WO2011105085A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2011105085A1
WO2011105085A1 PCT/JP2011/001054 JP2011001054W WO2011105085A1 WO 2011105085 A1 WO2011105085 A1 WO 2011105085A1 JP 2011001054 W JP2011001054 W JP 2011001054W WO 2011105085 A1 WO2011105085 A1 WO 2011105085A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary compressor
notch
cylinder
blade
height
Prior art date
Application number
PCT/JP2011/001054
Other languages
French (fr)
Japanese (ja)
Inventor
昌弥 中野
啓 椎崎
大輔 船越
正浩 坪川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011525056A priority Critical patent/JPWO2011105085A1/en
Priority to CN2011800012075A priority patent/CN102333957A/en
Publication of WO2011105085A1 publication Critical patent/WO2011105085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet

Definitions

  • the present invention relates to a rotary compressor.
  • FIG. 1 A conventional rotary compressor is shown in FIG.
  • the hermetic casing 101 has a cylinder 102, which forms a cylinder chamber 103.
  • the roller 104 is disposed in the cylinder chamber 103.
  • the roller 104 is eccentrically rotated in the cylinder chamber 103 by the rotation of the eccentric shaft 105.
  • a blade slide groove 106 is formed in the cylinder 102, and a blade 107 is disposed in the blade slide groove 106.
  • the blade 107 is always pressed against the outer peripheral surface of the roller 104 by a spring 108 disposed on the back side.
  • the cylinder chamber 103 is divided by the blade 107 into a compression chamber in which a discharge port (not shown) opens and a suction chamber in which a suction hole 110 opens.
  • FIG. 29 shows a state in which the blade 107 is rotated slightly clockwise (in the direction of the arrow in the drawing) from the position (top dead center) where the blade 107 is pushed in to the maximum by the roller 104.
  • a minute space 109 surrounded by the cylinder 102, the roller 104, and the blade 107 is formed. Since the microspace 109 formed past the top dead center is in a vacuum state until it communicates with the suction hole 110, there is a problem that the required power increases.
  • an object of the present invention is to provide a rotary compressor that can prevent a vacuum state of a minute space occurring after top dead center and can suppress an increase in surface pressure of a blade sliding portion.
  • a cylinder chamber is formed in a cylinder, the cylinder chamber is closed by an upper bearing and a lower bearing, a roller is disposed in the cylinder chamber, and The blade sliding groove is formed, and a blade and a spring are disposed in the blade sliding groove, and the blade is pressed against the outer peripheral surface of the roller by the spring, and the cylinder chamber is
  • the rotary compressor is divided into a high pressure side compression chamber and a low pressure side compression chamber in which a suction hole is opened, and one end thereof is positioned in the blade sliding groove and the other end is the suction hole
  • the present invention is characterized in that a notched portion located within a projection range on the inner peripheral surface of the cylinder is provided.
  • a second aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed at a corner portion where an inner peripheral surface forming the cylinder chamber and an upper end surface of the cylinder abutted by the upper bearing contact. It is characterized in that it is formed.
  • a third aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed at a corner portion where an inner peripheral surface forming the cylinder chamber and a lower end surface of the cylinder abutted by the lower bearing contact. It is characterized in that it is formed.
  • a fourth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a flat inclined surface.
  • a fifth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a curved surface.
  • a sixth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a plurality of inclined surfaces having different angles.
  • a seventh invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a flat inclined surface and a curved surface.
  • An eighth aspect of the invention is the rotary compressor according to any one of the first to the seventh, wherein the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b.
  • a ninth aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed by providing a groove along the inner peripheral surface forming the cylinder chamber on the upper end surface of the lower bearing. It is characterized by According to a tenth invention, in the rotary compressor described in the first, the notch is formed by providing a groove along an inner circumferential surface forming the cylinder chamber on a lower end surface of the upper bearing.
  • An eleventh invention is characterized in that, in the rotary compressor as described in the eighth or ninth invention, the cutout portion is formed by a concave portion of a flat bottom surface.
  • a twelfth invention is characterized in that, in the rotary compressor as described in the eighth or ninth invention, the cutout portion is formed by a concave portion of a curved surface.
  • the thirteenth invention is the rotary compressor as described in the ninth to twelfth embodiments, wherein the height of the cylinder is H, the height of the notch is h, and the depth of the notch is b.
  • the height h of the cutaway portion is 1 / 7H to 1 / 3H, and the depth b of the cutaway portion is 1 / 7H to 1 / 3H.
  • the surface pressure applied to the blade does not increase, and the refrigerant gas can be sufficiently supplied, and the low pressure side compression chamber formed from the top dead center to the communication with the suction hole and Since the minute space which does not become is not in a vacuum state, it is possible to prevent an increase in required power.
  • FIG. 10 The perspective view which shows the principal part of the same rotary compressor Principal part sectional view of cylinder of same rotary compressor Rotary compressor according to the sixth embodiment of the present invention Rotary compressor according to a seventh embodiment of the present invention Rotary compressor according to the eighth embodiment of the present invention A longitudinal sectional view of a rotary compressor according to a ninth embodiment of the present invention CC sectional view in FIG. 17 Main part enlarged view of FIG. 18 The perspective view which shows the principal part of the same rotary compressor Principal part sectional view of cylinder of same rotary compressor Rotary compressor according to the tenth embodiment of the present invention The longitudinal cross-sectional view of the rotary compressor in the 11th embodiment of the present invention DD line cross section in FIG. 23 The main part enlarged view of FIG. 24 The perspective view which shows the principal part of the same rotary compressor Principal part sectional view of cylinder of same rotary compressor Rotary compressor according to a twelfth embodiment of the present invention Conventional rotary compressor Conventional rotary compressor Conventional rotary compressor Conventional rotary compressor Conventional rotary compressor Conventional
  • a notch is provided with one end located in the blade slide groove and the other end located in a projection range of the suction hole on the inner circumferential surface of the cylinder. Since the minute space which becomes the low pressure side compression chamber formed from the top dead center to the communication with the suction hole does not become vacuum state, it is possible to prevent the increase of the required power, and the surface of the blade sliding portion The pressure rise can be suppressed, and the efficiency and reliability of the rotary compressor can be improved.
  • the notch portion is formed at a corner portion where the inner peripheral surface forming the cylinder chamber and the upper end surface of the cylinder in contact with the upper bearing contact. Machining of the notched part becomes easy.
  • the notch is formed at a corner where the inner circumferential surface forming the cylinder chamber and the lower end face of the cylinder, which the lower bearing abuts, contact with each other. Machining of the notched part becomes easy.
  • the notch portion is formed by a flat inclined surface, which facilitates the processing of the notch portion.
  • the notch portion is formed by a curved surface, and in the case of the same height and the same depth as in the fourth invention, the passage is cut off. As the area increases, a smooth refrigerant gas flow is generated.
  • the notch may be formed by a plurality of inclined surfaces having different angles.
  • the notch may be formed by a flat inclined surface and a curved surface.
  • the notch is formed by providing a groove along the inner circumferential surface forming the cylinder chamber on the upper end surface of the lower bearing. Processing becomes easy.
  • the notch is formed by providing a groove along the inner circumferential surface forming the cylinder chamber on the lower end surface of the upper bearing. Processing becomes easy.
  • the notch portion is formed by the recess on the flat bottom surface, so that the notch portion can be easily processed.
  • the notch portion is formed by the concave portion of the curved surface, and in the case of the same height and the same depth as in the eleventh aspect, As the passage cross-sectional area is increased, smooth refrigerant gas flow is generated.
  • the height of the cylinder is H
  • the height of the cutout is h
  • the depth of the cutout is b
  • FIGS. 1 is a longitudinal sectional view of the rotary compressor
  • FIG. 2 is a sectional view taken along the line AA in FIG. 1
  • FIG. 3 is an enlarged view of an essential part of FIG. 2
  • FIG. 4 is a perspective view showing an essential part of the rotary compressor
  • FIG. 5 is a cross-sectional view of an essential part of a cylinder of the rotary compressor.
  • an electric mechanism 2 is provided in the cylindrical sealed container 1.
  • a crankshaft 3 is provided on the rotor 2 a of the electric mechanism 2.
  • a compression mechanism constituted by the cylinder 4, the upper bearing 5, the lower bearing 6, and the roller 7 is provided in the sealed container 1, a compression mechanism constituted by the cylinder 4, the upper bearing 5, the lower bearing 6, and the roller 7 is provided.
  • a cylinder chamber 8 is formed in the cylinder 4, and the cylinder chamber 8 is closed by the upper bearing 5 and the lower bearing 6.
  • the roller 7 is disposed in the cylinder chamber 8.
  • Upper bearing 5 and lower bearing 6 receive crankshaft 3, and between upper bearing 5 and lower bearing 6, eccentric shaft 3 a of crankshaft 3 is disposed.
  • the roller 7 is mounted on the eccentric shaft 3a.
  • a suction hole 9 is formed in the cylinder 4, and the gas refrigerant is introduced into the cylinder chamber 8 from the outside of the closed container 1 by the suction hole 9. Further, the gas refrigerant compressed in the cylinder chamber 8 is discharged from the discharge port (not shown) formed in the upper bearing 5 into the sealed container 1, and thereafter, is discharged from the discharge pipe 10 to the outside of the sealed container 1. .
  • the bottom of the closed container 1 is formed with an oil reservoir 11 for storing lubricating oil.
  • a notch 20A described later is formed at the upper end of the inner circumferential surface of the cylinder 4, a notch 20A described later is formed.
  • a mixed refrigerant of HFC32 and HFC125, or a natural refrigerant such as carbon dioxide, ammonia, or helium can be used as a refrigerant.
  • a radially extending blade slide groove 12 is formed in the cylinder 4.
  • a blade 13 and a spring 14 are disposed in the blade sliding groove 12, and the blade 13 is always pressed against the outer peripheral surface of the roller 7 by the spring 14. Since the blade 13 is pressed by the spring 14, the blade 13 reciprocates in the blade sliding groove 12 as the roller 7 rotates.
  • the cylinder chamber 8 is divided by the blade 13 into a high pressure side compression chamber in which the discharge port is opened and a low pressure side compression chamber in which the suction hole 9 is opened.
  • FIG. 3 shows a state in which the blade 13 is rotated slightly clockwise (in the direction of the arrow in the drawing) from the position (top dead center) where the blade 13 is pushed in to the maximum by the roller 7.
  • a minute space 8a is formed.
  • the notch 20A has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4. It is located in. Further, as shown in FIGS.
  • the notch 20A is a part of the corner where the inner circumferential surface 4a forming the cylinder chamber 8 and the upper end surface 4b of the cylinder 4 with which the upper bearing 5 abuts contact. Is formed.
  • the other end 22 of the notch 20A does not communicate with the suction hole 9.
  • the refrigerant gas flows into the minute gap 8a shown in FIG. 3 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20A, and the vacuum state is not established.
  • the other end 22 of the notch 20A does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum occurs.
  • the other end 22 of the notch 20A be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
  • the other end 22 of the notch 20A exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20A does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
  • the notch 20A is formed by notching a corner where the inner circumferential surface 4a and the upper end surface 4b are in contact with each other.
  • the notch 20A shown in FIG. 5 is formed by forming a flat inclined surface 23 by a notch between the inner circumferential surface 4a and the upper end surface 4b.
  • the height of the cylinder 4 (the axial direction of the crankshaft 3) is H
  • the height of the notch 20A is h
  • the depth of the notch 20A is b
  • the height h of 20A is preferably 1 / 7H to 1 / 5H
  • the depth b of the notch 20A is preferably 1 / 7H to 1 / 3H.
  • the depth b of the notch 20A is preferably equal to or greater than the height h of the notch 20A, so 1 / 7H or more is preferable, and if the depth b of the notch 20A exceeds 1 / 3H Unpreferable for practical use.
  • FIG. 6 A rotary compressor according to a second embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 6, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
  • the notch 20B is formed by notching the corner where the inner peripheral surface 4a and the upper end surface 4b are in contact.
  • the notch 20B shown in FIG. 6 is formed by forming a curved surface 24 by a notch between the inner circumferential surface 4a and the upper end surface 4b.
  • the height h of the notch 20B is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20B is 1 / 7H to 1 / 3H. Is preferred.
  • the direction of the notch 20B according to the second embodiment is the same. However, since the passage cross-sectional area is increased, a smooth refrigerant gas flow is generated.
  • FIG. 7 A rotary compressor according to a third embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 7, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
  • the notch 20 ⁇ / b> C is formed by notching the corner where the inner peripheral surface 4 a and the upper end surface 4 b contact.
  • the notch 20C shown in FIG. 7 is formed by forming two flat inclined surfaces 23a and 23b having different angles by the notch between the inner peripheral surface 4a and the upper end surface 4b. In addition, you may form by two or more inclined surfaces 23.
  • the height h of the notch 20C is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20C is 1 / 7H to 1 / 3H. Is preferred.
  • the notch 20C may be formed by two flat inclined surfaces 23a and 23b having different angles.
  • FIG. 8 A rotary compressor according to a fourth embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 8, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
  • the notch 20D is formed by notching the corner where the inner circumferential surface 4a and the upper end surface 4b contact.
  • the notch 20D shown in FIG. 8 is formed by forming a flat inclined surface 23 and a curved surface 24 by a notch between the inner peripheral surface 4a and the upper end surface 4b.
  • the height h of the notch 20D is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20D is 1 / 7H to 1 / 3H. Is preferred.
  • the notch 20D may be formed by the flat inclined surface 23 and the curved surface 24.
  • FIGS. 9 is a longitudinal sectional view of the rotary compressor
  • FIG. 10 is a sectional view taken along the line BB in FIG. 9
  • FIG. 11 is an enlarged view of an essential part of FIG. 10
  • FIG. 12 is a perspective view showing an essential part of the rotary compressor
  • FIG. 13 is a cross-sectional view of an essential part of a cylinder of the rotary compressor.
  • the same members as those of the first embodiment are indicated by the same reference numerals and the description thereof is omitted.
  • a notch 20E described later is formed at the lower end of the inner peripheral surface of the cylinder 4.
  • the notch 20E has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4. It is located in.
  • the notch 20E is one of the corner portions where the inner peripheral surface 4a forming the cylinder chamber 8 and the lower end surface 4c of the cylinder chamber 8 with which the lower bearing 6 abuts contact. It is formed in the part.
  • the other end 22 of the notch 20E does not communicate with the suction hole 9.
  • the refrigerant gas flows into the minute gap 8a shown in FIG. 11 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20E, and the vacuum state is not established.
  • the other end 22 of the notch 20E does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20E be within the projection range X of the suction hole 8 on the inner circumferential surface 4a of the cylinder 4.
  • the other end 22 of the notch 20E exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20E does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
  • the notch 20E is formed by notching the corner where the inner circumferential surface 4a and the lower end surface 4c are in contact with each other.
  • the notch 20E shown in FIG. 13 is formed by forming a flat inclined surface 23 by a notch between the inner peripheral surface 4a and the lower end surface 4c.
  • the notch The height h of 20E is preferably 1 / 7H to 1 / 5H
  • the depth b of the notch 20E is preferably 1 / 7H to 1 / 3H.
  • the depth b of the notch 20E is preferably equal to or greater than the height h of the notch 20E, so 1 / 7H or more is preferable, and when the depth b of the notch 20E exceeds 1 / 3H Unpreferable for practical use.
  • FIG. 14 A rotary compressor according to a sixth embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 14, and thus the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
  • the notch 20F is formed by notching the corner where the inner peripheral surface 4a and the lower end surface 4c are in contact.
  • the notch 20F shown in FIG. 14 is formed by forming a curved surface 24 by a notch between the inner circumferential surface 4a and the lower end surface 4c.
  • the height h of the notch 20F is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20F is 1 / 7H to 1 / 3H. Is preferred.
  • the direction of the notch 20F according to the sixth embodiment is the same. However, since the passage cross-sectional area is increased, a smooth refrigerant gas flow is generated, which is preferable.
  • FIG. 15 A rotary compressor according to a seventh embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 15. Therefore, the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
  • the notch 20G is formed by notching the corner where the inner circumferential surface 4a and the lower end surface 4c contact.
  • the notch 20G shown in FIG. 15 is formed by forming two flat inclined surfaces 23a and 23b having different angles by the notch between the inner peripheral surface 4a and the lower end surface 4c. In addition, you may form by two or more inclined surfaces 23.
  • FIG. 15 A rotary compressor according to a seventh embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 15. Therefore, the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
  • the notch 20G is formed by notching the corner where the inner circumferential surface 4a and
  • the height h of the notch 20G is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20G is 1 / 7H to 1 / 3H. Is preferred.
  • the notch 20G may be formed by two flat inclined surfaces 23a and 23b having different angles.
  • the rotary compressor in the 8th Embodiment of this invention is shown in FIG.
  • the present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 16, and thus the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
  • the notch 20H is formed by notching the corner where the inner peripheral surface 4a and the lower end surface 4c are in contact.
  • the notch 20H shown in FIG. 16 is formed by forming a flat inclined surface 23 and a curved surface 24 between the inner circumferential surface 4a and the lower end surface 4c with a notch.
  • the height h of the notch 20H is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20H is 1 / 7H to 1 / 3H. Is preferred.
  • the notch 20H may be formed by the flat inclined surface 23 and the curved surface 24.
  • FIGS. 17 is a longitudinal sectional view of the rotary compressor
  • FIG. 18 is a sectional view taken along the line C--C in FIG. 17
  • FIG. 19 is an enlarged view of an essential part of FIG. 18,
  • FIG. 20 is a perspective view showing an essential part of the rotary compressor
  • FIG. 21 is a cross-sectional view of an essential part of a cylinder of the rotary compressor.
  • a notch 20J described later is formed at the upper end of the lower bearing 6, a notch 20J described later is formed.
  • the notch 20J has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4 It is located in.
  • the notch 20J is formed in the lower bearing 6 concentrically with the inner diameter of the cylinder 4 along the inner circumferential surface 4 a forming the cylinder chamber 8.
  • the refrigerant gas flows into the minute gap 8a shown in FIG. 19 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20J, and the vacuum state is not established.
  • the other end 22 of the notch 20J When the other end 22 of the notch 20J does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20J be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20J exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20J does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
  • the notch 20 ⁇ / b> J is formed by providing a groove in a part of the upper end surface 6 a of the lower bearing 6.
  • the notch 20J shown in FIG. 21 is formed on the upper end surface 6a by a concave portion of the flat bottom surface 25.
  • the height of the cylinder 4 (the axial direction of the crankshaft 3) is H
  • the height of the notch 20J is h
  • the depth of the notch 20J is b
  • the height h of 20J is preferably 1 / 7H to 1 / 3H
  • the depth b of the notch 20J is preferably 1 / 7H to 1 / 3H.
  • the depth b of the notch 20J is preferably equal to or greater than the height h of the notch 20J, so 1 / 7H or more is preferable, and when the depth b of the notch 20J exceeds 1 / 3H Unpreferable for practical use.
  • FIG. 22 A rotary compressor according to a tenth embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the ninth embodiment except for the case described in FIG. 22, and therefore, the description of FIGS. 17 to 20 described in the ninth embodiment will be omitted.
  • the notch 20K is formed by providing a groove in a part of the upper end surface 6 a of the lower bearing 6.
  • the notch 20K shown in FIG. 22 is formed by the concave portion of the curved surface 26 on the upper end face 6a.
  • the height h of the notch 20K is preferably 1 / 7H to 1 / 3H
  • the depth b of the notch 20K is 1 / 7H to 1 / 3H.
  • the ninth embodiment is used.
  • the cutaway portion 20J is preferable because the passage cross-sectional area is larger and a smooth refrigerant gas flow is generated.
  • FIGS. 23 is a longitudinal sectional view of the rotary compressor
  • FIG. 24 is a sectional view taken along the line DD in FIG. 23
  • FIG. 25 is an enlarged view of an essential part of FIG. 24,
  • FIG. 26 is a perspective view showing an essential part of the rotary compressor
  • FIG. 27 is a cross-sectional view of an essential part of a cylinder of the rotary compressor.
  • the same members as those of the first embodiment are indicated by the same reference numerals and the description thereof is omitted.
  • FIG. 23 in the present embodiment, at the lower end of the upper bearing 5, a notch 20L described later is formed.
  • FIGS. 23 is a longitudinal sectional view of the rotary compressor
  • FIG. 24 is a sectional view taken along the line DD in FIG. 23
  • FIG. 25 is an enlarged view of an essential part of FIG. 24
  • FIG. 26 is a perspective view showing an essential part of the rotary compressor
  • FIG. 27 is a cross-sectional view of an essential part
  • the notch 20L has one end 21 in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4 It is located in. Further, as shown in FIGS. 26 and 27, the notch 20L is formed on the upper bearing 5 concentrically with the inner diameter of the cylinder 4 along the inner circumferential surface 4a forming the cylinder chamber 8. The refrigerant gas flows into the minute gap 8a shown in FIG. 25 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20L, and the vacuum state is not established.
  • the other end 22 of the notch 20L When the other end 22 of the notch 20L does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20L be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20L exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20L does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
  • the notch 20 ⁇ / b> L is formed by providing a groove in a part of the lower end surface 5 a of the upper bearing 5.
  • the notch 20L shown in FIG. 27 is formed on the lower end surface 5a by a concave portion of the flat bottom surface 25.
  • the notch The height h of 20 L is preferably 1/7 H or more and 1/3 H or less, and the depth b of the notch 20 L is preferably 1/7 H or more and 1/3 H or less.
  • the depth b of the notch 20L is preferably equal to or greater than the height h of the notch 20L, so 1 / 7H or more is preferable, and if the depth b of the notch 20L exceeds 1 / 3H Unpreferable for practical use.
  • FIG. 28 A rotary compressor according to a twelfth embodiment of the present invention is shown in FIG.
  • the present embodiment is the same as the eleventh embodiment except that it is described in FIG. 28, so that the description of FIGS. 23 to 27 described in the eleventh embodiment is omitted.
  • the notch 20M is formed by providing a groove in a part of the lower end surface 5 a of the upper bearing 5.
  • the notch 20M shown in FIG. 28 is formed by the concave portion of the curved surface 26 on the lower end surface 5a.
  • the height h of the notch 20M is preferably 1 / 7H to 1 / 3H, and the depth b of the notch 20M is 1 / 7H to 1 / 3H. Is preferred.
  • the eleventh embodiment is the case where the height h and the depth b are the same between the notch 20L of the eleventh embodiment and the notch 20M of the twelfth embodiment.
  • the notch 20L is preferable because the passage cross-sectional area is larger and a smooth refrigerant gas flow is generated.
  • the rotary compressor according to the present invention can be used as a high efficiency compressor for air conditioning, and can be used as a substitute refrigerant for all HCFCs 22 such as R407C regardless of R410A as the refrigerant used.
  • the present invention can also be applied to natural refrigerants such as carbon dioxide, ammonia, and helium, which are attracting attention from the viewpoint of global environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Disclosed is a rotary compressor which prevents vacuum conditions in microscopic gaps which occur from top dead centre and also controls the increase in contact pressure on the blade sliding section. The rotary compressor is comprised of a cylinder chamber (8) formed inside a cylinder (4), where the cylinder chamber (8) is blocked by an upper bearing (5) and a lower bearing (6), a roller (7) is disposed inside the cylinder chamber (8), a blade sliding groove (12) is formed on the cylinder (4), a blade (13) and a spring (14) are formed on the blade sliding groove (12), the spring (14) pushes the blade (13) against the outer surface of the roller (7), and the cylinder chamber (8) is divided by the blade (13) into a high-pressure side compression chamber and a low-pressure side compression chamber opened onto by an inlet aperture (9). One end of a notched section (20A) is positioned at the blade sliding groove (12), and the other extremity is positioned within a projection area X of the inlet aperture (9) on an inside surface (4a) of the cylinder (4).

Description

ロータリー圧縮機Rotary compressor
 本発明は、ロータリー圧縮機に関する。 The present invention relates to a rotary compressor.
 従来のロータリー圧縮機を図29に示す。
 密閉ケ-シング101にはシリンダ102を有し、シリンダ102はシリンダ室103を形成する。シリンダ室103には、ローラ104が配置される。このローラ104は、偏心軸105の回転によってシリンダ室103内で偏心回転する。シリンダ102には、ブレ-ド摺動溝106が形成され、ブレード摺動溝106にはブレード107が配置される。ブレード107は、背面側に配設されたばね108により常時ロ-ラ104の外周面に押しつけられている。シリンダ室103は、ブレ-ド107により、吐出ポ-ト(図示せず)が開口する圧縮室と、吸入穴110が開口する吸入室とに区画されている。
 図29では、ローラ104によってブレード107を最大限に押し込んだ位置(上死点)から、若干時計方向回り(図中の矢印の方向)に回転した状態を示している。
 この状態では、シリンダ102、ローラ104、及びブレード107で囲まれる微小空間109が形成される。上死点を過ぎて形成される微小空間109は、吸入穴110に連通するまで真空状態となるため、所要動力が増加するという問題を有している。
 この問題を解決するために、図30に示すように、シリンダ102内周面に、ブレ-ド摺動溝106と吸入穴110とを連通する溝111を形成することが提案されている(特許文献1参照)。
A conventional rotary compressor is shown in FIG.
The hermetic casing 101 has a cylinder 102, which forms a cylinder chamber 103. The roller 104 is disposed in the cylinder chamber 103. The roller 104 is eccentrically rotated in the cylinder chamber 103 by the rotation of the eccentric shaft 105. A blade slide groove 106 is formed in the cylinder 102, and a blade 107 is disposed in the blade slide groove 106. The blade 107 is always pressed against the outer peripheral surface of the roller 104 by a spring 108 disposed on the back side. The cylinder chamber 103 is divided by the blade 107 into a compression chamber in which a discharge port (not shown) opens and a suction chamber in which a suction hole 110 opens.
FIG. 29 shows a state in which the blade 107 is rotated slightly clockwise (in the direction of the arrow in the drawing) from the position (top dead center) where the blade 107 is pushed in to the maximum by the roller 104.
In this state, a minute space 109 surrounded by the cylinder 102, the roller 104, and the blade 107 is formed. Since the microspace 109 formed past the top dead center is in a vacuum state until it communicates with the suction hole 110, there is a problem that the required power increases.
In order to solve this problem, it has been proposed to form a groove 111 communicating the blade sliding groove 106 with the suction hole 110 on the inner peripheral surface of the cylinder 102 as shown in FIG. Reference 1).
実開平02-014492号公報(実願昭63-091486号のマイクロフィルム)Japanese Utility Model Application Publication No. 02-014492 (Microfilm of Japanese Patent Application No. 63-091486)
 特許文献1で提案されているように、ブレ-ド摺動溝106と吸入穴110とを連通する溝111を形成することで、上死点以降に生じる微小空間109の真空状態を防止できるが、ブレード107の吸入穴110側の摺動部の面圧が上昇し、ブレード107の焼きつき等を引き起こして信頼性を低下させてしまうという問題がある。 As proposed in Patent Document 1, by forming the groove 111 connecting the blade sliding groove 106 and the suction hole 110, it is possible to prevent the vacuum state of the minute space 109 occurring after the top dead center. The surface pressure of the sliding portion on the suction hole 110 side of the blade 107 rises, causing a problem such as seizing of the blade 107 and lowering the reliability.
 そこで、本発明は、上死点以降に生じる微小空間の真空状態を防止できるとともにブレード摺動部の面圧上昇を抑制することができるロータリー圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a rotary compressor that can prevent a vacuum state of a minute space occurring after top dead center and can suppress an increase in surface pressure of a blade sliding portion.
 第1の発明によるロータリー圧縮機は、シリンダ内にはシリンダ室が形成され、前記シリンダ室は上部軸受と下部軸受とで閉塞され、前記シリンダ室内にはローラが配置され、前記シリンダにはブレ-ド摺動溝が形成され、前記ブレ-ド摺動溝には、ブレードとばねとが配設され、前記ブレードは、前記ばねによって前記ローラの外周面に押しつけられ、前記シリンダ室が、前記ブレ-ドにより、高圧側圧縮室と、吸入穴が開口する低圧側圧縮室とに区画されたロータリー圧縮機であって、一端を前記ブレ-ド摺動溝に位置させ、他端を前記吸入穴の前記シリンダの内周面への投影範囲内に位置させた切り欠け部を設けたことを特徴とする。
 第2の発明は、第1に記載のロータリー圧縮機において、前記切り欠け部を、前記シリンダ室を形成する内周面と、前記上部軸受が当接する前記シリンダの上端面とが接する角部に形成したことを特徴とする。
 第3の発明は、第1に記載のロータリー圧縮機において、前記切り欠け部を、前記シリンダ室を形成する内周面と、前記下部軸受が当接する前記シリンダの下端面とが接する角部に形成したことを特徴とする。
 第4の発明は、第2又は第3に記載のロータリー圧縮機において、前記切り欠け部を、平坦な傾斜面によって形成したことを特徴とする。
 第5の発明は、第2又は第3に記載のロータリー圧縮機において、前記切り欠け部を、曲面によって形成したことを特徴とする。
 第6の発明は、第2又は第3に記載のロータリー圧縮機において、前記切り欠け部を、角度の異なる複数の傾斜面によって形成したことを特徴とする。
 第7の発明は、第2又は第3に記載のロータリー圧縮機において、前記切り欠け部を、平坦な傾斜面と曲面とによって形成したことを特徴とする。
 第8の発明は、第1から第7に記載のロータリー圧縮機において、前記シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/5H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことを特徴とする。
 第9の発明は、第1に記載のロータリー圧縮機において、前記切り欠け部を、前記下部軸受の上端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことを特徴とする。
 第10の発明は、第1に記載のロータリー圧縮機において、前記切り欠け部を、前記上部軸受の下端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことを特徴とする。
 第11の発明は、第8又は第9に記載のロータリー圧縮機において、前記切り欠け部を、平坦な底面の凹部によって形成したことを特徴とする。
 第12の発明は、第8又は第9に記載のロータリー圧縮機において、前記切り欠け部を、曲面の凹部によって形成したことを特徴とする。
 第13の発明は、第9から第12に記載のロータリー圧縮機において、前記シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/3H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことを特徴とする。
In the rotary compressor according to the first invention, a cylinder chamber is formed in a cylinder, the cylinder chamber is closed by an upper bearing and a lower bearing, a roller is disposed in the cylinder chamber, and The blade sliding groove is formed, and a blade and a spring are disposed in the blade sliding groove, and the blade is pressed against the outer peripheral surface of the roller by the spring, and the cylinder chamber is The rotary compressor is divided into a high pressure side compression chamber and a low pressure side compression chamber in which a suction hole is opened, and one end thereof is positioned in the blade sliding groove and the other end is the suction hole The present invention is characterized in that a notched portion located within a projection range on the inner peripheral surface of the cylinder is provided.
A second aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed at a corner portion where an inner peripheral surface forming the cylinder chamber and an upper end surface of the cylinder abutted by the upper bearing contact. It is characterized in that it is formed.
A third aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed at a corner portion where an inner peripheral surface forming the cylinder chamber and a lower end surface of the cylinder abutted by the lower bearing contact. It is characterized in that it is formed.
A fourth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a flat inclined surface.
A fifth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a curved surface.
A sixth invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a plurality of inclined surfaces having different angles.
A seventh invention is characterized in that, in the rotary compressor described in the second or third aspect, the cutout portion is formed by a flat inclined surface and a curved surface.
An eighth aspect of the invention is the rotary compressor according to any one of the first to the seventh, wherein the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b. The height h of the cutout portion is 1 / 7H to 1 / 5H, and the depth b of the cutout portion is 1 / 7H to 1⁄3H.
A ninth aspect of the invention is the rotary compressor according to the first aspect, wherein the cutaway portion is formed by providing a groove along the inner peripheral surface forming the cylinder chamber on the upper end surface of the lower bearing. It is characterized by
According to a tenth invention, in the rotary compressor described in the first, the notch is formed by providing a groove along an inner circumferential surface forming the cylinder chamber on a lower end surface of the upper bearing. It is characterized by
An eleventh invention is characterized in that, in the rotary compressor as described in the eighth or ninth invention, the cutout portion is formed by a concave portion of a flat bottom surface.
A twelfth invention is characterized in that, in the rotary compressor as described in the eighth or ninth invention, the cutout portion is formed by a concave portion of a curved surface.
The thirteenth invention is the rotary compressor as described in the ninth to twelfth embodiments, wherein the height of the cylinder is H, the height of the notch is h, and the depth of the notch is b. The height h of the cutaway portion is 1 / 7H to 1 / 3H, and the depth b of the cutaway portion is 1 / 7H to 1 / 3H.
 本発明によれば、ブレードに加わる面圧が大きくならず、冷媒ガスの供給を十分に行うことができ、上死点以降、吸入穴に連通するまでの間に形成される低圧側圧縮室となる微小空間が、真空状態とならないため、所要動力増加を防止することができる。 According to the present invention, the surface pressure applied to the blade does not increase, and the refrigerant gas can be sufficiently supplied, and the low pressure side compression chamber formed from the top dead center to the communication with the suction hole and Since the minute space which does not become is not in a vacuum state, it is possible to prevent an increase in required power.
本発明の第1の実施の形態におけるロータリー圧縮機の縦断面図Longitudinal sectional view of a rotary compressor according to a first embodiment of the present invention 図1におけるA-A線断面図AA line sectional view in FIG. 1 図2の要部拡大図Main part enlarged view of Fig. 2 同ロータリー圧縮機の要部を示す斜視図The perspective view which shows the principal part of the same rotary compressor 同ロータリー圧縮機のシリンダの要部断面図Principal part sectional view of cylinder of same rotary compressor 本発明の第2の実施の形態におけるロータリー圧縮機Rotary compressor according to a second embodiment of the present invention 本発明の第3の実施の形態におけるロータリー圧縮機Rotary compressor according to a third embodiment of the present invention 本発明の第4の実施の形態におけるロータリー圧縮機Rotary compressor according to a fourth embodiment of the present invention 本発明の第5の実施の形態におけるロータリー圧縮機の縦断面図A longitudinal sectional view of a rotary compressor according to a fifth embodiment of the present invention 図9におけるB-B線断面図BB cross section in FIG. 9 図10の要部拡大図The main part enlarged view of FIG. 10 同ロータリー圧縮機の要部を示す斜視図The perspective view which shows the principal part of the same rotary compressor 同ロータリー圧縮機のシリンダの要部断面図Principal part sectional view of cylinder of same rotary compressor 本発明の第6の実施の形態におけるロータリー圧縮機Rotary compressor according to the sixth embodiment of the present invention 本発明の第7の実施の形態におけるロータリー圧縮機Rotary compressor according to a seventh embodiment of the present invention 本発明の第8の実施の形態におけるロータリー圧縮機Rotary compressor according to the eighth embodiment of the present invention 本発明の第9の実施の形態におけるロータリー圧縮機の縦断面図A longitudinal sectional view of a rotary compressor according to a ninth embodiment of the present invention 図17におけるC-C線断面図CC sectional view in FIG. 17 図18の要部拡大図Main part enlarged view of FIG. 18 同ロータリー圧縮機の要部を示す斜視図The perspective view which shows the principal part of the same rotary compressor 同ロータリー圧縮機のシリンダの要部断面図Principal part sectional view of cylinder of same rotary compressor 本発明の第10の実施の形態におけるロータリー圧縮機Rotary compressor according to the tenth embodiment of the present invention 本発明の第11の実施の形態におけるロータリー圧縮機の縦断面図The longitudinal cross-sectional view of the rotary compressor in the 11th embodiment of the present invention 図23におけるD-D線断面図DD line cross section in FIG. 23 図24の要部拡大図The main part enlarged view of FIG. 24 同ロータリー圧縮機の要部を示す斜視図The perspective view which shows the principal part of the same rotary compressor 同ロータリー圧縮機のシリンダの要部断面図Principal part sectional view of cylinder of same rotary compressor 本発明の第12の実施の形態におけるロータリー圧縮機Rotary compressor according to a twelfth embodiment of the present invention 従来のロータリー圧縮機Conventional rotary compressor 従来のロータリー圧縮機Conventional rotary compressor
  4 シリンダ
  4a 内周面
  4b 上端面
  4c 下端面
  5 上部軸受
  5a 下端面
  6 下部軸受
  6a 上端面
  7 ローラ
  8 シリンダ室
  9 吸入穴
 12 ブレ-ド摺動溝
 13 ブレード
 14 ばね
 20A 切り欠け部
 20B 切り欠け部
 20C 切り欠け部
 20D 切り欠け部
 20E 切り欠け部
 20F 切り欠け部
 20G 切り欠け部
 20H 切り欠け部
 20J 切り欠け部
 20K 切り欠け部
 20L 切り欠け部
 20M 切り欠け部
 21 一端
 22 他端
 23 傾斜面
 24 曲面
 25 底面
 26 曲面
  H シリンダの高さ
  b 切り欠け部の深さ
  h 切り欠け部の高さ
  X 投影範囲
4 cylinder 4a inner circumferential surface 4b upper end surface 4c lower end surface 5 upper bearing 5a lower end surface 6 lower bearing 6a upper end surface 7 roller 8 cylinder chamber 9 suction hole 12 blade sliding groove 13 blade 14 spring 20A notch 20B notch Section 20C Notched portion 20D Notched portion 20E Notched portion 20F Notched portion 20G Notched portion 20H Notched portion 20J Notched portion 20K Notched portion 20L Notched portion 20M Notched portion 21 One end 22 Other end 23 Inclined surface 24 Curved surface 25 Bottom surface 26 Curved surface H Cylinder height b Notch depth h Notch height x Projection range
 第1の発明は、一端を前記ブレ-ド摺動溝に位置させ、他端を前記吸入穴の前記シリンダの内周面への投影範囲内に位置させた切り欠け部を設けたことで、上死点以降、吸入穴に連通するまでの間に形成される低圧側圧縮室となる微小空間が、真空状態とならないため、所要動力増加を防止することができ、またブレード摺動部の面圧上昇を抑制し、ロータリー圧縮機の効率向上と信頼性向上を実現させることができる。
 第2の発明は、第1の発明において、切り欠け部を、前記シリンダ室を形成する内周面と、前記上部軸受が当接する前記シリンダの上端面とが接する角部に形成したことで、切り欠け部の加工が容易となる。
 第3の発明は、第1の発明において、切り欠け部を、前記シリンダ室を形成する内周面と、前記下部軸受が当接する前記シリンダの下端面とが接する角部に形成したことで、切り欠け部の加工が容易となる。
 第4の発明は、第2又は第3の発明において、切り欠け部を、平坦な傾斜面によって形成したことで、切り欠け部の加工が容易となる。
 第5の発明は、第2又は第3の発明において、切り欠け部を、曲面によって形成したことで、第4の発明と比較して、同一高さ、同一深さの場合には、通路断面積が大きくなるため、スムーズな冷媒ガス流れを生じる。
 第6の発明は、第2又は第3の発明において、切り欠け部を、角度の異なる複数の傾斜面によって形成することもできる。
 第7の発明は、第2又は第3の発明において、切り欠け部を、平坦な傾斜面と曲面とによって形成することもできる。
 第8の発明は、第1から第7の発明において、シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/5H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことで、ブレードに加わる面圧が大きくならず、冷媒ガスの供給を十分に行うことができる。
 第9の発明は、第1の発明において、切り欠け部を、前記下部軸受の上端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことで、切り欠け部の加工が容易となる。
 第10の発明は、第1の発明において、切り欠け部を、前記上部軸受の下端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことで、切り欠け部の加工が容易となる。
 第11の発明は、第8又は第9の発明において、切り欠け部を、平坦な底面の凹部によって形成したことで、切り欠け部の加工が容易となる。
 第12の発明は、第8又は第9の発明において、切り欠け部を、曲面の凹部によって形成したことで、第11の発明と比較して、同一高さ、同一深さの場合には、通路断面積が大きくなるため、スムーズな冷媒ガス流れを生じる。
 第13の発明は、第9から第12の発明において、シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/3H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことで、冷媒ガス漏れを生じることなく、冷媒ガスの供給を十分に行うことができる。
According to a first aspect of the present invention, a notch is provided with one end located in the blade slide groove and the other end located in a projection range of the suction hole on the inner circumferential surface of the cylinder. Since the minute space which becomes the low pressure side compression chamber formed from the top dead center to the communication with the suction hole does not become vacuum state, it is possible to prevent the increase of the required power, and the surface of the blade sliding portion The pressure rise can be suppressed, and the efficiency and reliability of the rotary compressor can be improved.
In a second aspect based on the first aspect, the notch portion is formed at a corner portion where the inner peripheral surface forming the cylinder chamber and the upper end surface of the cylinder in contact with the upper bearing contact. Machining of the notched part becomes easy.
According to a third invention, in the first invention, the notch is formed at a corner where the inner circumferential surface forming the cylinder chamber and the lower end face of the cylinder, which the lower bearing abuts, contact with each other. Machining of the notched part becomes easy.
In a fourth aspect based on the second or third aspect, the notch portion is formed by a flat inclined surface, which facilitates the processing of the notch portion.
According to a fifth invention, in the second or third invention, the notch portion is formed by a curved surface, and in the case of the same height and the same depth as in the fourth invention, the passage is cut off. As the area increases, a smooth refrigerant gas flow is generated.
In a sixth aspect based on the second or third aspect, the notch may be formed by a plurality of inclined surfaces having different angles.
In a seventh aspect according to the second or third aspect, the notch may be formed by a flat inclined surface and a curved surface.
According to an eighth invention, in the first to seventh invention, when the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b, By setting the height h to 1 / 7H or more and 1 / 5H or less and setting the depth b of the notched portion to 1 / 7H or more and 1 / 3H or less, the surface pressure applied to the blade does not increase, and the refrigerant gas Supply enough.
In a ninth aspect based on the first aspect, the notch is formed by providing a groove along the inner circumferential surface forming the cylinder chamber on the upper end surface of the lower bearing. Processing becomes easy.
In a tenth aspect based on the first aspect, the notch is formed by providing a groove along the inner circumferential surface forming the cylinder chamber on the lower end surface of the upper bearing. Processing becomes easy.
In an eleventh aspect based on the eighth or ninth aspect, the notch portion is formed by the recess on the flat bottom surface, so that the notch portion can be easily processed.
According to a twelfth aspect of the present invention, in the eighth or ninth aspect, the notch portion is formed by the concave portion of the curved surface, and in the case of the same height and the same depth as in the eleventh aspect, As the passage cross-sectional area is increased, smooth refrigerant gas flow is generated.
According to a thirteenth aspect of the present invention, in the ninth to twelfth aspects, when the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b, By setting the height h to 1/7 H or more and 1/3 H or less, and setting the depth b of the notched portion 1/7 H or more to 1/3 H or less, the refrigerant gas can be supplied without causing a refrigerant gas leak. Can do enough.
 本発明の第1の実施の形態におけるロータリー圧縮機を図1から図5に示す。
 図1は同ロータリー圧縮機の縦断面図、図2は図1におけるA-A線断面図、図3は図2の要部拡大図、図4は同ロータリー圧縮機の要部を示す斜視図、図5は同ロータリー圧縮機のシリンダの要部断面図である。
A rotary compressor according to a first embodiment of the present invention is shown in FIGS.
1 is a longitudinal sectional view of the rotary compressor, FIG. 2 is a sectional view taken along the line AA in FIG. 1, FIG. 3 is an enlarged view of an essential part of FIG. 2, and FIG. 4 is a perspective view showing an essential part of the rotary compressor FIG. 5 is a cross-sectional view of an essential part of a cylinder of the rotary compressor.
 図1に示すように、筒状の密閉容器1内には電動機構2が設けられている。電動機構2の回転子2aには、クランクシャフト3が設けられている。
 また、密閉容器1内には、シリンダ4、上部軸受5、下部軸受6、及びローラ7によって構成される圧縮機構が設けられている。
 シリンダ4内には、シリンダ室8が形成され、このシリンダ室8は上部軸受5と下部軸受6とで閉塞されている。ローラ7はシリンダ室8内に配置される。上部軸受5と下部軸受6とはクランクシャフト3を受け、上部軸受5と下部軸受6との間には、クランクシャフト3の偏心軸3aが配置される。ローラ7は、この偏心軸3aに装着される。
 シリンダ4には、吸入穴9が形成され、この吸入穴9により密閉容器1外からガス冷媒をシリンダ室8に導入する。また、シリンダ室8で圧縮されたガス冷媒は、上部軸受5に形成された吐出口(図示せず)から、密閉容器1内に吐出され、その後吐出管10から密閉容器1外に導出される。密閉容器1内の底部は、潤滑油を溜める油溜部11が形成されている。
 シリンダ4の内周面の上端には、後述する切り欠け部20Aが形成されている。
 なお、本実施の形態のロータリー圧縮機には、冷媒としてHFC32とHFC125の混合冷媒、又は二酸化炭素やアンモニア、ヘリウム等の自然冷媒を用いることができる。
As shown in FIG. 1, an electric mechanism 2 is provided in the cylindrical sealed container 1. A crankshaft 3 is provided on the rotor 2 a of the electric mechanism 2.
Further, in the sealed container 1, a compression mechanism constituted by the cylinder 4, the upper bearing 5, the lower bearing 6, and the roller 7 is provided.
A cylinder chamber 8 is formed in the cylinder 4, and the cylinder chamber 8 is closed by the upper bearing 5 and the lower bearing 6. The roller 7 is disposed in the cylinder chamber 8. Upper bearing 5 and lower bearing 6 receive crankshaft 3, and between upper bearing 5 and lower bearing 6, eccentric shaft 3 a of crankshaft 3 is disposed. The roller 7 is mounted on the eccentric shaft 3a.
A suction hole 9 is formed in the cylinder 4, and the gas refrigerant is introduced into the cylinder chamber 8 from the outside of the closed container 1 by the suction hole 9. Further, the gas refrigerant compressed in the cylinder chamber 8 is discharged from the discharge port (not shown) formed in the upper bearing 5 into the sealed container 1, and thereafter, is discharged from the discharge pipe 10 to the outside of the sealed container 1. . The bottom of the closed container 1 is formed with an oil reservoir 11 for storing lubricating oil.
At the upper end of the inner circumferential surface of the cylinder 4, a notch 20A described later is formed.
In the rotary compressor of the present embodiment, a mixed refrigerant of HFC32 and HFC125, or a natural refrigerant such as carbon dioxide, ammonia, or helium can be used as a refrigerant.
 次に、図2を用いて圧縮機構について更に説明する。
 シリンダ4には径方向に延びるブレ-ド摺動溝12が形成されている。ブレ-ド摺動溝12には、ブレード13とばね14が配設され、ブレード13は、ばね14によってローラ7の外周面に常時押しつけられている。ブレード13は、ばね14によって押圧されているため、ローラ7の回動に伴ってブレード摺動溝12内を往復動作する。
 シリンダ室8は、ブレ-ド13により、吐出ポ-トが開口する高圧側圧縮室と、吸入穴9が開口する低圧側圧縮室とに区画されている。
Next, the compression mechanism will be further described using FIG.
A radially extending blade slide groove 12 is formed in the cylinder 4. A blade 13 and a spring 14 are disposed in the blade sliding groove 12, and the blade 13 is always pressed against the outer peripheral surface of the roller 7 by the spring 14. Since the blade 13 is pressed by the spring 14, the blade 13 reciprocates in the blade sliding groove 12 as the roller 7 rotates.
The cylinder chamber 8 is divided by the blade 13 into a high pressure side compression chamber in which the discharge port is opened and a low pressure side compression chamber in which the suction hole 9 is opened.
 次に、図3から図5を用いて切り欠け部について更に説明する。
 図3では、ローラ7によってブレード13を最大限に押し込んだ位置(上死点)から、若干時計方向回り(図中の矢印の方向)に回転した状態を示し、ブレード13の吸入穴9側には微小空間8aが形成されている。
 図3及び図4に示すように、切り欠け部20Aは、その一端21をブレ-ド摺動溝12に、その他端22を吸入穴8のシリンダ4の内周面4aへの投影範囲X内に位置させている。
 また、図4及び図5に示すように、切り欠け部20Aは、シリンダ室8を形成する内周面4aと、上部軸受5が当接するシリンダ4の上端面4bとが接する角部の一部に形成されている。切り欠け部20Aの他端22は、吸入穴9とは連通しない。
 この切り欠け部20Aによって、図3に示す微小隙間8aには、吸入穴9が開口する吸入室から冷媒ガスが流れ込み、真空状態とはならない。
 なお、切り欠け部20Aの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至らない場合には、若干の真空状態が発生する。従って、切り欠け部20Aの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至ることが好ましい。一方、切り欠け部20Aの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越える場合には、圧縮行程が少なくなり圧縮比が低下してしまう。従って、切り欠け部20Aの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越えないことが好ましい。
Next, the notch will be further described using FIGS. 3 to 5.
FIG. 3 shows a state in which the blade 13 is rotated slightly clockwise (in the direction of the arrow in the drawing) from the position (top dead center) where the blade 13 is pushed in to the maximum by the roller 7. A minute space 8a is formed.
As shown in FIGS. 3 and 4, the notch 20A has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4. It is located in.
Further, as shown in FIGS. 4 and 5, the notch 20A is a part of the corner where the inner circumferential surface 4a forming the cylinder chamber 8 and the upper end surface 4b of the cylinder 4 with which the upper bearing 5 abuts contact. Is formed. The other end 22 of the notch 20A does not communicate with the suction hole 9.
The refrigerant gas flows into the minute gap 8a shown in FIG. 3 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20A, and the vacuum state is not established.
When the other end 22 of the notch 20A does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum occurs. Therefore, it is preferable that the other end 22 of the notch 20A be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20A exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20A does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
 図5に示すように、切り欠け部20Aは、内周面4aと上端面4bとが接する角部を切り欠くことで形成する。図5に示す切り欠け部20Aは、内周面4aと上端面4bとの間に、切り欠きによって平坦な傾斜面23を作ることで形成している。
 また図5に示すように、シリンダ4の高さ(クランクシャフト3の軸方向)をH、切り欠け部20Aの高さをh、切り欠け部20Aの深さをbとしたとき、切り欠け部20Aの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Aの深さbは1/7H以上で1/3H以下であることが好ましい。
 切り欠け部20Aの高さhが1/5Hを越えるとブレード13に加わる面圧が大きくなり、切り欠け部20Aの高さhが1/7Hを下回ると冷媒ガスの通路が狭くなりすぎ、圧力損失によって冷媒ガスが十分に供給されなくなる。また、切り欠け部20Aの深さbは切り欠け部20Aの高さhと同程度以上が好ましいことから、1/7H以上が好ましく、切り欠け部20Aの深さbが1/3Hを越えると実用上好ましくない。
As shown in FIG. 5, the notch 20A is formed by notching a corner where the inner circumferential surface 4a and the upper end surface 4b are in contact with each other. The notch 20A shown in FIG. 5 is formed by forming a flat inclined surface 23 by a notch between the inner circumferential surface 4a and the upper end surface 4b.
When the height of the cylinder 4 (the axial direction of the crankshaft 3) is H, the height of the notch 20A is h, and the depth of the notch 20A is b, as shown in FIG. The height h of 20A is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20A is preferably 1 / 7H to 1 / 3H.
When the height h of the notch 20A exceeds 1 / 5H, the surface pressure applied to the blade 13 increases, and when the height h of the notch 20A falls below 1 / 7H, the refrigerant gas passage becomes too narrow, and the pressure The loss causes insufficient supply of the refrigerant gas. The depth b of the notch 20A is preferably equal to or greater than the height h of the notch 20A, so 1 / 7H or more is preferable, and if the depth b of the notch 20A exceeds 1 / 3H Unpreferable for practical use.
 本発明の第2の実施の形態におけるロータリー圧縮機を図6に示す。
 本実施の形態は、図6で説明する以外は、第1の実施の形態と同様であるので、第1の実施の形態で説明した図1から図4については説明を省略する。
 図6に示すように、本実施の形態においても、切り欠け部20Bは、内周面4aと上端面4bとが接する角部を切り欠くことで形成する。図6に示す切り欠け部20Bは、内周面4aと上端面4bとの間に、切り欠きによって曲面24を作ることで形成している。
 本実施の形態においても、切り欠け部20Bの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Bの深さbは1/7H以上で1/3H以下であることが好ましい。
 なお、第2の実施の形態では、第1の実施の形態の切り欠け部20Aの高さh及び深さbを同一とした場合には、第2の実施の形態による切り欠け部20Bの方が、通路断面積が大きくなるため、スムーズな冷媒ガス流れを生じる。
A rotary compressor according to a second embodiment of the present invention is shown in FIG.
The present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 6, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
As shown in FIG. 6, also in the present embodiment, the notch 20B is formed by notching the corner where the inner peripheral surface 4a and the upper end surface 4b are in contact. The notch 20B shown in FIG. 6 is formed by forming a curved surface 24 by a notch between the inner circumferential surface 4a and the upper end surface 4b.
Also in the present embodiment, the height h of the notch 20B is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20B is 1 / 7H to 1 / 3H. Is preferred.
In the second embodiment, when the height h and the depth b of the notch 20A of the first embodiment are the same, the direction of the notch 20B according to the second embodiment is the same. However, since the passage cross-sectional area is increased, a smooth refrigerant gas flow is generated.
 本発明の第3の実施の形態におけるロータリー圧縮機を図7に示す。
 本実施の形態は、図7で説明する以外は、第1の実施の形態と同様であるので、第1の実施の形態で説明した図1から図4については説明を省略する。
 図7に示すように、本実施の形態においても、切り欠け部20Cは、内周面4aと上端面4bとが接する角部を切り欠くことで形成する。図7に示す切り欠け部20Cは、内周面4aと上端面4bとの間に、切り欠きによって角度の異なる2つの平坦な傾斜面23a、23bを作ることで形成している。なお、2つ以上の傾斜面23によって形成してもよい。
 本実施の形態においても、切り欠け部20Cの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Cの深さbは1/7H以上で1/3H以下であることが好ましい。
 本実施の形態のように、切り欠け部20Cは、角度の異なる2つの平坦な傾斜面23a、23bとによって形成してもよい。
A rotary compressor according to a third embodiment of the present invention is shown in FIG.
The present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 7, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
As shown in FIG. 7, also in the present embodiment, the notch 20 </ b> C is formed by notching the corner where the inner peripheral surface 4 a and the upper end surface 4 b contact. The notch 20C shown in FIG. 7 is formed by forming two flat inclined surfaces 23a and 23b having different angles by the notch between the inner peripheral surface 4a and the upper end surface 4b. In addition, you may form by two or more inclined surfaces 23. FIG.
Also in the present embodiment, the height h of the notch 20C is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20C is 1 / 7H to 1 / 3H. Is preferred.
As in the present embodiment, the notch 20C may be formed by two flat inclined surfaces 23a and 23b having different angles.
 本発明の第4の実施の形態におけるロータリー圧縮機を図8に示す。
 本実施の形態は、図8で説明する以外は、第1の実施の形態と同様であるので、第1の実施の形態で説明した図1から図4については説明を省略する。
 図8に示すように、本実施の形態においても、切り欠け部20Dは、内周面4aと上端面4bとが接する角部を切り欠くことで形成する。図8に示す切り欠け部20Dは、内周面4aと上端面4bとの間に、切り欠きによって平坦な傾斜面23と曲面24とを作ることで形成している。
 本実施の形態においても、切り欠け部20Dの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Dの深さbは1/7H以上で1/3H以下であることが好ましい。
 本実施の形態のように、切り欠け部20Dは、平坦な傾斜面23と曲面24とによって形成してもよい。
A rotary compressor according to a fourth embodiment of the present invention is shown in FIG.
The present embodiment is the same as the first embodiment except that it will be described with reference to FIG. 8, and thus the description of FIGS. 1 to 4 described in the first embodiment will be omitted.
As shown in FIG. 8, also in the present embodiment, the notch 20D is formed by notching the corner where the inner circumferential surface 4a and the upper end surface 4b contact. The notch 20D shown in FIG. 8 is formed by forming a flat inclined surface 23 and a curved surface 24 by a notch between the inner peripheral surface 4a and the upper end surface 4b.
Also in the present embodiment, the height h of the notch 20D is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20D is 1 / 7H to 1 / 3H. Is preferred.
As in the present embodiment, the notch 20D may be formed by the flat inclined surface 23 and the curved surface 24.
 本発明の第5の実施の形態におけるロータリー圧縮機を図9から図13に示す。
 図9は同ロータリー圧縮機の縦断面図、図10は図9におけるB-B線断面図、図11は図10の要部拡大図、図12は同ロータリー圧縮機の要部を示す斜視図、図13は同ロータリー圧縮機のシリンダの要部断面図である。なお、第1の実施の形態と同一部材には同一符号を付して説明を省略する。
A rotary compressor according to a fifth embodiment of the present invention is shown in FIGS.
9 is a longitudinal sectional view of the rotary compressor, FIG. 10 is a sectional view taken along the line BB in FIG. 9, FIG. 11 is an enlarged view of an essential part of FIG. 10, and FIG. 12 is a perspective view showing an essential part of the rotary compressor FIG. 13 is a cross-sectional view of an essential part of a cylinder of the rotary compressor. The same members as those of the first embodiment are indicated by the same reference numerals and the description thereof is omitted.
 図9に示すように、本実施の形態ではシリンダ4の内周面の下端には、後述する切り欠け部20Eが形成されている。
 図11及び図12に示すように、切り欠け部20Eは、その一端21をブレ-ド摺動溝12に、その他端22を吸入穴8のシリンダ4の内周面4aへの投影範囲X内に位置させている。
 また、図12及び図13に示すように、切り欠け部20Eは、シリンダ室8を形成する内周面4aと、下部軸受6が当接するシリンダ室8の下端面4cとが接する角部の一部に形成されている。切り欠け部20Eの他端22は、吸入穴9とは連通しない。
 この切り欠け部20Eによって、図11に示す微小隙間8aには、吸入穴9が開口する吸入室から冷媒ガスが流れ込み、真空状態とはならない。
 なお、切り欠け部20Eの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至らない場合には、若干の真空状態が発生する。従って、切り欠け部20Eの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至ることが好ましい。一方、切り欠け部20Eの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越える場合には、圧縮行程が少なくなり圧縮比が低下してしまう。従って、切り欠け部20Eの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越えないことが好ましい。
As shown in FIG. 9, in the present embodiment, at the lower end of the inner peripheral surface of the cylinder 4, a notch 20E described later is formed.
As shown in FIGS. 11 and 12, the notch 20E has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4. It is located in.
Further, as shown in FIGS. 12 and 13, the notch 20E is one of the corner portions where the inner peripheral surface 4a forming the cylinder chamber 8 and the lower end surface 4c of the cylinder chamber 8 with which the lower bearing 6 abuts contact. It is formed in the part. The other end 22 of the notch 20E does not communicate with the suction hole 9.
The refrigerant gas flows into the minute gap 8a shown in FIG. 11 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20E, and the vacuum state is not established.
When the other end 22 of the notch 20E does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20E be within the projection range X of the suction hole 8 on the inner circumferential surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20E exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20E does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
 図13に示すように、切り欠け部20Eは、内周面4aと下端面4cとが接する角部を切り欠くことで形成する。図13に示す切り欠け部20Eは、内周面4aと下端面4cとの間に、切り欠きによって平坦な傾斜面23を作ることで形成している。
 また図13に示すように、シリンダ4の高さ(クランクシャフト3の軸方向)をH、切り欠け部20Eの高さをh、切り欠け部20Eの深さをbとしたとき、切り欠け部20Eの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Eの深さbは1/7H以上で1/3H以下であることが好ましい。
 切り欠け部20Eの高さhが1/5Hを越えるとブレード13に加わる面圧が大きくなり、切り欠け部20Eの高さhが1/7Hを下回ると冷媒ガスの通路が狭くなりすぎ、圧力損失によって冷媒ガスが十分に供給されなくなる。また、切り欠け部20Eの深さbは切り欠け部20Eの高さhと同程度以上が好ましいことから、1/7H以上が好ましく、切り欠け部20Eの深さbが1/3Hを越えると実用上好ましくない。
As shown in FIG. 13, the notch 20E is formed by notching the corner where the inner circumferential surface 4a and the lower end surface 4c are in contact with each other. The notch 20E shown in FIG. 13 is formed by forming a flat inclined surface 23 by a notch between the inner peripheral surface 4a and the lower end surface 4c.
Further, as shown in FIG. 13, when the height of the cylinder 4 (the axial direction of the crankshaft 3) is H, the height of the notch 20E is h, and the depth of the notch 20E is b, the notch The height h of 20E is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20E is preferably 1 / 7H to 1 / 3H.
When the height h of the notch 20E exceeds 1 / 5H, the surface pressure applied to the blade 13 increases, and when the height h of the notch 20E is less than 1 / 7H, the refrigerant gas passage becomes too narrow, and the pressure The loss causes insufficient supply of the refrigerant gas. The depth b of the notch 20E is preferably equal to or greater than the height h of the notch 20E, so 1 / 7H or more is preferable, and when the depth b of the notch 20E exceeds 1 / 3H Unpreferable for practical use.
 本発明の第6の実施の形態におけるロータリー圧縮機を図14に示す。
 本実施の形態は、図14で説明する以外は、第5の実施の形態と同様であるので、第5の実施の形態で説明した図9から図12については説明を省略する。
 図14に示すように、本実施の形態においても、切り欠け部20Fは、内周面4aと下端面4cとが接する角部を切り欠くことで形成する。図14に示す切り欠け部20Fは、内周面4aと下端面4cとの間に、切り欠きによって曲面24を作ることで形成している。
 本実施の形態においても、切り欠け部20Fの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Fの深さbは1/7H以上で1/3H以下であることが好ましい。
 なお、第6の実施の形態では、第5の実施の形態の切り欠け部20Eの高さh及び深さbを同一とした場合には、第6の実施の形態による切り欠け部20Fの方が、通路断面積が大きくなるため、スムーズな冷媒ガス流れを生じるため、好ましい。
A rotary compressor according to a sixth embodiment of the present invention is shown in FIG.
The present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 14, and thus the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
As shown in FIG. 14, also in the present embodiment, the notch 20F is formed by notching the corner where the inner peripheral surface 4a and the lower end surface 4c are in contact. The notch 20F shown in FIG. 14 is formed by forming a curved surface 24 by a notch between the inner circumferential surface 4a and the lower end surface 4c.
Also in the present embodiment, the height h of the notch 20F is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20F is 1 / 7H to 1 / 3H. Is preferred.
In the sixth embodiment, when the height h and the depth b of the notch 20E of the fifth embodiment are the same, the direction of the notch 20F according to the sixth embodiment is the same. However, since the passage cross-sectional area is increased, a smooth refrigerant gas flow is generated, which is preferable.
 本発明の第7の実施の形態におけるロータリー圧縮機を図15に示す。
 本実施の形態は、図15で説明する以外は、第5の実施の形態と同様であるので、第5の実施の形態で説明した図9から図12については説明を省略する。
 図15に示すように、本実施の形態においても、切り欠け部20Gは、内周面4aと下端面4cとが接する角部を切り欠くことで形成する。図15に示す切り欠け部20Gは、内周面4aと下端面4cとの間に、切り欠きによって角度の異なる2つの平坦な傾斜面23a、23bを作ることで形成している。なお、2つ以上の傾斜面23によって形成してもよい。
 本実施の形態においても、切り欠け部20Gの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Gの深さbは1/7H以上で1/3H以下であることが好ましい。
 本実施の形態のように、切り欠け部20Gは、角度の異なる2つの平坦な傾斜面23a、23bとによって形成してもよい。
A rotary compressor according to a seventh embodiment of the present invention is shown in FIG.
The present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 15. Therefore, the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
As shown in FIG. 15, also in the present embodiment, the notch 20G is formed by notching the corner where the inner circumferential surface 4a and the lower end surface 4c contact. The notch 20G shown in FIG. 15 is formed by forming two flat inclined surfaces 23a and 23b having different angles by the notch between the inner peripheral surface 4a and the lower end surface 4c. In addition, you may form by two or more inclined surfaces 23. FIG.
Also in the present embodiment, the height h of the notch 20G is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20G is 1 / 7H to 1 / 3H. Is preferred.
As in the present embodiment, the notch 20G may be formed by two flat inclined surfaces 23a and 23b having different angles.
 本発明の第8の実施の形態におけるロータリー圧縮機を図16に示す。
 本実施の形態は、図16で説明する以外は、第5の実施の形態と同様であるので、第5の実施の形態で説明した図9から図12については説明を省略する。
 図16に示すように、本実施の形態においても、切り欠け部20Hは、内周面4aと下端面4cとが接する角部を切り欠くことで形成する。図16に示す切り欠け部20Hは、内周面4aと下端面4cとの間に、切り欠きによって平坦な傾斜面23と曲面24とを作ることで形成している。
 本実施の形態においても、切り欠け部20Hの高さhは1/7H以上で1/5H以下であることが好ましく、切り欠け部20Hの深さbは1/7H以上で1/3H以下であることが好ましい。
 本実施の形態のように、切り欠け部20Hは、平坦な傾斜面23と曲面24とによって形成してもよい。
The rotary compressor in the 8th Embodiment of this invention is shown in FIG.
The present embodiment is the same as the fifth embodiment except that it is described with reference to FIG. 16, and thus the description of FIGS. 9 to 12 described in the fifth embodiment will be omitted.
As shown in FIG. 16, also in the present embodiment, the notch 20H is formed by notching the corner where the inner peripheral surface 4a and the lower end surface 4c are in contact. The notch 20H shown in FIG. 16 is formed by forming a flat inclined surface 23 and a curved surface 24 between the inner circumferential surface 4a and the lower end surface 4c with a notch.
Also in the present embodiment, the height h of the notch 20H is preferably 1 / 7H to 1 / 5H, and the depth b of the notch 20H is 1 / 7H to 1 / 3H. Is preferred.
As in the present embodiment, the notch 20H may be formed by the flat inclined surface 23 and the curved surface 24.
 本発明の第9の実施の形態におけるロータリー圧縮機を図17から図21に示す。
 図17は同ロータリー圧縮機の縦断面図、図18は図17におけるC-C線断面図、図19は図18の要部拡大図、図20は同ロータリー圧縮機の要部を示す斜視図、図21は同ロータリー圧縮機のシリンダの要部断面図である。なお、第1の実施の形態と同一部材には同一符号を付して説明を省略する。
A rotary compressor according to a ninth embodiment of the present invention is shown in FIGS.
17 is a longitudinal sectional view of the rotary compressor, FIG. 18 is a sectional view taken along the line C--C in FIG. 17, FIG. 19 is an enlarged view of an essential part of FIG. 18, and FIG. 20 is a perspective view showing an essential part of the rotary compressor FIG. 21 is a cross-sectional view of an essential part of a cylinder of the rotary compressor. The same members as those of the first embodiment are indicated by the same reference numerals and the description thereof is omitted.
 図17に示すように、本実施の形態では下部軸受6の上端には、後述する切り欠け部20Jが形成されている。
 図19及び図20に示すように、切り欠け部20Jは、その一端21をブレ-ド摺動溝12に、その他端22を吸入穴8のシリンダ4の内周面4aへの投影範囲X内に位置させている。
 また、図20及び図21に示すように、切り欠け部20Jは、シリンダ室8を形成する内周面4aに沿って、シリンダ4内径と同心円上に下部軸受6に形成されている。
 この切り欠け部20Jによって、図19に示す微小隙間8aには、吸入穴9が開口する吸入室から冷媒ガスが流れ込み、真空状態とはならない。
 なお、切り欠け部20Jの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至らない場合には、若干の真空状態が発生する。従って、切り欠け部20Jの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至ることが好ましい。一方、切り欠け部20Jの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越える場合には、圧縮行程が少なくなり圧縮比が低下してしまう。従って、切り欠け部20Jの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越えないことが好ましい。
As shown in FIG. 17, in the present embodiment, at the upper end of the lower bearing 6, a notch 20J described later is formed.
As shown in FIGS. 19 and 20, the notch 20J has one end 21 thereof in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4 It is located in.
Further, as shown in FIGS. 20 and 21, the notch 20J is formed in the lower bearing 6 concentrically with the inner diameter of the cylinder 4 along the inner circumferential surface 4 a forming the cylinder chamber 8.
The refrigerant gas flows into the minute gap 8a shown in FIG. 19 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20J, and the vacuum state is not established.
When the other end 22 of the notch 20J does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20J be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20J exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20J does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
 図21に示すように、切り欠け部20Jは、下部軸受6の上端面6aの一部に溝を設けることで形成する。図21に示す切り欠け部20Jは、上端面6aに、平坦な底面25の凹部によって形成している。
 また図21に示すように、シリンダ4の高さ(クランクシャフト3の軸方向)をH、切り欠け部20Jの高さをh、切り欠け部20Jの深さをbとしたとき、切り欠け部20Jの高さhは1/7H以上で1/3H以下であることが好ましく、切り欠け部20Jの深さbは1/7H以上で1/3H以下であることが好ましい。
 切り欠け部20Jの高さhが1/3Hを越えると加工に時間を要して生産性が悪化し、切り欠け部20Jの高さhが1/7Hを下回ると冷媒ガスの通路が狭くなりすぎ、圧力損失によって冷媒ガスが十分に供給されなくなる。また、切り欠け部20Jの深さbは切り欠け部20Jの高さhと同程度以上が好ましいことから、1/7H以上が好ましく、切り欠け部20Jの深さbが1/3Hを越えると実用上好ましくない。
As shown in FIG. 21, the notch 20 </ b> J is formed by providing a groove in a part of the upper end surface 6 a of the lower bearing 6. The notch 20J shown in FIG. 21 is formed on the upper end surface 6a by a concave portion of the flat bottom surface 25.
When the height of the cylinder 4 (the axial direction of the crankshaft 3) is H, the height of the notch 20J is h, and the depth of the notch 20J is b, as shown in FIG. The height h of 20J is preferably 1 / 7H to 1 / 3H, and the depth b of the notch 20J is preferably 1 / 7H to 1 / 3H.
If the height h of the notched portion 20J exceeds 1 / 3H, processing takes time to deteriorate productivity, and if the height h of the notched portion 20J is less than 1 / 7H, the refrigerant gas passage narrows. Due to pressure loss, the refrigerant gas can not be supplied sufficiently. The depth b of the notch 20J is preferably equal to or greater than the height h of the notch 20J, so 1 / 7H or more is preferable, and when the depth b of the notch 20J exceeds 1 / 3H Unpreferable for practical use.
 本発明の第10の実施の形態におけるロータリー圧縮機を図22に示す。
 本実施の形態は、図22で説明する以外は、第9の実施の形態と同様であるので、第9の実施の形態で説明した図17から図20については説明を省略する。
 図22に示すように、本実施の形態においても、切り欠け部20Kは、下部軸受6の上端面6aの一部に溝を設けることで形成する。図22に示す切り欠け部20Kは、上端面6aに、曲面26の凹部によって形成している。
 本実施の形態においても、切り欠け部20Kの高さhは1/7H以上で1/3H以下であることが好ましく、切り欠け部20Kの深さbは1/7H以上で1/3H以下であることが好ましい。
 なお、第9の実施の形態の切り欠け部20Jと、第10の実施の形態切り欠け部20Kとで、高さh及び深さbを同一とした場合には、第9の実施の形態による切り欠け部20Jの方が、通路断面積が大きくなり、スムーズな冷媒ガス流れを生じるため、好ましい。
A rotary compressor according to a tenth embodiment of the present invention is shown in FIG.
The present embodiment is the same as the ninth embodiment except for the case described in FIG. 22, and therefore, the description of FIGS. 17 to 20 described in the ninth embodiment will be omitted.
As shown in FIG. 22, also in the present embodiment, the notch 20K is formed by providing a groove in a part of the upper end surface 6 a of the lower bearing 6. The notch 20K shown in FIG. 22 is formed by the concave portion of the curved surface 26 on the upper end face 6a.
Also in the present embodiment, the height h of the notch 20K is preferably 1 / 7H to 1 / 3H, and the depth b of the notch 20K is 1 / 7H to 1 / 3H. Is preferred.
In the case where the height h and the depth b are the same between the notch 20J of the ninth embodiment and the notch 20K of the tenth embodiment, the ninth embodiment is used. The cutaway portion 20J is preferable because the passage cross-sectional area is larger and a smooth refrigerant gas flow is generated.
 本発明の第11の実施の形態におけるロータリー圧縮機を図23から図27に示す。
 図23は、同ロータリー圧縮機の縦断面図、図24は図23におけるD-D線断面図、図25は図24の要部拡大図、図26は同ロータリー圧縮機の要部を示す斜視図、図27は同ロータリー圧縮機のシリンダの要部断面図である。なお、第1の実施の形態と同一部材には同一符号を付して説明を省略する。
 図23に示すように、本実施の形態では上部軸受5の下端には、後述する切り欠け部20Lが形成されている。
 図25及び図26に示すように、切り欠け部20Lは、その一端21をブレ-ド摺動溝12に、その他端22を吸入穴8のシリンダ4の内周面4aへの投影範囲X内に位置させている。
 また、図26及び図27に示すように、切り欠け部20Lは、シリンダ室8を形成する内周面4aに沿って、シリンダ4内径と同心円上に上部軸受5に形成されている。
 この切り欠け部20Lによって、図25に示す微小隙間8aには、吸入穴9が開口する吸入室から冷媒ガスが流れ込み、真空状態とはならない。
 なお、切り欠け部20Lの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至らない場合には、若干の真空状態が発生する。従って、切り欠け部20Lの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲X内に至ることが好ましい。一方、切り欠け部20Lの他端22が吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越える場合には、圧縮行程が少なくなり圧縮比が低下してしまう。従って、切り欠け部20Lの他端22は、吸入穴8のシリンダ4の内周面4aへの投影範囲Xを越えないことが好ましい。
The rotary compressor according to an eleventh embodiment of the present invention is shown in FIGS.
23 is a longitudinal sectional view of the rotary compressor, FIG. 24 is a sectional view taken along the line DD in FIG. 23, FIG. 25 is an enlarged view of an essential part of FIG. 24, and FIG. 26 is a perspective view showing an essential part of the rotary compressor FIG. 27 is a cross-sectional view of an essential part of a cylinder of the rotary compressor. The same members as those of the first embodiment are indicated by the same reference numerals and the description thereof is omitted.
As shown in FIG. 23, in the present embodiment, at the lower end of the upper bearing 5, a notch 20L described later is formed.
As shown in FIGS. 25 and 26, the notch 20L has one end 21 in the blade slide groove 12 and the other end 22 in the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4 It is located in.
Further, as shown in FIGS. 26 and 27, the notch 20L is formed on the upper bearing 5 concentrically with the inner diameter of the cylinder 4 along the inner circumferential surface 4a forming the cylinder chamber 8.
The refrigerant gas flows into the minute gap 8a shown in FIG. 25 from the suction chamber in which the suction hole 9 is opened by the cutout portion 20L, and the vacuum state is not established.
When the other end 22 of the notch 20L does not reach within the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, a slight vacuum state occurs. Therefore, it is preferable that the other end 22 of the notch 20L be within the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4. On the other hand, when the other end 22 of the notch 20L exceeds the projection range X of the suction hole 8 onto the inner peripheral surface 4a of the cylinder 4, the compression stroke is reduced and the compression ratio is reduced. Therefore, it is preferable that the other end 22 of the notch 20L does not exceed the projection range X of the suction hole 8 on the inner peripheral surface 4a of the cylinder 4.
 図27に示すように、切り欠け部20Lは、上部軸受5の下端面5aの一部に溝を設けることで形成する。図27に示す切り欠け部20Lは、下端面5aに、平坦な底面25の凹部によって形成している。
 また図27に示すように、シリンダ4の高さ(クランクシャフト3の軸方向)をH、切り欠け部20Lの高さをh、切り欠け部20Lの深さをbとしたとき、切り欠け部20Lの高さhは1/7H以上で1/3H以下であることが好ましく、切り欠け部20Lの深さbは1/7H以上で1/3H以下であることが好ましい。
 切り欠け部20Lの高さhが1/3Hを越えると加工に時間を要して生産性が悪化し、切り欠け部20Lの高さhが1/7Hを下回ると冷媒ガスの通路が狭くなりすぎ、圧力損失によって冷媒ガスが十分に供給されなくなる。また、切り欠け部20Lの深さbは切り欠け部20Lの高さhと同程度以上が好ましいことから、1/7H以上が好ましく、切り欠け部20Lの深さbが1/3Hを越えると実用上好ましくない。
As shown in FIG. 27, the notch 20 </ b> L is formed by providing a groove in a part of the lower end surface 5 a of the upper bearing 5. The notch 20L shown in FIG. 27 is formed on the lower end surface 5a by a concave portion of the flat bottom surface 25.
Further, as shown in FIG. 27, when the height of the cylinder 4 (the axial direction of the crankshaft 3) is H, the height of the notch 20L is h, and the depth of the notch 20L is b, the notch The height h of 20 L is preferably 1/7 H or more and 1/3 H or less, and the depth b of the notch 20 L is preferably 1/7 H or more and 1/3 H or less.
If the height h of the notch 20L exceeds 1 / 3H, processing takes time to deteriorate productivity, and if the height h of the notch 20L is less than 1 / 7H, the refrigerant gas passage narrows Due to pressure loss, the refrigerant gas can not be supplied sufficiently. The depth b of the notch 20L is preferably equal to or greater than the height h of the notch 20L, so 1 / 7H or more is preferable, and if the depth b of the notch 20L exceeds 1 / 3H Unpreferable for practical use.
 本発明の第12の実施の形態におけるロータリー圧縮機を図28に示す。
 本実施の形態は、図28で説明する以外は、第11の実施の形態と同様であるので、第11の実施の形態で説明した図23から図27については説明を省略する。
 図28に示すように、本実施の形態においても、切り欠け部20Mは、上部軸受5の下端面5aの一部に溝を設けることで形成する。図28に示す切り欠け部20Mは、下端面5aに、曲面26の凹部によって形成している。
 本実施の形態においても、切り欠け部20Mの高さhは1/7H以上で1/3H以下であることが好ましく、切り欠け部20Mの深さbは1/7H以上で1/3H以下であることが好ましい。
 なお、第11の実施の形態の切り欠け部20Lと、第12の実施の形態の切り欠け部20Mとで、高さh及び深さbを同一とした場合には、第11の実施の形態による切り欠け部20Lの方が、通路断面積が大きくなり、スムーズな冷媒ガス流れを生じるため、好ましい。
A rotary compressor according to a twelfth embodiment of the present invention is shown in FIG.
The present embodiment is the same as the eleventh embodiment except that it is described in FIG. 28, so that the description of FIGS. 23 to 27 described in the eleventh embodiment is omitted.
As shown in FIG. 28, also in the present embodiment, the notch 20M is formed by providing a groove in a part of the lower end surface 5 a of the upper bearing 5. The notch 20M shown in FIG. 28 is formed by the concave portion of the curved surface 26 on the lower end surface 5a.
Also in the present embodiment, the height h of the notch 20M is preferably 1 / 7H to 1 / 3H, and the depth b of the notch 20M is 1 / 7H to 1 / 3H. Is preferred.
The eleventh embodiment is the case where the height h and the depth b are the same between the notch 20L of the eleventh embodiment and the notch 20M of the twelfth embodiment. The notch 20L is preferable because the passage cross-sectional area is larger and a smooth refrigerant gas flow is generated.
 以上のように、本発明におけるロータリー圧縮機は、空調用の高効率圧縮機として用いることができ、使用冷媒としては、R410Aに関わらず、R407C等、すべてのHCFC22の代替冷媒用に適用できるほか、地球環境保護の観点から注目される二酸化炭素やアンモニア、ヘリウム等の自然冷媒にも適応することができる。 As described above, the rotary compressor according to the present invention can be used as a high efficiency compressor for air conditioning, and can be used as a substitute refrigerant for all HCFCs 22 such as R407C regardless of R410A as the refrigerant used. The present invention can also be applied to natural refrigerants such as carbon dioxide, ammonia, and helium, which are attracting attention from the viewpoint of global environmental protection.

Claims (13)

  1.  シリンダ内にはシリンダ室が形成され、
    前記シリンダ室は上部軸受と下部軸受とで閉塞され、
    前記シリンダ室内にはローラが配置され、
    前記シリンダにはブレ-ド摺動溝が形成され、
    前記ブレ-ド摺動溝には、ブレードとばねとが配設され、
    前記ブレードは、前記ばねによって前記ローラの外周面に押しつけられ、
    前記シリンダ室が、前記ブレ-ドにより、高圧側圧縮室と、吸入穴が開口する低圧側圧縮室とに区画されたロータリー圧縮機であって、
    一端を前記ブレ-ド摺動溝に位置させ、他端を前記吸入穴の前記シリンダの内周面への投影範囲内に位置させた切り欠け部を設けたことを特徴とするロータリー圧縮機。
    A cylinder chamber is formed in the cylinder,
    The cylinder chamber is closed by an upper bearing and a lower bearing,
    A roller is disposed in the cylinder chamber,
    A blade slide groove is formed in the cylinder,
    A blade and a spring are disposed in the blade sliding groove,
    The blade is pressed against the outer peripheral surface of the roller by the spring;
    A rotary compressor in which the cylinder chamber is divided by the blade into a high pressure side compression chamber and a low pressure side compression chamber in which a suction hole is opened,
    A rotary compressor characterized in that one end is positioned in the blade slide groove and the other end is positioned within a projection range of the suction hole on the inner peripheral surface of the cylinder.
  2.  前記切り欠け部を、前記シリンダ室を形成する内周面と、前記上部軸受が当接する前記シリンダの上端面とが接する角部に形成したことを特徴とする請求項1に記載のロータリー圧縮機。 The rotary compressor according to claim 1, wherein the cutaway portion is formed at a corner portion where an inner peripheral surface forming the cylinder chamber and an upper end surface of the cylinder on which the upper bearing abuts contact with each other. .
  3.  前記切り欠け部を、前記シリンダ室を形成する内周面と、前記下部軸受が当接する前記シリンダの下端面とが接する角部に形成したことを特徴とする請求項1に記載のロータリー圧縮機。 The rotary compressor according to claim 1, characterized in that the cutaway portion is formed at an angle portion where an inner peripheral surface forming the cylinder chamber and a lower end surface of the cylinder which the lower bearing abuts contact with each other. .
  4.  前記切り欠け部を、平坦な傾斜面によって形成したことを特徴とする請求項2又は請求項3に記載のロータリー圧縮機。 The said notch part was formed by the flat inclined surface, The rotary compressor of Claim 2 or Claim 3 characterized by the above-mentioned.
  5.  前記切り欠け部を、曲面によって形成したことを特徴とする請求項2又は請求項3に記載のロータリー圧縮機。 The said notch part was formed by the curved surface, The rotary compressor of Claim 2 or Claim 3 characterized by the above-mentioned.
  6.  前記切り欠け部を、角度の異なる複数の傾斜面によって形成したことを特徴とする請求項2又は請求項3に記載のロータリー圧縮機。 The rotary compressor according to claim 2 or 3, wherein the cutout portion is formed by a plurality of inclined surfaces having different angles.
  7.  前記切り欠け部を、平坦な傾斜面と曲面とによって形成したことを特徴とする請求項2又は請求項3に記載のロータリー圧縮機。 The said notch part was formed of the flat inclined surface and the curved surface, The rotary compressor of Claim 2 or Claim 3 characterized by the above-mentioned.
  8.  前記シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/5H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことを特徴とする請求項1から請求項7のいずれかに記載のロータリー圧縮機。 Assuming that the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b, the height h of the cutout is 1 / 7H to 1 / 5H. The rotary compressor according to any one of claims 1 to 7, wherein a depth b of the cutout portion is set to 1 / 7H or more and 1 / 3H or less.
  9.  前記切り欠け部を、前記下部軸受の上端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことを特徴とする請求項1に記載のロータリー圧縮機。 2. The rotary compressor according to claim 1, wherein the notch portion is formed by providing a groove along an inner circumferential surface forming the cylinder chamber on an upper end surface of the lower bearing.
  10.  前記切り欠け部を、前記上部軸受の下端面に、前記シリンダ室を形成する内周面に沿った溝を設けることで形成したことを特徴とする請求項1に記載のロータリー圧縮機。 2. The rotary compressor according to claim 1, wherein the cutaway portion is formed by providing a groove along an inner peripheral surface forming the cylinder chamber on a lower end surface of the upper bearing.
  11.  前記切り欠け部を、平坦な底面の凹部によって形成したことを特徴とする請求項8又は請求項9に記載のロータリー圧縮機。 The rotary compressor according to claim 8 or 9, wherein the cutaway portion is formed by a recess of a flat bottom surface.
  12.  前記切り欠け部を、曲面の凹部によって形成したことを特徴とする請求項8又は請求項9に記載のロータリー圧縮機。 10. The rotary compressor according to claim 8, wherein the cutaway portion is formed by a concave portion of a curved surface.
  13.  前記シリンダの高さをH、前記切り欠け部の高さをh、前記切り欠け部の深さをbとしたとき、前記切り欠け部の高さhを1/7H以上で1/3H以下とし、前記切り欠け部の深さbを1/7H以上で1/3H以下としたことを特徴とする請求項9から請求項12のいずれかに記載のロータリー圧縮機。 Assuming that the height of the cylinder is H, the height of the cutout is h, and the depth of the cutout is b, the height h of the cutout is 1 / 7H to 1 / 3H. The rotary compressor according to any one of claims 9 to 12, wherein a depth b of the cutout portion is set to 1 / 7H or more and 1 / 3H or less.
PCT/JP2011/001054 2010-02-24 2011-02-24 Rotary compressor WO2011105085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011525056A JPWO2011105085A1 (en) 2010-02-24 2011-02-24 Rotary compressor
CN2011800012075A CN102333957A (en) 2010-02-24 2011-02-24 Rotary compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-038342 2010-02-24
JP2010038342 2010-02-24
JP2010151773 2010-07-02
JP2010-151773 2010-07-02

Publications (1)

Publication Number Publication Date
WO2011105085A1 true WO2011105085A1 (en) 2011-09-01

Family

ID=44506512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001054 WO2011105085A1 (en) 2010-02-24 2011-02-24 Rotary compressor

Country Status (3)

Country Link
JP (1) JPWO2011105085A1 (en)
CN (1) CN102333957A (en)
WO (1) WO2011105085A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053361A (en) * 2016-12-21 2017-03-16 株式会社富士通ゼネラル Rotary Compressor
JP7462579B2 (en) 2021-01-12 2024-04-05 三菱電機株式会社 Compressor, air conditioner, compressor manufacturing method, and air conditioner manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443392A (en) * 2016-01-21 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air cylinder assembly thereof
CN107191380B (en) * 2017-07-28 2021-02-12 广东美芝制冷设备有限公司 Compression mechanism and compressor with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214492U (en) * 1988-07-12 1990-01-30
JPH05202875A (en) * 1992-01-29 1993-08-10 Hitachi Ltd Rotary compressor
JP2002188587A (en) * 2000-12-20 2002-07-05 Fujitsu General Ltd Rotary compressor
JP2008038697A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Multiple stage rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141481A (en) * 1997-11-06 1999-05-25 Sanyo Electric Co Ltd Rotary compressor
JPH11270480A (en) * 1998-03-23 1999-10-05 Sanyo Electric Co Ltd Closed rotary compressor
CN201288665Y (en) * 2008-09-18 2009-08-12 珠海格力电器股份有限公司 Cylinder for rotary compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214492U (en) * 1988-07-12 1990-01-30
JPH05202875A (en) * 1992-01-29 1993-08-10 Hitachi Ltd Rotary compressor
JP2002188587A (en) * 2000-12-20 2002-07-05 Fujitsu General Ltd Rotary compressor
JP2008038697A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Multiple stage rotary compressor
JP2010121546A (en) * 2008-11-20 2010-06-03 Hitachi Appliances Inc Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053361A (en) * 2016-12-21 2017-03-16 株式会社富士通ゼネラル Rotary Compressor
JP7462579B2 (en) 2021-01-12 2024-04-05 三菱電機株式会社 Compressor, air conditioner, compressor manufacturing method, and air conditioner manufacturing method

Also Published As

Publication number Publication date
CN102333957A (en) 2012-01-25
JPWO2011105085A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US11022120B2 (en) Scroll compressor with first and second compression chambers having first and second discharge start points
JP6578504B2 (en) Scroll compressor
JP2008014150A (en) Rotary compressor and refrigeration cycle device using the same
WO2011105085A1 (en) Rotary compressor
US20130101454A1 (en) Rotary compressor
CN214366711U (en) Rotary compressor
JP2017150425A (en) Two-cylinder type sealed compressor
JP5442638B2 (en) Rotary compressor
JP5079670B2 (en) Rotary compressor
JP2010065635A (en) Scroll compressor
JP4953974B2 (en) Rotary compressor
WO2010109864A1 (en) Reciprocating compressor
US20100233008A1 (en) Rotary fluid machine
WO2014064974A1 (en) Rotary compressor
KR102640864B1 (en) Scroll compressor
JP7378932B2 (en) scroll fluid machine
EP1500820A1 (en) Rotary compressor
JP4973148B2 (en) Rotary compressor
JP4407253B2 (en) Scroll compressor
JP5168169B2 (en) Hermetic compressor
KR20150081142A (en) A rotary compressor
EP2857688B1 (en) Rotary compressor
JP2012087665A (en) Rotary compressor
CN109026696B (en) Compressor pump body, compressor and air conditioner
JP2011179452A (en) Rotary compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001207.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011525056

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747052

Country of ref document: EP

Kind code of ref document: A1