WO2011104407A1 - Sistema sensor capacitivo para dispositivos de protección perimetral - Google Patents

Sistema sensor capacitivo para dispositivos de protección perimetral Download PDF

Info

Publication number
WO2011104407A1
WO2011104407A1 PCT/ES2011/070115 ES2011070115W WO2011104407A1 WO 2011104407 A1 WO2011104407 A1 WO 2011104407A1 ES 2011070115 W ES2011070115 W ES 2011070115W WO 2011104407 A1 WO2011104407 A1 WO 2011104407A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
perimeter protection
devices
capacitive
capacitive sensor
Prior art date
Application number
PCT/ES2011/070115
Other languages
English (en)
French (fr)
Other versions
WO2011104407A4 (es
Inventor
Daniel Cortina Blanco
Pilar Marin Palacios
Ainhoa Gonzalez Gorriti
Javier Calvo Robledo
Antonio Hernando Grande
Original Assignee
Micromag 2000 S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micromag 2000 S.L. filed Critical Micromag 2000 S.L.
Publication of WO2011104407A1 publication Critical patent/WO2011104407A1/es
Publication of WO2011104407A4 publication Critical patent/WO2011104407A4/es

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/26Electrical actuation by proximity of an intruder causing variation in capacitance or inductance of a circuit

Definitions

  • the protection of a certain area of the intruder input is the object of any perimeter protection device.
  • Another option is a device that induces mechanical tension in a fiber optic cable (US6259365 / US2006 / 0054796 Al).
  • This type of device is useful for detecting a person trying to violate a security fence by climbing over it.
  • the voltage inducing device is placed on the top of each fence security post.
  • a fiber optic cable passes through the top of the fence and passes through each of the voltage inducing devices.
  • a pressure element of the voltage inducing device will prick the fiber optic cable causing an alarm.
  • the voltage induction device will be activated if a person supports a ladder on the fiber optic cable or on the voltage generating device itself.
  • LVDT Linear Voltage Differential Transformer
  • WO01 / 08470 Al Linear Voltage Differential Transformer
  • This sensor consists of a core that is placed in the inside a pole and a concentric tube with said core that is fixed to the fence supports.
  • the mission of the sensor is to detect the variation of the signal that occurs when the part of the sensor attached to the wire moves with respect to that fixed to the post.
  • the above devices are used primarily when the perimeter protection system is a fence.
  • the sensors are placed on the corresponding posts.
  • the capacitive sensor system for perimeter protection devices that the invention proposes solves in a completely satisfactory way the problem previously exposed, by being camouflaged in the wall itself, being immune to adverse weather conditions, and allowing to detect different levels of pressure in order to avoid the firing of false alarms.
  • the system that is recommended is made up of two fundamental elements, a sensor element and the control electronics associated therewith.
  • the sensor element will be applied along the entire surface of the rigid fence, materializing in a parallel flat sheet capacitor whose dielectric core has mechanical flexibility, and in which the metal sheets of the capacitor have a very low thickness, while the condenser is protected in its lower and upper part by a waterproofing material that prevents the variation of the capacity by contact with liquids in the environment.
  • control electronics module is responsible for measuring the capacity variations of the sensor element through an integrator connected to said element and whose integration constant depends on the capacity of this module.
  • the dielectric and geometric characteristics of the sensor element must be such that confer an electrical capacity detectable by the control electronics module.
  • the condenser bottom sheet of the sensing element can be the rigid fence itself in the case of being metallic or in its absence a layer of metallic paint or adhesive metallic tape.
  • the thickness of said sheet, in the case of being metallic paint or adhesive metallic tape, will preferably be between 25 and 250 microns.
  • the condenser top sheet can also be a layer of metallic paint or adhesive metallic tape, it being provided that its thickness in said case is preferably between 25 and 250 microns. This structuring allows the total surface of each and every one of the condenser sheets to vary between 10 and 20,000 cm 2 , with an optimum level of sensorization.
  • the flexible dielectric material of the intermediate sheet can be made of silicone, flexible paint, rubber or foam, with a thickness between 0.1 and 10 mm, and with a dielectric constant that can vary between 2 and 9.
  • the long width ratio of the sensor element will be determined by the application and specific needs of each case, while the dielectric constant chosen for each application will be determined by the range of voltages subject to detection.
  • the electrical capacity of the sensor module is conditioned by the control electronics which is constituted from a microcontroller and a constant variable integrator, the latter being responsible for measuring the variations in the capacity of the sensor element.
  • the integrator constant changes when the capacity of the sensor module varies, caused by a deformation of said module.
  • Variations in the integrator constant are recorded by the microcontroller, responsible for generating a square signal, with a frequency conditioned by the electrical capacity of the sensor module, being of the order of mHz. This signal is transmitted to the integrator which transforms it into a triangular signal with a certain slope.
  • the slope of the triangular signal is directly related to the capacity associated with the sensor module, so that variations in the slope of the triangular signal are associated with variations in the capacity of the sensor module.
  • a high reference voltage and a low reference voltage are established.
  • the slope value of the triangular signal is made from the measurement of the time elapsed between the high and low reference voltage.
  • the minimum alarm level is set when the increase in voltage variation exceeds 10% with respect to the voltage in the absence of mechanical stress.
  • the detection levels are established based on the percentages of variation of the slope of the triangular signal, so that the control electronics allow monitoring capacities in a range between 50 pF and 7 nF
  • Figure 1 shows a schematic representation of the capacitive sensor system for perimeter protection object of the present invention, where the sensor module and the electronic measurement module as well as the fundamental parts of each are shown.
  • Figure 2. Shows the diagram of fundamental functional blocks of the set of the previous figure.
  • Figures 3a and 3b.- They show a couple of graphs in which the square signal generated by the microcontroller can be observed as well as the corresponding and triangular signal obtained by the integrator. The threshold voltages as well as the corresponding times are shown on the triangular signal.
  • the sensor element may be 20 meters long, 1 cm wide and 3 mm thick, being constituted from a pair of conductive sheets (10-10 ') and a dielectric sheet (1 1), adopting the sandwich structure of a capacitor, so that in the practical example chosen, the conductive sheets (10-10') are adhesive tapes 70 microns thick copper and the dielectric sheet (11) is a flexible foam.
  • the sensor element (1) modifies its capacity when pressed, which leads to the generation of an intrusion alarm.
  • the sensitivity of the sensor, at 16 ° C, with the load is shown in Figures 4 a).
  • the load is expressed in Kg / 10cm 2 , up to a maximum of 15 Kg / 10cm 2 , with the understanding that this would be the maximum load corresponding to a 150 kg person with one hand. It is a linear variation that allows to distinguish between the different intruders that produce variation (bird, cat, rain, humans, etc.)
  • Figure 4 b shows the tests performed with extreme loads.
  • the sensor element was subjected to several loading cycles, from 25 to 100 kg / cm 2 .
  • the measurements are repetitive and also show the sensor element is capable of detecting very high loads.

Abstract

El sistema de la invención es fácilmente integrable en muros y otros dispositivos de protección perimetral permaneciendo inadvertido y aislado de condiciones meteorológicas adversas. Para ello, el sistema que se preconiza está constituido a partir de dos elementos fundamentales, un elemento sensor (1), materializado en un capacitor flexible de espesor reducido pero de elevada longitud, destinado a integrarse de forma camuflada en la superficie de la valla rígida, y un módulo de electrónica de control, que se encarga de medir las variaciones de capacidad del elemento sensor a través un integrador (13) conectado dicho elemento y asociado a un microcontrolador (12) que registra dichas posibles variaciones. El dispositivo asi descrito permite monitorizar diferentes niveles de presión para el sensor, lo que permite a su vez evitar el disparo de falsas alarmas.

Description

SISTEMA SENSOR CAPACITIVO PARA DISPOSITIVOS DE PROTECCIÓN PERIMETRAL
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un dispositivo de protección perimetral, fundamentalmente aplicable a vallas rígidas, si bien puede ser aplicado en otro tipo de dispositivos de protección perimetral, basado en un elemento sensor capacitivo flexible aplicado a lo largo de toda la superficie del muro objeto de protección. El objeto de la invención es proporcionar unos medios de seguridad que permitan llevar a cabo la sensorización de un dispositivo de protección perimetral, como por ejemplo una valla o muro rígido, de forma que el elemento sensor quede integrado en el propio muro y camuflado, siendo inmune a factores meteorológicos tales como la lluvia, nieve, etc.
Es asimismo objeto de la invención que el citado sistema permita detectar diferentes niveles de presión sobre el muro en orden a discriminar valores pequeños, evitando así el disparo de falsas alarmas. La invención se sitúa pues, dentro del ámbito de los sistemas de seguridad, y más concretamente dentro del campo técnico de los materiales compuestos, cubriendo asimismo aspectos de electromagnetismo y electrónica. ANTECEDENTES DE LA INVENCIÓN
La protección de un área determinada de la entrada de intrusos es el objeto de cualquier dispositivo de protección perimetral.
En este sentido, se han desarrollado numerosas tecnologías cuyo objeto es la vigilancia de los perímetros que rodean determinadas áreas.
En algunos casos se trata de vallas de seguridad electrificadas (ZA200000809 (A) ), en otras ocasiones se utiliza la tecnología láser para detectar la presencia de un objeto en una determinada zona (US6259365) por la interrupción del haz de luz de un extremo a otro de la zona protegida.
Otra opción consiste en un dispositivo que induce tensión mecánica en un cable de fibra óptica (US6259365/ US2006/0054796 Al). Este tipo de dispositivo es útil para detectar a una persona intentando violar una valla de seguridad escalando por encima. En este caso el dispositivo inductor de tensión se coloca en la parte superior de cada poste de seguridad de la valla. Un cable de fibra óptica pasa por la parte alta de la valla y pasa a través de cada uno de los dispositivos inductores de tensión. Una vez activado, un elemento de presión del dispositivo inductor de tensión pinchará el cable de fibra óptica causando una alarma. El dispositivo de inducción de tensión se activará si una persona apoya una escalera sobre el cable de fibra óptica o sobre el propio dispositivo generador de tensión.
Existen otras opciones como la que plantea el dispositivo magnético electrónico para el control de sistemas de protección perimetral que utiliza el mecanismo conocido como LVDT (Linear Voltage Differential Transformer) (WO01/08470 Al) para detectar la tensión mecánica de una valla de seguridad. Este sensor consta de un núcleo que se coloca en el interior de un poste y un tubo concéntrico con dicho núcleo que se fija a los soportes de la valla. La misión del sensor es detectar la variación de la señal que se produce cuando la parte del sensor solidaria al alambre se desplaza respecto a la fijada al poste.
Los dispositivos anteriores se utilizan fundamentalmente cuando el sistema de protección perimetral se trata de una alambrada. Los sensores se colocan en los postes correspondientes.
El método de protección varía cuando se trata de muros o vallas rígidas, en estos casos cualquiera de las tecnologías anteriores requeriría la colocación periódica de elementos sensores a los largo del muro de protección. Otra opción para este tipo de cerramientos es la utilización de microoondas, infrarrojos o láser (US6259365).
Otros problemas que plantean este tipo de sistemas es el hecho de que son visibles desde el exterior, y no permiten detectar diferentes niveles de presión en el muro, lo que provoca en muchos casos el disparo de falsas alarmas, además de verse sometidos a factores meteorológicos tales como la lluvia, la nieve, etc, que con el tiempo pueden llevar a dicho sistema a un mal funcionamiento.
DESCRIPCIÓN DE LA INVENCIÓN El sistema sensor capacitivo para dispositivos de protección perimetral que la invención propone resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, al quedar camuflado en el propio muro, siendo inmune a condiciones meteorológicas adversas, y permitiendo detectar diferentes niveles de presión en orden a evitar el disparo de falsas alarmas. Para ello, el sistema que se preconiza está constituido a partir de dos elementos fundamentales, un elemento sensor y la electrónica de control asociada al mismo.
De forma más concreta, el elemento sensor se materializa en un capacitor flexible de espesor reducido pero de elevada longitud, destinado a integrarse de forma camuflada en la superficie de la valla rígida. De esta manera, la presencia de un intruso en la superficie de la valla se traduce en una deformación del elemento sensor que va acompañada de una variación de su capacidad eléctrica. La alimentación del elemento sensor así como la detección de las correspondientes variaciones de capacidad se realizan mediante el módulo electrónico de control.
Así pues, el elemento sensor se aplicará a lo largo de toda la superficie de la valla rígida, materializándose en un condensador de láminas plano paralelas cuyo núcleo dieléctrico posee flexibilidad mecánica, y en el que las láminas metálicas del condensador tienen un espeso muy bajo, mientras que el condensador va protegido en su parte inferior y superior por un material impermeabilizante que impide la variación de la capacidad por el contacto con líquidos en el entorno.
Por su parte, el módulo de electrónica de control se encarga de medir las variaciones de capacidad del elemento sensor a través un integrador conectado dicho elemento y cuya constante de integración depende de la capacidad de este módulo.
A partir de esta estructuración, debe tenerse en cuenta que las características dieléctricas y geométricas del elemento sensor deben ser tales que le confieran una capacidad eléctrica detectable por el módulo de electrónica de control.
Opcionalmente, la lámina inferior del condensador del elemento sensor puede ser la propia valla rígida en el caso de ser metálica o en su defecto una capa de pintura metalizada o cinta metálica adhesiva. El espesor de dicha lámina, en el caso de ser pintura metálica o cinta metálica adhesiva, estará comprendido preferentemente entre 25 y 250 mieras. Por su parte, y también de forma opcional, la lámina superior del condensador puede ser igualmente una capa de pintura metalizada o cinta metálica adhesiva, habiéndose previsto que su espesor en dicho caso esté comprendido preferentemente entre 25 y 250 mieras. Esta estructuración permite que la superficie total de todas y cada una de las láminas del condensador puedan variar entre 10 y 20.000 cm2, con un óptimo nivel de sensorización.
Complementariamente, el material dieléctrico flexible de la lámina intermedia puede materializarse en silicona, pintura flexible, goma ó espuma, con un espesor comprendido entre 0.1 y 10 mm, y con una constante dieléctrica que puede variar entre 2 y 9.
Como resulta evidente, la relación ancho largo del elemento sensor vendrá determinada por la aplicación y necesidades específicas de cada caso, mientras que la constante dieléctrica elegida para cada aplicación vendrá determinada por el rango de tensiones objeto de detección.
Por su parte, la capacidad eléctrica del módulo sensor viene condicionada por la electrónica de control la cual está constituida a partir de un microcontrolador y un integrador de constante variable encargándose este último de la medida de las variaciones de la capacidad del elemento sensor.
De esta forma, la constante del integrador cambia cuando varía la capacidad del módulo sensor, provocado por una deformación de dicho módulo.
Las variaciones en la constante del integrador son registradas por el microcontrolador, encargado de generar una señal cuadrada, con una frecuencia condicionada por la capacidad eléctrica del módulo sensor, siendo del orden de mHz. Dicha señal se transmite al integrador el cual transforma ésta en una señal triangular con una determinada pendiente.
La pendiente de la señal triangular está directamente relacionada con la capacidad asociada al módulo sensor, de manera que las variaciones en la pendiente de la señal triangular se asocian a variaciones en la capacidad del módulo sensor.
Para la medida de la pendiente de la señal triangular se establece un voltaje de referencia alto y un voltaje de referencia bajo. El valor de la pendiente de la señal triangular se realiza a partir de la medida del tiempo transcurrido entre el voltaje de referencia alto y el bajo.
El nivel mínimo de alarma se establece cuando el incremento en la variación del voltaje supera un 10% respecto al voltaje en ausencia de tensión mecánica.
Así pues, los niveles de detección se establecen a partir de los porcentajes de variación de la pendiente de la señal triangular, de manera que la electrónica de control permite monitorizar capacidades en un rango comprendido entre 50 pF y 7 nF
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una representación esquemática del sistema sensor capacitivo para protección perimetral objeto de la presente invención, donde se muestra el módulo sensor y el módulo electrónico de medida así como las partes fundamentales de cada uno.
La figura 2.- Muestra el diagrama de bloques funcionales fundamentales del conjunto de la figura anterior. Las figuras 3a y 3b.- Muestran una pareja de gráficas en las que puede observarse la señal cuadrada generada por el microcontrolador así como la señal correspondiente y triangular obtenida por el integrador. Sobre la señal triangular se muestran los voltajes umbrales así como los tiempos correspondientes.
Las figuras 4a y 4b.- Muestran una pareja de gráficas correspondientes a la sensibilidad del elemento sensor con la carga aplicada. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas, y en especial de la figura 1, puede observarse como en el sistema sensor capacitivo para dispositivos de protección perimetral de la invención se definen dos elementos principales, un elemento sensor (1) y un módulo electrónico de control (2), conectados entre sí a través de un conector BNC (3), habiéndose previsto que dicho módulo electrónico de control cuente con una entrada (4) para su alimentación a través de un generador de voltaje (5) de 5 voltios, así como un puerto de conexión (6) a un ordenador (7), y un segundo puerto (8), al que es conectable un programador (9) para programación de dicho módulo electrónico.
A modo meramente ejemplario, y en relación a los ensayos correspondientes a las figuras 3 y 4, el elemento sensor podrá tener una longitud de 20 metros de longitud, 1 cm de ancho y 3 mm de espesor, estando éste constituido a partir de una pareja de láminas conductoras (10-10') y una lámina dieléctrica (1 1), adoptando la estructura tipo sándwich de un condensador, de manera que en el ejemplo de realización práctico elegido, las laminas conductoras (10-10') son cintas adhesivas de cobre de espesor 70 mieras y la lámina dieléctrica (11) es una espuma flexible.
De esta manera, el elemento sensor (1) modifica su capacidad al ser presionado, lo que conlleva la generación de una alarma de intrusión.
Desde un punto de vista funcional, el sistema descrito se simplificaría tal como muestra la figura 2, en la que el sensor (1) se comporta como un condensador (1) de capacidad variable, mientras que en el módulo electrónico de control se definen dos elementos fundamentales, un microcontrolador ( 12) y un integrador (13). El microcontrolador (12) genera una señal cuadrada que el integrador (13) transforma en una señal triangular, al integrar la señal cuadrada.
La pendiente de la señal triangular es relación directa del valor del módulo sensor capacitivo, por lo que una variación del valor del condensador implica una variación de la pendiente de la señal cuadrada. La pendiente de la señal se mide entre unos valores de referencia fijos sobre la tensión de alimentación según muestra la figura 3. La frecuencia de la señal cuadrada está condicionada por la capacidad del elemento sensor que en este caso varía entre 514 pF y 633 pF. El dispositivo no mide capacidad sino unidades arbitrarias que se corresponden con un valor de 2025 para la capacidad de 514 pF y un valor de 2492 unidades para 635 pF.
La sensibilidad del sensor, a 16°C, con la carga se muestra en las figuras 4 a). La carga está expresada en Kg/10cm2 , hasta un máximo de 15 Kg/10cm2, entendiéndose que esta sería la carga máxima correspondiente a una persona de 150 kg apoyándose con una sola mano. Es una variación lineal que permite distinguir entre los distintos intrusos que produzcan variación ( pájaro, gato, lluvia, humanos, etc.)
Por último, la figura 4 b) muestra las pruebas realizadas con cargas extremas. El elemento sensor se sometió a varios ciclos de carga, de 25 a 100 Kg/cm2. Las medidas son repetitivas y además muestran el elemento sensor es capaz de detectar cargas muy elevadas.

Claims

R E I V I N D I C A C I O N E S
Ia.- Sistema sensor capacitivo para dispositivos de protección perimetral, caracterizado porque está constituido a partir de un elemento sensor (1), materializado en un capacitor flexible de espesor reducido y elevada longitud, destinado a integrarse, preferentemente de forma camuflada en la superficie de la valla rígida, y un módulo de electrónica de control (2) y medida de las variaciones de capacidad del elemento sensor (1) a través un integrador (13) conectado dicho elemento y asociado a un microcontrolador (12) de registro de dichas posibles variaciones.
2a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación Γ, caracterizado porque el elemento sensor (1) se conecta al módulo electrónico de control (2), a través de un conector BNC (3).
3a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación Γ, caracterizado porque el módulo electrónico de control (2) incorpora una entrada (4) para su alimentación a través de un generador de voltaje (5).
4a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación Γ, caracterizado porque el módulo electrónico de control (2) incorpora un puerto de conexión (6) a un ordenador (7).
5a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación Γ, caracterizado porque el módulo electrónico de control (2) incorpora un segundo puerto (8), al que es conectable un programador (9). 6a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación Γ, caracterizado porque, el elemento sensor (1) se materializa en un condensador de láminas plano paralelas cuyo núcleo dieléctrico posee flexibilidad mecánica, y en el que las láminas metálicas del condensador tienen un espeso muy bajo.
7a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 6a, caracterizado porque, el condensador va protegido en su extremidad inferior y superior por un material impermeabilizante.
8a.-Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 6a, caracterizado porque, opcionalmente, la lámina inferior del condensador del elemento sensor puede ser la propia valla rígida en el caso de ser metálica o en su defecto una capa de pintura metalizada o cinta metálica adhesiva.
9a.-Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 8a, caracterizado porque, el espesor de la lámina, en el caso de ser pintura metálica o cinta metálica adhesiva, estará comprendido preferentemente entre 25 y 250 mieras.
10a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 6a, caracterizado porque, la lámina superior del condensador se materializa en una capa de pintura metalizada o cinta metálica adhesiva, habiéndose previsto que su espesor en dicho caso esté comprendido preferentemente entre 25 y 250 mieras.
1 1a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicaciones anteriores, caracterizado porque la superficie total de todas y cada una de las láminas del condensador puedan variar entre 10 y 20.000 cm2.
12a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 6a, caracterizado porque el material dieléctrico flexible de la lámina intermedia puede materializarse en silicona, pintura flexible, goma ó espuma, con un espesor comprendido entre 0.1 y 10 mm, y con una constante dieléctrica que puede variar entre 2 y 9.
13a.- Sistema sensor capacitivo para dispositivos de protección perimetral, según reivindicación 6a, caracterizado porque la relación ancho largo del elemento sensor, así como la elección del dieléctrico viene condicionada por el rango de presiones que se quieran detectar, a su vez la corriente dieléctrica debe dar capacidades dentro de un rango preestablecido.
PCT/ES2011/070115 2010-02-25 2011-02-23 Sistema sensor capacitivo para dispositivos de protección perimetral WO2011104407A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201030275A ES2376453B1 (es) 2010-02-25 2010-02-25 Sistema sensor capacitivo para dispositivos de protección perimetral.
ESP201030275 2010-02-25

Publications (2)

Publication Number Publication Date
WO2011104407A1 true WO2011104407A1 (es) 2011-09-01
WO2011104407A4 WO2011104407A4 (es) 2011-11-03

Family

ID=44506154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070115 WO2011104407A1 (es) 2010-02-25 2011-02-23 Sistema sensor capacitivo para dispositivos de protección perimetral

Country Status (2)

Country Link
ES (1) ES2376453B1 (es)
WO (1) WO2011104407A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021919A1 (en) * 2016-07-27 2018-02-01 Resene Paints Limited Proximity sensing and control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763482A (en) * 1971-02-01 1973-10-02 Gte Sylvania Inc Coaxial cable transducer
US4197529A (en) * 1978-02-17 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Intrusion detection apparatus
GB1585602A (en) * 1976-05-31 1981-03-11 Bekaert Sa Nv Fence
EP0334531A1 (en) * 1988-03-22 1989-09-27 Imperial Chemical Industries Plc Concealable proximity detector
US20020101251A1 (en) * 2000-11-30 2002-08-01 Agilent Technologies, Inc. Apparatus for and method of measuring capacitance with high accuracy
WO2008135040A2 (de) * 2007-05-08 2008-11-13 Universität Karlsruhe (Th) Kapazitive kraftsensoranordnung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107366C1 (es) * 1991-03-08 1992-04-23 Leica Heerbrugg Ag, Heerbrugg, Ch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763482A (en) * 1971-02-01 1973-10-02 Gte Sylvania Inc Coaxial cable transducer
GB1585602A (en) * 1976-05-31 1981-03-11 Bekaert Sa Nv Fence
US4197529A (en) * 1978-02-17 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Intrusion detection apparatus
EP0334531A1 (en) * 1988-03-22 1989-09-27 Imperial Chemical Industries Plc Concealable proximity detector
US20020101251A1 (en) * 2000-11-30 2002-08-01 Agilent Technologies, Inc. Apparatus for and method of measuring capacitance with high accuracy
WO2008135040A2 (de) * 2007-05-08 2008-11-13 Universität Karlsruhe (Th) Kapazitive kraftsensoranordnung

Also Published As

Publication number Publication date
ES2376453B1 (es) 2013-01-29
WO2011104407A4 (es) 2011-11-03
ES2376453A1 (es) 2012-03-14

Similar Documents

Publication Publication Date Title
ES2599611T3 (es) Protección antiaprisionamiento capacitiva independiente de la humedad
ES2476025T3 (es) Detector de metales
ES2823298T3 (es) Detección de objetos
WO2016044847A1 (en) Snow and ice melting system and sensors therefor
CA2123296C (en) Passive type moving object detection system
US9117361B1 (en) Hand sanitizer monitor
AU2008234672A1 (en) Fluid level sensor
CN206727981U (zh) 用于识别对医疗设备的接近的传感器装置和医疗设备
AU2003275938A1 (en) Sensor measuring by capacitance and detection device with capacitive sensors for the detection of a trapping situation
US20200007741A1 (en) Detection system and method
ES2565548B1 (es) Sensor de campos electrostáticos y sistema de seguridad en ambientes industriales
MY138573A (en) Liquid quantity sensing device
WO2014143348A3 (en) Radiation sensitive devices and systems for detection of radioactive materials and related methods
WO2011098854A9 (en) Method for the detection of a body with respect to a surface, detecting device for the implementation of the method, and surface comprising such devise
WO2008012823A2 (en) Passive infrared detectors
RU2017137939A (ru) Домашняя система безопасности
WO2011109736A3 (en) Obscured feature detector
WO2011104407A1 (es) Sistema sensor capacitivo para dispositivos de protección perimetral
Karlsson et al. A capacitive sensor for the detection of humans in a robot cell
US10858857B2 (en) Anti-climbing device
ES2794095T3 (es) Un procedimiento de fijación de una unidad electrónica a un pañal
ES2354059T3 (es) Dispositivo para detectar el nivel de líquido para bombas sumergidas.
KR101493234B1 (ko) 파이프형 감지장치 및 이를 이용한 침입감지시스템
CN107862820A (zh) 一种周界报警系统
US10444710B1 (en) Timing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11746900

Country of ref document: EP

Kind code of ref document: A1