A and 2B are schematic views showing the path and polarization state of light incident on the optical low-pass filter 10, where the liquid crystal molecules of the liquid crystal layer 24 are horizontally aligned when no voltage is applied and the liquid crystal molecules In the following description, it is assumed that a TN liquid crystal in which the major axis direction is twisted by 90 ° about the thickness direction is used. FIG. 2A is a schematic diagram showing a light path and a polarization state when a voltage is applied. At this time, the major axis direction of the liquid crystal molecules is aligned with the thickness direction. On the other hand, FIG. 2B is a schematic diagram showing a light path and a polarization state when no voltage is applied. At this time, the major axis direction of the liquid crystal molecules is horizontally aligned and 90 ° about the thickness direction. Twisted.
 ここで、まず、図2Aの電圧印加時について考える。Z軸方向に沿って、第1の分離素子11に入射するランダムな偏光の光は、X軸方向の直線偏光の光とY軸方向の直線偏光の光と、に分離する。分離距離は、上記の式(1)に基づいて決定する。なお、本明細書では、X軸方向の直線偏光の光を第1の直線偏光の光、Y軸方向の直線偏光の光を第2の直線偏光の光、として表現することもある。具体的には、第1の分離素子11により、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は進行方向が変えられるものとする。第1の分離素子11を出射したX軸方向の直線偏光の光とY軸方向の直線偏光の光は、分離距離Lを隔てて偏光制御部20に入射する。電圧印加時において、液晶分子の長軸方向は液晶層24の厚さ方向に配向されているので、いずれの直線偏光の光とも偏光状態を変えずに偏光制御部20を出射する。 Here, first, consider the voltage application in FIG. 2A. Randomly polarized light incident on the first separation element 11 along the Z-axis direction is separated into linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction. The separation distance is determined based on the above equation (1). In this specification, linearly polarized light in the X-axis direction may be expressed as first linearly polarized light, and linearly polarized light in the Y-axis direction may be expressed as second linearly polarized light. Specifically, it is assumed that linearly polarized light in the X-axis direction is transmitted straight through the first separation element 11, and the traveling direction of linearly polarized light in the Y-axis direction is changed. Linearly polarized light of the first separation device 11 X-axis direction of the linearly polarized light emitted from the light and the Y-axis direction enters the polarization control unit 20 at a separation distance L 1. At the time of voltage application, the major axis direction of the liquid crystal molecules is aligned in the thickness direction of the liquid crystal layer 24, so that any linearly polarized light is emitted from the polarization controller 20 without changing the polarization state.
 そして、偏光制御部20を出射したX軸方向の直線偏光の光とY軸方向の直線偏光の光は、第2の分離素子12に入射する。第2の分離素子12では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、第1の分離素子11で分離した+Y方向とは反対方向、つまり-Y方向に進行方向が変えられて出射する。そのため、電圧印加時における光学ローパスフィルタ10全体の分離距離としては、|L-L|となる(L≠L)。 Then, the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 12. In the second separation element 12, the linearly polarized light in the X-axis direction passes straight, and the linearly polarized light in the Y-axis direction passes through the first separation element 11 with reference to the optical path of the linearly polarized light in the X-axis direction. The direction of travel is changed to the direction opposite to the + Y direction separated in step 1, that is, the −Y direction, and the light is emitted. Therefore, the separation distance of the entire optical low-pass filter 10 when a voltage is applied is | L 1 −L 2 | (L 1 ≠ L 2 ).
 次に、図2Bの電圧非印加時について考える。第1の分離素子11を出射するX軸方向の直線偏光の光とY軸方向の直線偏光の光の振る舞いは、電圧印加時と同じであるのでここでは説明を省略する。そして、第1の分離素子11を出射したX軸方向の直線偏光の光とY軸方向の直線偏光の光は、分離距離Lを隔てて偏光制御部20に入射するが、液晶分子は液晶層24内で90°ツイストするように配向されているので、X軸方向の直線偏光の光はY軸方向の直線偏光の光に変換(旋光)されるとともに、Y軸方向の直線偏光の光はX軸方向の直線偏光の光に変換(旋光)される。そして、偏光制御部20を出射したX軸方向の直線偏光の光とY軸方向の直線偏光の光は、第2の分離素子12に入射するが、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、進行方向が変えられて出射する。 Next, consider the case of no voltage application in FIG. 2B. Since the behavior of the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction that exits the first separation element 11 is the same as when a voltage is applied, description thereof is omitted here. Then, the light of linear polarization of light and the Y-axis direction of the first separation element 11 emits the X-axis direction of the linearly polarized light is incident on the polarization control unit 20 at a separation distance L 1, the liquid crystal molecules are liquid crystal Since it is oriented so as to be twisted by 90 ° in the layer 24, linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and linearly polarized light in the Y-axis direction. Is converted (rotated) into linearly polarized light in the X-axis direction. Then, the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 12, but the linearly polarized light in the X-axis direction is transmitted straight through. The linearly polarized light in the Y-axis direction is emitted with the traveling direction changed.
 このように、電圧非印加時では、偏光制御部20に入射した直線偏光の光がいずれも90°回転して出射するので、図2Bに示す軌道を辿るように、第1の分離素子11で分離した2つの光は、第2の分離素子12でさらに遠ざけるように分離する。そのため、電圧非印加時における光学ローパスフィルタ10全体の分離距離としては、L+L、となる。したがって、電圧印加時と電圧非印加時において、分離距離を、|L-L|、L+L、と切り替えることができ、これに合わせて、例えば、デジタルカメラ、デジタル一眼レフカメラの動画モード、静止画モードを切り替えるように設計するとよい。 In this way, when no voltage is applied, all of the linearly polarized light incident on the polarization controller 20 is rotated by 90 ° and emitted, so that the first separation element 11 follows the trajectory shown in FIG. 2B. The separated two lights are separated by the second separation element 12 so as to be further away. Therefore, the separation distance of the entire optical low-pass filter 10 when no voltage is applied is L 1 + L 2 . Therefore, the separation distance can be switched between | L 1 −L 2 | and L 1 + L 2 when voltage is applied and when voltage is not applied. For example, a digital camera or a digital single lens reflex camera It is better to design to switch between video mode and still image mode.
 また、図2A、図2Bは、電圧非印加時の液晶分子の長軸方向が、水平配向となる構成について説明した一例であるが、電圧非印加時において液晶分子が垂直配向をするものであってもよい。また、第1の分離素子11の異常光屈折率軸11aの角度θ、第2の分離素子12の異常光屈折率軸12aの角度θの符号が互いに異なる例について説明したが、これに限らず、θとθとが互いに同じ符号であってもよい。このように、電圧印加時/電圧非印加時の液晶分子の配向状態と、符号を考慮したθ、θと、を考慮して、例えば、デジタルカメラ、デジタル一眼レフカメラの動画モード、静止画モードを適切な分離距離|L-L|、L+L、に合わせて切り替えられるように、LとLを設計するとよい。さらに、静止画モードでの使用頻度が多いデジタルカメラ、デジタル一眼レフカメラにおいては、電圧非印加時に静止画モードとなるように設計する方が省電力の面で好ましい。 2A and 2B are examples illustrating a configuration in which the major axis direction of the liquid crystal molecules when no voltage is applied is horizontal alignment, the liquid crystal molecules are vertically aligned when no voltage is applied. May be. The angle theta 1 of the first extraordinary refractive index axis 11a of the separating element 11, but the sign of the angle theta 2 of the second extraordinary refractive index axis 12a of the separating element 12 has been described different example, in this Not limited to this, θ 1 and θ 2 may have the same sign. In this way, taking into account the orientation state of the liquid crystal molecules at the time of voltage application / non-application of voltage and θ 1 and θ 2 in consideration of the sign, for example, a moving image mode of a digital camera or a digital single lens reflex camera, L 1 and L 2 may be designed so that the image mode can be switched according to an appropriate separation distance | L 1 −L 2 |, L 1 + L 2 . Furthermore, in a digital camera and a digital single-lens reflex camera that are frequently used in the still image mode, it is preferable in terms of power saving that the digital camera and the digital single lens reflex camera are designed to be in the still image mode when no voltage is applied.
 また、光学ローパスフィルタを用いるデジタルカメラ、デジタル一眼レフカメラ等は、第2の分離素子12の後段には、図示しないCCDなどのイメージセンサが配置されるが、図2Aに基づく電圧印加時に、画素数が多い静止画モード、図2Bに基づく電圧非印加時に、画素数が比較的少ない動画モードとすることができる。また、図2Bにおいて、液晶層24の液晶分子が90°ツイストした配向方向である場合、入射する光のうち、X軸方向の直線偏光の光がY軸方向の直線偏光の光に、Y軸方向の直線偏光の光がX軸方向の直線偏光の光に、100%変換できない場合がある。つまり、図2Bの電圧非印加時において、偏光制御部20にX方向の直線偏光の光が入射してY方向の偏光方向の光に100%変換されず、僅かにα%(>0)の成分だけX軸方向の直線偏光の光のまま透過する場合、このα%の成分だけ第2の分離素子12を直進透過する。同様に、図2Bの電圧非印加時において、偏光制御部20にY方向の直線偏光の光が入射してX方向の偏光方向の光に100%変換されず、僅かにα%(>0)の成分だけY軸方向の直線偏光の光のまま透過する場合、このα%の成分だけ第2の分離素子12で-Y方向に進行方向を変えて出射する。 Further, in a digital camera, a digital single lens reflex camera, or the like using an optical low-pass filter, an image sensor such as a CCD (not shown) is disposed at the subsequent stage of the second separation element 12, but when applying a voltage based on FIG. A still image mode with a large number of images and a moving image mode with a relatively small number of pixels can be obtained when no voltage is applied based on FIG. 2B. 2B, when the liquid crystal molecules of the liquid crystal layer 24 have an orientation direction twisted by 90 °, among the incident light, linearly polarized light in the X-axis direction becomes linearly polarized light in the Y-axis direction. In some cases, linearly polarized light in the direction cannot be converted 100% into linearly polarized light in the X-axis direction. That is, when no voltage is applied in FIG. 2B, linearly polarized light in the X direction is incident on the polarization controller 20 and is not converted to 100% light in the Y direction, and is slightly α% (> 0). In the case where only the component is transmitted as linearly polarized light in the X-axis direction, this α% component is transmitted straight through the second separation element 12. Similarly, when no voltage is applied in FIG. 2B, linearly polarized light in the Y direction is incident on the polarization control unit 20 and is not converted to 100% light in the X direction, and is slightly α% (> 0). When only the component is transmitted as linearly polarized light in the Y-axis direction, only the α% component is emitted by the second separation element 12 while changing the traveling direction in the −Y direction.
 また、上記の説明のように、光学ローパスフィルタ10で発生する分離距離、L+Lは、例えば、デジタルカメラ、デジタル一眼レフカメラの動画の画素の大きさ程度に相当し、|L-L|は、静止画の画素の大きさ程度に相当する。ここで、上記のα%の成分は、図2Bに基づく動画モード、つまり分離距離が、L+Lの場合において発生するが、このα%の成分の光は、分離距離、L+L内、つまり1つの画素内に到達し、他の画素にノイズとなって到達しない。このように、液晶分子が90°ツイスト配向されるときに、デジタルカメラ、デジタル一眼レフカメラが動画モードである大きな分離距離を得る光学ローパスフィルタの構成とすることで、ノイズ成分が発生してもモアレや偽色を十分に解消できるので、より好ましい。 Further, as described above, the separation distance L 1 + L 2 generated by the optical low-pass filter 10 corresponds to, for example, the size of a moving image pixel of a digital camera or a digital single lens reflex camera, and | L 1 − L 2 | corresponds to the size of a still image pixel. Here, the α% component is generated in the moving image mode based on FIG. 2B, that is, in the case where the separation distance is L 1 + L 2. The light of the α% component is the separation distance, L 1 + L 2. It reaches inside, that is, within one pixel and does not reach other pixels as noise. In this way, when the liquid crystal molecules are 90 ° twist aligned, the digital camera and the digital single-lens reflex camera have a configuration of an optical low-pass filter that obtains a large separation distance that is a moving image mode. Moire and false colors can be sufficiently eliminated, which is more preferable.
 また、液晶層24の液晶分子が電圧非印加時に垂直配向され、電圧印加時に90°ツイスト配向(水平配向)される場合も、電圧印加時に、液晶層24に入射する光を十分に偏光変換ができずにノイズ成分が発生する場合がある。この場合も、同様に、動画モードにおいて他の画素へノイズ成分が到達しないので好ましく、さらに、電圧非印加時において静止画モード、電圧印加時において動画モードとなるので、静止画モードでの使用頻度が多いデジタルカメラ、デジタル一眼レフカメラにおいては、省電力を実現することができる。 In addition, even when the liquid crystal molecules of the liquid crystal layer 24 are vertically aligned when no voltage is applied and twisted 90 degrees (horizontal alignment) when a voltage is applied, the light incident on the liquid crystal layer 24 is sufficiently polarized and converted when the voltage is applied. In some cases, noise components may be generated. Similarly, in this case, the noise component does not reach other pixels in the moving image mode, which is preferable, and further, the still image mode is applied when no voltage is applied, and the moving image mode is applied when the voltage is applied. In many digital cameras and digital single-lens reflex cameras, power saving can be realized.
 次に、デジタルカメラのうち、とくに、デジタル一眼レフカメラの画素数に合わせた具体的な分離距離について説明する。デジタル一眼レフカメラは、静止画像について約1000万画素~約3000万画素に対応した光学ローパスフィルタ機能に加え、動画像についてフルHD画像やHD画像に対応した約100万画素~約200万画素に最適な光学ローパスフィルタ機能の切り替えにより、モアレや偽色を低減することが求められる。また、デジタル一眼レフカメラに用いられるCCD、CMOS等のイメージセンサ(撮像素子)の大きさは、フォーサーズサイズの約17.3mm×13.0mmから、APS-Cサイズの約23.4mm×16.7mm、そして、35mmフィルムに相当する約36mm×24mmのサイズ等が用いられる。 Next, a specific separation distance according to the number of pixels of a digital single lens reflex camera among digital cameras will be described. The digital single-lens reflex camera has an optical low-pass filter function corresponding to about 10 million pixels to about 30 million pixels for still images, and about 1 million pixels to about 2 million pixels corresponding to full HD images and HD images for moving images. It is required to reduce moire and false color by switching the optimal optical low-pass filter function. The size of image sensors (imaging devices) such as CCDs and CMOSs used in digital single-lens reflex cameras ranges from about 17.3 mm × 13.0 mm of the Four Thirds size to about 23.4 mm × 16 of the APS-C size. A size of about 36 mm × 24 mm corresponding to 0.7 mm and a 35 mm film is used.
 これより、デジタル一眼レフカメラにおいて、静止画に適用する画素間隔としては、約2μm~約10μm程度の範囲となり、一方、フルHD画像やHD画像の動画に適用する画素間隔としては、約10~約32μm程度の範囲となる。このように、分離距離が長くまた、広い範囲で可変できるように、第1の分離素子11、第2の分離素子12を設計する。ここで、静止画用の分離距離をL、動画用の分離距離をLとするとき、L>Lであるとともに、Lが2~10μm程度の分離距離を有し、Lが10~32μmの分離距離を有するとよい。 As a result, in a digital single lens reflex camera, the pixel interval applied to a still image is in the range of about 2 μm to about 10 μm, while the pixel interval applied to a full HD image or HD image moving image is about 10 to about 10 μm. The range is about 32 μm. Thus, the first separation element 11 and the second separation element 12 are designed so that the separation distance is long and can be varied over a wide range. Here, when the separation distance for still images is L S and the separation distance for moving images is L M , L M > L S and L S has a separation distance of about 2 to 10 μm, and L M Preferably has a separation distance of 10 to 32 μm.
 また、本実施形態では、第1の分離素子11により発生する分離距離Lと、第2の分離素子12によって発生する分離距離Lは、異なっていれば大小関係に制限がない。つまり、L>Lであっても、L<Lであってもよい。また、LとLのうち、小さい方の分離距離を基準にしたとき、大きい方の分離距離が1.3~3の範囲であるように、式(1)および式(2)を調整することが好ましい。なお、第1の分離素子11と第2の分離素子12が同じ材料、異常光屈折率軸11a、12aの方向が平行(θ=θ)またはZ軸を基準に対称(|θ|=|θ|)である場合、厚さd、dの比を1.3~3の範囲で調節するとよい。 In this embodiment, the separation relationship L 1 generated by the first separation element 11 and the separation distance L 2 generated by the second separation element 12 are not limited in magnitude as long as they are different. That is, L 1 > L 2 or L 1 <L 2 may be satisfied. Also, of the L 1 and L 2, when relative to the separation distance smaller, as the separation distance greater is in the range from 1.3 to 3, formula (1) and adjusting the formula (2) It is preferable to do. The first separation element 11 and the second separation element 12 are made of the same material, and the directions of the extraordinary light refractive index axes 11a and 12a are parallel (θ 1 = θ 2 ) or symmetrical with respect to the Z axis (| θ 1 | = | Θ 2 |), the ratio of the thicknesses d 1 and d 2 may be adjusted in the range of 1.3 to 3.
 (第2の実施形態)
  図3は、本実施形態に係る光学ローパスフィルタ50の構成例を示す概念図であり、第1の実施形態に係る光学ローパスフィルタ10と、光学ローパスフィルタ30との間に、偏光変換素子51を有する。なお、本実施形態では、光学ローパスフィルタ10を、Y軸方向に光の分離能を有する第1の光学ローパスフィルタ10とし、光学ローパスフィルタ30を、X軸方向に光の分離能を有する第2の光学ローパスフィルタ30として説明する。
(Second Embodiment)
FIG. 3 is a conceptual diagram illustrating a configuration example of the optical low-pass filter 50 according to the present embodiment. A polarization conversion element 51 is provided between the optical low-pass filter 10 and the optical low-pass filter 30 according to the first embodiment. Have. In the present embodiment, the optical low-pass filter 10 is the first optical low-pass filter 10 having the light separation ability in the Y-axis direction, and the optical low-pass filter 30 is the second optical separation ability having the light separation ability in the X-axis direction. The optical low-pass filter 30 will be described.
 図4は、光学ローパスフィルタ50のうち、第2の光学ローパスフィルタ30を取り出した断面模式図であって、とくにX-Z平面について示したものである。ここで、Z軸方向を基準とするとき、厚さdを有する第3の分離素子31が、Z軸方向を基準に+X方向の傾斜で角度θとなる異常光屈折率軸を有し、厚さdを有する第4の分離素子32が、Z軸方向を基準に-X方向の傾斜で角度θとなる異常光屈折率軸を有する。また、第3の分離素子31の厚さをd、常光屈折率をno3、異常光屈折率をne3、異常光屈折率軸31aと入射する光が進行する方向(第3の分離素子31の厚さ方向)であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、式(3)で表すことができる。 FIG. 4 is a schematic cross-sectional view of the second optical low-pass filter 30 extracted from the optical low-pass filter 50, and particularly shows the XZ plane. Here, when the Z-axis direction is used as a reference, the third separation element 31 having a thickness d 3 has an extraordinary refractive index axis that is inclined in the + X direction and has an angle θ 3 with respect to the Z-axis direction. The fourth separation element 32 having the thickness d 4 has an extraordinary refractive index axis having an angle θ 4 with an inclination in the −X direction with respect to the Z-axis direction. The thickness of the third separation element 31 is d 3 , the ordinary light refractive index is n o3 , the extraordinary light refractive index is n e3 , and the direction in which the incident light travels with the extraordinary light refractive index axis 31 a (third separation element). When the angle formed by the Z-axis direction (thickness direction of 31) is θ 3 , the separation distance L 3 can be expressed by Expression (3).
Figure JPOXMLDOC01-appb-M000017
     
    
Figure JPOXMLDOC01-appb-M000017
     
    
 また、第4の分離素子32の厚さをd、常光屈折率をno4、異常光屈折率をne4、異常光屈折率軸32aと入射する光が進行する方向(第4の分離素子32の厚さ方向)であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、式(4)で表すことができる。また、ここでも、分離距離Lと分離距離Lとは互いに異なるように設定され、θとθも符号を有するものであって、ここでは、光が入射するZ軸方向を基準に、+X方向の傾斜をプラス、-X方向の傾斜をマイナスとして考える。 Also, the thickness of the fourth separation element 32 is d 4 , the ordinary light refractive index is n o4 , the extraordinary light refractive index is n e4 , and the direction in which the incident light travels with the extraordinary light refractive index axis 32 a (fourth separation element). When the angle formed by the Z-axis direction that is the thickness direction of 32 is θ 4 , the separation distance L 4 can be expressed by Expression (4). Also here, the separation distance L 3 and the separation distance L 4 are set to be different from each other, and θ 3 and θ 4 also have signs, and here, the Z-axis direction in which light is incident is used as a reference. , + X direction inclination is considered as positive, and −X direction inclination is considered as negative.
Figure JPOXMLDOC01-appb-M000018
     
    
Figure JPOXMLDOC01-appb-M000018
     
    
 ここで、厚さd、dおよび角度θ、θは、任意に与えることができるが、ここでは、θとθの符号が異なり、|θ|=|θ|、|θ|=|θ|とする。さらに、d=d、d=dとする。つまり、第3の分離素子31および第4の分離素子32は、第1の分離素子11および第2の分離素子12と同じ構成を有し、第1の分離素子11および第2の分離素子12に対してZ軸方向を回転軸として90°回転して配置されるものと同等のものとして説明する。 Here, the thicknesses d 3 and d 4 and the angles θ 3 and θ 4 can be arbitrarily given. Here, the signs of θ 3 and θ 4 are different, and | θ 3 | = | θ 1 |, Let | θ 4 | = | θ 2 |. Further, d 3 = d 1 and d 4 = d 2 are set. That is, the third separation element 31 and the fourth separation element 32 have the same configuration as the first separation element 11 and the second separation element 12, and the first separation element 11 and the second separation element 12. On the other hand, the description will be made on the assumption that the Z axis direction is the same as that rotated 90 ° about the rotation axis.
 第1の実施形態に係る光学ローパスフィルタ10は、光の分離能が一方向(Y軸方向)のみについて与えるものであったが、本実施形態に係る光学ローパスフィルタ50は、第1の光学ローパスフィルタ10と第2の光学ローパスフィルタ30とが重なる構成を有することで、2次元的に光を分離することができる。また、第1の光学ローパスフィルタ10を構成する各部位は、同じ部号を付して説明の重複を避ける。また、第2の光学ローパスフィルタ30は、厚さdの第3の分離素子31と厚さdの第4の分離素子32の間に、(第2の)偏光制御部40を有し、偏光制御部40は、一対の透明基板として、透明基板41a、41bのそれぞれ対向する面に、透明電極42a、42b、配向膜43a、43bを有し、液晶層44が挟持される。そして、透明電極42a、42bを介して液晶層44に電圧を印加する電圧制御部52を備える。なお、電圧制御部52は、透明電極22a、22bを介して液晶層24にも共通に電圧を印加できるものとする。 The optical low-pass filter 10 according to the first embodiment provides light separation only in one direction (Y-axis direction), but the optical low-pass filter 50 according to the present embodiment has the first optical low-pass filter. By having the configuration in which the filter 10 and the second optical low-pass filter 30 overlap, light can be separated two-dimensionally. Moreover, the same part is attached | subjected to each site | part which comprises the 1st optical low-pass filter 10, and duplication of description is avoided. The second optical low-pass filter 30, between the thickness d 3 of the third separation device 31 and the thickness d 4 of the fourth separation device 32 includes a (second) polarization control unit 40 The polarization control unit 40 includes transparent electrodes 42a and 42b and alignment films 43a and 43b as opposed to the transparent substrates 41a and 41b as a pair of transparent substrates, and the liquid crystal layer 44 is sandwiched therebetween. And the voltage control part 52 which applies a voltage to the liquid crystal layer 44 via the transparent electrodes 42a and 42b is provided. The voltage control unit 52 can apply a voltage to the liquid crystal layer 24 in common via the transparent electrodes 22a and 22b.
 偏光変換素子51は、第2の分離素子12を透過したX軸方向の直線偏光(第1の直線偏光)の光と、Y軸方向の直線偏光(第2の直線偏光)の光について、それぞれ、第1の直線偏光の光の成分と第2の直線偏光の光の成分が略同一となる光に変換する機能を有する。具体的には、入射する可視光領域の光に対して、広帯域の1/2波長板となる機能を有するかまたは、広帯域の1/4波長板となる機能を有するものであればよい。つまり、広帯域の1/2波長板の場合、好ましくは、入射する直線偏光の光の振動方向を45°の奇数倍の角度回転する直線偏光の光に変換し、広帯域の1/4波長板の場合、好ましくは、入射する直線偏光の光を円偏光の光に変換するものである。また、偏光変換素子51を出射する光のうちX軸方向の光の成分とY軸方向の光の成分との比が略同一とは、可視光領域の光について、7:3~3:7の範囲であればよく、6:4~4:6が好ましく、5:5の比率に近づくほどより好ましい。 The polarization conversion element 51 is configured to transmit X-axis direction linearly polarized light (first linearly polarized light) and Y-axis direction linearly polarized light (second linearly polarized light) transmitted through the second separation element 12, respectively. The first linearly polarized light component and the second linearly polarized light component have a function of converting into substantially the same light. Specifically, it may have a function to become a broadband half-wave plate or a function to become a broadband quarter-wave plate for incident visible light. That is, in the case of a broadband ½ wavelength plate, preferably, the vibration direction of the incident linearly polarized light is converted to linearly polarized light that is rotated by an angle that is an odd multiple of 45 °. In this case, it is preferable that incident linearly polarized light is converted into circularly polarized light. The ratio of the light component in the X-axis direction and the light component in the Y-axis direction out of the light emitted from the polarization conversion element 51 is approximately the same for light in the visible light region from 7: 3 to 3: 7. Of 6: 4 to 4: 6 is preferable, and the closer to the ratio of 5: 5, the more preferable.
 偏光変換素子51は、広帯域の1/2波長板、広帯域の1/4波長板とする場合、例えば、光が入射する方向と直交する面と平行に光学軸を有し、光学軸が厚さ方向に揃った複屈折性材料からなる波長板を、光学軸が交差するように複数枚重ねて構成されるものであってもよい。また、光学軸方向が厚さ方向を軸に螺旋している波長板を1枚または、複数枚重ねるように構成されるものであってもよい。波長板の材料としては例えば、水晶、LiNbOなどの無機材料や樹脂や液晶、高分子液晶などの有機材料から構成される。 When the polarization conversion element 51 is a broadband ½ wavelength plate or a broadband ¼ wavelength plate, for example, the polarization conversion element 51 has an optical axis parallel to a plane orthogonal to the direction in which light enters, and the optical axis is thick. A plurality of wave plates made of birefringent materials aligned in the direction may be stacked so that the optical axes intersect. Further, one or a plurality of wave plates whose optical axis directions are spiraled about the thickness direction may be configured. Examples of the material of the wave plate include inorganic materials such as quartz and LiNbO 3 and organic materials such as resin, liquid crystal, and polymer liquid crystal.
 次に、光学ローパスフィルタ50の動作について説明する。図5A乃至5Cは、光学ローパスフィルタ50に入射する光の経路および偏光状態を示す模式図であり、ここでは、電圧非印加時に液晶層24、44の液晶分子がそれぞれ、水平配向されているとともに液晶分子の長軸方向が厚さ方向を軸に90°ツイストされているTN液晶が用いられているものとして説明する。図5Aは、電圧印加時における光の経路および偏光状態を示す模式図であって、液晶層24、44における液晶分子の長軸方向は、厚さ方向に揃っている。図5Bは、電圧印加時において、第1の光学ローパスフィルタ10の出射面における光10aと光10bの位置および偏光状態を示すものである。また、図5Cは、電圧印加時において、第2の光学ローパスフィルタ30の出射面における光30a、光30b、光30cおよび光30dの位置および偏光状態を示すものであって、これが、光学ローパスフィルタ50の光の分離状態を示すものに相当する。 Next, the operation of the optical low-pass filter 50 will be described. 5A to 5C are schematic diagrams showing the path and polarization state of light incident on the optical low-pass filter 50. Here, the liquid crystal molecules of the liquid crystal layers 24 and 44 are horizontally aligned when no voltage is applied, respectively. In the following description, it is assumed that a TN liquid crystal in which the major axis direction of the liquid crystal molecules is twisted by 90 ° about the thickness direction is used. FIG. 5A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis directions of the liquid crystal molecules in the liquid crystal layers 24 and 44 are aligned in the thickness direction. FIG. 5B shows the positions and polarization states of the light 10a and the light 10b on the emission surface of the first optical low-pass filter 10 when a voltage is applied. 5C shows the positions and polarization states of the light 30a, the light 30b, the light 30c, and the light 30d on the emission surface of the second optical low-pass filter 30 when a voltage is applied. This is the optical low-pass filter. It corresponds to the one showing 50 light separation states.
 次に、入射する光が光学ローパスフィルタ50を透過するまでの光路における、光の状態について説明する。図5Aにおいて、光学ローパスフィルタ50に入射する光はランダムな偏光状態であって、Z軸方向に沿って進行する。電圧印加時において、第1の光学ローパスフィルタ10において、X軸方向の直線偏光(第1の直線偏光)の光と、Y軸方向の直線偏光(第2の直線偏光)の光とが、分離距離LSYだけ隔てて透過する。なお、分離距離LSYの‘S’は静止画モード、‘Y’は、分離方向がY軸方向を意味し、後述するが、‘M’は動画モード、‘X’は、分離方向がX軸方向を意味する。また、図5Bに示す模式図において、第1の直線偏光の光および第2の直線偏光の光が、第1の光学ローパスフィルタ10で分離され、それぞれの位置10a、10bから出射し、その間隔が分離距離LSYに相当する。 Next, the state of light in the optical path until incident light passes through the optical low-pass filter 50 will be described. In FIG. 5A, the light incident on the optical low-pass filter 50 is in a random polarization state and travels along the Z-axis direction. When the voltage is applied, the first optical low-pass filter 10 separates the light of the linearly polarized light in the X-axis direction (first linearly polarized light) and the light of the linearly polarized light in the Y-axis direction (second linearly polarized light). The light is transmitted by a distance LSY . Note that 'S' in the separation distance L SY is a still image mode, 'Y' means the separation direction is the Y-axis direction, and as will be described later, 'M' is the moving image mode, and 'X' is the separation direction X. It means the axial direction. Further, in the schematic diagram shown in FIG. 5B, the first linearly polarized light and the second linearly polarized light are separated by the first optical low-pass filter 10 and emitted from the respective positions 10a and 10b. Corresponds to the separation distance LSY .
 そして、第1の直線偏光の光の光路53aと第2の直線偏光の光の光路54aと、に分離された光は、偏光変換素子51に入射する。偏光変換素子51に入射した光は、第1の直線偏光の光の成分と第2の直線偏光の光の成分と、混在した光となるように偏光状態が変換される。具体的に、光路53aに相当する光は、第1の直線偏光の光の成分と第2の直線偏光の光の成分とが略同一に混在した光として光路53bを辿って第2の光学ローパスフィルタ30に入射する。また、光路54aに相当する光は、第1の直線偏光の光の成分と第2の直線偏光の光の成分とが略同一に混在した光として光路54bを辿って第2の光学ローパスフィルタ30に入射する。 Then, the light separated into the optical path 53 a of the first linearly polarized light and the optical path 54 a of the second linearly polarized light enters the polarization conversion element 51. The polarization state of the light incident on the polarization conversion element 51 is converted so that the light component of the first linearly polarized light and the light component of the second linearly polarized light are mixed. Specifically, the light corresponding to the optical path 53a follows the optical path 53b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low pass. The light enters the filter 30. The light corresponding to the optical path 54 a follows the optical path 54 b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low-pass filter 30. Is incident on.
 このとき、電圧印加時において、第2の光学ローパスフィルタ30は、X軸方向の直線偏光(第1の直線偏光)の光と、Y軸方向の直線偏光(第2の直線偏光)の光とを、X軸方向に分離距離LSXだけ隔てるように分離する。なお、分離距離LSXは、|L-L|に相当する。また、図5Cに示す模式図において、光路53bに相当する光が、第2の光学ローパスフィルタ30で分離され、それぞれの位置30a、30bから出射し、その間隔が分離距離LSXに相当する。同様に、光路54bに相当する光が、第2の光学ローパスフィルタ30で分離され、それぞれの位置30c、30dから出射し、その間隔も分離距離LSXに相当する。 At this time, when a voltage is applied, the second optical low-pass filter 30 is configured to emit light of linearly polarized light (first linearly polarized light) in the X-axis direction and light of linearly polarized light (second linearly polarized light) in the Y-axis direction. Are separated by a separation distance L SX in the X-axis direction. Note that the separation distance L SX corresponds to | L 3 −L 4 |. In the schematic diagram shown in FIG. 5C, light corresponding to the optical path 53b is separated by the second optical low-pass filter 30 and is emitted from the respective positions 30a and 30b, and the interval corresponds to the separation distance LSX . Similarly, the light corresponding to the optical path 54b is separated by the second optical low-pass filter 30 and emitted from the respective positions 30c and 30d, and the interval thereof also corresponds to the separation distance LSX .
 このように分離方向を直交させる理由は、イメージセンサの画素が2次元に配列しているため、配列される2つの直交する方向に対してモアレや偽色を低減するために、画素の配列方向に合わせて分離させるものである。また、分離距離は画素のピッチとカットする空間周波数によって異なり、画素形状が正方形の場合は、X軸方向への分離距離とY軸方向の分離距離を同じにすることが効果的である。例えば縦長の画素(Y軸方向の1画素の長さ>X軸方向の1画素の長さ)のイメージセンサの場合は、X軸方向のモアレや偽色の防止が優先される。そのため、X軸方向とY軸方向との分離距離が異なったり、また、分離する4点を結んでできる四角形が正方形に限らず、平行四辺形であったりしてもよい。 The reason for making the separation directions orthogonal in this way is that the pixels of the image sensor are two-dimensionally arranged, and therefore the pixel arrangement direction in order to reduce moiré and false colors in the two orthogonal directions arranged It is made to separate according to. Further, the separation distance varies depending on the pixel pitch and the spatial frequency to be cut. When the pixel shape is a square, it is effective to make the separation distance in the X-axis direction and the separation distance in the Y-axis direction the same. For example, in the case of an image sensor having vertically long pixels (the length of one pixel in the Y-axis direction> the length of one pixel in the X-axis direction), priority is given to the prevention of moire and false colors in the X-axis direction. For this reason, the separation distance between the X-axis direction and the Y-axis direction is different, and the quadrilateral formed by connecting the four points to be separated is not limited to a square, and may be a parallelogram.
 次に、電圧制御部52より電圧が印加されない、電圧非印加時の光の状態について説明する。第1の光学ローパスフィルタ10は、電圧非印加時において、第1の実施形態のように、電圧印加時よりも大きい分離距離を隔てて、第1の直線偏光の光と第2の直線偏光の光を分離する。図6A乃至6Dは、光学ローパスフィルタ50の電圧印加時、電圧非印加時における、第1の光学ローパスフィルタ10、第2の光学ローパスフィルタ30の出射面の光の位置および偏光状態を示す図である。具体的に、図6Aは、電圧印加時の第1の光学ローパスフィルタ10の出射面の光の位置および偏光状態、図6Bは、電圧印加時の第2の光学ローパスフィルタ30の出射面の光の位置および偏光状態で、それぞれ、図5Bおよび図5Cと同じものを示すものである。また、図6Aおよび図6Bと比較するように、図6Cは、電圧非印加時の第1の光学ローパスフィルタ10の出射面の光の位置および偏光状態、図6Dは、電圧非印加時の第2の光学ローパスフィルタ30の出射面の光の位置および偏光状態を示すものである。 Next, the state of light when no voltage is applied from the voltage control unit 52 and no voltage is applied will be described. When no voltage is applied, the first optical low-pass filter 10 separates the first linearly polarized light and the second linearly polarized light with a separation distance larger than that when a voltage is applied, as in the first embodiment. Separate the light. 6A to 6D are diagrams showing the light positions and polarization states of the light exit surfaces of the first optical low-pass filter 10 and the second optical low-pass filter 30 when a voltage is applied to the optical low-pass filter 50 and when no voltage is applied. is there. Specifically, FIG. 6A shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when a voltage is applied, and FIG. 6B shows the light on the exit surface of the second optical low-pass filter 30 when a voltage is applied. 5B and FIG. 5C respectively show the same position and polarization state. Further, as compared with FIGS. 6A and 6B, FIG. 6C shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when no voltage is applied, and FIG. 6D shows the first state when no voltage is applied. 2 shows the position and polarization state of the light on the exit surface of the second optical low-pass filter 30.
 また、図6Cにおいて、第1の光学ローパスフィルタ10を透過する、第1の直線偏光の光の位置10cと、第2の直線偏光の光の位置10dとの間隔を分離距離LMYとすると、LMY>LSYとなる。図6Dにおいて、第2の光学ローパスフィルタ30の透過面における、第1の直線偏光の光30eと、第2の直線偏光の光の位置30fとの間隔、第1の直線偏光の光30gと、第2の直線偏光の光の位置30hとの間隔が等しく、分離距離LMXとすると、LMX>LSXとなる。なお、分離距離LMXは、L+L、に相当する。このように、光学ローパスフィルタ50に入射する光は4本の光となって、2次元的に分離されて出射し、電圧印加時、電圧非印加時によって分離距離を変えることができる。 Further, in FIG. 6C, when the distance between the position 10c of the first linearly polarized light passing through the first optical low-pass filter 10 and the position 10d of the second linearly polarized light is defined as a separation distance LMY , L MY > L SY . In FIG. 6D, the distance between the first linearly polarized light 30e and the second linearly polarized light position 30f on the transmission surface of the second optical low-pass filter 30, the first linearly polarized light 30g, When the distance between the second linearly polarized light and the position 30h is equal and the separation distance L MX is set, L MX > L SX . The separation distance L MX corresponds to L 3 + L 4 . In this way, the light incident on the optical low-pass filter 50 becomes four light beams that are two-dimensionally separated and emitted, and the separation distance can be changed depending on whether a voltage is applied or not.
 また、本実施形態において、電圧制御部52は、(第1の)液晶層24と(第2の)液晶層44とに、共通する電圧を印加できる構成としたが、これに限らず、液晶層24、液晶層44に対して、それぞれ独立に電圧を印加できるものであってもよい。また、第1の実施形態と同様に、デジタル一眼レフカメラにおいて、分離距離LSY、LMY、および分離距離LSX、LMXは、LMY>LSYの関係および、LMX>LSXの関係を満たし、LSY、LSXが2~10μm程度の分離距離を有し、LMY、LMXが10~32μmの分離距離を有するとよい。さらに、LとLとのうち、小さい方の分離距離を基準としたとき、大きいほうの分離距離が1.3~3の範囲となり、LとLとのうち、小さい方の分離距離を基準としたとき、大きいほうの分離距離が1.3~3の範囲となるように、各分離素子の複屈折性材料、厚さ、異常光屈折率軸の角度を調整するとよい。 Further, in the present embodiment, the voltage control unit 52 is configured to be able to apply a common voltage to the (first) liquid crystal layer 24 and the (second) liquid crystal layer 44. The voltage may be applied independently to the layer 24 and the liquid crystal layer 44. Similarly to the first embodiment, in the digital single-lens reflex camera, the separation distances L SY , L MY , and the separation distances L SX , L MX are related to the relationship of L MY > L SY and L MX > L SX . It is preferable that L SY and L SX have a separation distance of about 2 to 10 μm, and L MY and L MX have a separation distance of 10 to 32 μm. Furthermore, when the smaller separation distance of L 1 and L 2 is used as a reference, the larger separation distance is in the range of 1.3 to 3, and the smaller separation of L 3 and L 4 is smaller. When the distance is used as a reference, the birefringent material, thickness, and extraordinary refractive index axis angle of each separation element may be adjusted so that the larger separation distance is in the range of 1.3 to 3.
 (第3の実施形態)
  図7は、本実施形態に係る光学ローパスフィルタ60の構成例を示す概念図であり、第1の実施形態に係る光学ローパスフィルタ10と、偏光変換素子51と、光学ローパスフィルタ62と、を有する。なお、本実施形態では、光学ローパスフィルタ10を、Y軸方向に光の分離能を有する第1の光学ローパスフィルタ10とし、光学ローパスフィルタ62を、X軸方向に光の分離能を有する第2の光学ローパスフィルタ62として説明する。また、本実施形態が、第2の実施形態と異なるところは、第2の光学ローパスフィルタ62は、液晶層を含まず、分離距離が固定されるところである。例えば、第2の光学ローパスフィルタ62は、第1の分離素子11と同じ構成を有し、第1の分離素子11に対してZ軸方向を回転軸として90°回転して配置されるものと同等のものであってもよい。
(Third embodiment)
FIG. 7 is a conceptual diagram illustrating a configuration example of the optical low-pass filter 60 according to the present embodiment, and includes the optical low-pass filter 10 according to the first embodiment, the polarization conversion element 51, and the optical low-pass filter 62. . In the present embodiment, the optical low-pass filter 10 is the first optical low-pass filter 10 having light separation in the Y-axis direction, and the optical low-pass filter 62 is the second optical low-pass filter having light separation in the X-axis direction. The optical low-pass filter 62 will be described. Further, the present embodiment is different from the second embodiment in that the second optical low-pass filter 62 does not include a liquid crystal layer and the separation distance is fixed. For example, the second optical low-pass filter 62 has the same configuration as that of the first separation element 11 and is arranged by being rotated 90 ° with respect to the first separation element 11 about the Z-axis direction as a rotation axis. It may be equivalent.
 次に、入射する光が光学ローパスフィルタ60を透過する光路における偏光状態について説明する。図8A乃至8Cは、光学ローパスフィルタ60に入射する光の経路および偏光状態を示す模式図であり、ここでは、電圧非印加時に液晶層24が水平配向されているとともに液晶分子の長軸方向が厚さ方向を軸に90°ツイストされているTN液晶が用いられているものとして説明する。図8Aは、電圧印加時における光の経路および偏光状態を示す模式図であって、液晶層24における液晶分子の長軸方向は、厚さ方向に揃っている。図8Aにおいて、光学ローパスフィルタ60に入射する光はランダムな偏光状態であって、Z軸方向に沿って進行する。第2の実施形態と同様に、第1の光学ローパスフィルタ10において、X軸方向の直線偏光の光と、Y軸方向の直線偏光の光とが、分離距離LSYだけ隔てて透過する。また、図8Bに示す模式図おいて、第1の直線偏光の光および第2の直線偏光の光が、第1の光学ローパスフィルタ10で分離され、それぞれの位置10a、10bから出射し、その間隔が分離距離LSYに相当する。 Next, the polarization state in the optical path through which incident light passes through the optical low-pass filter 60 will be described. 8A to 8C are schematic views showing the path and polarization state of light incident on the optical low-pass filter 60. Here, the liquid crystal layer 24 is horizontally aligned when no voltage is applied, and the major axis direction of the liquid crystal molecules is In the following description, it is assumed that a TN liquid crystal twisted by 90 ° about the thickness direction is used. FIG. 8A is a schematic diagram showing a light path and a polarization state when a voltage is applied, and the major axis direction of the liquid crystal molecules in the liquid crystal layer 24 is aligned with the thickness direction. In FIG. 8A, the light incident on the optical low-pass filter 60 is in a random polarization state and travels along the Z-axis direction. Similar to the second embodiment, in the first optical low-pass filter 10, linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction are transmitted with a separation distance LSY therebetween. Further, in the schematic diagram shown in FIG. 8B, the first linearly polarized light and the second linearly polarized light are separated by the first optical low-pass filter 10 and emitted from the respective positions 10a and 10b. The interval corresponds to the separation distance LSY .
 そして、第1の直線偏光の光の光路63aと第2の直線偏光の光の光路64aと、に分離された光は、偏光変換素子51に入射する。偏光変換素子51に入射した光のうち、光路63aに相当する光は、第1の直線偏光の光の成分と第2の直線偏光の光の成分とが略同一に混在した光として光路63bを辿って第2の光学ローパスフィルタ62に入射する。そして、光路64aに相当する光は、第1の直線偏光の光の成分と第2の直線偏光の光の成分とが略同一に混在した光として光路64bを辿って第2の光学ローパスフィルタ62に入射する。 Then, the light separated into the optical path 63 a of the first linearly polarized light and the optical path 64 a of the second linearly polarized light is incident on the polarization conversion element 51. Of the light incident on the polarization conversion element 51, the light corresponding to the optical path 63a is transmitted through the optical path 63b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner. Traces and enters the second optical low-pass filter 62. The light corresponding to the optical path 64a follows the optical path 64b as light in which the first linearly polarized light component and the second linearly polarized light component are mixed substantially in the same manner, and the second optical low-pass filter 62. Is incident on.
 このとき、第2の光学ローパスフィルタ62は、X軸方向の直線偏光の光と、Y軸方向の直線偏光の光とを、X軸方向に分離距離LFXだけ隔てるように分離する。なお、分離距離LFXの‘F’は分離距離が固定されていることを意味する。また、図8Cに示す模式図において、光路63bに相当する光が、第2の光学ローパスフィルタ62で分離され、それぞれの位置62a、62bから出射し、その間隔が分離距離LFXに相当する。同様に、光路64bに相当する光が、第2の光学ローパスフィルタ62で分離され、それぞれの位置62c、62dから出射し、その間隔も分離距離LFXに相当する。 At this time, the second optical low-pass filter 62 separates the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction so as to be separated by a separation distance L FX in the X-axis direction. Note that “F” in the separation distance L FX means that the separation distance is fixed. In the schematic diagram shown in FIG. 8C, light corresponding to the optical path 63b is separated by the second optical low-pass filter 62 and emitted from the respective positions 62a and 62b, and the interval corresponds to the separation distance L FX . Similarly, the light corresponding to the optical path 64b is separated by the second optical low-pass filter 62 and emitted from the respective positions 62c and 62d, and the interval thereof also corresponds to the separation distance LFX .
 本実施形態も、第2の実施形態と同様に、イメージセンサに対して2次元的にモアレや偽色を低減させることができるが、例えば、X軸方向に比べてY軸方向のモアレや偽色の低減が優先される場合、本実施形態のようにY軸方向に対して分離距離を可変させ、X軸方向に対して分離距離を固定させる光学ローパスフィルタ60としてもよい。この場合、光学ローパスフィルタ全体の小型化が実現でき、かつ、2次元的にモアレや偽色を低減させることができる。また、分離距離を固定させる方向はX軸方向に限らず、Y軸方向であってもよく、この他に、図7において、第1の光学ローパスフィルタ10に位置する光学ローパスフィルタが、分離距離が固定される機能を有し、第2の光学ローパスフィルタ62に位置する光学ローパスフィルタが、分離距離が可変する機能を有するものであってもよい。 This embodiment can also reduce moiré and false color two-dimensionally with respect to the image sensor as in the second embodiment. For example, moiré or false in the Y-axis direction compared to the X-axis direction can be used. When priority is given to color reduction, an optical low-pass filter 60 that varies the separation distance in the Y-axis direction and fixes the separation distance in the X-axis direction as in the present embodiment may be used. In this case, the entire optical low-pass filter can be downsized, and moire and false colors can be reduced two-dimensionally. In addition, the direction in which the separation distance is fixed is not limited to the X-axis direction, and may be the Y-axis direction. In addition, in FIG. 7, the optical low-pass filter located in the first optical low-pass filter 10 has a separation distance. The optical low-pass filter positioned in the second optical low-pass filter 62 may have a function of varying the separation distance.
 次に、電圧非印加時の光の状態について説明する。第1の光学ローパスフィルタ10は、電圧非印加時において、第1の実施形態のように、電圧印加時よりも大きい分離距離を隔てて、第1の直線偏光の光と第2の直線偏光の光を分離する。図9A乃至9Dは、光学ローパスフィルタ60の電圧印加時、電圧非印加時における、第1の光学ローパスフィルタ10の出射面、第2の光学ローパスフィルタ62の出射面の光の位置および偏光状態を示す図である。具体的に、図9Aは、電圧印加時の第1の光学ローパスフィルタ10の出射面の光の位置および偏光状態、図9Bは、電圧印加時の第2の光学ローパスフィルタ62の出射面の光の位置および偏光状態で、図8Bおよび図8Cと同じものを示すものである。また、図9Aおよび図9Bと比較するように、図9Cは、電圧非印加時の第1の光学ローパスフィルタ10の出射面の光の位置および偏光状態、図9Dは、電圧非印加時の第2の光学ローパスフィルタ62の出射面の光の位置および偏光状態を示すものである。 Next, the state of light when no voltage is applied will be described. When no voltage is applied, the first optical low-pass filter 10 separates the first linearly polarized light and the second linearly polarized light with a separation distance larger than that when a voltage is applied, as in the first embodiment. Separate the light. 9A to 9D show the positions and polarization states of light on the exit surface of the first optical low-pass filter 10 and the exit surface of the second optical low-pass filter 62 when the voltage is applied to the optical low-pass filter 60 and when no voltage is applied. FIG. Specifically, FIG. 9A shows the position and polarization state of light on the exit surface of the first optical low-pass filter 10 when a voltage is applied, and FIG. 9B shows the light on the exit surface of the second optical low-pass filter 62 when a voltage is applied. This shows the same position and polarization state as in FIGS. 8B and 8C. 9A and 9B, FIG. 9C shows the position and polarization state of the light on the exit surface of the first optical low-pass filter 10 when no voltage is applied, and FIG. 9D shows the first state when no voltage is applied. 2 shows the position and polarization state of light on the exit surface of the second optical low-pass filter 62.
 また、図9Cにおいて、第1の光学ローパスフィルタ10を透過する、第1の直線偏光の光の位置10cと、第2の直線偏光の光の位置10dとの間隔を分離距離LMYとすると、LMY>LSYとなる。図9Dにおいて、第2の光学ローパスフィルタ62の透過面における、第1の直線偏光の光62eと、第2の直線偏光の光の位置62fとの間隔、第1の直線偏光の光62gと、第2の直線偏光の光の位置62hとの間隔が等しく、分離距離LFXとなる。このように、光学ローパスフィルタ60に入射する光は4本の光となって、2次元的に分離されて出射し、電圧印加時、電圧非印加時によって、一方の軸方向に分離距離を変えることができる。 Further, in FIG. 9C, when the distance between the position 10c of the first linearly polarized light passing through the first optical low-pass filter 10 and the position 10d of the second linearly polarized light is defined as a separation distance LMY , L MY > L SY . 9D, the distance between the first linearly polarized light 62e and the second linearly polarized light position 62f on the transmission surface of the second optical low-pass filter 62, the first linearly polarized light 62g, The distance between the second linearly polarized light and the position 62h is equal, and the separation distance L FX is obtained. In this way, the light incident on the optical low-pass filter 60 becomes four light beams that are two-dimensionally separated and emitted, and the separation distance is changed in one axial direction depending on whether a voltage is applied or not. be able to.
 また、本実施形態において、第1の実施形態と同様に、デジタル一眼レフカメラにおいて、分離距離LSY、LMYは、LMY>LSYの関係を満たし、LSYが2~10μm程度の分離距離を有し、LMYが10~32μmの分離距離を有するとよい。さらに、LとLとのうち、小さい方の分離距離を基準としたとき、大きいほうの分離距離が1.3~3となるように、各分離素子の複屈折性材料、厚さ、異常光屈折率軸の角度を調整するとよい。 In the present embodiment, as in the first embodiment, in the digital single-lens reflex camera, the separation distances L SY and L MY satisfy the relationship of L MY > L SY and L SY is about 2 to 10 μm. has a distance, L MY is may have a separation distance of 10 ~ 32 [mu] m. Further, the birefringent material, the thickness, and the thickness of each separation element are set so that the larger separation distance is 1.3 to 3 with reference to the smaller separation distance of L 1 and L 2 . The angle of the extraordinary light refractive index axis may be adjusted.
 (第4の実施形態)
  図10A、図10Bは、本実施形態に係る光学ローパスフィルタ70の構成例、そして光学ローパスフィルタ70における光の経路および偏光状態を示す模式図である。光学ローパスフィルタ70は、第1の分離素子71、偏光制御部20、第2の分離素子72を有し、外部からの光はこの順(Z方向)に入射するものとする。光学ローパスフィルタ70において、第1の分離素子71と第2の分離素子72は、同じ複屈折性材料から構成されるとともに、これらの厚さが同じであるものとする。つまり、第1の分離素子71の厚さをd、第2の分離素子72の厚さをdとするとき、d=dであって、上記の式(2)が上記の式(1)と同じ値となる。したがって、分離距離Lと分離距離Lとは等しいところが、第1の実施形態に係る光学ローパスフィルタ10とは異なる点である。なお、第1の分離素子71の複屈折性材料と第2の分離素子72の複屈折性材料と、が異なる場合であっても、L=Lであればよい。また、偏光制御部20および電圧制御部13は、第1の実施形態に係る光学ローパスフィルタ10と同じものであり、ここでは説明を省略する。
(Fourth embodiment)
10A and 10B are schematic diagrams illustrating a configuration example of the optical low-pass filter 70 according to the present embodiment, and a light path and a polarization state in the optical low-pass filter 70. The optical low-pass filter 70 includes a first separation element 71, a polarization control unit 20, and a second separation element 72, and light from the outside is incident in this order (Z direction). In the optical low-pass filter 70, the first separation element 71 and the second separation element 72 are made of the same birefringent material and have the same thickness. That is, when the thickness of the first separation element 71 is d 1 and the thickness of the second separation element 72 is d 2 , d 1 = d 2 , and the above expression (2) is the above expression. It becomes the same value as (1). Therefore, the separation distance L 1 and the separation distance L 2 are the same as the optical low-pass filter 10 according to the first embodiment. Even when the birefringent material of the first separation element 71 and the birefringent material of the second separation element 72 are different, L 1 = L 2 may be satisfied. Further, the polarization control unit 20 and the voltage control unit 13 are the same as the optical low-pass filter 10 according to the first embodiment, and a description thereof is omitted here.
 また、厚さ方向に対する、第1の分離素子71の図示しない異常光屈折率軸の角度をθ、厚さ方向に対する、第2の分離素子72の図示しない異常光屈折率軸の角度をθとすると、θ=-θの関係を満たすものとする。そして、図10Aは、電圧印加時における光の経路および偏光状態を示す模式図であって、このとき、液晶分子の長軸方向は、厚さ方向に揃っている。一方、図10Bは、電圧非印加時における光の経路および偏光状態を示す模式図であって、このとき、液晶分子の長軸方向は、水平配向されているとともに、厚さ方向を軸に90°ツイストしている。 The angle of the extraordinary light refractive index axis (not shown) of the first separation element 71 with respect to the thickness direction is θ 1 , and the angle of the extraordinary light refractive index axis (not shown) of the second separation element 72 with respect to the thickness direction is θ When 2, and satisfy the relation of θ 1 = -θ 2. FIG. 10A is a schematic diagram showing a light path and a polarization state when a voltage is applied. At this time, the major axis direction of the liquid crystal molecules is aligned with the thickness direction. On the other hand, FIG. 10B is a schematic diagram showing a light path and a polarization state when no voltage is applied. At this time, the major axis direction of the liquid crystal molecules is horizontally aligned and 90 ° with the thickness direction as an axis. ° Twisted.
 ここで、図10Aの電圧印加時について考える。Z軸方向に沿って、第1の分離素子71に入射するランダムな偏光の光は、X軸方向の直線偏光の光とY軸方向の直線偏光の光と、に上記の式(1)に基づいて分離距離Lを隔てて偏光制御部20に入射する。電圧印加時において、液晶分子の長軸方向は液晶層24の厚さ方向に配向されているので、いずれの直線偏光の光とも偏光状態を変えずに偏光制御部20を出射する。そして、偏光制御部20を出射したX軸方向の直線偏光の光とY軸方向の直線偏光の光は、第2の分離素子72に入射する。第2の分離素子72では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、第1の分離素子71で分離した+Y方向とは反対方向、つまり-Y方向に進行方向が変えられて出射する。そのため、電圧印加時における光学ローパスフィルタ70全体の分離距離としては、|L-L|となる。ここで、d=dとしていることから、L=Lであるので、分離距離は略0となる。 Here, consider the voltage application in FIG. 10A. Randomly polarized light incident on the first separation element 71 along the Z-axis direction includes linearly polarized light in the X-axis direction and linearly polarized light in the Y-axis direction according to the above equation (1). based enters the polarization control unit 20 at a separation distance L 1 in. At the time of voltage application, the major axis direction of the liquid crystal molecules is aligned in the thickness direction of the liquid crystal layer 24, so that any linearly polarized light is emitted from the polarization controller 20 without changing the polarization state. Then, the linearly polarized light in the X-axis direction and the linearly polarized light in the Y-axis direction emitted from the polarization controller 20 are incident on the second separation element 72. In the second separation element 72, the linearly polarized light in the X-axis direction is transmitted in a straight line, and the linearly polarized light in the Y-axis direction is transmitted through the first separation element 71 with reference to the optical path of the linearly polarized light in the X-axis direction. The direction of travel is changed to the direction opposite to the + Y direction separated in step 1, that is, the −Y direction, and the light is emitted. Therefore, the separation distance of the entire optical low-pass filter 70 when a voltage is applied is | L 1 −L 2 |. Here, since d 1 = d 2 , since L 1 = L 2 , the separation distance is substantially zero.
 一方、図10Bの電圧非印加時については、第1の実施形態に係る光学ローパスフィルタ10と同じ光学作用をする。つまり、偏光制御部20において、液晶分子は液晶層24内で90°ツイストするように配向されているので、X軸方向の直線偏光の光はY軸方向の直線偏光の光に変換(旋光)されるとともに、Y軸方向の直線偏光の光はX軸方向の直線偏光の光に変換(旋光)される。このように、電圧非印加時では、偏光制御部20に入射した直線偏光の光がいずれも90°回転して出射するので、図10Bに示す軌道を辿るように、第1の分離素子71で分離した2つの光は、第2の分離素子72でさらに遠ざけるように分離する。そのため、電圧非印加時における光学ローパスフィルタ70全体の分離距離としては、L+L=2・Lとなる。 On the other hand, when the voltage is not applied in FIG. 10B, the optical action is the same as that of the optical low-pass filter 10 according to the first embodiment. That is, in the polarization controller 20, the liquid crystal molecules are aligned so as to be twisted by 90 ° in the liquid crystal layer 24, so that linearly polarized light in the X-axis direction is converted into linearly polarized light in the Y-axis direction (optical rotation). At the same time, the linearly polarized light in the Y-axis direction is converted (rotated) into linearly polarized light in the X-axis direction. As described above, when no voltage is applied, the linearly polarized light incident on the polarization controller 20 is rotated by 90 ° and emitted, so that the first separation element 71 follows the trajectory shown in FIG. 10B. The separated two lights are separated by the second separation element 72 so as to be further away. Therefore, the separation distance of the entire optical low-pass filter 70 when no voltage is applied is L 1 + L 2 = 2 · L 1 .
 したがって、電圧印加時と電圧非印加時において、分離距離を0と、2・Lと切り替えることができる。例えば、デジタルカメラの静止画モードにおいて、撮像対象となる被写体としてモアレや偽色が発生していない場合、高精度の画像を得るために、分離距離を0とし、実質的に光学ローパスフィルタを通過しない状態とすることができる。一方、撮像対象となる被写体としてモアレや偽色が発生している場合、分離距離を2・Lとして、適切にモアレや偽色を低減するように切り替えをすることができる。なお、本実施形態に係る光学ローパスフィルタ70のように、分離距離を0と、2・Lと切り替えるのは静止画モードに限らず、動画モードであってもよい。さらに、分離距離0を静止画モード、分離距離2・Lを動画モードとしてもよい。 Therefore, the separation distance can be switched between 0 and 2 · L 1 when the voltage is applied and when the voltage is not applied. For example, in the still image mode of a digital camera, when no moiré or false color is generated as a subject to be imaged, the separation distance is set to 0 and the optical low-pass filter is substantially passed to obtain a highly accurate image. It can be in a state that does not. On the other hand, when moire or false color is generated as a subject to be imaged, the separation distance can be set to 2 · L 1 so that the moire or false color can be appropriately reduced. Note that, as in the optical low-pass filter 70 according to the present embodiment, switching the separation distance between 0 and 2 · L 1 is not limited to the still image mode but may be the moving image mode. Further, the separation distance 0 may be set to the still image mode, and the separation distance 2 · L 1 may be set to the moving image mode.
 また、分離距離を0と、2・Lと切り替えるものとしては、図10A、図10Bに示す光学ローパスフィルタ70のようにY軸方向への分離のみに限らない。例えば、第2の実施形態に係る光学ローパスフィルタ50に基づいて本実施形態を適用することもできる。つまり、光学ローパスフィルタ70を光路中に2つ配置するとともに、2つの光学ローパスフィルタ70の間の光路中に偏光変換素子を配置し、一方の光学ローパスフィルタはY軸方向に、他方の光学ローパスフィルタはX軸方向に光を分離させる機能を有するものであってもよい。この場合、2つの光学ローパスフィルタ70のうち一方は、他方のそれを、Z軸方向を回転軸として90°回転させる位置関係に相当する。この構成においては、X軸方向についても同様に分離距離を、0と有限の値と、に切り替えができる、2次元的な光学ローパスフィルタとすることができる。 Further, switching the separation distance between 0 and 2 · L 1 is not limited to the separation in the Y-axis direction as in the optical low-pass filter 70 shown in FIGS. 10A and 10B. For example, the present embodiment can be applied based on the optical low-pass filter 50 according to the second embodiment. That is, two optical low-pass filters 70 are arranged in the optical path, and a polarization conversion element is arranged in the optical path between the two optical low-pass filters 70. One optical low-pass filter is arranged in the Y-axis direction and the other optical low-pass filter is arranged in the optical path. The filter may have a function of separating light in the X-axis direction. In this case, one of the two optical low-pass filters 70 corresponds to a positional relationship in which the other is rotated 90 ° with the Z-axis direction as the rotation axis. In this configuration, a two-dimensional optical low-pass filter that can similarly switch the separation distance between 0 and a finite value in the X-axis direction can be obtained.
 さらに、第3の実施形態に係る光学ローパスフィルタ60に基づいて本実施形態を適用することもできる。つまり、光学ローパスフィルタ70と、第3の実施形態の第2の光学ローパスフィルタ62に相当する光学ローパスフィルタと、を配置するとともに、これらの間に偏光変換素子を配置し、一方の光学ローパスフィルタは、Y軸方向に、0を含む2つの分離距離の値に切り替える機能を有し、他方の光学ローパスフィルタはX軸方向に光を一定の分離距離(≠0)だけ分離させる機能を有するものであってもよい。 Furthermore, the present embodiment can be applied based on the optical low-pass filter 60 according to the third embodiment. That is, the optical low-pass filter 70 and the optical low-pass filter corresponding to the second optical low-pass filter 62 of the third embodiment are disposed, and the polarization conversion element is disposed therebetween, and one optical low-pass filter is disposed. Has a function of switching to two separation distance values including 0 in the Y-axis direction, and the other optical low-pass filter has a function of separating light by a certain separation distance (≠ 0) in the X-axis direction. It may be.
 (第5の実施形態)
  図11乃至図13は、本実施形態に係る光学ローパスフィルタ80の構成例、そして光学ローパスフィルタ80における光の経路および偏光状態を示す模式図である。光学ローパスフィルタ80は、第1の分離素子81、第1の偏光制御部91、第2の分離素子82、第2の偏光制御部92、第3の分離素子83、を有し、外部からの光はこの順(Z方向)に入射するものとする。また、第1の偏光制御部91、第2の偏光制御部92は、電圧制御部93より印加する電圧の大きさによって、入射する光の偏光状態を変えずに出射するかまたは、偏光状態を変えて出射する光変調機能を有する。ここで、第1の偏光制御部91、第2の偏光制御部92は、第1の実施形態に係る光学ローパスフィルタ10の偏光制御部20と同じ構成を有し、電圧非印加時において、液晶分子の長軸方向は、水平配向されているとともに厚さ方向を軸に90°ツイストしているものとする。
(Fifth embodiment)
FIGS. 11 to 13 are schematic diagrams illustrating a configuration example of the optical low-pass filter 80 according to the present embodiment, and a light path and a polarization state in the optical low-pass filter 80. The optical low-pass filter 80 includes a first separation element 81, a first polarization control unit 91, a second separation element 82, a second polarization control unit 92, and a third separation element 83. It is assumed that light is incident in this order (Z direction). Further, the first polarization control unit 91 and the second polarization control unit 92 emit light without changing the polarization state of incident light or change the polarization state depending on the voltage applied from the voltage control unit 93. It has a light modulation function that emits light by changing. Here, the first polarization control unit 91 and the second polarization control unit 92 have the same configuration as the polarization control unit 20 of the optical low-pass filter 10 according to the first embodiment, and liquid crystal is applied when no voltage is applied. The major axis direction of the molecule is assumed to be horizontally oriented and twisted by 90 ° about the thickness direction.
 第1の分離素子81は、厚さをd、常光屈折率をnoA、異常光屈折率をneA、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(5)を用いることができる。また、第2の分離素子82は、厚さをd、常光屈折率をnoB、異常光屈折率をneB、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(6)を用いることができ、第3の分離素子83は、厚さをd、常光屈折率をnoC、異常光屈折率をneC、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(7)を用いることができる。 The first separation element 81 has a thickness d A , an ordinary light refractive index n oA , an extraordinary light refractive index n eA , and an extraordinary light refractive index axis and a Z-axis direction that is a direction in which incident light travels. When the angle is θ A , the following equation (5) can be used as the separation distance L A. The second separation element 82, the thickness d B, ordinary refractive index n oB, the extraordinary refractive index n eB, the Z-axis direction in which light travels to incident extraordinary refractive index axis There the angle of theta B, that when the separation distance L B may use a formula (6) below, the third splitting element 83, the thickness d C, ordinary refractive index n oC, When the extraordinary refractive index is n eC and the angle between the extraordinary refractive index axis and the Z-axis direction, which is the direction in which incident light travels, is θ C , the separation distance L C is expressed by the following equation (7). Can be used.
Figure JPOXMLDOC01-appb-M000019
     
    
Figure JPOXMLDOC01-appb-M000019
     
    
Figure JPOXMLDOC01-appb-M000020
     
    
Figure JPOXMLDOC01-appb-M000020
     
    
Figure JPOXMLDOC01-appb-M000021
     
    
Figure JPOXMLDOC01-appb-M000021
     
    
 また、ここでは、光学ローパスフィルタ80において、第1の分離素子81、第2の分離素子82および第3の分離素子83は、同じ複屈折性材料から構成されるとともに、例えば、第1の分離素子81の厚さは、第2の分離素子82の厚さと第3の分離素子83の厚さと、を加えたものと同じとする。つまり、第1の分離素子81の厚さd、第2の分離素子82の厚さd、第3の分離素子83の厚さをdの関係が、d=d+dであり、同時にL=L+Lの関係を有する。なお、第1の分離素子81の複屈折性材料、第2の分離素子82の複屈折性材料および第3の分離素子83の複屈折性材料と、が異なる場合であっても、L=L+Lであればよい。 Here, in the optical low-pass filter 80, the first separation element 81, the second separation element 82, and the third separation element 83 are made of the same birefringent material and, for example, the first separation element 81 The thickness of the element 81 is the same as the sum of the thickness of the second separation element 82 and the thickness of the third separation element 83. In other words, the thickness d A of the first separation element 81, the thickness d B of the second separation element 82, the third thickness relationship d C separation element 83, by d A = d B + d C There, at the same time it has a relationship of L a = L B + L C . Even when the birefringent material of the first separating element 81, the birefringent material of the second separating element 82, and the birefringent material of the third separating element 83 are different, L A = it may be a L B + L C.
 また、この場合、大小関係としては、d>d>dの関係となり、同時に、L>L>Lの関係を有する。このような構成を有する光学ローパスフィルタ80は、電圧制御部93によって、第1の偏光制御部91と第2の偏光制御部92に印加する電圧によって、少なくとも3つの異なる値の分離距離を得ることができる。ここでは、例として、異常光屈折率軸の角度θ、θおよびθの符号が同一になる構成について考えるが、これらの角度の符号は任意に設定することができる。 In this case, the magnitude relationship is d A > d B > d C , and at the same time, L A > L B > L C. The optical low-pass filter 80 having such a configuration obtains separation distances of at least three different values by the voltage control unit 93 according to the voltages applied to the first polarization control unit 91 and the second polarization control unit 92. Can do. Here, as an example, a configuration in which the signs of the extraordinary refractive index axes θ A , θ B and θ C are the same is considered, but the signs of these angles can be arbitrarily set.
 次に、光学ローパスフィルタ80の動作について説明する。まず、図11は、第1の偏光制御部91および第2の偏光制御部92が、電圧印加時であるときにおける、光の経路および偏光状態を示す模式図であり、いずれも、液晶分子の長軸方向は、厚さ方向に揃っている。ここで、Z軸方向に沿って、第1の分離素子81に入射するランダムな偏光の光は、X軸方向の直線偏光の光とY軸方向の直線偏光の光と、に上記の式(5)に基づいて分離距離Lを隔てて第1の偏光制御部91に入射する。そして、第1の偏光制御部91では、いずれの直線偏光の光とも偏光状態を変えずに出射し、第2の分離素子82に入射する。 Next, the operation of the optical low-pass filter 80 will be described. First, FIG. 11 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 and the second polarization control unit 92 are at the time of voltage application. The major axis direction is aligned with the thickness direction. Here, the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light). It enters the first polarization control unit 91 at a separation distance L a on the basis of 5). Then, the first polarization controller 91 emits any linearly polarized light without changing the polarization state, and enters the second separation element 82.
 第2の分離素子82では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(6)に基づき、+Y方向に分離距離Lを隔てて第2の偏光制御部92に入射する。なお、このときの分離距離は、L+Lである。そして、第2の偏光制御部92では、いずれの直線偏光の光とも偏光状態を変えずに出射し、第3の分離素子83に入射する。第3の分離素子83では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(7)に基づき、+Y方向に分離距離Lを隔てて出射する。したがって、第1の偏光制御部91および第2の偏光制御部92が、いずれも電圧印加時においては、光学ローパスフィルタ80全体の分離距離としては、L+L+Lを得ることができる。 In the second separation element 82, the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction. based on and enters the second polarization control unit 92 at a separation distance L B in the + Y direction. Note that the separation distance at this time is L A + L B. Then, the second polarization controller 92 emits any linearly polarized light without changing the polarization state and enters the third separation element 83. In the third separation element 83, linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction. based on, and emits at a separation distance L C in the + Y direction. Thus, the first polarization control unit 91 and the second polarization control unit 92, at the time of any voltage applied, as the separation distance of the entire optical low-pass filter 80, it is possible to obtain the L A + L B + L C .
 図12は、第1の偏光制御部91および第2の偏光制御部92が、非電圧印加時であるとき、における光の経路および偏光状態を示す模式図であり、いずれも、液晶分子の長軸方向は水平配向されているとともに、厚さ方向を軸に90°ツイストしている。ここで、Z軸方向に沿って、第1の分離素子81に入射するランダムな偏光の光は、X軸方向の直線偏光の光とY軸方向の直線偏光の光と、に上記の式(5)に基づいて分離距離Lを隔てて第1の偏光制御部91に入射する。そして、第1の偏光制御部91では、X軸方向の直線偏光の光はY軸方向の直線偏光の光に変換(旋光)されるとともに、Y軸方向の直線偏光の光はX軸方向の直線偏光の光に変換(旋光)されて出射し、第2の分離素子82に入射する。 FIG. 12 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 and the second polarization control unit 92 are at the time of non-voltage application, both of which are the lengths of liquid crystal molecules. The axial direction is horizontally oriented and twisted by 90 ° about the thickness direction. Here, the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light). It enters the first polarization control unit 91 at a separation distance L a on the basis of 5). In the first polarization controller 91, the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and the linearly polarized light in the Y-axis direction is converted in the X-axis direction. The light is converted (rotated) into linearly polarized light, emitted, and incident on the second separation element 82.
 第2の分離素子82では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(6)に基づき、+Y方向に分離距離Lを隔てて第2の偏光制御部92に入射する。なお、このときの分離距離は、|L-L|である。そして、第2の偏光制御部92では、X軸方向の直線偏光の光はY軸方向の直線偏光の光に変換(旋光)されるとともに、Y軸方向の直線偏光の光はX軸方向の直線偏光の光に変換(旋光)されて出射し、第3の分離素子83に入射する。第3の分離素子83では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(7)に基づき、+Y方向に分離距離Lを隔てて出射する。したがって、第1の偏光制御部91および第2の偏光制御部92が、いずれも非電圧印加時においては、光学ローパスフィルタ80全体の分離距離としては、|L-L+L|を得ることができる。 In the second separation element 82, the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction. based on and enters the second polarization control unit 92 at a separation distance L B in the + Y direction. Note that the separation distance at this time is | L A −L B |. In the second polarization controller 92, the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and the linearly polarized light in the Y-axis direction is converted in the X-axis direction. The light is converted (rotated) into linearly polarized light, emitted, and incident on the third separation element 83. In the third separation element 83, linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction. based on, and emits at a separation distance L C in the + Y direction. Therefore, when the first polarization control unit 91 and the second polarization control unit 92 are both applied with no voltage, the separation distance of the entire optical low-pass filter 80 is obtained as | L A −L B + L C |. be able to.
 図13は、第1の偏光制御部91が非電圧印加時であるとともに、第2の偏光制御部92が電圧印加時であるとき、における光の経路および偏光状態を示す模式図である。このとき、第1の偏光制御部91では、液晶分子の長軸方向が水平配向されているとともに、厚さ方向を軸に90°ツイストしており、第2の偏光制御部92では、液晶分子の長軸方向が厚さ方向に揃っている。ここで、Z軸方向に沿って、第1の分離素子81に入射するランダムな偏光の光は、X軸方向の直線偏光の光とY軸方向の直線偏光の光と、に上記の式(5)に基づいて分離距離Lを隔てて第1の偏光制御部91に入射する。そして、第1の偏光制御部91では、X軸方向の直線偏光の光はY軸方向の直線偏光の光に変換(旋光)されるとともに、Y軸方向の直線偏光の光はX軸方向の直線偏光の光に変換(旋光)されて出射し、第2の分離素子82に入射する。 FIG. 13 is a schematic diagram showing a light path and a polarization state when the first polarization control unit 91 is not applying voltage and the second polarization control unit 92 is applying voltage. At this time, in the first polarization control unit 91, the major axis direction of the liquid crystal molecules is horizontally aligned and twisted by 90 ° about the thickness direction. In the second polarization control unit 92, the liquid crystal molecules Are aligned in the thickness direction. Here, the randomly polarized light incident on the first separation element 81 along the Z-axis direction is expressed by the above formula (X-axis linearly-polarized light and Y-axis-direction linearly polarized light). It enters the first polarization control unit 91 at a separation distance L a on the basis of 5). In the first polarization controller 91, the linearly polarized light in the X-axis direction is converted (rotated) into linearly polarized light in the Y-axis direction, and the linearly polarized light in the Y-axis direction is converted in the X-axis direction. The light is converted (rotated) into linearly polarized light, emitted, and incident on the second separation element 82.
 第2の分離素子82では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(6)に基づき、+Y方向に分離距離Lを隔てて第2の偏光制御部92に入射する。なお、このときの分離距離は、|L-L|である。そして、第2の偏光制御部92では、いずれの直線偏光の光とも偏光状態を変えずに出射し、第3の分離素子83に入射する。第3の分離素子83では、X軸方向の直線偏光の光は直進透過し、Y軸方向の直線偏光の光は、X軸方向の直線偏光の光路を基準にして、上記の式(7)に基づき、+Y方向に分離距離Lを隔てて出射する。したがって、第1の偏光制御部91が電圧非印加時、第2の偏光制御部92が電圧印加時、においては、光学ローパスフィルタ80全体の分離距離としては、|L-L-L|を得ることができる。 In the second separation element 82, the linearly polarized light in the X-axis direction is transmitted straight, and the linearly polarized light in the Y-axis direction is expressed by the above formula (6) with reference to the optical path of the linearly polarized light in the X-axis direction. based on and enters the second polarization control unit 92 at a separation distance L B in the + Y direction. Note that the separation distance at this time is | L A −L B |. Then, the second polarization controller 92 emits any linearly polarized light without changing the polarization state and enters the third separation element 83. In the third separation element 83, linearly polarized light in the X-axis direction travels straight, and linearly polarized light in the Y-axis direction is expressed by the above formula (7) with reference to the optical path of linearly polarized light in the X-axis direction. based on, and emits at a separation distance L C in the + Y direction. Therefore, when the first polarization control unit 91 is not applied with voltage and the second polarization control unit 92 is applied with voltage, the separation distance of the entire optical low-pass filter 80 is | L A −L B −L C | Can be obtained.
 ここで、最初に設定した、L=L+Lの関係を満たすので、光学ローパスフィルタ80全体の分離距離は0となる。なお、L=L+Lの関係を満たす例について説明したが、L、L、Lのうちいずれか1つの分離距離が、残り2つの分離距離の和に等しくなればよい。つまり、L=L+Lの関係を満足してもよい。また、異常光屈折率軸の角度θ、θおよびθの符号が同一の関係を満たす例について説明したが、これに限らず電圧印加時/電圧非印加時の液晶分子の配向状態を考慮して、θ、θおよびθの符号を決定することができる。 Here, initially set, so satisfy the relationship of L A = L B + L C , overall separation distance optical low-pass filter 80 becomes zero. Incidentally, an example is described that satisfy the relation of L A = L B + L C , L A, L B, is one of the separation distance of the L C, or if equal to the sum of the remaining two separation distance. That may satisfy the relationship of L B = L A + L C . In addition, the example in which the signs of the extraordinary refractive index axes θ A , θ B and θ C satisfy the same relationship has been described. In consideration, the signs of θ A , θ B, and θ C can be determined.
 このように、3つの分離素子と2つの偏光制御部を交互に配置し、これらの偏光制御部に電圧制御部93より与える電圧を制御することによって、分離距離を少なくとも3つの値に設定することができる。とくに、この3つの分離距離の値が、少なくとも0を含むようにすることで、例えば、静止画モードで、かつ、撮像対象となる被写体としてモアレや偽色が発生していない場合は、分離距離を0とし、一方、静止画モードで、かつ、モアレや偽色が発生している場合は、分離距離LSY=|L-L+L|とする。このとき、さらに動画モードにおいて、分離距離LMY=L+L+L、とすることで、光学ローパスフィルタ80は、各モードに合わせた自由度の高い構成を得ることができる。 In this way, the separation distance is set to at least three values by alternately arranging the three separation elements and the two polarization control units and controlling the voltage supplied from the voltage control unit 93 to these polarization control units. Can do. In particular, by setting the values of these three separation distances to include at least 0, for example, in the still image mode and when no moire or false color is generated as a subject to be imaged, the separation distance On the other hand, when the still image mode is used and moire or false color is generated, the separation distance L SY = | L A −L B + L C |. At this time, by further setting the separation distance L MY = L A + L B + L C in the moving image mode, the optical low-pass filter 80 can obtain a configuration with a high degree of freedom according to each mode.
 また、本実施形態に係る光学ローパスフィルタ80は、直線偏光の光の成分毎に分離させる方向をY軸方向としたが、これに限らない。例えば、第2の実施形態のように本実施形態を適用することもできる。つまり、光学ローパスフィルタ80を光路中に2つ配置するとともに、2つの光学ローパスフィルタ80の間の光路中に偏光変換素子を配置し、一方の光学ローパスフィルタはY軸方向に、他方の光学ローパスフィルタはX軸方向に光を分離させる機能を有するものであってもよい。この場合、2つの光学ローパスフィルタ80のうち一方は、他方のそれを、Z軸方向を回転軸として90°回転させる位置関係に相当する。この構成においては、X軸方向についても同様に分離距離を、0を含む3つの値に切り替えができる、2次元的な光学ローパスフィルタとすることができる。 In the optical low-pass filter 80 according to the present embodiment, the direction of separation for each linearly polarized light component is the Y-axis direction, but the present invention is not limited to this. For example, the present embodiment can be applied as in the second embodiment. That is, two optical low-pass filters 80 are disposed in the optical path, and a polarization conversion element is disposed in the optical path between the two optical low-pass filters 80. One optical low-pass filter is disposed in the Y-axis direction and the other optical low-pass filter is disposed in the optical path. The filter may have a function of separating light in the X-axis direction. In this case, one of the two optical low-pass filters 80 corresponds to a positional relationship in which the other is rotated by 90 ° about the Z-axis direction as a rotation axis. In this configuration, a two-dimensional optical low-pass filter that can similarly switch the separation distance to three values including 0 in the X-axis direction can be obtained.
 図14は、本実施形態に係る光学ローパスフィルタ120の構成例であって、2次元的な光学ローパスフィルタとしたものである。ここで、上記で説明した光学ローパスフィルタ80を、第1の光学ローパスフィルタ80とすると、光学ローパスフィルタ120は、第1の光学ローパスフィルタ80、偏光変換素子51、第2の光学ローパスフィルタ100を有し、外部からの光はこの順(Z方向)に入射するものとする。そして、第2の光学ローパスフィルタ100は、第4の分離素子104、第3の偏光制御部113、第5の分離素子105、第4の偏光制御部114、第6の分離素子106、を有し、外部からの光はこの順(Z方向)に入射する。なお、偏光変換素子51は、第2の実施形態の偏光変換素子51と同じ効果を与えるものであり、説明を省略する。 FIG. 14 shows a configuration example of the optical low-pass filter 120 according to the present embodiment, which is a two-dimensional optical low-pass filter. Here, if the optical low-pass filter 80 described above is the first optical low-pass filter 80, the optical low-pass filter 120 includes the first optical low-pass filter 80, the polarization conversion element 51, and the second optical low-pass filter 100. It is assumed that light from the outside is incident in this order (Z direction). The second optical low-pass filter 100 includes a fourth separation element 104, a third polarization control unit 113, a fifth separation element 105, a fourth polarization control unit 114, and a sixth separation element 106. However, light from the outside enters in this order (Z direction). The polarization conversion element 51 gives the same effect as the polarization conversion element 51 of the second embodiment, and a description thereof is omitted.
 また、第3の偏光制御部113、第4の偏光制御部114は、電圧制御部115より印加する電圧の大きさによって、入射する光の偏光状態を変えずに出射するかまたは、偏光状態を変えて出射する光変調機能を有する。なお、電圧制御部115は、電圧制御部93の機能を含むものとして考え、図14では、第3の偏光制御部113、第4の偏光制御部114が、いずれも電圧印加時における光路を示したものである。ここで、第3の偏光制御部113、第4の偏光制御部114は、第1の実施形態に係る光学ローパスフィルタ10の偏光制御部20と同じ構成を有し、電圧非印加時において、液晶分子の長軸方向は、水平配向されているとともに厚さ方向を軸に90°ツイストしているものとする。 The third polarization control unit 113 and the fourth polarization control unit 114 emit light without changing the polarization state of incident light or change the polarization state depending on the voltage applied from the voltage control unit 115. It has a light modulation function that emits light by changing. Note that the voltage control unit 115 is considered to include the function of the voltage control unit 93. In FIG. 14, the third polarization control unit 113 and the fourth polarization control unit 114 each indicate an optical path when a voltage is applied. It is a thing. Here, the third polarization control unit 113 and the fourth polarization control unit 114 have the same configuration as the polarization control unit 20 of the optical low-pass filter 10 according to the first embodiment, and liquid crystal is applied when no voltage is applied. The major axis direction of the molecule is assumed to be horizontally oriented and twisted by 90 ° about the thickness direction.
 第4の分離素子104は、厚さをd、常光屈折率をnoD、異常光屈折率をneD、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(8)を用いることができる。また、第5の分離素子105は、厚さをd、常光屈折率をnoE、異常光屈折率をneE、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(9)を用いることができ、第6の分離素子106は、厚さをd、常光屈折率をnoF、異常光屈折率をneF、異常光屈折率軸と入射する光が進行する方向であるZ軸方向とがなす角度をθ、とするとき、分離距離Lは、下記の式(10)を用いることができる。なお、θ、θおよびθは、X-Z平面における、厚さ方向と異常光屈折率軸方向とがなす角度である。 The fourth separation element 104 has a thickness of d D , an ordinary light refractive index of n oD , an extraordinary light refractive index of n eD , and an extraordinary light refractive index axis and a Z-axis direction that is a direction in which incident light travels. When the angle is θ D , the following equation (8) can be used as the separation distance L D. Further, the fifth separation element 105 has a thickness d E , an ordinary light refractive index n oE , an extraordinary light refractive index n eE , an anomalous light refractive index axis, and a Z-axis direction that is a direction in which incident light travels. Is an angle formed by θ E , the following distance ( E ) can be used as the separation distance L E , and the sixth separation element 106 has a thickness d F , an ordinary refractive index n oF , When the extraordinary refractive index is n eF and the angle between the extraordinary refractive index axis and the Z-axis direction, which is the direction in which incident light travels, is θ F , the separation distance L F is expressed by the following equation (10): Can be used. Θ D , θ E and θ E are angles formed by the thickness direction and the extraordinary light refractive index axis direction in the XZ plane.
Figure JPOXMLDOC01-appb-M000022
     
    
Figure JPOXMLDOC01-appb-M000022
     
    
Figure JPOXMLDOC01-appb-M000023
     
    
Figure JPOXMLDOC01-appb-M000023
     
    
Figure JPOXMLDOC01-appb-M000024
     
    
Figure JPOXMLDOC01-appb-M000024
     
    
 また、ここでは、第2の光学ローパスフィルタ100において、第4の分離素子104、第5の分離素子105および第6の分離素子106は、同じ複屈折性材料から構成されるとともに、例えば、第4の分離素子104の厚さは、第5の分離素子105の厚さと第6の分離素子106の厚さと、を加えたものと同じとする。つまり、第4の分離素子104の厚さd、第5の分離素子105の厚さd、第6の分離素子106の厚さdの関係が、d=d+dであり、同時にL=L+Lの関係を有する。なお、第4の分離素子104の複屈折性材料、第5の分離素子105の複屈折性材料および第6の分離素子106の複屈折性材料と、が異なる場合であっても、L=L+Lであればよい。 Here, in the second optical low-pass filter 100, the fourth separation element 104, the fifth separation element 105, and the sixth separation element 106 are made of the same birefringent material. The thickness of the fourth separation element 104 is the same as the sum of the thickness of the fifth separation element 105 and the thickness of the sixth separation element 106. In other words, the thickness d D of the fourth division element 104, the thickness d E of the fifth splitter 105, the relationship between the thickness d F of the sixth separating element 106, be d D = d E + d F At the same time, L D = L E + L F. Even if the birefringent material of the fourth separation element 104, the birefringence material of the fifth separation element 105, and the birefringence material of the sixth separation element 106 are different, L D = L E + L F may be used.
 また、この場合、大小関係としては、d>d>dの関係となり、同時に、L>L>Lの関係を有する。このような構成を有する第2の光学ローパスフィルタ100は、電圧制御部115によって、第3の偏光制御部113と第4の偏光制御部114に印加する電圧によって、X軸方向に対して、少なくとも3つの異なる値の分離距離を得ることができる。また、異常光屈折率軸の角度θ、θおよびθの符号が同一になる例について説明したが、これに限らず、電圧印加時/電圧非印加時の液晶分子の配向状態を考慮して、θ、θおよびθの符号を決定することができる。なお、L=L+Lの関係を満たす例について説明したが、L、L、Lのうちいずれか1つの分離距離が、残り2つの分離距離の和に等しくなればよい。つまり、L=L+Lの関係を満足してもよい。 In this case, the magnitude relationship is d D > d E > d F , and at the same time, L D > L E > L F. The second optical low-pass filter 100 having such a configuration has at least a voltage applied to the third polarization control unit 113 and the fourth polarization control unit 114 by the voltage control unit 115 with respect to the X-axis direction. Three different values of separation distance can be obtained. Further, an example in which the signs of the extraordinary refractive index axes θ D , θ E, and θ F are the same has been described, but this is not a limitation, and the orientation state of liquid crystal molecules at the time of voltage application / voltage non-application is considered. Thus, the signs of θ D , θ E and θ F can be determined. Incidentally, an example is described which satisfies the relation L D = L E + L F , L D, L E, is one of the separation distance of the L F, it becomes equal to the sum of the remaining two separation distance. That may satisfy the relationship L E = L D + L F .
 また、本実施形態に係る光学ローパスフィルタは、少なくとも同一の分離方向において少なくとも3つの分離距離の値を切り替えることができる一方で、分離素子が少なくとも3つ、偏光制御部となる液晶素子が少なくとも2つ必要になり、厚さが増大する。そのため、例えば、第1の実施形態に係るローパスフィルタ15の構成に基づき、水晶等の分離素子によって、液晶素子の液晶層を挟持する構成とすると、薄型化が実現できるので好ましい。 The optical low-pass filter according to this embodiment can switch at least three separation distance values in at least the same separation direction, while at least three separation elements and at least two liquid crystal elements serving as a polarization control unit. One, and the thickness increases. Therefore, for example, based on the configuration of the low-pass filter 15 according to the first embodiment, a configuration in which the liquid crystal layer of the liquid crystal element is sandwiched by a separation element such as a crystal is preferable because the thickness can be reduced.
 さらに、図14のような光学ローパスフィルタ120に限らず、第3の実施形態に基づいて本実施形態を適用することもできる。つまり、光学ローパスフィルタ80と、第3の実施形態の第2の光学ローパスフィルタ62に相当する光学ローパスフィルタと、を配置するとともに、これらの間に偏光変換素子を配置し、一方の光学ローパスフィルタは、Y軸方向に、0を含む3つの分離距離の値に切り替える機能を有し、他方の光学ローパスフィルタはX軸方向に光を一定の分離距離(≠0)だけ分離させる機能を有するものであってもよい。また、この組み合わせに限らず、2つの分離方向が設定されて2次元的に機能する光学ローパスフィルタとしては、一方の分離方向が分離距離0を含む3値の切り替えができ、他方の分離方向が分離距離0を含むまたは、含まない2値の切り替えができるものであってもよい。そして、各分離方向の各分離距離は、適宜、設計することができる。 Furthermore, the present embodiment can be applied not only to the optical low-pass filter 120 as shown in FIG. 14 but also based on the third embodiment. That is, the optical low-pass filter 80 and the optical low-pass filter corresponding to the second optical low-pass filter 62 of the third embodiment are disposed, and the polarization conversion element is disposed therebetween, and one optical low-pass filter is disposed. Has a function of switching to three separation distance values including 0 in the Y-axis direction, and the other optical low-pass filter has a function of separating light by a certain separation distance (≠ 0) in the X-axis direction. It may be. In addition to this combination, as an optical low-pass filter that functions two-dimensionally by setting two separation directions, one separation direction can be switched between three values including a separation distance 0, and the other separation direction is It may be one that can switch between binary values including or not including the separation distance 0. And each separation distance of each separation direction can be designed suitably.
 (第6の実施形態)
 図15は、本実施形態に係る光学ローパスフィルタ130の構成例を示す模式図である。光学ローパスフィルタ130は、第1の光学ローパスフィルタ10と第2の光学ローパスフィルタ30とを有するが、これらは、第2の実施形態の光学ローパスフィルタ50における第1の光学ローパスフィルタ10および第2の光学ローパスフィルタ30と同じである。したがって、第1の光学ローパスフィルタ10および第2の光学ローパスフィルタ30を構成する各部位は、第2の実施形態と同じ部号を付して説明の重複を避ける。
(Sixth embodiment)
FIG. 15 is a schematic diagram illustrating a configuration example of the optical low-pass filter 130 according to the present embodiment. The optical low-pass filter 130 includes a first optical low-pass filter 10 and a second optical low-pass filter 30, which are the first optical low-pass filter 10 and the second optical low-pass filter 50 in the optical low-pass filter 50 of the second embodiment. The same as the optical low-pass filter 30 of FIG. Therefore, each part which comprises the 1st optical low-pass filter 10 and the 2nd optical low-pass filter 30 attaches | subjects the same part number as 2nd Embodiment, and avoids duplication of description.
 また、本実施形態に係る光学ローパスフィルタ130は、第1の光学ローパスフィルタ10と第2の光学ローパスフィルタ30との間に、偏光変換素子を配置しない。そして、第1の直線偏光の光と第2の直線偏光の光との分離方向について考えたとき、第1の光学ローパスフィルタ10の分離方向と、第2の光学ローパスフィルタ30の分離方向と、は平行せず、かつ、直交しない関係、つまり、直交しない角度で交差する関係である。具体的に、これらの分離方向がなす角度の関係は、20°~70°の関係であればよく、30°~60°が好ましく、40°~50°がより好ましく、45°であれば最も好ましい。このように、分離方向がなす角度の関係が45°に近づくと、第2の光学ローパスフィルタ30で分離する光の強度が略等しくなるので好ましい。また、この場合、縦縞の画像および横縞の画像に対して発生するモアレに対して効果がある。また、分離方向がなす角度が60°であれば、ハニカム配列の撮像素子に対応できる。 Further, the optical low-pass filter 130 according to the present embodiment does not arrange a polarization conversion element between the first optical low-pass filter 10 and the second optical low-pass filter 30. Then, when considering the separation direction of the first linearly polarized light and the second linearly polarized light, the separation direction of the first optical low-pass filter 10, the separation direction of the second optical low-pass filter 30, and Are not parallel and non-orthogonal, that is, they intersect at a non-orthogonal angle. Specifically, the relationship between the angles formed by these separation directions may be 20 ° to 70 °, preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and most preferably 45 °. preferable. Thus, it is preferable that the relationship between the angles formed by the separation direction approaches 45 ° because the intensity of light separated by the second optical low-pass filter 30 becomes substantially equal. Further, in this case, there is an effect on moire generated with respect to a vertical stripe image and a horizontal stripe image. In addition, if the angle formed by the separation direction is 60 °, it can be applied to an image sensor having a honeycomb arrangement.
 ここで、図15に示す光学ローパスフィルタ130において、第1の光学ローパスフィルタ10は、互いに直交する第1の直線偏光の光と第2の直線偏光の光を、Y方向に分離するように配置されるものとする。一方、第2の光学ローパスフィルタ30は、直交する2つの直線偏光の光を、X-Y平面において、Y方向に対して45°の角度をなす方向に分離するように配置されるものとする。つまり、第2の光学ローパスフィルタ30は、第2の実施形態における第2の光学ローパスフィルタ30の位置に対して、Z軸方向を回転軸として、45°回転した位置に相当する。ここで、第2の光学ローパスフィルタ30において分離する、2つの直線偏光の光を、第3の直線偏光の光および第4の直線偏光の光と定義する。 Here, in the optical low-pass filter 130 shown in FIG. 15, the first optical low-pass filter 10 is arranged so as to separate the first linearly polarized light and the second linearly polarized light orthogonal to each other in the Y direction. Shall be. On the other hand, the second optical low-pass filter 30 is arranged so as to separate two orthogonally polarized light beams in a direction that forms an angle of 45 ° with respect to the Y direction on the XY plane. . That is, the second optical low-pass filter 30 corresponds to a position rotated by 45 ° with respect to the position of the second optical low-pass filter 30 in the second embodiment with the Z-axis direction as the rotation axis. Here, the two linearly polarized light beams separated by the second optical low-pass filter 30 are defined as a third linearly polarized light beam and a fourth linearly polarized light beam.
 次に、光学ローパスフィルタ130の動作について説明する。まず、光学ローパスフィルタ130に入射する光はランダムな偏光状態であって、Z軸方向に沿って進行する。そして、電圧印加時、第1の光学ローパスフィルタ10において、第1の直線偏光(X軸方向の直線偏光)の光と、第2の直線偏光(Y軸方向の直線偏光)の光とを、分離距離LSYだけ隔てて透過する。このように、第1の光学ローパスフィルタ10を透過した2つの光は、それぞれ、第1の直線偏光の光と第2の直線偏光の光として、第2の光学ローパスフィルタ30に入射する。なお、このとき、第1の光学ローパスフィルタ10の出射面における光の位置および偏光状態は、図6Aに示すものに相当する。 Next, the operation of the optical low-pass filter 130 will be described. First, light incident on the optical low-pass filter 130 has a random polarization state and travels along the Z-axis direction. When the voltage is applied, in the first optical low-pass filter 10, the light of the first linearly polarized light (linearly polarized light in the X-axis direction) and the light of the second linearly polarized light (linearly polarized light in the Y-axis direction) are The light is transmitted through a separation distance LSY . As described above, the two lights transmitted through the first optical low-pass filter 10 are incident on the second optical low-pass filter 30 as the first linearly polarized light and the second linearly polarized light, respectively. At this time, the position and polarization state of light on the emission surface of the first optical low-pass filter 10 correspond to those shown in FIG. 6A.
 次に、電圧印加時、第2の光学ローパスフィルタ30に、第1の直線偏光の光および第2の直線偏光の光が入射すると、X-Y平面において、Y軸方向に対して-45°の角度をなす方向の直線偏光の光の成分(「第3の直線偏光の光」とする。)と、Y軸方向に対して+45°の角度をなす方向の直線偏光の光(「第4の直線偏光の光」とする)の成分と、が一定の分離距離だけ隔てて透過する。また、これらの光の成分の具体的な分離距離は、第2の実施形態で説明したLSXと同じ間隔であるが、分離方向は、X-Y平面において、Y軸方向に対して45°の方向に相当する。図16Aは、電圧印加時において、第2の光学ローパスフィルタ30の出射面における光の位置130a、130b、130cおよび130dおよび偏光状態を示すものであって、これが、光学ローパスフィルタ130の光の分離状態を示すものに相当する。 Next, when a voltage is applied, when the first linearly polarized light and the second linearly polarized light are incident on the second optical low-pass filter 30, −45 ° with respect to the Y-axis direction in the XY plane. The linearly polarized light component (referred to as “third linearly polarized light”) and the linearly polarized light in the direction forming an angle of + 45 ° with respect to the Y-axis direction (“4th Component of “linearly polarized light”) and a component separated by a certain separation distance. The specific separation distance of these light components is the same as that of LSX described in the second embodiment, but the separation direction is 45 ° with respect to the Y-axis direction in the XY plane. It corresponds to the direction. FIG. 16A shows the positions 130a, 130b, 130c and 130d of light on the exit surface of the second optical low-pass filter 30 and the polarization state when a voltage is applied. This is the separation of the light of the optical low-pass filter 130. It corresponds to the one indicating the state.
 このように、第1の光学ローパスフィルタ10を透過した第1の直線偏光の光は、第2の光学ローパスフィルタ30で分離され、それぞれの位置130a、130bから出射し、その間隔が分離距離LSXと同じ間隔に相当する。同様に、第1の光学ローパスフィルタ10を透過した第2の直線偏光の光は、第2の光学ローパスフィルタ30で分離され、それぞれの位置130c、130dから出射し、その間隔も分離距離LSXと同じ間隔に相当する。このように本実施形態に係る光学ローパスフィルタ130は、偏光変換素子を配置せずに、4点の光に分離することができる。 As described above, the first linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30, and is emitted from the respective positions 130a and 130b. It corresponds to the same interval as SX . Similarly, the second linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30 and emitted from the respective positions 130c and 130d, and the distance between them is also the separation distance L SX. Corresponds to the same interval. As described above, the optical low-pass filter 130 according to the present embodiment can be separated into four points of light without disposing a polarization conversion element.
 次に、電圧制御部52より電圧が印加されない場合、つまり、電圧非印加時の光の状態について説明する。第1の光学ローパスフィルタ10は、電圧非印加時において、第1の実施形態のように、電圧印加時よりも大きい分離距離LMYだけ隔てて、第1の直線偏光の光と第2の直線偏光の光を分離する。なお、このとき、第1の光学ローパスフィルタ10の出射面における光の位置および偏光状態は、図6Bに示すものに相当する。 Next, the state of light when no voltage is applied from the voltage control unit 52, that is, when no voltage is applied will be described. The first optical low-pass filter 10, the voltage at the time of non-application, as in the first embodiment, and separated by a large separation distance L MY than when a voltage is applied, the first linear polarized light and the second linear Separates polarized light. At this time, the position and polarization state of light on the emission surface of the first optical low-pass filter 10 correspond to those shown in FIG. 6B.
 次に、電圧非印加時、第2の光学ローパスフィルタ30に、第1の直線偏光の光および第2の直線偏光の光が入射すると、X-Y平面において、Y軸方向に対して第3の直線偏光の光の成分と、第4の直線偏光の光の成分と、が一定の分離距離だけ隔てて透過する。また、これらの光の成分の具体的な分離距離は、第2の実施形態で説明したLMXと同じ間隔であるが、分離方向は、X-Y平面において、Y軸方向に対して45°の方向に相当する。図16Bは、電圧非印加時において、第2の光学ローパスフィルタ30の出射面における光の位置130e、130f、130gおよび130hおよび偏光状態を示すものであって、これが、光学ローパスフィルタ130の光の分離状態を示すものに相当する。 Next, when no voltage is applied, when the first linearly polarized light and the second linearly polarized light are incident on the second optical low-pass filter 30, the third linearly polarized light in the XY plane is third with respect to the Y-axis direction. The linearly polarized light component and the fourth linearly polarized light component are transmitted with a predetermined separation distance therebetween. Further, the specific separation distance of these light components is the same as that of L MX described in the second embodiment, but the separation direction is 45 ° with respect to the Y-axis direction in the XY plane. It corresponds to the direction. FIG. 16B shows the positions 130e, 130f, 130g, and 130h of light on the exit surface of the second optical low-pass filter 30 and the polarization state when no voltage is applied. Corresponds to the separation state.
 このように、第1の光学ローパスフィルタ10を透過した第1の直線偏光の光は、第2の光学ローパスフィルタ30で分離され、それぞれの位置130e、130fから出射し、その間隔が分離距離LMXと同じ間隔に相当する。同様に、第1の光学ローパスフィルタ10を透過した第2の直線偏光の光は、第2の光学ローパスフィルタ30で分離され、それぞれの位置130g、130hから出射し、その間隔も分離距離LMXと同じ間隔に相当する。このように本実施形態に係る光学ローパスフィルタ130は、偏光変換素子を配置せずに、4点の光に分離することができる。 As described above, the first linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30, and is emitted from the respective positions 130e and 130f. It corresponds to the same interval as MX . Similarly, the second linearly polarized light transmitted through the first optical low-pass filter 10 is separated by the second optical low-pass filter 30 and emitted from the respective positions 130g and 130h, and the distance between them is also the separation distance L MX. Corresponds to the same interval. As described above, the optical low-pass filter 130 according to the present embodiment can be separated into four points of light without disposing a polarization conversion element.
 なお、偏光変換素子を配置しない本実施形態に係る光学ローパスフィルタは、第2の実施形態の構成に基づいて説明したが、これに限らない。つまり、第1の光学ローパスフィルタの分離方向と第2の光学ローパスフィルタの分離方向とが、平行でも直交でもない関係、つまり、直交しない角度で交差する関係の配置であれば、第3の実施形態の構成に基づき、いずれか一方の分離距離が固定されたものであってもよい。さらに、第5の実施形態の構成である、光学ローパスフィルタ120の構成に基づくものであってもよい。 The optical low-pass filter according to the present embodiment in which no polarization conversion element is disposed has been described based on the configuration of the second embodiment, but is not limited thereto. That is, if the separation direction of the first optical low-pass filter and the separation direction of the second optical low-pass filter are not parallel or orthogonal, that is, if they are arranged so that they intersect at a non-orthogonal angle, the third implementation is performed. Any one of the separation distances may be fixed based on the configuration of the form. Furthermore, it may be based on the configuration of the optical low-pass filter 120 which is the configuration of the fifth embodiment.
 (実施例1)
  本実施例では、第1の実施形態に係る光学ローパスフィルタ10について説明する。透明基板21a、21bとして石英ガラス基板を用い、それぞれの石英ガラス基板の一方の面に、透明電極22a、22bとしてITO膜を形成する。次に、透明電極22a、22b上に、ポリイミドを塗布して硬化させてできるポリイミド膜に、一定の方向にラビング処理をして配向膜23a、23bを形成する。そして、配向膜23aと配向膜23bとを対向させるとともに、それぞれの配向膜の配向方向が互いに直交するように配置し、約7μmのギャップとなるように周辺をシールする。そして、このギャップ内にカイラル剤を混合した液晶を充填させることによって、電圧非印加時において、液晶分子の長軸方向が厚さ方向を軸に90°捩じれた液晶層24を有する偏光制御部20に相当する液晶素子を得る。
Example 1
In this example, the optical low-pass filter 10 according to the first embodiment will be described. A quartz glass substrate is used as the transparent substrates 21a and 21b, and an ITO film is formed as the transparent electrodes 22a and 22b on one surface of each quartz glass substrate. Next, on the transparent electrodes 22a and 22b, a polyimide film formed by applying and curing polyimide is rubbed in a certain direction to form alignment films 23a and 23b. Then, the alignment film 23a and the alignment film 23b are opposed to each other, and the alignment directions of the alignment films are arranged so as to be orthogonal to each other, and the periphery is sealed so as to have a gap of about 7 μm. Then, by filling the gap with a liquid crystal mixed with a chiral agent, the polarization controller 20 has a liquid crystal layer 24 in which the major axis direction of the liquid crystal molecules is twisted by 90 ° about the thickness direction when no voltage is applied. A liquid crystal element corresponding to is obtained.
 次に、第1の分離素子11と第2の分離素子12として、厚さ方向に対して異常光屈折率軸が45°傾いた水晶を用いる。第1の分離素子11となる水晶は、厚さ約2.05mm、第2の分離素子12となる水晶は、厚さ約1.11mmとする。そして、第1の分離素子11は、厚さをZ軸方向として、Y-Z平面において異常光屈折率軸が+Y軸方向に45°傾くようにして、透明基板21a側に配置するとともに、第2の分離素子12は、Y-Z平面において異常光屈折率軸が-Y軸方向に45°傾くようにして、透明基板21b側に配置することで、光学ローパスフィルタ10を得る。なお、水晶は、波長546nmの光に対する常光屈折率が1.546、異常光屈折率が1.555である。このとき、第1の分離素子11における分離距離Lは、約12.0μmであり、第2の分離素子12における分離距離Lは、約6.5μmである。 Next, as the first separation element 11 and the second separation element 12, quartz having an extraordinary refractive index axis inclined by 45 ° with respect to the thickness direction is used. The quartz crystal used as the first separation element 11 has a thickness of about 2.05 mm, and the quartz crystal used as the second separation element 12 has a thickness of about 1.11 mm. The first separation element 11 is arranged on the transparent substrate 21a side so that the extraordinary refractive index axis is inclined 45 ° in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction. The two separation elements 12 are arranged on the transparent substrate 21b side so that the extraordinary refractive index axis is inclined by 45 ° in the −Y-axis direction on the YZ plane, thereby obtaining the optical low-pass filter 10. Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm. At this time, the separation distance L 1 in the first separation element 11 is about 12.0 μm, and the separation distance L 2 in the second separation element 12 is about 6.5 μm.
 そして、光学ローパスフィルタ10の第1の分離素子11側から、Z軸方向に沿って可視光領域でランダムな偏光の光を入射する。電圧制御部13により液晶層24に電圧を印加しない時は、互いに直交する第1の直線偏光の光と第2の直線偏光の光とがY軸方向に分離し、分離距離が約18.5μmとなる。また、液晶層24に約10Vの矩形交流波を印加すると第1の直線偏光の光と第2の直線偏光の光がY軸方向に分離し、分離距離が約5.5μmと、電圧を印加しない時に比べて短くなる。そして、この光学ローパスフィルタをデジタルカメラ、とくにデジタル一眼レフカメラの撮像素子の前面に配置することにより、電圧印加時には動画で、電圧非印時には静止画でモアレ、偽色が低減される画像を撮影することができる。 Then, randomly polarized light is incident in the visible light region along the Z-axis direction from the first separation element 11 side of the optical low-pass filter 10. When the voltage controller 13 does not apply a voltage to the liquid crystal layer 24, the first linearly polarized light and the second linearly polarized light that are orthogonal to each other are separated in the Y-axis direction, and the separation distance is about 18.5 μm. It becomes. When a rectangular AC wave of about 10V is applied to the liquid crystal layer 24, the first linearly polarized light and the second linearly polarized light are separated in the Y-axis direction, and a separation distance of about 5.5 μm is applied. Shorter than when not. By placing this optical low-pass filter in front of the image sensor of a digital camera, especially a digital single-lens reflex camera, it captures moving images when voltage is applied and images that reduce moiré and false colors in still images when voltage is not applied. can do.
 (実施例2)
  本実施例では、第2の実施形態に係る光学ローパスフィルタ50について説明する。第1の光学ローパスフィルタ10および第2の光学ローパスフィルタ30は、実施例1の光学ローパスフィルタ10と同じものを用いる。次に、偏光変換素子51として、可視光領域の波長の光に対して1/4波長板と略等しい位相差を発生する複屈折性材料を用いる。なお、偏光変換素子51は、光学軸が偏光変換素子51面に平行し、厚さ方向に揃ったものを使用する。
(Example 2)
In this example, an optical low-pass filter 50 according to the second embodiment will be described. The first optical low-pass filter 10 and the second optical low-pass filter 30 are the same as the optical low-pass filter 10 of the first embodiment. Next, as the polarization conversion element 51, a birefringent material that generates a phase difference substantially equal to that of the quarter-wave plate for light having a wavelength in the visible light region is used. As the polarization conversion element 51, an element whose optical axis is parallel to the surface of the polarization conversion element 51 and aligned in the thickness direction is used.
 次に、第1の光学ローパスフィルタ10、偏光変換素子51、そして、第2の光学ローパスフィルタ30の順に、厚さ方向をZ軸方向に揃えて配置するが、第2の光学ローパスフィルタ30は、第1の光学ローパスフィルタ10に対して、Z軸方向を回転軸として90°回転した位置に相当するように配置する。これにより、第1の光学ローパスフィルタ10では、Y軸方向に光が分離し、第2の光学ローパスフィルタ30では、X軸方向に光が分離するようにする。また、偏光変換素子51は、その光学軸がX-Y平面においてX軸方向(またはY軸方向)を基準に45°の角度となるように配置する。 Next, the first optical low-pass filter 10, the polarization conversion element 51, and the second optical low-pass filter 30 are arranged in this order with the thickness direction aligned in the Z-axis direction. The first optical low-pass filter 10 is disposed so as to correspond to a position rotated by 90 ° with the Z-axis direction as the rotation axis. Thus, the first optical low-pass filter 10 separates light in the Y-axis direction, and the second optical low-pass filter 30 separates light in the X-axis direction. The polarization conversion element 51 is arranged such that its optical axis is at an angle of 45 ° with respect to the X-axis direction (or Y-axis direction) in the XY plane.
 そして、第1の光学ローパスフィルタ10側から、Z軸方向に沿って可視光領域でランダムな偏光の光を入射する。電圧制御部52により、液晶層24、44に電圧を印加しない時は、X軸方向とY軸方向に分離して4点の光となって、これらの方向の分離距離はいずれも約18.5μmとなる。また、液晶層24、44に約10Vの矩形交流波を印加するとX軸方向とY軸方向に分離して4点の光となって、これらの方向の分離距離はいずれも約5.5μmとなる。そして、この光学ローパスフィルタをデジタルカメラ、とくにデジタル一眼レフカメラの撮像素子の前面に配置することにより、電圧印加時には動画で、電圧非印時には静止画でモアレ、偽色が低減される画像を撮影することができる。 Then, randomly polarized light is incident in the visible light region along the Z-axis direction from the first optical low-pass filter 10 side. When no voltage is applied to the liquid crystal layers 24 and 44 by the voltage controller 52, the light is separated in the X-axis direction and the Y-axis direction to become four points of light, and the separation distance in these directions is about 18. 5 μm. Further, when a rectangular AC wave of about 10 V is applied to the liquid crystal layers 24 and 44, the light is separated in the X-axis direction and the Y-axis direction to become four points of light, and the separation distance in these directions is about 5.5 μm. Become. By placing this optical low-pass filter in front of the image sensor of a digital camera, especially a digital single-lens reflex camera, it captures moving images when voltage is applied and images that reduce moiré and false colors in still images when voltage is not applied. can do.
 (実施例3)
  本実施例では、第3の実施形態に係る光学ローパスフィルタ60について説明する。第1の光学ローパスフィルタ10は、実施例1の光学ローパスフィルタ10と同じものを用いる。また、偏光変換素子51は、実施例2と同じものを用いる。第2の光学ローパスフィルタ62は、厚さ方向に対して異常光屈折率軸が45°傾いた、厚さ約0.94mmの水晶を用いる。
(Example 3)
In this example, an optical low-pass filter 60 according to the third embodiment will be described. The first optical low-pass filter 10 is the same as the optical low-pass filter 10 of the first embodiment. Further, the same polarization conversion element 51 as that of the second embodiment is used. The second optical low-pass filter 62 uses a crystal having a thickness of about 0.94 mm and an extraordinary refractive index axis inclined by 45 ° with respect to the thickness direction.
 次に、第1の光学ローパスフィルタ10、偏光変換素子51、そして、第2の光学ローパスフィルタ62の順に、厚さ方向をZ軸方向に揃えて配置する。第2の光学ローパスフィルタ62は、異常光屈折率軸が+X軸方向に45°傾斜するように配置し、偏光変換素子51は、その光学軸がX-Y平面においてX軸方向(またはY軸方向)を基準に45°の角度となるように配置する。 Next, the first optical low-pass filter 10, the polarization conversion element 51, and the second optical low-pass filter 62 are arranged in this order with the thickness direction aligned in the Z-axis direction. The second optical low-pass filter 62 is arranged so that the extraordinary light refractive index axis is inclined by 45 ° in the + X-axis direction, and the polarization conversion element 51 has an optical axis in the X-axis direction (or Y-axis) on the XY plane. It is arranged so as to have an angle of 45 ° with respect to (direction).
 そして、第1の光学ローパスフィルタ10側から、Z軸方向に沿って可視光領域でランダムな偏光の光を入射する。電圧制御部により、液晶層24に電圧を印加しない時は、X軸方向とY軸方向に分離して4点の光となり、X軸方向の分離距離が約5.5μm、Y軸方向の分離距離が約18.5μmとなる。また、液晶層24に約10Vの矩形交流波を印加するとX軸方向とY軸方向に分離して4点の光となって、これらの方向の分離距離はいずれも約5.5μmとなる。そして、この光学ローパスフィルタをデジタルカメラ、とくにデジタル一眼レフカメラの撮像素子の前面に配置することにより、電圧印加時には動画で、電圧非印時には静止画でモアレ、偽色が低減される画像を撮影することができる。 Then, randomly polarized light is incident in the visible light region along the Z-axis direction from the first optical low-pass filter 10 side. When no voltage is applied to the liquid crystal layer 24 by the voltage control unit, the light is separated into the X-axis direction and the Y-axis direction to become four points of light, the separation distance in the X-axis direction is about 5.5 μm, and the separation in the Y-axis direction. The distance is about 18.5 μm. Further, when a rectangular AC wave of about 10 V is applied to the liquid crystal layer 24, the light is separated in the X-axis direction and the Y-axis direction to become four points of light, and the separation distance in these directions is about 5.5 μm. By placing this optical low-pass filter in front of the image sensor of a digital camera, especially a digital single-lens reflex camera, it captures moving images when voltage is applied and images that reduce moiré and false colors in still images when voltage is not applied. can do.
 (実施例4)
  本実施例では、第4の実施形態に係る光学ローパスフィルタ70について説明する。なお、偏光制御部20に相当する液晶素子は、実施例1と同じものを用いる。第1の分離素子71と第2の分離素子72として、厚さ方向に対して異常光屈折率軸が45°傾いた水晶を用いる。第1の分離素子71となる水晶および第2の分離素子72となる水晶はいずれも、厚さ約0.46mmとする。そして、第1の分離素子71は、厚さをZ軸方向として、Y-Z平面において異常光屈折率軸が+Y軸方向に45°傾くようにして、透明基板21a側に配置するとともに、第2の分離素子72は、Y-Z平面において異常光屈折率軸が-Y軸方向に45°傾くようにして、透明基板21b側に配置することで、光学ローパスフィルタ70を得る。なお、水晶は、波長546nmの光に対する常光屈折率が1.546、異常光屈折率が1.555である。このとき、第1の分離素子71における分離距離Lおよび第2の分離素子72における分離距離Lは、約2.7μmである。
Example 4
In this example, an optical low-pass filter 70 according to the fourth embodiment will be described. The liquid crystal element corresponding to the polarization controller 20 is the same as that in the first embodiment. As the first separation element 71 and the second separation element 72, a crystal whose extraordinary refractive index axis is inclined by 45 ° with respect to the thickness direction is used. Both the quartz crystal that becomes the first separation element 71 and the quartz crystal that becomes the second separation element 72 have a thickness of about 0.46 mm. The first separation element 71 is arranged on the transparent substrate 21a side so that the extraordinary refractive index axis is inclined by 45 ° in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction. The second separation element 72 is arranged on the transparent substrate 21b side so that the extraordinary refractive index axis is inclined by 45 ° in the −Y-axis direction on the YZ plane, whereby the optical low-pass filter 70 is obtained. Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm. At this time, the separation distance L 2 in the separation distance L 1 and the second separation element 72 in the first separation element 71 is approximately 2.7 .mu.m.
 そして、光学ローパスフィルタ70の第1の分離素子71側から、Z軸方向に沿って可視光領域でランダムな偏光の光を入射する。電圧制御部13により液晶層24に電圧を印加しない時は、互いに直交する第1の直線偏光の光と第2の直線偏光の光とがY軸方向に分離し、分離距離が約5.4μmとなる。また、液晶層24に約10Vの矩形交流波を印加すると、第1の直線偏光の光と第2の直線偏光の光との間の、Y軸方向の分離距離が約0μmとなる。そして、この光学ローパスフィルタをデジタルカメラの撮像素子の前面に配置することにより、例えば、モアレや偽色の無い画像を撮影するときは電圧を印加し、モアレや偽色がある画像を撮影するときは電圧を印加しないことによって、モアレ、偽色が低減される画像を撮影することができる。 Then, randomly polarized light is incident in the visible light region along the Z-axis direction from the first separation element 71 side of the optical low-pass filter 70. When the voltage controller 13 does not apply a voltage to the liquid crystal layer 24, the first linearly polarized light and the second linearly polarized light that are orthogonal to each other are separated in the Y-axis direction, and the separation distance is about 5.4 μm. It becomes. When a rectangular AC wave of about 10 V is applied to the liquid crystal layer 24, the separation distance in the Y-axis direction between the first linearly polarized light and the second linearly polarized light becomes about 0 μm. By placing this optical low-pass filter in front of the image sensor of the digital camera, for example, when shooting an image without moire or false color, a voltage is applied and when shooting an image with moire or false color. By not applying a voltage, it is possible to take an image in which moire and false colors are reduced.
 (実施例5)
  本実施例では、第5の実施形態に係る光学ローパスフィルタ80について説明する。なお、第1の偏光制御部91、第2の偏光制御部92に相当する液晶素子は、実施例1の偏光制御部20の液晶素子同じものを用いる。第1の分離素子81、第2の分離素子82および第3の分離素子83として、厚さ方向に対して異常光屈折率軸が45°傾いた水晶を用いる。第1の分離素子81となる水晶は、厚さ約1.58mm、第2の分離素子82となる水晶は、厚さ約1.11mm、そして、第3の分離素子83となる水晶は、厚さ約0.47mmとする。そして、第1の分離素子81、第2の分離素子82および第3の分離素子83はいずれも、厚さをZ軸方向として、Y-Z平面において異常光屈折率軸が+Y軸方向に45°傾くようにして配置することで、光学ローパスフィルタ80を得る。なお、水晶は、波長546nmの光に対する常光屈折率が1.546、異常光屈折率が1.555である。このとき、第1の分離素子81における分離距離Lは、約9.25μmであり、第2の分離素子82における分離距離Lは、約6.50μm、そして、第3の分離素子84における分離距離Lは、約2.75μmである。
(Example 5)
In this example, an optical low-pass filter 80 according to the fifth embodiment will be described. The liquid crystal elements corresponding to the first polarization control unit 91 and the second polarization control unit 92 are the same as the liquid crystal elements of the polarization control unit 20 of the first embodiment. As the first separation element 81, the second separation element 82, and the third separation element 83, a crystal whose extraordinary refractive index axis is inclined by 45 ° with respect to the thickness direction is used. The quartz crystal serving as the first separation element 81 is about 1.58 mm thick, the quartz crystal serving as the second separation element 82 is about 1.11 mm thick, and the quartz crystal serving as the third separation element 83 is thick. The thickness is about 0.47 mm. The first separation element 81, the second separation element 82, and the third separation element 83 all have an extraordinary refractive index axis of 45 in the + Y-axis direction on the YZ plane with the thickness as the Z-axis direction. The optical low-pass filter 80 is obtained by arranging it so as to be inclined. Quartz has an ordinary light refractive index of 1.546 and an extraordinary light refractive index of 1.555 for light having a wavelength of 546 nm. At this time, the separation distance L A in the first separation element 81 is about 9.25 μm, the separation distance L B in the second separation element 82 is about 6.50 μm, and in the third separation element 84 separation distance L C is about 2.75.
 そして、光学ローパスフィルタ80の第1の分離素子81側から、Z軸方向に沿って可視光領域でランダムな偏光の光を入射する。電圧制御部93により第1の偏光制御部91の液晶層および第2の偏光制御部92の液晶層に約10Vの矩形交流波を印加すると、互いに直交する第1の直線偏光の光と第2の直線偏光の光とがY軸方向に分離し、分離距離が約18.5μmとなる。また、電圧制御部93により第1の偏光制御部91の液晶層および第2の偏光制御部92の液晶層に電圧を印加しない場合、第1の直線偏光の光と第2の直線偏光の光とがY軸方向に分離し、分離距離が約5.5μmとなる。そして、電圧制御部93により第1の偏光制御部91の液晶層に電圧を印加せず、第2の偏光制御部92の液晶層に約10Vの矩形交流波を印加すると、第1の直線偏光の光と第2の直線偏光の光との間の、Y軸方向の分離距離が約0μmとなる。そして、この光学ローパスフィルタをデジタルカメラの撮像素子の前面に配置することにより、例えば、モアレや偽色の無い静止画像を撮影するとき、モアレや偽色がある静止画像を撮影するとき、そして、モアレや偽色がある動画像を撮影するとき、に切り替えて画像を撮影することができる。 Then, randomly polarized light is incident in the visible light region along the Z-axis direction from the first separation element 81 side of the optical low-pass filter 80. When a rectangular AC wave of about 10 V is applied to the liquid crystal layer of the first polarization control unit 91 and the liquid crystal layer of the second polarization control unit 92 by the voltage control unit 93, the first linearly polarized light and the second orthogonally crossing each other. Are separated in the Y-axis direction, and the separation distance is about 18.5 μm. When the voltage controller 93 does not apply a voltage to the liquid crystal layer of the first polarization controller 91 and the liquid crystal layer of the second polarization controller 92, the first linearly polarized light and the second linearly polarized light are applied. Are separated in the Y-axis direction, and the separation distance is about 5.5 μm. When the voltage controller 93 does not apply a voltage to the liquid crystal layer of the first polarization controller 91 and a rectangular AC wave of about 10 V is applied to the liquid crystal layer of the second polarization controller 92, the first linearly polarized light is applied. The separation distance in the Y-axis direction between this light and the second linearly polarized light is about 0 μm. And by arranging this optical low-pass filter in front of the image sensor of the digital camera, for example, when shooting a still image without moire or false color, when shooting a still image with moire or false color, and When shooting moving images with moiré or false colors, you can switch to and shoot images.
 本出願を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年2月26日出願の日本特許出願(特願2010-042055)、及び、2010年6月2日出願の日本特許出願(特願2010-126739)に基づくものであり、その内容はここに参照として取り込まれる。
Although this application has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Feb. 26, 2010 (Japanese Patent Application No. 2010-040555) and a Japanese patent application filed on June 2, 2010 (Japanese Patent Application No. 2010-12639). The contents are incorporated herein by reference.
 以上のように、本発明に係る光学ローパスフィルタは、分離距離を精度よく2つの値または、ゼロを含む3つの値で切り替えができるとともに、機械的可動部が無く、小型化が実現でき、さらに、この光学ローパスフィルタを用いるデジタルカメラ、デジタル一眼レフカメラは、静止画および動画の両方を撮影でき、これらの撮影モードに応じて適切にモアレの現象を低減させることができるとともに、機械的可動部が無く、高い精度で小型化が実現できる。 As described above, the optical low-pass filter according to the present invention can accurately switch the separation distance between two values or three values including zero, has no mechanical movable part, and can be downsized. Digital cameras and digital single-lens reflex cameras using this optical low-pass filter can shoot both still images and moving images, and can appropriately reduce the moire phenomenon according to these shooting modes, as well as mechanically movable parts. And miniaturization can be realized with high accuracy.
10、15、50、60、70、80、120、130 (第1の)光学ローパスフィルタ
10a、10b 第1の光学ローパスフィルタ10の出射面の光の位置(電圧印加時)
10c、10d 第1の光学ローパスフィルタ10の出射面の光の位置(電圧非印加時)
11、71、81 第1の分離素子
11a、12a、31a、32a 異常光屈折率軸
12、72、82 第2の分離素子
13、52、93、115 電圧制御部
20、25、91 (第1の)偏光制御部
21a、21b、41a、41b 透明基板
22a、22b、42a、42b 透明電極
23a、23b、43a、43b 配向膜
24 (第1の)液晶層
30、62、100 第2の光学ローパスフィルタ
30a、30b、30c、30d、130a、130b、130c、130d 第2の光学ローパスフィルタ30の出射面の光の位置(電圧印加時)
30e、30f、30g、30h、130e、130f、130g、130h 第2の光学ローパスフィルタ30の出射面の光の位置(電圧非印加時)
31、83 第3の分離素子
32 第4の分離素子
40、92 (第2の)偏光制御部
44 (第2の)液晶層
51 偏光変換素子
53a、63a 第1の光学ローパスフィルタを出射するX軸方向の直線偏光の光の光路
53b、54b、63b、64b 偏光制御部を出射する光の光路
54a、64a 第1の光学ローパスフィルタを出射するY軸方向の直線偏光の光の光路
62a、62b、62c、62d 第2の光学ローパスフィルタ62の出射面の光の位置(電圧印加時)
62e、62f、62g、62h 第2の光学ローパスフィルタ62の出射面の光の位置(電圧非印加時)
104 第4の分離素子
105 第5の分離素子
106 第6の分離素子
113 第3の偏光制御部
114 第4の偏光制御部
10, 15, 50, 60, 70, 80, 120, 130 (First) optical low- pass filter 10a, 10b Position of light on the exit surface of the first optical low-pass filter 10 (when voltage is applied)
10c, 10d Position of light on the exit surface of the first optical low-pass filter 10 (when no voltage is applied)
11, 71, 81 First separation element 11a, 12a, 31a, 32a Abnormal light refractive index axis 12, 72, 82 Second separation element 13, 52, 93, 115 Voltage control unit 20, 25, 91 ( first Polarization controllers 21a, 21b, 41a, 41b Transparent substrates 22a, 22b, 42a, 42b Transparent electrodes 23a, 23b, 43a, 43b Alignment film 24 (first) liquid crystal layers 30, 62, 100 Second optical low- pass Filters 30a, 30b, 30c, 30d, 130a, 130b, 130c, 130d The position of light on the exit surface of the second optical low-pass filter 30 (when voltage is applied)
30e, 30f, 30g, 30h, 130e, 130f, 130g, 130h The position of light on the exit surface of the second optical low-pass filter 30 (when no voltage is applied)
31, 83 Third separation element 32 Fourth separation element 40, 92 (Second) polarization controller 44 (Second) liquid crystal layer 51 Polarization conversion elements 53a, 63a X exiting the first optical low-pass filter Optical paths 53b, 54b, 63b, 64b of linearly polarized light in the axial direction Optical paths 54a, 64a of light exiting from the polarization controller The optical paths 62a, 62b of linearly polarized light in the Y-axis direction exiting from the first optical low- pass filter 62c, 62d The position of the light on the exit surface of the second optical low-pass filter 62 (when voltage is applied)
62e, 62f, 62g, 62h The position of light on the exit surface of the second optical low-pass filter 62 (when no voltage is applied)
104 4th separation element 105 5th separation element 106 6th separation element 113 3rd polarization control part 114 4th polarization control part

Claims (23)

  1.  第1の分離素子と、
     偏光制御部と、
     第2の分離素子と、
     前記偏光制御部に印加する電圧を制御する電圧制御部とを備え、
     前記第1の分離素子は、入射する光のうち、第1の直線偏光の光と、前記第1の直線偏光の光と直交する第2の直線偏光の光と、に分離距離L(>0)だけ隔て、
     前記偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、
     入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、
     前記第2の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔てる光学ローパスフィルタ。
    A first separation element;
    A polarization controller;
    A second separation element;
    A voltage controller that controls a voltage applied to the polarization controller;
    The first separation element has a separation distance L 1 (>) between incident light and first linearly polarized light and second linearly polarized light orthogonal to the first linearly polarized light. 0) apart,
    The polarization controller does not change a polarization state of the incident first linearly polarized light and the second linearly polarized light according to an applied voltage of the voltage controller, or
    Modulating the incident linearly polarized light into the second linearly polarized light and modulating the incident linearly polarized light into the first linearly polarized light;
    The second separation element includes the separation distance L 1 of the incident light by the separation distance L 2 (> 0) between the first linearly polarized light and the second linearly polarized light. Optical low-pass filter separated in the direction parallel to the separation direction.
  2.  前記分離距離Lと前記分離距離Lとの比が、1.3~3の範囲であり、
     前記電圧制御部の印加電圧により、前記第2の分離素子を出射する、前記第1の直線偏光の光と前記第2の直線偏光の光との分離距離が、L+Lに相当するLと、|L-L|に相当するLと、を与えたとき、
     L>Lであるとともに、10μm≦L≦32μmであり、かつ、2μm≦L≦10μmである請求項1に記載の光学ローパスフィルタ。
    Wherein the ratio of the separation distance L 1 and the separation distance L 2 is in the range 1.3 to 3,
    A separation distance between the first linearly polarized light and the second linearly polarized light, which is emitted from the second separation element by the voltage applied by the voltage control unit, corresponds to L 1 + L 2. M and L S corresponding to | L 1 −L 2 |
    2. The optical low-pass filter according to claim 1, wherein L M > L S , 10 μm ≦ L M ≦ 32 μm, and 2 μm ≦ L S ≦ 10 μm.
  3.  前記分離距離Lと前記分離距離Lとが等しい請求項1に記載の光学ローパスフィルタ。 The separation distance L 1 and the separation distance L 2 and the optical low pass filter according to claim 1 are equal.
  4.  前記偏光制御部は、液晶層を有する液晶素子からなる請求項1~3のいずれか1項に記載の光学ローパスフィルタ。 The optical low-pass filter according to any one of claims 1 to 3, wherein the polarization controller comprises a liquid crystal element having a liquid crystal layer.
  5.  前記第1の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no1、異常光屈折率ne1を有する複屈折性材料からなり、
    前記分離距離Lが下記の(1)式で与えられ、
    Figure JPOXMLDOC01-appb-M000001
     前記第2の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no2、異常光屈折率ne2を有する複屈折性材料からなり、
    前記分離距離Lが下記の(2)式で与えられる、
    Figure JPOXMLDOC01-appb-M000002
     請求項1~4のいずれか1項に記載の光学ローパスフィルタ。
    The first separation element has a thickness d 1 , an angle formed between the thickness direction and the extraordinary refractive index axis direction is θ 1 , and a birefringent material having an ordinary refractive index no 1 and an extraordinary refractive index ne 1 . Consists of
    The separation distance L 1 is given by the following equation (1):
    Figure JPOXMLDOC01-appb-M000001
    The second separation element has a thickness d 2 , an angle formed by the thickness direction and the extraordinary refractive index axis direction is θ 2 , and has a normal refractive index no 2 and an extraordinary refractive index ne 2 . Consists of
    The separation distance L 2 is given by the following equation (2):
    Figure JPOXMLDOC01-appb-M000002
    The optical low-pass filter according to any one of claims 1 to 4.
  6.  前記液晶素子は、電圧非印加時において、前記液晶層の液晶分子が、前記液晶層の面内に略平行でかつ、対向する面の液晶分子の長軸方向が略直交する方向に配向され、厚さ方向を軸に約90°ツイストされており、
     前記第1の分離素子の厚さ方向を基準として前記θとなる方向をプラスとするとき、前記第2の分離素子は、前記θの符号がマイナスとなる方向に配置される請求項5に記載の光学ローパスフィルタ。
    In the liquid crystal element, when no voltage is applied, the liquid crystal molecules of the liquid crystal layer are aligned in a direction substantially parallel to the plane of the liquid crystal layer and the major axis direction of the liquid crystal molecules on the opposite surface is substantially orthogonal, Twist about 90 ° around the thickness direction,
    When the direction in which said theta 1 in the thickness direction of the first separation element as a reference and positive, the second separation element, according to claim wherein the theta 2 symbols are arranged in a direction in which a negative 5 The optical low-pass filter described in 1.
  7.  前記液晶層が、前記第1の分離素子および/または前記第2の分離素子によって挟持、一体化される請求項4~6のいずれか1項に記載の光学ローパスフィルタ。 The optical low-pass filter according to any one of claims 4 to 6, wherein the liquid crystal layer is sandwiched and integrated by the first separation element and / or the second separation element.
  8.  前記光学ローパスフィルタは、
     前記第1の分離素子と、前記偏光制御部である第1の偏光制御部と、前記第2の分離素子とを有する第1の光学ローパスフィルタと、
     偏光変換素子と、
     第2の光学ローパスフィルタと、を有し、
     前記偏光変換素子は、入射する前記第1の直線偏光の光および前記第2の直線偏光の光、をそれぞれ、前記第1の直線偏光の光の成分と前記第2の直線偏光の光の成分との比が3:7~7:3の割合の範囲となる光に変調し、
     前記第2の光学ローパスフィルタは、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と交差する方向に分離する請求項1~7のいずれか1項に記載の光学ローパスフィルタ。
    The optical low-pass filter is
    A first optical low-pass filter having the first separation element, a first polarization control unit which is the polarization control unit, and the second separation element;
    A polarization conversion element;
    A second optical low pass filter;
    The polarization conversion element converts the incident first linearly polarized light and the second linearly polarized light into the first linearly polarized light component and the second linearly polarized light component, respectively. To a light with a ratio of 3: 7 to 7: 3,
    The second optical low-pass filter separates the light of the first linear polarized light, and light of the second linearly polarized light, in a direction intersecting the direction of the separation distance L 1 and the separation distance L 2 The optical low-pass filter according to any one of claims 1 to 7.
  9.  前記光学ローパスフィルタは、
     前記第1の分離素子と、前記偏光制御部である第1の偏光制御部と、前記第2の分離素子と、を有する第1の光学ローパスフィルタと、
     第2の光学ローパスフィルタと、を有し、
     前記第2の光学ローパスフィルタは、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と直交しない角度で交差する方向に分離する請求項1~7いずれか1項に記載の光学ローパスフィルタ。
    The optical low-pass filter is
    A first optical low-pass filter having the first separation element, a first polarization control unit that is the polarization control unit, and the second separation element;
    A second optical low pass filter;
    The second optical low pass filter, said first linear polarized light and the light of the second linearly polarized light, intersect at the separation distance L 1 and the not orthogonal to the direction of the separation distance L 2 angle The optical low-pass filter according to any one of claims 1 to 7, wherein the optical low-pass filter is separated in a direction.
  10.  前記第2の光学ローパスフィルタは、
     第3の分離素子と、
     第2の偏光制御部と、
     第4の分離素子とを有し、
     前記第3の分離素子は、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの方向と交差する方向に分離距離L(>0)だけ隔て、
     前記第2の偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、
     入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、
     前記第4の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔てる請求項8または請求項9に記載の光学ローパスフィルタ。
    The second optical low-pass filter is
    A third separation element;
    A second polarization controller;
    A fourth separation element;
    The third splitting element, the a first linear polarized light, the second and the linearly polarized light, the separation distance L 1 and the separation distance separating in a direction intersecting the direction of L 2 distance L 3 (> 0) apart,
    The second polarization controller does not change a polarization state of the incident first linearly polarized light and the second linearly polarized light according to an applied voltage of the voltage controller, or
    Modulating the incident linearly polarized light into the second linearly polarized light and modulating the incident linearly polarized light into the first linearly polarized light;
    The fourth separation element includes the separation distance L 3 of the incident light by the separation distance L 4 (> 0) between the first linearly polarized light and the second linearly polarized light. The optical low-pass filter according to claim 8 or 9, wherein the optical low-pass filter is separated in a direction parallel to the separation direction.
  11.  前記分離距離Lと前記分離距離Lとの比が、1.3~3の範囲であり、
     前記電圧制御部の印加電圧により、前記第4の分離素子を出射する、前記第1の直線偏光の光と前記第2の直線偏光の光との分離距離が、L+Lに相当するLMXと、|L-L|に相当するLSXと、を与えたとき、
     LMX>LSXであるとともに、10μm≦LMX≦32μmであり、かつ、2μm≦LSX≦10μmである請求項10に記載の光学ローパスフィルタ。
    Wherein the ratio of the separation distance L 3 between the separation distance L 4 is in the range 1.3 to 3,
    The separation distance between the first linearly polarized light and the second linearly polarized light that is emitted from the fourth separation element by the voltage applied by the voltage control unit is L 3 corresponding to L 3 + L 4. When MX and L SX corresponding to | L 3 −L 4 | are given,
    The optical low-pass filter according to claim 10, wherein L MX > L SX , 10 μm ≦ L MX ≦ 32 μm, and 2 μm ≦ L SX ≦ 10 μm.
  12.  前記分離距離Lと前記分離距離Lとが等しい請求項10に記載の光学ローパスフィルタ。 Optical low-pass filter according to the separation distance L 3 between the separation distance L 4 are equal claim 10.
  13.  前記第2の偏光制御部は、液晶層を有する液晶素子からなる請求項10~12のいずれか1項に記載の光学ローパスフィルタ。 The optical low-pass filter according to any one of claims 10 to 12, wherein the second polarization controller comprises a liquid crystal element having a liquid crystal layer.
  14.  前記第3の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no3、異常光屈折率ne3を有する複屈折性材料からなり、
    前記分離距離Lが下記の(3)式で与えられ、
    Figure JPOXMLDOC01-appb-M000003
     前記第4の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率no4、異常光屈折率ne4を有する複屈折性材料からなり、
    前記分離距離Lが下記の(4)式で与えられる、
    Figure JPOXMLDOC01-appb-M000004
     請求項10~13のいずれか1項に記載の光学ローパスフィルタ。
    The third separation element has a thickness d 3 , an angle between the thickness direction and the extraordinary refractive index axis direction becomes θ 3 , and has a normal refractive index no 3 and an extraordinary refractive index ne 3 . Consists of
    The separation distance L 3 is given by the following equation (3):
    Figure JPOXMLDOC01-appb-M000003
    It said fourth separation element, the thickness d 4, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta 4, and the ordinary refractive index n o4, birefringent material having an extraordinary refractive index n e4 Consists of
    The separation distance L 4 is given by the following equation (4):
    Figure JPOXMLDOC01-appb-M000004
    The optical low-pass filter according to any one of claims 10 to 13.
  15.  前記第2の偏光制御部の液晶素子は、電圧非印加時において、前記第2の偏光制御部の液晶層の液晶分子が、前記第2の偏光制御部の液晶層の面内に略平行でかつ、対向する面の液晶分子の長軸方向が略直交する方向に配向され、厚さ方向を軸に約90°ツイストされており、
     前記第3の分離素子の厚さ方向を基準として前記θとなる方向をプラスとするとき、前記第4の分離素子は、前記θの符号がマイナスとなる方向に配置される請求項14に記載の光学ローパスフィルタ。
    In the liquid crystal element of the second polarization controller, the liquid crystal molecules of the liquid crystal layer of the second polarization controller are substantially parallel to the plane of the liquid crystal layer of the second polarization controller when no voltage is applied. And, the major axis direction of the liquid crystal molecules on the opposite surface is aligned in a direction substantially orthogonal to each other, twisted about 90 ° about the thickness direction,
    The fourth separation element is arranged in a direction in which the sign of the θ 4 is negative when the direction that becomes the θ 3 is positive with respect to the thickness direction of the third separation element. The optical low-pass filter described in 1.
  16.  前記第2の偏光制御部の液晶層が、前記第3の分離素子および/または前記第4の分離素子によって挟持、一体化される請求項13~15のいずれか1項に記載の光学ローパスフィルタ。 The optical low-pass filter according to any one of claims 13 to 15, wherein the liquid crystal layer of the second polarization control unit is sandwiched and integrated by the third separation element and / or the fourth separation element. .
  17.  前記第2の光学ローパスフィルタは、第3の分離素子からなり、
     前記第3の分離素子は、前記第1の直線偏光の光と、前記第2の直線偏光の光とを、前記分離距離Lおよび前記分離距離Lの分離方向と交差する方向に分離距離LFXだけ隔てる請求項8または請求項9に記載の光学ローパスフィルタ。
    The second optical low-pass filter includes a third separation element,
    The third splitting element, the a first linear polarized light, wherein the second linear polarized light, wherein the separation distance L 1 and the separation distance direction separation distance intersecting the separation direction of L 2 10. The optical low-pass filter according to claim 8, wherein the optical low-pass filter is separated by L FX .
  18.  第1の分離素子と、
     第2の分離素子と、
     第2の偏光制御部と、
     第3の分離素子と、
     前記第1の偏光制御部および前記第2の偏光制御部に印加する電圧を制御する電圧制御部とを備え、
     前記第1の分離素子は、入射する光のうち、第1の直線偏光の光と、前記第1の直線偏光の光と直交する第2の直線偏光の光と、に分離距離L(>0)だけ隔て、
     前記第1の偏光制御部および前記第2の偏光制御部は、前記電圧制御部の印加電圧により、入射する前記第1の直線偏光の光および前記第2の直線偏光の光の偏光状態を変えないかまたは、
     入射する前記第1の直線偏光の光を前記第2の直線偏光の光に変調するとともに、入射する前記第2の直線偏光の光を前記第1の直線偏光の光に変調し、
     前記第2の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔て、
     前記第3の分離素子は、入射する光のうち、前記第1の直線偏光の光と、前記第2の直線偏光の光と、に分離距離L(>0)だけ、前記分離距離Lの分離方向と平行方向に隔て(L≠L≠L)、
     前記分離距離Lと前記分離距離Lと前記分離距離Lのうち、いずれか1つは、残り2つの和の値に等しく、前記第3の分離素子を出射する光の分離距離が、0を含む少なくとも3つの値に前記電圧制御部によって制御する光学ローパスフィルタ。
    A first separation element;
    A second separation element;
    A second polarization controller;
    A third separation element;
    A voltage controller that controls a voltage applied to the first polarization controller and the second polarization controller;
    The first separation element has a separation distance L A (>) between incident light and first linearly polarized light and second linearly polarized light orthogonal to the first linearly polarized light. 0) apart,
    The first polarization control unit and the second polarization control unit change a polarization state of incident first linearly polarized light and second linearly polarized light according to an applied voltage of the voltage control unit. Or
    Modulating the incident linearly polarized light into the second linearly polarized light and modulating the incident linearly polarized light into the first linearly polarized light;
    The second separation element includes the separation distance L 1 of the incident light by the separation distance L B (> 0) between the first linearly polarized light and the second linearly polarized light. Separated in a direction parallel to the separation direction of
    The third separation element has a separation distance L 1 that is equal to a separation distance L C (> 0) between the first linearly polarized light and the second linearly polarized light among the incident light. (L A ≠ L B ≠ L C ) separated in a direction parallel to the separation direction of
    Wherein the separation distance L A and the separation distance L B separation distance of L C, one is equal to the value of the remaining two sums, the separation distance of the light emitted the third separation element, An optical low-pass filter that is controlled by the voltage control unit to at least three values including zero.
  19.  前記第1の偏光制御部および前記第2の偏光制御部は、液晶層を有する液晶素子からなる請求項18に記載の光学ローパスフィルタ。 The optical low-pass filter according to claim 18, wherein the first polarization control unit and the second polarization control unit are formed of a liquid crystal element having a liquid crystal layer.
  20.  前記第1の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noA、異常光屈折率neAを有する複屈折性材料からなり、
    前記分離距離Lが下記の(5)式で与えられ、
    Figure JPOXMLDOC01-appb-M000005
     前記第2の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noB、異常光屈折率neBを有する複屈折性材料からなり、
    前記分離距離Lが下記の(6)式で与えられ、
    Figure JPOXMLDOC01-appb-M000006
     前記第3の分離素子は、厚さd、厚さ方向と異常光屈折率軸方向とがなす角度がθとなり、常光屈折率noC、異常光屈折率neCを有する複屈折性材料からなり、
    前記分離距離Lが下記の(7)式で与えられる、
    Figure JPOXMLDOC01-appb-M000007
     請求項18または請求項19に記載の光学ローパスフィルタ。
    The first separation element has a thickness d A , an angle formed by the thickness direction and the extraordinary refractive index axis direction is θ A , and a birefringent material having an ordinary refractive index noA and an extraordinary refractive index neA Consists of
    The separation distance L A is given by equation (5) below,
    Figure JPOXMLDOC01-appb-M000005
    The second separation element, the thickness d B, the thickness direction and the extraordinary light refractive index axis direction and the angle is theta B, and the ordinary refractive index n oB, birefringent material having an extraordinary refractive index n eB Consists of
    The separation distance L B is given by the following equation (6):
    Figure JPOXMLDOC01-appb-M000006
    The third separation element has a thickness d C , an angle between the thickness direction and the extraordinary refractive index axis direction becomes θ C , and a birefringent material having an ordinary refractive index noC and an extraordinary refractive index neC Consists of
    The separation distance L C is given by (7) below,
    Figure JPOXMLDOC01-appb-M000007
    The optical low-pass filter according to claim 18 or claim 19.
  21.  前記第1の偏光制御部の液晶層が、前記第1の分離素子および前記第2の分離素子の少なくとも一方に一体化され、
    前記第2の偏光制御部の液晶層が、前記第2の分離素子および前記第3の分離素子の少なくとも一方に一体化される請求項19または請求項20に記載の光学ローパスフィルタ。
    A liquid crystal layer of the first polarization control unit is integrated with at least one of the first separation element and the second separation element;
    21. The optical low-pass filter according to claim 19, wherein a liquid crystal layer of the second polarization control unit is integrated with at least one of the second separation element and the third separation element.
  22.  請求項1~21のいずれか1項に記載の光学ローパスフィルタと、イメージセンサとを備えるデジタルカメラ。 A digital camera comprising the optical low-pass filter according to any one of claims 1 to 21 and an image sensor.
  23.  請求項2、4~17のいずれか1項に記載のローパスフィルタと、イメージセンサとを備え、静止画を撮像するときは前記分離距離をLとし、動画を撮像するときは前記分離距離をLとするデジタルカメラ。 A low-pass filter according to any one of claims 2, 4 to 17, and an image sensor, wherein the separation distance is L S when capturing a still image, and the separation distance is set when capturing a moving image. digital camera to L M.
PCT/JP2011/054392 2010-02-26 2011-02-25 Optical low-pass filter and digital camera WO2011105581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012501897A JPWO2011105581A1 (en) 2010-02-26 2011-02-25 Optical low-pass filter and digital camera

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-042055 2010-02-26
JP2010042055 2010-02-26
JP2010126739 2010-06-02
JP2010-126739 2010-06-02

Publications (1)

Publication Number Publication Date
WO2011105581A1 true WO2011105581A1 (en) 2011-09-01

Family

ID=44506978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054392 WO2011105581A1 (en) 2010-02-26 2011-02-25 Optical low-pass filter and digital camera

Country Status (2)

Country Link
JP (1) JPWO2011105581A1 (en)
WO (1) WO2011105581A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152331A (en) * 2012-01-25 2013-08-08 Nikon Corp Camera, camera system, camera body, and method of manufacturing camera
JP2013156379A (en) * 2012-01-27 2013-08-15 Nikon Corp Light separation unit and imaging unit
JP2013217971A (en) * 2012-04-04 2013-10-24 Ortus Technology Co Ltd Optical low pass filter and camera module
JP2017142531A (en) * 2017-04-24 2017-08-17 株式会社ニコン camera
CN112166372A (en) * 2018-03-26 2021-01-01 视瑞尔技术公司 Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915535A (en) * 1995-06-27 1997-01-17 Olympus Optical Co Ltd Optical low-pass filter
JPH09261535A (en) * 1996-03-25 1997-10-03 Sharp Corp Image pickup device
JP2004272170A (en) * 2003-03-12 2004-09-30 Sharp Corp Optical shift element, and image display apparatus and projection type image display apparatus provided with the same
JP2006113218A (en) * 2004-10-13 2006-04-27 Epson Toyocom Corp Depolarizing plate and electrooptical equipment
WO2007083783A1 (en) * 2006-01-20 2007-07-26 Acutelogic Corporation Optical low pass filter and imaging device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915535A (en) * 1995-06-27 1997-01-17 Olympus Optical Co Ltd Optical low-pass filter
JPH09261535A (en) * 1996-03-25 1997-10-03 Sharp Corp Image pickup device
JP2004272170A (en) * 2003-03-12 2004-09-30 Sharp Corp Optical shift element, and image display apparatus and projection type image display apparatus provided with the same
JP2006113218A (en) * 2004-10-13 2006-04-27 Epson Toyocom Corp Depolarizing plate and electrooptical equipment
WO2007083783A1 (en) * 2006-01-20 2007-07-26 Acutelogic Corporation Optical low pass filter and imaging device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013152331A (en) * 2012-01-25 2013-08-08 Nikon Corp Camera, camera system, camera body, and method of manufacturing camera
JP2013156379A (en) * 2012-01-27 2013-08-15 Nikon Corp Light separation unit and imaging unit
JP2013217971A (en) * 2012-04-04 2013-10-24 Ortus Technology Co Ltd Optical low pass filter and camera module
JP2017142531A (en) * 2017-04-24 2017-08-17 株式会社ニコン camera
CN112166372A (en) * 2018-03-26 2021-01-01 视瑞尔技术公司 Display device

Also Published As

Publication number Publication date
JPWO2011105581A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5514738B2 (en) Liquid crystal filter, retardation plate, and optical low-pass filter
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
WO2006082901A1 (en) Variable transmission light quantity element and projection display
WO2011105581A1 (en) Optical low-pass filter and digital camera
WO2008004570A1 (en) Optical low pass filter, camera, imaging device and process for manufacturing optical low pass filter
US8861063B2 (en) Light control apparatus
JP2014044424A (en) Variable optical retarder
US11686975B2 (en) Imaging device having dimming element
JP2011033762A5 (en)
WO2010119922A1 (en) Imaging device
JP2001330844A5 (en)
JP2014137378A (en) Liquid crystal element for imaging apparatus, and optical low-pass filter
TWI499807B (en) Fresnel liquid crystal lens and two dimension/three dimension display apparatus
KR20130110915A (en) Liquid crystal display
JP2013217971A (en) Optical low pass filter and camera module
US11340493B2 (en) Display device
JP2011232650A (en) Optical low pass filter and digital camera
CN113920866A (en) Display device
JP4952415B2 (en) Transmitted light amount variable element and projection display device
JP2004070340A (en) Optical filter
JP2012098657A (en) Retardation plate
KR101714057B1 (en) Liquid crystal display device
US8284488B2 (en) Optical low pass filter
JP6597618B2 (en) Control device, imaging device, and liquid crystal low-pass filter control method
US11614651B2 (en) Liquid crystal device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501897

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747537

Country of ref document: EP

Kind code of ref document: A1