WO2011103780A1 - 测量高强度聚焦超声功率的吸收靶 - Google Patents

测量高强度聚焦超声功率的吸收靶 Download PDF

Info

Publication number
WO2011103780A1
WO2011103780A1 PCT/CN2011/070816 CN2011070816W WO2011103780A1 WO 2011103780 A1 WO2011103780 A1 WO 2011103780A1 CN 2011070816 W CN2011070816 W CN 2011070816W WO 2011103780 A1 WO2011103780 A1 WO 2011103780A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
cone
basic unit
base
container
Prior art date
Application number
PCT/CN2011/070816
Other languages
English (en)
French (fr)
Inventor
赖启基
赖宁磊
熊国干
刘可凡
Original Assignee
南京海克医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京海克医疗设备有限公司 filed Critical 南京海克医疗设备有限公司
Priority to AU2011220262A priority Critical patent/AU2011220262C1/en
Priority to EP11746822.3A priority patent/EP2503308B1/en
Priority to JP2012554203A priority patent/JP5770210B2/ja
Priority to US13/508,510 priority patent/US8863577B2/en
Priority to KR1020127012389A priority patent/KR101587868B1/ko
Publication of WO2011103780A1 publication Critical patent/WO2011103780A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the present invention relates to an absorption target for measuring ultrasonic powers of up to kilowatts or more, and more particularly to an absorption target for measuring high intensity focused ultrasound (HIFU) power of more than kilowatts.
  • HIFU high intensity focused ultrasound
  • High intensity focused ultrasound is mainly used for the treatment of malignant tumors. Its clinical features include: non-invasive or minimally invasive surgical concepts; more sensitive to killing of hypoxic tumor cells; no difference in the treatment of proliferative and non-proliferative tumors (liver, kidney tumors, etc.) The body's specific immune response to tumors and other advantages.
  • the bottleneck difficulty encountered by existing HIFU in the treatment of deep tumors, subcostal liver tumors and large tumors is not that HIFU is difficult to obtain high focused sound intensity.
  • HIFU high-intensity focused ultrasound
  • the object of the present invention is to provide a high-intensity focused ultrasound power capable of measuring high-intensity focused ultrasound power for the current measurement of the high-intensity focused ultrasound (HIFU) device.
  • HIFU high-intensity focused ultrasound
  • An absorption target for measuring high-intensity focused ultrasonic power comprising: a container and a group cone target immersed in a liquid medium, wherein the group cone target is composed of the same basic unit
  • the upper part of the basic unit is a pyramid, and the lower part is a corresponding prismatic base.
  • the vertices of each side of the pyramid are gathered in the prismatic base to form a cone top, and the pyramid and the base are square or equilateral, or
  • the base of the base unit is closely and closely arranged at the bottom of the container, and the sound waves of the incident cone target may be reflected or scattered at least twice to escape the space outside the group cone target;
  • the basic unit of the absorption target is densely covered with open micropores.
  • the substrate on which the basic unit is made is an inorganic solid material containing open micropores; and the substrate on which the container is made is made of an inorganic solid material having a high thermal conductivity.
  • the base material for making the basic unit is a commercially available inorganic solid material, or a special elemental or composite inorganic solid material containing open micropores, preferably brick, or an open microporous stone, or Rocks containing open micropores, or graphite;
  • the substrate from which the container is made is preferably metal, or glass.
  • the liquid medium used for absorbing the target is degassed water
  • the height of the prismatic base of the basic unit should satisfy the acoustic attenuation of >20 ( ⁇ ; the overall bottom surface of the cluster cone target should be at least -26 dB larger than the required interception). More than 1.5 times the width of the sound.
  • the invention has the advantages that: due to the use of the group cone target, it has an excellent physical characteristic that the reflection coefficient is less than -30 dB can be easily obtained, since the substrate used is an inorganic solid material, preferably a brick, or a stone containing open micropores, Or rock with open micropores, or graphite, with high specific heat, low temperature rise rate, low expansion rate, high-dose acoustic illumination, non-radiative invariance, etc., can be used to measure kilowatt-level focused ultrasonic power, and stable performance , long lasting.
  • the substrate used is an inorganic solid material, preferably a brick, or a stone containing open micropores, Or rock with open micropores, or graphite, with high specific heat, low temperature rise rate, low expansion rate, high-dose acoustic illumination, non-radiative invariance, etc.
  • FIG. 1 is a schematic structural view of a basic unit of a cone target of the present invention
  • FIG. 2 is a schematic view showing several sectional geometries of a basic unit of a group cone target
  • FIG. 3 is a schematic view showing the structure of a group cone target according to an embodiment of the present invention.
  • Figure 4 is a radiation power sound power balance measurement system for measuring a HIFU transducer using the present invention.
  • the upper portion of the cluster cone target unit 1 is a pyramid 3 and the lower portion is a prismatic base 4.
  • the basic unit 1 has a cross section of a: square, or b: an equilateral triangle, or c: a regular hexagon, and the minimum dimension (Wmin) of the overall bottom surface of the cluster cone target is at least 1.5 times the intercepting -26 dB speed width.
  • the height of the prismatic base 4 should satisfy the acoustic attenuation of >20 dB; the vertices of the sides of the pyramid 3 are collected at the center of the mid-perpendicular line of the bottom surface of the base unit 1 to form a cone top.
  • the base unit 1 is densely covered with open micropores.
  • the prismatic bases 4 of the basic units 1 are closely arranged in the rectangular container 2 to form a group cone target; the sound beam of the incident group cone target needs to be at least inverted in the group cone target from the cone top to the cone bottom. (scatter) Shoot more than 2 times to return to the off-target space.
  • the basic unit 1 should be made of an inorganic solid material having a small acoustic pressure reflection coefficient and a high thermal conductivity between the liquid medium used for the absorption target, for example; a rectangular container should be made of a solid material having a high inorganic and high thermal conductivity.
  • mullite 06 brick (refractory brick) produced by Yixing Shengde Thermal Ceramics Co., Ltd.
  • the base of the cone target base unit is 25mm high, and its cross section is a square with a side length of 16mm.
  • the height of the pyramidal target top to the upper surface of the base is 30mm.
  • the choice of inorganic solid materials for rectangular containers glass: glass.
  • the volume of the container is 256mm x 256mm x 60mm (length ⁇ width ⁇ deep).
  • the state of use of the absorption target The liquid medium is degassed water; the maximum sound power can be measured not less than the method: Before the test, the group cone target 5 is placed in the liquid medium, and under the vacuum state, the group cone target 5 is excluded. The air in the micropores fills the open micropores densely packed in the basic unit of the cluster cone 5 with a liquid medium.
  • the ultrasonic radiation force device is shown in Fig. 4.
  • the ultrasonic source should be fixed on the precision three-dimensional motion platform, and the absorption target is suspended under the transducer 6 by the counterweight electronic balance 7 through the lever mechanism.
  • the sound source beam axis should be parallel to the vertical axis of the absorption target.
  • an ultrasonic power absorbing plate 8 should be disposed on the inner wall of the periphery of the measuring ultrasonic radiation force device.
  • the axial position of the absorption target should be set at a position away from the sound focus close to the sound source.
  • the bottom surface of the absorption target should be perpendicular to the beam axis, and the target center should be aligned with the beam axis, and the distance from the center of the transducer 6 or the surface of the transducer 6 should be no more than 0.7 times the sound pressure focal length.
  • the absorption target should be immersed in degassed water for vacuum degassing for more than 30 minutes, and the instrument should be preheated for more than 15 minutes.
  • the short-term (2 ⁇ 4S) stable value of the counterweight electronic balance 7 when the sound pressure is applied should be measured.
  • the difference between the two is the normal direction of the group cone target 5.
  • the force measured by the counterweight electronic balance 7 should be converted to the actual force absorbed by the target by calibrating the force arm ratio.
  • the surface of the cone cone 5 and the transducer 6 should be observed at any time to remove small bubbles appearing on the surface in time.
  • F-... absorbs the normal radiation force of the target, in units of (N);
  • the material of the group cone target 5 in the absorption target is a commercially available inorganic solid material, or a special elemental or composite inorganic solid material containing open micropores, preferably brick. Or a stone containing open micropores, or a rock containing open micropores, or graphite; the substrate on which the container is made is preferably metal, or glass.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)

Description

测量高强度聚焦超声功率的吸收靶
技术领域
本发明涉及一种用于测量超声功率高达千瓦以上的吸收靶, 尤其是用于 测量高强度聚焦超声 (HIFU) 功率达千瓦以上的吸收靶。 背景技术
高强度聚焦超声 (HIFU) 主要用于恶性肿瘤治疗。 其临床有诸多特色: 可实现无创或微创外科理念; 对乏氧肿瘤细胞有更敏感的杀伤性; 对增生性 和非增生性肿瘤 (肝、 肾肿瘤等) 治疗的无差异性以及可诱发肌体对肿瘤的 特异性免疫反应等优点。然而现有 HIFU在治疗深部肿瘤、肋下肝肿瘤和大体 积肿瘤时所遇到的瓶颈性困难并非 HIFU 难以获得很高的聚焦声强。 例如当 HIFU取工作频率 f=1.5MHz时,为获得自由声场中焦点声强 IF(^15000W/cm2, 只需声功率 PA(^150 (W)。 然而由于人体组织天然的导热性和血供,导致靶区 在 HIFU加热的过程也同步散热,根据人体平均软组织已知声学、 生物物理学 参数, 不难判知(实验与计算机模拟)上述 HIFU能有效治疗的皮下平均软组 织病灶的最大深度 (最大焦皮距) 仅约数厘米。 而且治疗速率很低, 即使只 是中等大小的病灶, 治疗时间之长也令人难以接受。 研究在适当的频率下能 可靠发射千瓦级、 具有优势聚焦特性的 HIFU, 是其能否真正实现"一次性无 创外科 "理念的一个关键,从而使千瓦级超声功率的测量成为研发、 生产、 实际 使用和诊测维修高强度聚焦超声 (HIFU) 装备必不可少的关键环节。 南京海 克医疗设备有限公司曾参考有关文献, 曾经以金属为材质设计了一种可用于 测量千瓦级 HIFU声功率的凹锥形反射靶。实验证明此类反射靶无法使不同物 理结构的 HIFU 换能器发射的声束均能满足必要的靶的纵、 横波全内反射条 件, 由其测量获得的声辐射力用于计算辐射源声功率, 可信度必然存在问题。
目前国内外用于大功率高强度聚焦超声功率的通常方法多是采取测量作 用于吸收靶法向辐射力以求得声源所发射的声功率, 我国国家标准 (GB/T19890-2005 ) 所推荐的方法也不例外。 但目前能够实用的只有可测量 百瓦级声功率的吸收靶, 无法满足 HIFU的现状及发展需求。 发明内容
本发明目的在于: 针对目前测量高强度聚焦超声 (HIFU) 设备的吸收靶 存在的测量声功率上限太低缺陷, 提供一种能测量高强度聚焦超声功率达千 瓦级的吸收靶。
本发明的目的是这样实现的: 一种测量高强度聚焦超声功率的吸收靶, 其特征在于: 包括容器以及浸没在液体介质中的群锥靶, 其中, 群锥靶由几 何形状相同的基本单元组成, 基本单元上部为棱锥体, 下部为相应的棱柱形 底座, 棱锥体各侧面的顶点汇集于该棱柱形底座中垂线形成锥顶, 棱锥体和 底座的截面为正方形或正三角形, 或正六边形; 基本单元的底座在容器内的 底部无缝紧密排列, 入射群锥靶的声波至少经过两次反射或散射才有可能逸 出群锥靶外的空间;
吸收靶基本单元体内密布有开放性微孔。
在本发明中: 制作基本单元的基材为含有开放性微孔的无机固体材料; 制作容器的基材采用导热率较高的无机固体材料。
在本发明中: 制作基本单元的基材为市场采购的无机固体材料, 或采用 特制的单质或复合质含有开放性微孔的无机固体材料, 优选砖, 或含有开放 性微孔的石, 或含有开放性微孔的岩, 或石墨; 制作容器的基材优选金属, 或玻璃。
在本发明中: 吸收靶使用的液体介质为去气水, 基本单元的棱柱形底座 的高度应该满足声衰减>20(©; 群锥靶的总体底面最小尺寸至少应该大于所 需截获的 -26dB声速宽度的 1.5倍以上。
本发明的优点在于: 由于采用群锥靶, 具有可轻易获得反射系数低于 -30dB的优良物理特征, 由于因其所用基材为无机固体材料, 优选砖, 或含有 开放性微孔的石, 或含有开放性微孔的岩, 或石墨, 具有高比热、 低温升率、 低膨胀率、 大剂量声照射不辐解不变性等特质, 从而可用于测量千瓦级聚焦 超声功率, 且性能稳定、 使用寿命长。 附图说明
图 1是本发明群锥靶基本单元的结构示意图;
图 2是群锥靶基本单元的几种截面几何形状示意图;
图 3是本发明实施的群锥靶结构示意图;
图 4是利用本发明对 HIFU换能器进行测量的辐射力声功率天平测量系 统。
图中: 1、 基本单元, 2、 容器, 3、 棱锥体, 4、 棱柱形底座, 5、 群锥靶, 6、 换能器, 7、 配重电子天平, 8、 超声功率吸收板, 9、 超声射频源, 10、 频率计。
附图非限制性地公开了本发明实施例的基本结构示意图, 下面结合附图 对本发明的实施例作进一步说明。
由图 1可见: 本发明中群锥靶基本单元 1的上部为棱锥体 3, 下部为棱柱 形底座 4。 由图 2可见, 基本单元 1的截面为 a:正方形, 或 b:正三角形, 或 c: 正六边形, 群锥靶总体底面的最小尺寸 (Wmin) 至少为截获 -26dB 声速宽度 的 1.5倍,棱柱形底座 4的高度应满足声衰减 >20dB; 棱锥体 3各侧面的顶点 汇集于该基本单元 1底面的中垂线中心形成锥顶。 基本单元 1体内密布有开 放性微孔。
由图 3可见, 各基本单元 1的棱柱形底座 4在矩形容器 2中无缝紧密排 列,形成群锥靶;入射群锥靶的声束自锥顶至锥底至少需要在群锥靶内反(散) 射 2次以上才能返回靶外空间。
具体实施时, 基本单元 1 应采用与吸收靶使用的液体介质间声压反射系 数小, 且导热率高的无机固体材料制作, 例如; 矩形容器应该采用无机且导 热率较高的固体材料制作。 具体实施方式
群锥靶的结构和使用条件
制作群锥靶基本单元的无机固体材料选择: 宜兴市圣德热陶瓷有限公司 生产的莫来石 06砖 (耐火砖)。
群锥靶基本单元的底座高 25mm, 其横截面是边长为 16mm的正方形, 棱 锥形靶顶到底座上表面的高度为 30mm。
制作矩形容器无机固体材料选用 : 玻璃。 容器的容积为 256mmx256mmx60mm (长 χ宽 χ深)。
矩形容器中无缝紧密排列 16x 16 (行、 列) 个基本单元。
本吸收靶使用状态: 液体介质为去气水; 可测量最大声功率不低于 其方法是: 测试前, 先将群锥靶 5 置于液体介质中, 在真空状态下, 排 除群锥靶 5 中微孔内的空气, 使群锥靶 5各基本单元体内密布的开放性微孔 中充满液体介质。
测量超声辐射力装置如图 4所示, 超声源应该固定在精密三维运动平台, 同时由配重电子天平 7通过杠杆机构将吸收靶被悬吊在换能器 6下方, 其超 声源声束轴应与吸收靶重垂线平行。 此外, 测量超声辐射力装置的四周内壁 上还应该设置超声功率吸收板 8。为了避免非线性和声流等对辐射力测量的影 响, 吸收靶的轴向位置应设置在偏离声焦点靠近声源处。 吸收靶底平面应垂 直于声束轴, 靶心对准声束轴, 与换能器 6或换能器 6的表面中心的距离不 大于 0.7倍声压焦距为宜。测量前吸收靶应浸泡在脱气水中真空脱气 30min以 上, 仪器预热 15min以上。
为减少热漂移的影响, 应测量施加声压时与中断超声时配重电子天平 7 示值的短时 (2〜4S ) 稳定值, 二者之差即为群锥靶 5所受的法向辐射力 F与 重力加速度 g的比值 m, 单位 kg。
采用杠杆机构时, 配重电子天平 7 测得的力应通过校准力臂比, 换算成 实际的吸收靶所受的力。
测量中应随时观察群锥靶 5和换能器 6表面, 及时清除表面出现的小气 泡。
超声功率的计算 (忽略去气水介质的声衰减影响)
声源为中心开圆孔的球台型聚焦单元换能器的声功率计算
Figure imgf000006_0001
式中: p—__声功率, 单位为 (w);
C -水的声速, 单位为 (m/s) ;
F-…吸收靶所受的法向辐射力, 单位为 (N) ;
…球台型聚焦换能器的外孔径半会聚角, 单位为 (°); β2…-球台型聚焦换能器的中心内孔径半会聚角, 单位为 (°)。 若声源为无中心孔的球冠型聚焦单元换能器, 式 C.1 也适用, 只是此时 cosp2=l。
以上实施例不是对本发明的具体限制, 尤其是吸收靶中群锥靶 5 的材料 为市场采购的无机固体材料, 或采用特制的单质或复合质含有开放性微孔的 无机固体材料, 优选砖, 或含有开放性微孔的石, 或含有开放性微孔的岩, 或石墨; 制作容器的基材优选金属, 或玻璃。

Claims

权 利 要 求 书
1、 一种测量高强度聚焦超声功率的吸收靶, 其特征在于: 包括容器以及 浸没在液体介质中的群锥靶, 其中, 群锥靶由几何形状相同的基本单元组成, 基本单元上部为棱锥体, 下部为相应的棱柱形底座, 棱锥体各侧面的顶点汇 集于该棱柱形底座中垂线形成锥顶, 棱锥体和底座的截面为正方形或正三角 形, 或正六边形; 基本单元的底座在容器内的底部无缝紧密排列, 入射群锥 靶的声波至少经过两次反射或散射才有可能逸出群锥靶外的空间;
吸收靶基本单元体内密布有开放性微孔。
2、 根据权利要求 1所述的测量高强度聚焦超声功率的吸收靶, 其特征在 于: 制作基本单元的基材为含有开放性微孔的无机固体材料; 制作容器的基 材采用导热率较高的无机固体材料。
3、 根据权利要求 2所述的测量高强度聚焦超声功率的吸收靶, 其特征在 于: 制作基本单元的基材优选砖, 或含有开放性微孔的石, 或含有开放性微 孔的岩, 或石墨; 制作容器的基材优选金属, 或玻璃。
4、根据权利要求 1〜 3之一所述的测量高强度聚焦超声功率的吸收靶, 其 特征在于: 吸收靶使用的液体介质为水, 基本单元的棱柱形底座的高度应该 满足声衰减 >20dB ; 群锥靶的总体底面最小尺寸至少应该大于所需截获的 -26dB声速宽度的 1.5倍以上。
PCT/CN2011/070816 2010-02-26 2011-01-30 测量高强度聚焦超声功率的吸收靶 WO2011103780A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2011220262A AU2011220262C1 (en) 2010-02-26 2011-01-30 Absorption target for measuring power of high-intensity focused ultrasound
EP11746822.3A EP2503308B1 (en) 2010-02-26 2011-01-30 Absorption target for measuring power of high-intensity focused ultrasound
JP2012554203A JP5770210B2 (ja) 2010-02-26 2011-01-30 高密度焦点式超音波測定吸収ターゲット
US13/508,510 US8863577B2 (en) 2010-02-26 2011-01-30 Absorption target for measuring power of high-intensity focused ultrasound
KR1020127012389A KR101587868B1 (ko) 2010-02-26 2011-01-30 고강도 초점 초음파의 전력을 측정하는 흡수 타겟

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010115001.2 2010-02-26
CN2010101150012A CN101788330B (zh) 2010-02-26 2010-02-26 测量高强度聚焦超声功率的吸收靶

Publications (1)

Publication Number Publication Date
WO2011103780A1 true WO2011103780A1 (zh) 2011-09-01

Family

ID=42531635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070816 WO2011103780A1 (zh) 2010-02-26 2011-01-30 测量高强度聚焦超声功率的吸收靶

Country Status (7)

Country Link
US (1) US8863577B2 (zh)
EP (1) EP2503308B1 (zh)
JP (1) JP5770210B2 (zh)
KR (1) KR101587868B1 (zh)
CN (1) CN101788330B (zh)
AU (1) AU2011220262C1 (zh)
WO (1) WO2011103780A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344238B2 (en) 2013-04-15 2016-05-17 Qualcomm Incorporated Systems and methods for backwards-compatible preamble formats for multiple access wireless communication
WO2020122135A1 (ja) * 2018-12-13 2020-06-18 テイ・エス テック株式会社 生体センサー及び乗物用シート

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2874794A (en) * 1954-06-18 1959-02-24 Earl F Kiernan Method and apparatus for measurement of total sound power output of an ultrasonic transducer
CN1057107A (zh) * 1990-05-31 1991-12-18 山西省计量测试研究所 超声功率计
DE19836727A1 (de) * 1998-08-13 2000-02-17 Burkhard Fay Thermoakustischer Sensor
CN2394209Y (zh) * 1999-11-03 2000-08-30 上海交通大学 大量程超声功率测量装置
CN2653506Y (zh) * 2003-10-23 2004-11-03 汪洋 高强聚焦超声治疗超声检测装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915017A (en) * 1973-08-30 1975-10-28 Us Health Portable ultrasonic radiometer
US4181004A (en) * 1978-01-17 1980-01-01 The Burdick Corporation Ultrasound wattmeter
DK342180A (da) * 1979-08-10 1981-02-11 Gruenzweig & Hartmann Montage Lydabsorbator isaer til lyddoede rum
US4625542A (en) * 1984-09-14 1986-12-02 Tab Leasing Radiation power measuring apparatus
JPS61105429A (ja) * 1984-10-29 1986-05-23 Matsushita Electric Ind Co Ltd 超音波出力強度測定装置
JPS61111423A (ja) * 1984-11-06 1986-05-29 Matsushita Electric Ind Co Ltd 超音波出力強度測定装置
CN2258749Y (zh) * 1996-05-10 1997-08-06 中国科学院合肥智能机械研究所 一种超声测量传感器
FR2778573B1 (fr) * 1998-05-13 2000-09-22 Technomed Medical Systems Reglage de frequence dans un appareil de traitement par ultrasons focalises de haute intensite
US6264607B1 (en) * 1998-11-17 2001-07-24 Metra Biosystems, Inc. Test object geometry for ultrasound transmission calibration
GB0127529D0 (en) * 2001-11-16 2002-01-09 Secretary Trade Ind Brit Ultrasonic power meter
JP3708885B2 (ja) * 2002-02-21 2005-10-19 三菱電線工業株式会社 電波音波吸収体
JP3836748B2 (ja) * 2002-04-22 2006-10-25 三菱電線工業株式会社 電波音波吸収構造物およびそれを用いた電波音波吸収壁
JP3879580B2 (ja) * 2002-04-23 2007-02-14 松下電工株式会社 超音波振動振幅測定装置
DE602004020252D1 (de) * 2003-11-04 2009-05-07 Univ Washington Zahnbürste mit einsatz eines akustischen wellenleiters
JP4909832B2 (ja) * 2007-07-18 2012-04-04 Tdk株式会社 電波音波吸収体及びそれを用いた電波音波無響室
TWI406684B (zh) * 2008-01-16 2013-09-01 Univ Chang Gung 非侵入式超音波即時溫度量測裝置及其方法
CN101639378A (zh) * 2008-07-29 2010-02-03 海扶宁高强超声技术(北京)有限公司 一种吸收靶及其应用方法和辐射压力测量系统
CN101650938A (zh) * 2008-08-15 2010-02-17 吴哲 用于空气环境吸声的方法及装置及隔声室制造方法
CN201803790U (zh) * 2010-02-26 2011-04-20 南京海克医疗设备有限公司 测量高强度聚焦超声功率的吸收靶

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2874794A (en) * 1954-06-18 1959-02-24 Earl F Kiernan Method and apparatus for measurement of total sound power output of an ultrasonic transducer
CN1057107A (zh) * 1990-05-31 1991-12-18 山西省计量测试研究所 超声功率计
DE19836727A1 (de) * 1998-08-13 2000-02-17 Burkhard Fay Thermoakustischer Sensor
CN2394209Y (zh) * 1999-11-03 2000-08-30 上海交通大学 大量程超声功率测量装置
CN2653506Y (zh) * 2003-10-23 2004-11-03 汪洋 高强聚焦超声治疗超声检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Acoustics-High intensity focused ultrasound(HIFU)measurements of acoustic power and field characteristics", NATIONAL STANDARD OF THE PEOPLES REPUBLIC OF CHINA, 9 September 2005 (2005-09-09)

Also Published As

Publication number Publication date
EP2503308A4 (en) 2016-08-03
JP2013520660A (ja) 2013-06-06
CN101788330B (zh) 2011-11-23
EP2503308A1 (en) 2012-09-26
US20120222486A1 (en) 2012-09-06
KR101587868B1 (ko) 2016-02-01
AU2011220262C1 (en) 2013-10-31
CN101788330A (zh) 2010-07-28
US8863577B2 (en) 2014-10-21
KR20130009734A (ko) 2013-01-23
AU2011220262A1 (en) 2012-05-03
AU2011220262B2 (en) 2013-05-09
EP2503308B1 (en) 2020-05-13
JP5770210B2 (ja) 2015-08-26

Similar Documents

Publication Publication Date Title
JP2020501826A (ja) 経頭蓋超音波治療及び撮像手順を行うためのシステム及び方法
Cochard et al. Ultrasonic focusing through the ribs using the DORT method
CN102670242A (zh) 一种超声聚焦换能器
WO2008062919A1 (en) Apparatus using focused ultrasound wave by controlling electronic signals and using method thereof
CN108310687A (zh) 一种聚焦超声声场的在线检测方法
Brentnall et al. A new high intensity focused ultrasound applicator for surgical applications
WO2011103780A1 (zh) 测量高强度聚焦超声功率的吸收靶
JP2017164559A (ja) 超音波装置
Liu et al. Theoretical and experimental study on temperature elevation behind ribs caused by weakly focused ultrasound
CN201803790U (zh) 测量高强度聚焦超声功率的吸收靶
JP6950098B2 (ja) 超音波変換器、集束超音波治療装置
Bhargava Dynamics of smart materials in high intensity focused ultrasound field
CN109044485B (zh) 一种高声压高声强超声波测量系统
CN206321337U (zh) 低超声频辐射力天平
Shaw How to measure HIFU output power properly
CN111904471A (zh) 一种便于超声科用胎儿安全监测保护装置
Hynynen Ultrasound heating technology
JP5234897B2 (ja) ファントム及びそれを用いた測定装置
Wolf et al. Ultrasonic temperature monitoring in tissue phantoms by locally resolved measurement of longitudinal and transverse wave speed
Gryzunov et al. HEAT AND SHOCK WAVE EFFECTS OF HIFU ON TISSUE-EQUIVALENT PHANTOM
Lafon et al. The feasibility of constructing a cylindrical array with a plane rotating beam for interstitial thermal surgery
TWI337087B (zh)
Gao et al. Ultrasound beam distortion and pressure reduction in transcostal focused ultrasound surgery
Dong et al. Simulation study on the effect of high-intensity focused ultrasound on thermal lesion of biological tissue under different treatment modes.
Vera et al. Ultrasonic hyperthermia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11746822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011746822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011220262

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011220262

Country of ref document: AU

Date of ref document: 20110130

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13508510

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127012389

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012554203

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE