JP2012098657A - Retardation plate - Google Patents

Retardation plate Download PDF

Info

Publication number
JP2012098657A
JP2012098657A JP2010248320A JP2010248320A JP2012098657A JP 2012098657 A JP2012098657 A JP 2012098657A JP 2010248320 A JP2010248320 A JP 2010248320A JP 2010248320 A JP2010248320 A JP 2010248320A JP 2012098657 A JP2012098657 A JP 2012098657A
Authority
JP
Japan
Prior art keywords
phase difference
region
plate
periodic structure
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248320A
Other languages
Japanese (ja)
Inventor
Takashi Nagoya
崇 名古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2010248320A priority Critical patent/JP2012098657A/en
Publication of JP2012098657A publication Critical patent/JP2012098657A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a retardation plate capable of emitting even such light as entering obliquely without being deviated from a desired phase difference as much as possible.SOLUTION: This retardation plate includes: a light-transmissive retardation substrate 4A that comprises first regions and second regions disposed alternately, and micro periodic structure parts 10A and 10B, on the first regions and the second regions respectively, that are alternately disposed with plate-like groove parts 11 and plate-like non-groove parts 12 continuously at a pitch shorter than the half wavelength of the incident light; and a phase difference compensating substrate 5A disposed in the light incident side of the retardation substrate 4A and having a negative C plate characteristic.

Description

本発明は、光の位相状態を変化させる位相差板に関する。   The present invention relates to a phase difference plate that changes a phase state of light.

三次元表示装置では、例えば液晶パネルの異なる画素に映し出された右目用映像と左目用映像を、位相差板によって互いに異なる偏光状態として射出する。視聴者は、左右で吸収軸の向きが異なる偏光めがねを用いて右目用映像を右目で、左用映像を左目で見ることによって三次元映像を認識する。   In a three-dimensional display device, for example, a right-eye image and a left-eye image projected on different pixels of a liquid crystal panel are emitted as different polarization states by a phase difference plate. The viewer recognizes the three-dimensional image by viewing the right-eye image with the right eye and the left-eye image with the left eye using polarized glasses having different absorption axes on the left and right.

この位相差板は、画素サイズの領域で位相差が異なる、すなわちパターニングされたものが用いられる。このようなパターニングが可能な位相差板としては光配向膜と液晶ポリマーを用いたものや、構造性複屈折を用いたものがある。   As the retardation plate, a retardation plate having a different phase difference in a pixel size region, that is, a patterned plate is used. Examples of the retardation plate capable of such patterning include those using a photo-alignment film and a liquid crystal polymer, and those using structural birefringence.

従来の構造性複屈折を用いた位相差板としては、特許文献1に開示されたものが提案されている。この位相差板100は、図12に示すように、光透過性の材料より形成されている。位相差板100には、第1微細周期構造部A(A1、A2〜)と第2微細周期構造部B(B1、B2〜)が交互に連続して設けられている。各微細周期構造部A,Bは、図13及び図14に示すように、入射光の1/2波長より十分に短いピッチで、板状溝部101と板状非溝部である平板部102が交互に連続して配列されている。第1微細周期構造部Aと第2微細周期構造部Bとは、板状溝部101及び平板部102の配列方向が90度回転した方向に設定されている。 As a retardation plate using conventional structural birefringence, the one disclosed in Patent Document 1 has been proposed. As shown in FIG. 12, the retardation film 100 is made of a light transmissive material. The phase difference plate 100 is provided with first fine periodic structure portions A (A 1 , A 2 ˜) and second fine periodic structure portions B (B 1 , B 2 ˜) alternately and continuously. As shown in FIGS. 13 and 14, each of the fine periodic structure portions A and B has a pitch sufficiently shorter than a half wavelength of incident light, and plate-like groove portions 101 and plate-like portions 102 that are plate-like non-groove portions are alternately arranged. Are arranged in succession. In the first fine periodic structure portion A and the second fine periodic structure portion B, the arrangement direction of the plate-like groove portion 101 and the flat plate portion 102 is set in a direction rotated by 90 degrees.

このように屈折率が異なる板状溝部101(空気の屈折率)と平板部102(基板材料の屈折率)を周期的に配置することによって複屈折特性が発生する。複屈折特性の光学方向は、板状溝部101と平板部102の配列方向により決定される。このような特性を利用して、上記位相差板100は、右目用映像と左目用映像を互いに異なる偏光状態の光に変更する。   Birefringence characteristics are generated by periodically arranging the plate-like groove portions 101 (refractive index of air) and the flat plate portions 102 (refractive index of the substrate material) having different refractive indexes. The optical direction of the birefringence characteristic is determined by the arrangement direction of the plate groove portion 101 and the flat plate portion 102. Utilizing such characteristics, the retardation plate 100 changes the right-eye video and the left-eye video to light having different polarization states.

特開2006−30461号公報JP 2006-30461 A

しかしながら、前記従来の構造性複屈折を用いた位相差板100は、入射光に単に複屈折作用を与える構成になっている。位相差板100への入射光には、位相差板100の表面に対して垂直方向に入射する光の他に、斜めから入射する光も存在する。この斜め入射する光は、垂直入射する光に対して第1微細周期構造部Aや第2微細周期構造部Bを通過する光路長が長くなり、所望の位相差からずれた光となって射出する。すると、その後の偏光板で不要な光となって漏れ、右目用と左目用の画像重なりの原因になる恐れがある。   However, the conventional retardation plate 100 using structural birefringence is configured to simply give birefringence to incident light. In addition to the light incident on the surface of the phase difference plate 100 in the direction perpendicular to the surface of the phase difference plate 100, the light incident on the phase difference plate 100 also includes light incident from an oblique direction. This obliquely incident light has a longer optical path length through the first fine periodic structure portion A and the second fine periodic structure portion B than the vertically incident light, and is emitted as light deviated from a desired phase difference. To do. Then, unnecessary light leaks from the subsequent polarizing plate, which may cause overlapping of the right-eye and left-eye images.

そこで、本発明は、前記した課題を解決すべくなされたものであり、斜め入射する光であっても、所望の位相差より極力ずれることなく射出できる位相差板を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a phase difference plate that can emit light that is incident obliquely without shifting as much as possible from a desired phase difference. .

本発明は、光透過性で、交互に配置された第1領域(S1)及び第2領域(S2)と、前記第1領域(S1)と前記第2領域(S2)の少なくとも一方に、入射光の1/2波長より短いピッチで板状溝部(11)と板状非溝部(12)が交互に連続して配列された微細周期構造部(10A)、(10B)、(14)とを有する位相差基板(4A)、(4B)と、前記位相差基板(4A)、(4B)の光入射側と光射出側のいずれかの面に配置され、負のCプレート特性を有する位相差補償基板(5A)、(5B)とを備えたことを特徴とする。   The present invention is light transmissive and is incident on at least one of the first region (S1) and the second region (S2) alternately arranged, and the first region (S1) and the second region (S2). Fine periodic structure portions (10A), (10B), and (14) in which plate-like groove portions (11) and plate-like non-groove portions (12) are alternately and continuously arranged at a pitch shorter than a half wavelength of light. The phase difference substrate (4A), (4B) having the phase difference substrate (4A), and the phase difference substrate (4A), (4B) disposed on one of the light incident side and the light emission side, and having a negative C plate characteristic Compensation substrates (5A) and (5B) are provided.

前記微細周期構造部(10A)、(19B)は、前記第1領域(S1)と前記第2領域(S2)に共に設け、前記第1領域(S1)の前記微細周期構造部(10A)と前記第2領域(S2)の前記微細周期構造部(10B)とは、互いに配列方向を90度回転した方向に設定し、前記第1領域(S1)の前記微細周期構造部(10A)と前記第2領域(S2)の前記微細周期構造部(10B)の間には、溝が形成されていない非溝領域部(S3)を設けることが好ましい。   The fine periodic structure portions (10A) and (19B) are provided in the first region (S1) and the second region (S2) together with the fine periodic structure portion (10A) in the first region (S1). The fine periodic structure portion (10B) in the second region (S2) is set to a direction rotated by 90 degrees relative to each other, and the fine periodic structure portion (10A) in the first region (S1) It is preferable to provide a non-groove region portion (S3) in which no groove is formed between the fine periodic structure portions (10B) in the second region (S2).

前記位相差補償基板(5A)は、第1領域(S1)の前記微細周期構造部(10A)と前記第2領域(S2)の前記微細周期構造部(10B)の双方に対応する領域が少なくとも負のCプレート特性を有するよう形成することが好ましい。   The retardation compensation substrate (5A) has at least regions corresponding to both the fine periodic structure portion (10A) in the first region (S1) and the fine periodic structure portion (10B) in the second region (S2). It is preferable to form so as to have negative C plate characteristics.

前記各微細周期構造部(10A)、(10B)は、各入射光の位相が1/4波長分ずれてそれぞれ射出する構成のものを含む。   Each of the fine periodic structure portions (10A) and (10B) includes a configuration in which the phase of each incident light is emitted by being shifted by a quarter wavelength.

前記位相差補償基板(5A)は、前記非溝領域部(S3)に少なくとも対応する位置に、光吸収材料からなる遮光部(6)を有することが好ましい。   It is preferable that the retardation compensation substrate (5A) has a light shielding portion (6) made of a light absorbing material at a position corresponding to at least the non-groove region portion (S3).

前記遮光部(6)の幅は、前記非溝領域部(S3)の幅をP2、前記非溝領域部(S3)の深さをt、光学系のF値をFとすると、P2+(t/F)であることが好ましい。   The width of the light shielding portion (6) is P2 + (t, where P2 is the width of the non-groove region portion (S3), t is the depth of the non-groove region portion (S3), and F is the F value of the optical system. / F).

前記微細周期構造部(14)は、前記第1領域(S1)と前記第2領域(S2)のいずれか一方にのみ設け、前記微細周期構造部(14)が設けられた領域(S1)では、入射光の位相が1/2波長分ずれて射出するよう構成され、前記微細周期構造部(14)が設けられない領域(S2)では、入射光の位相がずれずに射出するものを含む。   The fine periodic structure portion (14) is provided only in one of the first region (S1) and the second region (S2), and in the region (S1) where the fine periodic structure portion (14) is provided. In the region (S2) where the phase of the incident light is emitted with a shift of ½ wavelength and the fine periodic structure portion (14) is not provided, the phase of the incident light is emitted without being shifted. .

前記位相差補償基板(5B)は、前記微細周期構造部(14)が設けられた領域(S1)に対応する領域が負のCプレート特性を有する複屈折部(5a)に、前記微細周期構造部(14)が設けられない領域(S2)に対応する領域が非複屈折部(5B)に形成することが好ましい。   The phase difference compensation substrate (5B) has a structure corresponding to the region (S1) provided with the fine periodic structure portion (14) in the birefringent portion (5a) having a negative C plate characteristic. A region corresponding to the region (S2) where the portion (14) is not provided is preferably formed in the non-birefringent portion (5B).

前記位相差補償基板(5B)は、前記第1領域(S1)と前記第2領域(S2)の境界箇所に対応する位置に、光吸収材料からなる遮光部(6)を有することが好ましい。   It is preferable that the retardation compensation substrate (5B) has a light shielding portion (6) made of a light absorbing material at a position corresponding to a boundary portion between the first region (S1) and the second region (S2).

前記遮光部(6)の幅は、前記板状溝部の深さをt、光学系のF値をFとすると、t/Fであることが好ましい。   The width of the light shielding part (6) is preferably t / F, where t is the depth of the plate groove and F is the F value of the optical system.

本発明によれば、光が位相差板に斜め入射すると、位相差基板の通過に際して所望の位相差を基準として斜め入射角度の大きさが大きくなるに従って大きな位相差ずれを起こすが、位相差補償基板の通過に際して、上記とは逆の位相差(直交した方向の位相差)が大きくなるため、位相差ずれを極力相殺するよう作用する。従って、斜め入射する光であっても、所望の位相差より極力ずれることなく射出できる位相差板を提供できる。   According to the present invention, when light is incident obliquely on the phase difference plate, a large phase difference shift occurs as the angle of oblique incidence increases with reference to the desired phase difference when passing through the phase difference substrate. When the substrate passes, the opposite phase difference (phase difference in the orthogonal direction) becomes larger, so that the phase difference deviation is canceled as much as possible. Therefore, it is possible to provide a phase difference plate that can emit light that is incident obliquely without shifting as much as possible from a desired phase difference.

本発明の第1実施形態を示し、三次元表示装置の要部概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention and is a principal part schematic block diagram of a three-dimensional display apparatus. 本発明の第1実施形態を示し、位相差板の構成図である。FIG. 1 is a configuration diagram of a phase difference plate according to a first embodiment of the present invention. 本発明の第1実施形態を示し、(a)は位相差基板の一部平面図、(b)は位相差基板の一部斜視図である。1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a partial plan view of a retardation substrate, and FIG. 本発明の第1実施形態を示し、位相差補償基板の位相差特性を、屈折率異方性の関係として楕円体にモデル化した図である。FIG. 3 is a diagram illustrating the first embodiment of the present invention, in which the phase difference characteristic of the phase difference compensation substrate is modeled as an ellipsoid as a relationship of refractive index anisotropy. 本発明の第2実施形態を示し、三次元表示装置の要部概略構成図である。FIG. 6 is a schematic configuration diagram of a main part of a three-dimensional display device according to a second embodiment of the present invention. 本発明の第2実施形態を示し、位相差板の構成図である。FIG. 5 is a configuration diagram of a retardation plate showing a second embodiment of the present invention. 本発明の第2実施形態を示し、(a)は位相差基板の一部平面図、(b)は位相差基板の一部斜視図である。FIG. 2 shows a second embodiment of the present invention, in which (a) is a partial plan view of a retardation substrate, and (b) is a partial perspective view of the retardation substrate. 位相差基板と位相差補償基板のマッチング条件を説明するもので、(a)は位相差基板の斜視図、(b)位相差補償基板の斜視図、(c)は位相差補償基板の屈折率異方性の関係を楕円体にモデル化した図である。The matching conditions of the phase difference substrate and the phase difference compensation substrate will be described. (A) is a perspective view of the phase difference substrate, (b) is a perspective view of the phase difference compensation substrate, and (c) is a refractive index of the phase difference compensation substrate. It is the figure which modeled the relationship of anisotropy into the ellipsoid. 入射光の入射角に対する位相差基板と位相差補償基板の角位相差変化量を示す特性線図である。It is a characteristic diagram which shows the angle | corner phase difference variation of a phase difference board | substrate and a phase difference compensation board | substrate with respect to the incident angle of incident light. 本発明を三次元撮像装置に適用する場合の位相差基板の構成を示す図である。It is a figure which shows the structure of the phase difference board in the case of applying this invention to a three-dimensional imaging device. 本発明を三次元撮像装置に適用する場合の位相差基板の構成を示す図である。である。It is a figure which shows the structure of the phase difference board in the case of applying this invention to a three-dimensional imaging device. It is. 従来例を示し、位相差板の全体平面図である。It is a whole top view of a phase difference plate which shows a conventional example. 従来例を示し、位相差板の一部拡大断面図である。It is a partial expanded sectional view of a phase difference plate which shows a conventional example. 従来例を示し、位相差板の微細周期構造箇所の拡大斜視図である。It is an enlarged perspective view of a fine periodic structure portion of a phase difference plate, showing a conventional example.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図4は、本発明に係る位相差板を三次元表示装置に適用した第1実施形態を示す。図1において、三次元表示装置1Aは、映像表示素子である液晶パネル2を有する。液晶パネル2には、右目用と左目用の各画素が例えば水平ライン毎に交互に配置されている。右目用の各画素からは右目映像の光が、左目用の画素からは左目映像の光がそれぞれ射出される。射出される各光は、振動方向が同じ向きの直線偏光である。
(First embodiment)
1 to 4 show a first embodiment in which a phase difference plate according to the present invention is applied to a three-dimensional display device. In FIG. 1, a three-dimensional display device 1A has a liquid crystal panel 2 that is a video display element. In the liquid crystal panel 2, pixels for the right eye and the left eye are alternately arranged, for example, for each horizontal line. The right-eye image light is emitted from each right-eye pixel, and the left-eye image light is emitted from the left-eye pixel. Each emitted light is linearly polarized light having the same vibration direction.

位相差板3Aは、液晶パネル2の光射出側に配置されている。位相差板3Aは、図2に示すように、位相差基板4Aと位相差補償基板5Aからなり、双方の基板4A,5Aが液晶パネル2の射出光方向に互いに重なるように配置されている。位相差基板4Aは、図3(a)、(b)に詳しく示すように、ポリカーボネイト、又は、塩化ビニル、又は、ポリエステル、又は、ポリイミド、又は、ポリオレフィン、又は、アクリルの透明樹脂より形成されている。位相差基板4Aには、液晶パネル2の画素サイズに合わせた寸法の第1領域S1と第2領域S2が交互に連続して設けられている。第1領域S1には、入射光の1/2波長より短いピッチで、板状溝部11と板状非溝部12が交互に連続して配列された第1微細周期構造部10Aが設けられている。第2領域S2にも、入射光の1/2波長より短いピッチで、板状溝部11と板状非溝部12が交互に連続して配列された第2微細周期構造部10Bが設けられている。各板状溝部11は、位相差基板4Aの上面にのみ開口する溝であり、その内周面が閉じられた溝によって形成されている。これにより、各板状非溝部12は、周辺の非溝部13によって連結されている。   The phase difference plate 3 </ b> A is disposed on the light emission side of the liquid crystal panel 2. As shown in FIG. 2, the phase difference plate 3 </ b> A includes a phase difference substrate 4 </ b> A and a phase difference compensation substrate 5 </ b> A. As shown in detail in FIGS. 3A and 3B, the phase difference substrate 4A is made of polycarbonate, vinyl chloride, polyester, polyimide, polyolefin, or acrylic transparent resin. Yes. On the phase difference substrate 4A, first regions S1 and second regions S2 having dimensions matching the pixel size of the liquid crystal panel 2 are alternately and continuously provided. The first region S1 is provided with a first fine periodic structure portion 10A in which plate-like groove portions 11 and plate-like non-groove portions 12 are alternately and continuously arranged at a pitch shorter than ½ wavelength of incident light. . The second region S2 is also provided with the second fine periodic structure portion 10B in which the plate-like groove portions 11 and the plate-like non-groove portions 12 are alternately and continuously arranged at a pitch shorter than ½ wavelength of the incident light. . Each plate-like groove 11 is a groove that opens only on the upper surface of the retardation substrate 4A, and is formed by a groove whose inner peripheral surface is closed. Thereby, each plate-shaped non-groove part 12 is connected by the peripheral non-groove part 13.

第1微細周期構造部10Aと第2微細周期構造部10Bは、それぞれ板状溝部11と板状非溝部12の周期構造によって構造性複屈折を生じる。この構造性複屈折を利用して第1微細周期構造部10Aが例えば+λ/4位相差を発生させる領域に、第2微細周期構造部10Bが例えば−λ/4位相差を発生させる領域に設定されている。つまり、位相差基板4Aは、+λ/4領域と−λ/4領域が交互に配列された±1/4波長板として構成されている。微細周期構造にあって、通過する光の位相差を所望の波長に設定できる理由については、下記する。   The first fine periodic structure portion 10A and the second fine periodic structure portion 10B cause structural birefringence due to the periodic structures of the plate-like groove portion 11 and the plate-like non-groove portion 12, respectively. Using this structural birefringence, the first fine periodic structure portion 10A is set to a region where a + λ / 4 phase difference is generated, for example, and the second fine periodic structure portion 10B is set to a region where a -λ / 4 phase difference is generated, for example. Has been. That is, the phase difference substrate 4A is configured as a ± 1/4 wavelength plate in which + λ / 4 regions and −λ / 4 regions are alternately arranged. The reason why the phase difference of light passing through the fine periodic structure can be set to a desired wavelength will be described below.

第1微細周期構造部10Aと第2微細周期構造部10Bでは、板状溝部11と板状非溝部12の配列方向が遅相軸となり、板状溝部11と板状非溝部12の配列方向の90度回転方向が進相軸となる。第1微細周期構造部10Aと第2微細周期構造部10Bでは、遅相軸及び進相軸の方向が入射光である直線偏光の振動方向に対しそれぞれ45度回転した方向に設定されている。その上、第1微細周期構造部10Aと第2微細周期構造部10Bでは、板状溝部11と板状非溝部12の配列方向が互いに90度回転した方向に設定され、遅相軸及び進相軸の方向が互いに90度回転した方向となっている。   In the first fine periodic structure portion 10A and the second fine periodic structure portion 10B, the arrangement direction of the plate-like groove portion 11 and the plate-like non-groove portion 12 becomes a slow axis, and the arrangement direction of the plate-like groove portion 11 and the plate-like non-groove portion 12 The 90-degree rotation direction is the fast axis. In the first fine periodic structure portion 10A and the second fine periodic structure portion 10B, the slow axis direction and the fast axis direction are set to directions rotated by 45 degrees with respect to the vibration direction of the linearly polarized light that is the incident light. In addition, in the first fine periodic structure portion 10A and the second fine periodic structure portion 10B, the arrangement direction of the plate-like groove portion 11 and the plate-like non-groove portion 12 is set to a direction rotated by 90 degrees with respect to each other. The directions of the axes are directions rotated by 90 degrees with respect to each other.

第1微細周期構造部10Aと第2微細周期構造部10Bの間には、溝が形成されていない非溝領域部S3が設けられている。   Between the first fine periodic structure portion 10A and the second fine periodic structure portion 10B, a non-groove region portion S3 in which no groove is formed is provided.

位相差補償基板5Aは、図2に示すように、光透過性材料より形成されている。位相差補償基板5Aは、その全域が負のCプレート特性を有するように形成されている。つまり、位相差補償基板5Aの表面の面方向には屈折率異方性がなく、面方向の垂直方向に屈折率異方性を有し、面方向の屈折率に対して垂直方向の屈折率が小さい。   As shown in FIG. 2, the phase difference compensation substrate 5A is made of a light transmissive material. The phase difference compensation substrate 5A is formed so that the entire region has a negative C plate characteristic. That is, there is no refractive index anisotropy in the surface direction of the surface of the retardation compensation substrate 5A, there is a refractive index anisotropy in the direction perpendicular to the surface direction, and the refractive index in the direction perpendicular to the surface direction refractive index. Is small.

位相差補償基板5Aの一面には、光吸収材料からなる遮光部6が設けられている。遮光部6は、位相差基板4Aの光入射側に密着されている。遮光部6は、位相差基板4Aの非溝領域部S3に対応するパターンであり、非溝領域部S3に対応する位置に配置されている。   A light shielding portion 6 made of a light absorbing material is provided on one surface of the retardation compensation substrate 5A. The light shielding unit 6 is in close contact with the light incident side of the retardation substrate 4A. The light shielding portion 6 is a pattern corresponding to the non-groove region portion S3 of the retardation substrate 4A, and is disposed at a position corresponding to the non-groove region portion S3.

遮光部6の幅W1は、非溝領域部S3の幅をP2、非溝領域部S3の深さをt、光学系(レンズ)のF値をFとすると、W1=P2+(t/F)に設定されている。   The width W1 of the light shielding portion 6 is W1 = P2 + (t / F), where P2 is the width of the non-groove region portion S3, t is the depth of the non-groove region portion S3, and F is the F value of the optical system (lens). Is set to

ここで、F=f(焦点距離)/φ(口径)であり、φ/2=f/2Fとなる。f→tとすると、φ/2=t/2Fとなり、φ=t/Fとなるためである。   Here, F = f (focal length) / φ (aperture), and φ / 2 = f / 2F. If f → t, then φ / 2 = t / 2F and φ = t / F.

位相差補償基板5Aは、TAC(トリアセチルセルロース)フィルム、波長より十分に短い膜厚で屈折率に差のある誘電体膜を積層して構造性複屈折を利用したものより形成してある。例えば、水平配向の液晶ポリマーや、延伸フィルム等のAプレート材料を、同じ位相差を持つ状態で遅相軸を直交させて向き合わせたものである。   The phase difference compensation substrate 5A is formed of a TAC (triacetylcellulose) film and a film using a structural birefringence by laminating a dielectric film having a film thickness sufficiently shorter than a wavelength and having a difference in refractive index. For example, a horizontally aligned liquid crystal polymer and an A plate material such as a stretched film face each other with the slow axes orthogonal to each other with the same phase difference.

次に、位相差基板4Aの各領域を所望の位相差に設定できる理由を説明する。   Next, the reason why each region of the phase difference substrate 4A can be set to a desired phase difference will be described.

板状溝部11及び板状非溝部12が延びる方向とこれに直交する方向で有効となる屈折率NTM、NTE は、板状溝部11の屈折率と周期構造より決定され、下記の式で求めることができる。ここで、TM,TEは直線偏光の振動方向に対して±45度の方向の成分を表す。板状溝部11の屈折率はN1であり、板状非溝部12の屈折率はN2である。板状溝部11は媒体が空気であるため、N1=1である。板状溝部11の幅はL、板状非溝部12の幅はS、第1及び第2微細周期構造部10A,10B(板状溝部11及び板状非溝部12)の深さはdである。フィリング係数fは、f=L/P(ピッチP=L+S)である。 The refractive indexes N TM and N TE effective in the direction in which the plate-like groove portion 11 and the plate-like non-groove portion 12 extend and in the direction orthogonal thereto are determined from the refractive index and the periodic structure of the plate-like groove portion 11, and Can be sought. Here, TM and TE represent components in a direction of ± 45 degrees with respect to the vibration direction of linearly polarized light. The refractive index of the plate-like groove portion 11 is N 1 , and the refractive index of the plate-like non-groove portion 12 is N 2 . Since the medium of the plate-like groove 11 is air, N 1 = 1. The width of the plate-like groove portion 11 is L, the width of the plate-like non-groove portion 12 is S, and the depth of the first and second fine periodic structure portions 10A and 10B (the plate-like groove portion 11 and the plate-like non-groove portion 12) is d. . The filling factor f is f = L / P (pitch P = L + S).

TM={f・N2 2 +(1−f)}1/2
TE=[N2 2 /{f +(1−f)N2 2}]1/2
上記式より射出光に与えられた位相差δは、δ=(NTM−NTE )×dで求められる。従って、位相差基板4Aの屈折率N2と微細周期構造部10A,10Bの深さdによって位相差δを制御でき、この第1実施形態では、+λ/4領域と−λ/4領域が交互に繰り返す±1/4波長板として構成されている。
N TM = {f · N 2 2 + (1−f)} 1/2
N TE = [N 2 2 / {f + (1−f) N 2 2 }] 1/2
From the above equation, the phase difference δ given to the emitted light is obtained by δ = (N TM −N TE ) × d. Therefore, the phase difference δ can be controlled by the refractive index N 2 of the phase difference substrate 4A and the depth d of the fine periodic structure portions 10A and 10B. In this first embodiment, the + λ / 4 region and the −λ / 4 region are alternated. It is constituted as a ± 1/4 wavelength plate repeated.

位相差補償基板5Aに、遮光部6のほかにアライメントパターン部を形成すれば、位相差基板4Aに正確な位置で固定できる。位相差補償基板5Aと位相差基板4Aは、板状溝部11及び板状非溝部12より外側位置を熱硬化性若しくは紫外線硬化性の接着剤等で固定する。   If an alignment pattern portion is formed in addition to the light shielding portion 6 on the phase difference compensation substrate 5A, it can be fixed to the phase difference substrate 4A at an accurate position. The phase difference compensation substrate 5A and the phase difference substrate 4A are fixed at positions outside the plate-like groove portion 11 and the plate-like non-groove portion 12 with a thermosetting or ultraviolet curable adhesive or the like.

図1に戻り、次に、三次元表示装置1Aの作用を説明する。液晶パネル2の右目画素では右目用映像が、液晶パネル2の左目画素では左目用映像がそれぞれ表示される。右目用映像の直線偏光の光は、位相差板3Aを通過する際に、偏光状態が変更されて例えば右円偏光になって射出される。左目用映像の直線偏光の光は、位相差板3Aを通過する際に、偏光状態が変更されて例えば左円偏光になって射出される。   Returning to FIG. 1, the operation of the three-dimensional display device 1A will be described next. The right-eye image is displayed on the right-eye pixel of the liquid crystal panel 2, and the left-eye image is displayed on the left-eye pixel of the liquid crystal panel 2. When the linearly polarized light of the right-eye image passes through the phase difference plate 3A, the polarization state is changed and emitted as, for example, right circularly polarized light. When the linearly polarized light of the left-eye image passes through the phase difference plate 3A, the polarization state is changed, and is emitted as, for example, left circularly polarized light.

図1に示すように、右目レンズ側に右円偏光の光を透過する円偏光板15aを、左目レンズ側に左円偏光の光を透過する円偏光板15bをそれぞれ有する眼鏡15を掛けて見ると、右目には右目用映像のみが、左目には左目用映像のみが見える。これによって、視聴者は、三次元映像を見ることができる。   As shown in FIG. 1, a circularly polarizing plate 15a that transmits right-circularly polarized light is provided on the right-eye lens side, and glasses 15 each having circularly polarizing plate 15b that transmits left-circularly polarized light are viewed on the left-eye lens side. In the right eye, only the right eye image is visible, and in the left eye, only the left eye image is visible. As a result, the viewer can view the 3D video.

次に、位相差板3Aの偏光作用を詳細に説明する。光が位相差板3Aに斜め入射すると、垂直方向に入射する光に較べて位相差基板4A内を通過する光路長が長くなり、光路長は斜め入射光の角度が大きくなるに従って長くなる。つまり、入射光が傾くほど発現していく位相差が大きくなっていく。   Next, the polarization action of the phase difference plate 3A will be described in detail. When light is incident obliquely on the phase difference plate 3A, the optical path length passing through the phase difference substrate 4A is longer than the light incident in the vertical direction, and the optical path length is increased as the angle of the oblique incident light is increased. That is, as the incident light is tilted, the phase difference that develops increases.

一方、位相差補償板5Aは、負のCプレート特性を有する。屈折率異方性の関係として楕円体にモデル化すると、図4に示すようになる。図4に示すように、斜め入射光の角度が大きくなるに従って傾く方向には屈折率が小さくなり、その直角方向(傾かない方向)には屈折率の変化が無い。又、垂直方向の入射光に対して余分な位相差を与えない。   On the other hand, the phase difference compensation plate 5A has negative C plate characteristics. When an ellipsoid is modeled as a relationship of refractive index anisotropy, it is as shown in FIG. As shown in FIG. 4, as the angle of obliquely incident light increases, the refractive index decreases in the direction inclined, and there is no change in the refractive index in the perpendicular direction (non-inclined direction). Further, no extra phase difference is given to incident light in the vertical direction.

また、位相差板3Aには、板状溝部11と板状非溝部12の配列方向が互いに異なる第1微細周期構造部10Aと第2微細周期構造部10Bが設けられているが、負のCプレート特性の位相差補償基板5Aは、面方向に屈折率異方性がないため、第1微細周期構造部10Aと第2微細周期構造部10Bの双方の位相差ずれを共に補償可能である。   Further, the retardation plate 3A is provided with a first fine periodic structure portion 10A and a second fine periodic structure portion 10B in which the arrangement directions of the plate-like groove portions 11 and the plate-like non-groove portions 12 are different from each other, but negative C Since the phase difference compensation substrate 5A having a plate characteristic has no refractive index anisotropy in the plane direction, both the phase difference deviations of the first fine periodic structure portion 10A and the second fine periodic structure portion 10B can be compensated.

以上より、傾きのない垂直方向の入射光は、位相差基板4Aの通過に際して所望の位相差が与えられ、且つ、位相差補償基板5Aの通過に際して全く位相差が与えられないため、所望の位相差を持った光を射出する。傾きのある斜め入射光は、位相差基板4Aの通過に際して所望の位相差を基準として斜め入射角度の大きさが大きくなるに従って大きな位相差ずれを起こす。しかし、位相差補償基板5Aの通過に際し、上記とは逆の位相差(直交した方向の位相差)が大きくなるため、位相差ずれを極力相殺するよう作用する。従って、位相差板3Aに斜め入射する光であっても、所望の位相差より極力ずれることなく射出する。   As described above, the incident light in the vertical direction without inclination is given a desired phase difference when passing through the phase difference substrate 4A, and no phase difference is given when passing through the phase difference compensation substrate 5A. Light with phase difference is emitted. Inclined obliquely incident light causes a large phase difference shift as the oblique incident angle increases with the desired phase difference as a reference when passing through the retardation substrate 4A. However, when passing through the phase difference compensation substrate 5A, the phase difference opposite to the above (phase difference in the orthogonal direction) becomes large, so that the phase difference deviation is canceled as much as possible. Therefore, even the light obliquely incident on the phase difference plate 3A is emitted without being shifted as much as possible from the desired phase difference.

各微細周期構造部10A,10Bは、板状溝部11と板状非溝部12が交互に連続して配列され、且つ、板状溝部11はその内周面が閉じられた溝である。このように各板状溝部11はその内周面が閉じられた溝であり、これにより各板状非溝部12が周囲の非溝部13で互いに連結されているため、板状溝部11と板状非溝部12は強度的に強い構造となり、応力や外力によって変形したり壊れたりし難い。   In each of the fine periodic structure portions 10A and 10B, plate-like groove portions 11 and plate-like non-groove portions 12 are alternately and continuously arranged, and the plate-like groove portions 11 are grooves whose inner peripheral surfaces are closed. Thus, each plate-like groove portion 11 is a groove whose inner peripheral surface is closed, and thereby each plate-like non-groove portion 12 is connected to each other by the surrounding non-groove portion 13. The non-groove portion 12 has a strong structure and is not easily deformed or broken by stress or external force.

第1微細周期構造部10Aと第2微細周期構造部10Bの間には、溝が形成されていない非溝領域部S3が設けられている。従って、第1微細周期構造部10Aの板状溝部11と第2微細周期構造部10Bの板状溝部11の間隔が広くなるため、位相差基板4Aの強度が向上する。   Between the first fine periodic structure portion 10A and the second fine periodic structure portion 10B, a non-groove region portion S3 in which no groove is formed is provided. Therefore, since the interval between the plate-like groove portion 11 of the first fine periodic structure portion 10A and the plate-like groove portion 11 of the second fine periodic structure portion 10B is widened, the strength of the phase difference substrate 4A is improved.

第1及び第2微細周期構造部10A,10Bは、各入射光の位相が1/4波長分ずれてそれぞれ射出されるよう構成されている。従って、同じ振動方向の直線偏光が入射光である場合に、それぞれ回転方向が異なる円偏光を射出できる。   The first and second fine periodic structure portions 10A and 10B are configured such that the phase of each incident light is emitted by being shifted by a quarter wavelength. Therefore, when linearly polarized light having the same vibration direction is incident light, circularly polarized light having different rotation directions can be emitted.

第1及び第2微細周期構造部10A,10Bは、入射光である直線偏光の振動方向に対しそれぞれ45度回転した方向に設定されている。従って、入射光に対して最も高い効率で位相差を生じさせることができる。   The first and second fine periodic structure portions 10A and 10B are set in directions rotated by 45 degrees with respect to the vibration direction of linearly polarized light that is incident light. Therefore, the phase difference can be generated with the highest efficiency with respect to the incident light.

位相差補償基板5Aは、位相差基板4Aの入射側で、且つ、非溝領域部S3に対応する位置に、光吸収材料からなる遮光部6を有する。従って、非溝領域部S3に垂直方向で入射する光を確実に遮蔽できる。その上、この実施形態では、遮光部6の幅W1は、非溝領域部S3の幅をP2、非溝領域部S3の深さをt、光学系(レンズ)のF値をFとすると、W1=P2+(t/F)に設定されている。従って、図2に示すように、斜め入射光で、第1微細周期構造部10A又は第2微細周期構造部10Bから非溝領域部S3に跨って入り込む光を阻止できるため、所望の位相差を与えられず、漏れ光となる不要な光を確実に遮蔽できる。   The phase difference compensation substrate 5A has a light shielding portion 6 made of a light absorbing material at a position corresponding to the non-groove region portion S3 on the incident side of the phase difference substrate 4A. Therefore, light incident on the non-groove region portion S3 in the vertical direction can be reliably shielded. In addition, in this embodiment, the width W1 of the light-shielding portion 6 is set such that the width of the non-groove region portion S3 is P2, the depth of the non-groove region portion S3 is t, and the F value of the optical system (lens) is F. W1 = P2 + (t / F) is set. Therefore, as shown in FIG. 2, light entering obliquely across the non-groove region portion S3 from the first fine periodic structure portion 10A or the second fine periodic structure portion 10B can be blocked by the oblique incident light. Unnecessary light which is not given and becomes leaked light can be reliably shielded.

(第2実施形態)
図5〜図7は、本発明に係る位相差板を三次元表示装置に適用した第2実施形態を示す。図5において、三次元表示装置1Bは、映像表示素子である液晶パネル2を有する。液晶パネル2には、右目用と左目用の各画素が例えば水平ライン毎に交互に配置されている。右目用の各画素からは右目映像の光が、左目用の画素からは左目映像の光がそれぞれ射出される。射出される各光は、振動方向が同じ向きの直線偏光である。
(Second Embodiment)
5 to 7 show a second embodiment in which the phase difference plate according to the present invention is applied to a three-dimensional display device. In FIG. 5, the three-dimensional display device 1B includes a liquid crystal panel 2 that is a video display element. In the liquid crystal panel 2, pixels for the right eye and the left eye are alternately arranged, for example, for each horizontal line. The right-eye image light is emitted from each right-eye pixel, and the left-eye image light is emitted from the left-eye pixel. Each emitted light is linearly polarized light having the same vibration direction.

位相差板3Bは、液晶パネル2の光射出側に配置されている。位相差板3Bは、図6に示すように、位相差基板4Bと位相差補償基板5Bからなり、双方の基板4B,5Bが液晶パネル2の射出光方向に互いに重なるように配置されている。   The phase difference plate 3 </ b> B is disposed on the light emission side of the liquid crystal panel 2. As shown in FIG. 6, the phase difference plate 3 </ b> B includes a phase difference substrate 4 </ b> B and a phase difference compensation substrate 5 </ b> B, and both the substrates 4 </ b> B and 5 </ b> B are arranged so as to overlap each other in the light emission direction of the liquid crystal panel 2.

位相差基板4Bは、図7(a)、(b)に詳しく示すように、ポリカーボネイト、塩化ビニル、ポリエステル、ポリイミド、ポリオレフィン、アクリル等の透明樹脂より形成されている。位相差基板4Bには、液晶パネル2の画素サイズに合わせた寸法の第1領域S1と第2領域S2が交互に連続して設けられている。第1領域S1には、入射光の1/2波長より短いピッチで、板状溝部11と板状非溝部12が交互に連続して配列された微細周期構造部14が設けられている。第2領域S2には、前記第1実施形態と異なり、何ら板状溝部が設けられていない。   As shown in detail in FIGS. 7A and 7B, the phase difference substrate 4B is formed of a transparent resin such as polycarbonate, vinyl chloride, polyester, polyimide, polyolefin, and acrylic. The retardation substrate 4B is provided with first regions S1 and second regions S2 having dimensions corresponding to the pixel size of the liquid crystal panel 2 alternately and continuously. The first region S1 is provided with a fine periodic structure portion 14 in which plate-like groove portions 11 and plate-like non-groove portions 12 are alternately and continuously arranged at a pitch shorter than ½ wavelength of incident light. Unlike the first embodiment, no plate groove is provided in the second region S2.

微細周期構造部14は、板状溝部11と板状非溝部12の周期構造によって、構造性複屈折を生じる。第2領域S2は、構造性複屈折を生じない。位相差基板4Bは、構造性複屈折を利用してλ/2領域と0領域が交互に配列されたλ/2位相差基板として構成されている。   The fine periodic structure portion 14 generates structural birefringence due to the periodic structure of the plate-like groove portion 11 and the plate-like non-groove portion 12. The second region S2 does not cause structural birefringence. The phase difference substrate 4B is configured as a λ / 2 phase difference substrate in which λ / 2 regions and 0 regions are alternately arranged using structural birefringence.

微細周期構造部14の各板状溝部11は、位相差基板4Bの上面にのみ開口する溝であり、その内周面が閉じられた溝として形成されている。これにより、各板状非溝部12は、周辺の非溝部13によって連結されている。   Each plate-like groove portion 11 of the fine periodic structure portion 14 is a groove that opens only on the upper surface of the phase difference substrate 4B, and is formed as a groove whose inner peripheral surface is closed. Thereby, each plate-shaped non-groove part 12 is connected by the peripheral non-groove part 13.

微細周期構造部14では、板状溝部11と板状非溝部12の配列方向が遅相軸となり、配列方向の90度回転方向が進相軸となる。微細周期構造部14では、遅相軸及び進相軸の方向が射出光である直線偏光の振動方向に対しそれぞれ45度回転した方向に設定されている。   In the fine periodic structure portion 14, the arrangement direction of the plate-like groove portions 11 and the plate-like non-groove portions 12 is a slow axis, and the 90 ° rotation direction of the arrangement direction is a fast axis. In the fine periodic structure section 14, the slow axis direction and the fast axis direction are set to directions rotated by 45 degrees with respect to the vibration direction of the linearly polarized light that is the emitted light.

位相差補償基板5Bは、図6に示すように、光透過性材料より形成されている。位相差補償基板5Bは、微細周期構造部14が設けられた第1領域S1に対応する領域が負のCプレート特性を有する複屈折部5aに、微細周期構造部14が設けられない第2領域S2に対応する領域が非複屈折部5bに形成されている。つまり、第2領域S2は、何ら複屈折特性を発現しない領域である。   The phase difference compensation substrate 5B is made of a light transmissive material as shown in FIG. The phase difference compensation substrate 5B is a second region where the fine periodic structure portion 14 is not provided in the birefringent portion 5a having a negative C plate characteristic in the region corresponding to the first region S1 where the fine periodic structure portion 14 is provided. A region corresponding to S2 is formed in the non-birefringent portion 5b. That is, the second region S2 is a region that does not exhibit any birefringence characteristics.

位相差補償基板5の一面には、光吸収材料からなる遮光部6が設けられている。遮光部6は、位相差基板4Bの光入射側の面に密着されている。遮光部6は、第1領域S1と第2領域S2の境界位置に対応するパターンであり、その境界位置に対応する位置に配置されている。遮光部6の幅はW2、微細周期構造部14(板状溝部11及び板状非溝部12)の深さをt、光学系の焦点距離をFとすると、W2=(t/F)に設定されている。   On one surface of the retardation compensation substrate 5, a light shielding portion 6 made of a light absorbing material is provided. The light shielding unit 6 is in close contact with the light incident side surface of the retardation substrate 4B. The light shielding unit 6 is a pattern corresponding to the boundary position between the first region S1 and the second region S2, and is disposed at a position corresponding to the boundary position. The width of the light-shielding portion 6 is set to W2, where the depth of the fine periodic structure portion 14 (plate-like groove portion 11 and plate-like non-groove portion 12) is t, and the focal length of the optical system is F, W2 = (t / F). Has been.

次に、三次元表示装置1Bの動作を説明する。液晶パネル2の各右目画素では右目用映像が、液晶パネル2の各左目画素では左目用映像がそれぞれ表示される。右目用映像の直線偏光の光と左目用映像の直線偏光の光は、位相差板3Bを通過する際に、いずれか一方が90度回転され、互いに90度回転した直線偏光となって射出される。   Next, the operation of the three-dimensional display device 1B will be described. A right-eye image is displayed at each right-eye pixel of the liquid crystal panel 2, and a left-eye image is displayed at each left-eye pixel of the liquid crystal panel 2. When passing through the phase difference plate 3B, one of the linearly polarized light of the right-eye image and the linearly polarized light of the left-eye image is emitted as linearly polarized light that is rotated 90 degrees and rotated 90 degrees with respect to each other. The

右目レンズ側に一方の直線偏光の光を透過する偏光板16aを、左目レンズ側に他方の直線偏光の光を透過する偏光板16bをそれぞれ有する眼鏡16を掛けて見ると、右目には右目用映像のみが、左目には左目用映像のみが見える。これによって、視聴者は、三次元映像を見ることができる。   When the right eye lens side is viewed with the polarizing plate 16a that transmits one linearly polarized light and the left eye lens side with the polarizing plate 16b that transmits the other linearly polarized light, the right eye is for the right eye. Only the image is visible, and the left eye only sees the image for the left eye. As a result, the viewer can view the 3D video.

次に、位相差板3Bの偏光作用を詳細に説明する。位相差基板4Bの微細周期構造部14が設けられていない第2領域と位相差補償基板5Bの非複屈折部5bを通過する光は、位相差が与えられない状態で射出する。一方、位相差基板4Bの微細周期構造部14(第1領域S1)と位相差補償基板5Bの複屈折部5aを通過する光は、前記第1実施形態で説明したのと同様の作用によって位相差を与えられる。従って、位相差板3Bに斜め入射する光であっても、所望の位相差より極力ずれることなく射出する。   Next, the polarization action of the phase difference plate 3B will be described in detail. The light passing through the second region of the phase difference substrate 4B where the fine periodic structure portion 14 is not provided and the non-birefringence portion 5b of the phase difference compensation substrate 5B is emitted in a state where no phase difference is given. On the other hand, the light passing through the fine periodic structure portion 14 (first region S1) of the phase difference substrate 4B and the birefringence portion 5a of the phase difference compensation substrate 5B has a similar effect as described in the first embodiment. Given the phase difference. Therefore, even the light obliquely incident on the phase difference plate 3B is emitted without being shifted as much as possible from the desired phase difference.

微細周期構造部14は、板状溝部11と板状非溝部12が交互に連続して配列され、且つ、板状溝部11はその内周面が閉じられた溝によって形成されている。このように各板状溝部11はその内周面が閉じられた溝であり、これにより各板状非溝部12が周囲の非溝部13で互いに連結されているため、板状溝部11と板状非溝部12は強度的に強い構造となり、応力や外力によって変形したり壊れたりし難い。   In the fine periodic structure portion 14, plate-like groove portions 11 and plate-like non-groove portions 12 are alternately and continuously arranged, and the plate-like groove portions 11 are formed by grooves whose inner peripheral surfaces are closed. Thus, each plate-like groove portion 11 is a groove whose inner peripheral surface is closed, and thereby each plate-like non-groove portion 12 is connected to each other by the surrounding non-groove portion 13. The non-groove portion 12 has a strong structure and is not easily deformed or broken by stress or external force.

微細周期構造部14は、入射光の位相が1/2波長分ずれてそれぞれ射出されるよう構成されている。従って、同じ振動方向の直線偏光が入射光である場合に、90度回転した直線偏光として射出できる。   The fine periodic structure unit 14 is configured such that the phase of incident light is emitted with a shift of ½ wavelength. Therefore, when linearly polarized light having the same vibration direction is incident light, it can be emitted as linearly polarized light rotated by 90 degrees.

微細周期構造部14は、入射光である直線偏光の振動方向に対しそれぞれ45度回転した方向に設定されている。従って、入射光に対して最も高い効率で位相差を生じさせることができる。   The fine periodic structure portion 14 is set in a direction rotated by 45 degrees with respect to the vibration direction of linearly polarized light that is incident light. Therefore, the phase difference can be generated with the highest efficiency with respect to the incident light.

位相差補償基板5Bは、位相差基板4Bの入射面側で、且つ、微細周期構造部14と微細周期構造が形成されていない第2領域S2との境界位置には、光吸収材料からなる遮光部6が配置されているので、斜め入射して微細周期構造部14と微細周期構造でない第2領域S2を跨って通過する光を遮蔽できる。特に、この実施形態では、遮光部6の幅W2は、微細周期構造部14(板状溝部11及び板状非溝部12)の深さをt、光学系(レンズ)のF値をFとすると、t/Fに設定されている。従って、図6に示すように、斜め入射光で、微細周期構造部14と微細周期構造が形成されていない第2領域S2とを跨って通過する光を確実に阻止できるため、所望の位相差を与えられず、漏れ光となる不要な光を確実に遮蔽できる。   The phase difference compensation substrate 5B is on the incident surface side of the phase difference substrate 4B and at the boundary position between the fine periodic structure portion 14 and the second region S2 where the fine periodic structure is not formed, is a light shielding material made of a light absorbing material. Since the portion 6 is disposed, it is possible to shield light that is obliquely incident and passes across the fine periodic structure portion 14 and the second region S2 that is not the fine periodic structure. In particular, in this embodiment, the width W2 of the light shielding portion 6 is such that the depth of the fine periodic structure portion 14 (plate-like groove portion 11 and plate-like non-groove portion 12) is t, and the F value of the optical system (lens) is F. , T / F. Therefore, as shown in FIG. 6, it is possible to reliably block light passing through the fine periodic structure portion 14 and the second region S2 where the fine periodic structure is not formed by obliquely incident light. Therefore, it is possible to reliably shield unnecessary light that becomes leakage light.

(位相差基板と位相差補償基板のマッチング条件)
次に、第1実施形態の位相差板3Aを例として、位相差基板4Aと位相差補償基板5Aの位相差のマッチング条件を説明する。
(Matching condition between phase difference substrate and phase difference compensation substrate)
Next, the phase difference matching condition between the phase difference substrate 4A and the phase difference compensation substrate 5A will be described using the phase difference plate 3A of the first embodiment as an example.

先ず、斜め入射光における位相差基板4Aの位相差変化量δ1を求める。図8(a)において、位相差基板4Aの表面の面方向の互いに直交する屈折率をN1、N2(N2<N1)とすると、屈折率差ΔNaは、
ΔNa=N1−N2である。
First, a phase difference change amount δ1 of the phase difference substrate 4A in obliquely incident light is obtained. In FIG. 8A, assuming that the refractive indexes orthogonal to each other in the surface direction of the surface of the retardation substrate 4A are N1 and N2 (N2 <N1), the refractive index difference ΔN a is
ΔN a = N1-N2.

位相差基板4Aの微細周期構造部10A,10Bの深さをd1、入射光の傾斜角をθとすると、位相差基板4Aの位相差変化量δ1は、
δ1=ΔNa・d1(1−1/cosθ)である。
When the depth of the fine periodic structures 10A and 10B of the phase difference substrate 4A is d1, and the inclination angle of incident light is θ, the phase difference variation δ1 of the phase difference substrate 4A is
δ1 = ΔN a · d1 (1-1 / cos θ).

ここで、入射光の傾斜角θが変わっても、屈折率差ΔNaは変化しない。フィリング係数fは、ライン幅L、ピッチPにて屈折率が変化するが、傾斜角θが変わってもライン幅L、ピッチP共に1/cosθだけ変化するだけなので、キャンセルしてフィリング係数fは変化しない。 Here, it is varied inclination angle of the incident light θ is, the refractive index difference .DELTA.N a does not change. The filling factor f changes in refractive index with the line width L and pitch P, but even if the inclination angle θ changes, both the line width L and pitch P only change by 1 / cos θ. It does not change.

従って、位相差基板4Aの位相差変化量δ1は、光路長のみによって変化する。   Accordingly, the phase difference change amount δ1 of the phase difference substrate 4A changes only by the optical path length.

次に、斜め入射光における位相差補償基板5Aの位相差変化量δ2を求める。図8(b)において、位相差補償基板5Aの表面の面方向の屈折率をN3、面方向に直交する方向の屈折率をN4(N4<N3)、入射光の傾斜角をθとすると、屈折率差ΔNbは、楕円の座標(図8(c)参照)より
ΔNb={(N3・cosθ)2+(N4・cosθ)21/2である。
Next, the phase difference variation δ2 of the phase difference compensation substrate 5A in the oblique incident light is obtained. In FIG. 8B, when the refractive index in the surface direction of the surface of the retardation compensation substrate 5A is N3, the refractive index in the direction orthogonal to the surface direction is N4 (N4 <N3), and the inclination angle of incident light is θ, The refractive index difference ΔN b is ΔN b = {(N3 · cos θ) 2 + (N4 · cos θ) 2 } 1/2 from the coordinates of the ellipse (see FIG. 8C).

位相差補償基板5Aの深さ(板厚)をd2とすると、位相差補償基板5Aの位相差変化量δ2は、
δ2=ΔNb・d2/cosθである。
When the depth (plate thickness) of the phase difference compensation substrate 5A is d2, the phase difference change amount δ2 of the phase difference compensation substrate 5A is:
δ2 = ΔN b · d2 / cos θ.

ここで、入射光の傾斜角θが変わると屈折率差ΔNbが変化し、又、光路長も変化する。従って、位相差補償基板5Aの位相差変化量δ2は、屈折率差ΔNbと光路長によって変化する。以上より、位相差補償基板5の屈折率差ΔNbと深さ(板厚)d2を調整することによりマッチング可能となる。 Here, when the inclination angle θ of the incident light changes, the refractive index difference ΔN b changes, and the optical path length also changes. Accordingly, the phase difference variation δ2 of the phase difference compensation substrate 5A varies depending on the refractive index difference ΔN b and the optical path length. As described above, matching can be achieved by adjusting the refractive index difference ΔN b and the depth (plate thickness) d2 of the retardation compensation substrate 5.

例えば、位相差基板4Aと位相差補償基板5Aの各値を下記の表1とすると、入射角の傾斜角θに対する位相差変化量δ1、δ2が下記の表2のようになる。   For example, assuming that the values of the phase difference substrate 4A and the phase difference compensation substrate 5A are as shown in Table 1 below, the phase difference variation amounts δ1 and δ2 with respect to the inclination angle θ of the incident angle are as shown in Table 2 below.

Figure 2012098657
Figure 2012098657

Figure 2012098657
Figure 2012098657

入射光の傾斜角θに対するそれぞれの位相差変化量δ1、δ2は、図9に示すような特性線図となり、位相差板3Aに斜め入射する光であっても、ほぼ所望の位相差(±λ/4)で射出させることができる。   Respective phase difference variation amounts δ1 and δ2 with respect to the tilt angle θ of the incident light are characteristic diagrams as shown in FIG. 9, and even if the light is obliquely incident on the phase difference plate 3A, the desired phase difference (± λ / 4).

(変形例等)
前記各実施形態では、位相差補償基板5A,5Bは、位相差基板4A,4Bの入射面側に配置したが、射出面側に配置しても良い。
(Modifications etc.)
In each of the embodiments described above, the phase difference compensation substrates 5A and 5B are arranged on the incident surface side of the phase difference substrates 4A and 4B, but may be arranged on the emission surface side.

前記第1実施形態では、位相差基板4A,4Bには、共に微細周期構造による+λ/4領域と−λ/4領域を交互に構成したが、これに限定されず微細周期構造によって種々の波長差領域を構成可能である。   In the first embodiment, the retardation substrates 4A and 4B are alternately configured with + λ / 4 regions and −λ / 4 regions having a fine periodic structure. However, the present invention is not limited to this. A difference region can be configured.

前記第1実施形態では、位相差補償基板5Aは、全域が負のCプレート特性を有する複屈折構造に形成されているが、第1領域S1の第1微細周期構造部10Aと第2領域S2の第2微細周期構造部10Bの双方に対応する領域について、少なくとも負のCプレート特性を有する複屈折構造に形成すれば良い。   In the first embodiment, the retardation compensation substrate 5A is formed in a birefringent structure having a negative C-plate characteristic in the entire region, but the first fine periodic structure portion 10A and the second region S2 in the first region S1. The regions corresponding to both of the second fine periodic structure portions 10B may be formed in a birefringent structure having at least negative C plate characteristics.

前記第2実施形態では、位相差基板4Bには、微細周期構造によるλ/2領域と位相差なしの0領域を交互に構成したが、これに限定されず微細周期構造によって種々の波長差領域を構成可能である。   In the second embodiment, the retardation substrate 4B is configured by alternately arranging λ / 2 regions having a fine periodic structure and zero regions having no phase difference, but the present invention is not limited to this, and various wavelength difference regions are formed depending on the fine periodic structure. Can be configured.

また、前記各実施形態では、本発明の三次元表示装置への適用について述べたが、三次元撮像装置への適用も可能である。位相差基板4A,4Bは、図10に示すように+λ/4と−λ/4の領域S1,S2を交互に繰り返す構成や、図11に示すようにλ/2と0の領域を交互に繰り返す構成のものを使用する。位相差補償基板は、±λ/4の全領域に対して、負のCプレート特性を有するものや、λ/2の領域で負のCプレート特性を有し、0の領域で何ら複屈折特性を有しないものを使用する。すなわち、偏光状態と入射出の関係が三次元表示装置と逆になれば良い。   In each of the above embodiments, the application of the present invention to the three-dimensional display device has been described. However, application to a three-dimensional imaging device is also possible. The phase difference substrates 4A and 4B have a configuration in which + λ / 4 and −λ / 4 regions S1 and S2 are alternately repeated as shown in FIG. 10, and λ / 2 and 0 regions are alternately shown in FIG. Use one that repeats. The phase difference compensation substrate has a negative C plate characteristic with respect to the entire range of ± λ / 4, a negative C plate characteristic in the region of λ / 2, and no birefringence in the region of 0. Use one that does not have That is, it is only necessary that the relationship between the polarization state and the incident / exit is opposite to that of the three-dimensional display device.

例えば、左右の目に対応した映像光それぞれが、図10のような回転方向が異なる円偏光か、図11のようなお互いの軸が90度回転した直線偏光として位相差基板4A,4Bに入射する。その光が位相差基板4A,4Bの左右の目それぞれに対応した領域を透過することで、領域S1,S2毎に軸の向きが異なる直線偏光として射出される。その後偏光板を透過することで、ある領域では左目用の映像の直線偏光のみが、別の領域では右目用の映像の直線偏光のみが射出される。そして、位相差板に斜め入射する光であっても、位相差補償基板の補償機能によって所望の位相差より極力ずれることなく射出される。   For example, the image lights corresponding to the left and right eyes are incident on the phase difference substrates 4A and 4B as circularly polarized light having different rotation directions as shown in FIG. 10 or linearly polarized light whose axes are rotated by 90 degrees as shown in FIG. To do. The light passes through regions corresponding to the left and right eyes of the phase difference substrates 4A and 4B, and is emitted as linearly polarized light having different axis directions for the regions S1 and S2. Then, by passing through the polarizing plate, only the linearly polarized light of the image for the left eye is emitted in one region, and only the linearly polarized light of the image for the right eye is emitted in another region. Even light obliquely incident on the phase difference plate is emitted without being shifted as much as possible from the desired phase difference by the compensation function of the phase difference compensation substrate.

2 液晶パネル(表示素子)
3A,3B 位相差板
4A,4B 位相差基板
5A,5B 位相差補償基板
5a 複屈折部
5b 非複屈折部
6 遮光部
10A 第1微細周期構造部
10B 第2微細周期構造部
11 板状溝部
12 板状非溝部
14 微細周期構造部
S1 第1領域
S2 第2領域
S3 非溝領域部
2 Liquid crystal panel (display element)
3A, 3B Phase difference plate 4A, 4B Phase difference substrate 5A, 5B Phase difference compensation substrate 5a Birefringence part 5b Non-birefringence part 6 Light shielding part 10A First fine periodic structure part 10B Second fine periodic structure part 11 Plate-like groove part 12 Plate-like non-groove part 14 Fine periodic structure part S1 1st area | region S2 2nd area | region S3 Non-groove area | region part

Claims (10)

光透過性で、交互に配置された第1領域及び第2領域と、前記第1領域と前記第2領域の少なくとも一方に、入射光の1/2波長より短いピッチで板状溝部と板状非溝部が交互に連続して配列された微細周期構造部とを有する位相差基板と、
前記位相差基板の光入射側と光射出側のいずれかの面に配置され、負のCプレート特性を有する位相差補償基板とを備えたことを特徴とする位相差板。
At least one of the first region and the second region, and the first region and the second region, which are alternately arranged with light transmission, and a plate-like groove portion and a plate shape with a pitch shorter than ½ wavelength of incident light. A phase difference substrate having fine periodic structure portions in which non-groove portions are alternately and continuously arranged, and
A phase difference plate, comprising: a phase difference compensation substrate having a negative C plate characteristic, which is disposed on one of the light incident side and the light emission side of the phase difference substrate.
請求項1に記載の位相差板であって、
前記微細周期構造部は、前記第1領域と前記第2領域に共に設けられ、前記第1領域の前記微細周期構造部と前記第2領域の前記微細周期構造部とは、互いに配列方向が90度回転した方向に設定され、
前記第1領域の前記微細周期構造部と前記第2領域の前記微細周期構造部の間には、溝が形成されていない非溝領域部が設けられたことを特徴とする位相差板。
The phase difference plate according to claim 1,
The fine periodic structure portion is provided in both the first region and the second region, and the fine periodic structure portion in the first region and the fine periodic structure portion in the second region have an arrangement direction of 90 with respect to each other. Set to the direction of rotation,
A phase difference plate, wherein a non-groove region portion in which no groove is formed is provided between the fine periodic structure portion in the first region and the fine periodic structure portion in the second region.
請求項1又は請求項2に記載の位相差板であって、
前記位相差補償基板は、第1領域の前記微細周期構造部と前記第2領域の前記微細周期構造部の双方に対応する領域が少なくとも負のCプレート特性を有するよう形成されたことを特徴とする位相差板。
The phase difference plate according to claim 1 or 2,
The retardation compensation substrate is formed so that regions corresponding to both the fine periodic structure portion in the first region and the fine periodic structure portion in the second region have at least negative C plate characteristics. Retardation plate.
請求項2又は請求項3に記載の位相差板であって、
前記各微細周期構造部は、各入射光の位相が1/4波長分ずれてそれぞれ射出されるよう構成されたことを特徴とする位相差板。
The phase difference plate according to claim 2 or 3,
Each of the fine periodic structures is configured so that the phase of each incident light is emitted with a phase shift of ¼ wavelength.
請求項3又は請求項4に記載の位相差板であって、
前記位相差補償基板は、前記非溝領域部に少なくとも対応する位置に、光吸収材料からなる遮光部を有することを特徴とする位相差板。
The retardation plate according to claim 3 or 4, wherein:
The retardation plate has a light shielding portion made of a light absorbing material at a position corresponding to at least the non-groove region portion.
請求項5に記載の位相差板であって、
前記遮光部の幅は、前記非溝領域部の幅をP2、前記非溝領域部の深さをt、光学系のF値をFとすると、P2+(t/F)であることを特徴とする位相差板。
The phase difference plate according to claim 5,
The width of the light shielding portion is P2 + (t / F), where P2 is the width of the non-groove region portion, t is the depth of the non-groove region portion, and F is the F value of the optical system. Retardation plate.
請求項1に記載の位相差板であって、
前記微細周期構造部は、前記第1領域と前記第2領域のいずれか一方にのみ設けられ、
前記微細周期構造部が設けられた領域では、入射光の位相が1/2波長分ずれて射出されるよう構成され、前記微細周期構造部が設けられない領域では、入射光の位相がずれずに射出されることを特徴とする位相差板。
The phase difference plate according to claim 1,
The fine periodic structure portion is provided only in one of the first region and the second region,
In the region where the fine periodic structure portion is provided, the phase of the incident light is emitted with a shift of ½ wavelength, and in the region where the fine periodic structure portion is not provided, the phase of the incident light is not shifted. The phase difference plate is injected into
請求項7に記載の位相差板であって、
前記位相差補償基板は、前記微細周期構造部が設けられた領域に対応する領域が負のCプレート特性を有する複屈折部に、前記微細周期構造部が設けられない領域に対応する領域が非複屈折部に形成されたことを特徴とする位相差板。
The phase difference plate according to claim 7,
In the retardation compensation substrate, a region corresponding to the region where the fine periodic structure portion is provided has a negative C-plate characteristic, and a region corresponding to a region where the fine periodic structure portion is not provided is non-existent. A phase difference plate formed in a birefringent portion.
請求項7又は求項8に記載の位相差板であって、
前記位相差補償基板は、前記第1領域と前記第2領域の境界箇所に対応する位置に、光吸収材料からなる遮光部を有することを特徴とする位相差板。
The phase difference plate according to claim 7 or claim 8,
The retardation plate has a light shielding portion made of a light absorbing material at a position corresponding to a boundary portion between the first region and the second region.
請求項9に記載の位相差板であって、
前記遮光部の幅は、前記板状溝部の深さをt、光学系のF値をFとすると、t/Fであることを特徴とする位相差板。
The phase difference plate according to claim 9,
The width of the light shielding part is t / F, where t is the depth of the plate-like groove part and F is the F value of the optical system.
JP2010248320A 2010-11-05 2010-11-05 Retardation plate Pending JP2012098657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248320A JP2012098657A (en) 2010-11-05 2010-11-05 Retardation plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248320A JP2012098657A (en) 2010-11-05 2010-11-05 Retardation plate

Publications (1)

Publication Number Publication Date
JP2012098657A true JP2012098657A (en) 2012-05-24

Family

ID=46390589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248320A Pending JP2012098657A (en) 2010-11-05 2010-11-05 Retardation plate

Country Status (1)

Country Link
JP (1) JP2012098657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041152A (en) * 2011-08-17 2013-02-28 Fujifilm Corp Photosensitive resin composition for photospacer and photospacer using the same
JP2021516771A (en) * 2018-03-15 2021-07-08 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Improved angular performance of apochromatic Pancharatnam Berry phase components with C-plates
US11846779B2 (en) 2018-03-15 2023-12-19 Meta Platforms Technologies, Llc Display device with varifocal optical assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041152A (en) * 2011-08-17 2013-02-28 Fujifilm Corp Photosensitive resin composition for photospacer and photospacer using the same
JP2021516771A (en) * 2018-03-15 2021-07-08 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Improved angular performance of apochromatic Pancharatnam Berry phase components with C-plates
US11846779B2 (en) 2018-03-15 2023-12-19 Meta Platforms Technologies, Llc Display device with varifocal optical assembly

Similar Documents

Publication Publication Date Title
KR101122199B1 (en) 2D-3D switchable autostereoscopic display apparatus
JP4591150B2 (en) Liquid crystal display
JP4027898B2 (en) Polarized transmission screen and stereoscopic image display apparatus using the polarized transmission screen
KR100955688B1 (en) Method for manufacturing stereoscopic displaying apparatus, method for manufacturing phase shift plate, and phase shift plate
US8922724B2 (en) Active shutter glasses and three-dimensional image recognition unit
KR101051200B1 (en) Liquid crystal display
JP2006276466A (en) Stereoscopic image display device
TWI442147B (en) Stereoscopic optical device and method of making the same
JP5634503B2 (en) Active shutter glasses and 3D image recognition system
JP2005215325A (en) Stereoscopic image display device
US20150219907A1 (en) Reflective type naked-eye 3d display apparatus and manufacturing method thereof
KR20120091646A (en) Frenel lens structure and 2d-3d switchable autostereoscopic display apparatus
JP5793746B2 (en) Micro retarder film
KR101233895B1 (en) Stereoscopic image dislcay device
US20080297897A1 (en) Stereoscopic display and phase different plate
KR20150108989A (en) Display device
JP2009139593A (en) Stereoscopic image display, and phase difference plate
US8964136B2 (en) Active shutter glasses comprising a half-wave plate disposed at an outer side of a linear polarizing element and a stereoscopic image projection system
JP2012098657A (en) Retardation plate
US10048565B2 (en) Optical modulation device and driving method thereof
JP2012185500A (en) Microstructure optical phase shifting film and lens
JP2015022803A (en) Organic el display for 3d display
KR20230002709A (en) 3D display device and circular polarization glasses
JP2010014881A (en) Optical member, electro-optical apparatus and electronic device
US20140218492A1 (en) Display device and method for manufacturing phase retarder film thereof