WO2011105495A1 - Header member, membrane module, and method for manufacturing membrane module - Google Patents

Header member, membrane module, and method for manufacturing membrane module Download PDF

Info

Publication number
WO2011105495A1
WO2011105495A1 PCT/JP2011/054158 JP2011054158W WO2011105495A1 WO 2011105495 A1 WO2011105495 A1 WO 2011105495A1 JP 2011054158 W JP2011054158 W JP 2011054158W WO 2011105495 A1 WO2011105495 A1 WO 2011105495A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
header
header member
fiber membrane
module
Prior art date
Application number
PCT/JP2011/054158
Other languages
French (fr)
Japanese (ja)
Inventor
譲 石橋
中田 秀一
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Publication of WO2011105495A1 publication Critical patent/WO2011105495A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/0221Encapsulating hollow fibres using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps

Definitions

  • the present invention relates to a header member, a membrane module, and a method for manufacturing the membrane module for manufacturing a membrane module having a hollow fiber membrane bundle.
  • Hollow fiber membranes are known as membranes used in membrane filtration methods using microfiltration membranes and ultrafiltration membranes.
  • Membrane modules using hollow fiber membranes are widely used for various membrane separation applications because they have a large membrane area and can be downsized.
  • the hollow fiber membrane module generally includes a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes, and a sealing and fixing portion in which both ends of the hollow fiber membrane bundle are bonded and sealed in a state where both ends of the hollow fiber membrane bundle are open. And a casing that accommodates the hollow fiber membrane bundle sealed by the sealing and fixing portion.
  • a cartridge-type membrane module that is detachably inserted into a case called a housing without a casing is also known (see Patent Document 1).
  • the structure of the cartridge type membrane module is basically the same as the structure of the normal membrane module fixed in the casing, but a protective member called a protective net or a protective cylinder is attached so as to surround the hollow fiber membrane bundle. And is housed in the housing.
  • the end of the hollow fiber membrane bundle is attached so that a bottomed cylindrical header member is covered, and a sealing material is placed inside the header member using a centrifugal casting method. To solidify.
  • a part of the end side of the header member is cut together with the end portion of the hollow fiber membrane bundle, and as a result, the hollow fiber A module end surface having an opening communicating with the inside of the membrane is formed.
  • Manufacturing the membrane module using the header member increases the dimensional stability of the membrane module as a finished product.
  • diatomaceous earth filtration has been used in the production of brewed beverages such as beer and wine.
  • membrane separation methods that do not use diatomaceous earth have been adopted from the viewpoint of environmental protection, and the market for membrane modules for diatomaceous earth substitutes has expanded. is doing.
  • a cartridge type cartridge is used which is filtered under high pressure (carbon dioxide pressure) conditions and inserted into a stainless steel housing.
  • a chemical solution washing step at about 80 ° C. for recovering the filtration performance by removing fouling substances deposited on the membrane surface by filtration is repeatedly performed. .
  • the hollow fiber membrane module is repeatedly exposed to low and high temperature environments.
  • low-temperature filtration step and high-temperature cleaning step when peeling occurs between the inner surface in contact with the sealing material and the sealing material in the conventional header member, the peeling easily grows, resulting in a film. The quality of the module may be degraded.
  • the present invention has been made in view of such problems, and particularly in the filtration of brewed beverages such as beer fermentation liquor, even under severe operating environments in which a low temperature filtration step and a high temperature washing step are repeated, a sealing material Providing a header member, a membrane module, and a method for manufacturing the membrane module that contributes to improving the quality of the membrane module by suppressing the occurrence or growth of peeling between the inner surface in contact with the sealing material filled in the inside Objective.
  • the present invention relates to a bottomed tubular header member that is attached to an end of a hollow fiber membrane bundle and is fixed to the hollow fiber membrane bundle by filling and solidifying a sealing material therein.
  • An inlet side cylindrical portion provided on the inlet side into which is inserted, an inner diameter smaller than the inlet side cylindrical portion, and an end side cylindrical portion provided on the end side of the inlet side cylindrical portion,
  • a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion, and at least one inner surface of the inlet side cylindrical portion and the end side cylindrical portion extends along the axis of the header member.
  • An annular groove is formed.
  • the present invention even if peeling occurs on the inlet side of the header member, a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion. Propagation of delamination from the tube portion side to the end portion side tube portion is prevented, and therefore, delamination growth is suppressed. Further, since the sealing material filled in the header member enters the annular groove and is solidified, the contact surfaces of the header member and the sealing material are fitted in a concave-convex shape and firmly bonded. It is effective for suppressing the occurrence or growth of peeling. As a result, the quality of the membrane module can be improved.
  • the end side tube portion of the header member has a cylindrical body portion and a bottom portion integrally formed with the body portion.
  • the groove includes a shallow groove formed in the inlet side cylinder portion and a deep groove formed in the end portion side cylinder portion and deeper than the shallow groove.
  • an inlet for the sealing material is formed on the end side of the header member, and the sealing material is filled through the inlet.
  • the deeper the groove formed on the inner surface of the header member the stronger the bond between the sealing material and the header member, which is advantageous in that it prevents peeling.
  • the inlet side tube portion is less likely to enter the sealing material than the end portion side tube portion, so the groove of the inlet side tube portion is made too deep.
  • a gap may arise between a sealing material and a header member, without a sealing material entering.
  • the sealing material easily enters the end side cylinder portion as compared with the inlet side cylinder portion, the sealing material can be sufficiently introduced even if the depth of the groove is positively increased. That is, according to the above configuration, when the sealing material is filled from the end side of the header member, the header member and the sealing material are firmly bonded while the sealing material is reliably filled. This is easy to realize, and is effective for suppressing the growth of peeling even under extremely severe operating conditions in which the range of temperature change in the high pressure (for example, carbon dioxide pressure) and the filtration and cleaning steps exceeds 60 ° C.
  • an annular convex portion along the axis of the header member is formed on the inner surface of the end side cylindrical portion of the present invention.
  • the sealing material filled in the header member fills the gap formed between the hollow fiber membrane bundle and the header member, and covers the convex portion formed on the inner surface of the end side cylinder portion.
  • the sealing material filled in the header member heat shrinks in the process of solidification, but in this case, the sealing material that solidifies the convex portion sandwiches the convex portion so that the sealing material solidifies. Delamination in the process is prevented. As a result, it is effective in suppressing the growth of peeling and improving the quality of the membrane module.
  • the membrane module according to the present invention includes a cylindrical header portion formed using the header member, a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes inserted into the header portion, and a hollow fiber membrane bundle. And a module end face in which the inside of the hollow fiber membrane is opened.
  • the present invention even if separation occurs on the inlet side of the header portion, a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion. Propagation of peeling from the cylinder part to the end side cylinder part is prevented. Furthermore, since the contact surfaces of the header portion and the sealing material are fitted in a concavo-convex shape and firmly bonded, it is possible to contribute to improving the quality of the membrane module.
  • the membrane module further includes a cylindrical protective member that surrounds the hollow fiber membrane bundle in an annular shape and is fixed to the header portion together with the hollow fiber membrane bundle by a sealing portion.
  • the protective member includes a plurality of protective members. It is preferable that a through-hole and a linear protrusion protruding in the axial direction of the protection member from the end fixed to the header portion are provided.
  • the hollow fiber membrane bundle is well held by the protective member and protected from external impacts.
  • the linear protrusion part is provided in the edge part of the protection member so that it may protrude in the axial direction of a protection member.
  • the end portion of the protective member is formed by a flat circumference without a protruding portion, if peeling occurs at the end portion, the peeling easily propagates in the circumferential direction, and the peeling easily grows.
  • the protrusion formed at the end of the protective member becomes an obstacle and the propagation of peeling in the circumferential direction is prevented, it is effective in suppressing the growth of peeling.
  • the protective member has a net-like shape and has a plurality of meshes that form through holes, and the projecting portion is formed so as to protrude from each of the plurality of meshes that are annularly connected at the end of the protective member. is there.
  • the protrusions are arranged at substantially equal intervals in the circumferential direction, and the propagation of peeling in the circumferential direction can be effectively suppressed.
  • the present invention provides a method of manufacturing a membrane module using the header member described above, a step of bundling a plurality of hollow fiber membranes to form a hollow fiber membrane bundle, and the header member at the end of the hollow fiber membrane bundle.
  • the step of mounting and filling the liquid sealing material inside the header member After the step of mounting and filling the liquid sealing material inside the header member, the step of solidifying the sealing material filled inside the header member to form the sealing portion, and the sealing portion being formed Cutting the part of the end side of the header member together with the end part of the hollow fiber membrane and the part of the sealing part to form a module end surface in which the inside of the plurality of hollow fiber membranes is opened, It is characterized by including.
  • a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion.
  • propagation of separation from the inlet side cylinder part side to the end side cylinder part is prevented by this step, and the sealing material filled in the header member enters the annular groove and solidifies. Therefore, since the contact surfaces of the header member and the sealing material are fitted in a concavo-convex shape and are firmly bonded, a high quality membrane module can be manufactured.
  • the present invention it is possible to improve the quality of the membrane module by suppressing the occurrence or growth of peeling with the sealing material filled in the inside.
  • FIG. 1 is an exploded perspective view of a membrane module precursor used for manufacturing a cartridge module according to an embodiment of the present invention.
  • 2A and 2B are views showing the header member according to the present embodiment, in which FIG. 2A is a bottom view, and FIG. 2B is a cross-sectional view taken along line bb in FIG. 3A and 3B are views showing a cylindrical protective member, in which FIG. 3A is a side view, and FIG. 3B is a partial cross-sectional view taken along line bb in FIG. 4A and 4B are views showing the module precursor, wherein FIG. 4A is a side view, FIG. 4B is a cross-sectional view taken along line bb in FIG. 4A, and FIG.
  • FIG. 5 is an enlarged cross-sectional view of the inlet side of the header member in a state where the hollow fiber membrane bundle is inserted.
  • FIG. 6 is an enlarged cross-sectional view showing a state in the middle of the header member being filled with an adhesive.
  • FIG. 7 is an exploded perspective view for explaining a mode in which the cartridge module is attached to the housing.
  • FIG. 8 is a flowchart showing a procedure for manufacturing the cartridge module.
  • FIG. 9 is a cross-sectional view for explaining an embodiment of a groove in the present invention, where (a) is a square groove, (b) is a triangular groove, (c) is a round groove, (d) is a V-shaped groove, (E) is sectional drawing of a dovetail groove.
  • membrane filtration methods using microfiltration membranes and ultrafiltration membranes can remove all microorganisms. It is possible and can be processed continuously in large quantities, so it is suitable for industrial use.
  • a membrane filtration device used for such a membrane filtration method a hollow fiber membrane bundle accommodated in a casing is fixed to the casing and modularized, or a hollow fiber membrane bundle without a casing is provided.
  • a membrane module is integrated and the membrane module is detachably accommodated in a case called a housing.
  • the membrane module according to the present embodiment is a type called the latter cartridge module.
  • the cartridge module 1 (see FIG. 7) is used by being detachably accommodated in a predetermined housing 3.
  • the cartridge module 1 manufactures a module precursor 5 by fixing header members 9 (see FIG. 1) to both ends of a bundle of hollow fiber membranes (hereinafter referred to as “hollow fiber membrane bundle”) 7, for example.
  • the module precursor 5 is manufactured by cutting a part of both ends of the module precursor 5 to form a module end face 6 in which the end of the hollow fiber membrane 7a is opened. First, the module precursor 5 will be described. (Module front)
  • the module precursor 5 includes a bottomed tubular header member 9 that is attached to both ends of the hollow fiber membrane bundle 7, and the hollow fiber membrane bundle 7 is inserted through the hollow fiber membrane bundle 7.
  • the cylindrical protective member 11 that protects the bundle 7 and the density variation of the hollow fiber membrane 7a that is inserted into the end of the hollow fiber membrane bundle 7 are corrected.
  • the header member 9 (see FIG. 2) is made of a polymer material such as a polysulfone resin such as polysulfone, polyethersulfone or polyphenylenesulfone, a polyester resin such as polycarbonate, polyethylene terephthalate or polybutylene terephthalate, 6-nylon or the like. Examples include polyamide resins such as 6,6-nylon and styrene resins such as ABS and AES.
  • the material of the header member 9 is preferably selected in consideration of the use conditions of the membrane module. And in the case of the membrane module used for manufacture of the above-mentioned brewed beverage, a polysulfone resin is preferably used from the viewpoint of heat resistance and chemical resistance.
  • the header member 9 has a bottomed cylindrical shape (cup shape), an inlet side cylinder portion 21 provided on the inlet side into which the hollow fiber membrane bundle 7 is inserted, and an end side cylinder provided on the end side. Part 23.
  • the inlet side cylinder part 21 and the end part side cylinder part 23 have different inner diameters, and the end part side cylinder part 23 has a smaller inner diameter than the inlet side cylinder part 21.
  • r1 and r2 are inner diameters at the position of a seating surface 25 described later.
  • the “end side” means a side opposite to the entrance side. And in the case of a bottomed cylindrical shape like this embodiment, it means the bottom side, and in the case of a form having no bottom portion, it means the other open end side.
  • the inner surfaces of the inlet-side cylinder portion 21 and the end-side cylinder portion 23 communicate with each other via an annular seat surface 25 formed on a virtual plane substantially orthogonal to the axis L of the header member 9.
  • the seat surface 25 forms a step St (see FIG. 5) having a height difference between the inner surfaces of the inlet-side cylinder portion 21 and the end-side cylinder portion 23.
  • a plurality of annular shallow grooves 21 a along the axis L of the header member 9 are formed on the inner surface of the inlet side cylinder portion 21.
  • the shape of the shallow groove 21a is exemplified by a triangular groove (a groove having a shape in which a right triangle is cut out in a cross-sectional view) (see FIG. 9B).
  • Groove see FIG. 9A
  • round groove see FIG. 9C
  • dovetail groove see FIG. 9E
  • V-shaped groove mountain groove
  • FIG. 9D A known groove shape can be adopted.
  • These grooves may be formed at the same time when the header member 9 is injection-molded, or may be formed by post-processing after the header member 9 is injection-molded.
  • the shallow groove 21a is one of four types of square grooves, triangular grooves, round grooves, and V-shaped grooves. Or a mode in which the above four types of groove shapes are appropriately combined with the plurality of shallow grooves 21a, and any one of the three types of grooves: a square groove, a triangular groove, and a V-shaped groove. A mode in which the above three types of groove shapes are appropriately combined with the shape or the plurality of shallow grooves 21a is preferable.
  • the number of shallow grooves 21a formed in the inlet side cylinder portion 21 and the processing position are appropriately determined in consideration of the size of the header member 9 or the ease of peeling between the header member 9 and the sealing material S. it can.
  • a plurality of annular deep grooves 23 a along the axis L of the header member 9 are formed on the inner surface of the end-side cylinder 23, and a plurality of annular shallow grooves 23 b along the axis L of the header member 9 are formed.
  • the deep grooves 23a are provided at two locations near the inlet side cylinder portion 21, and the shallow grooves 21a are formed in a predetermined region near the bottom portion 9b.
  • the shallow groove 23b of the end side cylinder part 23 has substantially the same shape and depth as the shallow groove 21a of the inlet side cylinder part 21.
  • the deep groove 23a exemplifies a form of a square groove (a groove having a shape in which a rectangle is cut out in a cross-sectional view), but as the groove shape, a square groove, a triangular groove, a round groove, an ant groove, in addition, known groove shapes including a V-shaped groove can be widely adopted. These grooves may be formed at the same time when the header member 9 is injection-molded, or may be formed by post-processing after the header member 9 is injection-molded.
  • the shape of the deep groove 23a will be described supplementarily by taking as an example a case where the centrifugal casting method is adopted as a method of filling the sealing material S inside the header member 9.
  • the deep groove 23a is any one of four types of grooves: a square groove, a triangular groove, a round groove, and a V-shaped groove.
  • the deep groove 23a is deeper than the shallow groove 21a and the shallow groove 23b formed in the inlet side cylinder portion 21, and the average of the shallow groove 21a and the shallow groove 23b with respect to the average depth d1 of the deep groove 23a.
  • the ratio of the depth d2, that is, d2 / d1 is preferably 0.1 or more and 0.9 or less, and more preferably 0.2 or more and 0.8 or less.
  • the “groove depth” is the depth of the deepest portion in one groove
  • the “average depth” is an arithmetic average value of each of the plurality of grooves.
  • one deep groove 23a on the inlet side is provided so as to be aligned with the seat surface 25 forming the step St, and as a result, the seat surface 25 and the deep groove
  • An annular first convex portion 23 c is formed along the axis L of the header member 9.
  • an annular second convex portion 23 d is formed between the two deep grooves 23 a arranged adjacent to each other along the axis L of the header member 9.
  • the number and processing positions of the deep grooves 23a and shallow grooves 23b or the convex portions 23c and 23d formed in the end-side cylinder portion 23 take into consideration the size of the header member 9 and the cutting position for forming the module end surface 6. Can be decided arbitrarily.
  • the header member 9 is used in a mode including a bottomed cylindrical end-side cylinder portion 23 (see FIG. 2B) in which a bottom portion 23f is integrally formed with a cylindrical trunk portion 23e.
  • the header member according to the present invention is not limited to this mode, and includes, for example, a cylindrical mode composed of an end side cylindrical portion and an inlet side cylindrical portion that do not have a bottom portion.
  • the end side cylinder part of the cylindrical body and the bottom part separate from the end side cylinder part are used in a liquid-tight manner before centrifugal casting. From the viewpoint of simplicity in manufacturing the membrane module, the former mode is preferable.
  • the hollow fiber membrane bundle 7 is formed by bundling a large number of hollow fiber membranes 7a.
  • the material of the hollow fiber membrane 7a is not particularly limited, and examples thereof include polyethylene, polypropylene, polyvinylidene fluoride, polysulfone, polytelsulfone, ethylene-vinyl alcohol copolymer, polytetrafluoroethylene, polyacrylonitrile, and polyether ketone.
  • a polysulfone resin such as polysulfone or polytelsulfone is preferably used from the viewpoint of heat resistance and chemical resistance.
  • the hollow fiber membrane bundle 7 is inserted into the cylindrical protective member 11 and is protected by the protective member 11.
  • the material of the protective member 11 can be selected according to the type of fluid to be treated and the separation component, for example, polyethylene, polypropylene, polyvinyl chloride, polycarbonate, acrylic polymer, polysulfone, polyethersulfone and other plastics, stainless steel, etc. It may be a metal.
  • polyethylene, polypropylene, polyvinyl chloride, etc. are often used.
  • a polysulfone-based resin such as polypropylene, polysulfone, or polytelsulfone is preferably used from the viewpoint of heat resistance and chemical resistance.
  • the protective member 11 has a net shape having a plurality of meshes forming the rectangular through holes H (see FIG. 3), and has a substantially cylindrical shape in which a plurality of meshes are regularly arranged. Note that the end of the protection member 11 is inserted into the header member 9 and is installed substantially concentrically with the header member 9. Therefore, in the following description, the axis of the protection member 11 is described as the same axis L as the header member 9.
  • the protective member 11 includes a plurality of vertical line portions 11a along the axis L direction and a plurality of circle portions 11b along the circumferential direction.
  • a plurality of rectangular through-holes H are formed in the protection member 11 by integrally forming the plurality of vertical line portions 11a and the plurality of circle portions 11b so as to cross each other.
  • tips (projections) 11c of the plurality of vertical line portions 11a are formed so as to protrude from the circle portion 11b.
  • the protruding portions 11c of the plurality of vertical line portions 11a embody a form that is formed so as to protrude from each of the plurality of meshes that are continuous in a ring shape.
  • protection member 11 which concerns on this embodiment illustrates cylindrical shape
  • this protection member 11 may be polygonal cylinder shape.
  • the cross plate 13 is preferably formed using the same material as the sealing material S that actually forms the sealing portion 15.
  • it is formed of an epoxy resin, a vinyl ester resin, a urethane resin, an olefin polymer, a silicone resin, a fluorine-containing resin, or the like.
  • the cross plate 13 has a function as an insert for adjusting the number of hollow fiber membranes 7 a so that the density is not biased (variation) in the circumferential direction, and is inserted into the end portion of the hollow fiber membrane bundle 7. It is attached.
  • the cross plate 13 will be specifically described as an example of the insert.
  • the insert may be formed of one flat plate or five or more partition pieces extending radially. It may be provided.
  • the cross plate 13 (see FIG. 4) has two rectangular flat plates fitted so as to be orthogonal to each other, and has a shape having four partition pieces 13a extending radially from the center of the intersecting line. Yes. Moreover, the surface of the partition piece 13a is intentionally roughened, and consideration is given to increasing the bonding (adhesion) strength when the sealing material S is filled and solidified. Moreover, the dimension of the partition piece 13a corresponds to substantially half of the inner diameter of the end-side cylinder portion 23 of the header member 9, and the inner diameter of the virtual cylinder and the end-side cylinder passing through the outer edges of the four partition pieces 13a.
  • the ratio with the inner diameter of the portion 23, that is, the inner diameter of the virtual cylinder / the inner diameter of the end-side cylinder portion 23 is formed to be 0.5 to 0.99.
  • a large number of hollow fiber membrane bundles 7 are substantially divided into four equal parts inside the end-side cylinder portion 23 by the four partition pieces 13a.
  • a cross plate 13 is inserted into both ends of the hollow fiber membrane bundle 7 inserted into the protective member 11, and a large number of hollow fiber membrane bundles 7 are visually divided by the cross plate 13.
  • the hollow fiber membrane bundle 7 is inserted into the header member 9 with the cross plate 13 attached, and the front end of the protection member 11 surrounding the hollow fiber membrane bundle 7 forms a step St inside the header member 9. Abut. In this state, the end portion of the hollow fiber membrane bundle 7 to which the cross plate 13 is attached fits in the end portion side tubular portion 23 of the header member 9.
  • the header member 9 is filled with a liquid sealing material S (also referred to as “sealing material” or “adhesive”) to be hollow.
  • a liquid sealing material S also referred to as “sealing material” or “adhesive”
  • the sealing material S for example, an epoxy resin, a vinyl ester resin, a urethane resin, an olefin polymer, a silicone resin, a fluorine-containing resin, or the like is used.
  • the filling of the sealing material S is performed through an introduction port 9a formed in the bottom 9b of the header member 9, and is appropriately executed by, for example, a centrifugal casting method or a stationary casting method.
  • the sealing material 15 filled in the header member 9 is solidified to form the sealing portion 15 and the module precursor 5 is formed. (Cartridge module)
  • the cartridge module (membrane module) 1 is manufactured using a module precursor 5.
  • a module precursor 5 both ends of the hollow fiber membrane 7 a are closed by the sealing portions 15, and in order to complete the cartridge module 1, a module end face 6 is formed in which both ends of the hollow fiber membrane 7 a are opened.
  • a module end surface 6 (see FIG. 4C) is formed by cutting and removing a part on the end side of the header member 9, and the cartridge module 1 is completed.
  • the cartridge module 1 includes a cylindrical header portion 1a formed using a header member 9, a hollow fiber membrane bundle 7 including a plurality of hollow fiber membranes 7a inserted into the header portion 1a, and a hollow fiber membrane bundle 7 Is sealed to the header portion 1a, the module end face 6 in which the inside of the hollow fiber membrane 7a is opened, and the hollow fiber membrane bundle 7 are surrounded in an annular shape, and the sealing portion 15 together with the hollow fiber membrane bundle 7 is enclosed. And a cylindrical protective member 11 fixed to the header portion 1a.
  • the cartridge module 1 constitutes a filtration membrane unit by being inserted into the housing 3 and detachably attached.
  • the shape of the housing 3 can be selected according to the application and the like, but usually it is often a cylindrical shape.
  • the material of the housing 3 can be selected according to the type of fluid to be treated and the separation component, for example, plastic such as polyvinyl chloride, polycarbonate, acrylic polymer, polysulfone, polyethersulfone, or metal such as stainless steel. Also good. Usually, stainless steel, polyvinyl chloride, polysulfone, etc. are often used. In particular, in the case of a membrane module used for manufacturing a brewed beverage, stainless steel is preferably used from the viewpoints of heat resistance, chemical resistance, and pressure resistance (mechanical strength).
  • the housing 3 includes a cylindrical body 3a that houses the cartridge module 1, and a pair of caps 3b that are assembled to both ends of the body 3a by screwing.
  • a seal ring 3c is provided between the body 3a and the cap 3b by tightening the cap 3b.
  • the body 3a is formed with a pipe portion 3d that serves as an outlet for concentrated water, an inlet for raw water, or the like at both ends.
  • the cap 3b has a substantially conical shape, and a pipe portion 3e serving as an inlet for raw water, an outlet for filtered water, or the like is formed at the top. (Manufacturing method of cartridge module)
  • step S1 a process of forming a hollow fiber membrane bundle 7 by bundling a plurality of hollow fiber membranes 7a is executed.
  • a step of adjusting the opening degree of the pores at the end of the hollow fiber membrane 7a may be appropriately performed.
  • a method for adjusting the degree of opening for example, a method of impregnating a glycerin aqueous solution into pores and then drying to obtain a state in which glycerin is contained in the pores can be mentioned.
  • a module pre-assembly element assembly process is executed (step S2). Specifically, the bundled hollow fiber membrane bundle 7 is inserted into the protective member 11. Further, in order to divide the hollow fiber membrane bundle 7 evenly, the cross plate 13 is inserted into the portion protruding from the protective member 11, and the header member 9 is attached to both ends of the hollow fiber membrane bundle 7 in that state. Assemble the module precursor element.
  • step S3 a process of filling the liquid sealing material S inside the header member 9 is executed (step S3).
  • the filling method of the sealing material S there are a centrifugal casting method in which the sealing material S is filled using centrifugal force, a stationary casting method in which the sealing material S is filled using gravity, and the like. Then, the centrifugal casting method and the stationary casting method will be described as a representative.
  • the centrifugal casting method is performed using a centrifugal casting machine equipped with a jig called a centrifugal cassette.
  • the structure in which the module precursor element is assembled is attached to the centrifuge cassette in a state of being laid horizontally, and rotates on a horizontal plane with the vertical axis as a rotation axis.
  • Centrifugal force acts on the header member 9 by the rotation of the centrifugal cassette, and the sealing material S is filled in the header member 9 using this centrifugal force.
  • centrifugal force There are two possible filling methods using centrifugal force, for example, depending on the length of the hollow fiber membrane bundle 7.
  • One method is a method in which both ends are simultaneously subjected to centrifugal casting
  • another method is a method in which centrifugal casting is performed twice on each side.
  • centrifugal casting is performed twice on each side.
  • each one side it arrange
  • attachment object may become an outer side of a centrifugal direction, and the other edge part may become an inner side of a centrifugal direction.
  • the liquid sealing material S is transferred to the header member 9 side, which is the outer side in the centrifugal direction, using centrifugal force. Further, the sealing material S is introduced through the inlet 9a formed in the bottom 9b of the header member 9. Filled inside.
  • the hollow fiber membrane bundle 7 on which the header member 9 is mounted is arranged in a state where it is erected along the vertical direction.
  • One end of the hollow fiber membrane bundle 7 to be bonded is on the lower side, and the other end is on the upper side.
  • the inside of the lower header member 9 is filled with a liquid sealing material S through the introduction port 9a of the bottom 9b.
  • the sealing material S is introduced by a water head difference or a pump or the like and is filled in the header member 9 without a gap. After that, when the fluidity of the sealing material S is lost, the top and bottom are reversed, and the sealing material S is filled in the header member 9 on the lower side in the same manner as described above.
  • step S3 The filling of the sealing material S in step S3 described above is performed while the sealing material S is in a liquid state.
  • the filled sealing material S gradually loses fluidity as the reaction progresses with time, and becomes a solid state.
  • step S4 a step of solidifying the sealing material S filled in the header member 9 to form the sealing portion 15 is executed.
  • a predetermined temperature T1 for example, 50 ° C.
  • T2 for example, 90 ° C.
  • Step S7 a part of the bottom 9b side of the header member 9 and a part of the sealing part 15 are cut together with the end of the hollow fiber membrane 7a to open the inside of the plurality of hollow fiber membranes 7a.
  • the sealing material S is filled so as to fill the gap inside the header member 9 (see FIGS. 5 and 6), and further solidified to form the hollow fiber membrane bundle 7 and the cross plate 13.
  • the protective member 11 and the inner surface of the header member 9 are bonded (coupled).
  • the header member 9 has an inner diameter r1 of the inlet side cylinder portion 21 larger than an inner diameter r1 of the end side cylinder portion 23, and there is a step between the inner surfaces of the inlet side cylinder portion 21 and the end side cylinder portion 23. St is provided. In the process in which the sealing material S is solidified, the sealing material S slightly heat shrinks.
  • deep grooves 23a and shallow grooves 21a and 23b are formed on the inner surface of the header member 9, and the sealing material S enters the deep grooves 23a and the shallow grooves 21a and 23b and is solidified. Therefore, the contact surfaces of the header member 9 and the sealing material S are fitted in a concavo-convex shape and firmly bonded (bonded), which is effective in suppressing the growth of peeling, and is effective in preventing peeling (leakage). For example, it can withstand heat and pressure during sterilization or radiation treatment. As a result, the quality of the cartridge module 1 can be improved.
  • a shallow groove 21a is formed in the inlet side cylinder portion 21 of the header member 9, and a deep groove 23a is formed in the end side cylinder portion 23 in addition to the shallow groove 21a.
  • the sealing material S enters and solidifies deeper as the depth of the groove formed on the inner surface of the header member 9 is deeper, the deeper groove is firmly bonded to the header member 9. This is advantageous in terms of suppressing peeling.
  • the inlet-side cylindrical portion 21 is less likely to enter the sealing material S than the end-side cylindrical portion 23.
  • the sealing material S is easier to enter in the end-side cylinder portion 23 than in the inlet-side cylinder portion 21, the sealing material S can be sufficiently inserted even if the depth of the groove is positively increased. Can do. That is, according to the header member 9, when the sealing material S is filled from the bottom 9 b side, the header member 9 and the sealing material S can be firmly filled while ensuring the filling of the sealing material S. Bonding is easy to realize, and it is effective in suppressing delamination or delamination growth.
  • the shallow groove 23b other than the deep groove 23a is formed in the edge part side cylinder part 23 which concerns on this embodiment, it is also possible to form only the deep groove 23a and to omit formation of the shallow groove 23b. is there.
  • annular first convex portions 23 c and second convex portions 23 d are formed along the axis L of the header member 9.
  • the sealing material S is filled in the header member 9, it covers the first and second protrusions 23 c and 23 d.
  • the sealing material S is thermally contracted in the process of solidification.
  • the sealing material S covering the convex portions 23c and 23d contracts so as to sandwich the convex portions 23c and 23d. Peeling in the process in which the stop material S is solidified is prevented. As a result, it is effective in improving the quality of the cartridge module 1 by suppressing the growth of peeling.
  • the header portion 1a is formed using the header member 9 described above, occurrence of peeling when the sealing portion 15 is formed by solidification of the sealing material S is generated. In addition, propagation is suppressed and high quality can be expected.
  • the cartridge module 1 since the cartridge module 1 includes the cylindrical protective member 11 that surrounds the hollow fiber membrane bundle 7 in an annular shape, the hollow fiber membrane bundle 7 is held together by the protective member 11 and protected from external impacts and the like. Is done.
  • the protection member 11 is formed with a linear (line-shaped) protruding portion 11c protruding in the direction of the axis L from both ends fixed to the header portion 1a.
  • a linear (line-shaped) protruding portion 11c protruding in the direction of the axis L from both ends fixed to the header portion 1a.
  • the end portion of the protective member 11 is formed by a flat circumference without the protruding portion 11c, if peeling occurs at this end portion, the peeling easily propagates in the circumferential direction, and the peeling grows. easy.
  • the protective member 11 according to the present embodiment since the protrusion 11c becomes an obstacle and propagation of peeling in the circumferential direction is prevented, it is effective in suppressing the growth of peeling.
  • the effect of the protrusion part 11c can be confirmed by the presence or absence of occurrence of peeling visible from the appearance before and after the curing in the process of manufacturing the cartridge module 1.
  • the cartridge module (membrane module) 1 even if peeling occurs on the inlet side of the header member 9 in the process of forming the sealing portion 15, Propagation of separation from the inlet side cylinder part 21 side to the end part side cylinder part 23 is prevented by the step St formed between the inner surface of the end side cylinder part 23. Further, since the sealing material S filled in the header member 9 enters into the annular shallow grooves 21a and 23b and the deep grooves 23a and is solidified, the contact surfaces of the header member 9 and the sealing material S are in contact with each other. It fits in a concavo-convex shape and is firmly bonded (bonded), which is effective in suppressing the occurrence and growth of peeling. As a result, the cartridge module 1 with high quality can be manufactured.
  • the cartridge module (membrane module) 1 obtained by the above-described manufacturing method is a high pressure (carbon dioxide pressure) and several ° C. (low temperature) filtration step and a 70 ° C. (high temperature) washing step, particularly in the production of the aforementioned brewed beverage. Even in a severe operating environment that repeats the above, there is no separation between the inner surface in contact with the sealing material S and the sealing material S filled inside, and the stock solution does not leak to the filtration side, and is stable. Filtration can be performed.
  • the temperature from the spinneret to the coagulation bath was surrounded by a cylinder having a bottom area of 38 cm 2 , and the temperature of the free running portion was 75 ° C. and the relative humidity was 100% (absolute humidity 240 g / m 3 ).
  • the polyvinylpyrrolidone was decomposed in an aqueous 2000 ppm sodium hypochlorite solution for 15 hours and then washed with water at 90 ° C. for 3 hours to obtain a porous hollow fiber membrane.
  • the obtained hollow fiber had an outer diameter of 2.3 mm ⁇ , an inner diameter of 1.4 mm ⁇ , a minimum pore diameter of 0.4 ⁇ m, and a pure water permeation amount per inner area at 25 ° C. of 15,800 L / m 2 / hr / 100 kPa. .
  • the hollow fiber membrane was immersed in a 30% by weight glycerin aqueous solution at 60 ° C. so that the pores of the hollow fiber membrane were impregnated with the glycerin aqueous solution, and then dried at 70 ° C. to prepare a membrane module.
  • the obtained hollow fiber had an outer diameter of 2.3 mm ⁇ , an inner diameter of 1.4 mm ⁇ , a molecular weight cut-off of 6,000, and a pure water permeation amount per inner area at 25 ° C. of 250 L / m 2 / hr / 100 kPa.
  • the hollow fiber membrane was immersed in a 30% by weight glycerin aqueous solution at 60 ° C. so that the pores of the hollow fiber membrane were impregnated with the glycerin aqueous solution, and then dried at 70 ° C. to provide a membrane module.
  • a cartridge-type hollow fiber membrane module was produced using a header member and a net-like protective cylinder in which the bottom part and cylindrical body described below were integrally formed.
  • Header material Polysulfone (transparent) Entrance side tube: Height (inside dimension) 28 mm, End side cylinder part: Height (inside dimension) 64mm
  • Tables 1 and 2 show the inner diameter of the inlet side cylinder part and the end side cylinder part and the shape and dimensions of the groove.
  • said header member was produced by cutting the material (diameter 200mm x length 1000mm) made from polysulfone.
  • the mount was mounted on a centrifugal cassette, and a liquid mixture of a two-component mixed thermosetting epoxy resin was injected from the bottom side of the header members at both ends and solidified by a centrifugal casting method.
  • a liquid mixture of a two-component mixed thermosetting epoxy resin was injected from the bottom side of the header members at both ends and solidified by a centrifugal casting method.
  • the bottom ends of both header members were cut to open the hollow portions.
  • the length of the header member after cutting is 60 mm, and the total length of the module is 1100 mm.
  • Example 1 The example of the hollow fiber membrane module manufactured using the porous hollow fiber membrane of the manufacture example 1 and various header members is shown.
  • Table 1 shows the shape and dimensions of the header member. The hollow part and the cut end face in the manufactured membrane module were observed. The observation results are shown in Table 1.
  • the “inner diameter ratio of the header member” in Table 1 means (inner diameter of the end side cylinder part) / (inner diameter of the inlet side cylinder part). In Example 8, no separation was observed, but bubbles remained in the groove of the inlet side cylinder part.
  • channel is not formed in the inner surface of an edge part side cylinder part, and the substantial groove
  • Example 9 Hereafter, the result of having performed the cooling / heating cycle test is shown.
  • the membrane module produced in the same manner as in Examples 1 to 6 was housed in a stainless steel housing and then attached to a filtration device, and the purified water cooled to 5 ° C. was passed for 2 hours and the purified water heated to 80 ° C. The process of passing water for 2 hours was repeated 1000 cycles.
  • the pressure at the inlet was set to 0.2 MPa
  • the pressure at the permeate side outlet was set to 0.15 MPa
  • water was passed by a cross flow filtration method.
  • the leak test was conducted by the method described later every 100 cycles until the end of the test (1000 cycles), there was no leak until 1000 cycles in each membrane module.
  • the hollow fiber membrane module was taken out from the housing and the header part was observed in detail, peeling was not seen in each membrane module.
  • peeling occurs on the inner surface or the like of the header member and the peeling portion penetrates from the inside to the outside of the fixed portion, air leaks from the peeling portion.
  • Example 10 A thermal cycle test was conducted in the same manner as in Example 9 except that the membrane module produced in the same manner as in Example 7 was used. When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak up to 1000 cycles. Next, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, peeling occurred in the vicinity of the contact surface between the protective member and the header member at the step portion of the header member. Further, a cooling / heating cycle was performed in the same manner as in Example 9 except that the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 40 ° C. for 2 hours were repeated. A test was conducted. When a leak test was performed every 100 cycles, there was no leak up to 1000 cycles. Next, when the header portion was observed in the same manner as described above, there was no change and no peeling was observed before the thermal cycle test.
  • Example 11 A thermal cycle test was conducted in the same manner as in Example 9 except that the membrane module produced in the same manner as in Example 8 was used. When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak up to 1000 cycles. Subsequently, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, a slight gap (peeled portion) was observed at the interface of the bonded portion of the inlet side tubular portion of the header member. The peeled portion stopped at the stepped portion. This separation is presumed to be caused by a bubble portion staying in a square groove provided in the inlet side cylinder part, and progressing from the inlet end of the inlet side cylinder part to the step part.
  • Example 9 a cooling / heating cycle was performed in the same manner as in Example 9 except that the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 40 ° C. for 2 hours were repeated. When tested, there was no leak. Moreover, when the header part was observed, there was no change and the peeling was not seen before the heat cycle test.
  • Comparative Example 3 A membrane module similar to Comparative Example 2 was produced. The membrane module did not show any peeling at the stage immediately after production. However, bubbles remained in the square groove provided in the inlet side cylinder. A thermal cycle test was conducted in the same manner as in Example 9 except that this membrane module was used. When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak after 100 cycles, but leak occurred after 200 cycles. Next, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, a gap (peeled portion) was continuously observed from the bonded portion interface of the inlet side tubular portion of the header member to the cut end surface of the end portion tubular portion. It was done.
  • the membrane module that does not leak after repeating the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 80 ° C. for 2 hours is repeated 1000 cycles. However, no leak occurs. On the other hand, as in Comparative Example 3, leakage occurs in less than 200 cycles in the cooling cycle even if no peeling is observed immediately after manufacture. From this, the membrane module which does not leak after 200 cycles in the above-mentioned cooling / heating cycle test can be used without any problem in practice.
  • Example 12 Hereinafter, the results of a cooling / heating cycle test under high pressure will be shown.
  • Membrane modules were produced in the same manner as in Examples 1 to 4 except that the porous hollow fiber membrane of Production Example 2 was used. Immediately after production, no peeling was observed in each membrane module. Subsequently, a cooling cycle test was conducted in the same manner as in Example 9 except that the pressure at the inlet was set to 0.5 MPa and the pressure at the permeate side outlet was set to 0.3 MPa. A leak test was performed every 100 cycles in the same manner as in Example 9. As a result, each membrane module had no leak up to 1000 cycles.
  • SYMBOLS 1 Cartridge module (membrane module), 1a ... Header part, 6 ... Module end surface, 7 ... Hollow fiber membrane bundle, 7a ... Hollow fiber membrane, 9 ... Header member, 21 ... Inlet side cylinder part, 21a ... Shallow groove, 23 ... End side cylinder part, 23a ... Deep groove, 23b ... Shallow groove, 23c ... 1st convex part, 23d ... 2nd convex part, 11 ... Protection member, 11c ... Projection part, 15 ... Sealing part, H ... Through hole of protective member, L ... axis, S ... sealing material, r1 ... inner diameter of inlet side cylinder, r2 ... inner diameter of end side cylinder, St ... step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Closed-end tubular header members (9) are mounted to the ends of a hollow fiber membrane bundle (7) and are affixed to the hollow fiber membrane bundle (7) by a sealing material (S) filled into and solidified in the inside of the closed-end header members (9). The header members (9) each comprises: an inlet-side tube section (21) provided to the inlet side into which the hollow fiber membrane bundle (7) is inserted; and an end-side tube section (23) having an inner diameter smaller than that of the inlet-side tube section (21) and provided further toward the end side than the inlet-side tube section (21). A step (St) is formed between the inner surface of the inlet-side tube section (21) and the inner surface of the end-side tube section (23). Annular grooves (21a, 23a, 23b) extending about the axis (L) of the header member (9) are formed in the inner surface of the inlet-side tube section (21) and/or the inner surface of the end-side tube section (23).

Description

ヘッダ部材、膜モジュール、及び膜モジュールの製造方法Header member, membrane module, and membrane module manufacturing method
 本発明は、中空糸膜束を備えた膜モジュールを製造するためのヘッダ部材、膜モジュール及び膜モジュールの製造方法に関する。 The present invention relates to a header member, a membrane module, and a method for manufacturing the membrane module for manufacturing a membrane module having a hollow fiber membrane bundle.
 精密ろ過膜、限外ろ過膜を利用した膜ろ過法に用いられる膜として、中空糸膜が知られている。中空糸膜を用いた膜モジュールは、膜面積が大きく、装置を小型化できるために、種々の膜分離の用途に広く利用されている。中空糸膜モジュールは、通常、複数の中空糸膜からなる中空糸膜束と、中空糸膜束の両端が開放された状態で中空糸膜束の両端部を接着封止した封止固定部と、封止固定部で封止された中空糸膜束を収容するケーシングとを備えている。一方で、ケーシングが存在せずに、ハウジングと呼ばれるケースに脱着可能に挿着されるカートリッジタイプの膜モジュールも知られている(特許文献1参照)。カートリッジタイプの膜モジュールの構造は、基本的に、ケーシング内に固定された通常の膜モジュールの構造と共通するが、中空糸膜束を囲むように保護ネットや保護筒と呼ばれる保護部材が装着されてハウジング内に収容されているという特徴を備えている。 Hollow fiber membranes are known as membranes used in membrane filtration methods using microfiltration membranes and ultrafiltration membranes. Membrane modules using hollow fiber membranes are widely used for various membrane separation applications because they have a large membrane area and can be downsized. The hollow fiber membrane module generally includes a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes, and a sealing and fixing portion in which both ends of the hollow fiber membrane bundle are bonded and sealed in a state where both ends of the hollow fiber membrane bundle are open. And a casing that accommodates the hollow fiber membrane bundle sealed by the sealing and fixing portion. On the other hand, a cartridge-type membrane module that is detachably inserted into a case called a housing without a casing is also known (see Patent Document 1). The structure of the cartridge type membrane module is basically the same as the structure of the normal membrane module fixed in the casing, but a protective member called a protective net or a protective cylinder is attached so as to surround the hollow fiber membrane bundle. And is housed in the housing.
 カートリッジタイプの膜モジュールを製造する場合、例えば、中空糸膜束の端部に有底筒状のヘッダ部材を被せるように装着し、遠心注型法を利用してヘッダ部材の内部に封止材を充填して固化させる。次に、封止材を介して中空糸膜束がヘッダ部材に固定されると、ヘッダ部材の端部側の一部を中空糸膜束の端部と一緒に切断し、その結果として中空糸膜の内部に連通する開口が形成されたモジュール端面を形成する。ヘッダ部材を用いて膜モジュールを製造することで、完成品としての膜モジュールの寸法安定性が高くなる。 When manufacturing a cartridge type membrane module, for example, the end of the hollow fiber membrane bundle is attached so that a bottomed cylindrical header member is covered, and a sealing material is placed inside the header member using a centrifugal casting method. To solidify. Next, when the hollow fiber membrane bundle is fixed to the header member via the sealing material, a part of the end side of the header member is cut together with the end portion of the hollow fiber membrane bundle, and as a result, the hollow fiber A module end surface having an opening communicating with the inside of the membrane is formed. Manufacturing the membrane module using the header member increases the dimensional stability of the membrane module as a finished product.
特表2007-503298号公報Special table 2007-503298
 近年ビールやワイン等の醸造飲料の製造においては、従来珪藻土ろ過が行われていたが、近年環境保護の観点から珪藻土を用いない膜分離法が採用され始め、珪藻土代替用途の膜モジュール市場が拡大している。この分野においては、高圧(炭酸ガス圧)条件下でろ過操作が行われ、ステンレス製ハウジングに挿入して用いられるカートリッジ型のものが使用される。前記醸造飲料の製造工程においては、数℃での濾過工程を経た後に、ろ過によって膜面に堆積したファウリング物質を除いてろ過性能を回復させるための約80℃での薬液洗浄工程を繰り返し行う。即ち、一連の濾過操作の過程において、中空糸膜モジュールは低温と高温との環境に繰り返し曝される。これら低温の濾過工程と高温の洗浄工程の繰り返しによって、従来のヘッダ部材では封止材と接する内面と封止材との間で剥離が生じた場合に、その剥離が成長し易く、結果として膜モジュールの品質の低下が生じることがあった。 In recent years, diatomaceous earth filtration has been used in the production of brewed beverages such as beer and wine. However, in recent years, membrane separation methods that do not use diatomaceous earth have been adopted from the viewpoint of environmental protection, and the market for membrane modules for diatomaceous earth substitutes has expanded. is doing. In this field, a cartridge type cartridge is used which is filtered under high pressure (carbon dioxide pressure) conditions and inserted into a stainless steel housing. In the manufacturing process of the brewed beverage, after passing through a filtration step at several degrees C., a chemical solution washing step at about 80 ° C. for recovering the filtration performance by removing fouling substances deposited on the membrane surface by filtration is repeatedly performed. . That is, in the course of a series of filtration operations, the hollow fiber membrane module is repeatedly exposed to low and high temperature environments. By repeating these low-temperature filtration step and high-temperature cleaning step, when peeling occurs between the inner surface in contact with the sealing material and the sealing material in the conventional header member, the peeling easily grows, resulting in a film. The quality of the module may be degraded.
 本発明はこのような課題に鑑みてなされたものであり、特にビール醗酵液等の醸造飲料の濾過において、低温の濾過工程と高温の洗浄工程を繰り返す過酷な運転環境下においても、封止材と接する内面と内部に充填された封止材との間での剥離の発生または成長を抑制して膜モジュールの品質向上に寄与するヘッダ部材、膜モジュール及び膜モジュールの製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and particularly in the filtration of brewed beverages such as beer fermentation liquor, even under severe operating environments in which a low temperature filtration step and a high temperature washing step are repeated, a sealing material Providing a header member, a membrane module, and a method for manufacturing the membrane module that contributes to improving the quality of the membrane module by suppressing the occurrence or growth of peeling between the inner surface in contact with the sealing material filled in the inside Objective.
 本発明は、中空糸膜束の端部に装着されると共に、内部に封止材が充填固化されることによって中空糸膜束に固定される有底筒状のヘッダ部材において、中空糸膜束が挿入される入口側に設けられた入口側筒部と、入口側筒部よりも内径が小さく、且つ入口側筒部よりも端部側に設けられた端部側筒部と、を備え、入口側筒部の内面と端部側筒部の内面との間には段差が形成され、且つ入口側筒部及び端部側筒部の少なくとも一方の内面には、ヘッダ部材の軸線回りに沿った環状の溝が形成されていることを特徴とする。 The present invention relates to a bottomed tubular header member that is attached to an end of a hollow fiber membrane bundle and is fixed to the hollow fiber membrane bundle by filling and solidifying a sealing material therein. An inlet side cylindrical portion provided on the inlet side into which is inserted, an inner diameter smaller than the inlet side cylindrical portion, and an end side cylindrical portion provided on the end side of the inlet side cylindrical portion, A step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion, and at least one inner surface of the inlet side cylindrical portion and the end side cylindrical portion extends along the axis of the header member. An annular groove is formed.
 本発明によれば、ヘッダ部材の入口側で剥離が発生しても、入口側筒部の内面と端部側筒部の内面との間に段差が形成されているので、この段差によって入口側筒部側から端部側筒部への剥離の伝播は阻止され、従って、剥離の成長が抑えられる。さらに、ヘッダ部材の内部に充填された封止材が環状の溝内に進入して固化されるので、ヘッダ部材と封止材との接触面同士が凹凸状に嵌合して強固に結合され、剥離の発生または成長を抑えるのに有効である。その結果として、膜モジュールの品質向上に寄与することができる。 According to the present invention, even if peeling occurs on the inlet side of the header member, a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion. Propagation of delamination from the tube portion side to the end portion side tube portion is prevented, and therefore, delamination growth is suppressed. Further, since the sealing material filled in the header member enters the annular groove and is solidified, the contact surfaces of the header member and the sealing material are fitted in a concave-convex shape and firmly bonded. It is effective for suppressing the occurrence or growth of peeling. As a result, the quality of the membrane module can be improved.
 さらに、ヘッダ部材の端部側筒部は、筒状の胴部と、その胴部に一体成形された底部とを有すると好適である。 Furthermore, it is preferable that the end side tube portion of the header member has a cylindrical body portion and a bottom portion integrally formed with the body portion.
 さらに、上記の溝は、入口側筒部に形成された浅溝と、端部側筒部に形成されると共に、浅溝よりも深い深溝とを含むと好適である。ヘッダ部材の内部に封止材を充填する場合には、例えば、ヘッダ部材の端部側に封止材の導入口を形成し、この導入口を通じて封止材が充填される。ヘッダ部材の内面に形成される溝は、深いほど封止材とヘッダ部材との間の結合が強固になり、剥離を抑制する点で有利となる。しかしながら、封止材をヘッダ部材の端部側から充填する方法では、入口側筒部は端部側筒部よりも封止材が進入し難くなるため、入口側筒部の溝を深くし過ぎると、封止材が入りきらずに封止材とヘッダ部材との間に隙間が生じる可能性がある。一方で、端部側筒部では入口側筒部に比べて封止材は進入し易いため、積極的に溝の深さを深くしても十分に封止材を入り込ませることができる。つまり、上記構成によれば、ヘッダ部材の端部側から封止材を充填する場合に、封止材の確実な充填を図りながら、ヘッダ部材と封止材との間での強固な結合を実現し易くなり、高圧(例えば炭酸ガス圧)かつ濾過工程・洗浄工程の温度変化の幅が60℃を超える非常に過酷な運転条件下においても剥離の成長を抑えるのに有効である。 Furthermore, it is preferable that the groove includes a shallow groove formed in the inlet side cylinder portion and a deep groove formed in the end portion side cylinder portion and deeper than the shallow groove. When filling the inside of the header member with the sealing material, for example, an inlet for the sealing material is formed on the end side of the header member, and the sealing material is filled through the inlet. The deeper the groove formed on the inner surface of the header member, the stronger the bond between the sealing material and the header member, which is advantageous in that it prevents peeling. However, in the method of filling the sealing material from the end portion side of the header member, the inlet side tube portion is less likely to enter the sealing material than the end portion side tube portion, so the groove of the inlet side tube portion is made too deep. And a gap may arise between a sealing material and a header member, without a sealing material entering. On the other hand, since the sealing material easily enters the end side cylinder portion as compared with the inlet side cylinder portion, the sealing material can be sufficiently introduced even if the depth of the groove is positively increased. That is, according to the above configuration, when the sealing material is filled from the end side of the header member, the header member and the sealing material are firmly bonded while the sealing material is reliably filled. This is easy to realize, and is effective for suppressing the growth of peeling even under extremely severe operating conditions in which the range of temperature change in the high pressure (for example, carbon dioxide pressure) and the filtration and cleaning steps exceeds 60 ° C.
 また、本発明の端部側筒部の内面には、ヘッダ部材の軸線回りに沿った環状の凸部が形成されていると好適である。ヘッダ部材の内部に充填された封止材は、中空糸膜束とヘッダ部材との間に形成された隙間を埋め、端部側筒部の内面に形成された凸部を覆い隠す。ヘッダ部材の内部に充填された封止材は固化する過程で熱収縮するが、この場合、凸部を覆っていた封止材が凸部を挟み付けるように収縮するので封止材が固化する過程での剥離は防止される。その結果として、剥離の成長を抑制して膜モジュールの品質向上を図る上で有効である。 Further, it is preferable that an annular convex portion along the axis of the header member is formed on the inner surface of the end side cylindrical portion of the present invention. The sealing material filled in the header member fills the gap formed between the hollow fiber membrane bundle and the header member, and covers the convex portion formed on the inner surface of the end side cylinder portion. The sealing material filled in the header member heat shrinks in the process of solidification, but in this case, the sealing material that solidifies the convex portion sandwiches the convex portion so that the sealing material solidifies. Delamination in the process is prevented. As a result, it is effective in suppressing the growth of peeling and improving the quality of the membrane module.
 また、本発明に係る膜モジュールは、上記のヘッダ部材を用いて形成される筒状のヘッダ部と、ヘッダ部内に挿入された複数の中空糸膜からなる中空糸膜束と、中空糸膜束をヘッダ部に固定する封止部と、中空糸膜の内部が開放されたモジュール端面と、を備えることを特徴とする。 The membrane module according to the present invention includes a cylindrical header portion formed using the header member, a hollow fiber membrane bundle composed of a plurality of hollow fiber membranes inserted into the header portion, and a hollow fiber membrane bundle. And a module end face in which the inside of the hollow fiber membrane is opened.
 本発明によれば、ヘッダ部の入口側で剥離が発生しても、入口側筒部の内面と端部側筒部の内面との間に段差が形成されているので、この段差によって入口側筒部から端部側筒部への剥離の伝播は阻止される。さらに、ヘッダ部と封止材との接触面同士が凹凸状に嵌合して強固に結合されているので膜モジュールの品質向上に寄与することができる。 According to the present invention, even if separation occurs on the inlet side of the header portion, a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion. Propagation of peeling from the cylinder part to the end side cylinder part is prevented. Furthermore, since the contact surfaces of the header portion and the sealing material are fitted in a concavo-convex shape and firmly bonded, it is possible to contribute to improving the quality of the membrane module.
 さらに、上記の膜モジュールは、中空糸膜束を環状に取り囲み、中空糸膜束と一緒に封止部によってヘッダ部に固定された筒状の保護部材を更に備え、保護部材には、複数の貫通孔と、ヘッダ部に固定される側の端部から保護部材の軸線方向に突き出した線状の突出部とが設けられていると好適である。保護部材によって中空糸膜束は纏まり良く保持され、外的衝撃などから保護される。また、保護部材の端部には、線状の突出部が保護部材の軸線方向に突き出すように設けられている。保護部材の端部が、例えば、突出部の無い平坦な円周によって形成されている場合、この端部で剥離が生じると、その剥離は円周方向に伝播し易く、剥離が成長し易い。しかしながら、上記構成によれば、保護部材の端部に形成された突出部が障害物となって周方向への剥離の伝播は阻止されるため、剥離の成長を抑えるのに有効である。 Further, the membrane module further includes a cylindrical protective member that surrounds the hollow fiber membrane bundle in an annular shape and is fixed to the header portion together with the hollow fiber membrane bundle by a sealing portion. The protective member includes a plurality of protective members. It is preferable that a through-hole and a linear protrusion protruding in the axial direction of the protection member from the end fixed to the header portion are provided. The hollow fiber membrane bundle is well held by the protective member and protected from external impacts. Moreover, the linear protrusion part is provided in the edge part of the protection member so that it may protrude in the axial direction of a protection member. For example, when the end portion of the protective member is formed by a flat circumference without a protruding portion, if peeling occurs at the end portion, the peeling easily propagates in the circumferential direction, and the peeling easily grows. However, according to the above configuration, since the protrusion formed at the end of the protective member becomes an obstacle and the propagation of peeling in the circumferential direction is prevented, it is effective in suppressing the growth of peeling.
 さらに、保護部材は、網状であり、且つ貫通孔を形成する複数の網目を有し、突出部は保護部材の端部で環状に連なる複数の網目それぞれから突き出すように形成されていると好適である。複数の網目それぞれに対応した複数の突出部を設けることで、突出部は周方向において略均等な間隔で配置されるようになり、周方向への剥離の伝播を効果的に抑止できる。 Further, it is preferable that the protective member has a net-like shape and has a plurality of meshes that form through holes, and the projecting portion is formed so as to protrude from each of the plurality of meshes that are annularly connected at the end of the protective member. is there. By providing a plurality of protrusions corresponding to each of the plurality of meshes, the protrusions are arranged at substantially equal intervals in the circumferential direction, and the propagation of peeling in the circumferential direction can be effectively suppressed.
 また、本発明は、上記のヘッダ部材を用いて膜モジュールを製造する方法において、複数の中空糸膜を束ねて中空糸膜束を形成する工程と、ヘッダ部材を中空糸膜束の端部に装着し、ヘッダ部材の内部に液状の封止材を充填する工程と、ヘッダ部材の内部に充填された封止材を固化させて封止部を形成する工程と、封止部を形成した後に、中空糸膜の端部と一緒にヘッダ部材の端部側の一部及び封止部の一部を切断して複数の中空糸膜の内部が開放されたモジュール端面を形成する工程と、を含むことを特徴とする。 Further, the present invention provides a method of manufacturing a membrane module using the header member described above, a step of bundling a plurality of hollow fiber membranes to form a hollow fiber membrane bundle, and the header member at the end of the hollow fiber membrane bundle. After the step of mounting and filling the liquid sealing material inside the header member, the step of solidifying the sealing material filled inside the header member to form the sealing portion, and the sealing portion being formed Cutting the part of the end side of the header member together with the end part of the hollow fiber membrane and the part of the sealing part to form a module end surface in which the inside of the plurality of hollow fiber membranes is opened, It is characterized by including.
 本発明によれば、封止部を形成する過程において、ヘッダ部材の入口側で剥離が発生しても、入口側筒部の内面と端部側筒部の内面との間に段差が形成されているので、この段差によって入口側筒部側から端部側筒部への剥離の伝播は阻止され、さらに、ヘッダ部材の内部に充填された封止材が環状の溝内に進入して固化されるので、ヘッダ部材と封止材との接触面同士が凹凸状に嵌合して強固に結合されているので品質の高い膜モジュールを製造することができる。 According to the present invention, in the process of forming the sealing portion, even if peeling occurs on the inlet side of the header member, a step is formed between the inner surface of the inlet side cylindrical portion and the inner surface of the end side cylindrical portion. As a result, propagation of separation from the inlet side cylinder part side to the end side cylinder part is prevented by this step, and the sealing material filled in the header member enters the annular groove and solidifies. Therefore, since the contact surfaces of the header member and the sealing material are fitted in a concavo-convex shape and are firmly bonded, a high quality membrane module can be manufactured.
 本発明によれば、内部に充填された封止材との間での剥離の発生または成長を抑制して膜モジュールの品質を向上させることができる。 According to the present invention, it is possible to improve the quality of the membrane module by suppressing the occurrence or growth of peeling with the sealing material filled in the inside.
図1は、本発明の実施形態に係るカートリッジモジュールの製造に用いられる膜モジュール前躯体の分解斜視図である。FIG. 1 is an exploded perspective view of a membrane module precursor used for manufacturing a cartridge module according to an embodiment of the present invention. 図2は、本実施形態に係るヘッダ部材を示す図であり、(a)は底面図、(b)は(a)のb-b線に沿った断面図である。2A and 2B are views showing the header member according to the present embodiment, in which FIG. 2A is a bottom view, and FIG. 2B is a cross-sectional view taken along line bb in FIG. 図3は、円筒状の保護部材を示す図であり、(a)は側面図、(b)は(a)のb-b線に沿った部分断面図である。3A and 3B are views showing a cylindrical protective member, in which FIG. 3A is a side view, and FIG. 3B is a partial cross-sectional view taken along line bb in FIG. 図4は、モジュール前躯体を示す図であり、(a)は側面図、(b)は(a)のb-b線に沿った断面図であり、(c)は(a)のc-c線に沿った断面図であってモジュール端面を示す。4A and 4B are views showing the module precursor, wherein FIG. 4A is a side view, FIG. 4B is a cross-sectional view taken along line bb in FIG. 4A, and FIG. It is sectional drawing along c line | wire, Comprising: A module end surface is shown. 図5は、中空糸膜束が挿着された状態でのヘッダ部材の入口側を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view of the inlet side of the header member in a state where the hollow fiber membrane bundle is inserted. 図6は、ヘッダ部材の内部に接着材が充填されている途中の状態を示す拡大断面図である。FIG. 6 is an enlarged cross-sectional view showing a state in the middle of the header member being filled with an adhesive. 図7は、カートリッジモジュールをハウジングに取り付ける態様を説明するための分解斜視図である。FIG. 7 is an exploded perspective view for explaining a mode in which the cartridge module is attached to the housing. 図8は、カートリッジモジュールを製造する手順を示すフローチャートである。FIG. 8 is a flowchart showing a procedure for manufacturing the cartridge module. 図9は、本発明における溝の態様を説明するための断面図であり、(a)は角溝、(b)は三角溝、(c)は丸溝、(d)はV字状溝、(e)はアリ溝の断面図である。FIG. 9 is a cross-sectional view for explaining an embodiment of a groove in the present invention, where (a) is a square groove, (b) is a triangular groove, (c) is a round groove, (d) is a V-shaped groove, (E) is sectional drawing of a dovetail groove.
 以下、本発明の好適な実施形態について図面を参照しながら説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 水溶液中から酵母や菌体などの微生物粒子を除去する方法として、様々な方法が利用されているが、特に、精密ろ過膜や限外ろ過膜を利用した膜ろ過法は、あらゆる微生物の除去が可能で、しかも大量の連続処理が可能なために工業利用に適している。このような膜ろ過法に用いられる膜ろ過装置としては、ケーシング内に収容された中空糸膜の束がケーシングに固定されてモジュール化されたタイプや、ケーシングは備えずに中空糸膜の束が一体化されて膜モジュールとなり、その膜モジュールがハウジングと称されるケース内に着脱自在に収容されるタイプなどがある。本実施形態に係る膜モジュールは、後者のカートリッジモジュールと称されるタイプである。 Various methods are used to remove microbial particles such as yeast and bacterial cells from an aqueous solution. In particular, membrane filtration methods using microfiltration membranes and ultrafiltration membranes can remove all microorganisms. It is possible and can be processed continuously in large quantities, so it is suitable for industrial use. As a membrane filtration device used for such a membrane filtration method, a hollow fiber membrane bundle accommodated in a casing is fixed to the casing and modularized, or a hollow fiber membrane bundle without a casing is provided. There is a type in which a membrane module is integrated and the membrane module is detachably accommodated in a case called a housing. The membrane module according to the present embodiment is a type called the latter cartridge module.
 カートリッジモジュール1(図7参照)は、所定のハウジング3内に着脱自在に収容されて用いられる。カートリッジモジュール1は、例えば、複数の中空糸膜の束(以下、「中空糸膜束」という)7の両端にヘッダ部材9(図1参照)を固定してモジュール前躯体5を製造し、更に、モジュール前躯体5の両端の一部分を切断して中空糸膜7aの端部が開放されたモジュール端面6を形成することで製造される。まず、モジュール前躯体5について説明する。
(モジュール前躯体)
The cartridge module 1 (see FIG. 7) is used by being detachably accommodated in a predetermined housing 3. The cartridge module 1 manufactures a module precursor 5 by fixing header members 9 (see FIG. 1) to both ends of a bundle of hollow fiber membranes (hereinafter referred to as “hollow fiber membrane bundle”) 7, for example. The module precursor 5 is manufactured by cutting a part of both ends of the module precursor 5 to form a module end face 6 in which the end of the hollow fiber membrane 7a is opened. First, the module precursor 5 will be described.
(Module front)
 図1及び図4に示されるように、モジュール前躯体5は、中空糸膜束7の両端に装着される有底筒状のヘッダ部材9と、中空糸膜束7が挿通されて中空糸膜束7を保護する筒状の保護部材11と、中空糸膜束7の端部に差し込まれて中空糸膜7aの密度のばらつきを是正し、中空糸膜束7と一緒にヘッダ部材9の内部に嵌め込まれるクロス板13と、ヘッダ部材9の内部に充填、固化された封止材Sによって中空糸膜束7、保護部材11、クロス板13及びヘッダ部材9を接着(結合)する封止部15と、を備えている。 As shown in FIGS. 1 and 4, the module precursor 5 includes a bottomed tubular header member 9 that is attached to both ends of the hollow fiber membrane bundle 7, and the hollow fiber membrane bundle 7 is inserted through the hollow fiber membrane bundle 7. The cylindrical protective member 11 that protects the bundle 7 and the density variation of the hollow fiber membrane 7a that is inserted into the end of the hollow fiber membrane bundle 7 are corrected. And a sealing portion for bonding (bonding) the hollow fiber membrane bundle 7, the protective member 11, the cross plate 13 and the header member 9 with the sealing material S filled and solidified in the header member 9. 15.
 ヘッダ部材9(図2参照)は、高分子材料からなり、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン等のポリスルホン系樹脂やポリカーボネートやポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、6-ナイロンや6,6-ナイロン等のポリアミド系樹脂、ABSやAES等のスチレン系樹脂が例示される。なお、ヘッダ部材9の材料の選択については、膜モジュールの使用条件を考慮して選択するのがよい。そして、上述の醸造飲料の製造に使う膜モジュールの場合には、耐熱性や耐薬品性の観点からポリスルホン系樹脂が好ましく用いられる。 The header member 9 (see FIG. 2) is made of a polymer material such as a polysulfone resin such as polysulfone, polyethersulfone or polyphenylenesulfone, a polyester resin such as polycarbonate, polyethylene terephthalate or polybutylene terephthalate, 6-nylon or the like. Examples include polyamide resins such as 6,6-nylon and styrene resins such as ABS and AES. The material of the header member 9 is preferably selected in consideration of the use conditions of the membrane module. And in the case of the membrane module used for manufacture of the above-mentioned brewed beverage, a polysulfone resin is preferably used from the viewpoint of heat resistance and chemical resistance.
 へッダ部材9は有底円筒状(カップ状)であり、中空糸膜束7が挿入される入口側に設けられた入口側筒部21と、端部側に設けられた端部側筒部23とを備える。入口側筒部21と端部側筒部23とは内径が異なり、端部側筒部23の方が入口側筒部21に比べて内径が小さくなっている。入口側筒部21と端部側筒部23との内径r1,r2同士を対比した場合の比(ヘッダ部材9の内径比)、すなわちr2/r1は、0.5以上、0.99以下であると好ましい。また、充填できる中空糸膜本数(モジュール膜面積)との関係から、0.8以上、0.98以下がより好ましく、0.85以上、0.95以下が特に好ましい。ここで、r1とr2は、後述する座面25の位置における内径である。 The header member 9 has a bottomed cylindrical shape (cup shape), an inlet side cylinder portion 21 provided on the inlet side into which the hollow fiber membrane bundle 7 is inserted, and an end side cylinder provided on the end side. Part 23. The inlet side cylinder part 21 and the end part side cylinder part 23 have different inner diameters, and the end part side cylinder part 23 has a smaller inner diameter than the inlet side cylinder part 21. The ratio (inner diameter ratio of the header member 9) when the inner diameters r1 and r2 of the inlet side cylindrical portion 21 and the end side cylindrical portion 23 are compared with each other, that is, r2 / r1 is 0.5 or more and 0.99 or less. It is preferable. Moreover, from the relationship with the number of hollow fiber membranes (module membrane area) which can be filled, 0.8 or more and 0.98 or less are more preferable, and 0.85 or more and 0.95 or less are particularly preferable. Here, r1 and r2 are inner diameters at the position of a seating surface 25 described later.
 なお、入口側筒部21に対して端部側に設けられた端部側筒部23に関して、この「端部側」とは、入口側とは逆となる側を意味する。そして、本実施形態のように有底筒状の場合には、底側を意味し、底部を有しない形態の場合には他方の開放された端部側を意味する。 In addition, regarding the end side tube portion 23 provided on the end side with respect to the entrance side tube portion 21, the “end side” means a side opposite to the entrance side. And in the case of a bottomed cylindrical shape like this embodiment, it means the bottom side, and in the case of a form having no bottom portion, it means the other open end side.
 入口側筒部21と端部側筒部23との内面同士は、ヘッダ部材9の軸線Lに略直交する仮想の平面上に形成された環状の座面25を介して連絡している。この座面25により、入口側筒部21と端部側筒部23との内面同士の間には、高低差を有する段差St(図5参照)が形成される。 The inner surfaces of the inlet-side cylinder portion 21 and the end-side cylinder portion 23 communicate with each other via an annular seat surface 25 formed on a virtual plane substantially orthogonal to the axis L of the header member 9. The seat surface 25 forms a step St (see FIG. 5) having a height difference between the inner surfaces of the inlet-side cylinder portion 21 and the end-side cylinder portion 23.
 入口側筒部21の内面にはヘッダ部材9の軸線L回りに沿った環状の浅溝21aが複数形成されている。本実施形態では、浅溝21aの形状が三角溝(断面視で直角三角形を切り欠いたような形状の溝)の態様(図9(b)参照)を例示するが、溝形状としては、角溝(図9(a)参照)、丸溝(図9(c)参照)、アリ溝(図9(e)参照)、及びV字状溝(山形溝)(図9(d)参照)等を含め、公知の溝形状を採用できる。これらの溝は、ヘッダ部材9を射出成形する際に同時に形成してもよいし、ヘッダ部材9を射出成形した後に後加工して形成してもよい。 A plurality of annular shallow grooves 21 a along the axis L of the header member 9 are formed on the inner surface of the inlet side cylinder portion 21. In the present embodiment, the shape of the shallow groove 21a is exemplified by a triangular groove (a groove having a shape in which a right triangle is cut out in a cross-sectional view) (see FIG. 9B). Groove (see FIG. 9A), round groove (see FIG. 9C), dovetail groove (see FIG. 9E), V-shaped groove (mountain groove) (see FIG. 9D), etc. A known groove shape can be adopted. These grooves may be formed at the same time when the header member 9 is injection-molded, or may be formed by post-processing after the header member 9 is injection-molded.
 ここで、浅溝21aの形状に関して、ヘッダ部材9の内部に封止材Sを充填する方法として遠心注型法を採用した場合を例に補足的に説明する(図9参照)。この場合、気泡の抜け易さ、加工のし易さ、量産時のコスト等を考慮すると、浅溝21aは、角溝、三角溝、丸溝、及びV字状溝の四種類のいずれか一種の溝形状、または複数の浅溝21aに対して上記四種類の溝形状を適宜に組み合わせた態様が好ましく、更に、角溝、三角溝、及びV字状溝の三種類のいずれか一種の溝形状、または複数の浅溝21aに対して上記三種類の溝形状を適宜に組み合わせる態様が好ましい。 Here, with respect to the shape of the shallow groove 21a, a supplementary explanation will be given by taking as an example a case where a centrifugal casting method is employed as a method of filling the sealing material S inside the header member 9 (see FIG. 9). In this case, considering the ease of air bubble removal, the ease of processing, the cost for mass production, etc., the shallow groove 21a is one of four types of square grooves, triangular grooves, round grooves, and V-shaped grooves. Or a mode in which the above four types of groove shapes are appropriately combined with the plurality of shallow grooves 21a, and any one of the three types of grooves: a square groove, a triangular groove, and a V-shaped groove. A mode in which the above three types of groove shapes are appropriately combined with the shape or the plurality of shallow grooves 21a is preferable.
 なお、入口側筒部21に形成する浅溝21aの本数や加工位置は、ヘッダ部材9のサイズ、或いは、ヘッダ部材9と封止材Sとの剥離し易さを考慮して適宜決めることができる。 The number of shallow grooves 21a formed in the inlet side cylinder portion 21 and the processing position are appropriately determined in consideration of the size of the header member 9 or the ease of peeling between the header member 9 and the sealing material S. it can.
 端部側筒部23の内面には、ヘッダ部材9の軸線L回りに沿った環状の深溝23aが複数形成され、また、ヘッダ部材9の軸線L回りに沿った環状の浅溝23bが複数形成されている。深溝23aは、入口側筒部21寄りの二カ所に設けられており、浅溝21aは底部9b寄りの所定の領域に纏まって形成されている。端部側筒部23の浅溝23bは、実質的に入口側筒部21の浅溝21aと同様の形状及び深さになっている。 A plurality of annular deep grooves 23 a along the axis L of the header member 9 are formed on the inner surface of the end-side cylinder 23, and a plurality of annular shallow grooves 23 b along the axis L of the header member 9 are formed. Has been. The deep grooves 23a are provided at two locations near the inlet side cylinder portion 21, and the shallow grooves 21a are formed in a predetermined region near the bottom portion 9b. The shallow groove 23b of the end side cylinder part 23 has substantially the same shape and depth as the shallow groove 21a of the inlet side cylinder part 21.
 本実施形態に係る深溝23aでは、四角溝(断面視で長方形を切り欠いたような形状の溝)の態様を例示するが、溝形状としては、角溝、三角溝、丸溝、アリ溝、及びV字状溝等を含め、公知の溝形状を広く採用できる。これらの溝は、ヘッダ部材9を射出成形する際に同時に形成してもよいし、ヘッダ部材9を射出成形した後に後加工して形成してもよい。 The deep groove 23a according to the present embodiment exemplifies a form of a square groove (a groove having a shape in which a rectangle is cut out in a cross-sectional view), but as the groove shape, a square groove, a triangular groove, a round groove, an ant groove, In addition, known groove shapes including a V-shaped groove can be widely adopted. These grooves may be formed at the same time when the header member 9 is injection-molded, or may be formed by post-processing after the header member 9 is injection-molded.
 ここで、深溝23aの形状に関して、ヘッダ部材9の内部に封止材Sを充填する方法として遠心注型法を採用した場合を例に補足的に説明する。この場合、気泡の抜け易さ、加工のし易さ、量産時のコスト等を考慮すると、深溝23aは、角溝、三角溝、丸溝、V字状溝の四種類のいずれか一種の溝形状、または複数の浅溝21aに対して上記四種類の溝形状を適宜に組み合わせた態様が好ましく、更に、角溝、三角溝、及びV字状溝の三種類のいずれか一種の溝形状、または複数の浅溝21aに対して上記三種類の溝形状を適宜に組み合わせる態様が好ましい。 Here, the shape of the deep groove 23a will be described supplementarily by taking as an example a case where the centrifugal casting method is adopted as a method of filling the sealing material S inside the header member 9. In this case, considering the ease of air bubble removal, the ease of processing, the cost of mass production, etc., the deep groove 23a is any one of four types of grooves: a square groove, a triangular groove, a round groove, and a V-shaped groove. An embodiment in which the above four types of groove shapes are appropriately combined with the shape or the plurality of shallow grooves 21a is preferable, and any one of the three types of groove shapes of a square groove, a triangular groove, and a V-shaped groove, Or the aspect which combines the said three types of groove shape suitably with respect to the some shallow groove | channel 21a is preferable.
 深溝23aは、入口側筒部21に形成された浅溝21a、及び浅溝23bに比べて深さが深くなっており、深溝23aの平均深さd1に対する浅溝21a、及び浅溝23bの平均深さd2の比、すなわちd2/d1は、0.1以上0.9以下であると好ましく、より好ましくは、0.2以上、0.8以下である。ここで、「溝の深さ」とは、一つの溝において最も深い部分の深さであり、その「平均深さ」は、複数ある溝の各々の算術平均値である。 The deep groove 23a is deeper than the shallow groove 21a and the shallow groove 23b formed in the inlet side cylinder portion 21, and the average of the shallow groove 21a and the shallow groove 23b with respect to the average depth d1 of the deep groove 23a. The ratio of the depth d2, that is, d2 / d1, is preferably 0.1 or more and 0.9 or less, and more preferably 0.2 or more and 0.8 or less. Here, the “groove depth” is the depth of the deepest portion in one groove, and the “average depth” is an arithmetic average value of each of the plurality of grooves.
 また、本実施形態では、二本の深溝23aのうち、入口側の一方の深溝23aは、段差Stを形成する座面25に並ぶように設けられており、その結果として、座面25と深溝23aとの間には、ヘッダ部材9の軸線L回りに沿った環状の第1の凸部23cが形成されている。また、隣り合って並ぶ二本の深溝23a同士の間には、ヘッダ部材9の軸線L回りに沿った環状の第2の凸部23dが形成されている。 In the present embodiment, of the two deep grooves 23a, one deep groove 23a on the inlet side is provided so as to be aligned with the seat surface 25 forming the step St, and as a result, the seat surface 25 and the deep groove An annular first convex portion 23 c is formed along the axis L of the header member 9. In addition, an annular second convex portion 23 d is formed between the two deep grooves 23 a arranged adjacent to each other along the axis L of the header member 9.
 なお、端部側筒部23に形成する深溝23aや浅溝23b、または凸部23c,23dの本数や加工位置は、ヘッダ部材9のサイズとモジュール端面6を形成するための切断位置とを考慮して任意に決めることができる。 Note that the number and processing positions of the deep grooves 23a and shallow grooves 23b or the convex portions 23c and 23d formed in the end-side cylinder portion 23 take into consideration the size of the header member 9 and the cutting position for forming the module end surface 6. Can be decided arbitrarily.
 なお、本実施形態では、筒状の胴部23eに底部23fが一体成形された有底筒状の端部側筒部23(図2(b)参照)を備えた態様にてヘッダ部材9を説明した。しかしながら、本発明に係るヘッダ部材は、この態様のみに限定されず、例えば、底部を有しない端部側筒部と入口側筒部とからなる筒状の態様も含まれる。なお、後者の態様に場合には、遠心注型するに際して事前に筒状体の端部側筒部と、この端部側筒部とは別体の底部とを液密的に接合して使用する必要があり、膜モジュールを製造する上での簡便性という観点からは、前者の態様が好ましい。 In addition, in this embodiment, the header member 9 is used in a mode including a bottomed cylindrical end-side cylinder portion 23 (see FIG. 2B) in which a bottom portion 23f is integrally formed with a cylindrical trunk portion 23e. explained. However, the header member according to the present invention is not limited to this mode, and includes, for example, a cylindrical mode composed of an end side cylindrical portion and an inlet side cylindrical portion that do not have a bottom portion. In addition, in the case of the latter mode, the end side cylinder part of the cylindrical body and the bottom part separate from the end side cylinder part are used in a liquid-tight manner before centrifugal casting. From the viewpoint of simplicity in manufacturing the membrane module, the former mode is preferable.
 次に、中空糸膜束(多孔質膜)7について説明する。中空糸膜束7は、多数の中空糸膜7aを束ねるように纏めることで形成される。中空糸膜7aの素材は特に限定されず、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホン、ポリーテルスルホン、エチレン-ビニルアルコール共重合体、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリエーテルケトン等が挙げられる。特に醸造飲料の製造に使う膜モジュールの場合には、耐熱性や耐薬品性の観点からポリスルホン、ポリーテルスルホン等のポリスルホン系樹脂が好ましく用いられる。 Next, the hollow fiber membrane bundle (porous membrane) 7 will be described. The hollow fiber membrane bundle 7 is formed by bundling a large number of hollow fiber membranes 7a. The material of the hollow fiber membrane 7a is not particularly limited, and examples thereof include polyethylene, polypropylene, polyvinylidene fluoride, polysulfone, polytelsulfone, ethylene-vinyl alcohol copolymer, polytetrafluoroethylene, polyacrylonitrile, and polyether ketone. In particular, in the case of a membrane module used for producing a brewed beverage, a polysulfone resin such as polysulfone or polytelsulfone is preferably used from the viewpoint of heat resistance and chemical resistance.
 中空糸膜束7は筒状の保護部材11に挿通され、保護部材11によって保護される。保護部材11の形状は、用途などに応じて選択できるが、通常、円筒状である場合が多く、本実施形態でも円筒状を例に説明する。保護部材11の材質は、被処理流体や分離成分の種類などに応じて選択でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリカーボネート、アクリル系ポリマー、ポリスルホン、ポリエーテルスルホンなどのプラスチック、ステンレススチールなどの金属であっても良い。通常は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、などを使用する場合が多い。特に醸造飲料の製造に使う膜モジュールの場合には、耐熱性や耐薬品性の観点からポリプロピレンやポリスルホン、ポリーテルスルホン等のポリスルホン系樹脂が好ましく用いられる。 The hollow fiber membrane bundle 7 is inserted into the cylindrical protective member 11 and is protected by the protective member 11. Although the shape of the protection member 11 can be selected according to the use etc., it is usually cylindrical in many cases, and in this embodiment, the cylindrical shape will be described as an example. The material of the protective member 11 can be selected according to the type of fluid to be treated and the separation component, for example, polyethylene, polypropylene, polyvinyl chloride, polycarbonate, acrylic polymer, polysulfone, polyethersulfone and other plastics, stainless steel, etc. It may be a metal. Usually, polyethylene, polypropylene, polyvinyl chloride, etc. are often used. In particular, in the case of a membrane module used for manufacturing a brewed beverage, a polysulfone-based resin such as polypropylene, polysulfone, or polytelsulfone is preferably used from the viewpoint of heat resistance and chemical resistance.
 保護部材11は、矩形の貫通孔Hを形成する網目を複数有する網状であり(図3参照)、更に複数の網目が規則的に配列された略円筒状となっている。なお、保護部材11は、端部がヘッダ部材9内に挿入され、ヘッダ部材9と略同心状に設置される。従って、以下の説明では、保護部材11の軸線を、ヘッダ部材9と同一の軸線Lとして説明する。 The protective member 11 has a net shape having a plurality of meshes forming the rectangular through holes H (see FIG. 3), and has a substantially cylindrical shape in which a plurality of meshes are regularly arranged. Note that the end of the protection member 11 is inserted into the header member 9 and is installed substantially concentrically with the header member 9. Therefore, in the following description, the axis of the protection member 11 is described as the same axis L as the header member 9.
 保護部材11は、軸線L方向に沿った複数の縦ライン部11aと周方向に沿った複数のサークル部11bとを備える。保護部材11には、複数の縦ライン部11aと複数のサークル部11bとが交叉するように一体成形されることで矩形の貫通孔Hが複数形成されている。保護部材11の軸線L方向の両端部では、複数の縦ライン部11aの先端(突出部)11cがサークル部11bから突き出すように形成されている。その結果、複数の縦ライン部11aの突出部11cは、環状に連なる複数の網目それぞれから突き出すように形成された態様を具現化している。 The protective member 11 includes a plurality of vertical line portions 11a along the axis L direction and a plurality of circle portions 11b along the circumferential direction. A plurality of rectangular through-holes H are formed in the protection member 11 by integrally forming the plurality of vertical line portions 11a and the plurality of circle portions 11b so as to cross each other. At both ends in the direction of the axis L of the protection member 11, tips (projections) 11c of the plurality of vertical line portions 11a are formed so as to protrude from the circle portion 11b. As a result, the protruding portions 11c of the plurality of vertical line portions 11a embody a form that is formed so as to protrude from each of the plurality of meshes that are continuous in a ring shape.
 なお、本実施形態に係る保護部材11は、円筒状を例示するが、この保護部材11は多角筒形状であっても良い。 In addition, although the protection member 11 which concerns on this embodiment illustrates cylindrical shape, this protection member 11 may be polygonal cylinder shape.
 クロス板13は、実際に封止部15を形成する封止材Sと同様の材料を用いて形成されるのが好ましい。例えば、エポキシ樹脂、ビニルエステル樹脂、ウレタン樹脂、オレフィン系ポリマー、シリコーン樹脂、フッ素含有樹脂などによって形成される。クロス板13は、多数本の中空糸膜7aが周方向で密度に偏り(ばらつき)が発生しないように整える挿入物としての機能を有し、中空糸膜束7の端部に差し入れられるように取り付けられる。なお、本実施形態では、挿入物の一例としてクロス板13を具体的に説明するが、この挿入物は、一枚の平板からなる態様または五枚以上の仕切片が放射状に延在するように設けられた態様などであってもよい。 The cross plate 13 is preferably formed using the same material as the sealing material S that actually forms the sealing portion 15. For example, it is formed of an epoxy resin, a vinyl ester resin, a urethane resin, an olefin polymer, a silicone resin, a fluorine-containing resin, or the like. The cross plate 13 has a function as an insert for adjusting the number of hollow fiber membranes 7 a so that the density is not biased (variation) in the circumferential direction, and is inserted into the end portion of the hollow fiber membrane bundle 7. It is attached. In the present embodiment, the cross plate 13 will be specifically described as an example of the insert. However, the insert may be formed of one flat plate or five or more partition pieces extending radially. It may be provided.
 クロス板13(図4参照)は、矩形の二枚の平板が互いに直交するように嵌め合わされており、交線となる中央から放射状に延在する四枚の仕切片13aを有する形状となっている。また、仕切片13aの表面は意図的に粗面になっており、封止材Sが充填、固化された際の結合(接着)強度を高めるように配慮されている。また、仕切片13aの寸法は、ヘッダ部材9の端部側筒部23の内径の略半分に対応しており、四枚の仕切片13aの外縁を通る仮想の円筒の内径と端部側筒部23の内径との比、すなわち、仮想の円筒の内径/端部側筒部23の内径は、0.5~0.99となるように形成されている。四枚の仕切片13aにより、多数本の中空糸膜束7は端部側筒部23の内部で実質的に四等分される。 The cross plate 13 (see FIG. 4) has two rectangular flat plates fitted so as to be orthogonal to each other, and has a shape having four partition pieces 13a extending radially from the center of the intersecting line. Yes. Moreover, the surface of the partition piece 13a is intentionally roughened, and consideration is given to increasing the bonding (adhesion) strength when the sealing material S is filled and solidified. Moreover, the dimension of the partition piece 13a corresponds to substantially half of the inner diameter of the end-side cylinder portion 23 of the header member 9, and the inner diameter of the virtual cylinder and the end-side cylinder passing through the outer edges of the four partition pieces 13a. The ratio with the inner diameter of the portion 23, that is, the inner diameter of the virtual cylinder / the inner diameter of the end-side cylinder portion 23 is formed to be 0.5 to 0.99. A large number of hollow fiber membrane bundles 7 are substantially divided into four equal parts inside the end-side cylinder portion 23 by the four partition pieces 13a.
 保護部材11に挿入された中空糸膜束7の両端部分には、クロス板13が差し込まれ、クロス板13によって多数の中空糸膜束7が目視にて略均等に分けられる。中空糸膜束7は、クロス板13が取り付けられた状態でヘッダ部材9に挿入され、中空糸膜束7を取り囲む保護部材11の先端はヘッダ部材9の内部で段差Stを形成する座面25に当接する。この状態で、クロス板13が取り付けられた中空糸膜束7の端部は、ヘッダ部材9の端部側筒部23内に収まる。 A cross plate 13 is inserted into both ends of the hollow fiber membrane bundle 7 inserted into the protective member 11, and a large number of hollow fiber membrane bundles 7 are visually divided by the cross plate 13. The hollow fiber membrane bundle 7 is inserted into the header member 9 with the cross plate 13 attached, and the front end of the protection member 11 surrounding the hollow fiber membrane bundle 7 forms a step St inside the header member 9. Abut. In this state, the end portion of the hollow fiber membrane bundle 7 to which the cross plate 13 is attached fits in the end portion side tubular portion 23 of the header member 9.
 中空糸膜束7の両方の端部にヘッダ部材9を装着した後、ヘッダ部材9の内部には液状の封止材S(「シール材」、「接着剤」ともいう)が充填されて中空糸膜束7の端部が封止される。封止材Sには、例えば、エポキシ樹脂、ビニルエステル樹脂、ウレタン樹脂、オレフィン系ポリマー、シリコーン樹脂、フッ素含有樹脂などが用いられる。また、封止材Sの充填は、ヘッダ部材9の底部9bに形成された導入口9aを通じて行われ、例えば、遠心注型法や静置注型法などによって適宜実行される。ヘッダ部材9の内部に充填された封止材Sが固化することで封止部15が形成され、モジュール前躯体5が形成される。
(カートリッジモジュール)
After the header members 9 are attached to both ends of the hollow fiber membrane bundle 7, the header member 9 is filled with a liquid sealing material S (also referred to as “sealing material” or “adhesive”) to be hollow. The end of the thread membrane bundle 7 is sealed. For the sealing material S, for example, an epoxy resin, a vinyl ester resin, a urethane resin, an olefin polymer, a silicone resin, a fluorine-containing resin, or the like is used. Further, the filling of the sealing material S is performed through an introduction port 9a formed in the bottom 9b of the header member 9, and is appropriately executed by, for example, a centrifugal casting method or a stationary casting method. The sealing material 15 filled in the header member 9 is solidified to form the sealing portion 15 and the module precursor 5 is formed.
(Cartridge module)
 図1、図4及び図7に示されるように、カートリッジモジュール(膜モジュール)1はモジュール前躯体5を用いて製造される。モジュール前躯体5では、中空糸膜7aの両端が封止部15によって閉塞された状態にあり、カートリッジモジュール1として完成させるためには、中空糸膜7aの両端を開放させたモジュール端面6を形成する必要がある。本実施形態では、ヘッダ部材9の端部側の一部分を切断除去することでモジュール端面6(図4(c)参照)を形成し、カートリッジモジュール1を完成させる。 1, 4, and 7, the cartridge module (membrane module) 1 is manufactured using a module precursor 5. In the module precursor 5, both ends of the hollow fiber membrane 7 a are closed by the sealing portions 15, and in order to complete the cartridge module 1, a module end face 6 is formed in which both ends of the hollow fiber membrane 7 a are opened. There is a need to. In the present embodiment, a module end surface 6 (see FIG. 4C) is formed by cutting and removing a part on the end side of the header member 9, and the cartridge module 1 is completed.
 カートリッジモジュール1は、ヘッダ部材9を用いて形成される筒状のヘッダ部1aと、ヘッダ部1a内に挿入された複数の中空糸膜7aからなる中空糸膜束7と、中空糸膜束7をヘッダ部1aに固定する封止部15と、中空糸膜7aの内部が開放されたモジュール端面6と、中空糸膜束7を環状に取り囲み、中空糸膜束7と一緒に封止部15によってヘッダ部1aに固定された筒状の保護部材11と、を備えている。 The cartridge module 1 includes a cylindrical header portion 1a formed using a header member 9, a hollow fiber membrane bundle 7 including a plurality of hollow fiber membranes 7a inserted into the header portion 1a, and a hollow fiber membrane bundle 7 Is sealed to the header portion 1a, the module end face 6 in which the inside of the hollow fiber membrane 7a is opened, and the hollow fiber membrane bundle 7 are surrounded in an annular shape, and the sealing portion 15 together with the hollow fiber membrane bundle 7 is enclosed. And a cylindrical protective member 11 fixed to the header portion 1a.
 カートリッジモジュール1は、ハウジング3内に挿入されて着脱自在に取り付けられることでろ過膜ユニットを構成する。ハウジング3の形状は、用途などに応じて選択できるが、通常、円筒状である場合が多い。ハウジング3の材質は、被処理流体や分離成分の種類などに応じて選択でき、例えば、ポリ塩化ビニル、ポリカーボネート、アクリル系ポリマー、ポリサルホン、ポリエーテルスルホンなどのプラスチック、ステンレススチールなどの金属であっても良い。通常は、ステンレススチール、ポリ塩化ビニル、ポリサルホンなどを使用する場合が多い。特に醸造飲料の製造に使う膜モジュールの場合には、耐熱性や耐薬品性、耐圧性(機械的強度)の観点からステンレススチールが好ましく用いられる。 The cartridge module 1 constitutes a filtration membrane unit by being inserted into the housing 3 and detachably attached. The shape of the housing 3 can be selected according to the application and the like, but usually it is often a cylindrical shape. The material of the housing 3 can be selected according to the type of fluid to be treated and the separation component, for example, plastic such as polyvinyl chloride, polycarbonate, acrylic polymer, polysulfone, polyethersulfone, or metal such as stainless steel. Also good. Usually, stainless steel, polyvinyl chloride, polysulfone, etc. are often used. In particular, in the case of a membrane module used for manufacturing a brewed beverage, stainless steel is preferably used from the viewpoints of heat resistance, chemical resistance, and pressure resistance (mechanical strength).
 円筒状のハウジング3を例に構造を具体的に説明すると、ハウジング3は、カートリッジモジュール1を収容する円筒状の胴体3aと、胴体3aの両端に螺合にて組み付けられる一対のキャップ3bと、キャップ3bの締め付けにより、胴体3aとの間で挟持されるシールリング3cとを備えている。胴体3aには、両方の端部に濃縮水の排出口や原水の導入口などになる管部3dが形成されている。また、キャップ3bは略円すい状であり、頂部には原水の導入口や濾過水の排出口などになる管部3eが形成されている。
(カートリッジモジュールの製造方法)
The structure will be described in detail by taking the cylindrical housing 3 as an example. The housing 3 includes a cylindrical body 3a that houses the cartridge module 1, and a pair of caps 3b that are assembled to both ends of the body 3a by screwing. A seal ring 3c is provided between the body 3a and the cap 3b by tightening the cap 3b. The body 3a is formed with a pipe portion 3d that serves as an outlet for concentrated water, an inlet for raw water, or the like at both ends. The cap 3b has a substantially conical shape, and a pipe portion 3e serving as an inlet for raw water, an outlet for filtered water, or the like is formed at the top.
(Manufacturing method of cartridge module)
 次に、図8を参照してカートリッジモジュール(膜モジュール)1の製造方法について説明する。まず、複数の中空糸膜7aを束ねて中空糸膜束7を形成する工程を実行する(ステップS1)。 Next, a manufacturing method of the cartridge module (membrane module) 1 will be described with reference to FIG. First, a process of forming a hollow fiber membrane bundle 7 by bundling a plurality of hollow fiber membranes 7a is executed (step S1).
 具体的には、a)所定本数の中空糸膜7aが長さ方向に略平行になるように整えて纏める工程、b)中空糸膜7aを所定長さとなるように切り揃える工程、c)中空糸膜7aの中空部を閉塞する工程、を含んでいる。さらに、d)中空糸膜7aの端部における細孔の開口度を調節する工程を適宜行ってもよい。開口度を調節する方法としては、例えば、グリセリン水溶液を細孔中に含浸させた後に乾燥してグリセリンを細孔中に含有させた状態にする方法が挙げられる。これらa)~d)の単位工程は、記載した順序で行うこともできるし、適宜順序を変えて行うことができる。 Specifically, a) a step of arranging a predetermined number of hollow fiber membranes 7a so as to be substantially parallel to the length direction, b) a step of trimming the hollow fiber membranes 7a to a predetermined length, c) hollow A step of closing the hollow portion of the thread membrane 7a. Further, d) a step of adjusting the opening degree of the pores at the end of the hollow fiber membrane 7a may be appropriately performed. As a method for adjusting the degree of opening, for example, a method of impregnating a glycerin aqueous solution into pores and then drying to obtain a state in which glycerin is contained in the pores can be mentioned. These unit steps a) to d) can be performed in the order described, or can be performed by appropriately changing the order.
 次に、モジュール前躯体要素の組み付け工程を実行する(ステップS2)。具体的には、整束された中空糸膜束7を保護部材11に挿入する。さらに中空糸膜束7が均等に分割されるように、保護部材11からはみ出した部分にクロス板13を挿入して、その状態で中空糸膜束7の両方の端部にヘッダ部材9を装着してモジュール前躯体要素の組み付けを行う。 Next, a module pre-assembly element assembly process is executed (step S2). Specifically, the bundled hollow fiber membrane bundle 7 is inserted into the protective member 11. Further, in order to divide the hollow fiber membrane bundle 7 evenly, the cross plate 13 is inserted into the portion protruding from the protective member 11, and the header member 9 is attached to both ends of the hollow fiber membrane bundle 7 in that state. Assemble the module precursor element.
 次に、ヘッダ部材9の内部に液状の封止材Sを充填する工程を実行する(ステップS3)。封止材Sの充填方法には、遠心力を利用して封止材Sを充填する遠心注型法や重力を利用して封止材Sを充填する静置注型法などがあり、ここでは、遠心注型法と静置注型法とを代表して説明する。 Next, a process of filling the liquid sealing material S inside the header member 9 is executed (step S3). As the filling method of the sealing material S, there are a centrifugal casting method in which the sealing material S is filled using centrifugal force, a stationary casting method in which the sealing material S is filled using gravity, and the like. Then, the centrifugal casting method and the stationary casting method will be described as a representative.
 遠心注型法は、遠心カセットと呼ばれる治具を備えた遠心注型機を用いて行われる。モジュール前躯体要素が組み付けられた構造体は、水平に横たえた状態で遠心カセットに取り付けられ、鉛直軸を回転軸として水平面上を回転する。遠心カセットの回転によってヘッダ部材9には遠心力が作用し、この遠心力を利用してヘッダ部材9の内部に封止材Sが充填される。遠心力を利用した充填方法には、例えば、中空糸膜束7の長さによって二通りが考えられる。一つの方法は、両方の端部を同時に遠心注型する方法であり、別の方法は、片側ずつで2回遠心注型する方法である。例えば、片側ずつ行う場合には、接着対象となる一方の端部が遠心方向の外側となり、他方の端部が遠心方向の内側となるように配置される。遠心方向の外側となるヘッダ部材9側には、遠心力を利用して液状の封止材Sが移送され、さらに、ヘッダ部材9の底部9bに形成された導入口9aを通じて封止材Sが内部に充填される。 The centrifugal casting method is performed using a centrifugal casting machine equipped with a jig called a centrifugal cassette. The structure in which the module precursor element is assembled is attached to the centrifuge cassette in a state of being laid horizontally, and rotates on a horizontal plane with the vertical axis as a rotation axis. Centrifugal force acts on the header member 9 by the rotation of the centrifugal cassette, and the sealing material S is filled in the header member 9 using this centrifugal force. There are two possible filling methods using centrifugal force, for example, depending on the length of the hollow fiber membrane bundle 7. One method is a method in which both ends are simultaneously subjected to centrifugal casting, and another method is a method in which centrifugal casting is performed twice on each side. For example, when performing each one side, it arrange | positions so that one edge part used as adhesion | attachment object may become an outer side of a centrifugal direction, and the other edge part may become an inner side of a centrifugal direction. The liquid sealing material S is transferred to the header member 9 side, which is the outer side in the centrifugal direction, using centrifugal force. Further, the sealing material S is introduced through the inlet 9a formed in the bottom 9b of the header member 9. Filled inside.
 一方で、静置注型法はヘッダ部材9が装着された中空糸膜束7を鉛直方向に沿って立てた状態で配置する。中空糸膜束7の接着対象となる一方の端部は下側となり、他方の端部は上側となる。下側のヘッダ部材9の内部には、底部9bの導入口9aを通じて液状の封止材Sが充填される。ここで、封止材Sは、水頭差或いはポンプ等によって導入されてヘッダ部材9の内部に隙間無く充填される。その後、封止材Sの流動性が無くなると上下が反転され、下側となったヘッダ部材9の内部に封止材Sが上記と同様に充填される。 On the other hand, in the static casting method, the hollow fiber membrane bundle 7 on which the header member 9 is mounted is arranged in a state where it is erected along the vertical direction. One end of the hollow fiber membrane bundle 7 to be bonded is on the lower side, and the other end is on the upper side. The inside of the lower header member 9 is filled with a liquid sealing material S through the introduction port 9a of the bottom 9b. Here, the sealing material S is introduced by a water head difference or a pump or the like and is filled in the header member 9 without a gap. After that, when the fluidity of the sealing material S is lost, the top and bottom are reversed, and the sealing material S is filled in the header member 9 on the lower side in the same manner as described above.
 上述のステップS3での封止材Sの充填は、封止材Sが液状を呈している間に行われる。なお、充填された封止材Sは、経時的に反応が進んで次第に流動性を無くし固体状態になる。 The filling of the sealing material S in step S3 described above is performed while the sealing material S is in a liquid state. In addition, the filled sealing material S gradually loses fluidity as the reaction progresses with time, and becomes a solid state.
次に、ヘッダ部材9の内部に充填された封止材Sを固化させて封止部15を形成する工程を実行する(ステップS4)。封止材Sが固化して封止部15が形成された後、所定温度T1(例えば50℃)で所定時間加熱してキュアリングを行う(ステップS5)。続いてT1よりも高温T2(例えば90℃)で所定時間加熱して更にキュアリングを行う(ステップS6)。この操作によって、モジュール前躯体5が完成する。 Next, a step of solidifying the sealing material S filled in the header member 9 to form the sealing portion 15 is executed (step S4). After the sealing material S is solidified and the sealing portion 15 is formed, curing is performed by heating at a predetermined temperature T1 (for example, 50 ° C.) for a predetermined time (step S5). Subsequently, heating is performed for a predetermined time at a temperature T2 (for example, 90 ° C.) higher than T1, and further curing is performed (step S6). By this operation, the module precursor 5 is completed.
 次に、中空糸膜7aの端部と一緒にヘッダ部材9の底部9b側の一部及び封止部15の一部を切断して複数の中空糸膜7aの内部が開放されたモジュール端面6を形成する工程を実行し(ステップS7)、カートリッジモジュール1を完成させる。 Next, a part of the bottom 9b side of the header member 9 and a part of the sealing part 15 are cut together with the end of the hollow fiber membrane 7a to open the inside of the plurality of hollow fiber membranes 7a. (Step S7), and the cartridge module 1 is completed.
 次に、ヘッダ部材9及びカートリッジモジュール1の効果について説明する。モジュール前躯体5を製造する際、封止材Sは、ヘッダ部材9の内部で隙間を埋めるように充填され(図5及び図6参照)、更に固化して中空糸膜束7、クロス板13、保護部材11、及びヘッダ部材9の内面を接着(結合)する。ヘッダ部材9は、入口側筒部21の内径r1方が、端部側筒部23の内径r1よりも大きく、入口側筒部21と端部側筒部23との内面同士の間には段差Stが設けられている。封止材Sが固化する過程では、封止材Sは僅かに熱収縮する。この熱収縮により、仮に、入口側筒部21において封止材Sとの接触面で剥離が発生しても、入口側筒部21側から端部側筒部23への剥離の伝播は段差Stによって阻止され、従って、剥離の成長が抑えられる。 Next, effects of the header member 9 and the cartridge module 1 will be described. When the module precursor 5 is manufactured, the sealing material S is filled so as to fill the gap inside the header member 9 (see FIGS. 5 and 6), and further solidified to form the hollow fiber membrane bundle 7 and the cross plate 13. The protective member 11 and the inner surface of the header member 9 are bonded (coupled). The header member 9 has an inner diameter r1 of the inlet side cylinder portion 21 larger than an inner diameter r1 of the end side cylinder portion 23, and there is a step between the inner surfaces of the inlet side cylinder portion 21 and the end side cylinder portion 23. St is provided. In the process in which the sealing material S is solidified, the sealing material S slightly heat shrinks. Even if peeling occurs on the contact surface with the sealing material S in the inlet side cylindrical portion 21 due to this heat shrinkage, the propagation of peeling from the inlet side cylindrical portion 21 side to the end side cylindrical portion 23 is a step St. And therefore the growth of delamination is suppressed.
 また、ヘッダ部材9の内面には、深溝23aや浅溝21a,23bが形成されており、封止材Sは、深溝23aや浅溝21a,23bに進入して固化する。従って、ヘッダ部材9と封止材Sとの接触面同士が凹凸状に嵌合して強固に接着(結合)されることとなり、剥離の成長を抑えるのに有効であり、剥離対策効果(リークが生じない効果)が大きく、例えば、滅菌時の熱や圧力あるいは放射線処理にも耐え得る。その結果として、カートリッジモジュール1の品質向上に寄与することができる。 Further, deep grooves 23a and shallow grooves 21a and 23b are formed on the inner surface of the header member 9, and the sealing material S enters the deep grooves 23a and the shallow grooves 21a and 23b and is solidified. Therefore, the contact surfaces of the header member 9 and the sealing material S are fitted in a concavo-convex shape and firmly bonded (bonded), which is effective in suppressing the growth of peeling, and is effective in preventing peeling (leakage). For example, it can withstand heat and pressure during sterilization or radiation treatment. As a result, the quality of the cartridge module 1 can be improved.
 さらに、ヘッダ部材9の入口側筒部21には、浅溝21aが形成されており、端部側筒部23には浅溝21aの他に深溝23aが形成されている。例えば、封止材Sは、ヘッダ部材9の内面に形成する溝の深さが深いほど奥深くまで進入して固化するため、溝の深さが深い方がヘッダ部材9に強固に結合されることになり、剥離を抑制する点で有利となる。しかしながら、封止材Sをヘッダ部材9の底部9b側から充填する方法では、入口側筒部21は端部側筒部23よりも封止材Sが進入し難くなるため、入口側筒部21の溝を深くし過ぎると、封止材Sが入りきらずに封止材Sとヘッダ部材9との間に隙間が生じる可能性がある。一方で、端部側筒部23では入口側筒部21に比べて封止材Sは進入し易いため、積極的に溝の深さを深くしても十分に封止材Sを入り込ませることができる。つまり、ヘッダ部材9によれば、底部9b側から封止材Sを充填する場合に、封止材Sの確実な充填を図りながら、ヘッダ部材9と封止材Sとの間での強固な結合を実現し易くなり、剥離の抑止または剥離の成長を抑えるのに有効である。なお、本実施形態に係る端部側筒部23には、深溝23aの他に浅溝23bが形成されているが、深溝23aのみを形成して浅溝23bの形成を省略することも可能である。 Furthermore, a shallow groove 21a is formed in the inlet side cylinder portion 21 of the header member 9, and a deep groove 23a is formed in the end side cylinder portion 23 in addition to the shallow groove 21a. For example, since the sealing material S enters and solidifies deeper as the depth of the groove formed on the inner surface of the header member 9 is deeper, the deeper groove is firmly bonded to the header member 9. This is advantageous in terms of suppressing peeling. However, in the method of filling the sealing material S from the bottom 9 b side of the header member 9, the inlet-side cylindrical portion 21 is less likely to enter the sealing material S than the end-side cylindrical portion 23. If the groove is made too deep, there is a possibility that a gap is generated between the sealing material S and the header member 9 without the sealing material S entering. On the other hand, since the sealing material S is easier to enter in the end-side cylinder portion 23 than in the inlet-side cylinder portion 21, the sealing material S can be sufficiently inserted even if the depth of the groove is positively increased. Can do. That is, according to the header member 9, when the sealing material S is filled from the bottom 9 b side, the header member 9 and the sealing material S can be firmly filled while ensuring the filling of the sealing material S. Bonding is easy to realize, and it is effective in suppressing delamination or delamination growth. In addition, although the shallow groove 23b other than the deep groove 23a is formed in the edge part side cylinder part 23 which concerns on this embodiment, it is also possible to form only the deep groove 23a and to omit formation of the shallow groove 23b. is there.
 また、ヘッダ部材9の端部側筒部23の内面には、ヘッダ部材9の軸線L回りに沿った環状の第1の凸部23c及び第2の凸部23dが形成されている。封止材Sは、ヘッダ部材9の内部に充填されると、第1の凸部23c及び第2の凸部23dを覆い隠す。前述のように、封止材Sは固化する過程で熱収縮するが、この場合、凸部23c,23dを覆っていた封止材Sが凸部23c,23dを挟み付けるように収縮するので封止材Sが固化する過程での剥離は防止される。その結果として、剥離の成長を抑制してカートリッジモジュール1の品質向上を図る上で有効である。 Also, on the inner surface of the end-side cylinder portion 23 of the header member 9, annular first convex portions 23 c and second convex portions 23 d are formed along the axis L of the header member 9. When the sealing material S is filled in the header member 9, it covers the first and second protrusions 23 c and 23 d. As described above, the sealing material S is thermally contracted in the process of solidification. In this case, the sealing material S covering the convex portions 23c and 23d contracts so as to sandwich the convex portions 23c and 23d. Peeling in the process in which the stop material S is solidified is prevented. As a result, it is effective in improving the quality of the cartridge module 1 by suppressing the growth of peeling.
 また、本実施形態に係るカートリッジモジュール1は、上述のヘッダ部材9を用いてヘッダ部1aが形成されているので、封止材Sの固化によって封止部15が形成される際の剥離の発生及び伝播は抑制されており、高い品質を期待できる。 Further, in the cartridge module 1 according to the present embodiment, since the header portion 1a is formed using the header member 9 described above, occurrence of peeling when the sealing portion 15 is formed by solidification of the sealing material S is generated. In addition, propagation is suppressed and high quality can be expected.
 また、カートリッジモジュール1は、中空糸膜束7を環状に取り囲む筒状の保護部材11を備えているので、中空糸膜束7は、保護部材11によって纏まり良く保持され、外的衝撃などから保護される。 In addition, since the cartridge module 1 includes the cylindrical protective member 11 that surrounds the hollow fiber membrane bundle 7 in an annular shape, the hollow fiber membrane bundle 7 is held together by the protective member 11 and protected from external impacts and the like. Is done.
 また、保護部材11には、ヘッダ部1aに固定される両端部から軸線L方向に突き出した線状(ライン状)の突出部11cが形成されている。保護部材11の端部が、例えば、突出部11cの無い平坦な円周によって形成されている場合、この端部で剥離が生じると、その剥離は円周方向に伝播し易く、剥離が成長し易い。しかしながら、本実施形態に係る保護部材11によれば、突出部11cが障害物となって周方向への剥離の伝播は阻止されるため、剥離の成長を抑えるのに有効である。なお、突出部11cの効果については、カートリッジモジュール1を作製する工程でのキュアリング前後等の外観から見える剥離発生の有無で確認することができる。 Further, the protection member 11 is formed with a linear (line-shaped) protruding portion 11c protruding in the direction of the axis L from both ends fixed to the header portion 1a. For example, when the end portion of the protective member 11 is formed by a flat circumference without the protruding portion 11c, if peeling occurs at this end portion, the peeling easily propagates in the circumferential direction, and the peeling grows. easy. However, according to the protective member 11 according to the present embodiment, since the protrusion 11c becomes an obstacle and propagation of peeling in the circumferential direction is prevented, it is effective in suppressing the growth of peeling. In addition, the effect of the protrusion part 11c can be confirmed by the presence or absence of occurrence of peeling visible from the appearance before and after the curing in the process of manufacturing the cartridge module 1.
 また、カートリッジモジュール1を用いて膜ろ過を行っている際にも、例えば、物理洗浄や薬品洗浄などに起因してヘッダ部1aと封止部15との間で剥離が発生してしまう可能性がある。しかしながら、本実施形態では、ヘッダ部1aと封止部15とは強固に接着(結合)されているので、剥離の発生を効果的に防ぐことができ、また、仮に剥離が発生した場合であっても、剥離の成長を効果的に抑えることができる。 Further, even when membrane filtration is performed using the cartridge module 1, there is a possibility that separation occurs between the header portion 1 a and the sealing portion 15 due to, for example, physical cleaning or chemical cleaning. There is. However, in this embodiment, since the header portion 1a and the sealing portion 15 are firmly bonded (bonded), the occurrence of peeling can be effectively prevented, and the case where peeling occurs temporarily. However, the growth of peeling can be effectively suppressed.
 また、上述のカートリッジモジュール(膜モジュール)1の製造方法によれば、封止部15を形成する過程において、ヘッダ部材9の入口側で剥離が発生しても、入口側筒部21の内面と端部側筒部23の内面との間に形成された段差Stによって入口側筒部21側から端部側筒部23への剥離の伝播は阻止される。さらに、ヘッダ部材9の内部に充填された封止材Sは環状の浅溝21a,23bや深溝23a内に進入して固化されるので、ヘッダ部材9と封止材Sとの接触面同士が凹凸状に嵌合して強固に接着(結合)され、剥離の発生や成長を抑えるのに有効である。その結果として、品質の高いカートリッジモジュール1を製造することができる。 Moreover, according to the manufacturing method of the cartridge module (membrane module) 1 described above, even if peeling occurs on the inlet side of the header member 9 in the process of forming the sealing portion 15, Propagation of separation from the inlet side cylinder part 21 side to the end part side cylinder part 23 is prevented by the step St formed between the inner surface of the end side cylinder part 23. Further, since the sealing material S filled in the header member 9 enters into the annular shallow grooves 21a and 23b and the deep grooves 23a and is solidified, the contact surfaces of the header member 9 and the sealing material S are in contact with each other. It fits in a concavo-convex shape and is firmly bonded (bonded), which is effective in suppressing the occurrence and growth of peeling. As a result, the cartridge module 1 with high quality can be manufactured.
 上述の製法によって得られたカートリッジモジュール(膜モジュール)1は、特に、前述の醸造飲料の製造において、高圧(炭酸ガス圧)かつ数℃(低温)の濾過工程と70℃(高温)の洗浄工程を繰り返す過酷な運転環境下においても、封止材Sと接する内面と内部に充填された封止材Sとの間での剥離が生じて原液がろ過側にリークすることが無く、安定してろ過を行うことができる。 The cartridge module (membrane module) 1 obtained by the above-described manufacturing method is a high pressure (carbon dioxide pressure) and several ° C. (low temperature) filtration step and a 70 ° C. (high temperature) washing step, particularly in the production of the aforementioned brewed beverage. Even in a severe operating environment that repeats the above, there is no separation between the inner surface in contact with the sealing material S and the sealing material S filled inside, and the stock solution does not leak to the filtration side, and is stable. Filtration can be performed.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 (多孔質中空糸膜の製造例1)
 ポリスルホン(SOLVAY ADVANCED POLYMERS社製、Udel P3500)18重量%、ポリビニルピロリドン(BASF社製、Luvitec k80)15重量%を、N-メチル-2-ピロリドン62重量%に70℃で撹拌溶解し、グリセリン5重量%を加えてさらに撹拌し製膜原液を調整した。この製膜原液を二重環紡糸ノズル(最外径2.4mm、中間径1.2mm、最内径0.6mm)から内部凝固液の90重量%NMP水溶液と共に70℃で押し出し、50mmの空走距離を通し、80℃の水中で凝固させた。このとき、紡口から凝固浴までを温度調整可能な底面積38cmの筒状物で囲い空走部分の温度を75℃、相対湿度100%(絶対湿度240g/m)とした。このとき水中で脱溶媒を行った後、2000ppmの次亜塩素酸ナトリウム水溶液中で15時間ポリビニルピロリドンを分解処理後、90℃で3時間水洗を行い、多孔質中空糸膜を得た。得られた中空糸は、外径が2.3mmφ、内径1.4mmφ、最小孔径0.4μm、25℃における内面積当たりの純水透水量が15,800L/m/hr/100kPaであった。該中空糸膜を60℃の30重量%グリセリン水溶液中に浸漬して中空糸膜の細孔にグリセリン水溶液を含浸させた後、70℃で乾燥して膜モジュールの製造に供した。
(Production Example 1 of Porous Hollow Fiber Membrane)
Polysulfone (SOLVAY ADVANCED POLYMERS, Udel P3500) 18% by weight and polyvinylpyrrolidone (BASF, Luvitec k80) 15% by weight were stirred and dissolved in N-methyl-2-pyrrolidone 62% by weight at 70 ° C. to obtain glycerin 5 Weight% was added and further stirred to prepare a film-forming stock solution. This film-forming stock solution was extruded from a double ring spinning nozzle (outer diameter 2.4 mm, intermediate diameter 1.2 mm, inner diameter 0.6 mm) together with 90 wt% NMP aqueous solution of internal coagulation liquid at 70 ° C. Through the distance, it was solidified in 80 ° C. water. At this time, the temperature from the spinneret to the coagulation bath was surrounded by a cylinder having a bottom area of 38 cm 2 , and the temperature of the free running portion was 75 ° C. and the relative humidity was 100% (absolute humidity 240 g / m 3 ). At this time, after removing the solvent in water, the polyvinylpyrrolidone was decomposed in an aqueous 2000 ppm sodium hypochlorite solution for 15 hours and then washed with water at 90 ° C. for 3 hours to obtain a porous hollow fiber membrane. The obtained hollow fiber had an outer diameter of 2.3 mmφ, an inner diameter of 1.4 mmφ, a minimum pore diameter of 0.4 μm, and a pure water permeation amount per inner area at 25 ° C. of 15,800 L / m 2 / hr / 100 kPa. . The hollow fiber membrane was immersed in a 30% by weight glycerin aqueous solution at 60 ° C. so that the pores of the hollow fiber membrane were impregnated with the glycerin aqueous solution, and then dried at 70 ° C. to prepare a membrane module.
 (多孔質中空糸膜の製造例2)
 ポリスルホン(SOLVAY ADVANCED POLYMERS社製、Udel P3500)20重量%、テトラエチレングリコール(日本触媒社製)9重量%を、ジメチルアセトアミド71重量%に50℃で撹拌溶解して製膜原液を調整した。この製膜原液を二重環紡糸ノズル(最外径2.4mm、中間径1.2mm、最内径0.6mm)から内部凝固液の純水と共に50℃で押し出し、10mmの空走距離を通し、30℃の水中で凝固させた。このとき水中で脱溶媒を行った後、90℃で3時間水洗を行い、多孔質中空糸膜を得た。得られた中空糸は、外径が2.3mmφ、内径1.4mmφ、分画分子量6,000、25℃における内面積当たりの純水透水量が250L/m/hr/100kPaであった。該中空糸膜を60℃の30重量%グリセリン水溶液中に浸漬して中空糸膜の細孔にグリセリン水溶液を含浸させた後、70℃で乾燥して膜モジュールの製造に供した。
(Production Example 2 of porous hollow fiber membrane)
Polysulfone (SOLVAY ADVANCED POLYMERS, Udel P3500) 20% by weight and tetraethylene glycol (Nippon Shokubai Co., Ltd.) 9% by weight were dissolved in 71% by weight of dimethylacetamide at 50 ° C. to prepare a membrane forming stock solution. This film-forming stock solution was extruded from a double ring spinning nozzle (outer diameter 2.4 mm, intermediate diameter 1.2 mm, inner diameter 0.6 mm) together with pure water of the internal coagulating liquid at 50 ° C., and passed through an idle running distance of 10 mm. And coagulated in water at 30 ° C. At this time, after removing the solvent in water, it was washed with water at 90 ° C. for 3 hours to obtain a porous hollow fiber membrane. The obtained hollow fiber had an outer diameter of 2.3 mmφ, an inner diameter of 1.4 mmφ, a molecular weight cut-off of 6,000, and a pure water permeation amount per inner area at 25 ° C. of 250 L / m 2 / hr / 100 kPa. The hollow fiber membrane was immersed in a 30% by weight glycerin aqueous solution at 60 ° C. so that the pores of the hollow fiber membrane were impregnated with the glycerin aqueous solution, and then dried at 70 ° C. to provide a membrane module.
(中空糸膜モジュールの製造例)
下記の底部と筒状体とが一体成形されたヘッダ部材とネット状保護筒を使用してカートリッジ型中空糸膜モジュールを作製した。
(Example of manufacturing hollow fiber membrane module)
A cartridge-type hollow fiber membrane module was produced using a header member and a net-like protective cylinder in which the bottom part and cylindrical body described below were integrally formed.
《モジュール構造》
(1)ヘッダ部材
材質:ポリスルホン(透明)
入口側筒部:高さ(内寸)28mm、
端部側筒部:高さ(内寸)64mm
入口側筒部および端部側筒部の内径、溝の形状・寸法に関しては、表1および表2に示す。
なお、上記のヘッダ部材は、ポリサルホン製の材料(直径200mm×長さ1000mm)を切削加工することによって作製した。
(2)ネット状保護筒
材質:ポリプロピレン
形状:内径151mm、外径159mm、長さ1020mm、
線幅:軸方向 3.5mm、円周方向 5mm、
開口部8.5mm(軸方向)×12mm(円周方向)、
なお、軸方向の突起に関しては、表1および表2に示す。
(3)中空糸膜
材質:ポリスルホン
寸法:内径1.4mm、外径2.3mm
本数:2800本
膜面積:内面積12m/モジュール
(4)クロス板
材質:2液混合型熱硬化性エポキシ樹脂(封止材と同じ樹脂の硬化物)
形状:十字状
寸法:厚み5mm、幅148mm、軸方向長さ80mm
<Module structure>
(1) Header material: Polysulfone (transparent)
Entrance side tube: Height (inside dimension) 28 mm,
End side cylinder part: Height (inside dimension) 64mm
Tables 1 and 2 show the inner diameter of the inlet side cylinder part and the end side cylinder part and the shape and dimensions of the groove.
In addition, said header member was produced by cutting the material (diameter 200mm x length 1000mm) made from polysulfone.
(2) Net-shaped protective cylinder material: polypropylene shape: inner diameter 151 mm, outer diameter 159 mm, length 1020 mm,
Line width: 3.5 mm in the axial direction, 5 mm in the circumferential direction,
Opening 8.5mm (axial direction) x 12mm (circumferential direction),
The axial projections are shown in Tables 1 and 2.
(3) Hollow fiber membrane material: polysulfone Dimensions: inner diameter 1.4 mm, outer diameter 2.3 mm
Number: 2800 Membrane area: Inner area 12 m 2 / module (4) Cross board material: Two-component mixed thermosetting epoxy resin (cured product of the same resin as the sealing material)
Shape: Cross Dimension: Thickness 5mm, Width 148mm, Axial length 80mm
《製造方法》
 予め両端の中空部を閉塞させた中空糸膜を略平行に揃えて束状に整えた後、1280mmに切断した。該中空糸膜束をネット状保護筒に挿入し、該ネット状保護筒から突き出た中空糸膜端部にクロス板を挿入した。この際、クロス板で4分割される各区画に中空糸膜が均等に配分されるように、クロス板を配置した。
 次いで、該中空糸膜束の両端部をヘッダ部材内に挿入した後、架台に載せて両端部のヘッダ部材を架台に固定した。その後、前記の架台を遠心カセットに装着し、遠心注型法により2液混合型熱硬化性エポキシ樹脂の混合液を両端部のヘッダ部材の底側から注入して固化させた。次いで、50℃で48時間加熱し、さらに90℃で16時間加熱してキュアーした後、両方のヘッダ部材の底側端を切断して中空部を開口させた。切断後のヘッダ部材の長さは60mmであり、モジュール全長は1100mmである。
"Production method"
The hollow fiber membranes whose hollow portions at both ends were previously closed were aligned in parallel and arranged into a bundle shape, and then cut into 1280 mm. The hollow fiber membrane bundle was inserted into a net-shaped protective cylinder, and a cross plate was inserted into the end of the hollow fiber membrane protruding from the net-shaped protective cylinder. At this time, the cross plate was arranged so that the hollow fiber membranes were evenly distributed to the respective sections divided into four by the cross plate.
Next, both ends of the hollow fiber membrane bundle were inserted into the header member, and then placed on the gantry to fix the header members at both ends to the gantry. Thereafter, the mount was mounted on a centrifugal cassette, and a liquid mixture of a two-component mixed thermosetting epoxy resin was injected from the bottom side of the header members at both ends and solidified by a centrifugal casting method. Next, after heating at 50 ° C. for 48 hours and further curing at 90 ° C. for 16 hours, the bottom ends of both header members were cut to open the hollow portions. The length of the header member after cutting is 60 mm, and the total length of the module is 1100 mm.
(実施例1~8)
 製造例1の多孔質中空糸膜と、各種ヘッダ部材を用いて製造した中空糸膜モジュールの例を示す。ヘッダ部材の形状及び寸法を表1に示す。
 製造した膜モジュールにおける中空部及び切断端面を観察した。観察結果を表1に示す。なお、表1の「ヘッダ部材の内径比」とは、(端部側筒部の内径)/(入口側筒部の内径)を意味する。
 実施例8においては、剥離は観察されなかったが、入口側筒部の溝に気泡が滞留していた。
(Examples 1 to 8)
The example of the hollow fiber membrane module manufactured using the porous hollow fiber membrane of the manufacture example 1 and various header members is shown. Table 1 shows the shape and dimensions of the header member.
The hollow part and the cut end face in the manufactured membrane module were observed. The observation results are shown in Table 1. In addition, the “inner diameter ratio of the header member” in Table 1 means (inner diameter of the end side cylinder part) / (inner diameter of the inlet side cylinder part).
In Example 8, no separation was observed, but bubbles remained in the groove of the inlet side cylinder part.
(比較例1、2)
 表2に示す形状および寸法のヘッダ部材と保護部材とを使用した以外は、実施例1~8と同様にしてモジュールを作製し、実施例と同様にして観察した。観察結果を表2に示す。比較例2の膜モジュールでは、製造後の段階で剥離は見られなかったが、入口側筒部に設けた角溝内に気泡が残留しているのが観察された。なお、表2の「ヘッダ部材の内径比」とは、(端部側筒部の内径)/(入口側筒部の内径)を意味する。また、比較例1では、端部側筒部の内面に実質的な溝は形成されておらず、また、入口側筒部の内面にも実質的な溝は形成されていない。そのため、表2で示す端部側筒部の溝と入口側筒部の溝とは実質的に同一の深さである考え、端部側筒部の溝に対する入口側筒部の溝の平均深さの比は“1.0”と記載した。
(Comparative Examples 1 and 2)
A module was produced in the same manner as in Examples 1 to 8 except that a header member and a protective member having the shapes and dimensions shown in Table 2 were used, and observed in the same manner as in the example. The observation results are shown in Table 2. In the membrane module of Comparative Example 2, no peeling was observed at the stage after manufacture, but it was observed that bubbles remained in the square groove provided in the inlet side cylindrical portion. In addition, the “inner diameter ratio of the header member” in Table 2 means (inner diameter of the end side cylinder part) / (inner diameter of the inlet side cylinder part). Moreover, in the comparative example 1, the substantial groove | channel is not formed in the inner surface of an edge part side cylinder part, and the substantial groove | channel is not formed also in the inner surface of an entrance side cylinder part. Therefore, the groove of the end side cylinder part and the groove of the inlet side cylinder part shown in Table 2 are considered to be substantially the same depth, and the average depth of the groove of the inlet side cylinder part with respect to the groove of the end side cylinder part The ratio is described as “1.0”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例9)
 以下、冷熱サイクル試験を行った結果を示す。
 実施例1~6と同様にして製造した膜モジュールをステンレス製ハウジングに収納した後ろ過装置に装着し、5℃に冷却した純水を2時間通水する工程と80℃に加熱した純水を2時間通水する工程を1000サイクル繰り返した。なお、この冷熱サイクル試験においては、入口での圧力を0.2MPaに、透過側出口での圧力を0.15MPaに設定してクロスフローろ過方式で通水した。
 試験終了(1000サイクル)までの間に100サイクル毎に後述する方法でリーク検査を行ったところ、各膜モジュールとも1000サイクルまでリークは全く無かった。また、ハウジングから中空糸膜モジュールを取り出してヘッダ部を詳細に観察したところ、各膜モジュールとも剥離は見られなかった。
Example 9
Hereafter, the result of having performed the cooling / heating cycle test is shown.
The membrane module produced in the same manner as in Examples 1 to 6 was housed in a stainless steel housing and then attached to a filtration device, and the purified water cooled to 5 ° C. was passed for 2 hours and the purified water heated to 80 ° C. The process of passing water for 2 hours was repeated 1000 cycles. In this cooling / heating cycle test, the pressure at the inlet was set to 0.2 MPa, the pressure at the permeate side outlet was set to 0.15 MPa, and water was passed by a cross flow filtration method.
When the leak test was conducted by the method described later every 100 cycles until the end of the test (1000 cycles), there was no leak until 1000 cycles in each membrane module. Moreover, when the hollow fiber membrane module was taken out from the housing and the header part was observed in detail, peeling was not seen in each membrane module.
《リーク検査方法》
 ハウジング内にエアーを導入して中空糸膜外表面側から0.3MPaに加圧し、モジュール端面においてエアーがでてくるかどうかを観察した。ヘッダ部材の内面等で剥離が発生し、その剥離部が固定部の内側から外側にかけて貫通している場合には、その剥離部分からエアーが漏れ出てくる。
<Leak inspection method>
Air was introduced into the housing and pressurized to 0.3 MPa from the outer surface side of the hollow fiber membrane, and it was observed whether air appeared at the end face of the module. When peeling occurs on the inner surface or the like of the header member and the peeling portion penetrates from the inside to the outside of the fixed portion, air leaks from the peeling portion.
(実施例10)
 実施例7と同様にして製造した膜モジュールを用いた他は、実施例9と同様にして冷熱サイクル試験を行った。
 実施例9と同様にして、100サイクル毎にリーク検査を行ったところ、1000サイクルまでリークは全く無かった。次いで、ハウジングから中空糸膜モジュールを取り出してヘッダ部を観察したところ、ヘッダ部材の段差部分において保護部材とヘッダ部材との接触面付近に剥離が生じていた。
 また、5℃に冷却した純水を2時間通水する工程と40℃に加熱した純水を2時間通水する工程を繰り返すように変えた他は、実施例9と同じようにして冷熱サイクル試験を行った。
 100サイクル毎にリーク検査を行ったところ、1000サイクルまでリークは全く無かった。次いで、前記と同様にしてヘッダ部を観察したところ、冷熱サイクル試験前と変化が無く剥離も見られなかった。
(Example 10)
A thermal cycle test was conducted in the same manner as in Example 9 except that the membrane module produced in the same manner as in Example 7 was used.
When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak up to 1000 cycles. Next, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, peeling occurred in the vicinity of the contact surface between the protective member and the header member at the step portion of the header member.
Further, a cooling / heating cycle was performed in the same manner as in Example 9 except that the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 40 ° C. for 2 hours were repeated. A test was conducted.
When a leak test was performed every 100 cycles, there was no leak up to 1000 cycles. Next, when the header portion was observed in the same manner as described above, there was no change and no peeling was observed before the thermal cycle test.
(実施例11)
 実施例8と同様にして製造した膜モジュールを用いた他は、実施例9と同様にして冷熱サイクル試験を行った。
 実施例9と同様にして、100サイクル毎にリーク検査を行ったところ、1000サイクルまでリークは全く無かった。次いで、ハウジングから中空糸膜モジュールを取り出してヘッダ部を観察したところ、ヘッダ部材の入口側筒部の接着部界面において軽微な隙間(剥離した部分)が観察された。その剥離部は、段差部で止まっていた。この剥離は、入口側筒部に設けた角溝内に滞留している気泡の部分が起点となって生じ、入口側筒部の入口端から段差部まで進展したものと推察する。
 また、5℃に冷却した純水を2時間通水する工程と40℃に加熱した純水を2時間通水する工程を繰り返すように変えた他は、実施例9と同じようにして冷熱サイクル試験を行ったところ、リークは全くなかった。また、ヘッダ部を観察したところ、冷熱サイクル試験前と変化が無く剥離も見られなかった。
(Example 11)
A thermal cycle test was conducted in the same manner as in Example 9 except that the membrane module produced in the same manner as in Example 8 was used.
When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak up to 1000 cycles. Subsequently, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, a slight gap (peeled portion) was observed at the interface of the bonded portion of the inlet side tubular portion of the header member. The peeled portion stopped at the stepped portion. This separation is presumed to be caused by a bubble portion staying in a square groove provided in the inlet side cylinder part, and progressing from the inlet end of the inlet side cylinder part to the step part.
Further, a cooling / heating cycle was performed in the same manner as in Example 9 except that the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 40 ° C. for 2 hours were repeated. When tested, there was no leak. Moreover, when the header part was observed, there was no change and the peeling was not seen before the heat cycle test.
(比較例3)
 比較例2と同様な膜モジュールを製造した。該膜モジュールは、製造直後の段階では剥離は全く見られなかった。但し、入口側筒部に設けた角溝内に気泡残留していた。
 この膜モジュールを用いた他は、実施例9と同様にして冷熱サイクル試験を行った。
 実施例9と同様にして、100サイクル毎にリーク検査を行ったところ、100サイクル後ではリークは無かったが、200サイクル後ではリークが発生した。
 次いで、ハウジングから中空糸膜モジュールを取り出してヘッダ部を観察したところ、ヘッダ部材の入口側筒部の接着部界面から端部側筒部の切断端面まで連続して隙間(剥離した部分)が観察された。この剥離は、入口側筒部に設けた角溝内に滞留している気泡の部分が起点となって生じ、入口側筒部の入口端から切断端面まで進展したものと推察する。
 また、5℃に冷却した純水を2時間通水する工程と40℃に加熱した純水を2時間通水する工程を繰り返すように変えた他は、実施例9と同じようにして冷熱サイクル試験を行ったところ、500サイクル後まではリークが無かったが、600サイクル後でリークが発生した。
(Comparative Example 3)
A membrane module similar to Comparative Example 2 was produced. The membrane module did not show any peeling at the stage immediately after production. However, bubbles remained in the square groove provided in the inlet side cylinder.
A thermal cycle test was conducted in the same manner as in Example 9 except that this membrane module was used.
When leak inspection was performed every 100 cycles in the same manner as in Example 9, there was no leak after 100 cycles, but leak occurred after 200 cycles.
Next, when the hollow fiber membrane module was taken out from the housing and the header portion was observed, a gap (peeled portion) was continuously observed from the bonded portion interface of the inlet side tubular portion of the header member to the cut end surface of the end portion tubular portion. It was done. This separation is presumed to be caused by the part of the bubbles staying in the square groove provided in the inlet side cylinder part, and progressing from the inlet end to the cut end face of the inlet side cylinder part.
Further, a cooling / heating cycle was performed in the same manner as in Example 9 except that the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 40 ° C. for 2 hours were repeated. When the test was performed, there was no leak until after 500 cycles, but leak occurred after 600 cycles.
 以上のように、5℃に冷却した純水を2時間通水する工程と80℃に加熱した純水を2時間通水する工程を200サイクル繰り返した後においてリークしない膜モジュールは、1000サイクル繰り返してもリークが発生しない。一方、比較例3のように製造直後には剥離が観察されなくとも前記冷熱サイクルにおいて200サイクル未満でリークする。このことから、前記の冷熱サイクル試験で200サイクル後にリークが無い膜モジュールは、実用上問題なく使用できる。 As described above, the membrane module that does not leak after repeating the process of passing pure water cooled to 5 ° C. for 2 hours and the process of passing pure water heated to 80 ° C. for 2 hours is repeated 1000 cycles. However, no leak occurs. On the other hand, as in Comparative Example 3, leakage occurs in less than 200 cycles in the cooling cycle even if no peeling is observed immediately after manufacture. From this, the membrane module which does not leak after 200 cycles in the above-mentioned cooling / heating cycle test can be used without any problem in practice.
(実施例12)
 以下、高圧下で冷熱サイクル試験を行った結果を示す。
 製造例2の多孔質中空糸膜を用いた他は実施例1~4と同様にして膜モジュールを製造した。製造直後において、各膜モジュールとも剥離は全く観察されなかった。
 次いで、入口での圧力を0.5MPaに、透過側出口での圧力を0.3MPaに設定した他は、実施例9と同様にして冷熱サイクル試験を行った。実施例9と同様にして100サイクル毎にリーク検査を行ったところ、各膜モジュールとも1000サイクルまでリークは全く無かった。また、ハウジングから中空糸膜モジュールを取り出してヘッダ部を詳細に観察したところ、各膜モジュールとも剥離は見られなかった。
 以上のように、醸造飲料の濾過において曝されるような、高圧下で、且つ低温の工程と高温の工程を繰り返す過酷な運転環境下においても、剥離を起こすことなく使用できる。
(Example 12)
Hereinafter, the results of a cooling / heating cycle test under high pressure will be shown.
Membrane modules were produced in the same manner as in Examples 1 to 4 except that the porous hollow fiber membrane of Production Example 2 was used. Immediately after production, no peeling was observed in each membrane module.
Subsequently, a cooling cycle test was conducted in the same manner as in Example 9 except that the pressure at the inlet was set to 0.5 MPa and the pressure at the permeate side outlet was set to 0.3 MPa. A leak test was performed every 100 cycles in the same manner as in Example 9. As a result, each membrane module had no leak up to 1000 cycles. Moreover, when the hollow fiber membrane module was taken out from the housing and the header part was observed in detail, peeling was not seen in each membrane module.
As described above, it can be used without causing peeling even under severe conditions such as high pressure and repeated low and high temperature processes as exposed in filtration of brewed beverages.
 1…カートリッジモジュール(膜モジュール)、1a…ヘッダ部、6…モジュール端面、7…中空糸膜束、7a…中空糸膜、9…ヘッダ部材、21…入口側筒部、21a…浅溝、23…端部側筒部、23a…深溝、23b…浅溝、23c…第1の凸部、23d…第2の凸部、11…保護部材、11c…突出部、15…封止部、H…保護部材の貫通孔、L…軸線、S…封止材、r1…入口側筒部の内径、r2…端部側筒部の内径、St…段差。 DESCRIPTION OF SYMBOLS 1 ... Cartridge module (membrane module), 1a ... Header part, 6 ... Module end surface, 7 ... Hollow fiber membrane bundle, 7a ... Hollow fiber membrane, 9 ... Header member, 21 ... Inlet side cylinder part, 21a ... Shallow groove, 23 ... End side cylinder part, 23a ... Deep groove, 23b ... Shallow groove, 23c ... 1st convex part, 23d ... 2nd convex part, 11 ... Protection member, 11c ... Projection part, 15 ... Sealing part, H ... Through hole of protective member, L ... axis, S ... sealing material, r1 ... inner diameter of inlet side cylinder, r2 ... inner diameter of end side cylinder, St ... step.

Claims (8)

  1.  中空糸膜束の端部に装着されると共に、内部に封止材が充填固化されることによって前記中空糸膜束に固定されるヘッダ部材において、
     前記中空糸膜束が挿入される入口側に設けられた入口側筒部と、前記入口側筒部よりも内径が小さく、且つ前記入口側筒部よりも端部側に設けられた端部側筒部と、を備え、
     前記入口側筒部の内面と前記端部側筒部の内面との間には段差が形成され、且つ前記入口側筒部及び前記端部側筒部の少なくとも一方の内面には、前記ヘッダ部材の軸線回りに沿った環状の溝が形成されていることを特徴とするヘッダ部材。
    In the header member attached to the end of the hollow fiber membrane bundle and fixed to the hollow fiber membrane bundle by filling and solidifying the sealing material inside,
    An inlet side cylindrical portion provided on the inlet side into which the hollow fiber membrane bundle is inserted, and an end side provided with an inner diameter smaller than that of the inlet side cylindrical portion and closer to the end side than the inlet side cylindrical portion A cylindrical portion,
    A step is formed between the inner surface of the inlet-side tube portion and the inner surface of the end-side tube portion, and the header member is formed on at least one inner surface of the inlet-side tube portion and the end-side tube portion. An annular groove is formed along the axis of the header member.
  2.  前記ヘッダ部材の前記端部側筒部は、筒状の胴部と、前記胴部に一体成形された底部とを有することを特徴とする請求項1記載のヘッダ部材。 2. The header member according to claim 1, wherein the end side tube portion of the header member has a cylindrical body portion and a bottom portion integrally formed with the body portion.
  3.  前記溝は、前記入口側筒部に形成された浅溝と、前記端部側筒部に形成されると共に、前記浅溝よりも深い深溝とを含むことを特徴とする請求項1または2記載のヘッダ部材。 The said groove | channel contains the shallow groove | channel formed in the said entrance side cylinder part, and the deep groove deeper than the said shallow groove while being formed in the said edge part side cylinder part. Header member.
  4.  前記端部側筒部の内面には、前記ヘッダ部材の軸線回りに沿った環状の凸部が形成されていることを特徴とする請求項1~3のいずれか一項記載のヘッダ部材。 The header member according to any one of claims 1 to 3, wherein an annular convex portion along an axis of the header member is formed on an inner surface of the end portion side cylindrical portion.
  5.  請求項1~4のいずれか一項記載の前記ヘッダ部材を用いて形成される筒状のヘッダ部と、前記ヘッダ部内に挿入された複数の中空糸膜からなる中空糸膜束と、前記中空糸膜束を前記ヘッダ部に固定する封止部と、前記中空糸膜の内部が開放されたモジュール端面と、を備えることを特徴とする膜モジュール。 A cylindrical header portion formed using the header member according to any one of claims 1 to 4, a hollow fiber membrane bundle comprising a plurality of hollow fiber membranes inserted into the header portion, and the hollow A membrane module comprising: a sealing portion for fixing the yarn membrane bundle to the header portion; and a module end face in which the inside of the hollow fiber membrane is opened.
  6.  前記中空糸膜束を環状に取り囲み、前記中空糸膜束と一緒に前記封止部によって前記ヘッダ部に固定された筒状の保護部材を更に備え、
     前記保護部材には、複数の貫通孔と、前記ヘッダ部に固定される側の端部から前記保護部材の軸線方向に突き出した線状の突出部とが設けられていることを特徴とする請求項5記載の膜モジュール。
    Further comprising a cylindrical protective member that annularly surrounds the hollow fiber membrane bundle and is fixed to the header portion by the sealing portion together with the hollow fiber membrane bundle;
    The protective member is provided with a plurality of through-holes and a linear protrusion protruding in an axial direction of the protective member from an end fixed to the header portion. Item 6. The membrane module according to Item 5.
  7.  前記保護部材は、網状であり、且つ前記貫通孔を形成する複数の網目を有し、前記突出部は前記保護部材の端部で環状に連なる複数の網目それぞれから突き出すように形成されていることを特徴とする請求項6記載の膜モジュール。 The protection member has a mesh shape and has a plurality of meshes that form the through-holes, and the protruding portions are formed so as to protrude from the plurality of meshes that are continuously connected to each other at the end of the protection member. The membrane module according to claim 6.
  8.  請求項1~4のいずれか一項記載の前記ヘッダ部材を用いて膜モジュールを製造する方法において、
     複数の中空糸膜を束ねて中空糸膜束を形成する工程と、
     前記ヘッダ部材を前記中空糸膜束の端部に装着し、前記ヘッダ部材の内部に液状の封止材を充填する工程と、
     前記ヘッダ部材の内部に充填された前記封止材を固化させて封止部を形成する工程と、
     前記封止部を形成した後に、前記中空糸膜の端部と一緒に前記ヘッダ部材の端部側の一部及び前記封止部の一部を切断して複数の前記中空糸膜の内部が開放されたモジュール端面を形成する工程と、を含むことを特徴とする膜モジュールの製造方法。
    In the method for manufacturing a membrane module using the header member according to any one of claims 1 to 4,
    Bundling a plurality of hollow fiber membranes to form a hollow fiber membrane bundle;
    Attaching the header member to the end of the hollow fiber membrane bundle, and filling a liquid sealing material inside the header member;
    A step of solidifying the sealing material filled in the header member to form a sealing portion;
    After forming the sealing portion, together with the end portion of the hollow fiber membrane, a part of the end side of the header member and a part of the sealing portion are cut so that the inside of the plurality of hollow fiber membranes is Forming an open module end face, and a method for manufacturing a membrane module.
PCT/JP2011/054158 2010-02-25 2011-02-24 Header member, membrane module, and method for manufacturing membrane module WO2011105495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-041043 2010-02-25
JP2010041043A JP2013099703A (en) 2010-02-25 2010-02-25 Header member, membrane module and method for producing membrane module

Publications (1)

Publication Number Publication Date
WO2011105495A1 true WO2011105495A1 (en) 2011-09-01

Family

ID=44506896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054158 WO2011105495A1 (en) 2010-02-25 2011-02-24 Header member, membrane module, and method for manufacturing membrane module

Country Status (3)

Country Link
JP (1) JP2013099703A (en)
TW (1) TW201143876A (en)
WO (1) WO2011105495A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139011A (en) * 2012-01-06 2013-07-18 Daicen Membrane Systems Ltd Hollow fiber membrane module
EP3007807A1 (en) * 2013-06-12 2016-04-20 Evonik Fibres GmbH Membrane cartridge system
EP2883592A4 (en) * 2012-08-10 2016-09-21 Ube Industries Gas-separating membrane module
WO2017053805A1 (en) * 2015-09-24 2017-03-30 Labib Mohamed E Cartridges for hollow fibre membrane-based therapies
US10369263B2 (en) 2014-03-29 2019-08-06 Novaflux Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
EP3831469A4 (en) * 2018-07-27 2022-04-27 Toray Industries, Inc. Hollow fibre membrane module and method for manufacturing hollow fibre membrane module

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192557B2 (en) * 2014-02-12 2017-09-06 株式会社キッツマイクロフィルター Hollow fiber membrane module and manufacturing method thereof
JP6209474B2 (en) * 2014-03-26 2017-10-04 日東電工株式会社 Hollow fiber membrane module
CN110290856B (en) * 2017-02-10 2022-06-10 旭化成株式会社 Hollow fiber membrane module and filtration method
CN107433136A (en) * 2017-07-25 2017-12-05 珠海格力电器股份有限公司 Filter core, bonding termination, the preparation method and element kit of filter core
CN107469626B (en) * 2017-07-25 2023-04-28 珠海格力电器股份有限公司 Filter element
CN107349790B (en) * 2017-07-25 2023-05-23 珠海格力电器股份有限公司 Filter element, bonding end head and manufacturing method of filter element
JP7139611B2 (en) * 2018-02-01 2022-09-21 東レ株式会社 Hollow fiber membrane module
KR102264517B1 (en) * 2018-06-08 2021-06-11 코오롱인더스트리 주식회사 Method of hollow fiber membrane module and hollow fiber membrane module using it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277460A (en) * 1993-03-29 1994-10-04 Dainippon Ink & Chem Inc Production of hollow fiber membrane module
JP2002370018A (en) * 2001-06-15 2002-12-24 Nok Corp Hollow fiber membrane module
JP2003236347A (en) * 2002-02-19 2003-08-26 Asahi Glass Engineering Co Ltd Hollow fiber membrane assembled body and method for manufacturing the same
JP2008279374A (en) * 2007-05-11 2008-11-20 Toray Ind Inc Vessel for injecting potting material and manufacturing method of hollow fiber membrane module using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277460A (en) * 1993-03-29 1994-10-04 Dainippon Ink & Chem Inc Production of hollow fiber membrane module
JP2002370018A (en) * 2001-06-15 2002-12-24 Nok Corp Hollow fiber membrane module
JP2003236347A (en) * 2002-02-19 2003-08-26 Asahi Glass Engineering Co Ltd Hollow fiber membrane assembled body and method for manufacturing the same
JP2008279374A (en) * 2007-05-11 2008-11-20 Toray Ind Inc Vessel for injecting potting material and manufacturing method of hollow fiber membrane module using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139011A (en) * 2012-01-06 2013-07-18 Daicen Membrane Systems Ltd Hollow fiber membrane module
EP2883592A4 (en) * 2012-08-10 2016-09-21 Ube Industries Gas-separating membrane module
US9504962B2 (en) 2012-08-10 2016-11-29 Ube Industries, Ltd. Gas-separating membrane module
EP3007807B1 (en) * 2013-06-12 2022-04-27 Evonik Fibres GmbH Membrane cartridge system
EP3007807A1 (en) * 2013-06-12 2016-04-20 Evonik Fibres GmbH Membrane cartridge system
EP3936223A1 (en) * 2013-06-12 2022-01-12 Evonik Fibres GmbH Membrane cartridge system
US10369263B2 (en) 2014-03-29 2019-08-06 Novaflux Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US11446419B2 (en) 2014-03-29 2022-09-20 Novaflux Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US11648341B2 (en) 2015-06-26 2023-05-16 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
US10399040B2 (en) 2015-09-24 2019-09-03 Novaflux Inc. Cartridges and systems for membrane-based therapies
WO2017053805A1 (en) * 2015-09-24 2017-03-30 Labib Mohamed E Cartridges for hollow fibre membrane-based therapies
US11701622B2 (en) 2015-09-24 2023-07-18 Novaflux Inc. Cartridges and systems for membrane-based therapies
EP3831469A4 (en) * 2018-07-27 2022-04-27 Toray Industries, Inc. Hollow fibre membrane module and method for manufacturing hollow fibre membrane module
US11958017B2 (en) 2018-07-27 2024-04-16 Toray Industries, Inc. Hollow fibre membrane module and method for manufacturing hollow fibre membrane module

Also Published As

Publication number Publication date
TW201143876A (en) 2011-12-16
JP2013099703A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
WO2011105495A1 (en) Header member, membrane module, and method for manufacturing membrane module
JP3908939B2 (en) Method for producing hollow fiber membrane module
US20160193570A1 (en) Cartridge-type hollow fiber membrane module and method for manufacturing cartridge-type hollow fiber membrane module
JP5626865B2 (en) Composite porous hollow fiber membrane, membrane module, membrane filtration device, water treatment method
JP5839601B2 (en) Hollow fiber membrane module, and filtration method and ultrapure water production system using the same
JP5002463B2 (en) Hollow fiber module
EP3162767A1 (en) Water purifier-use cartridge
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
JP2011189345A5 (en)
AU2002343795A1 (en) Hollow fiber membrane module
JP2009292152A (en) Method for injection molding thermoplastic resin to cap tubular filtration medium
CN111514759B (en) Hollow fiber membrane module and method for manufacturing hollow fiber membrane module
US20100276835A1 (en) Method of Manufacturing an Air Hole of Hollow Fiber Membrane Module for Water Treatment
JP5023430B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP7213982B2 (en) Method of manufacturing a filtration and/or diffusion device
US9962865B2 (en) Membrane potting methods
JP2011224026A (en) Blood purification device and method of manufacturing the same
JP5230473B2 (en) Method for producing hollow fiber membrane module
JP5810094B2 (en) Method for making a hollow fiber filtration device surrounded by two thermoplastic parts
JP2010064046A (en) Method of manufacturing hollow fiber membrane module
JP2006198495A (en) Hollow fiber membrane module
CN110234419A (en) Hollow fiber film assembly
KR101750259B1 (en) a funtional glass membrane filter
JP5148904B2 (en) Method for producing hollow fiber membrane module
JP2006181522A (en) Method for manufacturing hollow fiber type module and hollow fiber type module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP