WO2011104995A1 - Image processing device, image reading device, image forming device, method for deciding a specific color range, program, and computer-readable recording medium - Google Patents

Image processing device, image reading device, image forming device, method for deciding a specific color range, program, and computer-readable recording medium Download PDF

Info

Publication number
WO2011104995A1
WO2011104995A1 PCT/JP2010/073739 JP2010073739W WO2011104995A1 WO 2011104995 A1 WO2011104995 A1 WO 2011104995A1 JP 2010073739 W JP2010073739 W JP 2010073739W WO 2011104995 A1 WO2011104995 A1 WO 2011104995A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
image
specific
value
unit
Prior art date
Application number
PCT/JP2010/073739
Other languages
French (fr)
Japanese (ja)
Inventor
嘉之 中井
浩一 角田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2011104995A1 publication Critical patent/WO2011104995A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00023Colour systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00031Testing, i.e. determining the result of a trial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00045Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00082Adjusting or controlling
    • H04N1/00087Setting or calibrating

Definitions

  • the present invention relates to an image processing apparatus that reads an image from a recorded matter (original) such as a document and processes the image. More specifically, the present invention relates to an image processing apparatus that detects a specific pattern that specifies a copy-prohibited image included in a copy-prohibited image such as a banknote from a read image.
  • An image processing apparatus capable of precisely copying such an image has a function for preventing copying of an image (hereinafter referred to as a copy-prohibited image) that should be prohibited from printing or copying banknotes or securities. It has been. Specifically, the image processing apparatus stores a specific pattern that specifies a copy-prohibited image and determines whether or not the specific pattern can be detected from the read image. If the specific pattern can be detected from the read image (image data), it is determined that the image is a copy-prohibited image, and a process for prohibiting image duplication is performed.
  • the specific pattern has a color and a shape. Therefore, a color image (image that is a candidate for the specific pattern) included in the color area of the stored specific pattern is extracted from the read image, and binarized to determine whether the shape is the same as the specific pattern. To do.
  • the standard for detecting the specific pattern is set widely so that the specific pattern can be detected reliably, the possibility that the general image is erroneously determined as a copy-prohibited image increases.
  • the reference is set narrowly, there is a high possibility that the determination of a copy-prohibited image will be missed. Therefore, in order to ensure that the copy-prohibited image can be discriminated while reducing the possibility of erroneous determination, it is required to appropriately set the discrimination reference data for discriminating the specific pattern.
  • the discrimination reference data it is desirable to reset it every time the optical system is changed.
  • the case where the optical system is changed is, for example, when the CCD is changed to a cheaper manufacturer, when the color of the light source is changed, when the model is changed, and the optical system is changed. Further, it is desirable to set for each machine (image processing apparatus).
  • Patent Document 1 and Patent Document 2 disclose techniques relating to detection of such a copy-prohibited image.
  • the determination accuracy of a specific document such as a banknote is improved by determining a specific document (copy prohibited image) based on the type of image determined by the determination unit and the color distribution information of the image data.
  • Patent Document 1 is effective in improving the detection rate of a specific document and preventing erroneous detection in which a general document that is not a specific document is detected as a specific document.
  • Patent Document 2 a parameter that defines a color space in which a specific image (copy prohibited image) exists is stored in a storage unit, and input image data is processed using the parameter stored in the storage unit. Then, the processing data of the input image data is compared with the ideal processing data for the input image data, and the parameters are corrected so that the processing data of the input image data matches the ideal processing data based on the comparison result. Is disclosed. Patent Document 2 is effective for facilitating adjustment of image processing (color area of a specific image) for each model.
  • Japanese Patent Publication “JP-A-4-313166” (publication date: November 5, 1992) Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-333354” (Publication Date: November 21, 2003)
  • Patent Document 1 does not automate the setting of a specific color area for detection of a specific document. Moreover, there are the following two problems to adjust one by one at the time of machine production using the technique of Patent Document 2.
  • the first problem is that it is an operation that is necessary only for adjustment of detection of a specific image, and therefore an extra step is required.
  • the second problem is that the specific image is not detected when the color patch chart for adjustment is set as follows. For example, in the production process, when a process such as affixing vinyl to the color patch chart to prevent contamination is made and adjustments are made, or when a malicious third party intentionally creates a color clear folder on the color patch chart. This is the case where adjustment is made with a spread. In these cases, it is possible to copy bills and the like.
  • the present invention has been made in view of the above problems, and its object is to ensure that a specific pattern for specifying a copy-prohibited image included in a copy-prohibited image is read from the read image data without special adjustment.
  • An object of the present invention is to provide an image processing apparatus that can be detected.
  • the image processing apparatus of the present invention includes a reading unit that reads an original image in color and converts it into image data, and whether or not the image data includes a specific pattern that specifies copy prohibition.
  • a determination unit that performs determination based on a specific color that is a color of the specific pattern and a shape of the specific pattern, and the determination unit determines the specific value for each value of a plurality of color parameters included in the specific color.
  • An image processing apparatus that determines whether or not a specific color range that defines a range that can be recognized as a color parameter included in a color includes a plurality of color parameter values included in a determination target color.
  • a sample data storage unit storing sample data generated as ideal read data of a reference chart including known color patches of a plurality of colors;
  • Correction parameter calculating means for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart actually read by the reading means, so as to approach the value of the color parameter of the sample data;
  • a parameter storage unit that stores the calculated correction parameter, a correction unit that corrects a value of a color parameter of the image data based on the calculated correction parameter, and the reference based on the calculated correction parameter
  • a specific color range determining unit that calculates the specific color range using the value of the color parameter after the image data is corrected by the correcting unit.
  • the sample data storage unit stores sample data generated as ideal read data of a reference chart including a plurality of color patches whose densities are known in advance. Then, the correction parameter calculation means sets a correction parameter to be corrected so that the value of the color parameter of the reference image data that is the data of the reference image actually read by the reading means approaches the value of the color parameter of the sample data. calculate. Then, the parameter storage unit stores the calculated correction parameter.
  • the correction means corrects the value of the color parameter of the image data.
  • the specific color range determining means determines a specific color range that defines a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color as follows. decide.
  • the specific color range is calculated using the color parameter value after the color of the reference image data is corrected by the correction means.
  • a determination unit that determines whether or not the image data read by the reading unit includes a specific pattern that specifies copy prohibition is included in the calculated specific color range of the image data read by the reading unit. It is determined whether a plurality of color parameter values included in the color of the determination target (for example, pixel) are included.
  • the specific color range is calculated using the value actually corrected by each of the image processing apparatuses, thereby causing variations among image processing apparatuses, variations among apparatus models, and apparatus in the middle. It is possible to absorb all slight image changes and the like caused by changing or exchanging the parts for cost reduction or the like. Therefore, according to the above configuration of the present invention, it is possible to prevent a general image that is very similar to a copy prohibited image (specific image, specific document) from being erroneously detected as a copy prohibited image.
  • the present invention it is possible to reliably detect a specific pattern in a specific color range according to the image reading characteristics of each image processing apparatus, even if the image reading characteristics of the image processing apparatus differ from one image processing apparatus to another. Can be adjusted to any value. As a result, the setting value of the specific color range is optimally set for each image processing apparatus. Therefore, according to the above-described configuration of the present invention, the specific pattern can be reliably detected from the read image data by non-special adjustment.
  • the correction parameter for correcting the color parameter value of the reference image data so as to be the same as the color parameter value of the sample data corrects the color of the input image data so that all the devices are the same. Therefore, it is calculated in order to perform color balance adjustment. Therefore, this correction parameter can be used for color balance adjustment and setting of a specific color area. As described above, according to the present invention, since the specific color region can be set together with the color balance adjustment using the correction parameter, an extra step is not necessary.
  • FIG. 3 is a block diagram illustrating an internal configuration of an image reading unit and an image processing unit included in the image processing apparatus according to the embodiment of the present invention. It is a schematic diagram which shows the example of a reference
  • FIG. 1 It is a schematic diagram which shows the example of a specific pattern. It is a schematic diagram which shows the example of the partial pattern which comprises a part of specific pattern. It is a schematic diagram which shows the example of a specific pattern candidate image. It is a schematic diagram which shows the example of a determination window. It is a schematic diagram which shows the example of a template. It is a figure which shows the example of a pixel number range. It is a schematic diagram which shows the example which divided
  • FIG. 6 is an explanatory diagram of a reference chart that is also used for tilt adjustment of a document feeder and gamma adjustment of an image forming apparatus. It is a block diagram which shows the structure of the resolution conversion part shown in FIG. It is a schematic diagram which shows the example of the specific pattern with a base pattern. It is a schematic diagram which shows the structure of the image forming system provided with the image processing apparatus shown in FIG. It is a figure which shows the example of the calculation formula for determining a specific color range. It is a figure which shows the example of the calculation formula for determining a specific color range.
  • FIG. 3 is a block diagram illustrating a configuration of the image processing apparatus (image reading apparatus) 100 according to the present embodiment.
  • the image processing apparatus 100 includes a CPU 51 that performs calculations, a ROM 52 that stores programs necessary for the operation of the image processing apparatus 100, a RAM 53 that is a volatile memory that stores temporary data such as image data, and a display such as a liquid crystal panel.
  • a unit 54 and an operation unit 55 such as an input button are provided.
  • the display unit 54 displays information necessary for the user to operate the image processing apparatus 100, and the operation unit 55 receives input such as various setting inputs by user operation.
  • the display unit 54 and the operation unit 55 are an integrated operation panel (touch panel). Using this operation panel, the user can perform various processes and various settings for the image processing apparatus 100.
  • the CPU 51 is connected to the image reading unit 1, and the image reading unit 1 is connected to the image processing unit 4 that performs image processing on the output of the image sensor 12.
  • a control unit 56 and a storage unit 57 are connected to the image processing unit 4.
  • the control unit 56 includes a CPU that performs a calculation, a RAM that stores information associated with the calculation, a ROM that stores a program necessary for the calculation, and the like, and controls image processing in the image processing unit 4.
  • the storage unit 57 is composed of a nonvolatile memory or a hard disk.
  • the storage unit 57 stores sample data as will be described later.
  • the CPU 51 is connected to a transmission unit 58 that transmits the image data subjected to the image processing by the image processing unit 4 to an external device such as a personal computer.
  • the CPU 51 comprehensively controls the operation of each unit in the image processing apparatus 100.
  • the control unit 56 controls the image processing unit 4.
  • the CPU 51 and the control unit 56 may be configured integrally.
  • the image processing apparatus 100 includes a copying machine, a facsimile machine, a multifunction machine, or the like further provided with an image forming unit (printing device) that records an image formed based on image data on a recording sheet as shown in FIG.
  • the image forming apparatus may be used.
  • computers 102 and 103 and a digital camera 104 may be connected to the image processing apparatus 100.
  • the image processing apparatus 100 may be an image reading apparatus (scanner dedicated machine) that does not include the image forming unit.
  • FIG. 1 is a block diagram showing detailed internal configurations of the image reading unit 1 and the image processing unit 4.
  • the image reading unit 1 includes a light source 11 that irradiates a document, an image sensor 12 that converts a document image into an electrical signal, an amplifier 13 that is connected to the image sensor 12, and an A / D conversion unit 14.
  • the image processing unit 4 includes a shading correction unit 413, a gamma correction unit 414, and a color conversion unit 415.
  • the analog electrical signals of RGB are input from the image sensor 12 to the amplifier 13.
  • the amplifier 13 amplifies the RGB analog electrical signal with a predetermined amplification factor, and inputs the amplified RGB analog electrical signal to the A / D converter 14.
  • the A / D converter 14 converts RGB analog electrical signals into RGB signals that are RGB digital signals.
  • the RGB signal is composed of brightness values of each color of RGB in each of a plurality of pixels constituting the read original image.
  • the brightness value of each color corresponds to the reflectance of light with respect to the document image, that is, the density of each color included in the image on the document.
  • RGB signals that are digital signals converted by the A / D conversion unit 14 are input to the shading correction unit 413.
  • the shading correction unit 413 performs shading correction on the received RGB signal, and inputs the corrected RGB signal to the gamma correction unit 414.
  • the gamma correction unit 414 gamma-corrects the RGB signal input from the shading correction unit 413 and inputs the corrected RGB signal to the color conversion unit 415.
  • the color conversion unit 415 performs color conversion correction for correcting the colors of RGB in accordance with optical characteristics so that image data of almost the same color can be obtained from the same image in any image processing apparatus. By this color conversion correction, it is possible to absorb differences in luminance and color balance between the front and back surfaces due to performance variations between apparatuses or differences in light sources or light receiving elements.
  • the color conversion unit 415 is connected to the page memory 427 via the memory control unit 425.
  • the color conversion unit 415 temporarily inputs the RGB signal after color conversion correction to the page memory 427 via the memory control unit 425, and the page memory 427 temporarily stores image data composed of the RGB signals.
  • the memory control unit 425 and the page memory 427 may be configured as a part of the control unit 56.
  • the color conversion unit 415 and the memory control unit 425 include an image determination unit (determination unit) 40 that determines whether the read image is a copy-prohibited image, and an image represented by image data including RGB signals after color conversion correction. Is connected to an image quality processing unit 47 that performs image processing for improving the image quality of the image.
  • the color conversion unit 415 inputs the RGB signal after the color conversion correction to the image determination unit 40 and the image quality processing unit 47.
  • the image determination unit 40 includes a resolution conversion unit 43, a color difference calculation unit 44, a specific color extraction unit 45, and a specific pattern detection unit 46.
  • the resolution conversion unit 43 performs processing for converting the resolution of an image represented by image data composed of RGB signals. For example, the resolution conversion unit 43 converts 600 dpi image data to 100 dpi.
  • the color difference calculation unit 44 calculates the color difference between G and R, the color difference between G and B, and the color difference between R and B from the image data after resolution conversion.
  • the specific color extraction unit 45 determines whether the color of each pixel in the image is a specific color that is a color of a specific pattern that characterizes the copy prohibited image, A specific color pixel whose color is a pixel of a specific color is extracted from the read image. Then, binary image data in which the specific color pixel is distinguished from the other pixels is input to the specific pattern detection unit 46.
  • the specific pattern detection unit 46 performs a process of detecting a specific pattern from the image represented by the binary image data, thereby determining whether or not the specific pattern is included in the read image.
  • the read image is a duplication prohibited image including the specific pattern. If the specific pattern cannot be detected, the read image does not include the specific pattern, and is not a copy-prohibited image.
  • the specific pattern detection unit 46 outputs the determination result to the CPU 51.
  • the image quality processing unit 47 includes a region separation unit 471 that performs region separation processing, a scaling unit 472 that performs scaling processing, an MTF correction unit 473 that performs MTF correction processing, a background processing unit 474 that performs background processing, and a rotation that performs rotation processing. And a register 476 for storing various parameters.
  • the image quality processing unit 47 performs image processing for improving the image quality of the image represented by the image data on the image data composed of the RGB signals after the color conversion correction, and outputs the image data after the image processing to the CPU 51. .
  • the image represented by the image data output from the image quality processing unit 47 is a copy-prohibited image. Then, a process for prohibiting the output of the image data is executed.
  • the memory control unit 425 receives image data stored in the page memory 427 after the processing of the image data input from the color conversion unit 415 is completed by the image determination unit 40 and the image quality processing unit 47. Input to 47. Therefore, after the image processing of the image read from one side of the original by the first reading unit (not shown) of the image reading unit 1 is completed, the second reading unit (not shown) of the image reading unit 1 starts from the other side of the original. Image processing of the read image is performed.
  • the size and cost of the image processing apparatus 100 generated when two image determination units 40 and image quality processing units 47 are provided can be eliminated. be able to.
  • the gamma correction value in the gamma correction performed by the gamma correction unit 414 is calculated in advance by the parameter calculation unit 561 of the control unit 56 based on the result of reading the reference chart.
  • the reference chart is obtained by recording an image colored with a plurality of colors, each of which has a predetermined color and density, to be used as a reference for image processing. Correspond.
  • FIG. 2 is a schematic diagram showing an example of a reference chart.
  • the reference chart is formed of a plurality of color patches arranged vertically and horizontally, and each color patch is colored with one color having a predetermined color and density.
  • a color patch is recorded in which colors of B, G, R, BK1, BK2, C, M, and Y are colored with colors determined in 12 stages of density.
  • the density is indicated by a number from 1 to 12, and the larger the number, the higher the density.
  • One of BK1 and BK2 is black in a color image, and the other is black in a monochrome image.
  • each color patch is colored with each color in an actual reference chart.
  • the reference chart shown in FIG. 2 is an example, and the configuration of the reference chart such as a configuration with a reduced number of colors may be other configurations.
  • the storage unit 57 stores in advance sample data 571 generated as ideal read data, which is a sample of image data generated by actually reading the reference chart by the image reading unit 1.
  • the sample data 571 is configured to include target values of RGB signals generated by reading each color patch in the reference data.
  • the target value is an intensity value of the RGB signal generated for each color patch when the reference chart is read by an ideal image processing apparatus (image reading apparatus), and is ideal for each color patch included in the reference chart.
  • the sample data 571 is generated, for example, by reading the reference chart with a specific image reading apparatus as a standard.
  • the sample data 571 may be theoretically generated by a method such as simulating an ideal optical system state.
  • the image reading unit 1 actually reads the reference chart. Then, the control unit 56 obtains a gamma correction value by comparing the image data generated by reading and the sample data.
  • the image sensor 12 of the image reading unit 1 receives reflected light from each color patch in the reference chart, and outputs electrical signals of RGB colors for each color patch.
  • the shading correction unit 413 is an RGB signal for each color patch. To correct shading.
  • the control unit 56 includes a parameter calculation unit 561, and calculates the read value of the RGB signal corresponding to each color patch by averaging the read value of the RGB signal in each color patch subjected to the shading correction.
  • This read value is an intensity value of an RGB signal obtained by reading an image with the image reading unit 1. That is, the read value corresponding to the color patch is a value indicating the color obtained by actually reading each color patch included in the reference chart by the image processing apparatus 100.
  • the control unit 56 reads the sample data 571 from the storage unit 57 and compares the target value of the RGB signal corresponding to each color patch with the read value of the RGB signal subjected to the shading correction by the shading correction unit 413, thereby obtaining the gamma. Calculate the correction value.
  • FIG. 4 is a conceptual diagram showing an outline of a method for calculating a gamma correction value.
  • the target values of the RGB signals are R target , G target and B target
  • the read values of the RGB signals corresponding to the color patches are R in , G in and B in .
  • the control unit 56 associates the target values and read values of the R signals corresponding to the same color patch with each other and arranges them in order of signal intensity.
  • R in (i) and R target (i) are R signals corresponding to the same color patch.
  • (b) is 4, a corresponding curve showing the correspondence between the read value R in the target value R target of the R signal, the corresponding curve for converting the read value R in the target value R target It is a gamma curve.
  • control unit 56 linearly interpolates the read value R in and the target value R target so that the read value has a one-to-one correspondence with an arbitrary read value of the R signal and the gamma curve shown in FIG.
  • a correspondence relationship with the corresponding gamma correction value is obtained, and a table representing the correspondence relationship between the obtained read value and the gamma correction value is generated.
  • the read value included in this table is a value obtained by linear interpolation of the read value R in generated for each color patch
  • the gamma correction value is a value obtained by linear interpolation of the target value R target for each color patch.
  • the read value of the R signal and the gamma correction value are associated one-to-one, and by reading the gamma correction value associated with the read value from the table, an arbitrary read value is obtained.
  • the target value can be converted into a gamma correction value obtained by linear interpolation.
  • control unit 56 generates a table representing a correspondence relationship between the read value of the G signal and the gamma correction value from the read value G in of the G signal and the target value G target , and reads the read value B of the B signal. From the in and target value B target , a process for generating a table representing the correspondence between the read value of the B signal and the gamma correction value is performed.
  • the control unit 56 inputs the generated table for each of RGB to the gamma correction unit 414.
  • the gamma correction unit 414 stores the input table in a non-volatile memory, and thereafter uses the stored table as an LUT (look-up table) to convert the read value of the RGB signal into a gamma correction value. By doing so, the gamma correction of the RGB signal is executed.
  • control unit 56 causes the parameter calculation unit 561 to calculate a correction coefficient used for processing performed by the color conversion unit 415 based on the result of reading the reference chart.
  • the control unit 56 compares the read value of the RGB signal gamma corrected by the gamma correction unit 414 with the target value of the RGB signal corresponding to each color patch of the reference chart, thereby performing color conversion executed by the color conversion unit 415.
  • a correction coefficient for correction is calculated.
  • the color conversion correction process performed by the color conversion unit 415 is a process for converting the read value of the RGB signal to a value close to the target value so that the color of the read image is substantially the same as the color of the image indicated by the sample data. It is.
  • the color conversion unit 415 converts RGB signals by matrix calculation.
  • the ideal relationship between the RGB signal read values R in , G in and B in and the RGB signal target values R target , G target and B target is expressed by the following equation (1).
  • R 11 , R 12 , R 13 , G 11 , G 12 , G 13 , B 11 , B 12 , and B 13 are correction coefficients for color conversion correction.
  • FIG. 5 is a conceptual diagram showing an outline of a method for calculating a correction coefficient for color conversion correction.
  • the control unit 56 associates the target value of the R signal corresponding to the same color patch with the read value of the RGB signal.
  • the control unit 56 calculates the coefficients R 11 , R 12 and R 13 in the relational expression by executing the least square method using the created N relational expressions.
  • the relational expression G target (i) G 11 R in (i) + G 12 G in (i) + G 13 B in (i) is created. Then, the coefficients G 11 , G 12, and G 13 in the relational expression are calculated by executing the least square method using the created N relational expressions.
  • the control unit 56 calculates the correction coefficients R 11 , R 12 , R 13 , G 11 , G 12 , G 13 , B 11 , B 12, and B 13 for color conversion correction, and the calculated correction coefficients.
  • the color conversion unit 415 stores the input correction coefficient, and thereafter uses the stored correction coefficient to perform a matrix operation represented by the following equation (2), thereby inputting the correction coefficient from the gamma correction unit 414.
  • the color conversion correction is performed to convert the read values R in , G in and B in of the RGB signals into R, G and B in the equation (2).
  • the correction coefficient (correction parameter) for the gamma correction value and the color conversion correction is a sample which is a sample of image data generated by reading the reference chart from the RGB signal obtained by actually reading the reference chart. Calculated to get as close to the data as possible. Characteristics such as optical characteristics when the image reading unit of the image processing apparatus (image reading apparatus) reads an image differ depending on each image reading unit. Therefore, even if the same image is read, the obtained RGB signals differ depending on the image processing apparatus.
  • the gamma correction value and the color conversion correction correction coefficient are calculated so that the read value read from the reference chart is as close as possible to the sample data, and the obtained RGB signal is subjected to gamma correction and color conversion correction. Therefore, it becomes as follows.
  • the RGB signals after correction are roughly the same for any image processing device equipped with an image reading unit, unless there is a design change or a component change such as a CCD that is an image sensor for reading or a xenon lamp that is a light source. It becomes the value.
  • the corrected RGB signal obtained is almost equivalent to the RGB signal that can be generated by an ideal image processing apparatus.
  • the value of the corrected RGB signal changes (reference chart)
  • the corrected value of the read data of the color patch may not be substantially equal to the value of the sample data).
  • the specific color range for detecting the specific pattern is fixed, the detection rate of the specific pattern may decrease.
  • each value (R, G, B, G) of a plurality of color parameters included in a specific color that is a color of a specific pattern is determined from the RGB signal values of the corrected color patch.
  • a specific color range that defines a range that can be recognized as a color parameter included in the specific color is calculated for each of (R, GB, RB). Therefore, even if the adjustment is made for some reason, the detection rate can be kept from dropping even when the color balance is out of the reference.
  • FIG. 6 is a block diagram showing an internal configuration of the specific color extraction unit 45 and input / output in the image determination unit 40.
  • the value of the RGB signal after color conversion correction is input from the color conversion unit 415 or the memory control unit 425 to the resolution conversion unit 43.
  • the resolution conversion unit 43 performs processing for converting the resolution of an image represented by image data composed of RGB signal values. Specifically, the resolution conversion unit 43 reduces the pixels in the image by averaging the RGB signal values between adjacent pixels, or interpolates the RGB signal values between adjacent pixels. Process to increase. For example, if the resolution of the read image is too large, the amount of data becomes too large and it takes time for the image determination unit 40 to process. Therefore, the image determination unit 40 converts 600 dpi image data into 100 dpi. The resolution is converted to an appropriate resolution for processing.
  • the resolution conversion unit 43 includes a main scanning conversion unit 31, a sub-scanning conversion unit 32, a setting register 34, and a memory unit 33.
  • the main scanning conversion unit 31 converts the resolution of the image data in the scanning direction to a predetermined resolution. For example, 600 dpi RGB 8-bit (256 gradations) image data is converted to 100 dpi by taking an average value of 6 pixels.
  • the sub-scanning conversion unit 32 converts the resolution of the image data in the sub-scanning direction to a predetermined resolution. Similar to the main scanning direction, for example, 600 dpi RGB 8-bit image data is converted to 100 dpi by taking an average value of 6 pixels. However, in the sub-scanning direction, the image may be scaled by setting the moving speed of the optical system, and the resolution conversion magnification is not constant. Therefore, in the sub-scanning direction, the resolution is scaled according to the magnification set in advance in the setting register 34 in order to set the resolution to 100 dpi.
  • the memory unit 33 is a storage unit that temporarily stores data of a plurality of lines in the sub-scanning direction when the sub-scanning conversion unit 32 performs the resolution conversion operation in the sub-scanning direction.
  • the resolution conversion unit 43 inputs the RGB signal after the resolution conversion to the color difference calculation unit 462.
  • the color difference calculation unit 44 receives the RGB signal value input from the resolution conversion unit 43, the (G ⁇ R) value obtained by subtracting the R signal value from the G signal value, and the B signal value from the G signal value. A value (GB) obtained by subtracting the value and a value (RB) obtained by subtracting the value of the B signal from the value of the R signal are calculated. If each RGB signal value is represented by 8 bits (256 gradations), each of the values (GR), (GB), and (RB) may be a negative value. Therefore, it is represented by 9 bits. Each value of R, G, B, (GR), (GB), and (RB) corresponds to a color parameter value for extracting a specific color in the present invention.
  • the color difference calculation unit 44 inputs R, G, B, (GR), (GB), and (RB) values to the specific color extraction unit 45.
  • R, G, B, (GR), (GB), and (RB) are color parameters.
  • the color parameter is not limited to these.
  • the specific color extracting unit 45 detects the color of the pixel from the image read by the image reading unit 1 in order to easily detect a specific image pattern included in the copy prohibited image and specifying the copy prohibited image. Performs a process of extracting a specific color pixel within a specific color range of the specific pattern.
  • the specific color extraction unit 45 includes a comparator 451 and a setting register 452, and R, G, B, (GR), (GB), (R ⁇ ) from the color difference calculation unit 44. B) Each signal is input to the comparator 451.
  • the setting register 452 stores a specific color range in which the signal range of each of R, G, B, GR, GB, and RB is defined as a range that expresses the color of the specific pattern.
  • the specific color range is determined by setting a threshold value that defines an upper limit and a lower limit for each of R, G, B, GR, GB, and RB.
  • the specific color range includes a lower limit value R min and an upper limit value R max of the value of the R signal, and a lower limit value G of the value of the G signal for determining that the pixel color is the color of the specific pattern.
  • G max B signal lower limit value B min and upper limit value B max , (GR) lower limit value (GR) min and upper limit value (GR) max , (G From the lower limit (GB) min and upper limit (GB) max of the value of -B), the lower limit (RB) min and upper limit (RB) max of the value of (RB) Become.
  • the binarized image data (binary image data) is sent to a specific pattern detection unit in order to determine whether the shape is a specific pattern shape.
  • the value of the setting register is calculated at the time of color balance adjustment in which the values of gamma correction and color correction are adjusted using the reference chart.
  • the specific color range of the specific pattern can be set more finely.
  • the image processing apparatus 100 according to the present embodiment may be configured to set the specific color range using other color parameters.
  • the comparator 451 outputs R, G, B, (GR), (GB), (R ⁇ ) input from the color difference calculation unit 44 for each pixel (determination target) included in the read image data.
  • Each value and the specific color range stored in the setting register 452 are compared to determine whether each value (each signal) is included in the specific color range. That is, the comparator 451 has an R value (R signal) of R min or more and R max or less, a G value (G signal) of G min or more and G max or less, and a B value (B signal) of B min.
  • the comparator 451 determines that the pixel color is a specific color when the values of R, G, B, (GR), (GB), and (RB) are all included in the specific color range.
  • the pixel value which is a value corresponding to the pixel, is determined to be 1 (hereinafter also referred to as black).
  • the comparator 451 determines the pixel to be determined when any of R, G, B, (GR), (GB), and (RB) is out of the specific color range. The color is determined not to be a specific color, and the pixel value corresponding to the pixel is determined to be 0 (hereinafter also referred to as white).
  • the comparator 451 determines a pixel value for each pixel included in the read image data, and outputs the binary image data representing the pixel value of each pixel as a binary value of 1 or 0 to the specific pattern detection unit 46. input.
  • the pixel value corresponding to each pixel is represented by 1 bit of 0 or 1 by the processing of the comparator 451, so the data amount for each pixel is 1/24.
  • the setting register 452 stores a specific color range for each of a plurality of types of specific patterns related to a plurality of types of copy-prohibited images.
  • the comparator 451 repeats the process for the number of specific color ranges stored in the setting register 452, and outputs binary image data for each of a plurality of types of specific patterns. Note that a plurality of specific color extraction units 45 corresponding to the number of types of specific patterns may be provided in parallel, and each specific color extraction unit 45 may output binary image data for each specific pattern.
  • the setting register 452 stores a specific color range common to the plurality of types of specific patterns, and the comparator 451 is common to the plurality of types of specific patterns. Value image data may be output.
  • the binarized binary image data is input to the specific pattern detection unit 46.
  • the specific pattern detection unit 46 Before describing the specific pattern detection unit 46, a method for calculating a specific color range at the time of color balance adjustment will be described with reference to FIG. explain. Hereinafter, a case where the specific color is vermilion and the specific pattern is vermillion on a gift certificate will be described as an example.
  • the RGB value (read value) of the color patch of the reference chart 23 read by the image reading unit 1 at the time of color balance adjustment approaches the RGB value (target value) of the sample data 571.
  • Correction is performed by the gamma correction unit 414 and the color conversion unit 415.
  • the R patch, the G signal, and the B signal of the red twelfth patch after correcting the read data of the color patch of the reference chart 23 are R r12 , G r12 , and B r12 , respectively.
  • the values of the R signal, G signal, and B signal of the red No. 6 patch after correcting the data are R r6 , G r6 , and B r6 , respectively.
  • black, red, blue, green, cyan, magenta, and yellow color patches are used.
  • the red color patch is used to define the specific color range.
  • the threshold value is calculated.
  • the yellow specific color is calculated using a yellow patch
  • the black specific color is calculated using a black patch.
  • the upper limit (light for RGB) values R max , G max , B max , (G ⁇ ) of the values of R, G, B, (GR), (GB), (RB) in the specific color region R) max , (GB) max , (RB) max , and lower limit (dark for RGB) values R min , G min , B min , (GR) min , (GB) min , (RB) min is expressed as shown in FIG.
  • This equation is actually read by the image reading unit 1 even if the characteristics of the image reading unit 1 vary with various light sources (xenon lamps, LEDs, cold cathode tubes, etc.) and various light receiving sensors (CCDs and CISs of various manufacturers). This is obtained in advance by experiments so that the change in the above characteristics can be absorbed by using the reading value of the color chart.
  • “(GR) min” is simply described as “GRmin”.
  • the values of R r12 , G r12 , B r12 after adjusting the cover balance of a certain reading device are 149, 58, 23, respectively, and the values of R r6 , G r6 , B r6 are 203, 161, respectively.
  • the RGB values of the sample data for the red 12th patch are 150, 52, and 23, and the RGB values of the sample data for the red 6th patch are 199, 164, and 135, respectively.
  • the reading device is a reading device that can only be adjusted so that the value of R is slightly increased and the value of G is decreased when a red image in the middle density portion is read. When used as a color scanner or a color copier, Since the difference from the sample data is small, it is hardly a problem.
  • FIG. 19 shows a specific pattern included in the shareholder special coupon as an example of the specific pattern.
  • the base pattern 264 is printed in a color similar to the specific color. .
  • the color of the base pattern 264 is extracted, and the arc cannot be detected depending on the angle at which the shareholder coupon is placed on the reading device. May not be detected, and a counterfeit coupon may be printed.
  • the formula for calculating the specific color range is a formula set in the image processing apparatus 100 at the time of shipment.
  • FIG. 21 shows an example in which the color of the specific pattern is vermilion. However, if the color of the specific pattern is changed, the formula and the color of the color patch to be used are changed.
  • a difference between a target value that is an RGB value of the sample data 571 and a correction value that is a corrected value is obtained.
  • the difference between the target value and the correction value is obtained, for example, by subtracting (G r12 -R r12 ) from (g r12 -r r12 ) if (GR) min .
  • (g r12 -r r12 ) may be obtained by subtracting from (G r12 -R r12 ).
  • the correction value is a gamma value so that the RGB value (read value) of the color patch of the reference chart 23 read by the image reading unit 1 approaches the RGB value (target value) of the sample data 571.
  • the values are corrected by the correction unit 414 and the color conversion unit 415.
  • the values (correction values) of the R signal, the G signal, and the B signal of the red twelfth patch are respectively R r12 , G r12 . It is assumed that B r12 and the values (correction values) of the R signal, the G signal, and the B signal of the red sixth patch are R r6 , G r6 , and B r6 , respectively.
  • the target values of the R signal, G signal, and B signal of the red 12th patch of the sample data 571 are set to r r12 , g r12 , and b r12 , respectively, and the R signal and G signal of the red 6th patch of the sample data 571 are used.
  • the target values of the B signal are r r6 , g r6 , and b r6 , respectively.
  • “(GR) min” is simply described as “GRmin”.
  • the difference between the target value and the correction value is smaller (smaller than ⁇ 5 in FIG. 22) or larger (larger than 5 in FIG. 22) in the allowable range ( ⁇ 5 to 5 (absolute value within 5) in FIG. 22).
  • the target value is used in the formula for calculating the specific color range.
  • the correction value is used in the formula for calculating the specific color range.
  • the allowable range ( ⁇ 5 or more and 5 or less in FIG. 22) of the difference between the target value for changing the equation of FIG. 22 and the adjusted value is a value determined in advance when the image processing apparatus 100 is shipped.
  • This permissible range can prevent counterfeiting of banknotes, etc., based on whether or not there is a sense of incongruity when banknotes having a specific color are actually printed.
  • the criterion for whether or not there is a sense of incongruity may be determined by, for example, copying a document including a specific pattern by changing the difference and judging by a plurality of people.
  • the formula for calculating the specific color range shown in FIG. 22 is also a formula set in the image processing apparatus 100 at the time of shipment, as in FIG.
  • an example of an expression for extracting a vermilion specific pattern has been described.
  • the expression shown in FIG. 22 and the color patch used are changed.
  • the calculation of the specific color range is performed by the specific range determination unit 562 of the control unit 56.
  • a reference chart used for adjusting the inclination of the document feeder and the color balance of the image processing apparatus as shown in FIG. 17 is used during production, and the gamma adjustment chart as shown in FIG. Man may use.
  • the service person of the apparatus can adjust the color balance even if there is no special equipment or the environment is not prepared.
  • the specific pattern detection unit 46 performs a process for detecting a partial pattern constituting a part of the specific pattern from the image, and performs a process for detecting the specific pattern from the image when the partial pattern is detected.
  • FIG. 7 is a schematic diagram illustrating an example of a copy prohibition image
  • FIG. 8 is a schematic diagram illustrating an example of a specific pattern.
  • FIG. 7 shows a gift certificate as an example of a copy prohibited image, and a specific pattern 61 is included in the copy prohibited image.
  • the specific pattern 61 is a pattern having a shape in which a quotient character is written in a circle.
  • a plurality of types of copy-prohibited images may include a common specific pattern, and a plurality of types of copy-prohibited images may include individual specific patterns. If the specific pattern 61 as shown in FIG. 8 is included in the image, it can be determined that the image is a copy-prohibited image. On the other hand, when the specific pattern is not included in the image, it can be determined that the image is not a copy prohibited image. Note that the specific pattern is not limited to the example illustrated in FIG. 8, and a plurality of types of figures such as red marks included in the banknote are set as the specific pattern.
  • FIG. 9 is a schematic diagram showing an example of a partial pattern constituting a part of the specific pattern.
  • 9 shows an example in which the solid line portion is a partial pattern 62, and the partial pattern 62 is an arc that forms part of the specific pattern 61 shown in FIG.
  • portions other than the partial pattern 62 in the specific pattern 61 are indicated by dotted lines.
  • FIG. 10 is a schematic diagram showing an example of a specific pattern candidate image.
  • the radius of the arc of the partial pattern 62 is n (mm), and the portion surrounded by the circle of the radius n including the partial pattern 62 may be the specific pattern 61. . Therefore, a portion surrounded by a circle with a radius n including the partial pattern 62 in the image is the specific pattern candidate image 63.
  • portions other than the partial pattern 62 of the circle including the partial pattern 62 are indicated by broken lines, and the range of the specific pattern candidate image 63 is indicated by hatching.
  • a partial pattern is set for each of the other types of specific patterns.
  • the shape of the partial pattern is not limited, it may be a shape that can be easily detected as shown in FIG. 9, and the shape of the specific pattern candidate image 63 can be easily determined as shown in FIG. 10. is necessary.
  • the specific pattern detection unit 46 sets a determination window having a size capable of including the partial pattern in the image, and moves the determination window in the image to determine whether or not the partial pattern is included in the determination window. Then, a process of detecting a partial pattern from the image is performed.
  • FIG. 11 is a schematic diagram showing an example of the determination window.
  • the determination window 64 has a rectangular shape in which each side is parallel to the main scanning direction and the sub-scanning direction when the image is read using the image reading unit 1.
  • the size 62 is included.
  • FIG. 11 shows a state in which the partial pattern 62 is included in the determination window 64 in order to show the relationship between the size of the determination window 64 and the partial pattern 62.
  • a specific color that is an image of a specific color among the pixels in the determination window 64 The pixels are concentrated on the partial pattern, and other pixels that are not specific color pixels should be distributed in other portions.
  • the specific pattern detection unit 46 sets the size of the determination window 64 as information for setting the shape of the partial pattern, and sets each area obtained by dividing the inside of the determination window 64 in order to examine the distribution of specific color pixels.
  • FIG. 12 is a schematic diagram showing an example of the template.
  • FIG. 12A shows the pixel distribution when the partial pattern 62 is included in the determination window 64.
  • the determination window 64 includes six line data 641, 642, 643, 644, 645, and 646 arranged in the sub-scanning direction, and each line data is arranged in the main scanning direction 42. Pixels are included.
  • a black cell shown in FIG. 12A represents a specific color pixel having a pixel value of 1, and a white cell represents a pixel having a pixel value of 0.
  • the pixel values of the pixels corresponding to the coordinates (0,0) to (15,0) and the coordinates (26,0) to (41,0) are 0, and the coordinates (16,0) Pixels corresponding to (25, 0) are specific color pixels having a pixel value of 1.
  • FIG. 12 shows the template 70 compared with the determination window 64 in which the partial pattern 62 is included.
  • the template 70 includes a first line 71, a second line 72, a third line 73, a fourth line 74, a fifth line 75, and a sixth line 76 corresponding to the line data 641 to 646 in the determination window 64, respectively.
  • Each of the first line 71 to the sixth line 76 has 42 pixels in the main scanning direction and is divided into three regions in the main scanning direction.
  • the first line 71 includes a first area 71a from coordinates (15,0) to (26,0), coordinates (11,0) to (14,0), and coordinates (27,0) to (30,0).
  • the second regions 71b and 71b are divided into coordinates (0, 0) to (10, 0) and third regions 71c and 71c from coordinates (31, 0) to (41, 0).
  • the second line 72 includes a first area 72a from coordinates (17,1) to (24,1), coordinates (11,1) to (16,1), and coordinates (25,1) to (30,1).
  • the second regions 72b and 72b are divided into coordinates (0, 1) to (10, 1) and third regions 72c and 72c from coordinates (31, 1) to (41, 1).
  • the third line 73 includes a first area 73a from coordinates (13, 2) to (28, 2), coordinates (8, 2) to (12, 2), and coordinates (29, 2) to (33, 2).
  • the second regions 73b and 73b are divided into the third regions 73c and 73c having the coordinates (0, 2) to (7, 2) and the coordinates (34, 2) to (41, 2).
  • the fourth line 74 includes a first area 74a from coordinates (11, 3) to (30, 3), coordinates (7, 3) to (10, 3), and coordinates (31, 3) to (34, 3).
  • the second regions 74b and 74b, the coordinates (0, 3) to (6, 3), and the coordinates (33, 3) to (41, 3) are divided into third regions 74c and 74c.
  • the fifth line 75 includes a first area 75a from coordinates (10, 4) to (31, 4), coordinates (5, 4) to (9, 4), and coordinates (32, 4) to (36, 4).
  • the second regions 75b and 75b, the coordinates (0, 4) to (4, 4), and the coordinates (37, 4) to (41, 4) are divided into third regions 75c and 75c.
  • the sixth line 76 includes a first area 76a from coordinates (7,5) to (34,5), coordinates (4,5) to (6,5) and coordinates (35,5) to (37,5).
  • the second regions 76b and 76b are divided into coordinates (0, 5) to (4, 5) and third regions 76c and 76c from coordinates (38, 5) to (41, 5).
  • the shape of the determination window 64 is set according to the overall shape of the template 70.
  • Each region in the template 70 is set according to the distribution of specific color pixels when the partial pattern 62 is included in the determination window 64. That is, the first area 71a and the second areas 72b to 76b are areas where specific color pixels concentrate when the partial pattern 62 is included in the determination window 64, and the other areas hardly include specific color pixels. It is an area.
  • the specific pattern detection unit 46 further stores a pixel number range that defines a range of the number of specific color pixels included in each area when the partial pattern 62 is included in the determination window 64.
  • FIG. 13 is a chart showing an example of the pixel number range.
  • black in FIG. 13 represents “specific color pixels”, and “9 ⁇ black” represents that there are nine or more specific color pixels.
  • the specific color pixel is treated as 1 (black) by binarization. Since the first area 71a of the first line 71 and the second areas 72b to 76b of the second line 72 to the sixth line 77 have specific color pixels concentrated when the partial pattern 62 is included in the determination window 64, The pixel number range is set so as to include many specific color pixels. In the other areas, when the partial pattern 62 is included in the determination window 64, the specific color pixels are hardly included. Therefore, the pixel number range is set so that the specific color pixels are hardly included.
  • the specific pattern detection unit 46 stores a template and a pixel number range for each of a plurality of types of specific patterns.
  • the specific pattern detection unit 46 determines the positions of the determination window 64 in the main scanning direction and the sub scanning direction in the image represented by the binary image data input from the specific color extraction unit 45, and determines among the pixels in the image. From the pixels included in the window 64, the number of specific color pixels included in each region defined by the template 70 is measured. Specifically, the number of pixels having a pixel value of 1 among the pixels included in each region is measured.
  • the specific pattern detection unit 46 compares the measured number of specific color pixels in each area with the pixel number range stored for each area, and the number of specific color pixels in all areas is the number of pixels. If it is included in the range, it is determined that the partial pattern 62 has been detected. The specific pattern detection unit 46 determines that the partial pattern 62 cannot be detected when there is a region where the number of specific color pixels is not included in the pixel number range, and sets the determination window 64 in the image in the main scanning direction. Similarly, the process of detecting the partial pattern 62 is performed by moving the pixel.
  • the specific pattern detection unit 46 moves the determination window 64 by one pixel in the sub-scanning direction within the image, and similarly scans in the main scanning direction. I do.
  • the specific pattern detection unit 46 determines that the specific pattern is not included in the read image.
  • the specific pattern detection unit 46 detects the partial pattern 62
  • the specific pattern detection unit 46 extracts the specific pattern candidate image 63 including the partial pattern 62 included in the determination window 64 from the image represented by the binary image data.
  • the specific pattern detection unit 46 determines whether or not the specific pattern candidate image 63 is a specific pattern based on the distribution of specific color pixels included in the extracted specific pattern candidate image 63. Specifically, the specific pattern detection unit 46 divides the specific pattern candidate image 63 into a plurality of regions, and when the number of specific color pixels included in each region is within a predetermined range, the specific pattern detection unit 46 It is determined that the candidate image 63 is the specific pattern 61.
  • the specific pattern candidate image 63 is divided into a plurality of areas in accordance with area setting data that defines the divided areas.
  • FIG. 14 is a schematic diagram in which the specific pattern candidate image 63 is divided into a plurality of regions in accordance with the region setting data.
  • the circular specific pattern candidate image 63 is divided into concentric circles.
  • the region surrounded by the circumference having the smallest radius is the first divided region 631
  • the region surrounded by the circumference and the circle having the second smallest radius is the second divided region 632, and the circumference thereof.
  • a region surrounded by a circle having the third smallest radius is a third divided region 633
  • a region surrounded by the circle and the outer periphery is a fourth divided region 634.
  • the specific pattern detection unit 46 stores area setting data that defines the divided areas.
  • the specific pattern detection unit 46 further stores a specific color pixel number range that defines a range of the number of specific color pixels included in each region obtained by dividing the specific pattern according to the region setting data.
  • the specific pattern is divided according to the area setting data, it is divided into a first divided area, a second divided area, a third divided area, and a fourth divided area as described above.
  • FIG. 15 is a conceptual diagram showing an example of a specific color pixel number range.
  • the range of the number of specific color pixels in the first divided region is 246 or more and 300 or less
  • the range of the number of specific color pixels in the second divided region is 250 or more and 302 or less
  • the third divided region In the example, the range of the number of specific color pixels is 266 or more and 310 or less
  • the range of the number of specific color pixels in the fourth divided region is 480 or more. Therefore, although details will be described later, for example, the range of the number of specific color pixels in the first divided region 631 of the specific pattern candidate image 63 and the number of specific color pixels in the first divided region shown in FIG. Is compared.
  • the example shown in FIG. 15 is an example in the case where the specific pattern is the specific pattern 61 shown in FIGS. 7 and 8, and the specific color pixel included in each area obtained by dividing the specific pattern 61 as shown in FIG. It is determined according to the number.
  • the specific pattern detection unit 46 stores region setting data and a specific color pixel number range for each of a plurality of types of specific patterns.
  • the specific pattern detection unit 46 divides the specific pattern candidate image 63 into a plurality of divided areas determined by the area setting data, and measures the number of specific color pixels included in each divided area. Specifically, the number of pixels having a pixel value of 1 among the pixels included in each divided region is measured. Next, the specific pattern detection unit 46 compares the measured number of specific color pixels in each divided region with the pixel number range in each divided region defined by the specific color pixel number range, and the specific color in all the divided regions. When it is determined that the specific pattern 61 is detected when the number of pixels is included in the pixel number range, it is determined that the specific pattern is included in the read image.
  • the specific pattern detection unit 46 determines that the specific pattern 61 is not detected when there is a divided region where the number of specific color pixels is not included in the pixel number range, and the specific pattern is included in the read image. Is determined not to be included. The specific pattern detection unit 46 finally outputs the determination result to the CPU 51.
  • the specific pattern detection unit 46 determines the number of specific patterns with which the detected partial pattern 62 is common. Only the specific pattern detection process is repeated. The specific pattern detection unit 46 repeats the specific pattern detection process for each of a plurality of types of specific patterns.
  • a specific pattern detection unit 46 is connected to each of the plurality of specific color extraction units 45 provided in parallel, and each specific pattern detection unit 46 detects specific patterns for binary image data output from each specific color extraction unit 45. The form which performs this process may be sufficient.
  • the CPU 51 controls the processing of the image data according to the determination result output from the specific pattern detection unit 46. That is, when the determination result that the image read by the image reading unit 1 does not include the specific pattern is output, the CPU 51 stores the image data output by the image quality processing unit 47 in the RAM 53 and transmits the image data. A process of transmitting from the unit 58 to the outside is performed. On the other hand, when a determination result indicating that the image read by the image reading unit 1 includes a specific pattern is output, the CPU (output prohibition unit, print prohibition unit) 51 outputs the image output by the image quality processing unit 47. Processing for prohibiting the output of data from the transmission unit 58 to the outside is performed. At this time, the CPU 51 performs a process of displaying information for notifying the output of the image data on the display unit 54.
  • the image processing apparatus 100 configured as described above actually reads the reference chart and performs a process of calculating a gamma correction value and a color conversion correction correction coefficient based on the read reference chart. At the same time, the image processing apparatus 100 compares the read value obtained by actually reading the reference chart with the target value included in the sample data stored in the storage unit 57, thereby determining the specific color range stored in the setting register 452. Perform the decision process.
  • each unit and each processing step of the image processing unit 4 and the control unit 56 is a program stored in a storage unit such as a ROM (Read Only Memory) or a RAM by a calculation unit such as a CPU.
  • a storage unit such as a ROM (Read Only Memory) or a RAM by a calculation unit such as a CPU.
  • the computer having these means can realize various functions and various processes of the image processing unit 4 and the control unit 56 of the present embodiment simply by reading the recording medium storing the program and executing the program. Can do.
  • the various functions and various processes described above can be realized on an arbitrary computer.
  • the recording medium may be a program medium such as a memory (not shown) such as a ROM for processing by a microcomputer, or a program reading device provided as an external storage device (not shown). It may be a program medium that can be read by inserting a recording medium there.
  • a program medium such as a memory (not shown) such as a ROM for processing by a microcomputer, or a program reading device provided as an external storage device (not shown). It may be a program medium that can be read by inserting a recording medium there.
  • the stored program is preferably configured to be accessed and executed by a microprocessor. Furthermore, it is preferable that the program is read out, and the read program is downloaded to a program storage area of the microcomputer and the program is executed. It is assumed that this download program is stored in advance in the main unit.
  • the program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CD / MO / MD / DVD.
  • Disk system IC card (including memory card), etc., or fixed memory including semiconductor memory such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM, etc.
  • semiconductor memory such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM, etc.
  • the recording medium is preferably a recording medium that fluidly carries the program so as to download the program from the communication network.
  • the download program is stored in the main device in advance or installed from another recording medium.
  • the image processing apparatus of the present invention is configured to determine whether or not a specific pattern for specifying duplication prohibition is included in the image data by reading means for reading an original image in color and converting it into image data. And a determination unit that performs the determination based on the specific color and the shape of the specific pattern, wherein the determination unit is configured as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color.
  • An image processing apparatus for determining whether or not a plurality of color parameter values included in a determination target color are included in a specific color range that defines a range that can be certified, and a plurality of color colors whose density is known in advance
  • a sample data storage unit that stores sample data generated as ideal read data of the reference chart including the patch, and the reading means actually
  • Correction parameter calculation means for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart, taken so as to approach the color parameter value of the sample data;
  • a parameter storage unit for storing correction parameters; correction means for correcting color parameter values of the image data based on the calculated correction parameters; and correcting the reference image data based on the calculated correction parameters.
  • a specific color range determining means for calculating the specific color range using the value of the color parameter after being corrected by the means.
  • the sample data storage unit stores sample data generated as ideal read data of a reference chart including a plurality of color patches whose densities are known in advance. Then, the correction parameter calculation means sets a correction parameter to be corrected so that the value of the color parameter of the reference image data that is the data of the reference image actually read by the reading means approaches the value of the color parameter of the sample data. calculate. Then, the parameter storage unit stores the calculated correction parameter.
  • the correction means corrects the value of the color parameter of the image data.
  • the specific color range determining means determines a specific color range that defines a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color as follows. decide.
  • the specific color range is calculated using the color parameter value after the color of the reference image data is corrected by the correction means.
  • a determination unit that determines whether or not the image data read by the reading unit includes a specific pattern that specifies copy prohibition is included in the calculated specific color range of the image data read by the reading unit. It is determined whether a plurality of color parameter values included in the color of the determination target (for example, pixel) are included.
  • the specific color range is calculated using values that are actually corrected by individual image processing devices, so that variations among image processing devices, variations among device types, and device components in the middle All slight image changes and the like caused by changing or exchanging for cost reduction can be absorbed.
  • the correction parameter for correcting the color parameter value of the reference image data so as to be the same as the color parameter value of the sample data corrects the color of the input image data so that all the devices are the same. Therefore, it is calculated in order to perform color balance adjustment. Therefore, the calculation of the correction parameter can be used for color balance adjustment and setting of a specific color area. As described above, since the specific color area can be set together with the color balance adjustment, an extra step is not necessary.
  • the specific color range determination unit includes a color parameter value after the reference image data is corrected by the correction unit based on the calculated correction parameter, and The difference between the sample data and the color parameter value may be calculated, and the specific color range may be calculated using different calculation formulas depending on whether the difference is within a predetermined allowable range or not. .
  • the specific color range determining unit determines the specific color range using different calculation formulas depending on whether the calculated difference is within the predetermined allowable range or not. To do. Therefore, even when the color balance adjustment is unsuccessful intentionally or accidentally, the specific color range can be set correctly.
  • the reading unit adds another function to the function of adjusting the color balance of the image processing apparatus as the reference image when the image processing apparatus is produced. An image may be read.
  • the reading unit reads, as the reference image, an image obtained by adding another function to the color balance adjustment function when the image processing apparatus is produced. Therefore, as another function, for example, when a function such as tilt adjustment of the document feeder is added, during the production of the image processing device, in addition to color balance adjustment and setting of a specific color range, Tilt adjustment can be performed, and the time required for adjustment can be shortened.
  • a serviceman causes the reading unit to read a reference image having only a color balance adjustment function, so that even without a special jig, a specific color range can be easily adjusted at the same time as the color balance adjustment. Can be set.
  • the allowable range may be determined in advance in consideration of the influence on the image quality when the image data is printed.
  • the allowable range is determined in consideration of the effect at the time of printing, the difference is not large due to intentional or accident at the time of adjustment, but the difference is really large. Even if the detection of a specific color is not successful due to the change, the color of the printed one is different from the actual one, so it is not used as a counterfeit bill or counterfeit gift certificate.
  • the specific color range determination unit may correct the reference image data after the correction unit corrects the reference image data when the calculated difference is within the allowable range. If the calculated difference using the color parameter value is outside the allowable range, the specific color range is calculated using the color parameter value of the sample data. Also good.
  • the corrected color parameter value is set to the specific color range.
  • the corrected color parameter values differences between individual samples with respect to actual sample data can be absorbed, so that the color extraction system can be improved, and this can improve the detection rate.
  • the color parameter value of the reference image data after correction is separated from the color of the sample data. It should be used in the formula for calculating the specific color range.
  • the image forming apparatus of the present invention includes any one of the image processing apparatuses described above and a printing unit that performs printing based on the image data.
  • the printing unit determines whether or not the image data instructed to be printed is a specific image including a specific pattern that specifies printing prohibition. Based on the above, it is possible to determine whether printing is possible. Thereby, it is possible to prevent a situation where unauthorized printing is performed in the printing unit.
  • the method for determining a specific color range includes a reading unit that reads an original image in color and converts it into image data, and a determination as to whether or not the image data includes a specific pattern that specifies copy prohibition.
  • a determination unit configured to perform the determination based on a specific color that is a color of the pattern and the shape of the specific pattern, and the determination unit includes each value of a plurality of color parameters included in the specific color.
  • the method for determining a specific color range of an image processing apparatus for determining whether a specific color range that defines a range that can be recognized as a color parameter includes a plurality of color parameter values included in a color to be determined.
  • Sample data storage that stores sample data generated as ideal read data for a reference chart including a plurality of color patches whose densities are known in advance. And a correction parameter for calculating a correction parameter for correcting the value of the color parameter of the reference image data, which is the image data of the reference chart actually read by the reading unit, to approach the value of the color parameter of the sample data
  • a calculation step a parameter storage step for storing the calculated correction parameter, a correction step for correcting a color parameter value of the image data based on the calculated correction parameter, and a basis for the calculated correction parameter.
  • the same effect as that of the image processing apparatus can be obtained, and the specific color range can be adjusted to a value that can reliably detect the specific pattern according to the image reading characteristics of the individual image processing apparatuses. it can. Therefore, the set value of the specific color range is optimally set for each image processing apparatus.
  • the image processing apparatus may be realized by a computer.
  • an image processing program for causing the image processing apparatus to be realized by the computer by operating the computer as the respective means in the image processing apparatus, and a computer-readable recording medium on which the image processing program is recorded are also provided. It falls within the scope of the present invention.
  • the same operational effects as the image processing apparatus can be realized by causing the computer to read and execute the image processing program.
  • a specific pattern for specifying a copy-prohibited image can be reliably detected from read image data by non-special adjustment, image processing for detecting a specific pattern for specifying a copy-prohibited image from the read image Applicable to the device.
  • Image reading unit (reading means) 4 Image processing unit 16 General pattern 23 Reference chart 40 Image determination unit (determination means) 43 Resolution Conversion Unit 44 Color Difference Calculation Unit 45 Specific Color Extraction Unit 46 Specific Pattern Detection Unit 47 Image Quality Processing Unit 51 CPU (Output Inhibiting Unit, Printing Inhibiting Unit) 56 control unit 57 storage unit (sample data storage unit, parameter storage unit) 61 Specific Pattern 414 Gamma Correction Unit 415 Color Conversion Unit 425 Memory Control Unit 427 Page Memory 451 Comparator 452 Setting Register 561 Parameter Calculation Unit (Correction Parameter Calculation Unit) 562 Specific range determination unit (specific color range determination means) 571 Sample data

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Abstract

An image determining section (40) uses a specific color range that stipulates the range of colors of a specific pattern to determine the colors of the pixels in image data which is subject to determination. A parameter calculation unit (561) performs correction such that readings, which are the values of the color parameters (R, G, B, G-R, G-B, R-B) in a reference chart (23) that have actually been read by an image reading section (1), approximate target values, which are the values of the color parameters in sample data (157). Moreover, after the aforementioned readings in the reference chart (23) have been corrected using the aforementioned corrected parameters, a specific range-deciding unit (562) uses the corrected values to calculate the abovementioned specific color range.

Description

画像処理装置、画像読取装置、画像形成装置、特定色範囲の決定方法、プログラム及びコンピュータ読み取り可能な記録媒体Image processing apparatus, image reading apparatus, image forming apparatus, method for determining specific color range, program, and computer-readable recording medium
 本発明は、文書等の画像の記録物(原稿)から画像を読み取って処理する画像処理装置に関する。より詳しくは、紙幣等の複製(複写)禁止画像に含まれる、複製禁止画像を特定付ける特定パターンを、読み取った画像から検出する画像処理装置等に関する。 The present invention relates to an image processing apparatus that reads an image from a recorded matter (original) such as a document and processes the image. More specifically, the present invention relates to an image processing apparatus that detects a specific pattern that specifies a copy-prohibited image included in a copy-prohibited image such as a banknote from a read image.
 画像処理技術の発達により、文書等の原稿から画像を光学的に読み取り、精巧に複製できるようになってきた。例えば、高画質のフルカラーの複写物を作成すること、及び高画質の画像を高精細スキャナで読み取り保存すること、が可能となっている。 With the development of image processing technology, it has become possible to optically read an image from a manuscript such as a document and to reproduce it precisely. For example, it is possible to create a high-quality full-color copy and to read and store a high-quality image with a high-definition scanner.
 このような画像を精巧に複製することができる画像処理装置では、紙幣や有価証券等の印刷や複製を禁止すべき画像(以下、複製禁止画像と言う)の複製を防止するための機能が備えられている。具体的には、画像処理装置は、複製禁止画像を特定づける特定パターンを記憶し、読み取った画像から特定パターンを検出できるか否かを判定する。そして、読み取った画像(画像データ)から特定パターンを検出できる場合には、その画像が複製禁止画像であると判定し、画像の複製を禁止する処理を行う。 An image processing apparatus capable of precisely copying such an image has a function for preventing copying of an image (hereinafter referred to as a copy-prohibited image) that should be prohibited from printing or copying banknotes or securities. It has been. Specifically, the image processing apparatus stores a specific pattern that specifies a copy-prohibited image and determines whether or not the specific pattern can be detected from the read image. If the specific pattern can be detected from the read image (image data), it is determined that the image is a copy-prohibited image, and a process for prohibiting image duplication is performed.
 上記特定パターンには色と形とがある。そこで、読み取った画像から、記憶している特定パターンの色領域に含まれる色の画像(特定パターンの候補となる画像)を抽出し、2値化して、特定パターンと同じ形であるかを判別する。 The specific pattern has a color and a shape. Therefore, a color image (image that is a candidate for the specific pattern) included in the color area of the stored specific pattern is extracted from the read image, and binarized to determine whether the shape is the same as the specific pattern. To do.
 近年では、画像処理技術の進展に伴って、複製禁止画像の複製を防止することの重要性は高まっている。また複製禁止画像の種類は増加している。一方で、画像処理装置で利用される原稿の種類も多種多様になっている。例えば、紙幣の特定パターンである紙幣朱印に似た印章が印字された原稿の画像等、複製禁止画像に似た色・形状の画像も増えてきている。このため、複製が可能な一般画像であるにも拘わらず、特定パターンではない図形を特定パターンであると誤検出し、一般画像を複写禁止画像であると誤判定する可能性が高まっている。 In recent years, with the progress of image processing technology, the importance of preventing duplication of copy-prohibited images is increasing. Also, the types of copy-prohibited images are increasing. On the other hand, there are a wide variety of types of documents used in the image processing apparatus. For example, an image of a color and shape similar to a copy-prohibited image is increasing, such as an image of a document on which a seal similar to a banknote stamp, which is a specific pattern of banknotes, is printed. For this reason, there is an increased possibility that a figure that is not a specific pattern is erroneously detected as a specific pattern and the general image is erroneously determined to be a copy-prohibited image, although the image is a general image that can be copied.
 特定パターンを確実に検出できるように、特定パターンを検出するための基準を広く設定した場合は、一般画像を複写禁止画像であると誤判定する可能性が高まる。逆に基準を狭く設定した場合は、複写禁止画像の判定漏れが発生する可能性が高まる。そこで、誤判定の可能性を低下させながら確実に複製禁止画像を判別できるようにするためには、特定パターンを判別するための判別基準データを適切に設定することが求められる。 If the standard for detecting the specific pattern is set widely so that the specific pattern can be detected reliably, the possibility that the general image is erroneously determined as a copy-prohibited image increases. On the other hand, when the reference is set narrowly, there is a high possibility that the determination of a copy-prohibited image will be missed. Therefore, in order to ensure that the copy-prohibited image can be discriminated while reducing the possibility of erroneous determination, it is required to appropriately set the discrimination reference data for discriminating the specific pattern.
 判別基準データを適切に調整するためには、光学系が替わる毎に設定し直すことが望ましい。光学系が替わる場合とは、例えば、CCDをより安いメーカーのものに変えた場合や、光源の色目が変わった場合、機種が変わって光学系が替わった場合など、である。また、更に言えば、マシン(画像処理装置)1台ごとに設定することが望ましい。 In order to properly adjust the discrimination reference data, it is desirable to reset it every time the optical system is changed. The case where the optical system is changed is, for example, when the CCD is changed to a cheaper manufacturer, when the color of the light source is changed, when the model is changed, and the optical system is changed. Further, it is desirable to set for each machine (image processing apparatus).
 しかし、紙幣など複写禁止画像の判別は極秘作業であるため、マシンの調整作業は特定の作業者しか行えず、マシン1台1台調整するには、自動調整が必要である。自動調整は、マシン1台1台の特性に合わせて正しく設定できるだけでなく、最近のマシンの低価格化に伴い、調整に時間がかからないことが、重要である。 However, since discrimination of copy prohibited images such as banknotes is a secret operation, only a specific operator can perform the adjustment operation of the machine, and automatic adjustment is necessary to adjust each machine one by one. It is important that automatic adjustment not only can be set correctly in accordance with the characteristics of each machine, but also that adjustment does not take time with the recent price reduction of machines.
 このような複製禁止画像の検出に関する技術が、例えば、特許文献1、特許文献2に開示されている。特許文献1には、判別手段で判別した画像の種類及び画像デ-タの色分布情報に基づいて特定原稿(複写禁止画像)の判定を行うことにより、紙幣等の特定原稿の判定精度の向上を図ることが開示されている。特許文献1は、特定原稿の検出率の向上や、特定原稿ではない一般原稿を特定原稿として検出する誤検出の防止に、有効なものである。 For example, Patent Document 1 and Patent Document 2 disclose techniques relating to detection of such a copy-prohibited image. In Patent Document 1, the determination accuracy of a specific document such as a banknote is improved by determining a specific document (copy prohibited image) based on the type of image determined by the determination unit and the color distribution information of the image data. Is disclosed. Patent Document 1 is effective in improving the detection rate of a specific document and preventing erroneous detection in which a general document that is not a specific document is detected as a specific document.
 また、特許文献2では、特定画像(複写禁止画像)が存在する色空間を定義するパラメータを記憶手段に保存しておき、記憶手段に保存されているパラメータを用いて入力画像データを処理する。そして、入力画像データの処理データを、その入力画像データについての理想的処理データと比較し、比較の結果に基づき、入力画像データの処理データが理想的処理データと一致するように前記パラメータを修正することが開示されている。特許文献2は、機種ごとの画像処理(特定画像の色領域)の調整を容易にするには有効なものである。 Also, in Patent Document 2, a parameter that defines a color space in which a specific image (copy prohibited image) exists is stored in a storage unit, and input image data is processed using the parameter stored in the storage unit. Then, the processing data of the input image data is compared with the ideal processing data for the input image data, and the parameters are corrected so that the processing data of the input image data matches the ideal processing data based on the comparison result. Is disclosed. Patent Document 2 is effective for facilitating adjustment of image processing (color area of a specific image) for each model.
日本国公開特許公報「特開平4-313166号公報」(公開日:1992年11月5日)Japanese Patent Publication “JP-A-4-313166” (publication date: November 5, 1992) 日本国公開特許公報「特開2003-333354号公報」(公開日:2003年11月21日)Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-333354” (Publication Date: November 21, 2003)
 しかしながら、特許文献1の技術は、特定原稿の検出のための特定色領域の設定を自動化するものではない。また、特許文献2の技術を用いて、マシン生産時に1台1台調整するには以下の2つの課題がある。 However, the technique of Patent Document 1 does not automate the setting of a specific color area for detection of a specific document. Moreover, there are the following two problems to adjust one by one at the time of machine production using the technique of Patent Document 2.
 1つ目の課題は、特定画像の検出の調整のみにしか必要のない作業であるため、余分な工程が必要となることである。2つ目の課題は、調整のためのカラーパッチチャートを次の様にした場合、特定画像の検出が行われなくなることである。それは、例えば、生産工程において、カラーパッチチャートに汚れ防止の為にビニルを貼り付けるなどの処理をして、調整を行った場合や、悪意ある第3者が故意にカラーパッチチャートにカラークリアフォルダを敷いて調整を行った場合等である。これらの場合、紙幣などの複製が可能となってしまう。 The first problem is that it is an operation that is necessary only for adjustment of detection of a specific image, and therefore an extra step is required. The second problem is that the specific image is not detected when the color patch chart for adjustment is set as follows. For example, in the production process, when a process such as affixing vinyl to the color patch chart to prevent contamination is made and adjustments are made, or when a malicious third party intentionally creates a color clear folder on the color patch chart. This is the case where adjustment is made with a spread. In these cases, it is possible to copy bills and the like.
 本発明は上記課題に鑑みなされたものであり、その目的は、複写禁止画像に含まれる、複写禁止画像を特定付ける特定パターンを、特別な調整を行わなくても、読み取った画像データから確実に検出することが可能な画像処理装置等を提供することである。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to ensure that a specific pattern for specifying a copy-prohibited image included in a copy-prohibited image is read from the read image data without special adjustment. An object of the present invention is to provide an image processing apparatus that can be detected.
 本発明の画像処理装置は、上記課題を解決するために、原稿画像をカラーで読み取り画像データに変換する読取手段と、前記画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を、当該特定パターンの色である特定色及び当該特定パターンの形状に基づき行う判定手段とを備え、前記判定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲に、判定対象の色に含まれる複数の色パラメータの値が含まれているかを判定する画像処理装置であって、予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データを記憶している見本データ記憶部と、前記読取手段によって実際に読み取った前記基準チャートの画像データである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように補正する補正パラメータを算出する補正パラメータ算出手段と、上記算出された補正パラメータを記憶するパラメータ記憶部と、上記算出された補正パラメータを基に前記画像データの色パラメータの値を補正する補正手段と、前記算出された補正パラメータを基に前記基準画像データを前記補正手段にて補正した後の色パラメータの値を用いて、前記特定色範囲を算出する特定色範囲決定手段と、を備えることを特徴としている。 In order to solve the above problems, the image processing apparatus of the present invention includes a reading unit that reads an original image in color and converts it into image data, and whether or not the image data includes a specific pattern that specifies copy prohibition. A determination unit that performs determination based on a specific color that is a color of the specific pattern and a shape of the specific pattern, and the determination unit determines the specific value for each value of a plurality of color parameters included in the specific color. An image processing apparatus that determines whether or not a specific color range that defines a range that can be recognized as a color parameter included in a color includes a plurality of color parameter values included in a determination target color. A sample data storage unit storing sample data generated as ideal read data of a reference chart including known color patches of a plurality of colors; Correction parameter calculating means for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart actually read by the reading means, so as to approach the value of the color parameter of the sample data; A parameter storage unit that stores the calculated correction parameter, a correction unit that corrects a value of a color parameter of the image data based on the calculated correction parameter, and the reference based on the calculated correction parameter And a specific color range determining unit that calculates the specific color range using the value of the color parameter after the image data is corrected by the correcting unit.
 本発明の上記構成によると、見本データ記憶部には、予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データが、記憶されている。そして、実際に読取手段にて読み取った基準画像のデータである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように、補正する補正パラメータを、補正パラメータ算出手段が算出する。そして、パラメータ記憶部が、算出された補正パラメータを記憶する。 According to the above configuration of the present invention, the sample data storage unit stores sample data generated as ideal read data of a reference chart including a plurality of color patches whose densities are known in advance. Then, the correction parameter calculation means sets a correction parameter to be corrected so that the value of the color parameter of the reference image data that is the data of the reference image actually read by the reading means approaches the value of the color parameter of the sample data. calculate. Then, the parameter storage unit stores the calculated correction parameter.
 また、算出された補正パラメータを基に、前記画像データの色パラメータの値を補正手段が補正する。そして、特定色範囲決定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲を、次のように決定する。前記算出された補正パラメータを基に前記基準画像データの色を前記補正手段にて補正した後の色パラメータの値を用いて、前記特定色範囲を算出する。そして、読取手段にて読み取った画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を行う判定手段が、上記算出された特定色範囲に、読取手段が読み取った画像データの判定対象(例えば画素)の色に含まれる複数の色パラメータの値が含まれているか、を判定する。 Further, based on the calculated correction parameter, the correction means corrects the value of the color parameter of the image data. Then, the specific color range determining means determines a specific color range that defines a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color as follows. decide. Based on the calculated correction parameter, the specific color range is calculated using the color parameter value after the color of the reference image data is corrected by the correction means. Then, a determination unit that determines whether or not the image data read by the reading unit includes a specific pattern that specifies copy prohibition is included in the calculated specific color range of the image data read by the reading unit. It is determined whether a plurality of color parameter values included in the color of the determination target (for example, pixel) are included.
 このように、本発明では、特定色範囲を、画像処理装置の個々で実際に補正された値を用いて算出することで、画像処理装置毎のばらつき、装置の機種間のばらつき、途中で装置の部品をコストダウン等のために変更あるいは交換することで生じるわずかな画像の変化等を、全て吸収することができる。よって、本発明の上記構成によると、複写禁止画像(特定画像、特定原稿)に極似した一般画像を、複写禁止画像と誤検知することを防止できる。 As described above, according to the present invention, the specific color range is calculated using the value actually corrected by each of the image processing apparatuses, thereby causing variations among image processing apparatuses, variations among apparatus models, and apparatus in the middle. It is possible to absorb all slight image changes and the like caused by changing or exchanging the parts for cost reduction or the like. Therefore, according to the above configuration of the present invention, it is possible to prevent a general image that is very similar to a copy prohibited image (specific image, specific document) from being erroneously detected as a copy prohibited image.
 本発明では、画像処理装置における画像読取の特性が画像処理装置毎に異なっていても、個々の画像処理装置の画像読取の特性に応じて、特定色範囲を、確実に特定パターンを検出できるような値に調整することができる。これにより、画像処理装置の1台1台について、特定色範囲の設定値が最適に設定される。そのため、本発明の上記構成によると、特定パターンを、特別ではない調整にて、読み取った画像データから確実に検出することができる。 In the present invention, it is possible to reliably detect a specific pattern in a specific color range according to the image reading characteristics of each image processing apparatus, even if the image reading characteristics of the image processing apparatus differ from one image processing apparatus to another. Can be adjusted to any value. As a result, the setting value of the specific color range is optimally set for each image processing apparatus. Therefore, according to the above-described configuration of the present invention, the specific pattern can be reliably detected from the read image data by non-special adjustment.
 また、基準画像データの色パラメータの値が見本データの色パラメータの値と同じになるように補正するための補正パラメータは、補正手段が入力画像データの色をどの装置も同じになるよう補正するために、つまり、カラーバランス調整を行うために算出される。よって、この補正パラメータは、カラーバランス調整と特定色領域の設定とに使用できる。このように、本発明では、上記補正パラメータを用いてカラーバランス調整とともに特定色領域の設定を行うことができるため、余分な工程は必要ない。 Further, the correction parameter for correcting the color parameter value of the reference image data so as to be the same as the color parameter value of the sample data, corrects the color of the input image data so that all the devices are the same. Therefore, it is calculated in order to perform color balance adjustment. Therefore, this correction parameter can be used for color balance adjustment and setting of a specific color area. As described above, according to the present invention, since the specific color region can be set together with the color balance adjustment using the correction parameter, an extra step is not necessary.
本発明の実施の形態の画像処理装置が有する画像読取部及び画像処理部の内部構成を示すブロック図である。FIG. 3 is a block diagram illustrating an internal configuration of an image reading unit and an image processing unit included in the image processing apparatus according to the embodiment of the present invention. 基準チャートの例を示す模式図である。It is a schematic diagram which shows the example of a reference | standard chart. 本発明の実施の形態の画像処理装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image processing apparatus of embodiment of this invention. ガンマ補正値を計算する方法の概要を示す概念図である。It is a conceptual diagram which shows the outline | summary of the method of calculating a gamma correction value. 色変換補正の補正係数を計算する方法の概要を示す概念図である。It is a conceptual diagram which shows the outline | summary of the method of calculating the correction coefficient of color conversion correction. 図1に示した画像判定部の構成、及び画像判定部内の入出力を示すブロック図である。It is a block diagram which shows the structure of the image determination part shown in FIG. 1, and the input / output in an image determination part. 印刷禁止画像の例を示す模式図である。It is a schematic diagram which shows the example of a printing prohibition image. 特定パターンの例を示す模式図である。It is a schematic diagram which shows the example of a specific pattern. 特定パターンの一部を構成する部分パターンの例を示す模式図である。It is a schematic diagram which shows the example of the partial pattern which comprises a part of specific pattern. 特定パターン候補画像の例を示す模式図である。It is a schematic diagram which shows the example of a specific pattern candidate image. 判定ウインドウの例を示す模式図である。It is a schematic diagram which shows the example of a determination window. テンプレートの例を示す模式図である。It is a schematic diagram which shows the example of a template. 画素数範囲の例を示す図である。It is a figure which shows the example of a pixel number range. 領域設定データに従って特定パターン候補画像を複数の領域に分割した例を示す模式図である。It is a schematic diagram which shows the example which divided | segmented the specific pattern candidate image into several area | region according to area | region setting data. 特定色画素数範囲の例を示す図である。It is a figure which shows the example of a specific color pixel number range. 特定パターンに極似した一般パターンの例を示す模式図である。It is a schematic diagram which shows the example of the general pattern very similar to the specific pattern. 原稿送り装置の傾き調整および画像形成装置のガンマ調整に兼用される基準チャートの説明図である。FIG. 6 is an explanatory diagram of a reference chart that is also used for tilt adjustment of a document feeder and gamma adjustment of an image forming apparatus. 図1に示した解像度変換部の構成を示すブロック図である。It is a block diagram which shows the structure of the resolution conversion part shown in FIG. 下地模様がある特定パターンの例を示す模式図である。It is a schematic diagram which shows the example of the specific pattern with a base pattern. 図3に示した画像処理装置を備えた画像形成システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the image forming system provided with the image processing apparatus shown in FIG. 特定色範囲を決定するための算出式の例を示す図である。It is a figure which shows the example of the calculation formula for determining a specific color range. 特定色範囲を決定するための算出式の例を示す図である。It is a figure which shows the example of the calculation formula for determining a specific color range.
 以下、本発明について、その実施の形態を示す図面に基づき具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
 (画像処理装置)
 図3は、本実施の形態の画像処理装置(画像読取装置)100の構成を示すブロック図である。画像処理装置100は、演算を行うCPU51、画像処理装置100の動作に必要なプログラムを記憶するROM52、画像データ等の一時的なデータを記憶する揮発性のメモリであるRAM53、液晶パネル等の表示部54、及び入力ボタン等の操作部55を備えている。
(Image processing device)
FIG. 3 is a block diagram illustrating a configuration of the image processing apparatus (image reading apparatus) 100 according to the present embodiment. The image processing apparatus 100 includes a CPU 51 that performs calculations, a ROM 52 that stores programs necessary for the operation of the image processing apparatus 100, a RAM 53 that is a volatile memory that stores temporary data such as image data, and a display such as a liquid crystal panel. A unit 54 and an operation unit 55 such as an input button are provided.
 表示部54は、ユーザが画像処理装置100を操作するために必要な情報を表示し、操作部55は、ユーザ操作による各種の設定入力等の入力を受け付ける。本実施形態では表示部54と操作部55とは一体の操作パネル(タッチパネル)となっている。この操作パネルを使ってユーザは、画像処理装置100の各種処理や各種設定のための操作を行うことができる。 The display unit 54 displays information necessary for the user to operate the image processing apparatus 100, and the operation unit 55 receives input such as various setting inputs by user operation. In the present embodiment, the display unit 54 and the operation unit 55 are an integrated operation panel (touch panel). Using this operation panel, the user can perform various processes and various settings for the image processing apparatus 100.
 CPU51には、画像読取部1が接続されており、画像読取部1には、イメージセンサ12の出力に対して画像処理を行う画像処理部4が接続されている。画像処理部4には、制御部56及び記憶部57が接続されている。 The CPU 51 is connected to the image reading unit 1, and the image reading unit 1 is connected to the image processing unit 4 that performs image processing on the output of the image sensor 12. A control unit 56 and a storage unit 57 are connected to the image processing unit 4.
 制御部56は、演算を行うCPU、演算に伴う情報を記憶するRAM、演算に必要なプログラムを記憶するROM等から成り、画像処理部4での画像処理を制御する。 The control unit 56 includes a CPU that performs a calculation, a RAM that stores information associated with the calculation, a ROM that stores a program necessary for the calculation, and the like, and controls image processing in the image processing unit 4.
 記憶部57は、不揮発性のメモリ又はハードディスクで構成されている。記憶部57には、後述のように、見本データが格納される。 The storage unit 57 is composed of a nonvolatile memory or a hard disk. The storage unit 57 stores sample data as will be described later.
 また、CPU51には、画像処理部4で画像処理が施された画像データをパーソナルコンピュータ等の外部の装置へ送信する送信部58が接続されている。CPU51は、画像処理装置100における各部の動作を統括的に制御する。ただし、画像処理部4の制御は、制御部56が行う。CPU51と制御部56とが一体となって構成されていてもよい。 The CPU 51 is connected to a transmission unit 58 that transmits the image data subjected to the image processing by the image processing unit 4 to an external device such as a personal computer. The CPU 51 comprehensively controls the operation of each unit in the image processing apparatus 100. However, the control unit 56 controls the image processing unit 4. The CPU 51 and the control unit 56 may be configured integrally.
 なお、画像処理装置100は、図20に示すような、画像データに基づいて形成した画像を記録用紙に記録する画像形成部(印刷装置)を更に備えた、複写装置、ファクシミリ装置又は複合機等の画像形成装置であってもよい。また、図20に示すように、画像処理装置100にコンピュータ102,103や、デジタルカメラ104が接続していてもよい。また、画像処理装置100は、上記画像形成部を有しない画像読取装置(スキャナ専用機)であってもよい。 Note that the image processing apparatus 100 includes a copying machine, a facsimile machine, a multifunction machine, or the like further provided with an image forming unit (printing device) that records an image formed based on image data on a recording sheet as shown in FIG. The image forming apparatus may be used. As shown in FIG. 20, computers 102 and 103 and a digital camera 104 may be connected to the image processing apparatus 100. Further, the image processing apparatus 100 may be an image reading apparatus (scanner dedicated machine) that does not include the image forming unit.
 (画像読取部及び画像処理部)
 図1は、画像読取部1及び画像処理部4の詳細な内部構成を示すブロック図である。画像読取部1は、原稿を照射する光源11、原稿画像を電気信号に変換するイメージセンサ12、イメージセンサ12に接続された増幅器13、及びA/D変換部14を備えている。
(Image reading unit and image processing unit)
FIG. 1 is a block diagram showing detailed internal configurations of the image reading unit 1 and the image processing unit 4. The image reading unit 1 includes a light source 11 that irradiates a document, an image sensor 12 that converts a document image into an electrical signal, an amplifier 13 that is connected to the image sensor 12, and an A / D conversion unit 14.
 画像処理部4は、シェーディング補正部413、ガンマ補正部414及び色変換部415を備えている。 The image processing unit 4 includes a shading correction unit 413, a gamma correction unit 414, and a color conversion unit 415.
 イメージセンサ12から、RGB夫々のアナログ電気信号が増幅器13へ入力される。増幅器13は、RGBのアナログ電気信号を所定の増幅率で増幅し、増幅したRGBのアナログ電気信号をA/D変換部14へ入力する。A/D変換部14は、RGBのアナログ電気信号をRGBのデジタル信号であるRGB信号へ変換する。RGB信号は、読み取った原稿画像を構成する複数の画素の夫々におけるRGB各色の明度値から成る。各色の明度値は、原稿画像に対する光の反射率、即ち原稿上の画像に含まれる各色の濃度に対応する。 The analog electrical signals of RGB are input from the image sensor 12 to the amplifier 13. The amplifier 13 amplifies the RGB analog electrical signal with a predetermined amplification factor, and inputs the amplified RGB analog electrical signal to the A / D converter 14. The A / D converter 14 converts RGB analog electrical signals into RGB signals that are RGB digital signals. The RGB signal is composed of brightness values of each color of RGB in each of a plurality of pixels constituting the read original image. The brightness value of each color corresponds to the reflectance of light with respect to the document image, that is, the density of each color included in the image on the document.
 A/D変換部14で変換されたデジタル信号であるRGB信号は、シェーディング補正部413へ入力される。シェーディング補正部413は、受信したRGB信号をシェーディング補正し、補正後のRGB信号をガンマ補正部414へ入力する。 RGB signals that are digital signals converted by the A / D conversion unit 14 are input to the shading correction unit 413. The shading correction unit 413 performs shading correction on the received RGB signal, and inputs the corrected RGB signal to the gamma correction unit 414.
 ガンマ補正部414は、シェーディング補正部413から入力されたRGB信号をガンマ補正し、補正後のRGB信号を色変換部415へ入力する。色変換部415は、どの画像処理装置でも同じ画像からほぼ同じ色の画像データが得られるように、光学特性に応じてRGB夫々の色を補正する色変換補正を行う。この色変換補正により、装置間の性能のばらつき又は光源若しくは受光素子の違いによる表裏の輝度及びカラーバランスの差を吸収することができる。 The gamma correction unit 414 gamma-corrects the RGB signal input from the shading correction unit 413 and inputs the corrected RGB signal to the color conversion unit 415. The color conversion unit 415 performs color conversion correction for correcting the colors of RGB in accordance with optical characteristics so that image data of almost the same color can be obtained from the same image in any image processing apparatus. By this color conversion correction, it is possible to absorb differences in luminance and color balance between the front and back surfaces due to performance variations between apparatuses or differences in light sources or light receiving elements.
 色変換部415は、メモリ制御部425を介してページメモリ427に接続されている。色変換部415は、色変換補正後のRGB信号をメモリ制御部425を介してページメモリ427へ一旦入力し、ページメモリ427はRGB信号からなる画像データを一時的に記憶する。なお、メモリ制御部425及びページメモリ427は、制御部56の一部として構成されていてもよい。 The color conversion unit 415 is connected to the page memory 427 via the memory control unit 425. The color conversion unit 415 temporarily inputs the RGB signal after color conversion correction to the page memory 427 via the memory control unit 425, and the page memory 427 temporarily stores image data composed of the RGB signals. Note that the memory control unit 425 and the page memory 427 may be configured as a part of the control unit 56.
 色変換部415及びメモリ制御部425は、読み取った画像が複製禁止画像であるか否かを判定する画像判定部(判定手段)40、及び色変換補正後のRGB信号からなる画像データが表す画像の画質を改善するための画像処理を行う画質処理部47に接続されている。色変換部415は、色変換補正後のRGB信号を画像判定部40及び画質処理部47へ入力する。 The color conversion unit 415 and the memory control unit 425 include an image determination unit (determination unit) 40 that determines whether the read image is a copy-prohibited image, and an image represented by image data including RGB signals after color conversion correction. Is connected to an image quality processing unit 47 that performs image processing for improving the image quality of the image. The color conversion unit 415 inputs the RGB signal after the color conversion correction to the image determination unit 40 and the image quality processing unit 47.
 画像判定部40は、解像度変換部43、色差分演算部44、特定色抽出部45及び特定パターン検出部46を備えている。 The image determination unit 40 includes a resolution conversion unit 43, a color difference calculation unit 44, a specific color extraction unit 45, and a specific pattern detection unit 46.
 解像度変換部43は、RGB信号からなる画像データが表す画像の解像度を変換する処理を行う。例えば、解像度変換部43は、600dpiの画像データを100dpiに変換する。 The resolution conversion unit 43 performs processing for converting the resolution of an image represented by image data composed of RGB signals. For example, the resolution conversion unit 43 converts 600 dpi image data to 100 dpi.
 色差分演算部44は、解像度変換後の画像データからGとRとの色差、GとBとの色差、及びRとBとの色差を演算する。 The color difference calculation unit 44 calculates the color difference between G and R, the color difference between G and B, and the color difference between R and B from the image data after resolution conversion.
 特定色抽出部45は、RGB信号及び演算した色差に基づいて、画像中の各画素の色が、複製禁止画像を特徴付ける特定パターンの色である特定色であるか否かを判定することにより、色が特定色の画素である特定色画素を、読み取った画像から抽出する。そして、特定色画素とその他の画素とを区別した2値画像データを特定パターン検出部46へ入力する。 Based on the RGB signal and the calculated color difference, the specific color extraction unit 45 determines whether the color of each pixel in the image is a specific color that is a color of a specific pattern that characterizes the copy prohibited image, A specific color pixel whose color is a pixel of a specific color is extracted from the read image. Then, binary image data in which the specific color pixel is distinguished from the other pixels is input to the specific pattern detection unit 46.
 特定パターン検出部46は、2値画像データが表す画像から特定パターンを検出する処理を行うことにより、読み取った画像に特定パターンが含まれているか否かを判定する。2値画像データが表す画像から特定パターンを検出できた場合、読み取った画像は、特定パターンを含んだ複製禁止画像である。特定パターンを検出できない場合、読み取った画像は、特定パターンを含んでいないので、複製禁止画像ではない。特定パターン検出部46は、判定結果をCPU51へ出力する。 The specific pattern detection unit 46 performs a process of detecting a specific pattern from the image represented by the binary image data, thereby determining whether or not the specific pattern is included in the read image. When the specific pattern can be detected from the image represented by the binary image data, the read image is a duplication prohibited image including the specific pattern. If the specific pattern cannot be detected, the read image does not include the specific pattern, and is not a copy-prohibited image. The specific pattern detection unit 46 outputs the determination result to the CPU 51.
 画質処理部47は、領域分離処理を行う領域分離部471、変倍処理を行う変倍部472、MTF補正処理を行うMTF補正部473、下地処理を行う下地処理部474、回転処理を行う回転部475、及び各種パラメータを記憶するレジスタ476、を備えている。画質処理部47は、色変換補正後のRGB信号から成る画像データに対して、画像データが表す画像の画質を改善するための画像処理を行い、この画像処理後の画像データをCPU51へ出力する。読み取った画像に特定パターンが含まれているという判定結果が特定パターン検出部46から出力された場合は、画質処理部47から出力された画像データが表す画像は複製禁止画像であるので、CPU51は、画像データの出力を禁止する処理を実行する。 The image quality processing unit 47 includes a region separation unit 471 that performs region separation processing, a scaling unit 472 that performs scaling processing, an MTF correction unit 473 that performs MTF correction processing, a background processing unit 474 that performs background processing, and a rotation that performs rotation processing. And a register 476 for storing various parameters. The image quality processing unit 47 performs image processing for improving the image quality of the image represented by the image data on the image data composed of the RGB signals after the color conversion correction, and outputs the image data after the image processing to the CPU 51. . When the determination result that the read image includes the specific pattern is output from the specific pattern detection unit 46, the image represented by the image data output from the image quality processing unit 47 is a copy-prohibited image. Then, a process for prohibiting the output of the image data is executed.
 メモリ制御部425は、画像判定部40及び画質処理部47で、色変換部415から入力した画像データの処理が終了した後に、ページメモリ427で記憶する画像データを画像判定部40及び画質処理部47へ入力する。このため、画像読取部1の図示しない第1読取部が原稿の一方の面から読み取った画像の画像処理が終了した後に、画像読取部1の図示しない第2読取部が原稿の他方の面から読み取った画像の画像処理が行われる。同一の画像判定部40及び画質処理部47を経時的に使用することにより、画像判定部40及び画質処理部47を2系統備えた場合に発生する画像処理装置100のサイズ及びコストの無駄を省くことができる。 The memory control unit 425 receives image data stored in the page memory 427 after the processing of the image data input from the color conversion unit 415 is completed by the image determination unit 40 and the image quality processing unit 47. Input to 47. Therefore, after the image processing of the image read from one side of the original by the first reading unit (not shown) of the image reading unit 1 is completed, the second reading unit (not shown) of the image reading unit 1 starts from the other side of the original. Image processing of the read image is performed. By using the same image determination unit 40 and image quality processing unit 47 over time, the size and cost of the image processing apparatus 100 generated when two image determination units 40 and image quality processing units 47 are provided can be eliminated. be able to.
 (ガンマ補正値)
 ガンマ補正部414で行うガンマ補正でのガンマ補正値は、基準チャートを読み取った結果に基づいて制御部56のパラメータ算出部561が予め算出しておく。ここで、基準チャートは、画像処理の基準とするために、夫々に色彩及び濃度が定められた複数の色で彩色された画像が紙等に記録されたものであり、本発明における基準画像に対応する。
(Gamma correction value)
The gamma correction value in the gamma correction performed by the gamma correction unit 414 is calculated in advance by the parameter calculation unit 561 of the control unit 56 based on the result of reading the reference chart. Here, the reference chart is obtained by recording an image colored with a plurality of colors, each of which has a predetermined color and density, to be used as a reference for image processing. Correspond.
 図2は、基準チャートの例を示す模式図である。基準チャートは、複数のカラーパッチが縦横に並んで形成されており、各カラーパッチは、色彩及び濃度が定められた一つの色で彩色されている。図には、B、G、R、BK1、BK2、C、M、Yの夫々の色彩について濃度が12段階の各段階に定められた色で彩色されたカラーパッチが記録された例を示す。図中では、濃度を1~12の数字で示し、数字が大きいほど濃度が濃いことを示している。BK1及びBK2は、一方がカラー画像におけるブラックであり、他方がモノクロ画像におけるブラックである。図2では各カラーパッチをモノクロで示しているものの、実際の基準チャートでは各カラーパッチは各色彩で彩色されている。なお、図2に示す基準チャートは一例であり、色数を減らした構成等、基準チャートの構成はその他の構成であってもよい。 FIG. 2 is a schematic diagram showing an example of a reference chart. The reference chart is formed of a plurality of color patches arranged vertically and horizontally, and each color patch is colored with one color having a predetermined color and density. In the figure, an example is shown in which a color patch is recorded in which colors of B, G, R, BK1, BK2, C, M, and Y are colored with colors determined in 12 stages of density. In the figure, the density is indicated by a number from 1 to 12, and the larger the number, the higher the density. One of BK1 and BK2 is black in a color image, and the other is black in a monochrome image. Although each color patch is shown in monochrome in FIG. 2, each color patch is colored with each color in an actual reference chart. The reference chart shown in FIG. 2 is an example, and the configuration of the reference chart such as a configuration with a reduced number of colors may be other configurations.
 記憶部57は、基準チャートを実際に画像読取部1にて読み取って生成される画像データの見本となる、理想的な読み取りデータとして生成された見本データ571を予め記憶している。見本データ571は、基準データ中の各カラーパッチを読み取って生成されるRGB信号の目標値を含んで構成される。目標値は、理想的な画像処理装置(画像読取装置)で基準チャートを読み取ったときにカラーパッチ毎に生成されるRGB信号の強度値であり、基準チャートに含まれる各カラーパッチの理想的な色を示す値である。見本データ571は、例えば、標準となる特定の画像読取装置で基準チャートを読み取ることによって生成される。また例えば、見本データ571は、理想的な光学系の状態をシミュレートする等の方法により、理論的に生成したものであってもよい。 The storage unit 57 stores in advance sample data 571 generated as ideal read data, which is a sample of image data generated by actually reading the reference chart by the image reading unit 1. The sample data 571 is configured to include target values of RGB signals generated by reading each color patch in the reference data. The target value is an intensity value of the RGB signal generated for each color patch when the reference chart is read by an ideal image processing apparatus (image reading apparatus), and is ideal for each color patch included in the reference chart. A value indicating the color. The sample data 571 is generated, for example, by reading the reference chart with a specific image reading apparatus as a standard. For example, the sample data 571 may be theoretically generated by a method such as simulating an ideal optical system state.
 画像読取部1は、基準チャートを実際に読み取る。そして、制御部56は、読み取りによって生成した画像データと見本データとを比較することによってガンマ補正値を求める。画像読取部1のイメージセンサ12は、基準チャート中の各カラーパッチからの反射光を受光し、カラーパッチ毎にRGB各色の電気信号を出力し、シェーディング補正部413は、カラーパッチ毎のRGB信号をシェーディング補正する。 The image reading unit 1 actually reads the reference chart. Then, the control unit 56 obtains a gamma correction value by comparing the image data generated by reading and the sample data. The image sensor 12 of the image reading unit 1 receives reflected light from each color patch in the reference chart, and outputs electrical signals of RGB colors for each color patch. The shading correction unit 413 is an RGB signal for each color patch. To correct shading.
 制御部56は、パラメータ算出部561を備え、シェーディング補正された各カラーパッチ内のRGB信号の読取値を平均することにより、各カラーパッチに対応するRGB信号の読取値を算出する。この読取値は、画像読取部1で画像を読み取って得られるRGB信号の強度値である。つまり、カラーパッチに対応する読取値は、基準チャートに含まれる各カラーパッチを実際に画像処理装置100で読み取った色を示す値である。制御部56は、見本データ571を記憶部57から読み出し、各カラーパッチに対応するRGB信号の目標値と、シェーディング補正部413でシェーディング補正されたRGB信号の読取値とを比較することによって、ガンマ補正値を計算する。 The control unit 56 includes a parameter calculation unit 561, and calculates the read value of the RGB signal corresponding to each color patch by averaging the read value of the RGB signal in each color patch subjected to the shading correction. This read value is an intensity value of an RGB signal obtained by reading an image with the image reading unit 1. That is, the read value corresponding to the color patch is a value indicating the color obtained by actually reading each color patch included in the reference chart by the image processing apparatus 100. The control unit 56 reads the sample data 571 from the storage unit 57 and compares the target value of the RGB signal corresponding to each color patch with the read value of the RGB signal subjected to the shading correction by the shading correction unit 413, thereby obtaining the gamma. Calculate the correction value.
 図4は、ガンマ補正値を計算する方法の概要を示す概念図である。ここで、RGB信号の目標値をRtarget、Gtarget及びBtargetとし、カラーパッチに対応するRGB信号の読取値をRin、Gin及びBinとする。図4の(a)に示すように、制御部56は、同一のカラーパッチに対応するR信号の目標値及び読取値を互いに対応させ、信号強度順に並べる。図4の(a)に示す例では、Rin(i)とRtarget(i)とは同一のカラーパッチに対応するR信号である。図4の(b)は、R信号の読取値Rinと目標値Rtargetとの対応関係を示す対応曲線であり、この対応曲線は、読取値Rinを目標値Rtargetへ変換するためのガンマ曲線である。 FIG. 4 is a conceptual diagram showing an outline of a method for calculating a gamma correction value. Here, the target values of the RGB signals are R target , G target and B target, and the read values of the RGB signals corresponding to the color patches are R in , G in and B in . As shown in FIG. 4A, the control unit 56 associates the target values and read values of the R signals corresponding to the same color patch with each other and arranges them in order of signal intensity. In the example shown in FIG. 4A, R in (i) and R target (i) are R signals corresponding to the same color patch. Of (b) is 4, a corresponding curve showing the correspondence between the read value R in the target value R target of the R signal, the corresponding curve for converting the read value R in the target value R target It is a gamma curve.
 制御部56は、次に、読取値Rin及び目標値Rtargetを一次補間することにより、R信号の任意の読取値と、図4の(b)に示すガンマ曲線に従って読取値に1対1対応するガンマ補正値との対応関係を求め、求めた読取値とガンマ補正値との対応関係を表すテーブルを生成する。このテーブルに含まれる読取値は、カラーパッチ毎に生成した読取値Rinを一次補間した値であり、ガンマ補正値は、カラーパッチ毎の目標値Rtargetを一次補間した値である。生成したテーブルでは、R信号の読取値とガンマ補正値とが1対1で対応付けられており、読取値に対応付けられているガンマ補正値をテーブルから読み出すことにより、任意の読取値を、目標値を一次補間したガンマ補正値へ変換することができる。 Next, the control unit 56 linearly interpolates the read value R in and the target value R target so that the read value has a one-to-one correspondence with an arbitrary read value of the R signal and the gamma curve shown in FIG. A correspondence relationship with the corresponding gamma correction value is obtained, and a table representing the correspondence relationship between the obtained read value and the gamma correction value is generated. The read value included in this table is a value obtained by linear interpolation of the read value R in generated for each color patch, and the gamma correction value is a value obtained by linear interpolation of the target value R target for each color patch. In the generated table, the read value of the R signal and the gamma correction value are associated one-to-one, and by reading the gamma correction value associated with the read value from the table, an arbitrary read value is obtained. The target value can be converted into a gamma correction value obtained by linear interpolation.
 制御部56は、同様にして、G信号の読取値Gin及び目標値Gtargetから、G信号の読取値とガンマ補正値との対応関係を表したテーブルを生成し、B信号の読取値Bin及び目標値Btargetから、B信号の読取値とガンマ補正値との対応関係を表したテーブルを生成する処理を行う。制御部56は、生成したRGB夫々についてのテーブルをガンマ補正部414へ入力する。ガンマ補正部414は、入力されたテーブルを不揮発性のメモリに記憶し、以降は、記憶したテーブルをLUT(ルックアップテーブル)として用いて、RGB信号の読取値をガンマ補正値へ変換する処理を行うことにより、RGB信号のガンマ補正を実行する。 Similarly, the control unit 56 generates a table representing a correspondence relationship between the read value of the G signal and the gamma correction value from the read value G in of the G signal and the target value G target , and reads the read value B of the B signal. From the in and target value B target , a process for generating a table representing the correspondence between the read value of the B signal and the gamma correction value is performed. The control unit 56 inputs the generated table for each of RGB to the gamma correction unit 414. The gamma correction unit 414 stores the input table in a non-volatile memory, and thereafter uses the stored table as an LUT (look-up table) to convert the read value of the RGB signal into a gamma correction value. By doing so, the gamma correction of the RGB signal is executed.
 (色変換補正の補正係数)
 また、制御部56は、パラメータ算出部561により、色変換部415にて行う処理に用いる補正係数の算出を、基準チャートを読み取った結果に基づいて実行する。制御部56は、ガンマ補正部414がガンマ補正したRGB信号の読取値と、基準チャートの各カラーパッチに対応するRGB信号の目標値とを比較することによって、色変換部415で実行する色変換補正の補正係数を算出する。
(Correction coefficient for color conversion correction)
Further, the control unit 56 causes the parameter calculation unit 561 to calculate a correction coefficient used for processing performed by the color conversion unit 415 based on the result of reading the reference chart. The control unit 56 compares the read value of the RGB signal gamma corrected by the gamma correction unit 414 with the target value of the RGB signal corresponding to each color patch of the reference chart, thereby performing color conversion executed by the color conversion unit 415. A correction coefficient for correction is calculated.
 色変換部415で行う色変換補正の処理は、読み取った画像の色合いが見本データの示す画像の色合いとほぼ同じ色合いになるように、RGB信号の読取値を目標値に近い値に変換する処理である。色変換部415は、マトリクス演算によりRGB信号を変換する。RGB信号の読取値Rin、Gin及びBinと、RGB信号の目標値をRtarget、Gtarget及びBtargetとの理想的な関係は、下記の(1)式で表される。(1)式中のR11、R12、R13、G11、G12、G13、B11、B12、B13が、色変換補正の補正係数である。 The color conversion correction process performed by the color conversion unit 415 is a process for converting the read value of the RGB signal to a value close to the target value so that the color of the read image is substantially the same as the color of the image indicated by the sample data. It is. The color conversion unit 415 converts RGB signals by matrix calculation. The ideal relationship between the RGB signal read values R in , G in and B in and the RGB signal target values R target , G target and B target is expressed by the following equation (1). In the formula (1), R 11 , R 12 , R 13 , G 11 , G 12 , G 13 , B 11 , B 12 , and B 13 are correction coefficients for color conversion correction.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図5は、色変換補正の補正係数を計算する方法の概要を示す概念図である。図5の(a)に示すように、制御部56は、同一のカラーパッチに対応するR信号の目標値とRGB信号の読取値とを互いに対応させる。制御部56は、次に、対応させたR信号の目標値とRGB信号の読取値とを(1)式に代入することによって、R信号の目標値とRGB信号の読取値との関係式を作成する。即ち、関係式Rtarget(i)=R11in(i)+R12in(i)+R13in(i)が作成される。基準チャートから読み取ったカラーパッチの数をNとすると、i=1~Nの関係式が作成される。制御部56は、作成したN個の関係式を用いた最小2乗法を実行することにより、関係式中の係数R11、R12及びR13を計算する。 FIG. 5 is a conceptual diagram showing an outline of a method for calculating a correction coefficient for color conversion correction. As shown in FIG. 5A, the control unit 56 associates the target value of the R signal corresponding to the same color patch with the read value of the RGB signal. Next, the control unit 56 substitutes the corresponding target value of the R signal and the read value of the RGB signal into the equation (1), thereby obtaining a relational expression between the target value of the R signal and the read value of the RGB signal. create. That is, the relational expression R target (i) = R 11 R in (i) + R 12 G in (i) + R 13 B in (i) is created. If the number of color patches read from the reference chart is N, a relational expression of i = 1 to N is created. The control unit 56 calculates the coefficients R 11 , R 12 and R 13 in the relational expression by executing the least square method using the created N relational expressions.
 同様に、制御部56は、図5の(b)に示すように、同一のカラーパッチに対応するG信号の目標値とRGB信号の読取値とを互いに対応させて、i=1~Nの関係式Gtarget(i)=G11in(i)+G12in(i)+G13in(i)を作成する。そして、作成したN個の関係式を用いた最小2乗法を実行することにより、関係式中の係数G11、G12及びG13を計算する。 Similarly, as shown in FIG. 5B, the control unit 56 associates the target value of the G signal corresponding to the same color patch with the read value of the RGB signal so that i = 1 to N. The relational expression G target (i) = G 11 R in (i) + G 12 G in (i) + G 13 B in (i) is created. Then, the coefficients G 11 , G 12, and G 13 in the relational expression are calculated by executing the least square method using the created N relational expressions.
 また、同様に、制御部56は、図5の(c)に示すように、同一のカラーパッチに対応するB信号の目標値とRGB信号の読取値とを互いに対応させて、i=1~Nの関係式Btarget(i)=B11in(i)+B12in(i)+B13in(i)を作成しする。そして、作成したN個の関係式を用いた最小2乗法を実行することにより、関係式中の係数B11、B12及びB13を計算する。 Similarly, as shown in FIG. 5C, the control unit 56 associates the target value of the B signal corresponding to the same color patch with the read value of the RGB signal so that i = 1 to N relational expression B target (i) = B 11 R in (i) + B 12 G in (i) + B 13 B in (i) is created. Then, the coefficients B 11 , B 12, and B 13 in the relational expression are calculated by executing the least square method using the created N relational expressions.
 以上の処理により、制御部56は、色変換補正の補正係数R11、R12、R13、G11、G12、G13、B11、B12及びB13を計算し、計算した補正係数を色変換部415へ入力する。色変換部415は、入力された補正係数を記憶し、以降は、記憶した補正係数を用いて、下記の(2)式で表されるマトリクス演算を行うことにより、ガンマ補正部414から入力されたRGB信号の読取値Rin、Gin及びBinを(2)式中のR、G及びBへ変換する色変換補正を実行する。 Through the above processing, the control unit 56 calculates the correction coefficients R 11 , R 12 , R 13 , G 11 , G 12 , G 13 , B 11 , B 12, and B 13 for color conversion correction, and the calculated correction coefficients. Is input to the color conversion unit 415. The color conversion unit 415 stores the input correction coefficient, and thereafter uses the stored correction coefficient to perform a matrix operation represented by the following equation (2), thereby inputting the correction coefficient from the gamma correction unit 414. The color conversion correction is performed to convert the read values R in , G in and B in of the RGB signals into R, G and B in the equation (2).
 以上のように、ガンマ補正値及び色変換補正の補正係数(補正パラメータ)は、基準チャートを実際に読み取って得られたRGB信号を、基準チャートを読み取って生成される画像データの見本となる見本データに可及的に近付けるように計算される。画像処理装置(画像読取装置)の画像読取部が画像を読み取る際の光学特性等の特性は、個々の画像読取部によって異なる。そのため、同一の画像を読み取ったとしても、得られるRGB信号は画像処理装置によって異なる。しかしながら、基準チャートを読み取った読取値を見本データに可及的に近付けるようにガンマ補正値及び色変換補正の補正係数を計算しておき、得られたRGB信号のガンマ補正及び色変換補正を行うことにより、次のようになる。つまり、補正後のRGB信号は、同じ機種で設計変更や読取のイメージセンサであるCCDや光源であるキセノンランプなどの部品変更がなければ、画像読取部を備えたどの画像処理装置でも、大体一致した値となる。得られる補正後のRGB信号は、理想的な画像処理装置で生成できるRGB信号とほぼ同等である。 As described above, the correction coefficient (correction parameter) for the gamma correction value and the color conversion correction is a sample which is a sample of image data generated by reading the reference chart from the RGB signal obtained by actually reading the reference chart. Calculated to get as close to the data as possible. Characteristics such as optical characteristics when the image reading unit of the image processing apparatus (image reading apparatus) reads an image differ depending on each image reading unit. Therefore, even if the same image is read, the obtained RGB signals differ depending on the image processing apparatus. However, the gamma correction value and the color conversion correction correction coefficient are calculated so that the read value read from the reference chart is as close as possible to the sample data, and the obtained RGB signal is subjected to gamma correction and color conversion correction. Therefore, it becomes as follows. In other words, the RGB signals after correction are roughly the same for any image processing device equipped with an image reading unit, unless there is a design change or a component change such as a CCD that is an image sensor for reading or a xenon lamp that is a light source. It becomes the value. The corrected RGB signal obtained is almost equivalent to the RGB signal that can be generated by an ideal image processing apparatus.
 コストダウンなどの要因でCCDやキセノンランプやレンズなどの部品が変わった場合や、光学系の取り付け精度や部品のロットが変わった場合等には、補正後のRGB信号の値が変わる(基準チャートのカラーパッチの読み取りデータの補正後の値が、見本データの値とほぼ同等にならない)ことがあり得る。この場合、特定パターンを検出するための特定色範囲が固定であれば、特定パターンの検出率が落ちることがある。しかし、本発明は、後述のように、補正後のカラーパッチのRGB信号の値から、特定パターンの色である特定色に含まれる複数の色パラメータの夫々の値(R,G,B,G-R,G-B,R-Bの各値)について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲を計算する。よって、何らかの要因で調整を行っても基準とカラーバランスがはずれている場合でも検出率を落とさなくすることができる。 When the components such as CCD, xenon lamp, and lens change due to cost reduction, or when the optical system mounting accuracy or component lot changes, the value of the corrected RGB signal changes (reference chart) The corrected value of the read data of the color patch may not be substantially equal to the value of the sample data). In this case, if the specific color range for detecting the specific pattern is fixed, the detection rate of the specific pattern may decrease. However, according to the present invention, as will be described later, each value (R, G, B, G) of a plurality of color parameters included in a specific color that is a color of a specific pattern is determined from the RGB signal values of the corrected color patch. A specific color range that defines a range that can be recognized as a color parameter included in the specific color is calculated for each of (R, GB, RB). Therefore, even if the adjustment is made for some reason, the detection rate can be kept from dropping even when the color balance is out of the reference.
 ガンマ補正値及び色変換補正の補正係数(補正パラメータ)を記憶部57に記憶しておくと、カラーバランスの調整と特定色範囲の計算とを、画像処理装置100の生産時に一度行った後、毎回行わなくてもよくなる。 When the gamma correction value and the correction coefficient (correction parameter) for color conversion correction are stored in the storage unit 57, after adjusting the color balance and calculating the specific color range once at the time of production of the image processing apparatus 100, You don't have to do it every time.
 (特定色抽出部)
 特定色抽出部45について詳細に説明する。図6は、特定色抽出部45の内部構成、及び画像判定部40内での入出力を示すブロック図である。
(Specific color extraction unit)
The specific color extraction unit 45 will be described in detail. FIG. 6 is a block diagram showing an internal configuration of the specific color extraction unit 45 and input / output in the image determination unit 40.
 解像度変換部43には、色変換部415又はメモリ制御部425から、色変換補正を行った後のRGB信号の値が入力される。解像度変換部43は、RGB信号の値からなる画像データが表す画像の解像度を変換する処理を行う。具体的には、解像度変換部43は、隣接する画素間でRGB信号の値を平均することにより画像中の画素を減らす処理、又は隣接する画素間でRGB信号の値を補間することにより画素を増やす処理を行う。例えば、読み取った画像の解像度が大きすぎる場合は、データ量が多くなりすぎて画像判定部40での処理に時間がかかるので、600dpiの画像データを100dpiに変換する等、画像判定部40での処理のために適切な解像度となるように解像度を変換する。 The value of the RGB signal after color conversion correction is input from the color conversion unit 415 or the memory control unit 425 to the resolution conversion unit 43. The resolution conversion unit 43 performs processing for converting the resolution of an image represented by image data composed of RGB signal values. Specifically, the resolution conversion unit 43 reduces the pixels in the image by averaging the RGB signal values between adjacent pixels, or interpolates the RGB signal values between adjacent pixels. Process to increase. For example, if the resolution of the read image is too large, the amount of data becomes too large and it takes time for the image determination unit 40 to process. Therefore, the image determination unit 40 converts 600 dpi image data into 100 dpi. The resolution is converted to an appropriate resolution for processing.
 解像度変換部43は、図18に示すように、主走査変換部31と、副走査変換部32と設定レジスタ34と、メモリ部33とを有している。主走査変換部31は、画像データの走査方向の解像度を所定の解像度に変換する。例えば600dpiのRGB夫々8ビット(256階調)の画像データを、6画素の平均値を取ることにより100dpiに変換する。 As shown in FIG. 18, the resolution conversion unit 43 includes a main scanning conversion unit 31, a sub-scanning conversion unit 32, a setting register 34, and a memory unit 33. The main scanning conversion unit 31 converts the resolution of the image data in the scanning direction to a predetermined resolution. For example, 600 dpi RGB 8-bit (256 gradations) image data is converted to 100 dpi by taking an average value of 6 pixels.
 副走査変換部32は、同様に画像データの副走査方向の解像度を所定の解像度に変換する。主走査方向と同様、例えば、600dpiのRGB夫々8ビットの画像データを、6画素の平均値を取ることによって100dpiに変換する。ただし、副走査方向においては、光学系の移動速度の設定により画像を変倍することがあり、解像度変換の倍率が一定ではない。このため、副走査方向においては、解像度を100dpiにするために、解像度を予め設定レジスタ34に設定された倍率に従って変倍する。メモリ部33は、副走査変換部32による副走査方向の解像度変換動作の際に、副走査方向の複数ラインのデータを一時的に記憶する記憶部である。 Similarly, the sub-scanning conversion unit 32 converts the resolution of the image data in the sub-scanning direction to a predetermined resolution. Similar to the main scanning direction, for example, 600 dpi RGB 8-bit image data is converted to 100 dpi by taking an average value of 6 pixels. However, in the sub-scanning direction, the image may be scaled by setting the moving speed of the optical system, and the resolution conversion magnification is not constant. Therefore, in the sub-scanning direction, the resolution is scaled according to the magnification set in advance in the setting register 34 in order to set the resolution to 100 dpi. The memory unit 33 is a storage unit that temporarily stores data of a plurality of lines in the sub-scanning direction when the sub-scanning conversion unit 32 performs the resolution conversion operation in the sub-scanning direction.
 解像度変換部43は、解像度を変換した後のRGB信号を色差分演算部462へ入力する。 The resolution conversion unit 43 inputs the RGB signal after the resolution conversion to the color difference calculation unit 462.
 色差分演算部44は、解像度変換部43から入力されたRGB信号の値と、G信号の値からR信号の値を差し引いた(G-R)の値と、G信号の値からB信号の値を差し引いた(G-B)の値と、R信号の値からB信号の値を差し引いた(R-B)の値とを計算する。RGB信号の値が夫々8ビット(256階調)で表されるとすると、(G-R),(G-B),(R-B)の各値は、負の値になることがあるので、9ビットで表される。R,G,B,(G-R),(G-B),(R-B)の各値は、本発明における特定色抽出の為の色パラメータの値に対応する。色差分演算部44は、R,G,B,(G-R),(G-B),(R-B)夫々の値を特定色抽出部45へ入力する。本実施形態では、R,G,B,(G-R),(G-B),(R-B)が色パラメータである。しかし、色パラメータは、これらに限定されない。 The color difference calculation unit 44 receives the RGB signal value input from the resolution conversion unit 43, the (G−R) value obtained by subtracting the R signal value from the G signal value, and the B signal value from the G signal value. A value (GB) obtained by subtracting the value and a value (RB) obtained by subtracting the value of the B signal from the value of the R signal are calculated. If each RGB signal value is represented by 8 bits (256 gradations), each of the values (GR), (GB), and (RB) may be a negative value. Therefore, it is represented by 9 bits. Each value of R, G, B, (GR), (GB), and (RB) corresponds to a color parameter value for extracting a specific color in the present invention. The color difference calculation unit 44 inputs R, G, B, (GR), (GB), and (RB) values to the specific color extraction unit 45. In the present embodiment, R, G, B, (GR), (GB), and (RB) are color parameters. However, the color parameter is not limited to these.
 特定色抽出部45は、複製禁止画像に含まれる特定的な画像パターンであって複製禁止画像を特定付ける特定パターンを検出し易くするために、画像読取部1が読み取った画像から、画素の色が特定パターンの特定色範囲内となっている特定色画素を抽出する処理を行う。 The specific color extracting unit 45 detects the color of the pixel from the image read by the image reading unit 1 in order to easily detect a specific image pattern included in the copy prohibited image and specifying the copy prohibited image. Performs a process of extracting a specific color pixel within a specific color range of the specific pattern.
 特定色抽出部45は、比較器451及び設定レジスタ452を備えて構成されており、色差分演算部44からのR,G,B,(G-R),(G-B),(R-B)夫々の信号は比較器451へ入力される。設定レジスタ452は、R,G,B,G-R,G-B,R-B夫々の信号の範囲を特定パターンの色を表現する範囲に定めた特定色範囲を記憶している。 The specific color extraction unit 45 includes a comparator 451 and a setting register 452, and R, G, B, (GR), (GB), (R−) from the color difference calculation unit 44. B) Each signal is input to the comparator 451. The setting register 452 stores a specific color range in which the signal range of each of R, G, B, GR, GB, and RB is defined as a range that expresses the color of the specific pattern.
 特定色範囲は、R,G,B,G-R,G-B,R-B夫々の値の上限及び下限を規定する閾値を設定することで決定する。具体的には、特定色範囲は、画素の色が特定パターンの色であると判定されるための、R信号の値の下限値Rmin 及び上限値Rmax 、G信号の値の下限値Gmin 及び上限値Gmax 、B信号の値の下限値Bmin 及び上限値Bmax 、(G-R)の値の下限値(G-R)min 及び上限値(G-R)max 、(G-B)の値の下限値(G-B)min 及び上限値(G-B)max 、(R-B)の値の下限値(R-B)min 及び上限値(R-B)max からなる。255が最も薄い色を示し、0が最も濃い色を示しており、特定パターンの色が朱色である場合、設定レジスタ452は、例えば、Rmin =40、Rmax =160、Gmin =0、Gmax =95、Bmin =0、Bmax =75、(G-R)min =-95、(G-R)max =-5、(G-B)min =-15、(G-B)max =35、(R-B)min =5及び(R-B)max =105となる特定色範囲を記憶する。この場合であると、R,G,B,G-R,G-B,R-Bの値がすべて上記特定範囲内に含まれる色の画素のみが抽出される。抽出された色の画素は1、それ以外の色の画素は0に2値化される。2値化された画像データ(2値画像データ)は形状が特定パターンの形状であるかどうかの判定するために特定パターン検出部に送られる。本発明では、この設定レジスタの値の算出を、基準チャートを用いてガンマ補正及び色補正の値を調整するカラーバランス調整時に、あわせて行う。 The specific color range is determined by setting a threshold value that defines an upper limit and a lower limit for each of R, G, B, GR, GB, and RB. Specifically, the specific color range includes a lower limit value R min and an upper limit value R max of the value of the R signal, and a lower limit value G of the value of the G signal for determining that the pixel color is the color of the specific pattern. min and upper limit value G max , B signal lower limit value B min and upper limit value B max , (GR) lower limit value (GR) min and upper limit value (GR) max , (G From the lower limit (GB) min and upper limit (GB) max of the value of -B), the lower limit (RB) min and upper limit (RB) max of the value of (RB) Become. When 255 indicates the lightest color, 0 indicates the darkest color, and the color of the specific pattern is vermilion, for example, the setting register 452 stores R min = 40, R max = 160, G min = 0, G max = 95, B min = 0, B max = 75, (GR) min = −95, (GR) max = −5, (GB) min = −15, (GB) A specific color range in which max = 35, (R−B) min = 5 and (R−B) max = 105 is stored. In this case, only the color pixels whose values of R, G, B, GR, GB, and RB are all included in the specific range are extracted. The extracted color pixel is binarized to 1, and the other color pixels are binarized to 0. The binarized image data (binary image data) is sent to a specific pattern detection unit in order to determine whether the shape is a specific pattern shape. In the present invention, the value of the setting register is calculated at the time of color balance adjustment in which the values of gamma correction and color correction are adjusted using the reference chart.
 RGB信号の値だけでなく、色差である(G-R)、(G-B)及び(R-B)の値を用いて特定色範囲を設定することにより、RGB信号の値のみを用いて特定色範囲を定義する方法に比べて、特定パターンの特定色範囲をより細かく設定することができる。なお、本実施形態の画像処理装置100では、その他の色パラメータを用いて特定色範囲を設定する形態であってもよい。 By setting the specific color range using not only the RGB signal value but also the color difference values (GR), (GB) and (RB), only the RGB signal value is used. Compared to the method of defining the specific color range, the specific color range of the specific pattern can be set more finely. The image processing apparatus 100 according to the present embodiment may be configured to set the specific color range using other color parameters.
 比較器451は、読み取った画像データに含まれる各画素(判定対象)について、色差分演算部44から入力されたR,G,B,(G-R),(G-B),(R-B)夫々の値と、設定レジスタ452が記憶している特定色範囲とを比較し、各値(各信号)が特定色範囲に含まれるか否かを判定する。即ち、比較器451は、Rの値(R信号)がRmin 以上Rmax 以下でかつ、Gの値(G信号)がGmin 以上Gmax 以下でかつ、Bの値(B信号)がBmin 以上Bmax 以下でかつ、(G-R)の値((G-R)信号)が(G-R)min 以上(G-R)max 以下でかつ、(G-B)の値((G-B)信号)が(G-B)min 以上(G-B)max 以下でかつ、(R-B)の値((R-B)信号)が(R-B)min 以上(R-B)max 以下であるか否かを判定する。比較器451は、R,G,B,(G-R),(G-B),(R-B)の値が全て特定色範囲に含まれる場合に、画素の色は特定色であると判断して、画素に対応する値である画素値を1(以下黒とも表記する)に決定する。また比較器451は、R,G,B,(G-R),(G-B),(R-B)の何れかの値が特定色範囲から外れている場合に、判定対象の画素の色は特定色ではないと判断して、その画素に対応する画素値を0(以下白とも表記する)に決定する。そして、比較器451は、読み取った画像データに含まれる画素毎に画素値を決定し、各画素の画素値を1又は0の2値で表した2値画像データを、特定パターン検出部46へ入力する。 The comparator 451 outputs R, G, B, (GR), (GB), (R−) input from the color difference calculation unit 44 for each pixel (determination target) included in the read image data. B) Each value and the specific color range stored in the setting register 452 are compared to determine whether each value (each signal) is included in the specific color range. That is, the comparator 451 has an R value (R signal) of R min or more and R max or less, a G value (G signal) of G min or more and G max or less, and a B value (B signal) of B min. min to B max and the value of (GR) ((GR) signal) is (GR) min to (GR) max and less to (GB) value (( (GB) signal) is (GB) min or more and (GB) max or less and (RB) value ((RB) signal) is (RB) min or more (R- B) It is determined whether it is below max . The comparator 451 determines that the pixel color is a specific color when the values of R, G, B, (GR), (GB), and (RB) are all included in the specific color range. The pixel value, which is a value corresponding to the pixel, is determined to be 1 (hereinafter also referred to as black). In addition, the comparator 451 determines the pixel to be determined when any of R, G, B, (GR), (GB), and (RB) is out of the specific color range. The color is determined not to be a specific color, and the pixel value corresponding to the pixel is determined to be 0 (hereinafter also referred to as white). The comparator 451 determines a pixel value for each pixel included in the read image data, and outputs the binary image data representing the pixel value of each pixel as a binary value of 1 or 0 to the specific pattern detection unit 46. input.
 RGB信号の値が夫々8ビットである場合、比較器451の処理により、各画素に対応する画素値は0又は1の1ビットで表されるので、画素毎のデータ量は1/24となる。また解像度変換部43において主走査方向及び副走査方向の夫々の解像度を1/6にしている場合、読み取った画像を表すデータ量は、1/6×1/6×1/24=1/864となる。このように特定パターン検出部46で扱うべきデータ量が減少するので、特定パターン検出部46での高速処理が容易となる。 When the values of the RGB signals are 8 bits, the pixel value corresponding to each pixel is represented by 1 bit of 0 or 1 by the processing of the comparator 451, so the data amount for each pixel is 1/24. . When the resolution conversion unit 43 sets the respective resolutions in the main scanning direction and the sub-scanning direction to 1/6, the data amount representing the read image is 1/6 × 1/6 × 1/24 = 1/864. It becomes. As described above, since the amount of data to be handled by the specific pattern detection unit 46 is reduced, high-speed processing by the specific pattern detection unit 46 is facilitated.
 設定レジスタ452は、複数種類の複製禁止画像に係る複数種類の特定パターンの夫々について特定色範囲を記憶している。比較器451は、この設定レジスタ452に記憶してある特定色範囲の数だけ処理を繰り返し、複数種類の特定パターンの夫々について2値画像データを出力する。なお、特定パターンの種類の数だけの複数の特定色抽出部45を並列に備え、各特定色抽出部45で各特定パターンについて2値画像データを出力する形態であってもよい。 The setting register 452 stores a specific color range for each of a plurality of types of specific patterns related to a plurality of types of copy-prohibited images. The comparator 451 repeats the process for the number of specific color ranges stored in the setting register 452, and outputs binary image data for each of a plurality of types of specific patterns. Note that a plurality of specific color extraction units 45 corresponding to the number of types of specific patterns may be provided in parallel, and each specific color extraction unit 45 may output binary image data for each specific pattern.
 また複数種類の特定パターンにおいて特定色が共通する場合は、設定レジスタ452は複数種類の特定パターンに共通する特定色範囲を記憶しておき、比較器451は、複数種類の特定パターンに共通する2値画像データを出力してもよい。 When a plurality of types of specific patterns share a specific color, the setting register 452 stores a specific color range common to the plurality of types of specific patterns, and the comparator 451 is common to the plurality of types of specific patterns. Value image data may be output.
 この2値化された2値画像データは特定パターン検出部46に入力されるが、特定パターン検出部46の説明の前に、カラーバランス調整時に、特定色範囲を算出する方法について図21を用い説明する。以下では、特定色が朱色、特定パターンが商品券の朱印である場合を例にとって説明する。 The binarized binary image data is input to the specific pattern detection unit 46. Before describing the specific pattern detection unit 46, a method for calculating a specific color range at the time of color balance adjustment will be described with reference to FIG. explain. Hereinafter, a case where the specific color is vermilion and the specific pattern is vermillion on a gift certificate will be described as an example.
 まず、前述したようにカラーバランス調整時に画像読取部1にて読み取られた基準チャート23のカラーパッチのRGBの値(読取値)を、見本データ571のRGBの値(目標値)に近づくようにガンマ補正部414と色変換部415にて補正する。基準チャート23のカラーパッチの読み取りデータを補正した後の赤の12番パッチのR信号・G信号・B信号の値を各々Rr12、Gr12,Br12とし、基準チャート23のカラーパッチの読み取りデータを補正した後の赤の6番パッチのR信号・G信号・B信号の値を各々Rr6、Gr6,Br6とする。 First, as described above, the RGB value (read value) of the color patch of the reference chart 23 read by the image reading unit 1 at the time of color balance adjustment approaches the RGB value (target value) of the sample data 571. Correction is performed by the gamma correction unit 414 and the color conversion unit 415. The R patch, the G signal, and the B signal of the red twelfth patch after correcting the read data of the color patch of the reference chart 23 are R r12 , G r12 , and B r12 , respectively. The values of the R signal, G signal, and B signal of the red No. 6 patch after correcting the data are R r6 , G r6 , and B r6 , respectively.
 なお、カラーバランス調整には、黒・赤・青・緑・シアン・マゼンタ・イエローのカラーパッチを用いるが、特定色が朱色の場合は赤のカラーパッチを使用して特定色範囲を定義するための閾値を算出する。同様に黄色の特定色の算出はイエローパッチ、黒の特定色の算出は黒パッチを使用するが朱色と同様のため説明は省略する。 For color balance adjustment, black, red, blue, green, cyan, magenta, and yellow color patches are used. When the specific color is vermilion, the red color patch is used to define the specific color range. The threshold value is calculated. Similarly, the yellow specific color is calculated using a yellow patch, and the black specific color is calculated using a black patch.
 特定色領域のR,G,B,(G-R),(G-B),(R-B)の値の上限(RGBについては明るい)値Rmax,Gmax,Bmax,(G-R)max,(G-B)max,(R-B)max、及び、下限(RGBについては暗い)値Rmin,Gmin,Bmin,(G-R)min,(G-B)min,(R-B)minは、図21に示す式のように表される。この式は、各種光源(キセノンランプ・LED・冷陰極管など)や各種受光センサー(各メーカーのCCDやCIS)で画像読取部1の特性がばらついても、実際に画像読取部1で読み取ったカラーチャートの読取値を使うことで、上記特性の変化を吸収できるよう、予め実験にて求めたものである。なお、図21では、例えば「(G-R)min」を「GRmin」のように簡略して記載している。 The upper limit (light for RGB) values R max , G max , B max , (G−) of the values of R, G, B, (GR), (GB), (RB) in the specific color region R) max , (GB) max , (RB) max , and lower limit (dark for RGB) values R min , G min , B min , (GR) min , (GB) min , (RB) min is expressed as shown in FIG. This equation is actually read by the image reading unit 1 even if the characteristics of the image reading unit 1 vary with various light sources (xenon lamps, LEDs, cold cathode tubes, etc.) and various light receiving sensors (CCDs and CISs of various manufacturers). This is obtained in advance by experiments so that the change in the above characteristics can be absorbed by using the reading value of the color chart. In FIG. 21, for example, “(GR) min” is simply described as “GRmin”.
 例えば、ある読取装置のカバーバランス調整後のRr12、Gr12,Br12の値が、各々、149,58,23であり、Rr6、Gr6,Br6の値が各々、203,161,135だったとする。赤12番パッチの見本データのRGB値が150,52,23であり、赤6番パッチの見本データのRGB値が各々、199,164,135だとする。その読取装置は中濃度部の赤画像を読み取った場合、若干Rの値が大きくなりGの値が小さくなるようにしか調整できない読取装置であるが、カラースキャナやカラーコピー機として使用する場合、見本データとの差は小さいためほとんど問題にならない。 For example, the values of R r12 , G r12 , B r12 after adjusting the cover balance of a certain reading device are 149, 58, 23, respectively, and the values of R r6 , G r6 , B r6 are 203, 161, respectively. Suppose that it was 135. Assume that the RGB values of the sample data for the red 12th patch are 150, 52, and 23, and the RGB values of the sample data for the red 6th patch are 199, 164, and 135, respectively. The reading device is a reading device that can only be adjusted so that the value of R is slightly increased and the value of G is decreased when a red image in the middle density portion is read. When used as a color scanner or a color copier, Since the difference from the sample data is small, it is hardly a problem.
 しかしながら、特定色の抽出を考えた場合、Gの値からRの値を引いた(G-R)の色差の値がRが大きくなりGが小さくなることで実際の値より小さくなってしまう。このため、例えば図16で示した一般パターン(商品券ではなく商学部の朱印)16が、特定パターンとわずかに色相が違っていても、一般パターン16の円162の太さと直径とが、特定パターンと同じで、一般パターンの商の字163が、商品券の特定パターンの商の字と似ていた場合に、標準の読取装置の値より(G-R)の値が小さくなってしまうため特定色の抽出で抽出してしまい、誤検出してしまう可能性がある。 However, when extraction of a specific color is considered, the color difference value obtained by subtracting the R value from the G value (GR) becomes smaller than the actual value when R becomes larger and G becomes smaller. For this reason, for example, even if the general pattern 16 shown in FIG. 16 (not a gift certificate but a red stamp of the Faculty of Commerce) is slightly different in hue from the specific pattern, the thickness and diameter of the circle 162 of the general pattern 16 are different from each other. Same as quotient character 163 of the general pattern, if the quotient character of the specific pattern of the gift certificate is similar, the value of (GR) will be smaller than the value of the standard reading device. There is a possibility that it will be extracted by color extraction and erroneously detected.
 また、図19に特定パターンの例として株主優待券に含まれる特定パターンを示すが、円262、優の字263の他に、下地模様264が特定色と似た色で印刷されているとする。中間濃度のRデータの値が大きくなりGの値が小さくなる読取装置では下地模様264の色を抽出してしまい、株主優待券を読取装置に置く角度によっては円弧の検出ができなく、特定パターンの検出ができず偽造優待券を印刷してしまう可能性がある。 FIG. 19 shows a specific pattern included in the shareholder special coupon as an example of the specific pattern. In addition to the circle 262 and the excellent character 263, the base pattern 264 is printed in a color similar to the specific color. . In the reading device in which the value of the intermediate density R data is increased and the G value is decreased, the color of the base pattern 264 is extracted, and the arc cannot be detected depending on the angle at which the shareholder coupon is placed on the reading device. May not be detected, and a counterfeit coupon may be printed.
 このように、特定パターンを含む原稿や特定パターンを含まない原稿は多数ある。そのため、確実に特定パターンを検出し、確実に特定パターンでないものを検出しないためには、画像読取部を含む画像処理装置1台ごとに、特定色抽出パターンの色空間の設定を最適化する必要がある。よって、全ての画像読取部を含む画像処理装置の色バランスを完全に調整するのは非常なコストアップになる。しかし、本発明では、カラーバランス調整時の調整後のカラーパッチデータの値を使うことで、余分な作業や部品を使わずに装置1台1台に最適な特定色範囲の定義(色抽出レジスタ)の設定を行える。 As described above, there are many originals including specific patterns and originals not including specific patterns. Therefore, in order to reliably detect a specific pattern and not reliably detect a specific pattern, it is necessary to optimize the setting of the color space of the specific color extraction pattern for each image processing apparatus including the image reading unit. There is. Therefore, it is very expensive to completely adjust the color balance of the image processing apparatus including all the image reading units. However, in the present invention, by using the color patch data value after adjustment at the time of color balance adjustment, a specific color range that is optimal for each apparatus can be defined (color extraction register) without using extra work and parts. ) Can be set.
 特定色範囲を算出する式は、出荷時に画像処理装置100に設定される式である。図21では特定パターンの色が朱色の場合の一例を示しているが、特定パターンの色が替われば、式及び使用するカラーパッチの色が替わる。 The formula for calculating the specific color range is a formula set in the image processing apparatus 100 at the time of shipment. FIG. 21 shows an example in which the color of the specific pattern is vermilion. However, if the color of the specific pattern is changed, the formula and the color of the color patch to be used are changed.
 このように、画像処理装置1台1台実際に補正された値を使うことで、装置毎のばらつき、機種間のばらつき、途中で装置の部品のコストダウンによるわずかな画像の変化等をすべて吸収することができる。 In this way, by using the values that are actually corrected for each image processing device, it is possible to absorb all variations from device to device, device to device model, and slight image changes due to cost reductions in device parts. can do.
 しかしながら、故意または過失によって、正しく調整できないことがあった場合、間違った特定色範囲を設定してしまうことになる。例えば、チャートを細工することで、特定色範囲を狂わすこともできる。そこで、故意または過失によって、正しく調整できない場合には、次のように対応する。 However, if there is a case where the adjustment cannot be performed properly due to intention or negligence, an incorrect specific color range is set. For example, the specific color range can be distorted by crafting the chart. Therefore, when correct adjustment cannot be made due to intention or negligence, the following measures are taken.
 まず、見本データ571のRGBの値である目標値と、補正後の値である補正値との差を求める。この目標値と補正値との差は、例えば(G-R)minであれば、(Gr12-Rr12)を(gr12-rr12)から引くことで求める。なお、(gr12-rr12)を(Gr12-Rr12)から引いて求めてもよい。ここで、上記補正値とは、画像読取部1にて読み取られた基準チャート23のカラーパッチのRGBの値(読取値)を、見本データ571のRGBの値(目標値)に近づくようにガンマ補正部414と色変換部415にて補正した値である。 First, a difference between a target value that is an RGB value of the sample data 571 and a correction value that is a corrected value is obtained. The difference between the target value and the correction value is obtained, for example, by subtracting (G r12 -R r12 ) from (g r12 -r r12 ) if (GR) min . Note that (g r12 -r r12 ) may be obtained by subtracting from (G r12 -R r12 ). Here, the correction value is a gamma value so that the RGB value (read value) of the color patch of the reference chart 23 read by the image reading unit 1 approaches the RGB value (target value) of the sample data 571. The values are corrected by the correction unit 414 and the color conversion unit 415.
 そして、上記求めた差に応じて、図22に示すように、特定色範囲を算出する式を変更する。 Then, the formula for calculating the specific color range is changed according to the obtained difference as shown in FIG.
 図22では、カラーバランス調整時に読み取った基準チャート23のカラーパッチを補正した後の、赤の12番パッチのR信号・G信号・B信号の値(補正値)を各々Rr12、Gr12,Br12とし、赤の6番パッチのR信号・G信号・B信号の値(補正値)を各々Rr6、Gr6,Br6とする。また、見本データ571の赤の12番パッチのR信号・G信号・B信号の目標値を各々rr12、gr12,br12とし、見本データ571の赤の6番パッチのR信号・G信号・B信号の目標値を各々rr6、gr6,br6とする。なお、図22でも、例えば「(G-R)min」を「GRmin」のように簡略して記載している。 In FIG. 22, after correcting the color patch of the reference chart 23 read at the time of color balance adjustment, the values (correction values) of the R signal, the G signal, and the B signal of the red twelfth patch are respectively R r12 , G r12 , It is assumed that B r12 and the values (correction values) of the R signal, the G signal, and the B signal of the red sixth patch are R r6 , G r6 , and B r6 , respectively. Further, the target values of the R signal, G signal, and B signal of the red 12th patch of the sample data 571 are set to r r12 , g r12 , and b r12 , respectively, and the R signal and G signal of the red 6th patch of the sample data 571 are used. The target values of the B signal are r r6 , g r6 , and b r6 , respectively. In FIG. 22, for example, “(GR) min” is simply described as “GRmin”.
 目標値と補正値との差が許容範囲(図22では-5以上5以下(絶対値5以内))より小さい(図22では-5より小さい)場合と、大きい(図22では5より大きい)場合とには、特定色範囲を算出する式に、目標値を使用する。 The difference between the target value and the correction value is smaller (smaller than −5 in FIG. 22) or larger (larger than 5 in FIG. 22) in the allowable range (−5 to 5 (absolute value within 5) in FIG. 22). In some cases, the target value is used in the formula for calculating the specific color range.
 目標値と補正値との差が許容範囲内(図22では-5以上5以下)である場合には、特定色範囲を算出する式に、補正値を使用する。 When the difference between the target value and the correction value is within the allowable range (from −5 to 5 in FIG. 22), the correction value is used in the formula for calculating the specific color range.
 以上のように式を分けることで、画像読取部1で基準チャート23が正しく読めなかった場合、つまり、補正後の基準チャートの色データの値と見本データの色の値とに差が出た場合でも、正しく特定色を検出することができる。 By dividing the formula as described above, when the reference chart 23 cannot be read correctly by the image reading unit 1, that is, there is a difference between the color data value of the corrected reference chart and the color value of the sample data. Even in this case, the specific color can be detected correctly.
 図22の式を変更する目標値と調整後の値との差の許容範囲(図22では-5以上5以下)は、予め、画像処理装置100の出荷時に決められている値である。この許容範囲は、実際に特定色を有する紙幣などを印字した時に違和感があるかないかを基準にすることで、紙幣などの偽造を防止することができる。この、違和感があるかないかの基準については、例えば差を変化させて特定パターンを含む原稿を複写し、複数の人間で判断することで、決定してもよい。 The allowable range (−5 or more and 5 or less in FIG. 22) of the difference between the target value for changing the equation of FIG. 22 and the adjusted value is a value determined in advance when the image processing apparatus 100 is shipped. This permissible range can prevent counterfeiting of banknotes, etc., based on whether or not there is a sense of incongruity when banknotes having a specific color are actually printed. The criterion for whether or not there is a sense of incongruity may be determined by, for example, copying a document including a specific pattern by changing the difference and judging by a plurality of people.
 なお、図22で示す特定色範囲を算出する式も、図21と同様に、出荷時に画像処理装置100に設定される式である。本実施形態では、朱色の特定パターンを抽出する場合の式の一例として説明しているが、別の特定色では図22に示す式と使用するカラーパッチの色が替わる。 Note that the formula for calculating the specific color range shown in FIG. 22 is also a formula set in the image processing apparatus 100 at the time of shipment, as in FIG. In the present embodiment, an example of an expression for extracting a vermilion specific pattern has been described. However, in another specific color, the expression shown in FIG. 22 and the color patch used are changed.
 上記の特定色範囲の算出は、制御部56の特定範囲決定部562が行う。 The calculation of the specific color range is performed by the specific range determination unit 562 of the control unit 56.
 また、図17に示されるような、原稿送り装置の傾き調整及び画像処理装置のカラーバランス調整に兼用される基準チャートを、生産時に使い、図2のようなガンマ調整用のチャートを装置のサービスマンが使用してもよい。このようになっていると、生産時では短時間に、原稿送り装置の傾き調整、カラーバランス調整、特定色範囲の算出をすることができる。他方で、装置のサービスマンは特別な次具がなくても環境が整っていなくても、カラーバランスを調整することが可能である。 Further, a reference chart used for adjusting the inclination of the document feeder and the color balance of the image processing apparatus as shown in FIG. 17 is used during production, and the gamma adjustment chart as shown in FIG. Man may use. With this configuration, it is possible to adjust the inclination of the document feeder, the color balance, and the specific color range in a short time during production. On the other hand, the service person of the apparatus can adjust the color balance even if there is no special equipment or the environment is not prepared.
 (特定パターン検出部)
 次に、特定パターン検出部46での処理内容を説明する。2値化されたデータなので色は存在しないが、説明の便宜上、1を黒、0を白と書く。特定パターン検出部46は、特定パターンの一部を構成する部分パターンを画像から検出するための処理を行い、部分パターンを検出した場合に、特定パターンを画像から検出するための処理を行う。
(Specific pattern detector)
Next, the processing content in the specific pattern detection unit 46 will be described. Since the data is binarized, there is no color, but for convenience of explanation, 1 is written as black and 0 is written as white. The specific pattern detection unit 46 performs a process for detecting a partial pattern constituting a part of the specific pattern from the image, and performs a process for detecting the specific pattern from the image when the partial pattern is detected.
 図7は、複製禁止画像の例を示す模式図であり、図8は、特定パターンの例を示す模式図である。図7には、複製禁止画像の例として商品券を示しており、複製禁止画像内には特定パターン61が含まれている。 FIG. 7 is a schematic diagram illustrating an example of a copy prohibition image, and FIG. 8 is a schematic diagram illustrating an example of a specific pattern. FIG. 7 shows a gift certificate as an example of a copy prohibited image, and a specific pattern 61 is included in the copy prohibited image.
 特定パターン61は、図8に示すように、丸の中に商の字を記した形状のパターンとなっている。複数種類の複製禁止画像が共通の特定パターンを含んでいることもあり、また複数種類の複製禁止画像の夫々が個別の特定パターンを含んでいることもある。図8に示すような特定パターン61が画像に含まれている場合は、画像は複製禁止画像であると判定できる。反対に、特定パターンが画像に含まれていない場合は、画像は複製禁止画像ではないと判定できる。なお、特定パターンは、図8に示す例に限るものではなく、紙幣に含まれる朱印等、複数種類の図形が特定パターンとして設定されている。 As shown in FIG. 8, the specific pattern 61 is a pattern having a shape in which a quotient character is written in a circle. A plurality of types of copy-prohibited images may include a common specific pattern, and a plurality of types of copy-prohibited images may include individual specific patterns. If the specific pattern 61 as shown in FIG. 8 is included in the image, it can be determined that the image is a copy-prohibited image. On the other hand, when the specific pattern is not included in the image, it can be determined that the image is not a copy prohibited image. Note that the specific pattern is not limited to the example illustrated in FIG. 8, and a plurality of types of figures such as red marks included in the banknote are set as the specific pattern.
 図9は、特定パターンの一部を構成する部分パターンの例を示す模式図である。図9に示す実線の部分が部分パターン62であり、部分パターン62が、図8に示す特定パターン61の一部をなす円弧である例を示している。図9中には、特定パターン61中の部分パターン62以外の部分は点線で示している。円弧である部分パターン62を画像内で検出した場合、特定パターン61である可能性のある特定パターン候補画像を抽出することができる。 FIG. 9 is a schematic diagram showing an example of a partial pattern constituting a part of the specific pattern. 9 shows an example in which the solid line portion is a partial pattern 62, and the partial pattern 62 is an arc that forms part of the specific pattern 61 shown in FIG. In FIG. 9, portions other than the partial pattern 62 in the specific pattern 61 are indicated by dotted lines. When the partial pattern 62 that is an arc is detected in the image, a specific pattern candidate image that may be the specific pattern 61 can be extracted.
 図10は、特定パターン候補画像の例を示す模式図である。部分パターン62が画像中に検出された場合、部分パターン62の円弧の半径をn(mm)として、部分パターン62を含む半径nの円で囲まれる部分は、特定パターン61である可能性がある。従って、画像中の部分パターン62を含む半径nの円で囲まれる部分は、特定パターン候補画像63である。図10中には、部分パターン62を含む円の部分パターン62以外の部分を破線で示し、特定パターン候補画像63の範囲をハッチングで示す。他の種類の特定パターンについても、夫々に部分パターンが設定されている。 FIG. 10 is a schematic diagram showing an example of a specific pattern candidate image. When the partial pattern 62 is detected in the image, the radius of the arc of the partial pattern 62 is n (mm), and the portion surrounded by the circle of the radius n including the partial pattern 62 may be the specific pattern 61. . Therefore, a portion surrounded by a circle with a radius n including the partial pattern 62 in the image is the specific pattern candidate image 63. In FIG. 10, portions other than the partial pattern 62 of the circle including the partial pattern 62 are indicated by broken lines, and the range of the specific pattern candidate image 63 is indicated by hatching. A partial pattern is set for each of the other types of specific patterns.
 部分パターンの形状は、限定はされないが、図9に示すように検出が容易な形状であり、しかも、図10に示すように特定パターン候補画像63の範囲を容易に決定できる形状であることが必要である。 Although the shape of the partial pattern is not limited, it may be a shape that can be easily detected as shown in FIG. 9, and the shape of the specific pattern candidate image 63 can be easily determined as shown in FIG. 10. is necessary.
 特定パターン検出部46は、部分パターンが内包できる大きさの判定ウインドウを画像内に設定し、判定ウインドウを画像内で動かしながら、判定ウインドウ内に部分パターンが含まれるか否かを判定することにより、画像内から部分パターンを検出する処理を行う。 The specific pattern detection unit 46 sets a determination window having a size capable of including the partial pattern in the image, and moves the determination window in the image to determine whether or not the partial pattern is included in the determination window. Then, a process of detecting a partial pattern from the image is performed.
 図11は、上記判定ウインドウの例を示す模式図である。図11に示した例では、判定ウインドウ64は、画像読取部1を用いて画像を読み取った際の主走査方向及び副走査方向に各辺が平行になっている矩形の形状をなし、部分パターン62が内包される大きさとなっている。図11には、判定ウインドウ64の大きさと部分パターン62との関係を示すために、判定ウインドウ64内に部分パターン62が含まれた状態を示している。 FIG. 11 is a schematic diagram showing an example of the determination window. In the example shown in FIG. 11, the determination window 64 has a rectangular shape in which each side is parallel to the main scanning direction and the sub-scanning direction when the image is read using the image reading unit 1. The size 62 is included. FIG. 11 shows a state in which the partial pattern 62 is included in the determination window 64 in order to show the relationship between the size of the determination window 64 and the partial pattern 62.
 特定色抽出部45から入力された2値画像データが表す画像上で、判定ウインドウ64内に部分パターンが内包される場合は、判定ウインドウ64中の画素の内、特定色の画像である特定色画素は部分パターン上に集中し、特定色画素ではない他の画素は他の部分に分布しているはずである。特定パターン検出部46は、部分パターンの形状を設定した情報として、判定ウインドウ64の大きさを設定し、特定色画素の分布を調べるために、判定ウインドウ64の内部を分割した夫々の領域を設定したテンプレートを記憶している。 When a partial pattern is included in the determination window 64 on the image represented by the binary image data input from the specific color extraction unit 45, a specific color that is an image of a specific color among the pixels in the determination window 64 The pixels are concentrated on the partial pattern, and other pixels that are not specific color pixels should be distributed in other portions. The specific pattern detection unit 46 sets the size of the determination window 64 as information for setting the shape of the partial pattern, and sets each area obtained by dividing the inside of the determination window 64 in order to examine the distribution of specific color pixels. Remembered templates.
 図12は、上記テンプレートの例を示す模式図である。図12の(a)は、判定ウインドウ64内に部分パターン62が含まれる場合の画素の分布を示す。図12に示した例では、判定ウインドウ64は、副走査方向に並んだ6個のラインデータ641,642,643,644,645,646からなり、各ラインデータには主走査方向に並んだ42個の画素が含まれる。図12の(a)に示す黒色のセルは画素値が1である特定色画素を表し、白色のセルは画素値が0の画素を表す。例えば、ラインデータ641では、座標(0,0)~(15,0)及び座標(26,0)~(41,0)に対応した画素の画素値が0であり、座標(16,0)~(25,0)に対応した画素は、画素値が1の特定色画素である。 FIG. 12 is a schematic diagram showing an example of the template. FIG. 12A shows the pixel distribution when the partial pattern 62 is included in the determination window 64. In the example shown in FIG. 12, the determination window 64 includes six line data 641, 642, 643, 644, 645, and 646 arranged in the sub-scanning direction, and each line data is arranged in the main scanning direction 42. Pixels are included. A black cell shown in FIG. 12A represents a specific color pixel having a pixel value of 1, and a white cell represents a pixel having a pixel value of 0. For example, in the line data 641, the pixel values of the pixels corresponding to the coordinates (0,0) to (15,0) and the coordinates (26,0) to (41,0) are 0, and the coordinates (16,0) Pixels corresponding to (25, 0) are specific color pixels having a pixel value of 1.
 図12の(b)は、部分パターン62が含まれる判定ウインドウ64と対比させたテンプレート70を示す。テンプレート70は、判定ウインドウ64内のラインデータ641~646の夫々に対応する第1ライン71、第2ライン72、第3ライン73、第4ライン74、第5ライン75、第6ライン76により構成されている。第1ライン71~第6ライン76の夫々は、主走査方向に42個の画素を持つと共に、主走査方向において3つの領域に分割されている。 (B) of FIG. 12 shows the template 70 compared with the determination window 64 in which the partial pattern 62 is included. The template 70 includes a first line 71, a second line 72, a third line 73, a fourth line 74, a fifth line 75, and a sixth line 76 corresponding to the line data 641 to 646 in the determination window 64, respectively. Has been. Each of the first line 71 to the sixth line 76 has 42 pixels in the main scanning direction and is divided into three regions in the main scanning direction.
 第1ライン71は、座標(15,0)~(26,0)までの第1領域71a、座標(11,0)~(14,0)及び座標(27,0)~(30,0)までの第2領域71b,71b、座標(0,0)~(10,0)及び座標(31,0)~(41,0)までの第3領域71c,71cに分割されている。第2ライン72は、座標(17,1)~(24,1)までの第1領域72a、座標(11,1)~(16,1)及び座標(25,1)~(30,1)までの第2領域72b,72b、座標(0,1)~(10,1)及び座標(31,1)~(41,1)までの第3領域72c,72cに分割されている。第3ライン73は、座標(13,2)~(28,2)までの第1領域73a、座標(8,2)~(12,2)及び座標(29,2)~(33,2)までの第2領域73b,73b、座標(0,2)~(7,2)及び座標(34,2)~(41,2)までの第3領域73c,73cに分割されている。第4ライン74は、座標(11,3)~(30,3)までの第1領域74a、座標(7,3)~(10,3)及び座標(31,3)~(34,3)までの第2領域74b,74b、座標(0,3)~(6,3)及び座標(33,3)~(41,3)までの第3領域74c,74cに分割されている。第5ライン75は、座標(10,4)~(31,4)までの第1領域75a、座標(5,4)~(9,4)及び座標(32,4)~(36,4)までの第2領域75b,75b、座標(0,4)~(4,4)及び座標(37,4)~(41,4)までの第3領域75c,75cに分割されている。第6ライン76は、座標(7,5)~(34,5)までの第1領域76a、座標(4,5)~(6,5)及び座標(35,5)~(37,5)までの第2領域76b,76b、座標(0,5)~(4,5)及び座標(38,5)~(41,5)までの第3領域76c,76cに分割されている。 The first line 71 includes a first area 71a from coordinates (15,0) to (26,0), coordinates (11,0) to (14,0), and coordinates (27,0) to (30,0). The second regions 71b and 71b are divided into coordinates (0, 0) to (10, 0) and third regions 71c and 71c from coordinates (31, 0) to (41, 0). The second line 72 includes a first area 72a from coordinates (17,1) to (24,1), coordinates (11,1) to (16,1), and coordinates (25,1) to (30,1). The second regions 72b and 72b are divided into coordinates (0, 1) to (10, 1) and third regions 72c and 72c from coordinates (31, 1) to (41, 1). The third line 73 includes a first area 73a from coordinates (13, 2) to (28, 2), coordinates (8, 2) to (12, 2), and coordinates (29, 2) to (33, 2). The second regions 73b and 73b are divided into the third regions 73c and 73c having the coordinates (0, 2) to (7, 2) and the coordinates (34, 2) to (41, 2). The fourth line 74 includes a first area 74a from coordinates (11, 3) to (30, 3), coordinates (7, 3) to (10, 3), and coordinates (31, 3) to (34, 3). The second regions 74b and 74b, the coordinates (0, 3) to (6, 3), and the coordinates (33, 3) to (41, 3) are divided into third regions 74c and 74c. The fifth line 75 includes a first area 75a from coordinates (10, 4) to (31, 4), coordinates (5, 4) to (9, 4), and coordinates (32, 4) to (36, 4). The second regions 75b and 75b, the coordinates (0, 4) to (4, 4), and the coordinates (37, 4) to (41, 4) are divided into third regions 75c and 75c. The sixth line 76 includes a first area 76a from coordinates (7,5) to (34,5), coordinates (4,5) to (6,5) and coordinates (35,5) to (37,5). The second regions 76b and 76b are divided into coordinates (0, 5) to (4, 5) and third regions 76c and 76c from coordinates (38, 5) to (41, 5).
 図12の(b)に示すように、テンプレート70の全体の形状により、判定ウインドウ64の形状が設定されている。またテンプレート70内の各領域は、判定ウインドウ64内に部分パターン62が含まれる場合の特定色画素の分布に合わせて設定している。即ち、第1領域71a及び第2領域72b~76bは、判定ウインドウ64内に部分パターン62が含まれる場合に特定色画素が集中する領域であり、他の領域は特定色画素が殆ど含まれなくなる領域である。 As shown in FIG. 12B, the shape of the determination window 64 is set according to the overall shape of the template 70. Each region in the template 70 is set according to the distribution of specific color pixels when the partial pattern 62 is included in the determination window 64. That is, the first area 71a and the second areas 72b to 76b are areas where specific color pixels concentrate when the partial pattern 62 is included in the determination window 64, and the other areas hardly include specific color pixels. It is an area.
 特定パターン検出部46は、更に、判定ウインドウ64内に部分パターン62が含まれる場合に各領域に含まれる特定色画素の数の範囲を定めた画素数範囲を記憶している。 The specific pattern detection unit 46 further stores a pixel number range that defines a range of the number of specific color pixels included in each area when the partial pattern 62 is included in the determination window 64.
 図13は、上記画素数範囲の例を示す図表である。ここで、図13の「黒」とは「特定色画素」を表しており、「9≦黒」とは、特定色画素が9画素以上ある、ということを表している。上記したように、特定色画素は2値化により1(黒)として扱っている。第1ライン71の第1領域71a、及び第2ライン72~第6ライン77の第2領域72b~76bは、判定ウインドウ64内に部分パターン62が含まれる場合に特定色画素が集中するので、多くの特定色画素を含むように画素数範囲が設定されている。またその他の領域は、判定ウインドウ64内に部分パターン62が含まれる場合には特定色画素が殆ど含まれなくなるので、特定色画素が殆ど含まれないように画素数範囲が設定されている。 FIG. 13 is a chart showing an example of the pixel number range. Here, “black” in FIG. 13 represents “specific color pixels”, and “9 ≦ black” represents that there are nine or more specific color pixels. As described above, the specific color pixel is treated as 1 (black) by binarization. Since the first area 71a of the first line 71 and the second areas 72b to 76b of the second line 72 to the sixth line 77 have specific color pixels concentrated when the partial pattern 62 is included in the determination window 64, The pixel number range is set so as to include many specific color pixels. In the other areas, when the partial pattern 62 is included in the determination window 64, the specific color pixels are hardly included. Therefore, the pixel number range is set so that the specific color pixels are hardly included.
 テンプレート70で定められた全ての領域において、特定色画素の数が画素数範囲に含まれている場合は、判定ウインドウ64内に部分パターンが含まれていると判定される。特定パターン検出部46は、複数種類の特定パターンの夫々について、テンプレート及び画素数範囲を記憶している。 In all the regions defined by the template 70, when the number of specific color pixels is included in the pixel number range, it is determined that the partial pattern is included in the determination window 64. The specific pattern detection unit 46 stores a template and a pixel number range for each of a plurality of types of specific patterns.
 特定パターン検出部46は、特定色抽出部45から入力された2値画像データが表す画像中での判定ウインドウ64の主走査方向及び副走査方向の位置を定め、画像中の画素の内で判定ウインドウ64内に含まれる画素の中から、テンプレート70で定められた各領域内に含まれる特定色画素の数を計測する。具体的には、各領域内に含まれる画素の内で画素値が1となっている画素の数を計測する。 The specific pattern detection unit 46 determines the positions of the determination window 64 in the main scanning direction and the sub scanning direction in the image represented by the binary image data input from the specific color extraction unit 45, and determines among the pixels in the image. From the pixels included in the window 64, the number of specific color pixels included in each region defined by the template 70 is measured. Specifically, the number of pixels having a pixel value of 1 among the pixels included in each region is measured.
 特定パターン検出部46は、次に、計測した各領域内の特定色画素の数と、各領域について記憶してある画素数範囲とを比較し、全ての領域において特定色画素の数が画素数範囲に含まれている場合は、部分パターン62を検出したと判定する。また特定パターン検出部46は、特定色画素の数が画素数範囲に含まれていない領域がある場合は、部分パターン62が検出できないと判定し、画像内で判定ウインドウ64を主走査方向に一画素分移動させ、同様に部分パターン62を検出する処理を行う。 Next, the specific pattern detection unit 46 compares the measured number of specific color pixels in each area with the pixel number range stored for each area, and the number of specific color pixels in all areas is the number of pixels. If it is included in the range, it is determined that the partial pattern 62 has been detected. The specific pattern detection unit 46 determines that the partial pattern 62 cannot be detected when there is a region where the number of specific color pixels is not included in the pixel number range, and sets the determination window 64 in the image in the main scanning direction. Similarly, the process of detecting the partial pattern 62 is performed by moving the pixel.
 部分パターン62が検出できない状態で主走査方向の走査が終了した場合は、特定パターン検出部46は、画像内で判定ウインドウ64を副走査方向に一画素分移動させ、同様に主走査方向に走査を行う。部分パターン62が検出できない状態で画像全体の走査が終了した場合は、特定パターン検出部46は、読み取った画像中には特定パターンは含まれていないと判定する。 When scanning in the main scanning direction is completed when the partial pattern 62 cannot be detected, the specific pattern detection unit 46 moves the determination window 64 by one pixel in the sub-scanning direction within the image, and similarly scans in the main scanning direction. I do. When scanning of the entire image is completed in a state where the partial pattern 62 cannot be detected, the specific pattern detection unit 46 determines that the specific pattern is not included in the read image.
 また特定パターン検出部46は、部分パターン62を検出した場合には、判定ウインドウ64内に含まれる部分パターン62を含む特定パターン候補画像63を、2値画像データが表す画像中から抽出する。特定パターン検出部46は、次に、抽出した特定パターン候補画像63に含まれる特定色画素の分布に基づいて、特定パターン候補画像63が特定パターンであるか否かを判定する。具体的には、特定パターン検出部46は、特定パターン候補画像63を複数の領域に分割し、各領域内に含まれる特定色画素の数が予め定められた範囲内にある場合に、特定パターン候補画像63が特定パターン61であると判定する。 Further, when the specific pattern detection unit 46 detects the partial pattern 62, the specific pattern detection unit 46 extracts the specific pattern candidate image 63 including the partial pattern 62 included in the determination window 64 from the image represented by the binary image data. Next, the specific pattern detection unit 46 determines whether or not the specific pattern candidate image 63 is a specific pattern based on the distribution of specific color pixels included in the extracted specific pattern candidate image 63. Specifically, the specific pattern detection unit 46 divides the specific pattern candidate image 63 into a plurality of regions, and when the number of specific color pixels included in each region is within a predetermined range, the specific pattern detection unit 46 It is determined that the candidate image 63 is the specific pattern 61.
 特定パターン候補画像63は、分割領域を定めた領域設定データに従って複数の領域に分割される。図14は、領域設定データに従って特定パターン候補画像63を複数の領域に分割した模式図である。図14に示した例では、円形状の特定パターン候補画像63を同心円状に分割している。図14では、最小の半径を有する円周によって囲まれる領域を第1分割領域631、その円周と2番目に小さな半径を有する円周とで囲まれる領域を第2分割領域632、その円周と3番目に小さな半径を有する円周とで囲まれる領域を第3分割領域633、その円周と外周とで囲まれる領域を第4分割領域634としている。 The specific pattern candidate image 63 is divided into a plurality of areas in accordance with area setting data that defines the divided areas. FIG. 14 is a schematic diagram in which the specific pattern candidate image 63 is divided into a plurality of regions in accordance with the region setting data. In the example shown in FIG. 14, the circular specific pattern candidate image 63 is divided into concentric circles. In FIG. 14, the region surrounded by the circumference having the smallest radius is the first divided region 631, the region surrounded by the circumference and the circle having the second smallest radius is the second divided region 632, and the circumference thereof. And a region surrounded by a circle having the third smallest radius is a third divided region 633, and a region surrounded by the circle and the outer periphery is a fourth divided region 634.
 特定パターン検出部46は、上記分割領域を定めた領域設定データを記憶している。特定パターン検出部46は、更に、上記領域設定データに従って特定パターンを分割した各領域に含まれる特定色画素の数の範囲を定めた特定色画素数範囲を記憶している。領域設定データに従って特定パターンを分割した場合、上記と同様、第1分割領域、第2分割領域、第3分割領域、第4分割領域に分かれる。 The specific pattern detection unit 46 stores area setting data that defines the divided areas. The specific pattern detection unit 46 further stores a specific color pixel number range that defines a range of the number of specific color pixels included in each region obtained by dividing the specific pattern according to the region setting data. When the specific pattern is divided according to the area setting data, it is divided into a first divided area, a second divided area, a third divided area, and a fourth divided area as described above.
 図15は、特定色画素数範囲の例を示す概念図である。図15には、第1分割領域における特定色画素の数の範囲が246以上300以下であり、第2分割領域における特定色画素の数の範囲が250以上302以下であり、第3分割領域における特定色画素の数の範囲が266以上310以下であり、第4分割領域における特定色画素の数の範囲が480以上である例を示している。よって、詳細は後述するが、例えば、特定パターン候補画像63の第1分割領域631の特定色画素の数と、図15に示す第1分割領域における特定色画素の数の範囲「246以上300以下」とが比較される。 FIG. 15 is a conceptual diagram showing an example of a specific color pixel number range. In FIG. 15, the range of the number of specific color pixels in the first divided region is 246 or more and 300 or less, the range of the number of specific color pixels in the second divided region is 250 or more and 302 or less, and in the third divided region In the example, the range of the number of specific color pixels is 266 or more and 310 or less, and the range of the number of specific color pixels in the fourth divided region is 480 or more. Therefore, although details will be described later, for example, the range of the number of specific color pixels in the first divided region 631 of the specific pattern candidate image 63 and the number of specific color pixels in the first divided region shown in FIG. Is compared.
 図15に示した例は、特定パターンが図7及び8に示した特定パターン61である場合の例であり、特定パターン61を図14に示すように分割した各領域に含まれる特定色画素の数に応じて定められている。 The example shown in FIG. 15 is an example in the case where the specific pattern is the specific pattern 61 shown in FIGS. 7 and 8, and the specific color pixel included in each area obtained by dividing the specific pattern 61 as shown in FIG. It is determined according to the number.
 このように、領域設定データ及び特定色画素数範囲は、特定パターン内に含まれる特定色画素の分布を反映するように定められている。特定パターン検出部46は、複数種類の特定パターンの夫々について、領域設定データ及び特定色画素数範囲を記憶している。 As described above, the area setting data and the specific color pixel number range are determined to reflect the distribution of the specific color pixels included in the specific pattern. The specific pattern detection unit 46 stores region setting data and a specific color pixel number range for each of a plurality of types of specific patterns.
 特定パターン検出部46は、特定パターン候補画像63を、領域設定データが定める複数の分割領域に分割し、分割した各分割領域内に含まれる特定色画素の数を計測する。具体的には、各分割領域内に含まれる画素の内で画素値が1となっている画素の数を計測する。特定パターン検出部46は、次に、計測した各分割領域内の特定色画素の数と特定色画素数範囲が定める各分割領域での画素数範囲とを比較し、全ての分割領域において特定色画素の数が画素数範囲に含まれている場合は、特定パターン61を検出したと判定すると、読み取った画像中には特定パターンが含まれていると判定する。反対に、特定パターン検出部46は、特定色画素の数が画素数範囲内に含まれていない分割領域がある場合は、特定パターン61を検出しないと判定し、読み取った画像中には特定パターンが含まれていないと判定する。特定パターン検出部46は、最後に、判定結果をCPU51へ出力する。 The specific pattern detection unit 46 divides the specific pattern candidate image 63 into a plurality of divided areas determined by the area setting data, and measures the number of specific color pixels included in each divided area. Specifically, the number of pixels having a pixel value of 1 among the pixels included in each divided region is measured. Next, the specific pattern detection unit 46 compares the measured number of specific color pixels in each divided region with the pixel number range in each divided region defined by the specific color pixel number range, and the specific color in all the divided regions. When it is determined that the specific pattern 61 is detected when the number of pixels is included in the pixel number range, it is determined that the specific pattern is included in the read image. On the contrary, the specific pattern detection unit 46 determines that the specific pattern 61 is not detected when there is a divided region where the number of specific color pixels is not included in the pixel number range, and the specific pattern is included in the read image. Is determined not to be included. The specific pattern detection unit 46 finally outputs the determination result to the CPU 51.
 丸の中に記された文字が異なる特定パターンなど、部分パターン62が共通する複数の特定パターンの検出を行う場合は、特定パターン検出部46は、検出した部分パターン62が共通する特定パターンの数だけ、特定パターン検出の処理を繰り返す。また特定パターン検出部46は、複数種類の特定パターンの夫々について、特定パターン検出の処理を繰り返す。なお、並列に備えられた複数の特定色抽出部45の夫々に特定パターン検出部46が接続され、各特定色抽出部45が出力した2値画像データについて各特定パターン検出部46が特定パターン検出の処理を行う形態であってもよい。 In the case of detecting a plurality of specific patterns with which the partial pattern 62 is common, such as specific patterns with different characters written in a circle, the specific pattern detection unit 46 determines the number of specific patterns with which the detected partial pattern 62 is common. Only the specific pattern detection process is repeated. The specific pattern detection unit 46 repeats the specific pattern detection process for each of a plurality of types of specific patterns. A specific pattern detection unit 46 is connected to each of the plurality of specific color extraction units 45 provided in parallel, and each specific pattern detection unit 46 detects specific patterns for binary image data output from each specific color extraction unit 45. The form which performs this process may be sufficient.
 CPU51は、特定パターン検出部46から出力される判定結果に従って、画像データの処理を制御する。即ち、画像読取部1で読み取った画像に特定パターンが含まれていないとの判定結果が出力された場合、CPU51は、画質処理部47が出力した画像データをRAM53に記憶し、画像データを送信部58から外部へ送信する処理を行う。反対に、画像読取部1で読み取った画像に特定パターンが含まれているとの判定結果が出力された場合、CPU(出力禁止手段、印刷禁止手段)51は、画質処理部47が出力した画像データを送信部58から外部へ出力することを禁止する処理を行う。またこの際に、CPU51は、画像データの出力を禁止したことを報知する情報を表示部54に表示する処理を行う。 The CPU 51 controls the processing of the image data according to the determination result output from the specific pattern detection unit 46. That is, when the determination result that the image read by the image reading unit 1 does not include the specific pattern is output, the CPU 51 stores the image data output by the image quality processing unit 47 in the RAM 53 and transmits the image data. A process of transmitting from the unit 58 to the outside is performed. On the other hand, when a determination result indicating that the image read by the image reading unit 1 includes a specific pattern is output, the CPU (output prohibition unit, print prohibition unit) 51 outputs the image output by the image quality processing unit 47. Processing for prohibiting the output of data from the transmission unit 58 to the outside is performed. At this time, the CPU 51 performs a process of displaying information for notifying the output of the image data on the display unit 54.
 以上の構成で成る画像処理装置100は、前述のように、基準チャートを実際に読み取り、読み取った基準チャートに基づいてガンマ補正値と色変換補正の補正係数とを計算する処理を行う。これと共に、画像処理装置100は、基準チャートを実際に読み取った読取値と、記憶部57で記憶する見本データに含まれる目標値とを比較することにより、設定レジスタ452で記憶する特定色範囲を決定する処理を行う。 As described above, the image processing apparatus 100 configured as described above actually reads the reference chart and performs a process of calculating a gamma correction value and a color conversion correction correction coefficient based on the read reference chart. At the same time, the image processing apparatus 100 compares the read value obtained by actually reading the reference chart with the target value included in the sample data stored in the storage unit 57, thereby determining the specific color range stored in the setting register 452. Perform the decision process.
 (プログラム等)
 本実施形態の画像処理装置100における特に画像処理部4及び制御部56の各部や各処理ステップは、CPUなどの演算手段が、ROM(Read Only Memory)やRAMなどの記憶手段に記憶されたプログラムを実行し、キーボードなどの入力手段、ディスプレイなどの出力手段、あるいは、インターフェース回路などの通信手段を制御することにより実現することができる。したがって、これらの手段を有するコンピュータが、上記プログラムを記録した記録媒体を読み取り、当該プログラムを実行するだけで、本実施形態の画像処理部4及び制御部56の各種機能および各種処理を実現することができる。また、上記プログラムをリムーバブルな記録媒体に記録することにより、任意のコンピュータ上で上記の各種機能および各種処理を実現することができる。
(Program etc.)
In the image processing apparatus 100 of the present embodiment, in particular, each unit and each processing step of the image processing unit 4 and the control unit 56 is a program stored in a storage unit such as a ROM (Read Only Memory) or a RAM by a calculation unit such as a CPU. This is realized by controlling the input means such as the keyboard, the output means such as the display, or the communication means such as the interface circuit. Therefore, the computer having these means can realize various functions and various processes of the image processing unit 4 and the control unit 56 of the present embodiment simply by reading the recording medium storing the program and executing the program. Can do. In addition, by recording the program on a removable recording medium, the various functions and various processes described above can be realized on an arbitrary computer.
 この記録媒体としては、マイクロコンピュータで処理を行うために図示しないメモリ、例えばROMのようなものがプログラムメディアであっても良いし、また、図示していないが外部記憶装置としてプログラム読取装置が設けられ、そこに記録媒体を挿入することにより読み取り可能なプログラムメディアであっても良い。 The recording medium may be a program medium such as a memory (not shown) such as a ROM for processing by a microcomputer, or a program reading device provided as an external storage device (not shown). It may be a program medium that can be read by inserting a recording medium there.
 また、何れの場合でも、格納されているプログラムは、マイクロプロセッサがアクセスして実行される構成であることが好ましい。さらに、プログラムを読み出し、読み出されたプログラムは、マイクロコンピュータのプログラム記憶エリアにダウンロードされて、そのプログラムが実行される方式であることが好ましい。なお、このダウンロード用のプログラムは予め本体装置に格納されているものとする。 In any case, the stored program is preferably configured to be accessed and executed by a microprocessor. Furthermore, it is preferable that the program is read out, and the read program is downloaded to a program storage area of the microcomputer and the program is executed. It is assumed that this download program is stored in advance in the main unit.
 また、上記プログラムメディアとしては、本体と分離可能に構成される記録媒体であり、磁気テープやカセットテープ等のテープ系、フレキシブルディスクやハードディスク等の磁気ディスクやCD/MO/MD/DVD等のディスクのディスク系、ICカード(メモリカードを含む)等のカード系、あるいはマスクROM、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュROM等による半導体メモリを含めた固定的にプログラムを担持する記録媒体等がある。 The program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CD / MO / MD / DVD. Disk system, IC card (including memory card), etc., or fixed memory including semiconductor memory such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM, etc. In particular, there are recording media that carry programs.
 また、インターネットを含む通信ネットワークを接続可能なシステム構成であれば、通信ネットワークからプログラムをダウンロードするように流動的にプログラムを担持する記録媒体であることが好ましい。 In addition, if the system configuration is capable of connecting to a communication network including the Internet, the recording medium is preferably a recording medium that fluidly carries the program so as to download the program from the communication network.
 さらに、このように通信ネットワークからプログラムをダウンロードする場合には、そのダウンロード用のプログラムは予め本体装置に格納しておくか、あるいは別な記録媒体からインストールされるものであることが好ましい。 Further, when the program is downloaded from the communication network in this way, it is preferable that the download program is stored in the main device in advance or installed from another recording medium.
 (本発明の構成)
 本発明の画像処理装置は、原稿画像をカラーで読み取り画像データに変換する読取手段と、前記画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を、当該特定パターンの色である特定色及び当該特定パターンの形状に基づき、行う判定手段とを備え、前記判定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲に、判定対象の色に含まれる複数の色パラメータの値が含まれているかを判定する画像処理装置であって、予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データを記憶している見本データ記憶部と、前記読取手段によって実際に読み取った前記基準チャートの画像データである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように補正する補正パラメータを算出する補正パラメータ算出手段と、上記算出された補正パラメータを記憶するパラメータ記憶部と、上記算出された補正パラメータを基に前記画像データの色パラメータの値を補正する補正手段と、前記算出された補正パラメータを基に前記基準画像データを前記補正手段にて補正した後の色パラメータの値を用いて、前記特定色範囲を算出する特定色範囲決定手段と、を備えることを特徴としている。
(Configuration of the present invention)
The image processing apparatus of the present invention is configured to determine whether or not a specific pattern for specifying duplication prohibition is included in the image data by reading means for reading an original image in color and converting it into image data. And a determination unit that performs the determination based on the specific color and the shape of the specific pattern, wherein the determination unit is configured as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color. An image processing apparatus for determining whether or not a plurality of color parameter values included in a determination target color are included in a specific color range that defines a range that can be certified, and a plurality of color colors whose density is known in advance A sample data storage unit that stores sample data generated as ideal read data of the reference chart including the patch, and the reading means actually Correction parameter calculation means for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart, taken so as to approach the color parameter value of the sample data; A parameter storage unit for storing correction parameters; correction means for correcting color parameter values of the image data based on the calculated correction parameters; and correcting the reference image data based on the calculated correction parameters. And a specific color range determining means for calculating the specific color range using the value of the color parameter after being corrected by the means.
 上記構成によると、見本データ記憶部には、予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データが、記憶されている。そして、実際に読取手段にて読み取った基準画像のデータである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように、補正する補正パラメータを、補正パラメータ算出手段が算出する。そして、パラメータ記憶部が、算出された補正パラメータを記憶する。 According to the above configuration, the sample data storage unit stores sample data generated as ideal read data of a reference chart including a plurality of color patches whose densities are known in advance. Then, the correction parameter calculation means sets a correction parameter to be corrected so that the value of the color parameter of the reference image data that is the data of the reference image actually read by the reading means approaches the value of the color parameter of the sample data. calculate. Then, the parameter storage unit stores the calculated correction parameter.
 また、算出された補正パラメータを基に、前記画像データの色パラメータの値を補正手段が補正する。そして、特定色範囲決定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲を、次のように決定する。前記算出された補正パラメータを基に前記基準画像データの色を前記補正手段にて補正した後の色パラメータの値を用いて、前記特定色範囲を算出する。そして、読取手段にて読み取った画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を行う判定手段が、上記算出された特定色範囲に、読取手段が読み取った画像データの判定対象(例えば画素)の色に含まれる複数の色パラメータの値が含まれているか、を判定する。 Further, based on the calculated correction parameter, the correction means corrects the value of the color parameter of the image data. Then, the specific color range determining means determines a specific color range that defines a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color as follows. decide. Based on the calculated correction parameter, the specific color range is calculated using the color parameter value after the color of the reference image data is corrected by the correction means. Then, a determination unit that determines whether or not the image data read by the reading unit includes a specific pattern that specifies copy prohibition is included in the calculated specific color range of the image data read by the reading unit. It is determined whether a plurality of color parameter values included in the color of the determination target (for example, pixel) are included.
 このように、特定色範囲が、画像処理装置の個々で実際に補正された値を用いて算出されることで、画像処理装置毎のばらつき、装置の機種間のばらつき、途中で装置の部品をコストダウン等のために変更あるいは交換することによって生じるわずかな画像の変化等を、全て吸収することができる。これにより、複写禁止画像(特定画像、特定原稿)に極似した一般画像を、複写禁止画像と誤検知することを防止できる。 In this way, the specific color range is calculated using values that are actually corrected by individual image processing devices, so that variations among image processing devices, variations among device types, and device components in the middle All slight image changes and the like caused by changing or exchanging for cost reduction can be absorbed. Thereby, it is possible to prevent a general image that is very similar to a copy-prohibited image (specific image, specific document) from being erroneously detected as a copy-prohibited image.
 よって、画像処理装置における画像読取の特性が画像処理装置毎に異なっていても、個々の画像処理装置の画像読取の特性に応じて、特定色範囲を、確実に特定パターンを検出できるような値に調整することができる。これにより、画像処理装置の1台1台について、特定色範囲の設定値が最適に設定される。そのため、上記構成によると、特定パターンを、特別ではない調整にて、読み取った画像データから確実に検出することができる。 Therefore, even if the image reading characteristics of the image processing apparatus differ from one image processing apparatus to another, a value that can reliably detect a specific pattern in a specific color range according to the image reading characteristics of each image processing apparatus. Can be adjusted. As a result, the setting value of the specific color range is optimally set for each image processing apparatus. Therefore, according to the above configuration, the specific pattern can be reliably detected from the read image data by non-special adjustment.
 また、基準画像データの色パラメータの値が見本データの色パラメータの値と同じになるように補正するための補正パラメータは、補正手段が入力画像データの色をどの装置も同じになるよう補正するために、つまり、カラーバランス調整を行うために算出される。よって、この補正パラメータの算出は、カラーバランス調整と特定色領域の設定とに使用できる。このように、カラーバランス調整とともに特定色領域の設定を行うことができるため、余分な工程は必要ない。 Further, the correction parameter for correcting the color parameter value of the reference image data so as to be the same as the color parameter value of the sample data, corrects the color of the input image data so that all the devices are the same. Therefore, it is calculated in order to perform color balance adjustment. Therefore, the calculation of the correction parameter can be used for color balance adjustment and setting of a specific color area. As described above, since the specific color area can be set together with the color balance adjustment, an extra step is not necessary.
 本発明の画像処理装置では、上記構成に加え、前記特定色範囲決定手段は、前記算出された補正パラメータを基に前記基準画像データを前記補正手段にて補正した後の色パラメータの値と、前記見本データの色パラメータの値との差を算出し、この差が予め定められた許容範囲内にある場合とない場合とで、異なる算出式にて、前記特定色範囲を算出してもよい。 In the image processing apparatus of the present invention, in addition to the above configuration, the specific color range determination unit includes a color parameter value after the reference image data is corrected by the correction unit based on the calculated correction parameter, and The difference between the sample data and the color parameter value may be calculated, and the specific color range may be calculated using different calculation formulas depending on whether the difference is within a predetermined allowable range or not. .
 上記構成によると、特定色範囲決定手段が、前記算出された差が、予め定められた許容範囲内許容範囲内にある場合とない場合とで、異なる算出式にて、前記特定色範囲を決定する。よって、故意または事故でカラーバランス調整がうまくいかなかった場合でも、特定色範囲を正しく設定することが可能となる。 According to the above configuration, the specific color range determining unit determines the specific color range using different calculation formulas depending on whether the calculated difference is within the predetermined allowable range or not. To do. Therefore, even when the color balance adjustment is unsuccessful intentionally or accidentally, the specific color range can be set correctly.
 本発明の画像処理装置では、上記構成に加え、前記読取手段は、前記画像処理装置の生産時には、前記基準画像として、前記画像処理装置のカラーバランスを調整する機能にさらに別の機能を付加した画像を読み取ってもよい。 In the image processing apparatus of the present invention, in addition to the above configuration, the reading unit adds another function to the function of adjusting the color balance of the image processing apparatus as the reference image when the image processing apparatus is produced. An image may be read.
 上記構成によると、前記読取手段は、前記画像処理装置の生産時には、前記基準画像として、カラーバランス調整機能にさらに別の機能を付加した画像を読み取る。よって、この別の機能として、例えば、原稿送り装置の傾き調整等の機能が付加されていると、画像処理装置の生産時は、カラーバランス調整及び特定色範囲の設定に加え、原稿送り装置の傾き調整を行え、調整にかかる時間を短くすることができる。 According to the above configuration, the reading unit reads, as the reference image, an image obtained by adding another function to the color balance adjustment function when the image processing apparatus is produced. Therefore, as another function, for example, when a function such as tilt adjustment of the document feeder is added, during the production of the image processing device, in addition to color balance adjustment and setting of a specific color range, Tilt adjustment can be performed, and the time required for adjustment can be shortened.
 また、出荷後には、例えば、サービスマンは、カラーバランス調整機能だけを有する基準画像を読取手段に読み取らせることで、特別な冶具がなくても容易に間違い無くカラーバランス調整と同時に特定色範囲の設定を行える。 In addition, after shipment, for example, a serviceman causes the reading unit to read a reference image having only a color balance adjustment function, so that even without a special jig, a specific color range can be easily adjusted at the same time as the color balance adjustment. Can be set.
 また、本発明の画像処理装置では、前記許容範囲は、上記画像データを印刷した時の画質への影響を考慮して予め決定されていてもよい。 In the image processing apparatus of the present invention, the allowable range may be determined in advance in consideration of the influence on the image quality when the image data is printed.
 上記構成によると、前記許容範囲が、印字した時の影響を考慮して決定されているため、調整時の故意または事故で差が大きいのでなく、本当に差が大きく、特定色範囲の算出式を変えたことで特定色の検出がうまくいかなかった場合でも、印刷されたものの色が実物と違うので、偽造紙幣や偽造商品券として使用されることはない。 According to the above configuration, since the allowable range is determined in consideration of the effect at the time of printing, the difference is not large due to intentional or accident at the time of adjustment, but the difference is really large. Even if the detection of a specific color is not successful due to the change, the color of the printed one is different from the actual one, so it is not used as a counterfeit bill or counterfeit gift certificate.
 本発明の画像処理装置では、上記構成に加え、前記特定色範囲決定手段は、前記算出された差が前記許容範囲内にある場合は、前記基準画像データを前記補正手段にて補正した後の色パラメータの値を使用した算出式にて、前記算出された差が前記許容範囲外の場合は、前記見本データの色パラメータの値を使用した算出式にて、前記特定色範囲を算出してもよい。 In the image processing apparatus according to the aspect of the invention, in addition to the above-described configuration, the specific color range determination unit may correct the reference image data after the correction unit corrects the reference image data when the calculated difference is within the allowable range. If the calculated difference using the color parameter value is outside the allowable range, the specific color range is calculated using the color parameter value of the sample data. Also good.
 前記算出された差が許容範囲内にある場合は、基準画像データの色パラメータの値を補正した後の色は、見本データの色に近いので、この補正した色パラメータの値を前記特定色範囲の算出式に用いることができる。補正した色パラメータの値を用いることで実際の見本データに対する固体ごとの差も吸収できるので色抽出の制度を上げることができ、これが検出率を向上させることができる。また、前記算出された差が許容範囲外の場合は、基準画像データの色パラメータの値を補正した後の色は、見本データの色から離れているので、見本データの色パラメータの値を前記特定色範囲の算出式に使用するのがよい。 When the calculated difference is within the allowable range, the color after correcting the color parameter value of the reference image data is close to the color of the sample data. Therefore, the corrected color parameter value is set to the specific color range. Can be used in the calculation formula. By using the corrected color parameter values, differences between individual samples with respect to actual sample data can be absorbed, so that the color extraction system can be improved, and this can improve the detection rate. If the calculated difference is outside the allowable range, the color parameter value of the reference image data after correction is separated from the color of the sample data. It should be used in the formula for calculating the specific color range.
 本発明の画像形成装置は、上記いずれかの画像処理装置と画像データに基づいて印刷を行う印刷手段とを備えている構成である。 The image forming apparatus of the present invention includes any one of the image processing apparatuses described above and a printing unit that performs printing based on the image data.
 上記の構成によれば、印刷手段は、印刷を指示された画像データについて、その画像データが印刷禁止を特定付ける特定パターンを含む特定画像のものであるか否かという画像処理装置からの判定結果に基づき、印刷の可否を決定することができる。これにより、印刷手段において不正な印刷が行われる事態を防止することができる。 According to the above configuration, the printing unit determines whether or not the image data instructed to be printed is a specific image including a specific pattern that specifies printing prohibition. Based on the above, it is possible to determine whether printing is possible. Thereby, it is possible to prevent a situation where unauthorized printing is performed in the printing unit.
 本発明の特定色範囲の決定方法は、原稿画像をカラーで読み取り画像データに変換する読取手段と、前記画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を、当該特定パターンの色である特定色及び当該特定パターンの形状に基づき、行う判定手段とを備え、前記判定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲に、判定対象の色に含まれる複数の色パラメータの値が含まれているかを判定する画像処理装置の、前記特定色範囲の決定方法であって、予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データを記憶する見本データ記憶ステップと、前記読取手段によって実際に読み取った前記基準チャートの画像データである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように補正する補正パラメータを算出する補正パラメータ算出ステップと、上記算出された補正パラメータを記憶するパラメータ記憶ステップと、上記算出された補正パラメータを基に前記画像データの色パラメータの値を補正する補正ステップと、前記算出された補正パラメータを基に前記基準画像データの色パラメータの値を補正した後の色パラメータの値を用いて、前記特定色範囲を算出する特定色範囲決定ステップと、を含むことを特徴としている。 The method for determining a specific color range according to the present invention includes a reading unit that reads an original image in color and converts it into image data, and a determination as to whether or not the image data includes a specific pattern that specifies copy prohibition. A determination unit configured to perform the determination based on a specific color that is a color of the pattern and the shape of the specific pattern, and the determination unit includes each value of a plurality of color parameters included in the specific color. The method for determining a specific color range of an image processing apparatus for determining whether a specific color range that defines a range that can be recognized as a color parameter includes a plurality of color parameter values included in a color to be determined. Sample data storage that stores sample data generated as ideal read data for a reference chart including a plurality of color patches whose densities are known in advance. And a correction parameter for calculating a correction parameter for correcting the value of the color parameter of the reference image data, which is the image data of the reference chart actually read by the reading unit, to approach the value of the color parameter of the sample data A calculation step, a parameter storage step for storing the calculated correction parameter, a correction step for correcting a color parameter value of the image data based on the calculated correction parameter, and a basis for the calculated correction parameter. And a specific color range determining step of calculating the specific color range using the color parameter value after correcting the color parameter value of the reference image data.
 上記方法によると、上記画像処理装置と同様の効果を奏し、個々の画像処理装置の画像読取の特性に応じて、特定色範囲を、確実に特定パターンを検出できるような値に調整することができる。よって、画像処理装置の1台1台について、特定色範囲の設定値は最適に設定される。 According to the above method, the same effect as that of the image processing apparatus can be obtained, and the specific color range can be adjusted to a value that can reliably detect the specific pattern according to the image reading characteristics of the individual image processing apparatuses. it can. Therefore, the set value of the specific color range is optimally set for each image processing apparatus.
 また、本発明に係る画像処理装置は、コンピュータによって実現してもよい。この場合には、コンピュータを上記画像処理装置における上記各手段として動作させることにより上記画像処理装置をコンピュータにて実現させる画像処理プログラム、及びその画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The image processing apparatus according to the present invention may be realized by a computer. In this case, an image processing program for causing the image processing apparatus to be realized by the computer by operating the computer as the respective means in the image processing apparatus, and a computer-readable recording medium on which the image processing program is recorded are also provided. It falls within the scope of the present invention.
 これらの構成によれば、上記画像処理プログラムを、コンピュータに読み取り実行させることによって、上記画像処理装置と同一の作用効果を実現することができる。 According to these configurations, the same operational effects as the image processing apparatus can be realized by causing the computer to read and execute the image processing program.
 本発明は上述した実施形態に限定されるものではなく、種々の変更が可能である。すなわち、適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made. In other words, embodiments obtained by combining technical means appropriately changed are also included in the technical scope of the present invention.
 本発明は、複写禁止画像を特定付ける特定パターンを、特別ではない調整にて、読み取った画像データから確実に検出できるため、複写禁止画像を特定付ける特定パターンを、読み取った画像から検出する画像処理装置に適用可能である。 According to the present invention, since a specific pattern for specifying a copy-prohibited image can be reliably detected from read image data by non-special adjustment, image processing for detecting a specific pattern for specifying a copy-prohibited image from the read image Applicable to the device.
 1   画像読取部(読取手段)
 4   画像処理部
 16  一般パターン
 23  基準チャート
 40  画像判定部(判定手段)
 43  解像度変換部
 44  色差分演算部
 45  特定色抽出部
 46  特定パターン検出部
 47  画質処理部
 51  CPU(出力禁止手段、印刷禁止手段)
 56  制御部
 57  記憶部(見本データ記憶部、パラメータ記憶部)
 61  特定パターン
 414 ガンマ補正部
 415 色変換部
 425 メモリ制御部
 427 ページメモリ
 451 比較器
 452 設定レジスタ
 561 パラメータ算出部(補正パラメータ算出手段)
 562 特定範囲決定部(特定色範囲決定手段)
 571 見本データ
1 Image reading unit (reading means)
4 Image processing unit 16 General pattern 23 Reference chart 40 Image determination unit (determination means)
43 Resolution Conversion Unit 44 Color Difference Calculation Unit 45 Specific Color Extraction Unit 46 Specific Pattern Detection Unit 47 Image Quality Processing Unit 51 CPU (Output Inhibiting Unit, Printing Inhibiting Unit)
56 control unit 57 storage unit (sample data storage unit, parameter storage unit)
61 Specific Pattern 414 Gamma Correction Unit 415 Color Conversion Unit 425 Memory Control Unit 427 Page Memory 451 Comparator 452 Setting Register 561 Parameter Calculation Unit (Correction Parameter Calculation Unit)
562 Specific range determination unit (specific color range determination means)
571 Sample data

Claims (14)

  1.  原稿画像をカラーで読み取り画像データに変換する読取手段と、前記画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を、当該特定パターンの色である特定色及び当該特定パターンの形状に基づき、行う判定手段とを備え、
     前記判定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲に、判定対象の色に含まれる複数の色パラメータの値が含まれているかを判定する画像処理装置であって、
     予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データを記憶している見本データ記憶部と、
     前記読取手段によって実際に読み取った前記基準チャートの画像データである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように補正する補正パラメータを算出する補正パラメータ算出手段と、
     前記算出された補正パラメータを記憶するパラメータ記憶部と、
     前記算出された補正パラメータを基に前記画像データの色パラメータの値を補正する補正手段と、
     前記算出された補正パラメータを基に前記基準画像データを前記補正手段にて補正した後の色パラメータの値を用いて、前記特定色範囲を算出する特定色範囲決定手段と、
    を備えることを特徴とする画像処理装置。
    A reading unit that reads an original image in color and converts it into image data, and a determination as to whether or not the image data includes a specific pattern that specifies copy prohibition is performed by using a specific color that is the color of the specific pattern and the specific pattern Based on the shape of the
    The determination means includes a plurality of color parameters included in the determination target color in a specific color range that defines a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color. An image processing apparatus for determining whether or not a color parameter value is included,
    A sample data storage unit storing sample data generated as ideal read data of a reference chart including a plurality of color patches whose density is known in advance;
    Correction parameter calculation means for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart actually read by the reading means, to approach the value of the color parameter of the sample data; ,
    A parameter storage unit for storing the calculated correction parameter;
    Correction means for correcting the value of the color parameter of the image data based on the calculated correction parameter;
    A specific color range determination unit that calculates the specific color range using a value of a color parameter after the reference image data is corrected by the correction unit based on the calculated correction parameter;
    An image processing apparatus comprising:
  2.  前記特定色範囲決定手段は、前記算出された補正パラメータを基に前記基準画像データを前記補正手段にて補正した後の色パラメータの値と、前記見本データの色パラメータの値との差を算出し、この差が予め定められた許容範囲内にある場合とない場合とで、異なる算出式にて、前記特定色範囲を算出することを特徴とする請求項1に記載の画像処理装置。 The specific color range determination unit calculates a difference between a color parameter value after the reference image data is corrected by the correction unit and a color parameter value of the sample data based on the calculated correction parameter. The image processing apparatus according to claim 1, wherein the specific color range is calculated using different calculation formulas depending on whether the difference is within a predetermined allowable range or not.
  3.  前記読取手段は、前記画像処理装置の生産時には、前記基準画像として、前記画像処理装置のカラーバランスを調整する機能にさらに別の機能を付加した画像を読み取ることを特徴とする請求項1または2に記載の画像処理装置。 The reading unit reads an image obtained by adding another function to the function of adjusting the color balance of the image processing apparatus as the reference image when the image processing apparatus is produced. An image processing apparatus according to 1.
  4.  前記許容範囲は、上記画像データを印刷した時の画質への影響を考慮して予め決定されていることを特徴とする請求項2に記載の画像処理装置。 3. The image processing apparatus according to claim 2, wherein the allowable range is determined in advance in consideration of an influence on image quality when the image data is printed.
  5.  前記特定色範囲決定手段は、前記算出された差が前記許容範囲内にある場合は、前記基準画像データを前記補正手段にて補正した後の色パラメータの値を使用した算出式にて、前記算出された差が前記許容範囲外の場合は、前記見本データの色パラメータの値を使用した算出式にて、前記特定色範囲を算出することを特徴とした請求項2または4に記載の画像処理装置。 When the calculated difference is within the allowable range, the specific color range determination unit uses a color parameter value after correcting the reference image data by the correction unit, using the calculation formula 5. The image according to claim 2, wherein when the calculated difference is outside the allowable range, the specific color range is calculated by a calculation formula using a color parameter value of the sample data. Processing equipment.
  6.  上記色パラメータの夫々の値とは、R,G,B,G-R,G-B,及びR-Bの明度値であることを特徴とする請求項1から5のいずれか1項に記載の画像処理装置。 6. The value of each of the color parameters is a brightness value of R, G, B, GR, GB, and RB. Image processing apparatus.
  7.  前記判定手段が、前記画像データに前記特定パターンが含まれていると判定すると、前記画像データの外部への出力を禁止する処理を行う出力禁止手段を備えたことを特徴とする請求項1から6のいずれか1項に記載の画像処理装置。 2. The apparatus according to claim 1, further comprising: an output prohibiting unit that performs a process of prohibiting output of the image data to the outside when the determining unit determines that the specific pattern is included in the image data. The image processing apparatus according to any one of claims 6 to 6.
  8.  表示部を備え、
     前記出力禁止手段は、さらに、画像データの出力を禁止したことを報知する情報を前記表示部に表示することを特徴とする請求項7に記載の画像処理装置。
    With a display,
    The image processing apparatus according to claim 7, wherein the output prohibiting unit further displays information notifying that the output of the image data is prohibited on the display unit.
  9.  請求項1から8のいずれか1項に記載の画像処理装置を備えていることを特徴とする画像読取装置。 An image reading apparatus comprising the image processing apparatus according to any one of claims 1 to 8.
  10.  請求項1から8のいずれか1項に記載の画像処理装置と、上記画像データに基づいて印刷を行う印刷装置と、を備えていることを特徴とする画像形成装置。 An image forming apparatus comprising: the image processing apparatus according to any one of claims 1 to 8; and a printing apparatus that performs printing based on the image data.
  11.  前記判定手段が、前記画像データに前記特定パターンが含まれていると判定すると、前記印刷装置での前記画像データの印刷を禁止する処理を行う印刷禁止手段を備えたことを特徴とする請求項10に記載の画像形成装置。 The printing apparatus according to claim 1, further comprising: a print prohibiting unit that performs a process of prohibiting printing of the image data in the printing apparatus when the determining unit determines that the specific pattern is included in the image data. The image forming apparatus according to 10.
  12.  原稿画像をカラーで読み取り画像データに変換する読取手段と、前記画像データに複製禁止を特定付ける特定パターンが含まれているか否かの判定を、当該特定パターンの色である特定色及び当該特定パターンの形状に基づき、行う判定手段とを備え、前記判定手段は、前記特定色に含まれる複数の色パラメータの夫々の値について、当該特定色に含まれる色パラメータとして認定され得る範囲を規定した特定色範囲に、判定対象の色に含まれる複数の色パラメータの値が含まれているかを判定する画像処理装置の、前記特定色範囲の決定方法であって、
     予め濃度が分かっている複数色のカラーパッチを含む基準チャートの、理想的な読み取りデータとして生成された見本データを記憶する見本データ記憶ステップと、
     前記読取手段によって実際に読み取った前記基準チャートの画像データである基準画像データの色パラメータの値が、前記見本データの色パラメータの値に近づくように補正する補正パラメータを算出する補正パラメータ算出ステップと、
     前記算出された補正パラメータを記憶するパラメータ記憶ステップと、
     前記算出された補正パラメータを基に前記画像データの色パラメータの値を補正する補正ステップと、
     前記算出された補正パラメータを基に前記基準画像データの色パラメータの値を補正した後の色パラメータの値を用いて、前記特定色範囲を算出する特定色範囲決定ステップと、
    を含むことを特徴とする決定方法。
    A reading unit that reads an original image in color and converts it into image data, and a determination as to whether or not the image data includes a specific pattern that specifies copy prohibition is performed by using a specific color that is the color of the specific pattern and the specific pattern A determination unit configured to perform determination based on the shape of the color, and the determination unit specifies a range that can be recognized as a color parameter included in the specific color for each value of the plurality of color parameters included in the specific color A method for determining the specific color range of an image processing apparatus for determining whether a color range includes a plurality of color parameter values included in a color to be determined,
    A sample data storage step for storing sample data generated as ideal read data of a reference chart including a plurality of color patches whose density is known in advance;
    A correction parameter calculating step for calculating a correction parameter for correcting the color parameter value of the reference image data, which is the image data of the reference chart actually read by the reading unit, to approach the color parameter value of the sample data; ,
    A parameter storage step for storing the calculated correction parameter;
    A correction step of correcting the value of the color parameter of the image data based on the calculated correction parameter;
    A specific color range determination step for calculating the specific color range using a color parameter value after correcting the color parameter value of the reference image data based on the calculated correction parameter;
    A determination method characterized by comprising:
  13.  請求項1から8のいずれか1項に記載の画像処理装置の前記各手段としてコンピュータを機能させるためのプログラム。 A program for causing a computer to function as each means of the image processing apparatus according to any one of claims 1 to 8.
  14.  請求項13に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 13 is recorded.
PCT/JP2010/073739 2010-02-26 2010-12-28 Image processing device, image reading device, image forming device, method for deciding a specific color range, program, and computer-readable recording medium WO2011104995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010043170A JP4810614B2 (en) 2010-02-26 2010-02-26 Image processing apparatus, image forming apparatus, determination method, program, and computer-readable storage medium
JP2010-043170 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104995A1 true WO2011104995A1 (en) 2011-09-01

Family

ID=44506430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073739 WO2011104995A1 (en) 2010-02-26 2010-12-28 Image processing device, image reading device, image forming device, method for deciding a specific color range, program, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP4810614B2 (en)
WO (1) WO2011104995A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116197A (en) * 2014-12-18 2016-06-23 京セラドキュメントソリューションズ株式会社 Image reading device and image forming apparatus
CN114055605A (en) * 2020-08-04 2022-02-18 张睿 Intelligent ceramic material distribution system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210285A (en) * 1997-01-16 1998-08-07 Omron Corp Image recognizing method, device therefor and copying machine
JP2001313837A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Image-processing unit and method
JP2003101808A (en) * 2001-03-02 2003-04-04 Ricoh Co Ltd Picture reader
JP2003333354A (en) * 2002-05-09 2003-11-21 Minolta Co Ltd Image processing method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210285A (en) * 1997-01-16 1998-08-07 Omron Corp Image recognizing method, device therefor and copying machine
JP2001313837A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Image-processing unit and method
JP2003101808A (en) * 2001-03-02 2003-04-04 Ricoh Co Ltd Picture reader
JP2003333354A (en) * 2002-05-09 2003-11-21 Minolta Co Ltd Image processing method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116197A (en) * 2014-12-18 2016-06-23 京セラドキュメントソリューションズ株式会社 Image reading device and image forming apparatus
CN114055605A (en) * 2020-08-04 2022-02-18 张睿 Intelligent ceramic material distribution system

Also Published As

Publication number Publication date
JP2011182126A (en) 2011-09-15
JP4810614B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4794662B2 (en) Image reading apparatus and image determination method
JP4486987B2 (en) Image data output processing apparatus, image data output processing method, program, and recording medium
JP4496239B2 (en) Image processing method, image processing apparatus, image forming apparatus, image reading apparatus, computer program, and recording medium
US9406001B2 (en) Image processing apparatus, image forming apparatus, image forming method, and recording medium
US20090190174A1 (en) Apparatus and method for image processing of ground pattern
US20120082337A1 (en) Image processing apparatus, image forming apparatus, recording medium and image processing method
US8773725B2 (en) Information processing apparatus, image generating method, and storage medium
JP3736535B2 (en) Document type identification device
JP5531464B2 (en) Image processing program, image processing apparatus, and image processing method
JP4949488B2 (en) Image processing method, image processing apparatus, image forming apparatus, program, and recording medium
JP4930423B2 (en) Image processing apparatus, image forming apparatus, image processing apparatus control method, and image processing apparatus control program
JP4810614B2 (en) Image processing apparatus, image forming apparatus, determination method, program, and computer-readable storage medium
US8928938B2 (en) Image forming apparatus, image forming method and recording medium
JP2010124069A (en) Image processing method, image processor, image forming apparatus, program, and recording medium
JP4470958B2 (en) Image processing device
US8913298B2 (en) Image processing apparatus that sets a spatial frequency of a chromatic foreground image of a watermark to be lower than a spatial frequency of an achromatic foreground image of a comparable watermark, associated image forming apparatus, image processing method and recording medium
JP4545766B2 (en) Image processing apparatus, image forming apparatus, image reading apparatus, image processing program, and recording medium
JP3966354B2 (en) Digital image playback device
JP2010171819A (en) Image processing device and image forming apparatus
JP2011061455A (en) Image processor, image forming apparatus, computer program, recording medium, and image processing method
JP2005192254A (en) Digital image reproducing apparatus
JP5143638B2 (en) Image processing method, image processing apparatus, image forming apparatus, program, and recording medium
JP2005142740A (en) Ink jet original discriminating method, image processing apparatus, image reading apparatus, image forming apparatus, ink jet original discriminating program and recording medium
JP2011004362A (en) Image processor
JP2012070285A (en) Image processing method, image processing apparatus, image reading apparatus, image forming device, computer program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846658

Country of ref document: EP

Kind code of ref document: A1