WO2011104858A1 - Method of identifying fluorescence spectrum - Google Patents

Method of identifying fluorescence spectrum Download PDF

Info

Publication number
WO2011104858A1
WO2011104858A1 PCT/JP2010/053071 JP2010053071W WO2011104858A1 WO 2011104858 A1 WO2011104858 A1 WO 2011104858A1 JP 2010053071 W JP2010053071 W JP 2010053071W WO 2011104858 A1 WO2011104858 A1 WO 2011104858A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence spectrum
value
fluorescence
identification
wavelength
Prior art date
Application number
PCT/JP2010/053071
Other languages
French (fr)
Japanese (ja)
Inventor
重雄 前田
潤 徳田
俊弘 藤田
Original Assignee
Idec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec株式会社 filed Critical Idec株式会社
Priority to JP2010508643A priority Critical patent/JP4965706B2/en
Priority to PCT/JP2010/053071 priority patent/WO2011104858A1/en
Publication of WO2011104858A1 publication Critical patent/WO2011104858A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Definitions

  • the present invention relates to a method for discriminating a fluorescence spectrum, and more particularly to a method for discriminating a plurality of types of true fluorescence spectra from each other and a false fluorescence spectrum camouflaged by any of them.
  • predetermined identification information is written on an article by containing a plurality of types of fluorescent materials having different main wavelengths in a predetermined composition, and a fluorescence spectrum corresponding to the identification information is read based on irradiation of excitation light, and the article
  • a fluorescence spectrum corresponding to the identification information is read based on irradiation of excitation light, and the article
  • FIG. 13 is a spectrum that qualitatively represents an example of a combination of fluorescence spectra constituting a plurality of types of identification information in the prior art.
  • a combination of the blending amounts of the fluorescent material X having the dominant wavelength ⁇ x and the fluorescent material Y having the dominant wavelength ⁇ y is used as identification information, and these blending amounts are fluorescence based on the fluorescent material X as shown in FIG.
  • the emission intensity at the principal wavelength ⁇ x of the spectrum (x 1 ⁇ fx ( ⁇ ), x 2 ⁇ fx ( ⁇ ), x 3 ⁇ fx 3 ( ⁇ ) indicated by broken lines) is any one of S1, S2 and S3,
  • the emission intensity at the main wavelength ⁇ y of the fluorescence spectrum based on the fluorescent material Y is S1 and S2.
  • Each identification value of the set of identification values is within an allowable range of any of the first allowable range (S1 ⁇ ⁇ ), the second allowable range (S2 ⁇ ⁇ ), and the third allowable range (S3 ⁇ ⁇ ).
  • it is determined that the spectrum is a true spectrum and identification information is read according to which combination of identification values corresponds to which combination of allowable ranges.
  • the first range (S1 ⁇ ⁇ ), the second range (S2 ⁇ ⁇ ), and the third range (S3 ⁇ ⁇ ) are ranges that do not overlap each other.
  • the determination can be easily performed by a simple reading device. This is because it is not necessary to display the synthetic fluorescence spectrum in the readout device, and it is possible to make a high-precision and quick determination because no artificial determination is involved.
  • FIG. 14 is a spectrum showing an example of disguise for a plurality of types of synthetic fluorescence spectra in the past.
  • a method of forming a fluorescence spectrum Fs ( ⁇ ) by adjusting the blending amount of the fluorescent material Y ′ so as to be the same as that of the fluorescence spectrum F ( ⁇ ) is known.
  • fluorescent materials such as semiconductor nanoparticles whose main wavelength varies depending on the particle size and composition are used so that the main wavelengths of fluorescent material X and fluorescent material Y are the same.
  • the fluorescent material X ′ is selected so as to be substantially the same as the main wavelength ⁇ x of the fluorescent material X, and the intensity at the wavelength ⁇ x has a combined fluorescence spectrum F ( ⁇ ).
  • the blending amount of the fluorescent material X ′ is adjusted so as to be the same as in the above case, and the fluorescent material Y ′ is selected so as to be substantially the same as the main wavelength ⁇ y of the fluorescent material Y, and the intensity at the wavelength ⁇ y is increased.
  • a method of adjusting the blending amount of the fluorescent material Y ′ so as to be the same as the case of the synthetic fluorescence spectrum F ( ⁇ ) to form the fluorescence spectra Fn ( ⁇ ) and Fw ( ⁇ ) has come to be used. .
  • the fluorescence spectrum Fn ( ⁇ ) or the fluorescence spectrum Fw ( ⁇ ) their waveforms are similar to those of F ( ⁇ ). The importance of discriminating the true / false of will increase.
  • FIG. 14 shows a synthetic fluorescence spectrum Fn ( ⁇ ) in which the half widths of the fluorescence spectra based on the fluorescent material X ′ and the fluorescent material Y ′ are narrower than the half widths of the fluorescence spectra based on the fluorescent material X and the fluorescent material Y, respectively.
  • a synthetic fluorescence spectrum Fw ( ⁇ ) wider than their half-value widths.
  • fluorescence having a narrower half width of the fluorescence spectrum than that of the fluorescent material X is used.
  • the fluorescent material Y ′ having a narrower half width of the fluorescence spectrum than that of the fluorescent material Y is selected, and conversely, the fluorescent material X ′′ having a wider half width of the fluorescence spectrum than that of the fluorescent material X. Is selected, the fluorescent material Y ′′ having a half-width of the fluorescence spectrum wider than that of the fluorescent material Y is selected.
  • the mutual fluorescence spectra for a plurality of types of fluorescence spectra are discriminated easily and with high accuracy, and the fake fluorescence spectra camouflaged as the true fluorescence spectra corresponding to them are discriminated.
  • a method for identifying a fluorescence spectrum includes: A plurality of types of synthesis in which the combined waveform of the first fluorescent spectrum based on the first fluorescent material and the second fluorescent spectrum based on the second fluorescent material is different depending on the blending difference between the first fluorescent material and the second fluorescent material.
  • Fluorescence spectra are discriminated from each other, and the intensity of the first fluorescence spectrum at the dominant wavelength and the second fluorescence spectrum are different from one of the plurality of types of synthetic fluorescence spectra, although the overall waveform is different
  • a fluorescence spectrum identification method for distinguishing between a false fluorescence spectrum having substantially the same intensity at the dominant wavelength and each of the plurality of types of synthetic fluorescence spectra Each of the first fluorescent material and the second fluorescent material is a group of semiconductor nanoparticles, A part of the first fluorescence spectrum and a part of the second fluorescence spectrum constituting each of the plurality of types of synthetic fluorescence spectra overlap, A single-head peak shape having a distribution function of a single-head peak shape having a mode value in the vicinity of the main wavelength of the first fluorescence spectrum as a first discriminant function and a mode having a mode value in the vicinity of the main wavelength of the second fluorescence spectrum.
  • a single-peak distribution function having a mode between the mode value of the first discriminant function and the mode value of the second discriminant function is a third discriminant function.
  • a discrimination function a first weighted average value obtained by weighting the measured fluorescence spectrum measured from the identification target with the first discrimination function is calculated, and the second discrimination function is used for the measured fluorescence spectrum.
  • the first weighted average value is normalized by the sum of the first weighted average value, the second weighted average value, and the third weighted average value to calculate a first identification value for the measured fluorescence spectrum, and the second weighted value Normalizing the average value with the sum to calculate a second identification value for the measured fluorescence spectrum, and normalizing the third weighted average value with the sum to calculate a third identification value for the measured fluorescence spectrum;
  • the combination of the first identification value, the second identification value, and the third identification value is an allowable range for the predetermined first identification value associated with each of the plurality of types of synthetic fluorescence spectra and a predetermined first value.
  • the measured fluorescence spectrum is one of the plurality of types of synthetic fluorescence spectra. Is determined to be the same as the synthetic fluorescence spectrum corresponding to the combination, and if it is not included in any combination of the allowable ranges associated with each of the plurality of types of synthetic fluorescence spectra, The measured fluorescence spectrum is determined to be the false fluorescence spectrum.
  • the discrimination of the mutual fluorescence spectra for a plurality of types of fluorescence spectra and corresponding to them It is possible to easily and accurately discriminate a false fluorescence spectrum that is camouflaged as a true fluorescence spectrum.
  • a spectrum that qualitatively represents an example of the first fluorescence spectrum and the second fluorescence spectrum A spectrum that qualitatively represents an example of a combination of multiple types of fluorescence spectra Spectrum that shows an example of a combination of multiple types of fluorescence spectra
  • a graph representing the sum of the difference values of various identification values and the absolute values of the difference values for multiple types of fluorescence spectra The graph showing the change of the sum total of the difference value of various identification values with respect to the change of the half value width of the 1st fluorescence spectrum and the 2nd fluorescence spectrum by a measurement error, and the absolute value of those difference values
  • a combined waveform of a first fluorescent spectrum based on a first fluorescent material and a second fluorescent spectrum based on a second fluorescent material is obtained by combining the first fluorescent material and the second fluorescent material.
  • the first fluorescent material and the second fluorescent material is a group of semiconductor nanoparticles, A part of the first fluorescence spectrum and a part of the second fluorescence spectrum constituting each of the plurality of types of synthetic fluorescence spectra overlap, Distribution of a single-head peak shape having a mode near the dominant wavelength of the first fluorescence spectrum as a first discriminant function and a distribution function of a single-head peak shape having a mode near the dominant wavelength of the second fluorescence spectrum The function is the second discriminant function, and
  • a first weighted average value of the measured fluorescence spectrum obtained by weighting the measured fluorescence spectrum measured from the identification target with the first identification function is calculated, and the second identification function is calculated with respect to the measured fluorescence spectrum. And calculating a second weighted average value of the measured fluorescence spectrum weighted with the third discriminating function, and calculating a third weighted average value of the measured fluorescence spectrum weighted with the third discrimination function with respect to the measured fluorescence spectrum
  • the first weighted average value is normalized by the sum of the first weighted average value, the second weighted average value, and the third weighted average value to calculate a first identification value for the measured fluorescence spectrum, and the second weighted value Normalizing the average value with the sum to calculate a second identification value for the measured fluorescence spectrum, and normalizing the third weighted average value with the sum to calculate a third identification value for the measured fluorescence spectrum;
  • the combination of the first identification value, the second identification value, and the third identification value is an allow
  • the measured fluorescence spectrum is one of the plurality of types of synthetic fluorescence spectra. Is determined to be the same as the synthetic fluorescence spectrum corresponding to the combination, and if it is not included in any combination of the allowable ranges associated with each of the plurality of types of synthetic fluorescence spectra, The measured fluorescence spectrum is determined to be the false fluorescence spectrum.
  • the identification method of this configuration is also referred to as “identification method A”.
  • main wavelength means a wavelength having the maximum intensity in the fluorescence spectrum based on the fluorescent material.
  • a part of the first fluorescence spectrum and a part of the second fluorescence spectrum overlap means that the second fluorescence spectrum is larger than the main wavelength of the first fluorescence spectrum within 1/10 width (FWTM) of the first fluorescence spectrum.
  • the sum of the partial width on the principal wavelength side of the first fluorescence spectrum and the partial width on the dominant wavelength side of the first fluorescence spectrum with respect to the 1/10 width (FWTM) of the second fluorescence spectrum is the first fluorescence. It means that it is larger than the interval between the dominant wavelength of the spectrum and the dominant wavelength of the second fluorescence spectrum.
  • “Semiconductor nanoparticle” means a particle having a particle size of 100 nm or less. “Near the main wavelength of the first fluorescence spectrum” means a wavelength between the shortest wavelength and the longest wavelength corresponding to the 9/10 width of the first fluorescence spectrum. "Means a wavelength between the shortest wavelength and the longest wavelength corresponding to the 9/10 width of the second fluorescence spectrum. “Distribution function of a single peak shape” is a function of a shape including a convex peak portion on one point, and according to the change in wavelength from the mode value (maximum value) of the peak portion. It is a function that decreases monotonically and asymptotically converges to “0”.
  • the first identification value and the second identification value are the emission intensity of the true first fluorescence spectrum (the blending amount of the first fluorescence material) and the true second fluorescence spectrum, respectively.
  • the emission intensity (the amount of the second fluorescent material) can be estimated well, and the first identification value, the second identification value, and the third identification value are normalized so that the first fluorescence spectrum and the second fluorescence value are normalized.
  • the first identification value, the second identification value, and the third identification value are respectively the first fluorescence of the true first fluorescence spectrum and the false fluorescence spectrum that is camouflaged thereto.
  • the difference in the vicinity of the dominant wavelength of the spectrum the difference in the vicinity of the dominant wavelength of the second fluorescence spectrum between the true second fluorescence spectrum and the false fluorescence spectrum camouflaged to it, and the true first fluorescence spectrum and its false firefly
  • the ratio of the emission intensity based on the first fluorescent material and the emission intensity based on the second fluorescent material is based on the combination of the first identification value, the second identification value, and the third identification value.
  • Different types of true synthetic fluorescence spectra can be distinguished from each other with high accuracy, and various types of true synthetic fluorescence spectra and various types of false synthetic fluorescence spectra can be distinguished with high accuracy and simplicity.
  • each of the plurality of types of synthetic fluorescence spectra has a double peak shape.
  • identification method B the identification method of this configuration is also referred to as “identification method B”.
  • double-headed peak shape means a shape including convex peak portions at two locations in the synthetic fluorescence spectrum.
  • the second half width (FWHM) of the first fluorescence spectrum and the second width of the second fluorescence spectrum on the side of the main wavelength of the second fluorescence spectrum with respect to the second wavelength is the dominant wavelength of the first fluorescence spectrum and the dominant wavelength of the second fluorescence spectrum. It becomes smaller than the interval.
  • the main wavelength of the first fluorescence spectrum and the main wavelength of the second fluorescence spectrum are separated by a predetermined distance or more so that various synthetic fluorescence spectra have a double-headed peak shape,
  • the contribution from the true second fluorescence spectrum in one discriminating value is satisfactorily reduced so that the emission intensity of the true first fluorescence spectrum can be estimated with higher accuracy and the true first fluorescence spectrum in the second discriminating value. From which the emission intensity of the second fluorescence spectrum can be estimated more satisfactorily, and the first identification value, the second identification value, and the third identification value are the true fluorescence spectrum and the Various differences from the false fluorescence spectrum are reflected with higher accuracy.
  • a plurality of types of true synthetic fluorescence spectra can be discriminated with higher accuracy, and various types of true synthetic fluorescence spectra and various types of A false synthetic fluorescence spectrum can be distinguished with higher accuracy.
  • the mode value of the third discriminant function has a configuration in a wavelength region where the first fluorescence spectrum and the second fluorescence spectrum overlap.
  • the identification method of this configuration is also referred to as “identification method C”.
  • the third identification value changes sensitively according to the difference between them, and the discrimination accuracy between various true synthetic fluorescence spectra and various false synthetic fluorescence spectra is improved.
  • the first discriminant function, the second discriminant function, and the third discriminant function are preferably translationally symmetric functions.
  • the identification method of this structure is also called “the identification method D" below.
  • the first weighted average value, the second weighted average value, and the third weighted average value can be easily calculated, and the first identification value, the second identification value, and the third identification value
  • the weights of various weighted average values can be made uniform.
  • Each of the first discriminant function, the second discriminant function, and the third discriminant function is preferably configured to have an approximate shape of the first fluorescence spectrum and the second fluorescence spectrum.
  • the identification method of this configuration is also referred to as “identification method E”.
  • a width that is the same as the half width of the first fluorescence spectrum is a half width.
  • a Gaussian function based on the peak fitting of the first fluorescence spectrum a function having substantially the same shape as the second fluorescence spectrum, a Gaussian function having a half-value width equal to the half-value width of the second fluorescence spectrum, A Gaussian function based on the peak fitting of the second fluorescence spectrum, a Gaussian function having an average value of the half width of the first fluorescence spectrum and the half width of the second fluorescence spectrum, and the first fluorescence spectrum and the second based on the peak fitting.
  • An example is a Gaussian function in which the half value width is the average value of the half value width with the fluorescence spectrum.
  • the first identification value and the second identification value are values that can more accurately estimate the emission intensity of the true first fluorescence spectrum and the emission intensity of the true second fluorescence spectrum.
  • the first identification value, the second identification value, and the third identification value are respectively the difference between the first fluorescence spectrum and the fake fluorescence spectrum camouflaged with it, the true second fluorescence spectrum and the fake fluorescence camouflaged with it. Since the difference between the second fluorescence spectrum and the difference between the two can be reflected well, the discrimination accuracy with respect to a plurality of types of true synthetic fluorescence spectra and various types of true synthetic fluorescence spectra The discrimination accuracy from various false synthetic fluorescence spectra is further improved.
  • the mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum
  • the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum.
  • the mode value of the third discriminant function is substantially the same as the intermediate value between the mode value of the first discriminant function and the mode value of the second discriminant function.
  • the identification method having this configuration is also referred to as “identification method F”.
  • substantially the same means that they are not intentionally different, and “substantially the same” means a case that exactly matches the dominant wavelength of the first fluorescence spectrum or the second fluorescence spectrum. This is not limited to the case, and implies a case where it does not exactly match the dominant wavelength of the first fluorescence spectrum or the measured second fluorescence spectrum due to a measurement error or the like.
  • the first identification value and the second identification value are values that can better estimate the emission intensity of the true first fluorescence spectrum and the emission intensity of the true second fluorescence spectrum.
  • the first identification value equally reflects the difference between the first wavelength and the longer wavelength side of the first fluorescence spectrum between the first fluorescence spectrum and the fake fluorescence spectrum camouflaged as the first fluorescence spectrum.
  • the value equally reflects the difference between the main wavelength of the second fluorescence spectrum between the true second fluorescence spectrum and the fake fluorescence spectrum camouflaged with the true second fluorescence spectrum, and the third wavelength and the third identification.
  • Each of the plurality of types of synthetic fluorescence spectra is substantially the sum of the intensity of the first fluorescence spectrum with respect to the dominant wavelength of the first fluorescence spectrum and the intensity of the second fluorescence spectrum with respect to the dominant wavelength of the second fluorescence spectrum. It is preferable that the configuration is constant.
  • the identification method of this configuration is also referred to as “identification method G”.
  • the ratio between the emission intensity of the first fluorescence spectrum and the emission intensity of the second fluorescence spectrum can be reliably varied.
  • the sum of the first weighted average value and the second weighted average value for each of a plurality of types of true synthetic fluorescence spectra is substantially constant, and each of the first discriminating value and the second discriminating value is a true synthetic fluorescence spectrum and a false synthesis.
  • the third identification value changes approximately in proportion to the third weighted average value
  • multiple types of true synthesis The discrimination accuracy with respect to the fluorescence spectrum and the discrimination accuracy between various true synthetic fluorescence spectra and various false synthetic fluorescence spectra are further improved.
  • the distribution range of the third identification value with respect to each of a plurality of types of true synthetic fluorescence spectra is reduced, various types of true synthetic fluorescence spectra and various types of false synthetic fluorescence spectra may be collectively determined. it can.
  • the first fluorescent material and the second fluorescent material have an intensity difference between the plurality of types of synthetic fluorescent spectra that is the smallest in a range between the dominant wavelength of the first fluorescent spectrum and the dominant wavelength of the second fluorescent spectrum. It is preferable that it is the structure selected so that may become the smallest.
  • identification method H the identification method of this configuration is also referred to as “identification method H”.
  • each of the first identification value, the second identification value, and the third identification value can be reduced.
  • the difference between the true synthetic fluorescence spectrum and the false synthetic fluorescence spectrum can be reflected sensitively.
  • the mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum
  • the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum
  • the mode value of the third discriminant function is substantially the same as the wavelength having the smallest intensity difference between the plurality of types of synthetic fluorescence spectra.
  • the identification method of this configuration is also referred to as “identification method I”.
  • each of the first identification value, the second identification value, and the third identification value since the distribution range of the third identification value for each of the plurality of types of true synthetic fluorescence spectra is further reduced, each of the first identification value, the second identification value, and the third identification value. However, the difference between the true synthetic fluorescence spectrum and the false synthetic fluorescence spectrum is reflected more sensitively.
  • the mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum
  • the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum
  • the mode value of the third discriminant function is substantially the same as the wavelength having the smallest maximum difference between the third discriminant values for each of the plurality of types of synthetic fluorescence spectra.
  • the identification method of this configuration is also referred to as “identification method J”.
  • the half-width (full width at half maximum; FWHM) of a fluorescence spectrum (a kind of [first fluorescence spectrum]) a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) based on a group of first ZAIS nanoparticles is Wa ( ⁇ 130 nm)
  • the half-value width of the fluorescence spectrum (a kind of [second fluorescence spectrum]) b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) based on the group of second ZAIS nanoparticles is Wb ( ⁇ 130 nm).
  • the fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectra b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) have a half-value width centered on the wavelength ⁇ a and the wavelength ⁇ b.
  • a waveform that generally follows a Gaussian distribution of “130”, they are conveniently represented by a Gaussian function.
  • the amount of the aggregate group of the second ZAIS-based nanoparticles is uniquely determined depending on the amount of the aggregate group of the first ZAIS-based nanoparticles. Specifically, the blending amount of the first ZAIS nanoparticle assembly group and the second ZAIS nanoparticle assembly group are shown in FIGS. 2 (A) to 2 (I).
  • the aggregate group of the first ZAIS nanoparticles and the aggregate group of the second ZAIS nanoparticles are a group of arbitrary two types of ZAIS nanoparticles having different main wavelengths, and their half-value width or 1 / Considering 10 widths (full width corresponding to 1/10 of the maximum intensity; FWTM), various synthetic fluorescence spectra based on them have a double-headed peak shape, and two types of fluorescence spectra a 1 ⁇ fa based on them ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are selected so as to overlap at least partially.
  • the main wavelength interval ( ⁇ b ⁇ a) between the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ). ) Is a partial width Wal on the longer wavelength side than the dominant wavelength (wavelength ⁇ a) in the half-value width Wa of the fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ).
  • the main wavelength interval ( ⁇ b ⁇ a) is a portion on the longer wavelength side than the main wavelength (wavelength ⁇ a) in the 1/10 width Wa ′ of the fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ).
  • the main wavelength interval ( ⁇ b ⁇ a) is selected to be larger than the larger partial width of the partial widths Wal ′ and Wbs ′.
  • fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ), b 1 ⁇ fb ( ⁇ ) to b based on a group of two types of ZAIS nanoparticles are used.
  • the first ZAIS nanoparticle aggregate group and the second ZAIS nanoparticle aggregate group are an aggregate of any two types of ZAIS nanoparticles having different main wavelengths.
  • the intensity difference at an arbitrary wavelength (the difference between the maximum intensity and the minimum intensity among the nine kinds of synthetic fluorescence spectra at an arbitrary wavelength) with respect to the nine types of synthetic fluorescence spectra based on them is between the two main wavelengths.
  • the wavelength with the smallest odor is defined as the convergence wavelength
  • the intensity difference at the convergence wavelength is defined as the convergence intensity difference, so that the convergence intensity difference is selected to be the smallest.
  • Convergence intensity difference is larger than “0”, but is much larger than the case where the combination of the first ZAIS nanoparticle aggregate group and the second ZAIS nanoparticle aggregate group is not changed so as to satisfy the above condition. Small value.
  • FIG. 4 is a flowchart illustrating an example of a method for calculating a set of identification values used for information determination and authenticity determination.
  • FIG. 5 is a graph showing an example of the discrimination function.
  • a fluorescence spectrum (a kind of [measured fluorescence spectrum]) Fm ( ⁇ ) is measured by irradiation with excitation light that can excite various ZAIS-based nanoparticles contained in the article (“fluorescence spectrum measurement process” S1).
  • Gaussian function a kind of [first discriminant function]
  • the dominant wavelength (wavelength ⁇ b) of the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) is set to the mode value (center), and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb (
  • the following formula using a second Gaussian function (a kind of [second discriminant function]) h ⁇ ( ⁇ ) as a weighting function with a half-width W ⁇ ( Wb) substantially the same as the half-value width Wb of ⁇ )
  • a weighted average value ⁇ (a kind of [second weighted average value]) is calculated by the numerical calculation shown in FIG.
  • an intermediate wavelength (( ⁇ a + ⁇ b) between the dominant wavelength of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the dominant wavelength of the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ).
  • Equation 3 a numerical operation represented by the following Equation 3 in which a third Gaussian function (a kind of [third discriminant function]) h ⁇ ( ⁇ ) having a width substantially the same as the half-value width Wb as a weight function is applied.
  • the weighted average value ⁇ (a kind of [third weighted average value]) is calculated.
  • the weighted average value ⁇ is divided by the sum of the weighted average value ⁇ , the weighted average value ⁇ , and the weighted average value ⁇ ( ⁇ + ⁇ + ⁇ ) to obtain an identification value X ([first identification ).
  • the weighted average value ⁇ is divided by the sum ( ⁇ + ⁇ + ⁇ ) to calculate the identification value Y (a type of [second identification value]).
  • the weighted average value ⁇ is divided by the total sum ( ⁇ + ⁇ + ⁇ ) to calculate the identification value Z (a kind of [third identification value]).
  • the data table includes median values X 1 to X 9 that determine an allowable range for the identification value X and an allowable error range ⁇ X, and median values Y 1 to Y 9 for determining an allowable range for the identification value Y and The allowable error range ⁇ Y , the median values Z 1 to Z 9 for determining the allowable range for the identification value Z, and the allowable error range ⁇ Z are included.
  • the measured fluorescence spectrum Fm ( ⁇ ) has a relative intensity shift, a peak wavelength shift, and a peak width shift due to measurement errors with respect to the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ).
  • FIG. 6 is a spectrum showing a relative intensity shift of the fluorescence spectrum.
  • FIG. 6 shows the fluorescence spectrum F 6 ( ⁇ ) together with the fluorescence spectra Fm ′ ( ⁇ ) and Fm ′′ ( ⁇ ) measured for the article in which the identification information corresponding to the identification information value 6 is written. As shown in Fig.
  • the fluorescence spectrum Fm '( ⁇ ) is measured by causing a deviation so that the relative intensity becomes small with respect to the fluorescence spectrum F 6 ( ⁇ ), or the fluorescence spectrum. Even if the fluorescence spectrum Fm ′′ ( ⁇ ) is measured such that the relative intensity with respect to F 6 ( ⁇ ) increases and the fluorescence spectrum Fm ′′ ( ⁇ ) is measured, each of the identification value X, the identification value Y, and the identification value Z is By being standardized as shown in Equations 4 to 6, the identification value X, the identification value Y, and the identification value Z are not substantially affected by the deviation.
  • the discriminating value X, the discriminating value Y, and the discriminating value Z are affected by the discrepancy.
  • an allowable range for each of the identification value X, the identification value Y, and the identification value Z is determined. As a result, it is suppressed that the identification information is false even though the true identification information is written.
  • Specific median values X 1 to X 9 , Y 1 to Y 9 , Z 1 to Z 9 and allowable error ranges ⁇ X , ⁇ Y , and ⁇ Z for each of the identification value X, the identification value Y, and the identification value Z will be described. To do.
  • the simulation is performed in the case where the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are Gaussian functions. It demonstrates based on a result.
  • FIG. 7 is a graph showing the sum of the difference values of various identification values and the absolute values of the difference values for a plurality of types of synthetic fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ).
  • FIG. 7 is a graph showing the sum of the difference values of various identification values and the absolute values of the difference values for a plurality of types of synthetic fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ).
  • the difference value ⁇ X of the identification value X is represented by a diamond mark
  • the difference value ⁇ Y of the identification value Y is represented by a triangle mark
  • the difference value ⁇ Z of the identification value Z is represented by a square mark
  • the difference value ⁇ X is represented by a cross. The same applies to FIGS. 8 and 9 described later.
  • the median values X 1 to X 9 with respect to the identification value X increase uniformly by “0.07” in accordance with the increase of the information identification value
  • the median values Y 1 to Y 9 are uniformly reduced by “0.07” in accordance with the increase of the information identification value
  • the median values Z 1 to Z 9 with respect to the identification value Z are independent of the identification information value. It is constant.
  • the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z is substantially uniform by “0.14” in accordance with the increase and decrease of the information identification value from the reference value “6”.
  • the median values X 1 to X 9 , Y 1 to Y 9 , and Z 1 to Z 9 for each of the identification value X, the identification value Y, and the identification value Z are the same as the various identification values shown in Table 1. Set to a value.
  • Table 2 below shows various identification values, differences between various identification values, and differences between the half-value widths Wa and Wb of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ). Represents the sum of absolute values.
  • FIG. 8 shows changes in the difference values of various identification values and the sum of absolute values of the difference values with respect to changes in the half-value width of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ). It is a graph showing.
  • the discriminant value X is monotonous as the half-value widths Wa and Wb of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ) increase.
  • the identification value Y decreases monotonically, and the identification value Z increases monotonously.
  • the half-value widths Wa and Wb decrease, the value of the identification value X increases monotonously, the value of the identification value Y increases monotonously, and the value of the identification value Z decreases monotonously.
  • the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z increases as the absolute value of the full width at half maximum increases.
  • the other identification information values 1 to 5 and 7 to 9 show substantially the same tendency.
  • the actual fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are not expressed by a strict Gaussian function. However, if the shape is almost similar to a Gaussian function, it shows the same tendency qualitatively.
  • Table 3 below shows various identification values with respect to changes (peak shifts) of the main wavelengths of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ), and the difference values of the various identification values and their values. It represents the sum of absolute values of difference values.
  • FIG. 9 shows the change in the difference value of various identification values and the sum of the absolute values of the difference values with respect to the change in the main wavelength of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ). It is a graph showing.
  • the main wavelength of the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 4 ⁇ fb ( ⁇ ) are shifted to the longer wavelength side (increase in the main wavelength change amount). Accordingly, the value of the identification value X increases monotonously, the value of the identification value Y increases once, then monotonously decreases, and the value of the identification value Z decreases monotonously.
  • the value of the identification value X is temporarily After the decrease, the value monotonously increases, the value of the identification value Y monotonously decreases, and the value of the identification value Z monotonously increases.
  • the identification value Y does not increase significantly because the maximum increase amount of the identification value Y in the shift of the main wavelength to the long wavelength side is about 0.006.
  • the maximum reduction amount of the identification value X in the shift of the dominant wavelength toward the short wavelength side is about 0.012, and does not decrease significantly.
  • the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z increases monotonously as the absolute value of the main wavelength change amount increases.
  • the other information identification values 1 to 5 and 7 to 9 show substantially the same tendency.
  • the actual fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are not expressed by a strict Gaussian function. However, if the shape is almost similar to a Gaussian function, it shows the same tendency qualitatively.
  • the change in the half width based on the measurement error is about 5% of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ), b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ),
  • the peak shift based on the measurement error is about 10 nm. Even when these measurement errors are combined with the measurement error or the slight difference based on the difference in the identification information value, the measurement error of the identification value X is less than “ ⁇ 0.02”. Is less than “ ⁇ 0.02”, and the measurement error of the identification value Z is less than “ ⁇ 0.03”.
  • the combination of the identification value X, the identification value Y, and the identification value Z is within the allowable range defined by [X 1 ⁇ ⁇ X , Y 1 ⁇ ⁇ Y , Z 1 ⁇ ⁇ Z ], it is true identification information. It is determined that the information value is “1”.
  • the range of the identification value X and the range of the identification value Y according to various types of identification information values do not overlap each other, a plurality of types of identification information are reliably determined.
  • the identification value X and the identification value Y are standardized so as not to depend on the intensity change in the measurement of the fluorescence spectrum as shown in the equations 4 to 6, the range of the identification value X and the identification value Y Can be set narrow, and a plurality of types of identification information are discriminated with high accuracy. Further, the discrimination accuracy is further improved by taking the discrimination value Z into consideration.
  • the true fluorescence spectra (a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ), b 1 ⁇ fb () corresponding to any of the nine types of identification information values (“1” to “9”).
  • ⁇ ) to b 9 ⁇ fb ( ⁇ )) are camouflaged, it is determined with high accuracy that the camouflaged fluorescence spectrum is different from any of the nine types of true fluorescence spectra.
  • FIG. 10 is an explanatory diagram showing a difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by narrow impersonation
  • FIG. 11 shows an example of a true fluorescence spectrum and a false fluorescence spectrum by wide impersonation
  • FIG. 12 is an explanatory diagram showing a difference from an example
  • FIG. 12 is an explanatory diagram showing a difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by a combined disguise of position and intensity.
  • FIG. 12 (A) shows the overall difference between the true fluorescence spectrum based on the fluorescent material A and the fluorescent material B and the disguise fluorescence spectrum.
  • 10 (B), FIG. 11 (B), and FIG. 12 (B) each represent a partial difference between the fluorescence spectrum based on the fluorescent material A and the fluorescence spectrum camouflaged thereto
  • FIG. 11C and FIG. 12C each show a partial difference between a fluorescence spectrum based on the fluorescent material B and a fluorescence spectrum camouflaged by the fluorescence spectrum.
  • the portion that acts so that the weighted average value ⁇ , the weighted average value ⁇ , and the weighted average value ⁇ decrease with respect to the true fluorescence spectrum is given a right-upward hatch,
  • the parts that act in the direction in which they increase are hatched downwardly to the right.
  • the weighted average value ⁇ and the identification value X are the true fluorescence spectrum a 6 ⁇ fna ( ⁇ ) and true as shown in FIG. 10 (A) and FIG. 10 (B).
  • the difference based on the difference in half-value width from the fluorescence spectrum a 6 ⁇ fa ( ⁇ ) is reflected.
  • the weighted average value ⁇ and the identification value Y are obtained by comparing the false fluorescence spectrum b 4 ⁇ fna ( ⁇ ) and the true fluorescence spectrum b 4 ⁇
  • the difference based on the difference in half width from fb ( ⁇ ) is reflected. Further, as shown in FIGS.
  • the weighted average value ⁇ and the identification value Z are expressed as a false fluorescence spectrum Fn 6 ( ⁇ ) and a true fluorescence spectrum F 6 ( ⁇ ).
  • the true fluorescence spectra a 6 ⁇ the true fluorescence spectra a 6 ⁇ fa ( ⁇ ) of the main wavelength than (wavelength [lambda] a) false in the long wavelength side fluorescence spectra a 6 ⁇ fna ( ⁇ )
  • the composite difference resulting from the difference based on the difference in half-value width from the true fluorescence spectrum b 4 ⁇ fb ( ⁇ ) is reflected.
  • each of the weighted average value ⁇ , the weighted average value ⁇ , and the weighted average value ⁇ decreases monotonously according to the decrease in the half width, but is shown in Table 2 above.
  • the identification value X and the identification value Y increase monotonously by the normalization shown in Equations 4 and 5, and the identification value Z decreases monotonously by the normalization shown in Equation 6.
  • the weighted average value ⁇ and the identification value X are expressed as a false fluorescence spectrum a 6 ⁇ fwa ( ⁇ ) and true as shown in FIG. 11 (A) and FIG. 11 (B). This reflects the difference based on the difference in half-value width from the fluorescence spectrum a 6 ⁇ fa ( ⁇ ).
  • the weighted average value ⁇ and the identification value Y are obtained by comparing the false fluorescence spectrum b 4 ⁇ fwa ( ⁇ ) and the true fluorescence spectrum b 4 ⁇ The difference based on the difference in half width from fb ( ⁇ ) is reflected.
  • the weighted average value ⁇ and the identification value Z are the false fluorescence spectrum in the case of the false fluorescence spectrum Fw 6 ( ⁇ ) by the wide disguise.
  • the composite difference resulting from the difference based on the difference in half width between the false fluorescence spectrum b 4 ⁇ fwb ( ⁇ ) and the true fluorescence spectrum b 4 ⁇ fb ( ⁇ ) on the short wavelength side is reflected.
  • each of the weighted average value ⁇ , the weighted average value ⁇ , and the weighted average value ⁇ increases monotonously according to the increase in the half width, as shown in Table 2 above.
  • the identification value X and the identification value Y are monotonously decreased by the normalization shown in Equations 4 and 5, and the identification value Z is monotonously increased by the normalization shown in Equation 6.
  • At least one identification value of the identification value X, the identification value Y, and the identification value Z for the false fluorescence spectrum F 6 w ( ⁇ ) in the case of narrow-width camouflage or wide-width camouflage corresponds to the true fluorescence spectrum F 6 ( ⁇ ). If it falls outside the allowable range, it can be determined that the fluorescence spectrum is not true F 6 ( ⁇ ).
  • the fluorescence spectra a 6 .fna ( ⁇ ) and a 6 ⁇ fwa () constituting the false fluorescence spectra F 6 n ( ⁇ ) and F 6 w ( ⁇ ) are used.
  • the discrimination value X Becomes a value within the permissible range of the identification value X for the fluorescence spectra having different identification information values, for example, the fluorescence spectrum F 7 ( ⁇ ) and the fluorescence spectrum F 5 ( ⁇ ), or the identification value Y is different from the identification information value. In some cases, the value is within the allowable range of the identification value Y for the fluorescence spectrum.
  • the identification value X and the identification value Y change with opposite polarities as the identification information value changes, that is, the identification value X increases when the identification value X increases. While Y decreases, the identification value Y increases when the identification value X decreases, while the identification value X and the identification value Y change in the same polarity in the case of narrow and wide camouflage. Therefore, even if one of the identification value X and the identification value Y is within the allowable range corresponding to the other identification information value, the other is always outside the allowable range corresponding to the other identification information value.
  • the fluorescence spectrum F 6 (lambda) fluorescence spectra F 6 n ( ⁇ ) false by narrow impersonation and wide impersonation for, F 6 w ( ⁇ ) of any of the other true fluorescence spectrum F 1 ( ⁇ ) ⁇ F 5 ( ⁇ ) and F 7 ( ⁇ ) to F 9 ( ⁇ ) are not determined.
  • the fluorescence spectra F 1 ( ⁇ ) to F 5 The same applies to the case of narrow-width camouflage and wide-camera camouflage for ⁇ ), F 7 ( ⁇ ) to F 9 ( ⁇ ).
  • the weighted average value ⁇ is mainly false.
  • the difference of the fluorescence spectrum a 6 ′ ⁇ fsa ( ⁇ ) and the true fluorescence spectrum a 6 ⁇ fa ( ⁇ ) based on the difference in the position of the main wavelength, the emission intensity, and the half width is reflected.
  • the weighted average value ⁇ is mainly composed of the false fluorescence spectrum b 4 ′ ⁇ fsa ( ⁇ ) and the true fluorescence spectrum b 4.
  • the weighted average value ⁇ is a false fluorescence spectrum a 6 ′ ⁇ fsa ( ⁇ ) and a true fluorescence spectrum a 6 ⁇ fa ( ⁇ ).
  • the position of the main wavelength, the difference in emission intensity and half width, and the position of the main wavelength, emission intensity and half of the false fluorescence spectrum b 4 ′ ⁇ fsb ( ⁇ ) and the true fluorescence spectrum b 4 ⁇ fb ( ⁇ ) It will reflect complex differences resulting from differences based on price range differences.
  • the identification value X, the identification value Y, and the identification value Z change variously based on the selection of the fluorescent material and the selection of the blending amount, but the false fluorescence spectrum Fs 6 A combination of the identification value X, the identification value Y, and the identification value Z for the fluorescence spectrum F 1 ( ⁇ ) to F 9 ( ⁇ ) in which the combination of the identification value X, the identification value Y, and the identification value Z with respect to ( ⁇ ) is true. Since it is extremely rare to be included in any of the above, their fluorescence spectra can be distinguished well.
  • true fluorescence spectra having different identification information values can be distinguished from each other based on the combination of the identification value X, the identification value Y, and the identification value Z. It is possible to discriminate between the true fluorescence spectrum and the false fluorescence spectrum due to the narrow camouflage, the wide camouflage or the composite camouflage.
  • the identification value X and the identification value Y are the emission intensity and the fluorescence spectrum b 1 of the fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ), respectively.
  • Standards in which the emission values of fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) can be satisfactorily estimated and the identification value X, the identification value Y, and the identification value Z are expressed by Equations 4 to 6, respectively.
  • identification value X, identification value Y and identification value Z is, respectively, fluorescence spectra a 1 ⁇ fa ( ⁇ ) ⁇ A 9 ⁇ fa ( ⁇ ) and the fake fluorescence spectrum camouflaged with it in the vicinity of the wavelength ⁇ a, the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) and the fake camouflaged with it
  • the difference between the wavelength ⁇ b of fb In order to change according to both the difference between the wavelength ⁇ b of fb (
  • each of the identification value X, the identification value Y, and the identification value Z does not depend on the overall emission intensity of the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ), the article containing the identification information is small. Even when the irradiation area of the excitation light for exciting the ZAIS nanoparticle cannot be secured sufficiently, or when the flat region where the excitation light is irradiated cannot be secured, various determinations can be performed with high accuracy.
  • the main spectrum (wavelength ⁇ b) of the fluorescence spectra b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are separated by a predetermined distance or more, so that the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) at the discrimination value X
  • the contribution from b 9 ⁇ fb ( ⁇ ) is satisfactorily reduced so that the emission intensity of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) can be estimated with higher accuracy and the discrimination value
  • the contribution from the fluorescence spectra a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) in Y is well reduced, and the emission intensity of the fluorescence spectra b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) is further increased.
  • the value can be estimated well, and the identification value X, the identification value Y, and the identification value Z are Is, fluorescence spectra a 1 ⁇ fa ( ⁇ ) ⁇ a 9 ⁇ fa ( ⁇ ), in b 1 ⁇ fb ( ⁇ ) ⁇ b 9 ⁇ fb ( ⁇ ) and higher precision of various differences between the fluorescence spectrum of false Will be reflected.
  • the discrimination accuracy of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the discrimination between the various fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the various false synthetic fluorescence spectra The accuracy is further improved.
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum.
  • b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are in the overlapping wavelength region, and the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fake fluorescence spectrum disguised as it And the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) overlap with a portion having a large difference between the fake fluorescence spectrum camouflaged with the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ). It changes sensitively according to the difference between them, and the discrimination accuracy between the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the false fluorescence spectrum camouflaged by any of them is improved.
  • the discrimination function h ⁇ ( ⁇ ), the discrimination function h ⁇ ( ⁇ ), and the discrimination function h ⁇ ( ⁇ ) are translationally symmetric shapes, so that the weighted average value ⁇ , weighted The average value ⁇ and the weighted average value ⁇ can be easily calculated, and the weights of the various weighted average values ⁇ , ⁇ , and ⁇ in the identification value X, the identification value Y, and the identification value Z can be made uniform.
  • each of the identification function h ⁇ ( ⁇ ) and the identification function h ⁇ ( ⁇ ) is applied to the approximate shape fa ( ⁇ ) of the fluorescence spectrum based on the fluorescent material A and the fluorescent material B.
  • the light emission intensities of fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) can be estimated more satisfactorily, and the identification value X, the identification value Y, and the identification value Z are respectively represented by fluorescence spectra a 1 ⁇ fa ( ⁇ )
  • the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) and the fake fluorescence spectrum camouflaged with it Good reflection of the differences and the differences between them So it can, the fluorescence spectrum F 1 ( ⁇ ) ⁇ F 9 ( ⁇ ) mutual recognition accuracy and fluorescence
  • the mode value (wavelength ⁇ ) of the identification function h ⁇ ( ⁇ ) is the dominant wavelength of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ )
  • the mode (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially the same as the wavelength ⁇ a), and the dominant wavelength (wavelength ⁇ b) of the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ )
  • the identification value X and the identification value Y are the emission intensity and fluorescence of the fluorescence spectra a 1 ⁇ fa
  • the discriminating value Z is different from the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the false fluorescence spectrum camouflaged with the wavelength ⁇ a on the longer wavelength side and the fluorescence spectrum b 1 ⁇
  • the fluorescence spectra F 1 ( ⁇ ) to F 9 mutual recognition accuracy and fluorescence spectra for ( ⁇ ) F 1 ( ⁇ ) ⁇ F 9 lambda) and the discrimination accuracy of the fluorescence spectrum of false disguised in any of them can be further improved.
  • each of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) has a fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ )
  • a fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) At the main wavelength (wavelength ⁇ a) and the intensity at the main wavelength (wavelength ⁇ b) of the fluorescence spectra b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) are substantially constant, Their intensity ratio is definitely different.
  • the sum of the weighted average value ⁇ and the weighted average value ⁇ for each of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) is substantially constant, and each of the identification value X and the identification value Y is the fluorescence spectrum F. 1 ( ⁇ ) to F 9 ( ⁇ ) and a weighted average value ⁇ that sensitively reflects the difference between the false fluorescence spectra camouflaged by any of them, and the third identification value is a weighted average value ⁇ To the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ), and the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and any one of them. The accuracy of discrimination from the false fluorescence spectrum camouflaged by is further improved.
  • the allowable range for the identification value Z is changed for each of the various fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ).
  • F 1 ( ⁇ ) to F 9 ( ⁇ ) are substituted with a common tolerance, and various fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and a fake fluorescence spectrum camouflaged by any of them It is also possible to make a configuration in which these are discriminated collectively.
  • the dominant wavelength (wavelength ⁇ a) of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ) and the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ) Fluorescent material so that the maximum intensity difference between the smallest fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) is the smallest in the range between the wavelength ⁇ a and the wavelength ⁇ b. It can also be set as the structure by which A and the fluorescent material B are selected.
  • the identification value X, the identification value Y, and the identification value Z can be reduced. It is possible to sensitively reflect the difference between the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the fake fluorescence spectrum camouflaged in any of them.
  • various differences are determined based on the identification value X, the identification value Y, and the identification value Z.
  • the sum of the difference values of the identification value X, the identification value Y, and the identification value Z is variously disguised.
  • the spectrum in this case may be configured to make a true / false determination by using a unique increase.
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially equal to the main wavelength (wavelength ⁇ a) of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ).
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially the same as the dominant wavelength (wavelength ⁇ b) of the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ).
  • the mode (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially the same as the wavelength having the smallest maximum intensity difference among the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ).
  • the distribution range of the identification value Z for each of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) is further reduced, so that the first identification value, the second identification value, and the Each of the three identification values more sensitively reflects the difference between the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the false fluorescence spectrum camouflaged by any of them.
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially equal to the main wavelength (wavelength ⁇ a) of the fluorescence spectrum a 1 ⁇ fa ( ⁇ ) to a 9 ⁇ fa ( ⁇ ).
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially the same as the dominant wavelength (wavelength ⁇ b) of the fluorescence spectrum b 1 ⁇ fb ( ⁇ ) to b 9 ⁇ fb ( ⁇ ).
  • the mode value (wavelength ⁇ ) of the discrimination function h ⁇ ( ⁇ ) is substantially equal to the wavelength with the smallest maximum difference between the discrimination values Z for each of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ). It can also be set as the same structure. With this configuration, since the distribution range of the identification value Z for each of the nine types of fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) is the smallest, the identification value X, the identification value Y, and the identification value Z Each more sensitively reflects the difference between the fluorescence spectra F 1 ( ⁇ ) to F 9 ( ⁇ ) and the fake fluorescence spectrum camouflaged in any of them.
  • the present invention is suitable for discrimination of identification information based on the blending of fluorescent materials and discrimination of counterfeits.
  • S1 Fluorescence spectrum measurement process
  • S2 Weighted average value calculation process
  • S3 Identification value calculation process
  • S4 Identification information / authenticity determination process

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

Disclosed is a method of identifying a fluorescence spectrum, which simply and highly accurately discerns multiple types of fluorescence spectrums from each other and discerns fluorescence spectrums disguised as those spectrums. The method identifies multiple types of combined fluorescence spectrums which are comprised of combined waveforms of a first fluorescence spectrum based on a first fluorescent material and a second fluorescence spectrum based on a second fluorescent material and which differ corresponding to the difference in the composition of these fluorescent materials. The method weights a measured fluorescence spectrum (Fm (λ)), which is comprised of a first fluorescence spectrum and a second fluorescence spectrum which overlap and which is measured from an object to be identified, by a first identification function (hα(λ)), a second identification function (hβ (λ)), and a third identification function (hγ (λ)), divides the respectively obtained first weighted average value, second weighted average value, and third weighted average value by the sum of the values to calculate a first identifying value, second identifying value, and third identifying value, and discerns multiple types of combined fluorescence spectrums from each other and determines the authenticity thereof on the basis of the combination of the identifying values.

Description

蛍光スペクトルの識別方法Fluorescence spectrum identification method
 本発明は、蛍光スペクトルの識別方法に関し、詳しくは、複数種類の真の蛍光スペクトルを互いに判別すると共にそれらのいずれかに偽装された偽の蛍光スペクトルを判別する方法に関する。 The present invention relates to a method for discriminating a fluorescence spectrum, and more particularly to a method for discriminating a plurality of types of true fluorescence spectra from each other and a false fluorescence spectrum camouflaged by any of them.
 従来において、主波長の異なる複数種類の蛍光材料を所定の配合で含有させることによって物品に所定の識別情報を書き込み、その識別情報に対応する蛍光スペクトルを励起光の照射に基づいて読み出して、物品の種類の特定や物品の真贋を判定する方法が知られている(例えば、下記の特許文献1参照)。図13は、従来における複数種類の識別情報を構成する蛍光スペクトルの組み合わせの一例を定性的に表すスペクトルである。主波長がλxである蛍光材料X及び主波長がλyである蛍光材料Yの配合量の組み合わせを識別情報とし、それらの配合量が、図13に示されたように、蛍光材料Xに基づく蛍光スペクトル(破線で示されたx・fx(λ),x・fx(λ),x・fx(λ))の主波長λxにおける発光強度がS1、S2及びS3のいずれかとなり、かつ、蛍光材料Yに基づく蛍光スペクトル(破線で示されたy・fy(λ),y・fy(λ),y・fy(λ))の主波長λyにおける発光強度がS1、S2及びS3のいずれかとなるように調整されている。つまり、9種類(=蛍光材料Xの3種類の配合量(強度)×蛍光材料Yの3種類の配合量(強度))の識別情報から選択された1つの識別情報が書き込まれることになる。読み出しにおいては、蛍光材料Xに基づく蛍光スペクトルと蛍光材料Yに基づく蛍光スペクトルとが合成された合成蛍光スペクトル、例えば、蛍光材料X及び蛍光材料Yの主波長における強度がそれぞれS2及びS3となるように蛍光材料X及び蛍光材料Yが配合されている場合には、実線で示されたように、蛍光スペクトルx・fx(λ)と蛍光スペクトルy・fy(λ)とが合成された合成蛍光スペクトルF2,3(λ)が計測され、蛍光材料X及び蛍光材料Yの各々の主波長(波長λx,波長λy)における合成蛍光スペクトルF2,3(λ)の強度に対応する一組の識別値が導出される。 Conventionally, predetermined identification information is written on an article by containing a plurality of types of fluorescent materials having different main wavelengths in a predetermined composition, and a fluorescence spectrum corresponding to the identification information is read based on irradiation of excitation light, and the article There are known methods for determining the type of item and determining the authenticity of an article (for example, see Patent Document 1 below). FIG. 13 is a spectrum that qualitatively represents an example of a combination of fluorescence spectra constituting a plurality of types of identification information in the prior art. A combination of the blending amounts of the fluorescent material X having the dominant wavelength λx and the fluorescent material Y having the dominant wavelength λy is used as identification information, and these blending amounts are fluorescence based on the fluorescent material X as shown in FIG. The emission intensity at the principal wavelength λx of the spectrum (x 1 · fx (λ), x 2 · fx (λ), x 3 · fx 3 (λ) indicated by broken lines) is any one of S1, S2 and S3, In addition, the emission intensity at the main wavelength λy of the fluorescence spectrum based on the fluorescent material Y (y 1 · fy (λ), y 2 · fy (λ), y 3 · fy (λ) indicated by broken lines) is S1 and S2. And S3. That is, one piece of identification information selected from the identification information of nine types (= three types of blending amount (intensity) of fluorescent material X × three types of blending amount (intensity) of fluorescent material Y) is written. In reading, the combined fluorescence spectrum obtained by synthesizing the fluorescence spectrum based on the fluorescent material X and the fluorescence spectrum based on the fluorescent material Y, for example, the intensities at the main wavelengths of the fluorescent material X and the fluorescent material Y are S2 and S3, respectively. When the fluorescent material X and the fluorescent material Y are blended with each other, as shown by the solid line, a synthesis in which the fluorescence spectrum x 2 · fx (λ) and the fluorescence spectrum y 3 · fy (λ) are synthesized The fluorescence spectrum F 2,3 (λ) is measured, and a set corresponding to the intensity of the synthesized fluorescence spectrum F 2,3 (λ) at the respective main wavelengths (wavelength λx, wavelength λy) of the fluorescent material X and the fluorescent material Y The identification value is derived.
 この一組の識別値の各識別値が、第1許容範囲(S1±δ)、第2許容範囲(S2±δ)及び第3許容範囲(S3±δ)のいずれかの許容範囲内である場合には真のスペクトルであると判定されると共に、一組の識別値がいずれの許容範囲の組み合わせに対応するかに応じて識別情報が読み出される。なお、第1範囲(S1±δ)、第2範囲(S2±δ)、第3範囲(S3±δ)は互いに重複しない範囲である。 Each identification value of the set of identification values is within an allowable range of any of the first allowable range (S1 ± δ), the second allowable range (S2 ± δ), and the third allowable range (S3 ± δ). In this case, it is determined that the spectrum is a true spectrum, and identification information is read according to which combination of identification values corresponds to which combination of allowable ranges. The first range (S1 ± δ), the second range (S2 ± δ), and the third range (S3 ± δ) are ranges that do not overlap each other.
 このように一組の識別値に基づく数値判断によって識別情報や真偽を判別する場合には、それらの判別が簡素な読み出し装置によって簡便に行える。これは、読み出し装置において、合成蛍光スペクトルを表示させたりする必要がなくなり、また、人為的な判断が絡まないために高精度にかつ迅速に判断できるからである。 In this way, when the identification information and the authenticity are determined by numerical determination based on a set of identification values, the determination can be easily performed by a simple reading device. This is because it is not necessary to display the synthetic fluorescence spectrum in the readout device, and it is possible to make a high-precision and quick determination because no artificial determination is involved.
 しかしながら、従来のように一組の識別情報を蛍光材料X及び蛍光材料Yの主波長における強度に応じて決定する場合には、同様の一組の識別値が導出される偽の蛍光スペクトルが容易に再現できることになる。一般的に、識別情報としての蛍光スペクトルを偽装する場合には、安価にかつ容易に入手できる蛍光材料が用いられると共に、可能な限り少ない種類の蛍光材料が用いられる。 However, when a set of identification information is determined according to the intensities at the main wavelengths of the fluorescent material X and the fluorescent material Y as in the prior art, a fake fluorescence spectrum from which a similar set of identification values is derived is easy. Can be reproduced. In general, when disguising a fluorescent spectrum as identification information, a fluorescent material that can be easily obtained at low cost is used, and as few fluorescent materials as possible are used.
 ここで、従来の偽装の手法について簡単に説明する。図14は、従来における複数種類の合成蛍光スペクトルに対する偽装例を表すスペクトルである。図14に示されたように、所定の主波長λx’(≠λx,λy)の既存の蛍光材料X’と所定の主波長λy’(≠λx,λy)の既存の蛍光材料Y’とを用いて、波長λxにおける強度が合成蛍光スペクトルF(λ)(=F2,3(λ))の場合と同一になるように蛍光材料X’の配合量を調整すると共に波長λyにおける強度が合成蛍光スペクトルF(λ)の場合と同一になるように蛍光材料Y’の配合量を調整して蛍光スペクトルFs(λ)を形成する方法が知られている。これは、蛍光材料X’や蛍光材料Y’として、安価にかつ容易に入手でき、主波長が実質的に固定された半導体バルク粒子や有機蛍光体等の蛍光材料によって偽装される場合に相当する。このような粗雑な偽装に対して、主波長が粒径や組成に応じて変化する半導体ナノ粒子等の蛍光材料を用いて、蛍光材料X及び蛍光材料Yの主波長をも同一となるように蛍光材料の種類を選択して、更に精度の高い偽造が行われるようになってきた。具体的には、図14に示されたように、蛍光材料Xの主波長λxと実質的に同一となるように蛍光材料X’を選択すると共に波長λxにおける強度が合成蛍光スペクトルF(λ)の場合と同一になるように蛍光材料X’の配合量を調整し、かつ、蛍光材料Yの主波長λyと実質的に同一となるように蛍光材料Y’を選択すると共に波長λyにおける強度が合成蛍光スペクトルF(λ)の場合と同一になるように蛍光材料Y’の配合量を調整して、蛍光スペクトルFn(λ)及びFw(λ)を形成する方法が用いられるようになってきた。これによって、蛍光スペクトルFn(λ)や蛍光スペクトルFw(λ)によって偽装された場合には、それらの波形がF(λ)と類似するために、上述のように数値化された識別値によってそれらの真偽を判別することの重要度が増すこととなる。 Here, a conventional technique of camouflage will be briefly described. FIG. 14 is a spectrum showing an example of disguise for a plurality of types of synthetic fluorescence spectra in the past. As shown in FIG. 14, an existing fluorescent material X ′ having a predetermined main wavelength λx ′ (≠ λx, λy) and an existing fluorescent material Y ′ having a predetermined main wavelength λy ′ (≠ λx, λy) are And adjusting the blending amount of the fluorescent material X ′ so that the intensity at the wavelength λx is the same as that in the case of the synthetic fluorescence spectrum F (λ) (= F 2,3 (λ)), and the intensity at the wavelength λy is synthesized. A method of forming a fluorescence spectrum Fs (λ) by adjusting the blending amount of the fluorescent material Y ′ so as to be the same as that of the fluorescence spectrum F (λ) is known. This corresponds to a case where the fluorescent material X ′ or the fluorescent material Y ′ is easily obtained at low cost and is camouflaged by a fluorescent material such as a semiconductor bulk particle or an organic phosphor whose main wavelength is substantially fixed. . For such rough camouflage, fluorescent materials such as semiconductor nanoparticles whose main wavelength varies depending on the particle size and composition are used so that the main wavelengths of fluorescent material X and fluorescent material Y are the same. By selecting the type of fluorescent material, forgery with higher accuracy has been performed. Specifically, as shown in FIG. 14, the fluorescent material X ′ is selected so as to be substantially the same as the main wavelength λx of the fluorescent material X, and the intensity at the wavelength λx has a combined fluorescence spectrum F (λ). The blending amount of the fluorescent material X ′ is adjusted so as to be the same as in the above case, and the fluorescent material Y ′ is selected so as to be substantially the same as the main wavelength λy of the fluorescent material Y, and the intensity at the wavelength λy is increased. A method of adjusting the blending amount of the fluorescent material Y ′ so as to be the same as the case of the synthetic fluorescence spectrum F (λ) to form the fluorescence spectra Fn (λ) and Fw (λ) has come to be used. . As a result, when they are disguised with the fluorescence spectrum Fn (λ) or the fluorescence spectrum Fw (λ), their waveforms are similar to those of F (λ). The importance of discriminating the true / false of will increase.
 図14には、蛍光材料X’及び蛍光材料Y’に基づく蛍光スペクトルの半値幅が、それぞれ、蛍光材料X及び蛍光材料Yに基づく蛍光スペクトルの半値幅よりも狭い場合の合成蛍光スペクトルFn(λ)と、それらの半値幅よりも広い場合の合成蛍光スペクトルFw(λ)とが示されているが、蛍光材料の材料系の相違によって、また、同一の材料系であっても製造過程の種々の処理条件等によって、それらの蛍光材料に基づく蛍光スペクトルの半値幅は異なることによる。合成蛍光スペクトルF(λ)の偽造においては、通常、1種類の材料系の蛍光体に対する粒径の変化によって主波長が調整されるために、蛍光材料Xよりも蛍光スペクトルの半値幅が狭い蛍光材料X’が選択される場合には、蛍光材料Yよりも蛍光スペクトルの半値幅が狭い蛍光材料Y’が選択され、逆に、蛍光材料Xよりも蛍光スペクトルの半値幅が広い蛍光材料X”が選択される場合には、蛍光材料Yよりも蛍光スペクトルの半値幅が広い蛍光材料Y”が選択される。 FIG. 14 shows a synthetic fluorescence spectrum Fn (λ) in which the half widths of the fluorescence spectra based on the fluorescent material X ′ and the fluorescent material Y ′ are narrower than the half widths of the fluorescence spectra based on the fluorescent material X and the fluorescent material Y, respectively. ) And a synthetic fluorescence spectrum Fw (λ) wider than their half-value widths. However, due to the difference in the material system of the fluorescent material, there are various manufacturing processes even in the same material system. This is because the half-value widths of the fluorescence spectra based on these fluorescent materials differ depending on the processing conditions of the above. In the forgery of the synthetic fluorescence spectrum F (λ), since the dominant wavelength is usually adjusted by a change in particle diameter with respect to a phosphor of one type of material, fluorescence having a narrower half width of the fluorescence spectrum than that of the fluorescent material X is used. When the material X ′ is selected, the fluorescent material Y ′ having a narrower half width of the fluorescence spectrum than that of the fluorescent material Y is selected, and conversely, the fluorescent material X ″ having a wider half width of the fluorescence spectrum than that of the fluorescent material X. Is selected, the fluorescent material Y ″ having a half-width of the fluorescence spectrum wider than that of the fluorescent material Y is selected.
特再WO04/025550Tokurei WO04 / 025550
 上述のように、蛍光材料X及び蛍光材料Yの主波長における強度に応じた一組の識別情報に基づく判定によっては、図14に示された各種の偽装された偽の蛍光スペクトルと真の合成蛍光スペクトルとの真偽を判別することはできない。また、一般的に、蛍光材料X及び蛍光材料Yの主波長における強度は測定誤差等によって変化するために、複数種類の真の蛍光スペクトルに対する互いの蛍光スペクトルの判別の精度も低下する。 As described above, depending on the determination based on a set of identification information corresponding to the intensities at the main wavelengths of the fluorescent material X and the fluorescent material Y, various kinds of camouflaged false fluorescent spectra shown in FIG. Whether the fluorescence spectrum is true or false cannot be determined. In general, the intensities at the main wavelengths of the fluorescent material X and the fluorescent material Y change due to a measurement error or the like, so that the accuracy of discriminating each other's fluorescence spectra with respect to a plurality of types of true fluorescence spectra also decreases.
 そこで、本発明では、簡便かつ高精度に、複数種類の蛍光スペクトルに対する互いの蛍光スペクトルを判別すると共に、それらに対応する真の蛍光スペクトルに偽装された偽の蛍光スペクトルを判別する。 Therefore, in the present invention, the mutual fluorescence spectra for a plurality of types of fluorescence spectra are discriminated easily and with high accuracy, and the fake fluorescence spectra camouflaged as the true fluorescence spectra corresponding to them are discriminated.
 上記の課題を解決するために、本発明に係る蛍光スペクトルの識別方法は、
 第1蛍光材料に基づく第1蛍光スペクトルと第2蛍光材料に基づく第2蛍光スペクトルとの合成波形が前記第1蛍光材料と前記第2蛍光材料との配合の相違に応じて異なる複数種類の合成蛍光スペクトルを互いに判別し、かつ、前記複数種類の合成蛍光スペクトルのうち任意の1つの真の蛍光スペクトルに対して全体波形は異なるが前記第1蛍光スペクトルの主波長における強度及び前記第2蛍光スペクトルの主波長における強度は実質的に同一である偽の蛍光スペクトルと前記複数種類の合成蛍光スペクトルの各々とを判別する蛍光スペクトルの識別方法であって、
 前記第1蛍光材料及び前記第2蛍光材料の各々が半導体ナノ粒子の集合群であり、
 前記複数種類の合成蛍光スペクトルの各々を構成する前記第1蛍光スペクトルの一部と前記第2蛍光スペクトルの一部とが重なり、
 前記第1蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第1識別関数とし、前記第2蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第2識別関数とし、前記第1識別関数の最頻値と前記第2識別関数の最頻値との間の波長を最頻値とする単頭ピーク形状の分布関数を第3識別関数として、被識別対象物から計測された計測蛍光スペクトルに対して前記第1識別関数で重みを付けた第1加重平均値を算出し、前記計測蛍光スペクトルに対して前記第2識別関数で重みを付けた第2加重平均値を算出し、かつ、前記計測蛍光スペクトルに対して前記第3識別関数で重みを付けた第3加重平均値を算出し、
 前記第1加重平均値を前記第1加重平均値、前記第2加重平均値及び前記第3加重平均値の総和で規格化して前記計測蛍光スペクトルに対する第1識別値を算出し、前記第2加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第2識別値を算出し、かつ、前記第3加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第3識別値を算出し、
 前記第1識別値と前記第2識別値と前記第3識別値の組み合わせが、前記複数種類の合成蛍光スペクトルの各々に対応付けられた所定の前記第1識別値に対する許容範囲と所定の前記第2識別値に対する許容範囲と所定の前記第3識別値に対する許容範囲との許容範囲の組み合わせのいずれか1つの組み合わせに含まれる場合には、前記計測蛍光スペクトルは前記複数種類の合成蛍光スペクトルのうちの当該組み合わせに対応する合成蛍光スペクトルと同一であると判定し、前記複数種類の合成蛍光スペクトルの各々に対応付けられた前記許容範囲の組み合わせのいずれの組み合わせにも含まれない場合には、前記計測蛍光スペクトルは前記偽の蛍光スペクトルであると判定することを特徴としている。
In order to solve the above problems, a method for identifying a fluorescence spectrum according to the present invention includes:
A plurality of types of synthesis in which the combined waveform of the first fluorescent spectrum based on the first fluorescent material and the second fluorescent spectrum based on the second fluorescent material is different depending on the blending difference between the first fluorescent material and the second fluorescent material. Fluorescence spectra are discriminated from each other, and the intensity of the first fluorescence spectrum at the dominant wavelength and the second fluorescence spectrum are different from one of the plurality of types of synthetic fluorescence spectra, although the overall waveform is different A fluorescence spectrum identification method for distinguishing between a false fluorescence spectrum having substantially the same intensity at the dominant wavelength and each of the plurality of types of synthetic fluorescence spectra,
Each of the first fluorescent material and the second fluorescent material is a group of semiconductor nanoparticles,
A part of the first fluorescence spectrum and a part of the second fluorescence spectrum constituting each of the plurality of types of synthetic fluorescence spectra overlap,
A single-head peak shape having a distribution function of a single-head peak shape having a mode value in the vicinity of the main wavelength of the first fluorescence spectrum as a first discriminant function and a mode having a mode value in the vicinity of the main wavelength of the second fluorescence spectrum. Is a second discriminant function, and a single-peak distribution function having a mode between the mode value of the first discriminant function and the mode value of the second discriminant function is a third discriminant function. As a discrimination function, a first weighted average value obtained by weighting the measured fluorescence spectrum measured from the identification target with the first discrimination function is calculated, and the second discrimination function is used for the measured fluorescence spectrum. Calculating a weighted second weighted average value, and calculating a third weighted average value weighted by the third discriminant function for the measured fluorescence spectrum;
The first weighted average value is normalized by the sum of the first weighted average value, the second weighted average value, and the third weighted average value to calculate a first identification value for the measured fluorescence spectrum, and the second weighted value Normalizing the average value with the sum to calculate a second identification value for the measured fluorescence spectrum, and normalizing the third weighted average value with the sum to calculate a third identification value for the measured fluorescence spectrum;
The combination of the first identification value, the second identification value, and the third identification value is an allowable range for the predetermined first identification value associated with each of the plurality of types of synthetic fluorescence spectra and a predetermined first value. When the measurement fluorescence spectrum is included in any one combination of the tolerance range for the two identification values and the tolerance range for the predetermined third identification value, the measured fluorescence spectrum is one of the plurality of types of synthetic fluorescence spectra. Is determined to be the same as the synthetic fluorescence spectrum corresponding to the combination, and if it is not included in any combination of the allowable ranges associated with each of the plurality of types of synthetic fluorescence spectra, The measured fluorescence spectrum is determined to be the false fluorescence spectrum.
 本発明に係る蛍光スペクトルの識別方法によれば、第1識別値、第2識別値及び第3識別値の組み合わせに基づいて、複数種類の蛍光スペクトルに対する互いの蛍光スペクトルの判別及びそれらに対応する真の蛍光スペクトルに偽装された偽の蛍光スペクトルの判別が簡便かつ高精度に行える。 According to the method for identifying a fluorescence spectrum according to the present invention, based on the combination of the first identification value, the second identification value, and the third identification value, the discrimination of the mutual fluorescence spectra for a plurality of types of fluorescence spectra and corresponding to them. It is possible to easily and accurately discriminate a false fluorescence spectrum that is camouflaged as a true fluorescence spectrum.
第1蛍光スペクトルと第2蛍光スペクトルとの一例を定性的に表すスペクトルA spectrum that qualitatively represents an example of the first fluorescence spectrum and the second fluorescence spectrum 複数種類の蛍光スペクトルの組み合わせの一例を定性的に表すスペクトルA spectrum that qualitatively represents an example of a combination of multiple types of fluorescence spectra 複数種類の蛍光スペクトルの組み合わせの一例を重ねて表すスペクトルSpectrum that shows an example of a combination of multiple types of fluorescence spectra 情報判定及び真偽判定に用いる一組の識別値の算出方法の一例を説明するフローチャートA flowchart for explaining an example of a method for calculating a set of identification values used for information determination and authenticity determination 識別関数の一例を表すグラフGraph representing an example of an identification function 測定誤差による蛍光スペクトルの相対的な強度のズレを表すスペクトルSpectrum showing the relative intensity deviation of the fluorescence spectrum due to measurement error 複数種類の蛍光スペクトルに対する各種の識別値の差分値及びそれらの差分値の絶対値の総和を表すグラフA graph representing the sum of the difference values of various identification values and the absolute values of the difference values for multiple types of fluorescence spectra 測定誤差による第1蛍光スペクトル及び第2蛍光スペクトルの半値幅の変化に対する各種の識別値の差分値及びそれらの差分値の絶対値の総和の変化を表すグラフThe graph showing the change of the sum total of the difference value of various identification values with respect to the change of the half value width of the 1st fluorescence spectrum and the 2nd fluorescence spectrum by a measurement error, and the absolute value of those difference values 測定誤差による第1蛍光スペクトル及び第2蛍光スペクトルの主波長の変化に対する各種の識別値の差分値及びそれらの差分値の絶対値の総和の変化を表すグラフThe graph showing the change of the difference value of various identification values with respect to the change of the primary wavelength of the 1st fluorescence spectrum by the measurement error, and the 2nd fluorescence spectrum, and the sum total of the absolute value of those difference values 真の蛍光スペクトルの一例と狭幅偽装による偽の蛍光スペクトルの一例との相違を表す説明図Explanatory drawing showing the difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by narrow-fake camouflage 真の蛍光スペクトルの一例と広幅偽装による偽の蛍光スペクトルの一例との相違を表す説明図Explanatory drawing showing the difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by wide disguise 真の蛍光スペクトルの一例と位置及び強度の複合偽装による偽の蛍光スペクトルの一例との相違を表す説明図Explanatory drawing showing the difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum due to composite disguise of position and intensity 従来における複数種類の識別情報を構成する合成蛍光スペクトルの組み合わせの一例を定性的に表すスペクトルA spectrum that qualitatively represents an example of a combination of synthetic fluorescence spectra that make up multiple types of identification information in the past 従来における複数種類の合成蛍光スペクトルに対する偽装例を表すスペクトルA spectrum that represents a disguised example of multiple types of synthetic fluorescence spectra in the past
 本発明に係る蛍光スペクトルの識別方法について説明する。なお、蛍光スペクトルの識別方法の概念的な構成について説明した後に、その具体的な構成について図面を参照しながら説明する。 The fluorescence spectrum identification method according to the present invention will be described. In addition, after demonstrating the conceptual structure of the identification method of a fluorescence spectrum, the specific structure is demonstrated, referring drawings.
  〔概念的な構成〕
 本発明に係る蛍光スペクトルの識別方法は、第1蛍光材料に基づく第1蛍光スペクトルと第2蛍光材料に基づく第2蛍光スペクトルとの合成波形が前記第1蛍光材料と前記第2蛍光材料との配合の相違に応じて異なる複数種類の合成蛍光スペクトルを互いに判別し、かつ、前記複数種類の合成蛍光スペクトルのうち任意の1つの真の蛍光スペクトルに対して全体波形は異なるが前記第1蛍光スペクトルの主波長に対する強度及び前記第2蛍光スペクトルの主波長に対する強度は実質的に同一である偽の蛍光スペクトルと前記複数種類の合成蛍光スペクトルの各々とを判別する蛍光スペクトルの識別方法であって、
 前記第1蛍光材料及び前記第2蛍光材料の各々が半導体ナノ粒子の集合群であり、
 前記複数種類の合成蛍光スペクトルの各々を構成する前記第1蛍光スペクトルの一部と前記第2蛍光スペクトルの一部とが重なり、
 第1蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第1識別関数とし、第2蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第2識別関数とし、第1識別関数の最頻値と第2識別関数の最頻値との間の波長を最頻値とする単頭ピーク形状の分布関数を第3識別関数として、被識別対象物から計測された計測蛍光スペクトルに対して前記第1識別関数で重みを付けた前記計測蛍光スペクトルの第1加重平均値を算出し、前記計測蛍光スペクトルに対して前記第2識別関数で重みを付けた前記計測蛍光スペクトルの第2加重平均値を算出し、かつ、前記計測蛍光スペクトルに対して前記第3識別関数で重みを付けた前記計測蛍光スペクトルの第3加重平均値を算出し、
 前記第1加重平均値を前記第1加重平均値、前記第2加重平均値及び前記第3加重平均値の総和で規格化して前記計測蛍光スペクトルに対する第1識別値を算出し、前記第2加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第2識別値を算出し、かつ、前記第3加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第3識別値を算出し、
 前記第1識別値と前記第2識別値と前記第3識別値の組み合わせが、前記複数種類の合成蛍光スペクトルの各々に対応付けられた所定の前記第1識別値に対する許容範囲と所定の前記第2識別値に対する許容範囲と所定の前記第3識別値に対する許容範囲との許容範囲の組み合わせのいずれか1つの組み合わせに含まれる場合には、前記計測蛍光スペクトルは前記複数種類の合成蛍光スペクトルのうちの当該組み合わせに対応する合成蛍光スペクトルと同一であると判定し、前記複数種類の合成蛍光スペクトルの各々に対応付けられた前記許容範囲の組み合わせのいずれの組み合わせにも含まれない場合には、前記計測蛍光スペクトルは前記偽の蛍光スペクトルであると判定することを特徴としている。
 なお、この構成の識別方法を以下においては「識別方法A」とも称す。
[Conceptual composition]
In the fluorescent spectrum identifying method according to the present invention, a combined waveform of a first fluorescent spectrum based on a first fluorescent material and a second fluorescent spectrum based on a second fluorescent material is obtained by combining the first fluorescent material and the second fluorescent material. Different types of synthetic fluorescence spectra different from each other according to the difference in the composition are distinguished from each other, and the overall waveform is different from any one of the plurality of types of synthetic fluorescence spectra with respect to any one true fluorescence spectrum, but the first fluorescence spectrum A fluorescence spectrum identification method for discriminating between a false fluorescence spectrum and an intensity of the second fluorescence spectrum that are substantially the same with respect to the dominant wavelength of each of the plurality of types of synthetic fluorescence spectra,
Each of the first fluorescent material and the second fluorescent material is a group of semiconductor nanoparticles,
A part of the first fluorescence spectrum and a part of the second fluorescence spectrum constituting each of the plurality of types of synthetic fluorescence spectra overlap,
Distribution of a single-head peak shape having a mode near the dominant wavelength of the first fluorescence spectrum as a first discriminant function and a distribution function of a single-head peak shape having a mode near the dominant wavelength of the second fluorescence spectrum The function is the second discriminant function, and the single-peak distribution function having the mode between the mode value of the first discriminant function and the mode value of the second discriminant function is the third discriminant function. A first weighted average value of the measured fluorescence spectrum obtained by weighting the measured fluorescence spectrum measured from the identification target with the first identification function is calculated, and the second identification function is calculated with respect to the measured fluorescence spectrum. And calculating a second weighted average value of the measured fluorescence spectrum weighted with the third discriminating function, and calculating a third weighted average value of the measured fluorescence spectrum weighted with the third discrimination function with respect to the measured fluorescence spectrum And
The first weighted average value is normalized by the sum of the first weighted average value, the second weighted average value, and the third weighted average value to calculate a first identification value for the measured fluorescence spectrum, and the second weighted value Normalizing the average value with the sum to calculate a second identification value for the measured fluorescence spectrum, and normalizing the third weighted average value with the sum to calculate a third identification value for the measured fluorescence spectrum;
The combination of the first identification value, the second identification value, and the third identification value is an allowable range for the predetermined first identification value associated with each of the plurality of types of synthetic fluorescence spectra and a predetermined first value. When the measurement fluorescence spectrum is included in any one of the combinations of the tolerance range for the two identification values and the tolerance range for the predetermined third identification value, the measured fluorescence spectrum is one of the plurality of types of synthetic fluorescence spectra. Is determined to be the same as the synthetic fluorescence spectrum corresponding to the combination, and if it is not included in any combination of the allowable ranges associated with each of the plurality of types of synthetic fluorescence spectra, The measured fluorescence spectrum is determined to be the false fluorescence spectrum.
Hereinafter, the identification method of this configuration is also referred to as “identification method A”.
 ここで、「主波長」とは、蛍光材料に基づく蛍光スペクトルにおいて最大強度となる波長を意味している。「第1蛍光スペクトルの一部と第2蛍光スペクトルの一部とが重なる」とは、第1蛍光スペクトルの1/10幅(FWTM)のうち第1蛍光スペクトルの主波長よりも第2蛍光スペクトルの主波長側の部分幅と第2蛍光スペクトルの1/10幅(FWTM)のうち第2蛍光スペクトルの主波長よりも第1蛍光スペクトルの主波長側の部分幅との和が、第1蛍光スペクトルの主波長と第2蛍光スペクトルの主波長との間隔よりも大きいことを意味している。
 「半導体ナノ粒子」とは、粒径が100nm以下である粒子を意味している。
 「第1蛍光スペクトルの主波長の近傍」とは、第1蛍光スペクトルの9/10幅に対応する最短波長と最長波長との間の波長を意味し、「第2蛍光スペクトルの主波長の近傍」とは、第2蛍光スペクトルの9/10幅に対応する最短波長と最長波長との間の波長を意味している。「単頭ピーク形状の分布関数」とは、1箇所の上に凸の尖頭部分を含む形状の関数であって、その尖頭部分の最頻値(最大値)からの波長の変化に応じて単調に減少すると共に漸近的に「0」に収束する関数である。
Here, “main wavelength” means a wavelength having the maximum intensity in the fluorescence spectrum based on the fluorescent material. “A part of the first fluorescence spectrum and a part of the second fluorescence spectrum overlap” means that the second fluorescence spectrum is larger than the main wavelength of the first fluorescence spectrum within 1/10 width (FWTM) of the first fluorescence spectrum. The sum of the partial width on the principal wavelength side of the first fluorescence spectrum and the partial width on the dominant wavelength side of the first fluorescence spectrum with respect to the 1/10 width (FWTM) of the second fluorescence spectrum is the first fluorescence. It means that it is larger than the interval between the dominant wavelength of the spectrum and the dominant wavelength of the second fluorescence spectrum.
“Semiconductor nanoparticle” means a particle having a particle size of 100 nm or less.
“Near the main wavelength of the first fluorescence spectrum” means a wavelength between the shortest wavelength and the longest wavelength corresponding to the 9/10 width of the first fluorescence spectrum. "Means a wavelength between the shortest wavelength and the longest wavelength corresponding to the 9/10 width of the second fluorescence spectrum. “Distribution function of a single peak shape” is a function of a shape including a convex peak portion on one point, and according to the change in wavelength from the mode value (maximum value) of the peak portion. It is a function that decreases monotonically and asymptotically converges to “0”.
 上記の蛍光スペクトルの識別方法Aであれば、第1識別値及び第2識別値は、それぞれ、真の第1蛍光スペクトルの発光強度(第1蛍光材料の配合量)及び真の第2蛍光スペクトルの発光強度(第2蛍光材料の配合量)を良好に推定できる値となると共に、第1識別値、第2識別値及び第3識別値の各々が規格化によって第1蛍光スペクトル及び第2蛍光スペクトルの全体的な発光強度に依存せず、第1識別値、第2識別値及び第3識別値が、それぞれ、真の第1蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第1蛍光スペクトルの主波長の周辺における相違、真の第2蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第2蛍光スペクトルの主波長の周辺における相違、及び、真の第1蛍光スペクトルとその偽の蛍光スペクトルとの第1蛍光スペクトルの主波長と異なる波長の周辺の相違と真の第2蛍光スペクトルとその偽の蛍光スペクトルとの第2蛍光スペクトルの主波長と異なる波長の周辺の相違との双方の相違に応じて変化するために、第1識別値と第2識別値と第3識別値との組み合わせに基づいて、第1蛍光材料に基づく発光強度と第2蛍光材料に基づく発光強度の比が異なる複数種類の真の合成蛍光スペクトルを互いに高精度で判別できると共に、各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとを高精度かつ簡便に判別できる。 In the case of the above-described fluorescence spectrum identification method A, the first identification value and the second identification value are the emission intensity of the true first fluorescence spectrum (the blending amount of the first fluorescence material) and the true second fluorescence spectrum, respectively. The emission intensity (the amount of the second fluorescent material) can be estimated well, and the first identification value, the second identification value, and the third identification value are normalized so that the first fluorescence spectrum and the second fluorescence value are normalized. Regardless of the overall emission intensity of the spectrum, the first identification value, the second identification value, and the third identification value are respectively the first fluorescence of the true first fluorescence spectrum and the false fluorescence spectrum that is camouflaged thereto. The difference in the vicinity of the dominant wavelength of the spectrum, the difference in the vicinity of the dominant wavelength of the second fluorescence spectrum between the true second fluorescence spectrum and the false fluorescence spectrum camouflaged to it, and the true first fluorescence spectrum and its false firefly Both the difference between the spectrum and the wavelength of the first fluorescence spectrum different from the main wavelength and the difference between the true second fluorescence spectrum and its fake fluorescence spectrum around the second wavelength of the second fluorescence spectrum and the different wavelength In order to change according to the difference, the ratio of the emission intensity based on the first fluorescent material and the emission intensity based on the second fluorescent material is based on the combination of the first identification value, the second identification value, and the third identification value. Different types of true synthetic fluorescence spectra can be distinguished from each other with high accuracy, and various types of true synthetic fluorescence spectra and various types of false synthetic fluorescence spectra can be distinguished with high accuracy and simplicity.
 上記の蛍光スペクトルの識別方法Aにおいて、
 前記複数種類の合成蛍光スペクトルの各々が双頭ピーク形状である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法B」とも称す。
In the above-described fluorescence spectrum identification method A,
It is preferable that each of the plurality of types of synthetic fluorescence spectra has a double peak shape.
Hereinafter, the identification method of this configuration is also referred to as “identification method B”.
 ここで、「双頭ピーク形状」とは、合成蛍光スペクトルにおいて2箇所の上に凸の尖頭部分を含む形状を意味している。なお、合成蛍光スペクトルが双頭ピーク形状となる場合には、第1蛍光スペクトルの半値幅(FWHM)のうち第1蛍光スペクトルの主波長よりも第2蛍光スペクトルの主波長側の部分幅と第2蛍光スペクトルの半値幅(FWHM)のうち第2蛍光スペクトルの主波長よりも第1蛍光スペクトルの主波長側の部分幅との和は、第1蛍光スペクトルの主波長と第2蛍光スペクトルの主波長との間隔よりも小さくなる。 Here, “double-headed peak shape” means a shape including convex peak portions at two locations in the synthetic fluorescence spectrum. In the case where the combined fluorescence spectrum has a double-peak shape, the second half width (FWHM) of the first fluorescence spectrum and the second width of the second fluorescence spectrum on the side of the main wavelength of the second fluorescence spectrum with respect to the second wavelength. The sum of the full width at half maximum (FWHM) of the fluorescence spectrum and the partial width of the first fluorescence spectrum relative to the dominant wavelength of the second fluorescence spectrum is the dominant wavelength of the first fluorescence spectrum and the dominant wavelength of the second fluorescence spectrum. It becomes smaller than the interval.
 上記の識別方法Bであれば、各種の合成蛍光スペクトルが双頭ピーク形状となるように第1蛍光スペクトルの主波長と第2蛍光スペクトルの主波長とが所定の間隔以上離れているために、第1識別値における真の第2蛍光スペクトルからの寄与が良好に低減されて真の第1蛍光スペクトルの発光強度を更に高精度で推定できる値となると共に第2識別値における真の第1蛍光スペクトルからの寄与が良好に低減されて第2蛍光スペクトルの発光強度が更に良好に推定できる値となり、また、第1識別値、第2識別値及び第3識別値が、それぞれ、真の蛍光スペクトルと偽の蛍光スペクトルとの各種の相違を更に高精度で反映することになる。これによって、第1識別値と第2識別値と第3識別値との組み合わせに基づいて、複数種類の真の合成蛍光スペクトルを更に高精度で判別できると共に各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとを更に高精度で判別できる。 In the above identification method B, since the main wavelength of the first fluorescence spectrum and the main wavelength of the second fluorescence spectrum are separated by a predetermined distance or more so that various synthetic fluorescence spectra have a double-headed peak shape, The contribution from the true second fluorescence spectrum in one discriminating value is satisfactorily reduced so that the emission intensity of the true first fluorescence spectrum can be estimated with higher accuracy and the true first fluorescence spectrum in the second discriminating value. From which the emission intensity of the second fluorescence spectrum can be estimated more satisfactorily, and the first identification value, the second identification value, and the third identification value are the true fluorescence spectrum and the Various differences from the false fluorescence spectrum are reflected with higher accuracy. Thereby, based on the combination of the first identification value, the second identification value, and the third identification value, a plurality of types of true synthetic fluorescence spectra can be discriminated with higher accuracy, and various types of true synthetic fluorescence spectra and various types of A false synthetic fluorescence spectrum can be distinguished with higher accuracy.
 上記の蛍光スペクトルの識別方法A~Bにおいて、
 前記第3識別関数の最頻値は、前記第1蛍光スペクトルと前記第2蛍光スペクトルとが重なる波長領域内である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法C」とも称す。
In the above-described fluorescence spectrum identification methods A to B,
It is preferable that the mode value of the third discriminant function has a configuration in a wavelength region where the first fluorescence spectrum and the second fluorescence spectrum overlap.
Hereinafter, the identification method of this configuration is also referred to as “identification method C”.
 上記の識別方法Cであれば、第1蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの相違が大きい部分と、第2蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの相違が大きい部分とが重複するために、第3識別値がそれらの相違に応じて敏感に変化することとなり、各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとの判別精度が向上する。 In the above identification method C, a portion where the difference between the first fluorescence spectrum and the false fluorescence spectrum camouflaged by the first fluorescence spectrum is large, and a portion where the difference between the second fluorescence spectrum and the false fluorescence spectrum camouflaged by the second fluorescence spectrum are large Therefore, the third identification value changes sensitively according to the difference between them, and the discrimination accuracy between various true synthetic fluorescence spectra and various false synthetic fluorescence spectra is improved.
 上記の蛍光スペクトルの識別方法A~Cにおいて、
 前記第1識別関数、前記第2識別関数及び前記第3識別関数は並進対称な関数である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法D」とも称す。
In the above-described fluorescence spectrum identification methods A to C,
The first discriminant function, the second discriminant function, and the third discriminant function are preferably translationally symmetric functions.
In addition, the identification method of this structure is also called "the identification method D" below.
 上記の識別方法Dであれば、第1加重平均値、第2加重平均値及び第3加重平均値の算出が簡便に実行できると共に、第1識別値、第2識別値及び第3識別値における各種の加重平均値の重みを均一化できる。 With the identification method D described above, the first weighted average value, the second weighted average value, and the third weighted average value can be easily calculated, and the first identification value, the second identification value, and the third identification value The weights of various weighted average values can be made uniform.
 上記の蛍光スペクトルの識別方法A~Dにおいて、
 前記第1識別関数、前記第2識別関数及び前記第3識別関数の各々は、前記第1蛍光スペクトル及び前記第2蛍光スペクトルの近似形状である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法E」とも称す。
In the above fluorescence spectrum identification methods A to D,
Each of the first discriminant function, the second discriminant function, and the third discriminant function is preferably configured to have an approximate shape of the first fluorescence spectrum and the second fluorescence spectrum.
Hereinafter, the identification method of this configuration is also referred to as “identification method E”.
 ここで、「第1蛍光スペクトル及び第2蛍光スペクトルの近似形状」としては、例えば、第1蛍光スペクトルと実質的に同一の形状の関数、第1蛍光スペクトルの半値幅と同一の幅を半値幅とするガウス関数、第1蛍光スペクトルのピークフィッティングに基づくガウス関数、第2蛍光スペクトルと実質的に同一の形状の関数、第2蛍光スペクトルの半値幅と同一の幅を半値幅とするガウス関数、第2蛍光スペクトルのピークフィッティングに基づくガウス関数、第1蛍光スペクトルの半値幅と第2蛍光スペクトルの半値幅との平均値を半値幅とするガウス関数、ピークフィッティングに基づく第1蛍光スペクトルと第2蛍光スペクトルとの半値幅の平均値を半値幅とするガウス関数が挙げられる。 Here, as the “approximate shape of the first fluorescence spectrum and the second fluorescence spectrum”, for example, a function having substantially the same shape as the first fluorescence spectrum, a width that is the same as the half width of the first fluorescence spectrum is a half width. A Gaussian function based on the peak fitting of the first fluorescence spectrum, a function having substantially the same shape as the second fluorescence spectrum, a Gaussian function having a half-value width equal to the half-value width of the second fluorescence spectrum, A Gaussian function based on the peak fitting of the second fluorescence spectrum, a Gaussian function having an average value of the half width of the first fluorescence spectrum and the half width of the second fluorescence spectrum, and the first fluorescence spectrum and the second based on the peak fitting. An example is a Gaussian function in which the half value width is the average value of the half value width with the fluorescence spectrum.
 上記の識別方法Eであれば、第1識別値及び第2識別値が、真の第1蛍光スペクトルの発光強度と真の第2蛍光スペクトルの発光強度とを更に良好に推定できる値となると共に、第1識別値、第2識別値及び第3識別値が、それぞれ、第1蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの相違、真の第2蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第2蛍光スペクトルの相違、及び、それらの双方の相違を良好に反映させることができるために、複数種類の真の合成蛍光スペクトルに対する互いの判別精度や各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとの判別精度が更に向上する。 With the above-described identification method E, the first identification value and the second identification value are values that can more accurately estimate the emission intensity of the true first fluorescence spectrum and the emission intensity of the true second fluorescence spectrum. , The first identification value, the second identification value, and the third identification value are respectively the difference between the first fluorescence spectrum and the fake fluorescence spectrum camouflaged with it, the true second fluorescence spectrum and the fake fluorescence camouflaged with it. Since the difference between the second fluorescence spectrum and the difference between the two can be reflected well, the discrimination accuracy with respect to a plurality of types of true synthetic fluorescence spectra and various types of true synthetic fluorescence spectra The discrimination accuracy from various false synthetic fluorescence spectra is further improved.
 上記の蛍光スペクトルの識別方法A~Eにおいて、
 前記第1識別関数の最頻値が前記第1蛍光スペクトルの主波長と実質的に同一であり、前記第2識別関数の最頻値が前記第2蛍光スペクトルの主波長と実質的に同一であり、前記第3識別関数の最頻値が前記第1識別関数の最頻値と前記第2識別関数の最頻値との中間値と実質的に同一である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法F」とも称す。
In the above-described fluorescence spectrum identification methods A to E,
The mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum, and the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum. Preferably, the mode value of the third discriminant function is substantially the same as the intermediate value between the mode value of the first discriminant function and the mode value of the second discriminant function.
Hereinafter, the identification method having this configuration is also referred to as “identification method F”.
 ここで、「実質的に同一」とは、意図的には相違させないことを意味し、「実質的に同一」には、第1蛍光スペクトルや第2蛍光スペクトルの主波長と厳密に一致する場合に限らず、測定誤差等によって計測された第1蛍光スペクトルや計測された第2の蛍光スペクトルの主波長と厳密には一致しない場合を含意している。 Here, “substantially the same” means that they are not intentionally different, and “substantially the same” means a case that exactly matches the dominant wavelength of the first fluorescence spectrum or the second fluorescence spectrum. This is not limited to the case, and implies a case where it does not exactly match the dominant wavelength of the first fluorescence spectrum or the measured second fluorescence spectrum due to a measurement error or the like.
 上記の識別方法Fであれば、第1識別値及び第2識別値が、真の第1蛍光スペクトルの発光強度と真の第2蛍光スペクトルの発光強度とを更に良好に推定できる値となると共に、第1識別値が、第1蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第1蛍光スペクトルの主波長より短波長側及び長波長側の双方の相違を均等に反映し、第2識別値が、真の第2蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第2蛍光スペクトルの主波長より短波長側及び長波長側の双方の相違を均等に反映し、かつ、第3識別値が、第1蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第1蛍光スペクトルの主波長より第2蛍光スペクトルの主波長側の相違と第2蛍光スペクトルとそれに偽装された偽の蛍光スペクトルとの第2蛍光スペクトルの主波長より第1蛍光スペクトルの主波長側の相違とを均等に反映するために、複数種類の真の合成蛍光スペクトルに対する互いの判別精度や各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとの判別精度が更に向上する。 With the above-described identification method F, the first identification value and the second identification value are values that can better estimate the emission intensity of the true first fluorescence spectrum and the emission intensity of the true second fluorescence spectrum. The first identification value equally reflects the difference between the first wavelength and the longer wavelength side of the first fluorescence spectrum between the first fluorescence spectrum and the fake fluorescence spectrum camouflaged as the first fluorescence spectrum. The value equally reflects the difference between the main wavelength of the second fluorescence spectrum between the true second fluorescence spectrum and the fake fluorescence spectrum camouflaged with the true second fluorescence spectrum, and the third wavelength and the third identification. The difference in the main wavelength side of the second fluorescence spectrum from the main wavelength of the first fluorescence spectrum between the first fluorescence spectrum and the fake fluorescence spectrum camouflaged by the first fluorescence spectrum, and the second fluorescence spectrum and the fake fluorescence spectrum camouflaged by the second fluorescence spectrum When In order to uniformly reflect the difference in the primary wavelength of the first fluorescence spectrum from the dominant wavelength of the second fluorescence spectrum, each other's discrimination accuracy with respect to a plurality of types of true synthetic fluorescence spectra and various types of true synthetic fluorescence spectra and various types The discrimination accuracy from the false synthetic fluorescence spectrum is further improved.
 上記の蛍光スペクトルの識別方法A~Eにおいて、
 前記複数種類の合成蛍光スペクトルの各々は、前記第1蛍光スペクトルの主波長に対する前記第1蛍光スペクトルの強度と前記第2蛍光スペクトルの主波長に対する前記第2蛍光スペクトルの強度との和が実質的に一定である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法G」とも称す。
In the above-described fluorescence spectrum identification methods A to E,
Each of the plurality of types of synthetic fluorescence spectra is substantially the sum of the intensity of the first fluorescence spectrum with respect to the dominant wavelength of the first fluorescence spectrum and the intensity of the second fluorescence spectrum with respect to the dominant wavelength of the second fluorescence spectrum. It is preferable that the configuration is constant.
Hereinafter, the identification method of this configuration is also referred to as “identification method G”.
 上記の識別方法Gであれば、第1蛍光スペクトルの発光強度と第2蛍光スペクトルの発光強度との比を確実に異ならせることができる。複数種類の真の合成蛍光スペクトルの各々に対する第1加重平均値及び第2加重平均値の和が概ね一定となり、第1識別値及び第2識別値の各々が真の合成蛍光スペクトルと偽の合成蛍光スペクトルとの相違を敏感に反映する第3加重平均値に基づいて変化し、また、第3識別値がその第3加重平均値に概ね比例して変化するために、複数種類の真の合成蛍光スペクトルに対する互いの判別精度や各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとの判別精度が更に向上する。なお、複数種類の真の合成蛍光スペクトルの各々に対する第3識別値の分布範囲が小さくなるために、各種の真の合成蛍光スペクトルと各種の偽の合成蛍光スペクトルとを一括して判別することもできる。 With the above identification method G, the ratio between the emission intensity of the first fluorescence spectrum and the emission intensity of the second fluorescence spectrum can be reliably varied. The sum of the first weighted average value and the second weighted average value for each of a plurality of types of true synthetic fluorescence spectra is substantially constant, and each of the first discriminating value and the second discriminating value is a true synthetic fluorescence spectrum and a false synthesis. Since it changes based on the third weighted average value that sensitively reflects the difference from the fluorescence spectrum, and the third identification value changes approximately in proportion to the third weighted average value, multiple types of true synthesis The discrimination accuracy with respect to the fluorescence spectrum and the discrimination accuracy between various true synthetic fluorescence spectra and various false synthetic fluorescence spectra are further improved. In addition, since the distribution range of the third identification value with respect to each of a plurality of types of true synthetic fluorescence spectra is reduced, various types of true synthetic fluorescence spectra and various types of false synthetic fluorescence spectra may be collectively determined. it can.
 上記の蛍光スペクトルの識別方法Gにおいて、
 前記第1蛍光材料と前記第2蛍光材料とは、前記第1蛍光スペクトルの主波長と前記第2蛍光スペクトルの主波長との間の範囲における最も小さい前記複数種類の合成蛍光スペクトル間の強度差が最も小さくなるように選択されている構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法H」とも称す。
In the above fluorescence spectrum identification method G,
The first fluorescent material and the second fluorescent material have an intensity difference between the plurality of types of synthetic fluorescent spectra that is the smallest in a range between the dominant wavelength of the first fluorescent spectrum and the dominant wavelength of the second fluorescent spectrum. It is preferable that it is the structure selected so that may become the smallest.
Hereinafter, the identification method of this configuration is also referred to as “identification method H”.
 上記の識別方法Hであれば、複数種類の真の合成蛍光スペクトルの各々に対する第3識別値の分布範囲を小さくできるために、第1識別値、第2識別値及び第3識別値の各々に真の合成蛍光スペクトルと偽の合成蛍光スペクトルとの相違を敏感に反映させることができる。 With the above identification method H, since the distribution range of the third identification value for each of the plurality of types of true synthetic fluorescence spectra can be reduced, each of the first identification value, the second identification value, and the third identification value can be reduced. The difference between the true synthetic fluorescence spectrum and the false synthetic fluorescence spectrum can be reflected sensitively.
 上記の蛍光スペクトルの識別方法G~Hにおいて、
 前記第1識別関数の最頻値が第1蛍光スペクトルの主波長と実質的に同一であり、前記第2識別関数の最頻値が第2蛍光スペクトルの主波長と実質的に同一であり、前記第3識別関数の最頻値が前記複数種類の合成蛍光スペクトル間の強度差が最も小さい波長と実質的に同一である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法I」とも称す。
In the above-described fluorescence spectrum identification methods GH,
The mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum, and the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum; It is preferable that the mode value of the third discriminant function is substantially the same as the wavelength having the smallest intensity difference between the plurality of types of synthetic fluorescence spectra.
Hereinafter, the identification method of this configuration is also referred to as “identification method I”.
 上記の識別方法Iであれば、複数種類の真の合成蛍光スペクトルの各々に対する第3識別値の分布範囲が更に小さくなるために、第1識別値、第2識別値及び第3識別値の各々が、真の合成蛍光スペクトルと偽の合成蛍光スペクトルとの相違を更に敏感に反映することとなる。 With the above identification method I, since the distribution range of the third identification value for each of the plurality of types of true synthetic fluorescence spectra is further reduced, each of the first identification value, the second identification value, and the third identification value. However, the difference between the true synthetic fluorescence spectrum and the false synthetic fluorescence spectrum is reflected more sensitively.
 上記の蛍光スペクトルの識別方法G~Hにおいて、
 前記第1識別関数の最頻値が第1蛍光スペクトルの主波長と実質的に同一であり、前記第2識別関数の最頻値が第2蛍光スペクトルの主波長と実質的に同一であり、前記第3識別関数の最頻値が前記複数種類の合成蛍光スペクトルの各々に対する前記第3識別値間の最大差が最も小さい波長と実質的に同一である構成であることが好ましい。
 なお、この構成の識別方法を以下においては「識別方法J」とも称す。
In the above-described fluorescence spectrum identification methods GH,
The mode value of the first discrimination function is substantially the same as the dominant wavelength of the first fluorescence spectrum, and the mode value of the second discrimination function is substantially the same as the dominant wavelength of the second fluorescence spectrum; It is preferable that the mode value of the third discriminant function is substantially the same as the wavelength having the smallest maximum difference between the third discriminant values for each of the plurality of types of synthetic fluorescence spectra.
Hereinafter, the identification method of this configuration is also referred to as “identification method J”.
 上記の識別方法Jであれば、複数種類の真の合成蛍光スペクトルの各々に対する第3識別値の分布範囲が最も小さくなるために、第1識別値、第2識別値及び第3識別値の各々が、真の合成蛍光スペクトルと偽の合成蛍光スペクトルとの相違を更に敏感に反映することとなる。 With the above identification method J, since the distribution range of the third identification value for each of the plurality of types of true synthetic fluorescence spectra is the smallest, each of the first identification value, the second identification value, and the third identification value. However, the difference between the true synthetic fluorescence spectrum and the false synthetic fluorescence spectrum is reflected more sensitively.
  〔具体的な構成〕
 本発明に係る具体的な構成について図面を参照しながら詳細に説明する。なお、一具体例を挙げて説明するが、本発明の主旨から逸脱しない限り適宜に設計が変更されてもよい。
[Specific configuration]
A specific configuration according to the present invention will be described in detail with reference to the drawings. In addition, although a specific example is given and demonstrated, a design may be changed suitably, unless it deviates from the main point of this invention.
 真の物品には、図1に示されたように、識別情報を構成する2種類の蛍光材料として、主波長がλa(=540nm)である第1のZAIS系ナノ粒子の集合群(〔第1蛍光材料〕の一種)と、主波長がλb(=757nm)であり、第1のZAIS系ナノ粒子と組成比が異なる第2のZAIS系ナノ粒子の集合群(〔第2蛍光材料〕の一種)とが含まれている。第1のZAIS系ナノ粒子の集合群に基づく蛍光スペクトル(〔第1蛍光スペクトル〕の一種)a・fa(λ)~a・fa(λ)の半値幅(半値全幅;FWHM)がWa(≒130nm)であり、第2のZAIS系ナノ粒子の集合群に基づく蛍光スペクトル(〔第2蛍光スペクトル〕の一種)b・fb(λ)~b・fb(λ)の半値幅がWb(≒130nm)である。なお、蛍光スペクトルa・fa(λ)~a・fa(λ)及び蛍光スペクトルb・fb(λ)~b・fb(λ)は、波長λa及び波長λbを中心とし半値幅を「130」とするガウス分布に概ね従った波形で特徴付けられるために、それらは便宜的にガウス関数で表されている。 In the true article, as shown in FIG. 1, as the two types of fluorescent materials constituting the identification information, a set group of first ZAIS-based nanoparticles having the main wavelength λa (= 540 nm) ([first 1 fluorescent material] and a group of second ZAIS nanoparticles having a composition ratio different from that of the first ZAIS nanoparticle (λ2 (= 757 nm)) ([second fluorescent material]). A kind). The half-width (full width at half maximum; FWHM) of a fluorescence spectrum (a kind of [first fluorescence spectrum]) a 1 · fa (λ) to a 9 · fa (λ) based on a group of first ZAIS nanoparticles is Wa (≈130 nm), and the half-value width of the fluorescence spectrum (a kind of [second fluorescence spectrum]) b 1 · fb (λ) to b 9 · fb (λ) based on the group of second ZAIS nanoparticles is Wb (≈130 nm). The fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) have a half-value width centered on the wavelength λa and the wavelength λb. In order to be characterized by a waveform that generally follows a Gaussian distribution of “130”, they are conveniently represented by a Gaussian function.
 第1のZAIS系ナノ粒子の集合群の配合量は、その蛍光スペクトルa・fa(λ)~a・fa(λ)に対する波長λaにおける強度[任意単位]が「0.2(=a)」~「1.8(=a)」の0.2間隔の9段階のいずれかの強度となるように調整され、また、第2のZAIS系ナノ粒子の集合群の配合量は、その蛍光スペクトルb・fb(λ)~b・fb(λ))に対する波長λbにおける強度[任意単位]が「0.2(=b)」~「1.8(=b)」の0.2間隔の9段階のいずれかの強度となるように調整されている。但し、第2のZAIS系ナノ粒子の集合群の配合量は、第1のZAIS系ナノ粒子の集合群の配合量に依存して一意的に決定される。具体的には、第1のZAIS系ナノ粒子の集合群の配合量と第2のZAIS系ナノ粒子の集合群の配合量とは、図2(A)~図2(I)に示されたように、蛍光スペクトルa・fa(λ)~a・fa(λ)に対する波長λaにおける強度と蛍光スペクトルb・fb(λ)~b・fb(λ)に対する波長λbにおける強度との和が一定(=2.0)となるように、つまり、[0.2(=a),1.8(=b)]、[0.4(=a),1.6(=b)]、[0.6(=a),1.4(=b)]、[0.8(=a),1.2(=b)]、[1.0(=a),1.0(=b)]、[1.2(=a),0.8(=b)]、[1.4(=a),0.6(=b)]、[1.6(=a),0.4(=b)]及び[1.8(=a),0.2(=b)]の9通りの組み合わせのいずれかとなるように選択される。これによって、それらの組み合わせに応じて合成された9種類の蛍光スペクトル(〔複数種類の合成蛍光スペクトル〕の一種)F(λ)(=a・fa(λ)+b・fb(λ))~F(λ)(=a・fa(λ)+b・fb(λ))がそれぞれ識別情報値「1」~「9」に対応する識別情報を表すこととなる。なお、蛍光スペクトルa・fa(λ)~a・fa(λ)と蛍光スペクトルb・fb(λ)~b・fb(λ)とは、実質的に同一の形状(fa(λ)=fb(λ))であるために、それらの組み合わせは、第1のZAIS系ナノ粒子の集合群に基づく蛍光スペクトルの全発光強度と第2のZAIS系ナノ粒子の集合群に基づく蛍光スペクトルの全発光強度との組み合わせと等価である。なお、後述するように、本形態においては、それらの異なる組み合わせに対して同一のスケールで条件を満たす必要はなく、つまり、a~aの個別の大きさやb~bの個別の大きさには依存せず、それらの各組み合わせにおいて組み合わせ比が一定であればよい。例えば、[0.2,1.8]、[0.8,3.2]、[1.8,4.2]、[3.2,4.8]、[5.0,5.0]、[7.2,4.8]、[9.8,4.2]、[12.8,3.2]及び[16.2,1.8]の組み合わせが挙げられる。 The compounding amount of the first ZAIS nanoparticle group is such that the intensity [arbitrary unit] at the wavelength λa with respect to the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) is “0.2 (= a 1 ) ”to“ 1.8 (= a 9 ) ”and adjusted so as to have any one of nine strengths at 0.2 intervals, and the amount of the aggregate group of the second ZAIS-based nanoparticles is The intensity [arbitrary unit] at the wavelength λb with respect to the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ)) is “0.2 (= b 1 )” to “1.8 (= b 9 ). It has been adjusted so as to be any one of 9 levels of 0.2 intervals. However, the amount of the aggregate group of the second ZAIS-based nanoparticles is uniquely determined depending on the amount of the aggregate group of the first ZAIS-based nanoparticles. Specifically, the blending amount of the first ZAIS nanoparticle assembly group and the second ZAIS nanoparticle assembly group are shown in FIGS. 2 (A) to 2 (I). Thus, the intensity at the wavelength λa for the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) and the intensity at the wavelength λb for the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) The sum is constant (= 2.0), that is, [0.2 (= a 1 ), 1.8 (= b 9 )], [0.4 (= a 2 ), 1.6 ( = B 8 )], [0.6 (= a 3 ), 1.4 (= b 7 )], [0.8 (= a 4 ), 1.2 (= b 6 )], [1.0 (= A 5 ), 1.0 (= b 5 )], [1.2 (= a 6 ), 0.8 (= b 4 )], [1.4 (= a 7 ), 0.6 ( = B 3 )], [1.6 (= a 8 ), 0.4 ( = B 2 )] and [1.8 (= a 9 ), 0.2 (= b 1 )]. Thus, nine types of fluorescence spectra (one kind of [plural types of synthetic fluorescence spectra]) F 1 (λ) (= a 1 · fa (λ) + b 9 · fb (λ) synthesized according to the combination thereof. ) To F 9 (λ) (= a 9 · fa (λ) + b 1 · fb (λ)) represent the identification information corresponding to the identification information values “1” to “9”, respectively. Note that the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) have substantially the same shape (fa (λ ) = Fb (λ)), the combination of them is the total emission intensity of the fluorescence spectrum based on the first ZAIS-based nanoparticle aggregate group and the fluorescence spectrum based on the second ZAIS-based nanoparticle aggregate group. It is equivalent to the combination with the total emission intensity. As will be described later, in this embodiment, it is not necessary to satisfy the conditions on the same scale for these different combinations, that is, individual sizes of a 1 to a 9 and individual sizes of b 1 to b 9 . It does not depend on the size, and the combination ratio may be constant in each combination. For example, [0.2, 1.8], [0.8, 3.2], [1.8, 4.2], [3.2, 4.8], [5.0, 5.0 ], [7.2, 4.8], [9.8, 4.2], [12.8, 3.2] and [16.2, 1.8].
 第1のZAIS系ナノ粒子の集合群と第2のZAIS系ナノ粒子の集合群とは、主波長の異なる任意の2種類のZAIS系ナノ粒子の集合群のうち、それらの半値幅や1/10幅(最大強度の1/10の強度に対応する全幅;FWTM)を考慮して、それらに基づく各種の合成蛍光スペクトルが双頭ピーク形状となると共にそれらに基づく2種類の蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)が少なくとも一部で重なるように選択されている。具体的には、蛍光スペクトルa・fa(λ)~a・fa(λ)と蛍光スペクトルb・fb(λ)~b・fb(λ)との主波長の間隔(λb-λa)が、蛍光スペクトルa・fa(λ)~a・fa(λ)の半値幅Waにおける主波長(波長λa)よりも長波長側の部分幅Walと蛍光スペクトルb・fb(λ)~b・fb(λ)の半値幅Wbにおける主波長(波長λb)よりも短波長側の部分幅Wbsとの和よりも少なくとも大きく、それらの合成蛍光スペクトルF1(λ)~F9(λ)が実質的に2種類の主波長(波長λa,波長λb)における各ピークから構成される双頭ピーク形状となるように選択されている。また、主波長の間隔(λb-λa)が、蛍光スペクトルa・fa(λ)~a・fa(λ)の1/10幅Wa’における主波長(波長λa)より長波長側の部分幅Wal’と、蛍光スペクトルb・fb(λ)~b・fb(λ)の1/10幅Wb’における主波長(波長λb)より短波長側の部分幅Wbs’との和よりも小さくなるように選択されている。また、本形態においては、主波長の間隔(λb-λa)が、それらの部分幅Wal’,Wbs’のうち大きい方の部分幅よりも大きくなるように選択されている。なお、図1~図3のように、2種類のZAIS系ナノ粒子の集合群に基づく蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)が、同一幅のガウス関数等の各主波長(波長λa,波長λb)を中心として左右対称であって波長方向に並進対称な分布関数で良好に表される場合には、Wa/2=Was=Wal=Wb/2=Wbs=Wblを満たし、かつ、Wa’/2=Was’=Wal’=Wb’/2=Wbs’=Wbl’を満たす。 The aggregate group of the first ZAIS nanoparticles and the aggregate group of the second ZAIS nanoparticles are a group of arbitrary two types of ZAIS nanoparticles having different main wavelengths, and their half-value width or 1 / Considering 10 widths (full width corresponding to 1/10 of the maximum intensity; FWTM), various synthetic fluorescence spectra based on them have a double-headed peak shape, and two types of fluorescence spectra a 1 · fa based on them (Λ) to a 9 · fa (λ) and b 1 · fb (λ) to b 9 · fb (λ) are selected so as to overlap at least partially. Specifically, the main wavelength interval (λb−λa) between the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ). ) Is a partial width Wal on the longer wavelength side than the dominant wavelength (wavelength λa) in the half-value width Wa of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ). Are at least larger than the sum of the partial width Wbs on the shorter wavelength side than the dominant wavelength (wavelength λb) in the half-value width Wb of b 9 · fb (λ), and their combined fluorescence spectra F1 (λ) to F9 (λ) Are selected so as to have a double-headed peak shape substantially composed of peaks at two types of principal wavelengths (wavelength λa and wavelength λb). The main wavelength interval (λb−λa) is a portion on the longer wavelength side than the main wavelength (wavelength λa) in the 1/10 width Wa ′ of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ). More than the sum of the width Wal ′ and the partial width Wbs ′ on the shorter wavelength side than the main wavelength (wavelength λb) in the 1/10 width Wb ′ of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) Selected to be smaller. In this embodiment, the main wavelength interval (λb−λa) is selected to be larger than the larger partial width of the partial widths Wal ′ and Wbs ′. As shown in FIGS. 1 to 3, fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ), b 1 · fb (λ) to b based on a group of two types of ZAIS nanoparticles are used. When 9 · fb (λ) is well represented by a distribution function that is bilaterally symmetric about each principal wavelength (wavelength λa, wavelength λb) such as a Gaussian function of the same width and that is translationally symmetric in the wavelength direction Wa / 2 = Was = Wal = Wb / 2 = Wbs = Wbl, and Wa ′ / 2 = Was ′ = Wal ′ = Wb ′ / 2 = Wbs ′ = Wbl ′.
 また、第1のZAIS系ナノ粒子の集合群と第2のZAIS系ナノ粒子の集合群とは、図3に示されたように、主波長の異なる任意の2種類のZAIS系ナノ粒子の集合群のうち、それらに基づく9種類の合成蛍光スペクトルに対する任意の波長における強度差(任意の波長における9種類の合成蛍光スペクトルうちの最大強度と最小強度との差)がそれらの2つの主波長間におい最も小さくなる波長を収斂波長とし、その収斂波長における強度差を収斂強度差として、収斂強度差が最も小さくなるように選択されている。なお、図3のように、2種類のZAIS系ナノ粒子の集合群に基づく蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)を同一幅のガウス関数等の主波長を中心として左右対称であって波長方向に並進対称な分布関数で表した場合には、収斂波長はそれらの2つの主波長の中間波長(=(λa+λb)/2)となり、収斂強度差は「0」となる。第1のZAIS系ナノ粒子の集合群と第2のZAIS系ナノ粒子の集合群とに基づく2種類の蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)が左右対称かつ並進対称な分布を示さない場合であってもそれらの対称性のズレは大きくないために、収斂波長は蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)との中間波長の近傍の波長となり、収斂強度差は「0」より大きくなるが第1のZAIS系ナノ粒子の集合群と第2のZAIS系ナノ粒子の集合群との配合を上記の条件を満たすように変化させない場合よりも大幅に小さい値となる。 In addition, as shown in FIG. 3, the first ZAIS nanoparticle aggregate group and the second ZAIS nanoparticle aggregate group are an aggregate of any two types of ZAIS nanoparticles having different main wavelengths. The intensity difference at an arbitrary wavelength (the difference between the maximum intensity and the minimum intensity among the nine kinds of synthetic fluorescence spectra at an arbitrary wavelength) with respect to the nine types of synthetic fluorescence spectra based on them is between the two main wavelengths. The wavelength with the smallest odor is defined as the convergence wavelength, and the intensity difference at the convergence wavelength is defined as the convergence intensity difference, so that the convergence intensity difference is selected to be the smallest. As shown in FIG. 3, fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ), b 1 · fb (λ) to b 9 · fb based on a group of two types of ZAIS nanoparticles. When (λ) is expressed by a distribution function that is bilaterally symmetric about the dominant wavelength such as a Gaussian function having the same width and is translationally symmetric in the wavelength direction, the convergent wavelength is the intermediate wavelength of these two dominant wavelengths (= (Λa + λb) / 2), and the convergence intensity difference is “0”. Two types of fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ), b 1 · fb (based on a group of first ZAIS nanoparticles and a group of second ZAIS nanoparticles) Even if λ) to b 9 · fb (λ) do not show a bilaterally symmetric and translational distribution, the deviation of the symmetry is not large, so the convergence wavelength is the fluorescence spectrum a 1 · fa (λ). Is a wavelength in the vicinity of an intermediate wavelength between the main wavelength (wavelength λa) of a 9 · fa (λ) and the main wavelength (wavelength λb) of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ), Convergence intensity difference is larger than “0”, but is much larger than the case where the combination of the first ZAIS nanoparticle aggregate group and the second ZAIS nanoparticle aggregate group is not changed so as to satisfy the above condition. Small value.
 上記のように第1のZAIS系ナノ粒子の集合群と第2のZAIS系ナノ粒子の集合群とを含有させることによって識別情報が書き込まれた物品に対する識別情報の判定方法について説明する。図4は、情報判定及び真偽判定に用いる一組の識別値の算出方法の一例を説明するフローチャートである。また、図5は、識別関数の一例を表すグラフである。 A method for determining identification information for an article in which identification information has been written by including a group of first ZAIS nanoparticles and a group of second ZAIS nanoparticles as described above will be described. FIG. 4 is a flowchart illustrating an example of a method for calculating a set of identification values used for information determination and authenticity determination. FIG. 5 is a graph showing an example of the discrimination function.
 まず、物品に含まれる各種のZAIS系ナノ粒子を励起できる励起光の照射によって、蛍光スペクトル(〔計測蛍光スペクトル〕の一種)Fm(λ)が計測される(「蛍光スペクトル計測処理」S1)。 First, a fluorescence spectrum (a kind of [measured fluorescence spectrum]) Fm (λ) is measured by irradiation with excitation light that can excite various ZAIS-based nanoparticles contained in the article (“fluorescence spectrum measurement process” S1).
 計測された蛍光スペクトルFm(λ)に対して所定の3種類の識別関数に基づいて重みを変化させた3種類の加重平均値が算出される(「加重平均値算出処理」S2)。具体的には、図5に示されたように、蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)を最頻値(中心)とし、蛍光スペクトルa・fa(λ)~a・fa(λ)の半値幅Waと実質的に同一の幅を半値幅Wα(=Wa)とするガウス関数(〔第1識別関数〕の一種)hα(λ)を重み関数として適用した下記数式1に示される数値演算によって、加重平均値α(〔第1加重平均値〕の一種)が算出される。また、蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)を最頻値(中心)とし、蛍光スペクトルb・fb(λ)~b・fb(λ)の半値幅Wbと実質的に同一の幅を半値幅Wβ(=Wb)とする第2のガウス関数(〔第2識別関数〕の一種)hβ(λ)を重み関数として適用した下記数式2に示される数値演算によって、加重平均値β(〔第2加重平均値〕の一種)が算出される。更に、蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長と蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長との中間波長((λa+λb)/2)を最頻値とし、蛍光スペクトルa・fa(λ)~a・fa(λ)の半値幅Wa又は蛍光スペクトルb・fb(λ)~b・fb(λ)の半値幅Wbと実質的に同一の幅を半値幅Wγとする第3のガウス関数(〔第3識別関数〕の一種)hγ(λ)を重み関数として適用した下記数式3に示される数値演算によって、加重平均値γ(〔第3加重平均値〕の一種)が算出される。 Three types of weighted average values are calculated by changing the weights based on predetermined three types of discriminant functions for the measured fluorescence spectrum Fm (λ) (“weighted average value calculation process” S2). Specifically, as shown in FIG. 5, the dominant wavelength (wavelength λa) of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) is set to the mode (center), and the fluorescence spectrum a Gaussian function (a kind of [first discriminant function]) hα (λ) having a half-value width Wα (= Wa) substantially the same as the half-value width Wa of 1 · fa (λ) to a 9 · fa (λ) ) Is applied as a weighting function to calculate a weighted average value α (a kind of [first weighted average value]). Further, the dominant wavelength (wavelength λb) of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) is set to the mode value (center), and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb ( The following formula using a second Gaussian function (a kind of [second discriminant function]) hβ (λ) as a weighting function with a half-width Wβ (= Wb) substantially the same as the half-value width Wb of λ) A weighted average value β (a kind of [second weighted average value]) is calculated by the numerical calculation shown in FIG. Further, an intermediate wavelength ((λa + λb) between the dominant wavelength of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the dominant wavelength of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ). ) / 2) is the mode value, and the half width Wa of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) or the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) By a numerical operation represented by the following Equation 3 in which a third Gaussian function (a kind of [third discriminant function]) hγ (λ) having a width substantially the same as the half-value width Wb as a weight function is applied. The weighted average value γ (a kind of [third weighted average value]) is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 次に、算出された加重平均値α、加重平均値β及び加重平均値γに基づいて、3種類の識別値が算出される(「識別値算出処理」S3)。具体的には、下記数式4で示されるように、加重平均値αを加重平均値α、加重平均値β及び加重平均値γの総和(α+β+γ)で除算して識別値X(〔第1識別値〕の一種)を算出し、同様に、下記数式5で示されるように、加重平均値βを総和(α+β+γ)で除算して識別値Y(〔第2識別値〕の一種)を算出し、また同様に、下記数式6で示されるように、加重平均値γを総和(α+β+γ)で除算して識別値Z(〔第3識別値〕の一種)を算出する。 Next, three types of identification values are calculated based on the calculated weighted average value α, weighted average value β, and weighted average value γ (“identification value calculation process” S3). Specifically, as shown in Equation 4 below, the weighted average value α is divided by the sum of the weighted average value α, the weighted average value β, and the weighted average value γ (α + β + γ) to obtain an identification value X ([first identification Similarly, as shown in Equation 5 below, the weighted average value β is divided by the sum (α + β + γ) to calculate the identification value Y (a type of [second identification value]). Similarly, as shown in the following Equation 6, the weighted average value γ is divided by the total sum (α + β + γ) to calculate the identification value Z (a kind of [third identification value]).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、識別値X、識別値Y及び識別値Zの組み合わせと、予め9種類の合成蛍光スペクトルF(λ)~F(λ)の各々に対して算出され、識別値X、識別値Y及び識別値Zの各々に対する許容範囲を決定するためデータテーブルとに基づいて、物品に書き込まれている識別情報の真偽及び識別情報値の判定が行われる(「識別情報・真偽判定処理」S4)。なお、データテーブルには、識別値Xに対する許容範囲を決める中央値X~X及びその許容誤差範囲δと、識別値Yに対する許容範囲を決定するための中央値Y~Y及びその許容誤差範囲δと、識別値Zに対する許容範囲を決定するための中央値Z~Z及びその許容誤差範囲δとが含まれている。 Next, a combination of the identification value X, the identification value Y, and the identification value Z and the nine types of synthetic fluorescence spectra F 1 (λ) to F 9 (λ) are calculated in advance, Based on the data table to determine the allowable range for each of Y and the identification value Z, the authenticity of the identification information written in the article and the determination of the identification information value are performed ("identification information / authentication determination process"). "S4). The data table includes median values X 1 to X 9 that determine an allowable range for the identification value X and an allowable error range δ X, and median values Y 1 to Y 9 for determining an allowable range for the identification value Y and The allowable error range δ Y , the median values Z 1 to Z 9 for determining the allowable range for the identification value Z, and the allowable error range δ Z are included.
 ここで、識別値X、識別値Y及び識別値Zの各々に対する許容範囲について説明する。計測される蛍光スペクトルFm(λ)は、蛍光スペクトルF(λ)~F(λ)に対して、測定誤差によって、相対的な強度のズレ、ピーク波長のズレ及びピーク幅のズレが生じることがある。図6は、蛍光スペクトルの相対的な強度のズレを表すスペクトルである。なお、図6には、識別情報値6に対応する識別情報が書き込まれた物品に対して計測された蛍光スペクトルFm’(λ),Fm”(λ)と共に蛍光スペクトルF(λ)が示されている。図6に示されたように、蛍光スペクトルF(λ)に対して相対的な強度が小さくなるようにズレが生じて蛍光スペクトルFm’(λ)が計測されたり、蛍光スペクトルF(λ)に対して相対的な強度が大きくなるようにズレが生じて蛍光スペクトルFm”(λ)が計測されたりしたとしても、識別値X、識別値Y及び識別値Zの各々が、数式4~数式6に示されたように規格化されていることによって、識別値X、識別値Y及び識別値Zの各々に対して実質的にそのズレに起因する影響は及ばない。 Here, an allowable range for each of the identification value X, the identification value Y, and the identification value Z will be described. The measured fluorescence spectrum Fm (λ) has a relative intensity shift, a peak wavelength shift, and a peak width shift due to measurement errors with respect to the fluorescence spectra F 1 (λ) to F 9 (λ). Sometimes. FIG. 6 is a spectrum showing a relative intensity shift of the fluorescence spectrum. FIG. 6 shows the fluorescence spectrum F 6 (λ) together with the fluorescence spectra Fm ′ (λ) and Fm ″ (λ) measured for the article in which the identification information corresponding to the identification information value 6 is written. As shown in Fig. 6, the fluorescence spectrum Fm '(λ) is measured by causing a deviation so that the relative intensity becomes small with respect to the fluorescence spectrum F 6 (λ), or the fluorescence spectrum. Even if the fluorescence spectrum Fm ″ (λ) is measured such that the relative intensity with respect to F 6 (λ) increases and the fluorescence spectrum Fm ″ (λ) is measured, each of the identification value X, the identification value Y, and the identification value Z is By being standardized as shown in Equations 4 to 6, the identification value X, the identification value Y, and the identification value Z are not substantially affected by the deviation.
 一方、ピーク波長のズレ及びピーク幅のズレが生じた場合には、識別値X、識別値Y及び識別値Zの各々に対してそのズレに起因する影響が及ぶこととなるために、このようなズレを考慮して、識別値X、識別値Y及び識別値Zの各々に対する許容範囲が決められている。これによって、真の識別情報が書き込まれているにも関らず偽の識別情報であると判定されることが抑制される。識別値X、識別値Y及び識別値Zの各々に対する具体的な中央値X~X,Y~Y,Z~Z及び許容誤差範囲δ,δ,δについて説明する。なお、以下においては、蛍光スペクトルa・fa(λ)~a・fa(λ)、蛍光スペクトルb・fb(λ)~b・fb(λ)がガウス関数である場合についてのシミュレーション結果に基づいて説明する。 On the other hand, when a shift in peak wavelength and a shift in peak width occur, the discriminating value X, the discriminating value Y, and the discriminating value Z are affected by the discrepancy. In consideration of misalignment, an allowable range for each of the identification value X, the identification value Y, and the identification value Z is determined. As a result, it is suppressed that the identification information is false even though the true identification information is written. Specific median values X 1 to X 9 , Y 1 to Y 9 , Z 1 to Z 9 and allowable error ranges δ X , δ Y , and δ Z for each of the identification value X, the identification value Y, and the identification value Z will be described. To do. In the following, the simulation is performed in the case where the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) are Gaussian functions. It demonstrates based on a result.
 下記の表1は、複数種類の合成蛍光スペクトルF(λ)~F(λ)に対する各種の識別値、各種の識別値の差分値及びそれらの差分値の絶対値の総和(=|ΔX|+|ΔY|+|ΔZ|;表中の「SUM」)を表している。また、図7は、複数種類の合成蛍光スペクトルF(λ)~F(λ)に対する各種の識別値の差分値及びそれらの差分値の絶対値の総和を表すグラフである。図7において、識別値Xの差分値ΔXが菱形印で表され、識別値Yの差分値ΔYが三角印で表され、識別値Zの差分値ΔZが四角印で表され、差分値ΔX、ΔY及びΔZの絶対値の総和(図中の「SUM」)が×印で表されている。なお、後述する図8及び図9についても同様である。 Table 1 below shows various identification values for a plurality of types of synthetic fluorescence spectra F 1 (λ) to F 9 (λ), a difference value between the various identification values, and a sum of absolute values of the difference values (= | ΔX | + | ΔY | + | ΔZ |; “SUM” in the table). FIG. 7 is a graph showing the sum of the difference values of various identification values and the absolute values of the difference values for a plurality of types of synthetic fluorescence spectra F 1 (λ) to F 9 (λ). In FIG. 7, the difference value ΔX of the identification value X is represented by a diamond mark, the difference value ΔY of the identification value Y is represented by a triangle mark, the difference value ΔZ of the identification value Z is represented by a square mark, and the difference value ΔX, The sum of the absolute values of ΔY and ΔZ (“SUM” in the figure) is represented by a cross. The same applies to FIGS. 8 and 9 described later.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び図7に示されたように、識別値Xに対する中央値X~Xは、情報識別値の増加に応じて概ね「0.07」ずつ一様に増加し、識別値Yに対する中央値Y~Yは、情報識別値の増加に応じて概ね「0.07」ずつ一様に減少し、識別値Zに対する中央値Z~Zは、識別情報値に関らず一定である。また、識別値X、識別値Y及び識別値Zに対する差分値の絶対値の総和は、情報識別値の基準値「6」からの増加及び減少に応じて概ね「0.14」ずつ一様に増加する。なお、表1及び図7には、半値幅Wa及び半値幅Wbが130nmであり、識別関数の半値幅も130nmである場合のみについて示されているが、他の組み合わせであっても、変化量は相違するものの、中央値X~X、中央値Y~Y及び中央値Z~Zは表1及び図7に示された場合と実質的に同一の傾向を示す。また、実際の蛍光スペクトルa・fa(λ)~a・fa(λ)及び蛍光スペクトルb・fb(λ)~b・fb(λ)が厳密なガウス関数で表されない場合であっても概ねガウス関数に類似する形状であれば定性的に同一の傾向を示す。したがって、識別値X、識別値Y及び識別値Zの各々に対する中央値X~X,Y~Y,Z~Zは、表1に示された各種の識別値と同一の値に設定される。 As shown in Table 1 and FIG. 7, the median values X 1 to X 9 with respect to the identification value X increase uniformly by “0.07” in accordance with the increase of the information identification value, The median values Y 1 to Y 9 are uniformly reduced by “0.07” in accordance with the increase of the information identification value, and the median values Z 1 to Z 9 with respect to the identification value Z are independent of the identification information value. It is constant. Further, the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z is substantially uniform by “0.14” in accordance with the increase and decrease of the information identification value from the reference value “6”. To increase. In FIG. 1 and FIG. 7, only the case where the half-value width Wa and the half-value width Wb are 130 nm and the half-value width of the discriminant function is also 130 nm is shown. Are different, but the median values X 1 to X 9 , median values Y 1 to Y 9, and median values Z 1 to Z 9 show substantially the same tendency as those shown in Table 1 and FIG. In addition, the actual fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) are not expressed by a strict Gaussian function. However, if the shape is almost similar to a Gaussian function, it shows the same tendency qualitatively. Therefore, the median values X 1 to X 9 , Y 1 to Y 9 , and Z 1 to Z 9 for each of the identification value X, the identification value Y, and the identification value Z are the same as the various identification values shown in Table 1. Set to a value.
 下記の表2は、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の半値幅Wa,Wbの変化に対する各種の識別値、各種の識別値の差分値及びそれらの差分値の絶対値の総和を表している。また、図8は、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の半値幅の変化に対する各種の識別値の差分値及びそれらの差分値の絶対値の総和の変化を表すグラフである。 Table 2 below shows various identification values, differences between various identification values, and differences between the half-value widths Wa and Wb of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ). Represents the sum of absolute values. Further, FIG. 8 shows changes in the difference values of various identification values and the sum of absolute values of the difference values with respect to changes in the half-value width of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ). It is a graph showing.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2及び図8に示されたように、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の半値幅Wa,Wbの増加に応じて、識別値Xの値は単調に減少し、識別値Yの値は単調に減少し、識別値Zの値は単調に増加する。逆に、半値幅Wa,Wbの減少に応じて、識別値Xの値は単調に増加し、識別値Yの値は単調に増加し、識別値Zの値は単調に減少する。また、識別値X、識別値Y及び識別値Zに対する差分値の絶対値の総和は、半値幅変化量の絶対値の増加に応じて増加する。なお、表2及び図8には、情報識別値6の場合のみについて示されているが、他の識別情報値1~5,7~9についても実質的に同一の傾向を示す。また、実際の蛍光スペクトルa・fa(λ)~a・fa(λ)及び蛍光スペクトルb・fb(λ)~b・fb(λ)が厳密なガウス関数で表されない場合であっても概ねガウス関数に類似する形状であれば定性的に同一の傾向を示す。 As shown in Table 2 and FIG. 8, the discriminant value X is monotonous as the half-value widths Wa and Wb of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ) increase. The identification value Y decreases monotonically, and the identification value Z increases monotonously. Conversely, as the half-value widths Wa and Wb decrease, the value of the identification value X increases monotonously, the value of the identification value Y increases monotonously, and the value of the identification value Z decreases monotonously. In addition, the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z increases as the absolute value of the full width at half maximum increases. Although only the case of the information identification value 6 is shown in Table 2 and FIG. 8, the other identification information values 1 to 5 and 7 to 9 show substantially the same tendency. In addition, the actual fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) are not expressed by a strict Gaussian function. However, if the shape is almost similar to a Gaussian function, it shows the same tendency qualitatively.
 下記の表3は、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の主波長の変化(ピークシフト)に対する各種の識別値、各種の識別値の差分値及びそれらの差分値の絶対値の総和を表している。また、図9は、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の主波長の変化に対する各種の識別値の差分値及びそれらの差分値の絶対値の総和の変化を表すグラフである。 Table 3 below shows various identification values with respect to changes (peak shifts) of the main wavelengths of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ), and the difference values of the various identification values and their values. It represents the sum of absolute values of difference values. FIG. 9 shows the change in the difference value of various identification values and the sum of the absolute values of the difference values with respect to the change in the main wavelength of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ). It is a graph showing.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3及び図9に示されたように、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の主波長の長波長側へのシフト(主波長変化量の増加)に応じて、識別値Xの値は単調に増加し、識別値Yの値は一旦増加した後に単調に減少し、識別値Zの値は単調に減少する。また、蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の主波長の短波長側へのシフト(主波長変化量の減少)に応じて、識別値Xの値は一旦減少した後に単調に増加し、識別値Yの値は単調に減少し、識別値Zの値は単調に増加する。主波長変化量の変化において、識別値Yは、主波長の長波長側へのシフトにおける識別値Yの最大増加量が0.006程度であって大幅に増加することはなく、また、識別値Xは、主波長の短波長側へのシフトにおける識別値Xの最大減少量は0.012程度であって大幅に減少することはない。また、識別値X、識別値Y及び識別値Zに対する差分値の絶対値の総和は、主波長変化量の絶対値の増加に応じて単調に増加する。なお、表3及び図9には、情報識別値6の場合のみについて示されているが、他の情報識別値1~5,7~9についても実質的に同一の傾向を示す。また、実際の蛍光スペクトルa・fa(λ)~a・fa(λ)及び蛍光スペクトルb・fb(λ)~b・fb(λ)が厳密なガウス関数で表されない場合であっても概ねガウス関数に類似する形状であれば定性的に同一の傾向を示す。 As shown in Table 3 and FIG. 9, the main wavelength of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ) are shifted to the longer wavelength side (increase in the main wavelength change amount). Accordingly, the value of the identification value X increases monotonously, the value of the identification value Y increases once, then monotonously decreases, and the value of the identification value Z decreases monotonously. In addition, according to the shift of the main wavelength of the fluorescence spectrum a 6 · fa (λ) and the fluorescence spectrum b 4 · fb (λ) to the short wavelength side (decrease in the change in the main wavelength), the value of the identification value X is temporarily After the decrease, the value monotonously increases, the value of the identification value Y monotonously decreases, and the value of the identification value Z monotonously increases. In the change of the main wavelength change amount, the identification value Y does not increase significantly because the maximum increase amount of the identification value Y in the shift of the main wavelength to the long wavelength side is about 0.006. In X, the maximum reduction amount of the identification value X in the shift of the dominant wavelength toward the short wavelength side is about 0.012, and does not decrease significantly. In addition, the sum of the absolute values of the difference values with respect to the identification value X, the identification value Y, and the identification value Z increases monotonously as the absolute value of the main wavelength change amount increases. Although only the information identification value 6 is shown in Table 3 and FIG. 9, the other information identification values 1 to 5 and 7 to 9 show substantially the same tendency. In addition, the actual fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) are not expressed by a strict Gaussian function. However, if the shape is almost similar to a Gaussian function, it shows the same tendency qualitatively.
 測定誤差に基づく半値幅の変化は、蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)の5%程度であり、測定誤差に基づくピークシフト(主波長の計測位置の変化)は、10nm程度である。それらの測定誤差と共にそれらが複合する場合や識別情報値の相違に基づく微少な差異を考慮したとしても、識別値Xの測定誤差は「±0.02」未満であり、識別値Yの測定誤差は「±0.02」未満であり,識別値Zの測定誤差は「±0.03」未満である。なお、実際の蛍光スペクトルa・fa(λ)~a・fa(λ)及び蛍光スペクトルb・fb(λ)~b・fb(λ)は厳密なガウス関数で表されないが概ねガウス関数に類似する形状であるためにそれらの測定誤差は概ね同一である。したがって、識別値Xに対する許容誤差範囲δ、識別値Yに対する許容誤差範囲δ及び識別値Zに対する許容誤差範囲δは、それぞれ、「0.02」、「0.02」及び「0.03」に設定されている。 The change in the half width based on the measurement error is about 5% of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ), b 1 · fb (λ) to b 9 · fb (λ), The peak shift based on the measurement error (change in the measurement position of the main wavelength) is about 10 nm. Even when these measurement errors are combined with the measurement error or the slight difference based on the difference in the identification information value, the measurement error of the identification value X is less than “± 0.02”. Is less than “± 0.02”, and the measurement error of the identification value Z is less than “± 0.03”. Although the actual fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) are not expressed by exact Gaussian functions, they are generally Gaussian. Because of the shape similar to the function, their measurement errors are almost the same. Therefore, the allowable error range [delta] X for the identified value X, the allowable error range [delta] Z for tolerance [delta] Y and identification value Z for the identified value Y, respectively, "0.02", "0.02" and "0. 03 ".
 識別値X、識別値Y及び識別値Zの組み合わせが、[X±δ,Y±δ,Z±δ]で規定される許容範囲内であれば、真の識別情報であると判定されると共に情報値が「1」であると判定される。同様に、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内、[X±δ,Y±δ,Z±δ]で規定される許容範囲内及び[X±δ,Y±δ,Z±δ]で規定される許容範囲内であれば、真の識別情報であると判定されると共に情報値がそれぞれ「2」、「3」、「4」、「5」、「6」、「7」、「8」、「9」であると判定される。これによって、各種の識別情報値に応じた識別値Xの範囲及び識別値Yの範囲が互いに重複しないために、複数種類の識別情報が確実に判別される。更に、数式4~数式6に示されたように蛍光スペクトルの計測における強度変化に依存しないように識別値X及び識別値Yが規格化されているために、識別値Xの範囲及び識別値Yの範囲を狭く設定できることとなり、複数種類の識別情報が高精度で判別される。また、識別値Zを考慮することによって更に判別精度が向上する。 If the combination of the identification value X, the identification value Y, and the identification value Z is within the allowable range defined by [X 1 ± δ X , Y 1 ± δ Y , Z 1 ± δ Z ], it is true identification information. It is determined that the information value is “1”. Similarly, within the allowable range defined by [X 2 ± δ X , Y 2 ± δ Y , Z 2 ± δ Z ], [X 3 ± δ X , Y 3 ± δ Y , Z 3 ± δ Z ] Within an allowable range defined by [X 4 ± δ X , Y 4 ± δ Y , Z 4 ± δ Z ], [X 5 ± δ X , Y 5 ± δ Y , Z 5 ± [X 7 ± δ X , Y 7 ± δ Y ], within the allowable range defined by [δ Z ], within the allowable range defined by [X 6 ± δ X , Y 6 ± δ Y , Z 6 ± δ Z ] , Z 7 ± δ Z ], within the allowable range defined by [X 8 ± δ X , Y 8 ± δ Y , Z 8 ± δ Z ] and [X 9 ± δ X , Y 9 ± δ Y , Z 9 ± δ Z ]], it is determined to be true identification information and the information values are “2”, “3”, “4”, “ 5 ”,“ 6 ”,“ 7 ”,“ 8 ”,“ 9 ” It is determined. Thereby, since the range of the identification value X and the range of the identification value Y according to various types of identification information values do not overlap each other, a plurality of types of identification information are reliably determined. Further, since the identification value X and the identification value Y are standardized so as not to depend on the intensity change in the measurement of the fluorescence spectrum as shown in the equations 4 to 6, the range of the identification value X and the identification value Y Can be set narrow, and a plurality of types of identification information are discriminated with high accuracy. Further, the discrimination accuracy is further improved by taking the discrimination value Z into consideration.
 一方、識別値X、識別値Y及び識別値Zの組み合わせが、[X±δ,Y±δ,Z±δ](i=1~9)のいずれの範囲内でもなければ、偽の識別情報であると判定される。これによって、9種類の識別情報値(「1」~「9」)のいずれかに対応する真の蛍光スペクトル(a・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ))が偽装された場合には、その偽装の蛍光スペクトルが9種類の真の蛍光スペクトルのいずれとも異なることが高精度で判別される。 On the other hand, the identification value X, the combination of the identification value Y and identification value Z is not even within any range of [X i ± δ X, Y i ± δ Y, Z i ± δ Z] (i = 1 ~ 9) For example, it is determined to be false identification information. As a result, the true fluorescence spectra (a 1 · fa (λ) to a 9 · fa (λ), b 1 · fb () corresponding to any of the nine types of identification information values (“1” to “9”). When λ) to b 9 · fb (λ)) are camouflaged, it is determined with high accuracy that the camouflaged fluorescence spectrum is different from any of the nine types of true fluorescence spectra.
 ここで、蛍光スペクトルの真偽判別について詳細に説明する。図10は、真の蛍光スペクトルの一例と狭幅偽装による偽の蛍光スペクトルの一例との相違を表す説明図であり、図11は、真の蛍光スペクトルの一例と広幅偽装による偽の蛍光スペクトルの一例との相違を表す説明図であり、図12は、真の蛍光スペクトルの一例と位置及び強度の複合偽装による偽の蛍光スペクトルの一例との相違を表す説明図である。なお、図10(A)、図11(A)及び図12(A)の各々は、蛍光材料A及び蛍光材料Bに基づく真の蛍光スペクトルとそれに偽装された蛍光スペクトルとの全体的な相違を表し、図10(B)、図11(B)及び図12(B)の各々は、蛍光材料Aに基づく蛍光スペクトルとそれに偽装された蛍光スペクトルとの部分的な相違を表し、図10(C)、図11(C)及び図12(C)の各々は、蛍光材料Bに基づく蛍光スペクトルとそれに偽装された蛍光スペクトルとの部分的な相違を表している。また、図10~図12において、真の蛍光スペクトルに対して加重平均値α、加重平均値β及び加重平均値γが減少するように作用する部分には右上がりのハッチが施され、一方、それらが増加する方向に作用する部分には右下がりのハッチが施されている。 Here, the authenticity determination of the fluorescence spectrum will be described in detail. FIG. 10 is an explanatory diagram showing a difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by narrow impersonation, and FIG. 11 shows an example of a true fluorescence spectrum and a false fluorescence spectrum by wide impersonation. FIG. 12 is an explanatory diagram showing a difference from an example, and FIG. 12 is an explanatory diagram showing a difference between an example of a true fluorescence spectrum and an example of a false fluorescence spectrum by a combined disguise of position and intensity. In addition, each of FIG. 10 (A), FIG. 11 (A), and FIG. 12 (A) shows the overall difference between the true fluorescence spectrum based on the fluorescent material A and the fluorescent material B and the disguise fluorescence spectrum. 10 (B), FIG. 11 (B), and FIG. 12 (B) each represent a partial difference between the fluorescence spectrum based on the fluorescent material A and the fluorescence spectrum camouflaged thereto, and FIG. 11C and FIG. 12C each show a partial difference between a fluorescence spectrum based on the fluorescent material B and a fluorescence spectrum camouflaged by the fluorescence spectrum. Further, in FIGS. 10 to 12, the portion that acts so that the weighted average value α, the weighted average value β, and the weighted average value γ decrease with respect to the true fluorescence spectrum is given a right-upward hatch, The parts that act in the direction in which they increase are hatched downwardly to the right.
 狭幅偽装の場合には、加重平均値α及び識別値Xは、図10(A)及び図10(B)に示されたように、偽の蛍光スペクトルa・fna(λ)と真の蛍光スペクトルa・fa(λ)との半値幅の相違に基づく差異を反映することとなる。同様に、加重平均値β及び識別値Yは、図10(A)及び図10(C)に示されたように、偽の蛍光スペクトルb・fna(λ)と真の蛍光スペクトルb・fb(λ)との半値幅の相違に基づく差異を反映することとなる。また、加重平均値γ及び識別値Zは、図10(A)~図10(C)に示されたように、偽の蛍光スペクトルFn(λ)と真の蛍光スペクトルF(λ)との差異、詳細には、真の蛍光スペクトルa・fa(λ)の主波長(波長λa)よりも長波長側における偽の蛍光スペクトルa・fna(λ)と真の蛍光スペクトルa・fa(λ)との半値幅の相違に基づく差異及び真の蛍光スペクトルb・fb(λ)の主波長(波長λb)よりも短波長側における偽の蛍光スペクトルb・fnb(λ)と真の蛍光スペクトルb・fb(λ)との半値幅の相違に基づく差異に起因する複合的な差異を反映することとなる。具体的には、狭幅偽装の場合には、加重平均値α、加重平均値β及び加重平均値γの各々は半値幅の減少に応じて単調に減少するが、上記の表2に示されたように、識別値X及び識別値Yは数式4及び数式5に示された規格化によって単調に増加し、識別値Zは数式6に示された規格化によって単調に減少する。 In the case of narrow-fake camouflage, the weighted average value α and the identification value X are the true fluorescence spectrum a 6 · fna (λ) and true as shown in FIG. 10 (A) and FIG. 10 (B). The difference based on the difference in half-value width from the fluorescence spectrum a 6 · fa (λ) is reflected. Similarly, as shown in FIG. 10A and FIG. 10C, the weighted average value β and the identification value Y are obtained by comparing the false fluorescence spectrum b 4 · fna (λ) and the true fluorescence spectrum b 4 · The difference based on the difference in half width from fb (λ) is reflected. Further, as shown in FIGS. 10A to 10C, the weighted average value γ and the identification value Z are expressed as a false fluorescence spectrum Fn 6 (λ) and a true fluorescence spectrum F 6 (λ). differences, in particular, the true fluorescence spectra a 6 · the true fluorescence spectra a 6 · fa (λ) of the main wavelength than (wavelength [lambda] a) false in the long wavelength side fluorescence spectra a 6 · fna (λ) The difference based on the difference in half width from fa (λ) and the false fluorescence spectrum b 4 · fnb (λ) on the shorter wavelength side than the main wavelength (wavelength λb) of the true fluorescence spectrum b 4 · fb (λ) The composite difference resulting from the difference based on the difference in half-value width from the true fluorescence spectrum b 4 · fb (λ) is reflected. Specifically, in the case of narrow camouflage, each of the weighted average value α, the weighted average value β, and the weighted average value γ decreases monotonously according to the decrease in the half width, but is shown in Table 2 above. As described above, the identification value X and the identification value Y increase monotonously by the normalization shown in Equations 4 and 5, and the identification value Z decreases monotonously by the normalization shown in Equation 6.
 また、広幅偽装の場合には、加重平均値α及び識別値Xは、図11(A)及び図11(B)に示されたように、偽の蛍光スペクトルa・fwa(λ)と真の蛍光スペクトルa・fa(λ)との半値幅の相違に基づく差異を反映することとなる。同様に、加重平均値β及び識別値Yは、図11(A)及び図11(C)に示されたように、偽の蛍光スペクトルb・fwa(λ)と真の蛍光スペクトルb・fb(λ)との半値幅の相違に基づく差異を反映することとなる。また、加重平均値γ及び識別値Zは、図11(A)~図11(C)に示されたように、広幅偽装による偽の蛍光スペクトルFw(λ)の場合には偽の蛍光スペクトルFw(λ)と真の蛍光スペクトルF(λ)との差異、詳細には、真の蛍光スペクトルa・fa(λ)の主波長(波長λa)よりも長波長側における偽の蛍光スペクトルa・fwa(λ)と真の蛍光スペクトルa・fa(λ)との半値幅の相違に基づく差異及び真の蛍光スペクトルb・fb(λ)の主波長(波長λb)よりも短波長側における偽の蛍光スペクトルb・fwb(λ)と真の蛍光スペクトルb・fb(λ)との半値幅の相違に基づく差異に起因する複合的な差異を反映することとなる。具体的には、広幅偽装の場合には、加重平均値α、加重平均値β及び加重平均値γの各々は半値幅の増加に応じて単調に増加するが、上記の表2に示されたように、識別値X及び識別値Yは数式4及び数式5に示された規格化によって単調に減少し、識別値Zは数式6に示された規格化によって単調に増加する。 Further, in the case of wide camouflage, the weighted average value α and the identification value X are expressed as a false fluorescence spectrum a 6 · fwa (λ) and true as shown in FIG. 11 (A) and FIG. 11 (B). This reflects the difference based on the difference in half-value width from the fluorescence spectrum a 6 · fa (λ). Similarly, as shown in FIG. 11A and FIG. 11C, the weighted average value β and the identification value Y are obtained by comparing the false fluorescence spectrum b 4 · fwa (λ) and the true fluorescence spectrum b 4 · The difference based on the difference in half width from fb (λ) is reflected. In addition, as shown in FIGS. 11A to 11C, the weighted average value γ and the identification value Z are the false fluorescence spectrum in the case of the false fluorescence spectrum Fw 6 (λ) by the wide disguise. The difference between Fw 6 (λ) and the true fluorescence spectrum F 6 (λ), more specifically, false fluorescence on the longer wavelength side than the main wavelength (wavelength λa) of the true fluorescence spectrum a 6 · fa (λ) More than the main wavelength (wavelength λb) of the difference between the spectrum a 6 · fwa (λ) and the true fluorescence spectrum a 6 · fa (λ) based on the difference in half width and the true fluorescence spectrum b 4 · fb (λ) The composite difference resulting from the difference based on the difference in half width between the false fluorescence spectrum b 4 · fwb (λ) and the true fluorescence spectrum b 4 · fb (λ) on the short wavelength side is reflected. Specifically, in the case of wide camouflage, each of the weighted average value α, the weighted average value β, and the weighted average value γ increases monotonously according to the increase in the half width, as shown in Table 2 above. As described above, the identification value X and the identification value Y are monotonously decreased by the normalization shown in Equations 4 and 5, and the identification value Z is monotonously increased by the normalization shown in Equation 6.
 したがって、狭幅偽装や広幅偽装の場合の偽の蛍光スペクトルFw(λ)に対する識別値X、識別値Y及び識別値Zの少なくとも1つの識別値が真の蛍光スペクトルF(λ)に対する許容範囲外となった場合には、真の蛍光スペクトルF(λ)ではないと判断できる。なお、本形態では、表2に示されたように、偽の蛍光スペクトルFn(λ),Fw(λ)を構成する蛍光スペクトルa・fna(λ),a・fwa(λ)及び蛍光スペクトルb・fnb(λ),b・fwb(λ)の半値幅と真の蛍光スペクトルを構成する蛍光スペクトルa・fa(λ)及び蛍光スペクトルb・fb(λ)の半値幅との差が30nm以上である場合には確実に偽装の蛍光スペクトルであると判断される。 Accordingly, at least one identification value of the identification value X, the identification value Y, and the identification value Z for the false fluorescence spectrum F 6 w (λ) in the case of narrow-width camouflage or wide-width camouflage corresponds to the true fluorescence spectrum F 6 (λ). If it falls outside the allowable range, it can be determined that the fluorescence spectrum is not true F 6 (λ). In the present embodiment, as shown in Table 2, the fluorescence spectra a 6 .fna (λ) and a 6 · fwa () constituting the false fluorescence spectra F 6 n (λ) and F 6 w (λ) are used. λ) and fluorescence spectra b 4 · fnb (λ), b 4 · fwb (λ) and the fluorescence spectrum a 6 · fa (λ) and fluorescence spectrum b 4 · fb (λ) constituting the true fluorescence spectrum When the difference from the half-value width is 30 nm or more, it is determined that the fluorescence spectrum is impersonated.
 識別情報値が「6」である蛍光スペクトルF(λ)に対する狭幅偽装や広幅偽装の偽の蛍光スペクトルFn(λ),Fw(λ)の場合には、その識別値Xが識別情報値の異なる蛍光スペクトル、例えば、蛍光スペクトルF(λ)や蛍光スペクトルF(λ)に対する識別値Xの許容範囲内の値となったり、その識別値Yが識別情報値の異なる蛍光スペクトルに対する識別値Yの許容範囲内の値となったりする場合がある。しかし、表1に示されたように識別情報値の変化に伴って識別値Xと識別値Yとは逆極性で変化するのに対して、つまり、識別値Xが増加した場合には識別値Yは減少し、一方、識別値Xが減少した場合には識別値Yは増加するのに対して、狭幅偽装及び広幅偽装の場合には識別値Xと識別値Yとは同極性で変化するために、識別値X及び識別値Yの一方が他の識別情報値に対応する許容範囲内となったとしても他方は必ず他の識別情報値に対応する許容範囲外となる。したがって、蛍光スペクトルF(λ)に対する狭幅偽装や広幅偽装による偽の蛍光スペクトルFn(λ),Fw(λ)が他のいずれの真の蛍光スペクトルF(λ)~F(λ),F(λ)~F(λ)と判断されることもない。なお、識別情報値が「6」である蛍光スペクトルF(λ)に対する狭幅偽装や広幅偽装の場合について説明したが、他の識別情報値である蛍光スペクトルF(λ)~F(λ),F(λ)~F(λ)に対する狭幅偽装や広幅偽装の場合についても同様である。 In the case of fake fluorescence spectra F 6 n (λ) and F 6 w (λ) of narrow or wide camouflage with respect to the fluorescence spectrum F 6 (λ) whose identification information value is “6”, the discrimination value X Becomes a value within the permissible range of the identification value X for the fluorescence spectra having different identification information values, for example, the fluorescence spectrum F 7 (λ) and the fluorescence spectrum F 5 (λ), or the identification value Y is different from the identification information value. In some cases, the value is within the allowable range of the identification value Y for the fluorescence spectrum. However, as shown in Table 1, the identification value X and the identification value Y change with opposite polarities as the identification information value changes, that is, the identification value X increases when the identification value X increases. While Y decreases, the identification value Y increases when the identification value X decreases, while the identification value X and the identification value Y change in the same polarity in the case of narrow and wide camouflage. Therefore, even if one of the identification value X and the identification value Y is within the allowable range corresponding to the other identification information value, the other is always outside the allowable range corresponding to the other identification information value. Therefore, the fluorescence spectrum F 6 (lambda) fluorescence spectra F 6 n (λ) false by narrow impersonation and wide impersonation for, F 6 w (λ) of any of the other true fluorescence spectrum F 1 (λ) ~ F 5 (λ) and F 7 (λ) to F 9 (λ) are not determined. In addition, although the case of the narrow-width impersonation or the wide-width impersonation with respect to the fluorescence spectrum F 6 (λ) having the identification information value “6” has been described, the fluorescence spectra F 1 (λ) to F 5 ( The same applies to the case of narrow-width camouflage and wide-camera camouflage for λ), F 7 (λ) to F 9 (λ).
 また、複合偽装による偽の蛍光スペクトルa’・fsa(λ)の場合には、図12(A)及び図12(B)に示されたように、加重平均値αは、主に、偽の蛍光スペクトルa’・fsa(λ)と真の蛍光スペクトルa・fa(λ)との主波長の位置、発光強度及び半値幅の相違に基づく差異を反映することとなる。同様に、図12(A)及び図12(C)に示されたように、加重平均値βは、主に、偽の蛍光スペクトルb’・fsa(λ)と真の蛍光スペクトルb・fb(λ)との主波長の位置、発光強度及び半値幅の相違に基づく差異を反映することとなる。また、加重平均値γは、図12(A)~図12(C)に示されたように、偽の蛍光スペクトルa’・fsa(λ)と真の蛍光スペクトルa・fa(λ)との主波長の位置、発光強度及び半値幅の相違及び偽の蛍光スペクトルb’・fsb(λ)と真の蛍光スペクトルb・fb(λ)との主波長の位置、発光強度及び半値幅の相違に基づく差異に起因する複合的な差異を反映することとなる。複合偽装の場合には、蛍光材料の選択やその配合量の選択の多様性に基づいて識別値X、識別値Y及び識別値Zは多様に変化することとなるが、偽の蛍光スペクトルFs(λ)に対する識別値X、識別値Y及び識別値Zの組み合わせが真の蛍光スペクトルF(λ)~F(λ)に対する識別値X、識別値Y及び識別値Zの許容範囲の組み合わせのいずれかに含まれる場合は極めて稀であるために、それらの蛍光スペクトルを良好に判別できる。 In addition, in the case of a fake fluorescence spectrum a 6 ′ · fsa (λ) due to composite camouflage, as shown in FIGS. 12 (A) and 12 (B), the weighted average value α is mainly false. The difference of the fluorescence spectrum a 6 ′ · fsa (λ) and the true fluorescence spectrum a 6 · fa (λ) based on the difference in the position of the main wavelength, the emission intensity, and the half width is reflected. Similarly, as shown in FIG. 12A and FIG. 12C, the weighted average value β is mainly composed of the false fluorescence spectrum b 4 ′ · fsa (λ) and the true fluorescence spectrum b 4. It reflects the difference based on the difference of the main wavelength position, emission intensity and half-value width from fb (λ). In addition, as shown in FIGS. 12A to 12C, the weighted average value γ is a false fluorescence spectrum a 6 ′ · fsa (λ) and a true fluorescence spectrum a 6 · fa (λ). The position of the main wavelength, the difference in emission intensity and half width, and the position of the main wavelength, emission intensity and half of the false fluorescence spectrum b 4 ′ · fsb (λ) and the true fluorescence spectrum b 4 · fb (λ) It will reflect complex differences resulting from differences based on price range differences. In the case of compound camouflage, the identification value X, the identification value Y, and the identification value Z change variously based on the selection of the fluorescent material and the selection of the blending amount, but the false fluorescence spectrum Fs 6 A combination of the identification value X, the identification value Y, and the identification value Z for the fluorescence spectrum F 1 (λ) to F 9 (λ) in which the combination of the identification value X, the identification value Y, and the identification value Z with respect to (λ) is true. Since it is extremely rare to be included in any of the above, their fluorescence spectra can be distinguished well.
 上述のように、本形態の蛍光スペクトルの識別方法によれば、識別値X、識別値Y及び識別値Zの組み合わせに基づいて、識別情報値の異なる真の蛍光スペクトルを互いに判別できると共に、各種の真の蛍光スペクトルと狭幅偽装や広幅偽装や複合偽装による偽の蛍光スペクトルとを判別できる。 As described above, according to the fluorescence spectrum identification method of the present embodiment, true fluorescence spectra having different identification information values can be distinguished from each other based on the combination of the identification value X, the identification value Y, and the identification value Z. It is possible to discriminate between the true fluorescence spectrum and the false fluorescence spectrum due to the narrow camouflage, the wide camouflage or the composite camouflage.
 また、本形態の蛍光スペクトルの識別方法によれば、識別値X及び識別値Yは、それぞれ、蛍光スペクトルa・fa(λ)~a・fa(λ)の発光強度及び蛍光スペクトルb・fb(λ)~b・fb(λ)の発光強度を良好に推定できる値となると共に、識別値X、識別値Y及び識別値Zの各々が数式4~数式6に示された規格化によって蛍光スペクトルF(λ)~F(λ)の全体的な発光強度に依存せず、識別値X、識別値Y及び識別値Zが、それぞれ、蛍光スペクトルa・fa(λ)~a・fa(λ)とそれに偽装された偽の蛍光スペクトルとの波長λaの周辺における相違、蛍光スペクトルb・fb(λ)~b・fb(λ)とそれに偽装された偽の蛍光スペクトルとの波長λbの周辺における相違、及び、蛍光スペクトルa・fa(λ)~a・fa(λ)とその偽の蛍光スペクトルとの波長λaと異なる波長λγの周辺の相違と真の蛍光スペクトルb・fb(λ)~b・fb(λ)とその偽の蛍光スペクトルとの波長λbと異なる波長λγの周辺の相違との双方の相違に応じて変化するために、識別値Xと識別値Yと識別値Zとの組み合わせに基づいて、第1のZAIS系ナノ粒子の集合群に基づく発光強度と第2のZAIS系ナノ粒子の集合群に基づく発光強度の比が異なる9種類の蛍光スペクトルF(λ)~F(λ)を互いに高精度で判別できると共に、蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとを高精度かつ簡便に判別できる。また、識別値X、識別値Y及び識別値Zの各々が蛍光スペクトルF(λ)~F(λ)の全体的な発光強度に依存しないために、識別情報を含有する物品が小さくてZAIS系ナノ粒子を励起するための励起光の照射面積が十分に確保できない場合や励起光を照射する平坦領域を確保できない場合であっても各種の判別を高精度で実行できる。 Further, according to the fluorescence spectrum identification method of the present embodiment, the identification value X and the identification value Y are the emission intensity and the fluorescence spectrum b 1 of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ), respectively. Standards in which the emission values of fb (λ) to b 9 · fb (λ) can be satisfactorily estimated and the identification value X, the identification value Y, and the identification value Z are expressed by Equations 4 to 6, respectively. does not depend on the overall emission intensity of the fluorescence spectrum F 1 (λ) ~ F 9 (λ) by reduction, identification value X, identification value Y and identification value Z is, respectively, fluorescence spectra a 1 · fa (λ) ~ A 9 · fa (λ) and the fake fluorescence spectrum camouflaged with it in the vicinity of the wavelength λa, the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) and the fake camouflaged with it The difference in the vicinity of the wavelength λb from the fluorescence spectrum, and the fluorescence spectrum Vector a 1 · fa (λ) ~ a 9 · fa (λ) and the fluorescence spectrum of the difference and the true near the wavelength λa different wavelengths λγ the fluorescence spectrum of the false b 1 · fb (λ) ~ b 9 · In order to change according to both the difference between the wavelength λb of fb (λ) and its fake fluorescence spectrum and the difference between the different wavelengths λγ, the combination of the identification value X, the identification value Y, and the identification value Z Based on these, nine types of fluorescence spectra F 1 (λ) to F 9 (where the ratio of the emission intensity based on the group of first ZAIS nanoparticles and the intensity of the emission based on the second group of ZAIS nanoparticles differ) λ) can be discriminated with high accuracy from each other, and the fluorescence spectra F 1 (λ) to F 9 (λ) and the fake fluorescence spectrum camouflaged with any of them can be discriminated with high accuracy and simplicity. In addition, since each of the identification value X, the identification value Y, and the identification value Z does not depend on the overall emission intensity of the fluorescence spectra F 1 (λ) to F 9 (λ), the article containing the identification information is small. Even when the irradiation area of the excitation light for exciting the ZAIS nanoparticle cannot be secured sufficiently, or when the flat region where the excitation light is irradiated cannot be secured, various determinations can be performed with high accuracy.
 また、9種類の蛍光スペクトルF(λ)~F(λ)が双頭ピーク形状となるように蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)とが所定の間隔以上離れているために、識別値Xにおける蛍光スペクトルb・fb(λ)~b・fb(λ)からの寄与が良好に低減されて蛍光スペクトルa・fa(λ)~a・fa(λ)の発光強度を更に高精度で推定できる値となると共に識別値Yにおける蛍光スペクトルa・fa(λ)~a・fa(λ)からの寄与が良好に低減されて蛍光スペクトルb・fb(λ)~b・fb(λ)の発光強度が更に良好に推定できる値となり、また、識別値X、識別値Y及び識別値Zが、それぞれ、蛍光スペクトルa・fa(λ)~a・fa(λ),b・fb(λ)~b・fb(λ)と偽の蛍光スペクトルとの各種の相違を更に高精度で反映することになる。これによって、9種類の蛍光スペクトルF(λ)~F(λ)の互い判別精度及び各種の蛍光スペクトルF(λ)~F(λ)と各種の偽の合成蛍光スペクトルとの判別精度が更に向上する。 Further, the main wavelengths (wavelength λa) of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) so that the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) have a double-headed peak shape. And the main spectrum (wavelength λb) of the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) are separated by a predetermined distance or more, so that the fluorescence spectrum b 1 · fb (λ) at the discrimination value X The contribution from b 9 · fb (λ) is satisfactorily reduced so that the emission intensity of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) can be estimated with higher accuracy and the discrimination value The contribution from the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ) in Y is well reduced, and the emission intensity of the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) is further increased. The value can be estimated well, and the identification value X, the identification value Y, and the identification value Z are Is, fluorescence spectra a 1 · fa (λ) ~ a 9 · fa (λ), in b 1 · fb (λ) ~ b 9 · fb (λ) and higher precision of various differences between the fluorescence spectrum of false Will be reflected. Thus, the discrimination accuracy of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) and the discrimination between the various fluorescence spectra F 1 (λ) to F 9 (λ) and the various false synthetic fluorescence spectra The accuracy is further improved.
 また、本形態の蛍光スペクトルの識別方法によれば、識別関数hγ(λ)の最頻値(波長λγ)は、蛍光スペクトルa・fa(λ)~a・fa(λ)と蛍光スペクトルb・fb(λ)~b・fb(λ)とが重なる波長領域内であり、蛍光スペクトルa・fa(λ)~a・fa(λ)とそれに偽装された偽の蛍光スペクトルとの相違が大きい部分と蛍光スペクトルb・fb(λ)~b・fb(λ)とそれに偽装された偽の蛍光スペクトルとの相違が大きい部分とが重複するために、識別値Zがそれらの相違に応じて敏感に変化することとなり、蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの判別精度が向上する。 Further, according to the method for discriminating the fluorescence spectrum of this embodiment, the mode value (wavelength λγ) of the discrimination function hγ (λ) is the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum. b 1 · fb (λ) to b 9 · fb (λ) are in the overlapping wavelength region, and the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fake fluorescence spectrum disguised as it And the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) overlap with a portion having a large difference between the fake fluorescence spectrum camouflaged with the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ). It changes sensitively according to the difference between them, and the discrimination accuracy between the fluorescence spectra F 1 (λ) to F 9 (λ) and the false fluorescence spectrum camouflaged by any of them is improved.
 また、本形態の蛍光スペクトルの識別方法によれば、識別関数hα(λ)、識別関数hβ(λ)及び識別関数hγ(λ)は並進対称な形状であるために、加重平均値α、加重平均値β及び加重平均値γの算出が簡便に実行できると共に、識別値X、識別値Y及び識別値Zにおける各種の加重平均値α,β,γの重みを均一化できる。 Further, according to the fluorescence spectrum identification method of the present embodiment, the discrimination function hα (λ), the discrimination function hβ (λ), and the discrimination function hγ (λ) are translationally symmetric shapes, so that the weighted average value α, weighted The average value β and the weighted average value γ can be easily calculated, and the weights of the various weighted average values α, β, and γ in the identification value X, the identification value Y, and the identification value Z can be made uniform.
 また、本形態の蛍光スペクトルの識別方法によれば、識別関数hα(λ)及び識別関数hβ(λ)の各々は、蛍光材料Aに基づく蛍光スペクトルの近似形状fa(λ)及び蛍光材料Bに基づく蛍光スペクトルの近似形状fb(λ)であるために、識別値X及び識別値Yが、蛍光スペクトルa・fa(λ)~a・fa(λ)の発光強度と蛍光スペクトルb・fb(λ)~b・fb(λ)の発光強度とを更に良好に推定できる値となると共に、識別値X、識別値Y及び識別値Zが、それぞれ、蛍光スペクトルa・fa(λ)~a・fa(λ)とそれに偽装された偽の蛍光スペクトルとの相違、蛍光スペクトルb・fb(λ)~b・fb(λ)とそれに偽装された偽の蛍光スペクトルとの相違、及び、それらの双方の相違を良好に反映させることができ、蛍光スペクトルF(λ)~F(λ)に対する互いの判別精度や蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの判別精度が更に向上する。 Further, according to the fluorescence spectrum identification method of the present embodiment, each of the identification function hα (λ) and the identification function hβ (λ) is applied to the approximate shape fa (λ) of the fluorescence spectrum based on the fluorescent material A and the fluorescent material B. Since the approximate shape fb (λ) of the fluorescence spectrum is based on the identification value X and the identification value Y, the emission intensity of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · The light emission intensities of fb (λ) to b 9 · fb (λ) can be estimated more satisfactorily, and the identification value X, the identification value Y, and the identification value Z are respectively represented by fluorescence spectra a 1 · fa (λ ) To a 9 · fa (λ) and the fake fluorescence spectrum camouflaged with it, the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) and the fake fluorescence spectrum camouflaged with it Good reflection of the differences and the differences between them So it can, the fluorescence spectrum F 1 (λ) ~ F 9 (λ) mutual recognition accuracy and fluorescence spectra F 1 for (λ) ~ F 9 (λ ) and the fluorescence spectrum of false disguised in any of them Is further improved.
 また、本形態の蛍光スペクトルの識別方法によれば、識別関数hα(λ)の最頻値(波長λα)が蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と実質的に同一であり、識別関数hβ(λ)の最頻値(波長λβ)が蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)と実質的に同一であり、識別関数hγ(λ)の最頻値(波長λγ)が識別関数hα(λ)の最頻値と識別関数hβ(λ)の最頻値との中間値((λα+λβ)/2=(λa+λb)/2)と実質的に同一であり、識別値X及び識別値Yが、蛍光スペクトルa・fa(λ)~a・fa(λ)の発光強度と蛍光スペクトルb・fb(λ)~b・fb(λ)の発光強度とを更に良好に推定できる値となると共に、識別値Xが蛍光スペクトルa・fa(λ)~a・fa(λ)とそれに偽装された偽の蛍光スペクトルとの波長λaに対して短波長側及び長波長側の双方の相違を均等に反映し、識別値Yが蛍光スペクトルb・fb(λ)~b・fb(λ)とそれに偽装された偽の蛍光スペクトルとの波長λbに対して短波長側及び長波長側の双方の相違を均等に反映し、かつ、識別値Zが蛍光スペクトルa・fa(λ)~a・fa(λ)とそれに偽装された偽の蛍光スペクトルとの波長λaよりも長波長側の相違と蛍光スペクトルb・fb(λ)~b・fb(λ)とそれに偽装された偽の蛍光スペクトルとの波長λbよりも短波長側の相違とを均等に反映するために、蛍光スペクトルF(λ)~F(λ)に対する互いの判別精度や蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの判別精度が更に向上する。 Further, according to the fluorescence spectrum identification method of the present embodiment, the mode value (wavelength λα) of the identification function hα (λ) is the dominant wavelength of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) ( The mode (wavelength λβ) of the discrimination function hβ (λ) is substantially the same as the wavelength λa), and the dominant wavelength (wavelength λb) of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) And the mode value (wavelength λγ) of the discriminant function hγ (λ) is an intermediate value between the mode value of the discriminant function hα (λ) and the mode value of the discriminant function hβ (λ) (( λα + λβ) / 2 = (λa + λb) / 2), and the identification value X and the identification value Y are the emission intensity and fluorescence of the fluorescence spectra a 1 · fa (λ) to a 9 · fa (λ). with a better estimate of values and emission intensity of the spectral b 1 · fb (λ) ~ b 9 · fb (λ), the identification value X fluorescence spectrum 1 · fa (λ) ~ a 9 · fa (λ) and equally reflect the differences in both the short wavelength side and the long wavelength side with respect to the wavelength λa of the fluorescence spectrum of spoofed false thereto, identification value Y Reflects equally the difference between the short wavelength side and the long wavelength side with respect to the wavelength λb of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) and the fake fluorescence spectrum camouflaged with it. And the discriminating value Z is different from the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the false fluorescence spectrum camouflaged with the wavelength λa on the longer wavelength side and the fluorescence spectrum b 1 · In order to evenly reflect the difference between fb (λ) to b 9 · fb (λ) and the false fluorescence spectrum camouflaged with it on the shorter wavelength side than the wavelength λb, the fluorescence spectra F 1 (λ) to F 9 mutual recognition accuracy and fluorescence spectra for (λ) F 1 (λ) ~ F 9 lambda) and the discrimination accuracy of the fluorescence spectrum of false disguised in any of them can be further improved.
 また、本形態の蛍光スペクトルの識別方法によれば、9種類の蛍光スペクトルF(λ)~F(λ)の各々は、蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)における強度と蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)における強度との和が実質的に一定であるために、それらの強度比は確実に異なる。また、9種類の蛍光スペクトルF(λ)~F(λ)の各々に対する加重平均値α及び加重平均値βの和が概ね一定となり、識別値X及び識別値Yの各々が蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの相違を敏感に反映する加重平均値γに基づいて変化し、第3識別値が加重平均値γに概ね比例して変化するために、9種類の蛍光スペクトルF(λ)~F(λ)に対する互いの判別精度や蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの判別精度が更に向上する。 Further, according to the method for identifying a fluorescence spectrum of the present embodiment, each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) has a fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ ) At the main wavelength (wavelength λa) and the intensity at the main wavelength (wavelength λb) of the fluorescence spectra b 1 · fb (λ) to b 9 · fb (λ) are substantially constant, Their intensity ratio is definitely different. Further, the sum of the weighted average value α and the weighted average value β for each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) is substantially constant, and each of the identification value X and the identification value Y is the fluorescence spectrum F. 1 (λ) to F 9 (λ) and a weighted average value γ that sensitively reflects the difference between the false fluorescence spectra camouflaged by any of them, and the third identification value is a weighted average value γ To the nine types of fluorescence spectra F 1 (λ) to F 9 (λ), and the fluorescence spectra F 1 (λ) to F 9 (λ) and any one of them. The accuracy of discrimination from the false fluorescence spectrum camouflaged by is further improved.
 本形態においては、識別値Zに対する許容範囲を各種の蛍光スペクトルF(λ)~F(λ)ごとに変化させたが、本発明においては、識別値Zに対する許容範囲を各種の蛍光スペクトルF(λ)~F(λ)で共通の許容範囲で代用して、各種の蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとを一括して判別する構成とすることもできる。 In the present embodiment, the allowable range for the identification value Z is changed for each of the various fluorescence spectra F 1 (λ) to F 9 (λ). F 1 (λ) to F 9 (λ) are substituted with a common tolerance, and various fluorescence spectra F 1 (λ) to F 9 (λ) and a fake fluorescence spectrum camouflaged by any of them It is also possible to make a configuration in which these are discriminated collectively.
 また、本発明においては、蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)との間隔が波長λaと波長λbとの間の範囲における最も小さい蛍光スペクトルF(λ)~F(λ)間の最大強度差が最も小さくなるように、蛍光材料Aと蛍光材料Bとが選択されている構成とすることもできる。このように構成すれば、9種類の蛍光スペクトルF(λ)~F(λ)の各々に対する識別値Zの分布範囲を小さくできるために、識別値X、識別値Y及び識別値Zの各々に蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトルとの相違を敏感に反映させることができる。 In the present invention, the dominant wavelength (wavelength λa) of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ) and the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ) Fluorescent material so that the maximum intensity difference between the smallest fluorescence spectra F 1 (λ) to F 9 (λ) is the smallest in the range between the wavelength λa and the wavelength λb. It can also be set as the structure by which A and the fluorescent material B are selected. With this configuration, since the distribution range of the identification value Z for each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) can be reduced, the identification value X, the identification value Y, and the identification value Z can be reduced. It is possible to sensitively reflect the difference between the fluorescence spectra F 1 (λ) to F 9 (λ) and the fake fluorescence spectrum camouflaged in any of them.
 また、本形態においては、識別値X、識別値Y及び識別値Zに基づいて各種の相違を判定したが、識別値X、識別値Y及び識別値Zの各差分値の総和が各種の偽装の場合のスペクトルについては一義的に増加することを利用して真偽判定を行う構成であってもよい。 Further, in this embodiment, various differences are determined based on the identification value X, the identification value Y, and the identification value Z. However, the sum of the difference values of the identification value X, the identification value Y, and the identification value Z is variously disguised. The spectrum in this case may be configured to make a true / false determination by using a unique increase.
 また、本発明においては、識別関数hα(λ)の最頻値(波長λα)が蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と実質的に同一であり、識別関数hβ(λ)の最頻値(波長λβ)が蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)と実質的に同一であり、識別関数hγ(λ)の最頻値(波長λγ)が9種類の蛍光スペクトルF(λ)~F(λ)間の最大強度差が最も小さい波長と実質的に同一である構成とすることもできる。このように構成すれば、9種類の蛍光スペクトルF(λ)~F(λ)の各々に対する識別値Zの分布範囲が更に小さくなるために、第1識別値、第2識別値及び第3識別値の各々が、蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトル偽の蛍光スペクトルとの相違を更に敏感に反映することとなる。 In the present invention, the mode value (wavelength λα) of the discrimination function hα (λ) is substantially equal to the main wavelength (wavelength λa) of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ). And the mode value (wavelength λβ) of the discrimination function hβ (λ) is substantially the same as the dominant wavelength (wavelength λb) of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ). The mode (wavelength λγ) of the discrimination function hγ (λ) is substantially the same as the wavelength having the smallest maximum intensity difference among the nine types of fluorescence spectra F 1 (λ) to F 9 (λ). You can also With this configuration, the distribution range of the identification value Z for each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) is further reduced, so that the first identification value, the second identification value, and the Each of the three identification values more sensitively reflects the difference between the fluorescence spectra F 1 (λ) to F 9 (λ) and the false fluorescence spectrum camouflaged by any of them.
 また、本発明においては、識別関数hα(λ)の最頻値(波長λα)が蛍光スペクトルa・fa(λ)~a・fa(λ)の主波長(波長λa)と実質的に同一であり、識別関数hβ(λ)の最頻値(波長λβ)が蛍光スペクトルb・fb(λ)~b・fb(λ)の主波長(波長λb)と実質的に同一であり、識別関数hγ(λ)の最頻値(波長λγ)が9種類の蛍光スペクトルF(λ)~F(λ)の各々に対する識別値Z間の最大差が最も小さい波長と実質的に同一である構成とすることもできる。このように構成すれば、9種類の蛍光スペクトルF(λ)~F(λ)の各々に対する識別値Zの分布範囲が最も小さくなるために、識別値X、識別値Y及び識別値Zの各々が、蛍光スペクトルF(λ)~F(λ)とそれらのいずれかに偽装された偽の蛍光スペクトル偽の蛍光スペクトルとの相違を更に敏感に反映することとなる。 In the present invention, the mode value (wavelength λα) of the discrimination function hα (λ) is substantially equal to the main wavelength (wavelength λa) of the fluorescence spectrum a 1 · fa (λ) to a 9 · fa (λ). And the mode value (wavelength λβ) of the discrimination function hβ (λ) is substantially the same as the dominant wavelength (wavelength λb) of the fluorescence spectrum b 1 · fb (λ) to b 9 · fb (λ). The mode value (wavelength λγ) of the discrimination function hγ (λ) is substantially equal to the wavelength with the smallest maximum difference between the discrimination values Z for each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ). It can also be set as the same structure. With this configuration, since the distribution range of the identification value Z for each of the nine types of fluorescence spectra F 1 (λ) to F 9 (λ) is the smallest, the identification value X, the identification value Y, and the identification value Z Each more sensitively reflects the difference between the fluorescence spectra F 1 (λ) to F 9 (λ) and the fake fluorescence spectrum camouflaged in any of them.
 本発明は、蛍光材料の配合に基づく識別情報の判別及び模倣品の判別に適している。 The present invention is suitable for discrimination of identification information based on the blending of fluorescent materials and discrimination of counterfeits.
 S1:蛍光スペクトル計測処理
 S2:加重平均値算出処理
 S3:識別値算出処理
 S4:識別情報・真偽判定処理
 
S1: Fluorescence spectrum measurement process S2: Weighted average value calculation process S3: Identification value calculation process S4: Identification information / authenticity determination process

Claims (10)

  1.  第1蛍光材料に基づく第1蛍光スペクトルと第2蛍光材料に基づく第2蛍光スペクトルとの合成波形が前記第1蛍光材料と前記第2蛍光材料との配合の相違に応じて異なる複数種類の合成蛍光スペクトルを互いに判別し、かつ、前記複数種類の合成蛍光スペクトルのうち任意の1つの真の蛍光スペクトルに対して全体波形は異なるが前記第1蛍光スペクトルの主波長における強度及び前記第2蛍光スペクトルの主波長における強度は実質的に同一である偽の蛍光スペクトルと前記複数種類の合成蛍光スペクトルの各々とを判別する蛍光スペクトルの識別方法であって、
     前記第1蛍光材料及び前記第2蛍光材料の各々が半導体ナノ粒子の集合群であり、
     前記複数種類の合成蛍光スペクトルの各々を構成する前記第1蛍光スペクトルの一部と前記第2蛍光スペクトルの一部とが重なり、
     前記第1蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第1識別関数とし、前記第2蛍光スペクトルの主波長の近傍を最頻値とする単頭ピーク形状の分布関数を第2識別関数とし、前記第1識別関数の最頻値と前記第2識別関数の最頻値との間の波長を最頻値とする単頭ピーク形状の分布関数を第3識別関数として、被識別対象物から計測された計測蛍光スペクトルに対して前記第1識別関数で重みを付けた第1加重平均値を算出し、前記計測蛍光スペクトルに対して前記第2識別関数で重みを付けた第2加重平均値を算出し、かつ、前記計測蛍光スペクトルに対して前記第3識別関数で重みを付けた第3加重平均値を算出し、
     前記第1加重平均値を前記第1加重平均値、前記第2加重平均値及び前記第3加重平均値の総和で規格化して前記計測蛍光スペクトルに対する第1識別値を算出し、前記第2加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第2識別値を算出し、かつ、前記第3加重平均値を前記総和で規格化して前記計測蛍光スペクトルに対する第3識別値を算出し、
     前記第1識別値と前記第2識別値と前記第3識別値の組み合わせが、前記複数種類の合成蛍光スペクトルの各々に対応付けられた所定の前記第1識別値に対する許容範囲と所定の前記第2識別値に対する許容範囲と所定の前記第3識別値に対する許容範囲との許容範囲の組み合わせのいずれか1つの組み合わせに含まれる場合には、前記計測蛍光スペクトルは前記複数種類の合成蛍光スペクトルのうちの当該組み合わせに対応する合成蛍光スペクトルと同一であると判定し、前記複数種類の合成蛍光スペクトルの各々に対応付けられた前記許容範囲の組み合わせのいずれの組み合わせにも含まれない場合には、前記計測蛍光スペクトルは前記偽の蛍光スペクトルであると判定することを特徴とする蛍光スペクトルの識別方法。
    A plurality of types of synthesis in which the combined waveform of the first fluorescent spectrum based on the first fluorescent material and the second fluorescent spectrum based on the second fluorescent material is different depending on the blending difference between the first fluorescent material and the second fluorescent material. Fluorescence spectra are discriminated from each other, and the intensity of the first fluorescence spectrum at the dominant wavelength and the second fluorescence spectrum are different from one of the plurality of types of synthetic fluorescence spectra, although the overall waveform is different A fluorescence spectrum identification method for distinguishing between a false fluorescence spectrum having substantially the same intensity at the dominant wavelength and each of the plurality of types of synthetic fluorescence spectra,
    Each of the first fluorescent material and the second fluorescent material is a group of semiconductor nanoparticles,
    A part of the first fluorescence spectrum and a part of the second fluorescence spectrum constituting each of the plurality of types of synthetic fluorescence spectra overlap,
    A single-head peak shape having a distribution function of a single-head peak shape having a mode value in the vicinity of the main wavelength of the first fluorescence spectrum as a first discriminant function and a mode having a mode value in the vicinity of the main wavelength of the second fluorescence spectrum. Is a second discriminant function, and a single-peak distribution function having a mode between the mode value of the first discriminant function and the mode value of the second discriminant function is a third discriminant function. As a discrimination function, a first weighted average value obtained by weighting the measured fluorescence spectrum measured from the identification target with the first discrimination function is calculated, and the second discrimination function is used for the measured fluorescence spectrum. Calculating a weighted second weighted average value, and calculating a third weighted average value weighted by the third discriminant function for the measured fluorescence spectrum;
    The first weighted average value is normalized by the sum of the first weighted average value, the second weighted average value, and the third weighted average value to calculate a first identification value for the measured fluorescence spectrum, and the second weighted value Normalizing the average value with the sum to calculate a second identification value for the measured fluorescence spectrum, and normalizing the third weighted average value with the sum to calculate a third identification value for the measured fluorescence spectrum;
    The combination of the first identification value, the second identification value, and the third identification value is an allowable range for the predetermined first identification value associated with each of the plurality of types of synthetic fluorescence spectra and a predetermined first value. When the measurement fluorescence spectrum is included in any one combination of the tolerance range for the two identification values and the tolerance range for the predetermined third identification value, the measured fluorescence spectrum is one of the plurality of types of synthetic fluorescence spectra. Is determined to be the same as the synthetic fluorescence spectrum corresponding to the combination, and if it is not included in any combination of the allowable ranges associated with each of the plurality of types of synthetic fluorescence spectra, A method for identifying a fluorescence spectrum, wherein the measured fluorescence spectrum is determined to be the fake fluorescence spectrum.
  2.  前記複数種類の合成蛍光スペクトルの各々が双頭ピーク形状である請求項1に記載の蛍光スペクトルの識別方法。 2. The fluorescence spectrum identification method according to claim 1, wherein each of the plurality of types of synthetic fluorescence spectra has a double-headed peak shape.
  3.  前記第3識別関数の最頻値は、前記第1蛍光スペクトルと前記第2蛍光スペクトルとが重なる波長領域内である請求項1又は2に記載の蛍光スペクトルの識別方法。 The mode of the fluorescence spectrum according to claim 1 or 2, wherein the mode value of the third discrimination function is in a wavelength region where the first fluorescence spectrum and the second fluorescence spectrum overlap.
  4.  前記第1識別関数、前記第2識別関数及び前記第3識別関数は並進対称な関数である請求項1、2又は3に記載の蛍光スペクトルの識別方法。 The fluorescence spectrum identification method according to claim 1, 2, or 3, wherein the first discrimination function, the second discrimination function, and the third discrimination function are translationally symmetric functions.
  5.  前記第1識別関数、前記第2識別関数及び前記第3識別関数の各々は、前記第1蛍光スペクトル及び前記第2蛍光スペクトルの近似形状である請求項1~4のいずれか一項に記載の蛍光スペクトルの識別方法。 The first discrimination function, the second discrimination function, and the third discrimination function are approximate shapes of the first fluorescence spectrum and the second fluorescence spectrum, respectively. Identification method of fluorescence spectrum.
  6.  前記第1識別関数の最頻値が前記第1蛍光スペクトルの主波長と実質的に同一であり、
     前記第2識別関数の最頻値が前記第2蛍光スペクトルの主波長と実質的に同一であり、
     前記第3識別関数の最頻値が前記第1識別関数の最頻値と前記第2識別関数の最頻値との中間値と実質的に同一である、
    請求項1~5のいずれか一項に記載の蛍光スペクトルの識別方法。
    The mode value of the first discriminant function is substantially the same as the dominant wavelength of the first fluorescence spectrum;
    The mode of the second discriminant function is substantially the same as the dominant wavelength of the second fluorescence spectrum;
    The mode value of the third discriminant function is substantially the same as the intermediate value between the mode value of the first discriminant function and the mode value of the second discriminant function;
    The method for identifying a fluorescence spectrum according to any one of claims 1 to 5.
  7.  前記複数種類の合成蛍光スペクトルの各々は、前記第1蛍光スペクトルの主波長に対する前記第1蛍光スペクトルの強度と前記第2蛍光スペクトルの主波長に対する前記第2蛍光スペクトルの強度との和が実質的に一定である請求項1~5のいずれか一項に記載の蛍光スペクトルの識別方法。 Each of the plurality of types of synthetic fluorescence spectra is substantially the sum of the intensity of the first fluorescence spectrum with respect to the dominant wavelength of the first fluorescence spectrum and the intensity of the second fluorescence spectrum with respect to the dominant wavelength of the second fluorescence spectrum. The method for identifying a fluorescence spectrum according to any one of claims 1 to 5, wherein:
  8.  前記第1蛍光材料と前記第2蛍光材料とは、前記第1蛍光スペクトルの主波長と前記第2蛍光スペクトルの主波長との間の範囲における最も小さい前記複数種類の合成蛍光スペクトル間の強度差が最も小さくなるように選択されている請求項7に記載の蛍光スペクトルの識別方法。 The first fluorescent material and the second fluorescent material have an intensity difference between the plurality of types of synthetic fluorescent spectra that is the smallest in a range between the dominant wavelength of the first fluorescent spectrum and the dominant wavelength of the second fluorescent spectrum. The method for identifying a fluorescence spectrum according to claim 7, wherein is selected to be the smallest.
  9.  前記第1識別関数の最頻値が第1蛍光スペクトルの主波長と実質的に同一であり、
     前記第2識別関数の最頻値が第2蛍光スペクトルの主波長と実質的に同一であり、
     前記第3識別関数の最頻値が前記複数種類の合成蛍光スペクトル間の強度差が最も小さい波長と実質的に同一である、
    請求項7又は8に記載の蛍光スペクトルの識別方法。
    The mode value of the first discriminant function is substantially the same as the dominant wavelength of the first fluorescence spectrum;
    The mode value of the second discriminant function is substantially the same as the dominant wavelength of the second fluorescence spectrum;
    The mode value of the third discriminant function is substantially the same as the wavelength having the smallest intensity difference between the plurality of types of synthetic fluorescence spectra;
    The method for identifying a fluorescence spectrum according to claim 7 or 8.
  10.  前記第1識別関数の最頻値が第1蛍光スペクトルの主波長と実質的に同一であり、
     前記第2識別関数の最頻値が第2蛍光スペクトルの主波長と実質的に同一であり、
     前記第3識別関数の最頻値が前記複数種類の合成蛍光スペクトルの各々に対する前記第3識別値間の最大差が最も小さい波長と実質的に同一である、
    請求項7又は8に記載の蛍光スペクトルの識別方法。
     
    The mode value of the first discriminant function is substantially the same as the dominant wavelength of the first fluorescence spectrum;
    The mode value of the second discriminant function is substantially the same as the dominant wavelength of the second fluorescence spectrum;
    The mode value of the third discriminant function is substantially the same as the wavelength with the smallest maximum difference between the third discriminant values for each of the plurality of types of synthetic fluorescence spectra;
    The method for identifying a fluorescence spectrum according to claim 7 or 8.
PCT/JP2010/053071 2010-02-26 2010-02-26 Method of identifying fluorescence spectrum WO2011104858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010508643A JP4965706B2 (en) 2010-02-26 2010-02-26 Fluorescence spectrum identification method
PCT/JP2010/053071 WO2011104858A1 (en) 2010-02-26 2010-02-26 Method of identifying fluorescence spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053071 WO2011104858A1 (en) 2010-02-26 2010-02-26 Method of identifying fluorescence spectrum

Publications (1)

Publication Number Publication Date
WO2011104858A1 true WO2011104858A1 (en) 2011-09-01

Family

ID=44506302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053071 WO2011104858A1 (en) 2010-02-26 2010-02-26 Method of identifying fluorescence spectrum

Country Status (2)

Country Link
JP (1) JP4965706B2 (en)
WO (1) WO2011104858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119771A (en) * 2017-06-28 2022-08-17 ヴェンタナ メディカル システムズ, インク. System level calibration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501333A (en) * 1994-05-27 1998-02-03 イーストマン ケミカル カンパニー Raman spectrometer and method
JP2003531734A (en) * 2000-04-06 2003-10-28 クアンタム・ドット・コーポレーション Discriminable spectral barcode method and system
JP2009524060A (en) * 2006-01-19 2009-06-25 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Methods and devices for detection and identification of encoded beads and biological molecules
WO2009147874A1 (en) * 2008-06-06 2009-12-10 Idec株式会社 Identification information containing article, information identification device and information identification method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555154A (en) * 1991-08-23 1993-03-05 Murata Mfg Co Ltd Thermal treatment furnace for semiconductor substrate
JP3836302B2 (en) * 2000-06-09 2006-10-25 帝眞貿易株式会社 Identification method and identification apparatus using identification marks
WO2009078426A1 (en) * 2007-12-18 2009-06-25 Idec Corporation Wavelength converter and light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501333A (en) * 1994-05-27 1998-02-03 イーストマン ケミカル カンパニー Raman spectrometer and method
JP2003531734A (en) * 2000-04-06 2003-10-28 クアンタム・ドット・コーポレーション Discriminable spectral barcode method and system
JP2004500669A (en) * 2000-04-06 2004-01-08 クアンタム・ドット・コーポレーション 2D spectral imaging system
JP2009524060A (en) * 2006-01-19 2009-06-25 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Methods and devices for detection and identification of encoded beads and biological molecules
WO2009147874A1 (en) * 2008-06-06 2009-12-10 Idec株式会社 Identification information containing article, information identification device and information identification method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022119771A (en) * 2017-06-28 2022-08-17 ヴェンタナ メディカル システムズ, インク. System level calibration
JP7368539B2 (en) 2017-06-28 2023-10-24 ヴェンタナ メディカル システムズ, インク. System level calibration

Also Published As

Publication number Publication date
JP4965706B2 (en) 2012-07-04
JPWO2011104858A1 (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5618199B2 (en) Authenticity determination system and authenticity determination method of luminescent medium
WO2012018084A1 (en) Luminous medium and method for confirming luminous medium
JP5699313B2 (en) Luminescent medium
US8840029B2 (en) Multi wavelength excitation/emission authentication and detection scheme
US9987874B2 (en) Authenticity feature in the form of luminescent substances
JP5622087B2 (en) Luminescent medium
Alam et al. Exchange rate volatility and Pakistan’s bilateral imports from major sources: An application of ARDL approach
CN101263012A (en) Value document, production and verification of value documents
RU2008144484A (en) Valuable and / or counterfeit-proof document
US20090033932A1 (en) Tagging systems using energy exchange
TW200734625A (en) Method for determining the identity or non-identity and concentration of a chemical compound in a medium
RU2401745C2 (en) Protective element
EP3194177B1 (en) Printing ink, its use for the authentication of articles, articles obtained thereby and authentication methods
CN103155008A (en) Method for checking an optical security feature of a valuable document
JP4965706B2 (en) Fluorescence spectrum identification method
JP2009162494A (en) Measuring method
US11254159B2 (en) Method for securing value documents using storage phosphors
JP3836302B2 (en) Identification method and identification apparatus using identification marks
US20210372953A1 (en) X-ray analysis device and x-ray analysis method
US20100214567A1 (en) Nanoparticle Based Identification
Lucas et al. Fragment screening at AstraZeneca: developing the next generation biophysics fragment set
CN105865673A (en) Method for realizing multipoint stress distribution monitoring through single spectrum
JP2012051356A (en) Light-emitting medium and method for confirming light-emitting medium
KR102507042B1 (en) Light emitting phosphor systems, methods of making the same, and articles including the same
JP5573469B2 (en) Luminescent medium and method for confirming luminous medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010508643

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846522

Country of ref document: EP

Kind code of ref document: A1