WO2011102625A2 - Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material - Google Patents

Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material Download PDF

Info

Publication number
WO2011102625A2
WO2011102625A2 PCT/KR2011/000967 KR2011000967W WO2011102625A2 WO 2011102625 A2 WO2011102625 A2 WO 2011102625A2 KR 2011000967 W KR2011000967 W KR 2011000967W WO 2011102625 A2 WO2011102625 A2 WO 2011102625A2
Authority
WO
WIPO (PCT)
Prior art keywords
drum
calibration
dead time
dose rate
correction factor
Prior art date
Application number
PCT/KR2011/000967
Other languages
French (fr)
Korean (ko)
Other versions
WO2011102625A3 (en
Inventor
정성엽
Original Assignee
(주)성우이앤티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)성우이앤티 filed Critical (주)성우이앤티
Publication of WO2011102625A2 publication Critical patent/WO2011102625A2/en
Publication of WO2011102625A3 publication Critical patent/WO2011102625A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques

Definitions

  • the present invention relates to a method for detecting and calibrating a reference radioactive waste drum. More specifically, the drum nuclide analysis device can be calibrated in the shortest time, thereby minimizing radiation exposure of workers and reducing costs.
  • the present invention relates to a method for retrieval of reference radioactive waste drums for the indirect calibration validity of drum nuclide analysis equipment and to verify the calibration of the radionuclide.
  • a valid measurement result that maintains traceability with a national standard representative body can be obtained by calibrating the system with a standard material representative of the measurement range.
  • the standard material having several representative values is calibrated, and the standard material approaching the upper limit or the lower limit of the measurement range is inevitably increased due to technical difficulty in manufacturing.
  • standard radiation source In the case of radioactive materials, not only technical difficulty but also the cost of safety management of manufactured standard materials (hereinafter referred to as standard radiation source) adds to the cost of use.
  • safety management costs such as storage and handling of the produced isotopes along with technical problems such as the limitation of production facilities (required more than a certain size of experimental reactor), neutron beam control technology, and manufacturing time. Do.
  • standard radioactive sources such as management by licensee and license or report of isotope is very strict and it is not easy to use. Calibration techniques are being developed recently.
  • Radionuclear drum nuclide analysis device (hereinafter referred to as drum nuclide analysis device) is a device that analyzes the radioactive amount of radioactive waste present in the drum in a non-destructive way to permanently dispose of radioactive waste generated from nuclear power plant.
  • the radioactivity of radioactive waste drums is classified into low and high level radioactive wastes according to their contents, and the permanent disposal of low and low level wastes currently under construction in Gyeongju is limited to low and low level wastes.
  • the measurement results of the drum nucleus analyzer are the basic data to confirm that the total radioactivity of the drum to be permanently disposed does not exceed the storage limit of the disposal facility. Therefore, a high degree of accuracy is required.
  • the analysis range of the drum nucleus analyzer in Korea is designed to measure all of them with a single detector for drums with a wide range of radiation dose from 0 to 100 mSv / hr based on surface dose in consideration of the radioactive level of wastes generated from nuclear power plants. .
  • a measurement range of 0 to 2 mSv / hr can be calibrated with a low-radiation standard radiation source, and a range of 2 mSv / hr to 100 mSv / hr can be calibrated using a high-radiation standard radiation source.
  • a calibration technique that avoids high radiation standard radioactive sources is used.
  • the problem with the measurement technique to extend the analysis range to the mid-level waste drum is the dead time correction of the detector. That is, the higher the radiation level of the object under test, the more accurate the dead time correction is, and the problem that the measurement accuracy deteriorates occurs.
  • Techniques for overcoming this problem include a method of controlling the radioactivity concentration of the object under measurement, such as a partial sampling or dilution of the object, and a method of controlling the number of radiation incident into the detector, such as an aperture, a measurement distance, or a shield. It is distinguished by. In the case of the drum nucleus analyzer, the latter method of changing the measurement structure is used because the object to be measured cannot be processed.
  • the drum nuclide analysis device installed in Korea changes the measurement distance (Near / Far) and the number of shields used (O: 0, A: 1, B: 2, C: 3), and the opening area of the aperture (
  • the combination of Wide / Narrow allows for a wide range of measurements with a single detector by altering the geometry.
  • the measurement structure of NOW means the use of proximity measurement-no shield window-wide aperture.
  • the low level measurement structure uses direct calibration using a standard radiation source (uniform radiation source) and a calibration drum (homogeneous medium), and then uses a direct calibration method to determine the efficiency of the detector.
  • the structure is a combination of direct and indirect calibration methods that calculate the efficiency of the detector using some direct measurements and density correction factors and shield plate correction factors. Both direct and indirect calibration methods perform calibration checks to complete calibration. As the scope of indirect calibration increases, the technical difficulty and procedures of calibration checks increase.
  • the calibration verification test is a test to verify the validity of the calibration. It is the final procedure and a necessary condition of the calibration.
  • the calibration can be completed only by the absolute calibration check which directly compares the certified radioactivity of the standard radiation source with the measurement result, and no technical problem occurs.
  • the validity of the calculated efficiency should be verified by combining the absolute calibration check and the relative calibration check, and the reference radioactive waste drum to replace the high radioactive standard radiation source should be selected in advance.
  • the reference radioactive waste drum must meet three conditions: first, homogeneity of radioactive material, second, suitable radioactive concentration for the comparative group of measurement targets, and third, homogeneous medium of drum contents. .
  • these verification tests should be confirmed in a short time using non-destructive methods using simple tools. The problem is described in more detail below.
  • the distribution and medium of the radiation source of a radioactive waste drum is non-uniform and heterogeneous.
  • the analysis cannot be completed in a single measurement.
  • it adopts a method of dividing and measuring the measured object in the vertical direction, and minimizes the non-uniformity and inhomogeneity by measuring by rotating the object to be measured in the circumferential direction.
  • a calibration tool with uniformity of a radiation source and homogeneity of a medium is required as described above.
  • the distribution of reference nuclides (Cs-137 and Co-60) in the drum should be uniform.
  • the concentration of the reference nuclide is a measurable radiation concentration for all the groups of measurement structures to be compared.
  • the drum medium should be homogeneous so that the radiation generated inside the drum is uniformly attenuated so that the count rate of gamma rays observed from outside the drum should be kept constant.
  • the radioactive waste drums since radioactive waste drums are stored densely in limited spaces, the radioactive waste drums must be selected quickly with a simple tool to minimize the radiation exposure of the operator, and the drum itself is the first barrier against the release of radioactive materials. As a result, non-destructive methods that do not damage the drum are required. Therefore, continuous research is required to ensure that the reference radioactive waste drum is searched and verified through a safe and efficient method.
  • the present invention has been made to solve the above problems of the prior art, by minimizing the exposure of the radiation exposure to the worker by inspecting the calibration of the drum nuclide analysis device in the shortest time, while reducing the cost of the test progress
  • the aim of the present invention is to provide a method for screening the reference radioactive waste drum for the indirect calibration validity test of the drum nuclide analysis device and to provide a calibration and verification method for maximizing the service life of the standard radioactive material.
  • the present invention includes a first step of measuring the dead time or dose rate by inserting a low-radiation standard radiation source in the calibration drum through one or more portable measuring instruments; A second step of selecting one of the plurality of portable measuring instruments as a reference portable measuring instrument and calculating a sensitivity correction factor CF Ri therefrom; A third step of calculating a position correction factor (CF Si ) by measuring a dead time or a dose rate according to the position of the equally divided section of the calibration drum through the portable measuring device; Measurement group dead time or dose rate correction factor of the calibration drum by using the average dose rate of the optimized drum surface in the group that performed the absolute calibration test and the average dose rate of the drum surface in the group that performed the relative calibration test ( Calculating a CF Gi ); A fifth step of calculating a dead time or a dose rate ⁇ Oi of the relative calibration check group through the dead time or dose rate correction factor and selecting a corresponding radioactive waste drum; The dead time or dose rate was measured using the portable measuring device for the entire equal division
  • the method for checking the calibration confirmation of the standard radioactive source and the reference radioactive waste drum exceeding the recommended period of use the first step of reducing the scope of performing the absolute calibration check to only the low-level measurement structure;
  • the configuration of the measurement structure corresponding to performing the relative calibration check may include some measurement structures that pass the absolute calibration check or some measurement structures that pass the previous relative calibration check.
  • the calibration check test method for maximizing the use period of the reference radioactive waste drum and the standard radioactive material for indirect calibration validation of the drum nuclide analysis device according to the present invention is a low radioactivity standard used for the absolute calibration check test.
  • the radiation source and the calibration drum measure the dead time or radiation dose rate of the portable measuring instrument, and measure the measurement result of the portable measuring instrument through the sensitivity correction factor of the portable measuring instrument, the position correction factor of the drum division, and the dead time correction factor of the measuring structure.
  • the drum with the optimal radioactivity concentration is selected, and the uniformity and medium of the radiation source using the relative ratio to the drum division section.
  • FIG. 1 is a view schematically showing a dead time measuring structure using a portable measuring device in the present invention.
  • FIG. 2 is a view schematically showing a dead time measurement structure for the position of the drum equal division section in the present invention.
  • the reference radioactive waste drum search method for indirect calibration validity checking of the drum nuclide analysis device basically includes a first step of measuring a dead time (dose rate) after inserting a low radioactive standard radiation source into a calibration drum, and a plurality of The second step of calculating the sensitivity correction factor (CF Ri ) from the reference portable meter of the portable measuring device, and calculates the position correction factor (CF Si ) by measuring the dead time (dose rate) according to the position of the equally divided section of the calibration drum Dead time (dose rate) correction factor of the calibration drum measurement group using the third step and the average drum surface dose rate in the group that performed the absolute calibration check and the average drum surface dose rate in the group that performed the relative calibration test (CF Gi) for calculating a fourth step, a dead time (dose rate), correction factor (CF Gi) by using the calculated dead time (dose rate) of the relative correction check test group ( ⁇ Oi) how to The fifth step of screening the dead waste drums and the dead time (dose rate) were measured for the entire equal division section of the
  • the analysis formats of the drum nuclide analysis apparatus are various (the domestic drum nuclide analysis apparatus supports the TGS (Tomographic Gamma Scanner) and the SGS (Segment Gamma Scanner) analysis formats) density suitable for all analysis formats (about 0.5 g)
  • TGS Tomographic Gamma Scanner
  • SGS Segment Gamma Scanner
  • the second step when the measurement of the first step is completed, one of the plurality of portable measuring instruments is selected as a reference portable measuring instrument, and the sensitivity correction factor CF Ri of the portable measuring instrument is calculated using the following equation. If you are using a single handheld meter, you can skip this step.
  • CF Ri is the sensitivity correction factor for the i-th handheld meter
  • ⁇ i is the dead time or dose rate of the i-th handheld meter
  • ⁇ r means the dead time or dose rate of the reference handheld meter.
  • CF Si is the position correction factor for stage i
  • ⁇ Si is the dead time or dose rate of the handheld instrument for stage i
  • ⁇ s4 is the dead time or dose rate of the handheld instrument for four stages (drum center height). it means.
  • a correction factor of the measurement structure group (CF Gi) is obtained by using the average of the drum surface dose rates optimized for the group performing the absolute calibration check and the average of the drum surface dose rates optimized for the group performing the relative calibration check. ) Is calculated according to the following equation.
  • this correction factor CF Gi is calculated for the number of relative calibration check groups. Using this correction factor CF Gi , it is possible to calculate the optimal dead time or dose rate of the group performing the relative calibration check.
  • the dead time or the dose rate ⁇ Oi suitable for the relative calibration check group is calculated using the following equation.
  • the same condition as the position measured in step 1 (middle drum height and separation distance), limited to radioactive waste drums similar to the density of the calibration drum (approximately 0.5 g / cc; drum weight approx. 100 kg for 200 liter drums).
  • the calculated dead time or dose rate is determined by considering the range of measurement uncertainty. If there are two or more groups of relative calibration checks, the optimal dead time corresponding to the number of groups is calculated and the drums are sorted. Through this process, the selected drum can be confirmed that the radiation concentration suitable for the group.
  • ⁇ Oi is the optimized dead time or dose rate of the i th relative calibration test group
  • ⁇ r is the dead time or dose rate measured using a low-radiation standard radiation source and calibration drum
  • CF Gi is the i th relative calibration Dead time or dose rate correction factor of the confirmatory test group.
  • the dead time or dose rate is measured with respect to the drum equalization section using a portable measuring instrument at the same separation distance as the first step. In this measurement, however, all divisions from the first to eighth stages of the drum are measured. Standardize the measured dead time or dose rate by applying the position correction factor (CF Si ) to each stage using the following equation. Standardized dead time is calculated as relative ratio based on the result of 1st stage measurement, and drums with a relative ratio of 1 for all divided sections are selected. The selection criteria then determine that a drum having a relative ratio within this interval, including the uncertainty of measurement, is suitable. Through this process it is possible to check the uniformity of the radiation source of the drum and the homogeneity of the medium at the same time.
  • ⁇ Ci is the dead time or dose rate of the standardized stage i
  • ⁇ r is the dead time measurement result of the handheld meter for stage i
  • CF Si is the position correction factor for stage i
  • R i is the relative ratio of the standardized dead time or dose rate at stage i
  • ⁇ Ci is the standardized dead time or dose rate at stage i
  • ⁇ C1 is the standardized dead time or dose rate at stage 1).
  • the presence or absence of reference species Cs-137 and Co-60 may be determined by performing simple spectroscopic analysis on the drum selected through the first to sixth steps using a portable measuring instrument or a drum nuclide analysis device. And, consequently, the final reference radioactive waste drum.
  • the measurement time for this search can be shortened by adding the sensitivity correction factor of the portable measuring apparatus as shown in the following equation.
  • Drum radionuclide analysis device can be selected by the reference radioactive waste drum search method for the indirect calibration validity test very easily to perform the calibration and calibration verification according to the present invention described below
  • the use of inspection methods can extend the service life of low-radiation standard radioactive sources, thereby reducing the cost of screening and verifying the reference radioactive waste drums.
  • the duration of use of standard radioactive sources for calibration is finite because they naturally decrease due to the inherent half-life of radionuclides.
  • the general recommended service life is up to one half-life of the nuclides included in the source. If the recommended service life is exceeded, repurchase it.
  • the reference source of the drum nucleus analyzer was Cs-137 and Co-60, and the shortest half-life was 5 years. For this reason, the standard radiation source used to calibrate the drum nucleus analyzer should be purchased and calibrated every five years.
  • Table 1 shows the calibration verification test methods that change according to the recommended period of use.
  • an absolute calibration check is performed on a low level measurement structure using a low radiation standard radiation source and a calibration drum.
  • the measurement structure (TGS-NOW, SGS-NOW) of the absolute calibration check is limited to low level use only.
  • the acceptance criteria of this test shall be the same as the one used in the same accuracy criteria (deviation less than 10%).
  • the two types of relative calibration checks are performed by the measurement structure group (TGS-NOW, SGS-NOW, TGS-FON, and SGS-) which performs the first absolute calibration check in one meal (before the recommended period of use).
  • FON and 1st group relative calibration check and 2nd group relative calibration for the measurement structure group (TGS-FON, SGS-FON, SGS-FAN, SGS-FBN and SGS-FCN).
  • Perform a relative calibration confirmation test consisting of a confirmation test.
  • the structure of the measurement structure for performing the relative calibration check may be a part of the measurement structure (TGS-NOW, SGS-NOW) that passed the first absolute calibration check or a part of the measurement structure (TGS-NO that passed the first relative calibration check).
  • the dead time or radiation dose rate of the portable measuring instrument is measured by using the sensor, and the measurement result of the portable measuring instrument is standardized through the sensitivity correction factor of the portable measuring instrument, the position correction factor of the drum division, and the dead time correction factor of the measuring structure.
  • the drum having the optimal radioactivity concentration is selected, and the standard having the uniformity of the radiation source and the homogeneity of the medium by using the relative ratio to the drum division section.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention relates to a method for searching for a reference radioactive waste drum to verify the effectiveness of indirect calibration of a gamma scanner, and to a method for verifying a calibration. According to the present invention, calibration of a gamma scanner can be performed in a shortest time period to thereby prevent workers working in the relevant industrial fields from being exposed to radiation, and carry out calibration and calibration verifying work with minimum cost.

Description

드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법Retrieval of reference radioactive waste drums for indirect calibration effectiveness of drum nuclide analysis device and calibration verification test method to maximize service life of standard radioactive materials
본 발명은 기준방사성 폐기물드럼의 검색 및 교정확인 검사방법에 관한 것으로서, 보다 구체적으로는 드럼핵종분석장치의 교정을 최단시간 내에 이루어지도록 하여 작업 종사자의 방사선 피폭을 최소화함과 동시에 비용을 절감시킬 수 있는 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법에 관한 것이다.The present invention relates to a method for detecting and calibrating a reference radioactive waste drum. More specifically, the drum nuclide analysis device can be calibrated in the shortest time, thereby minimizing radiation exposure of workers and reducing costs. The present invention relates to a method for retrieval of reference radioactive waste drums for the indirect calibration validity of drum nuclide analysis equipment and to verify the calibration of the radionuclide.
일반적으로 정밀 측정시스템을 이용하여 피측정대상체를 측정하기 위해서는 해당 측정범위를 대표하는 표준물질을 통해 상기 시스템을 교정함으로써 국가표준대표기관과 소급성을 유지하는 유효한 측정결과를 얻을 수 있다. 통상적으로 측정범위가 광범위한 경우 여러 개의 대표값을 갖는 표준물질을 이용하여 교정하게 되는데, 측정범위의 상한 또는 하한에 근접하는 표준물질은 제작상의 기술적 난이도에 의하여 제작비용의 증가가 불가피하다.In general, in order to measure an object to be measured using a precision measurement system, a valid measurement result that maintains traceability with a national standard representative body can be obtained by calibrating the system with a standard material representative of the measurement range. In general, when the measurement range is wide, the standard material having several representative values is calibrated, and the standard material approaching the upper limit or the lower limit of the measurement range is inevitably increased due to technical difficulty in manufacturing.
방사성물질의 경우, 기술적 난이도뿐만 아니라 제작된 표준물질(이하 표준방사선원)의 안전관리 비용이 추가되어 사용비용이 가중된다. 특히 고방사성 표준방사선원의 경우, 생산시설의 제한성(일정규모 이상의 실험용 원자로 필요), 중성자 빔 제어 기술, 제작시간 등의 기술적 문제와 더불어 생산된 동위원소의 보관, 취급 등 안전관리비용의 증가가 불가피하다. 뿐만 아니라 일정 수량 및 농도 이상의 경우는 원자력법에 의거, 면허자에 의한 관리 및 동위원소 허가 또는 신고와 같이 표준물질의 사용 자체가 매우 엄격하여 사용 자체가 용이하지 않기 때문에 고방사성 표준방사선원의 사용을 회피하는 교정기술들이 최근들어 개발되고 있다.In the case of radioactive materials, not only technical difficulty but also the cost of safety management of manufactured standard materials (hereinafter referred to as standard radiation source) adds to the cost of use. In particular, in the case of highly radioactive standard radiation sources, it is inevitable to increase the safety management costs such as storage and handling of the produced isotopes along with technical problems such as the limitation of production facilities (required more than a certain size of experimental reactor), neutron beam control technology, and manufacturing time. Do. In addition, in the case of more than a certain quantity and concentration, the use of standard radioactive sources such as management by licensee and license or report of isotope is very strict and it is not easy to use. Calibration techniques are being developed recently.
방사성폐기물드럼 핵종분석장치(이하 드럼핵종분석장치)는 원자력발전소에서 발생하는 방사성폐기물을 영구처분하기 위하여 드럼 내에 존재하는 방사성 폐기물의 방사능량을 비파괴적인 방법으로 분석하는 장비이다. 방사성 폐기물드럼의 방사능은 그 포함량에 따라 중저준위에서 고준위 방사성폐기물로 구분되며 최근 경주에 건설 중인 중저준위폐기물 영구처분장은 처분 대상이 중저준위폐기물에 한정된다. 드럼핵종분석장치의 측정결과는 영구처분될 드럼의 총방사능이 처분시설의 저장한계를 넘지 않음을 확인하는 기초자료이므로 고도의 정확성이 요구된다.Radionuclear drum nuclide analysis device (hereinafter referred to as drum nuclide analysis device) is a device that analyzes the radioactive amount of radioactive waste present in the drum in a non-destructive way to permanently dispose of radioactive waste generated from nuclear power plant. The radioactivity of radioactive waste drums is classified into low and high level radioactive wastes according to their contents, and the permanent disposal of low and low level wastes currently under construction in Gyeongju is limited to low and low level wastes. The measurement results of the drum nucleus analyzer are the basic data to confirm that the total radioactivity of the drum to be permanently disposed does not exceed the storage limit of the disposal facility. Therefore, a high degree of accuracy is required.
국내의 드럼핵종분석장치의 분석범위는 원자력발전소에서 발생되는 폐기물의 방사능 준위를 고려하여 표면선량기준 0 ~ 100 mSv/hr의 광범위한 방사선량을 갖는 드럼에 대하여 단일 검출기로 모두 측정할 수 있도록 설계되었다. 본 장치의 경우, 측정범위 0 ~ 2 mSv/hr에 대해서는 저방사능 표준방사선원으로 교정하고, 2 mSv/hr ~ 100 mSv/hr의 범위는 고방사능 표준방사선원을 이용하여 교정할 수 있으나, 비용 및 종사자의 안전을 고려하여 고방사능 표준방사선원을 회피하는 교정기술을 사용하고 있다.The analysis range of the drum nucleus analyzer in Korea is designed to measure all of them with a single detector for drums with a wide range of radiation dose from 0 to 100 mSv / hr based on surface dose in consideration of the radioactive level of wastes generated from nuclear power plants. . In the case of this device, a measurement range of 0 to 2 mSv / hr can be calibrated with a low-radiation standard radiation source, and a range of 2 mSv / hr to 100 mSv / hr can be calibrated using a high-radiation standard radiation source. In consideration of the safety of the use, a calibration technique that avoids high radiation standard radioactive sources is used.
일반적으로 중준위폐기물드럼까지 분석범위를 확장하기위한 측정기술의 문제점은 검출기의 불감시간(Dead Time) 보정이다. 즉 피측정대상체의 방사선 준위가 높을수록, 불감시간에 대한 보정이 부정확하여, 측정 정확도가 저하되는 문제가 발생한다. 이러한 문제를 극복하는 기술로는, 피측정대상체의 일부채취 또는 희석 등과 같이 피측정대상체의 방사능 농도를 제어하는 방법과 조리개 또는 측정거리, 차폐체 사용 등과 같이 검출기 내로 입사되는 방사선의 수를 제어하는 방법으로 구별된다. 드럼핵종분석장치의 경우, 피측정대상체의 가공이 불가능하기 때문에 측정구조를 변경하는 후자의 방식을 사용하게 된다.In general, the problem with the measurement technique to extend the analysis range to the mid-level waste drum is the dead time correction of the detector. That is, the higher the radiation level of the object under test, the more accurate the dead time correction is, and the problem that the measurement accuracy deteriorates occurs. Techniques for overcoming this problem include a method of controlling the radioactivity concentration of the object under measurement, such as a partial sampling or dilution of the object, and a method of controlling the number of radiation incident into the detector, such as an aperture, a measurement distance, or a shield. It is distinguished by. In the case of the drum nucleus analyzer, the latter method of changing the measurement structure is used because the object to be measured cannot be processed.
국내에 설치된 드럼핵종분석장치도 마찬가지로, 측정거리 변경(Near/Far) 및 차폐체 사용개수(O: 0개, A: 1개, B: 2개, C: 3개), 조리개의 개방면적 변경(Wide/Narrow)를 조합하여 기하학적 측정구조를 변경함으로써 단일 검출기로 광범위한 측정이 가능하도록 설계되었다. 기하학적 측정구조의 종류는 총 5가지로, NOW(드럼 근접측정), FON(드럼 이격측정), FAN(드럼 이격 차폐체 1 추가측정), FBN(드럼 이격 차폐체 2 추가측정), FCN(드럼 이격 차폐체 3 추가측정)으로 구성되며 순서대로 저준위방사성폐기물 드럼에서 중준위방사성폐기물 드럼까지 차례로 분석할 수 있다. 참고로 NOW의 측정구조의 의미는 근접측정-차폐창 없음-광폭조리개를 사용한다는 뜻이다.Similarly, the drum nuclide analysis device installed in Korea changes the measurement distance (Near / Far) and the number of shields used (O: 0, A: 1, B: 2, C: 3), and the opening area of the aperture ( The combination of Wide / Narrow allows for a wide range of measurements with a single detector by altering the geometry. There are five types of geometric measurement structures: NOW (Drum Proximity), FON (Drum Spacer), FAN (Additional Measurement of Drum Spacer 1), FBN (Additional Measurement of Drum Spacer 2), FCN (Drum Spacer) 3 Additional measurements) can be performed in sequence from low level radioactive waste drums to medium level radioactive waste drums. For reference, the measurement structure of NOW means the use of proximity measurement-no shield window-wide aperture.
상기 5개의 측정구조를 모두 저방사능 표준방사선원만으로 직접교정하는 것은 불가능하기 때문에 직·간접교정법을 병행한다. 이를 보다 자세히 설명하면, 저준위용 측정구조(NOW)는 표준방사선원(균일방사선원)과 교정용 드럼(균질매질)을 이용하여 직접측정 후, 검출기의 효율을 결정하는 직접교정법을 사용하고, 중준위용 측정구조는 일부 직접측정 및 밀도보정인자와 차폐판보정인자를 이용하여 검출기의 효율을 계산하는 직·간접교정법을 병행한다. 직·간접교정법 모두 교정확인검사를 수행하여 교정을 완료하며, 간접교정의 수행범위가 증가할수록 교정확인검사의 기술적 난이도 및 절차의 복잡성이 증가한다. Since it is impossible to directly calibrate all five measurement structures with only a low-radiation standard radiation source, the direct and indirect calibration methods are performed in parallel. To explain this in more detail, the low level measurement structure (NOW) uses direct calibration using a standard radiation source (uniform radiation source) and a calibration drum (homogeneous medium), and then uses a direct calibration method to determine the efficiency of the detector. The structure is a combination of direct and indirect calibration methods that calculate the efficiency of the detector using some direct measurements and density correction factors and shield plate correction factors. Both direct and indirect calibration methods perform calibration checks to complete calibration. As the scope of indirect calibration increases, the technical difficulty and procedures of calibration checks increase.
교정확인검사는 교정의 유효성을 확인하는 검사로써, 교정의 최종 절차이며 필수 조건이다. 직접교정법의 경우, 표준방사선원의 인증방사능과 측정결과를 직접비교하는 절대교정확인검사만으로 교정을 완료할 수 있으며, 별다른 기술적 문제가 발생하지 않는다. 반면, 직·간접교정을 병행하는 경우, 절대교정확인검사와 상대교정확인검사를 조합하여 계산된 효율의 유효성을 확인해야 하며, 고방사성 표준방사선원을 대체할 기준방사성폐기물드럼을 사전에 선정해야 한다. 기준방사성폐기물드럼은 3가지 조건이 충족되어야 하는데, 첫째는 방사성물질의 균일성을 가져야 하며, 둘째 비교대상 측정구조그룹에 대하여 적합한 방사능농도를 가져야 하고, 세 번째는 드럼 내용물의 매질이 균질해야 한다. 아울러 이러한 확인검사를 간편한 도구를 이용하여 비파괴적 방법으로 단시간에 확인해야 한다. 본 문제를 보다 상세히 기술하면 아래와 같다.The calibration verification test is a test to verify the validity of the calibration. It is the final procedure and a necessary condition of the calibration. In the case of the direct calibration method, the calibration can be completed only by the absolute calibration check which directly compares the certified radioactivity of the standard radiation source with the measurement result, and no technical problem occurs. On the other hand, in the case of direct and indirect calibration, the validity of the calculated efficiency should be verified by combining the absolute calibration check and the relative calibration check, and the reference radioactive waste drum to replace the high radioactive standard radiation source should be selected in advance. . The reference radioactive waste drum must meet three conditions: first, homogeneity of radioactive material, second, suitable radioactive concentration for the comparative group of measurement targets, and third, homogeneous medium of drum contents. . In addition, these verification tests should be confirmed in a short time using non-destructive methods using simple tools. The problem is described in more detail below.
일반적으로 방사성폐기물 드럼의 방사선원의 분포와 매질은 비균일하고, 비균질하다. 또한 피측정대상체가 검출기에 비하여 상대적으로 매우 크기 때문에 단일측정으로 분석을 완료할 수 없다. 이러한 문제를 극복하기 위해 피측정대상체를 수직방향으로 분할 측정하는 방식을 채택하며, 원주방향으로 피측정대상체를 회전하면서 측정하여 비균일성과 비균질성을 최소화한다. 하지만 장치를 교정하거나 교정확인검사를 하기 위해서는 앞서 설명한 바와 같이 방사선원의 균일성 및 매질의 균질성이 확보된 교정용 도구가 필요하다. 기준방사성폐기물의 상세 조건은 첫째, 기준핵종(Cs-137과 Co-60)의 드럼 내 분포가 균일해야 한다. 둘째, 기준핵종의 농도는 비교대상 측정구조 그룹 모두가 측정 가능한 방사능 농도임을 확인해야 한다. 셋째, 드럼 매질이 균질하여 드럼 내부에서 발생한 방사선이 균일하게 감쇠되어 드럼 외부에서 관측하는 감마선의 계수율이 일정하게 유지되어야 한다. 또한 방사성폐기물드럼은 제한된 공간 내에 조밀하게 보관되기 때문에 간편한 도구를 이용하여 신속하게 기준방사성폐기물드럼을 선정하여 작업자의 방사선 피폭을 최소화해야 할 뿐만 아니라 드럼 자체가 방사성물질의 유출을 막는 첫 번째 방어벽이기 때문에 드럼을 훼손하지 않는 비파괴적 방법을 사용해야 하는 이유로 안전하면서 효율적인 방법을 통해 기준방사성 폐기물드럼의 검색 및 교정확인이 이루어지도록 하기 위한 지속적인 연구가 필요한 실정이다.In general, the distribution and medium of the radiation source of a radioactive waste drum is non-uniform and heterogeneous. In addition, because the object to be measured is relatively large compared to the detector, the analysis cannot be completed in a single measurement. In order to overcome this problem, it adopts a method of dividing and measuring the measured object in the vertical direction, and minimizes the non-uniformity and inhomogeneity by measuring by rotating the object to be measured in the circumferential direction. However, in order to calibrate a device or perform a calibration check, a calibration tool with uniformity of a radiation source and homogeneity of a medium is required as described above. Detailed conditions of reference radioactive waste are as follows: First, the distribution of reference nuclides (Cs-137 and Co-60) in the drum should be uniform. Second, it should be confirmed that the concentration of the reference nuclide is a measurable radiation concentration for all the groups of measurement structures to be compared. Third, the drum medium should be homogeneous so that the radiation generated inside the drum is uniformly attenuated so that the count rate of gamma rays observed from outside the drum should be kept constant. In addition, since radioactive waste drums are stored densely in limited spaces, the radioactive waste drums must be selected quickly with a simple tool to minimize the radiation exposure of the operator, and the drum itself is the first barrier against the release of radioactive materials. As a result, non-destructive methods that do not damage the drum are required. Therefore, continuous research is required to ensure that the reference radioactive waste drum is searched and verified through a safe and efficient method.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출된 것으로서, 드럼핵종분석장치의 교정을 최단시간 내에 검사하여 작업 종사자가 방사선 피폭에 노출되는 정도를 최소화함과 아울러 검사 진행에 대한 비용 절감을 도모할 수 있는 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the prior art, by minimizing the exposure of the radiation exposure to the worker by inspecting the calibration of the drum nuclide analysis device in the shortest time, while reducing the cost of the test progress The aim of the present invention is to provide a method for screening the reference radioactive waste drum for the indirect calibration validity test of the drum nuclide analysis device and to provide a calibration and verification method for maximizing the service life of the standard radioactive material.
상기 목적을 달성하기 위하여, 본 발명은, 교정용 드럼에 저방사능 표준방사선원을 삽입한 후 하나 이상의 휴대용측정기를 통해 불감시간 또는 선량율을 측정하는 제1 단계와; 복수개의 상기 휴대용측정기를 사용하는 경우, 어느 하나를 기준 휴대용측정기로 선정하여 그로부터 감도보정인자(CFRi)를 계산하는 제2 단계와; 상기 휴대용측정기를 통해 상기 교정용 드럼의 균등분할구간 위치에 따른 불감시간 또는 선량율을 측정하여 위치보정인자(CFSi)를 계산하는 제3 단계와; 절대교정확인검사를 수행한 그룹에서 최적화된 드럼 표면의 선량율 평균과 상대교정확인검사를 수행한 그룹에서 최적화된 드럼 표면의 선량율 평균을 이용하여 상기 교정용 드럼의 측정그룹 불감시간 또는 선량율 보정인자(CFGi)를 계산하는 제4 단계와; 상기 불감시간 또는 선량율 보정인자를 통해 상기 상대교정확인검사 그룹의 불감시간 또는 선량율(τOi)을 계산하여 그에 해당하는 방사성폐기물 드럼을 선별하는 제5 단계와; 상기 제5 단계에서 선별된 드럼의 균등분할구간 전체에 대해 상기 휴대용측정기를 이용하여 불감시간 또는 선량율을 측정한 다음으로 각 구간에 상기 위치보정인자를 적용하여 그 측정된 불감시간 또는 선량율을 표준화하고, 표준화된 불감시간의 1구간 측정결과를 기준으로 상대비를 계산하여 전체 분할구간에 대해 그 상대비가 1인 드럼을 선별하는 제6 단계와; 선별된 드럼을 상기 휴대용측정기 또는 드럼핵종분석장치를 이용하여 분광분석을 실시함으로써 기준핵종의 존재여부를 판정하여 기준방사성폐기물드럼으로 선정하는 제7 단계;로 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention includes a first step of measuring the dead time or dose rate by inserting a low-radiation standard radiation source in the calibration drum through one or more portable measuring instruments; A second step of selecting one of the plurality of portable measuring instruments as a reference portable measuring instrument and calculating a sensitivity correction factor CF Ri therefrom; A third step of calculating a position correction factor (CF Si ) by measuring a dead time or a dose rate according to the position of the equally divided section of the calibration drum through the portable measuring device; Measurement group dead time or dose rate correction factor of the calibration drum by using the average dose rate of the optimized drum surface in the group that performed the absolute calibration test and the average dose rate of the drum surface in the group that performed the relative calibration test ( Calculating a CF Gi ); A fifth step of calculating a dead time or a dose rate τ Oi of the relative calibration check group through the dead time or dose rate correction factor and selecting a corresponding radioactive waste drum; The dead time or dose rate was measured using the portable measuring device for the entire equal division section of the drum selected in the fifth step, and then the positional correction factor was applied to each section to normalize the measured dead time or dose rate. A sixth step of selecting a drum having a relative ratio of 1 for the entire divided section by calculating a relative ratio based on a measurement result of one section of the standardized dead time; And performing a spectroscopic analysis on the selected drum using the portable measuring instrument or the drum nuclide analysis device to determine whether a reference nuclide is present and to select the reference radioactive waste drum.
또한 본 발명은, 권장사용기간이 초과된 표준방사선원과 기준방사성 폐기물드럼의 교정확인을 검사하는 방법에 있어서, 절대교정 확인검사를 수행하는 범위를 저준위용 측정구조만으로 축소하는 제1 단계와; 상대교정확인검사 범위를 권장사용기간이 초과하지 아니할 때 수행하는 절대교정 확인검사의 측정구조 그룹 및 상대교정 확인검사의 측정구조 그룹에 대해 각각 상대교정 확인검사를 수행하는 제2 단계;로 이루어지되, 상기 제2 단계에서 상대교정 확인검사 수행에 해당하는 측정구조의 구성은 절대교정 확인검사를 통과한 일부 측정구조 또는 직전 상대교정 확인검사를 통과한 일부측정 구조를 반드시 포함하는 것을 특징으로 한다.In another aspect, the present invention, the method for checking the calibration confirmation of the standard radioactive source and the reference radioactive waste drum exceeding the recommended period of use, the first step of reducing the scope of performing the absolute calibration check to only the low-level measurement structure; A second step of performing a relative calibration check on the measurement structure group of the absolute calibration check and the measurement structure group of the relative calibration check performed when the scope of the relative calibration check test does not exceed the recommended period of use; In the second step, the configuration of the measurement structure corresponding to performing the relative calibration check may include some measurement structures that pass the absolute calibration check or some measurement structures that pass the previous relative calibration check.
상술된 바와 같이, 본 발명에 따른 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법은 절대교정 확인검사에 사용하는 저방사능 표준방사선원과 교정용 드럼을 이용하여 휴대용측정기의 불감시간 또는 방사선량율을 측정하고, 휴대용측정기의 감도보정인자, 드럼분할구간의 위치보정인자 및 측정구조의 불감시간 보정인자를 통하여 휴대용측정기의 측정결과를 표준화하며, 동시에 상대교정확인 측정그룹의 최적 불감시간 또는 방사선량을 계산한 결과를 사용하여 최적의 방사능농도를 갖는 드럼을 선별하고, 드럼분할구간에 대한 상대비를 이용하여 방사선원의 균일성 및 매질의 균질성을 갖는 기준방사성폐기물드럼을 선정하는 방법을 제공함으로써, 휴대용측정기의 별도 교정을 필요로 하지 않고, 드럼당 측정시간이 수분 미만으로 단시간내에 확인이 가능하며, 매질의 균질성 확인을 위해 사용하였던 기존의 방사성동위원소를 이용한 투과시험 없이도 신속히 폐기물 드럼의 상태를 판정할 수 있도록 한다.As described above, the calibration check test method for maximizing the use period of the reference radioactive waste drum and the standard radioactive material for indirect calibration validation of the drum nuclide analysis device according to the present invention is a low radioactivity standard used for the absolute calibration check test. Using the radiation source and the calibration drum, measure the dead time or radiation dose rate of the portable measuring instrument, and measure the measurement result of the portable measuring instrument through the sensitivity correction factor of the portable measuring instrument, the position correction factor of the drum division, and the dead time correction factor of the measuring structure. Using the results of calculating the optimum dead time or the radiation dose of the relative calibration check measurement group, the drum with the optimal radioactivity concentration is selected, and the uniformity and medium of the radiation source using the relative ratio to the drum division section. By providing a method for selecting a reference radioactive waste drum with homogeneity of It does not require a separate calibration of the surrogate, it can be checked in a short time with less than a few minutes of measurement time per drum, and can quickly determine the state of the waste drum without the permeation test using the conventional radioisotope used to check the homogeneity of the medium. Make the decision.
도 1은 본 발명에서 휴대용 측정기를 사용한 불감시간 측정구조를 개략적으로 도시한 도면.1 is a view schematically showing a dead time measuring structure using a portable measuring device in the present invention.
도 2는 본 발명에서 드럼균등 분할구간의 위치에 대한 불감시간 측정구조를 개략적으로 도시한 도면.2 is a view schematically showing a dead time measurement structure for the position of the drum equal division section in the present invention.
이하, 도면을 참조로 하여 본 발명에 따른 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법을 설명하기로 한다.Hereinafter, with reference to the drawings will be described the calibration check test method for maximizing the use of the reference radioactive waste retrieval and standard radioactive material for the drum nuclide analysis device indirect calibration validation test according to the present invention.
본 발명에 따른 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼 검색방법은 기본적으로 교정용 드럼에 저방사능 표준방사선원을 삽입한 후 불감시간(선량율)을 측정하는 제1 단계와, 복수개의 휴대용측정기 중 기준 휴대용측정기로부터 감도보정인자(CFRi)를 계산하는 제2 단계와, 교정용 드럼의 균등분할구간 위치에 따른 불감시간(선량율)을 측정하여 위치보정인자(CFSi)를 계산하는 제3 단계와, 절대교정확인검사를 수행한 그룹에서의 드럼 표면 선량율 평균과 상대교정확인검사를 수행한 그룹에서의 드럼 표면 선량율 평균을 이용하여 교정용 드럼 측정그룹의 불감시간(선량율) 보정인자(CFGi)를 계산하는 제4 단계와, 불감시간(선량율) 보정인자(CFGi)를 통해 상대교정확인검사 그룹의 불감시간(선량율)(τOi)을 계산하여 방사성폐기물 드럼을 선별하는 제5 단계와, 선별된 드럼의 균등분할구간 전체에 대해 불감시간(선량율)을 측정한 다음으로 이를 위치보정인자를 이용하여 표준화하고, 표준화된 불감시간의 1구간 측정결과를 기준으로 상대비를 계산하여 전체 분할구간에 대해 그 상대비가 1인 드럼을 선별하는 제6 단계와, 선별된 드럼의 분광분석을 통해 기준핵종의 존재여부를 판정하여 기준방사성폐기물드럼으로 선정하는 제7 단계로 이루어진다.The reference radioactive waste drum search method for indirect calibration validity checking of the drum nuclide analysis device according to the present invention basically includes a first step of measuring a dead time (dose rate) after inserting a low radioactive standard radiation source into a calibration drum, and a plurality of The second step of calculating the sensitivity correction factor (CF Ri ) from the reference portable meter of the portable measuring device, and calculates the position correction factor (CF Si ) by measuring the dead time (dose rate) according to the position of the equally divided section of the calibration drum Dead time (dose rate) correction factor of the calibration drum measurement group using the third step and the average drum surface dose rate in the group that performed the absolute calibration check and the average drum surface dose rate in the group that performed the relative calibration test (CF Gi) for calculating a fourth step, a dead time (dose rate), correction factor (CF Gi) by using the calculated dead time (dose rate) of the relative correction check test group (τ Oi) how to The fifth step of screening the dead waste drums and the dead time (dose rate) were measured for the entire equal division section of the sorted drums, and then standardized them using the position correction factor, and the measurement results of the 1 section of the standardized dead time. The sixth step of selecting a drum having a relative ratio of 1 for all divided sections by calculating the relative ratio, and determining the presence of the reference nuclide through the spectroscopic analysis of the selected drum to select the reference radioactive waste drum The seventh step is made.
상기 제1 단계에서는 드럼핵종분석장치의 분석형식이 다양한 경우(국내 드럼핵종분석장치는 TGS(Tomographic Gamma Scanner) 및 SGS(Segment Gamma Scanner) 분석형식을 지원함) 모든 분석형식에 적합한 밀도(약 0.5 g/cc)를 갖는 교정용 드럼에 저방사능 표준방사선원을 삽입한 후 도 1과 같이 드럼의 중간 높이에서 소정의 이격거리를 유지한 상태로 휴대용측정기를 이용하여 불감시간 또는 선량율을 측정한다. 만약 다수의 휴대용측정기를 이용할 경우, 동일한 높이 및 이격거리에서 대칭 방향에 휴대용 측정기를 위치한 후, 불감시간을 측정한다. 상기 측정을 수행하는 동안에는 드럼을 회전하면, 선원의 균일성을 더욱 증가시킬 수 있다. 여기서 상기 휴대용측정기로는 기존의 방사선 선량율 측정기, 휴대용 섬광검출기 등이 활용될 수 있다.In the first step, when the analysis formats of the drum nuclide analysis apparatus are various (the domestic drum nuclide analysis apparatus supports the TGS (Tomographic Gamma Scanner) and the SGS (Segment Gamma Scanner) analysis formats) density suitable for all analysis formats (about 0.5 g) After inserting a low-radiation standard radiation source into a calibration drum having a / cc) and measuring a dead time or dose rate using a portable measuring instrument while maintaining a predetermined separation distance at the middle height of the drum as shown in FIG. If multiple handheld meters are used, the dead time is measured after placing the handheld meter in the symmetrical direction at the same height and separation distance. Rotating the drum during the measurement can further increase the uniformity of the source. The portable measuring instrument may be a conventional radiation dose rate measuring instrument, portable scintillation detector, and the like.
상기 제2 단계에서는 제1 단계의 측정이 완료되면, 복수개의 휴대용측정기 중 하나를 택일하여 기준 휴대용측정기로 선택하고 휴대용측정기의 감도보정인자(CFRi)를 아래의 식을 이용하여 계산한다. 만약 단일 휴대용측정기를 사용하는 경우 본 과정을 생략할 수 있다.In the second step, when the measurement of the first step is completed, one of the plurality of portable measuring instruments is selected as a reference portable measuring instrument, and the sensitivity correction factor CF Ri of the portable measuring instrument is calculated using the following equation. If you are using a single handheld meter, you can skip this step.
Figure PCTKR2011000967-appb-I000001
Figure PCTKR2011000967-appb-I000001
(여기서 CFRi는 i번째 휴대용측정기에 대한 감도보정인자이고, τi는 i번째 휴대용측정기의 불감시간 또는 선량율이며, τr은 기준 휴대용측정기의 불감시간 또는 선량율을 의미한다.)(Where CF Ri is the sensitivity correction factor for the i-th handheld meter, τ i is the dead time or dose rate of the i-th handheld meter, and τ r means the dead time or dose rate of the reference handheld meter.)
상기 제3 단계에서는 드럼의 균등분할구간의 위치에 따라 휴대용측정기에 입사되는 방사선원의 노출부위가 다르기 때문에 이를 표준화(Normalization)하기 위해서 위치보정인자(CFSi)가 필요한 이유로, 상기 제1 단계에서 사용한 교정용 드럼과 저방사능 표준방사선원을 이용하여 도 2와 같이 드럼균등 분할구간의 위치에 따른 불감시간 또는 선량율을 측정하여 아래의 식을 이용해 위치보정인자(CFSi)를 계산한다. 이때 드럼과 휴대용측정기는 소정의 이격거리(1단계와 동일)를 유지한 상태로 각단을 측정하며, 여기서의 표준방사선원과 교정용 드럼은 균일 균질한 드럼이기 때문에 대칭구조인 1~4단까지만 측정하고 나머지 5~8단까지의 위치보정인자는 4~1단까지의 측정결과를 차례로 입력한다.The third stage, since, depending on the location of evenly divided sections of the drum different from the exposed section of the radiation source, which is incident to a portable meter this standardization (Normalization) two euros required position correction factor (CF Si) in order to, used in the first step as it is shown in FIG using orthodontic drum and the low radiation standard radiation source 2 to measure the dead time or the dose rate according to the position of the drum evenly divided section calculates a position correction factor (CF Si) using the following equation. At this time, the drum and the portable measuring instrument measure each stage while maintaining a predetermined distance (same as step 1), and the standard radiation source and the calibration drum here are only homogeneous and homogeneous drums, so they measure only 1 ~ 4 stages of symmetrical structure. Position correction factors for the remaining 5 ~ 8 steps input the measurement results for 4 ~ 1 step in order.
Figure PCTKR2011000967-appb-I000002
Figure PCTKR2011000967-appb-I000002
(여기서 CFSi는 i단에 대한 위치보정인자이고, τSi는 i단에 대한 휴대용측정기의 불감시간 또는 선량율이며, τs4는 4단(드럼 중심높이)에 대한 휴대용측정기의 불감시간 또는 선량율을 의미한다.)Where CF Si is the position correction factor for stage i, τ Si is the dead time or dose rate of the handheld instrument for stage i, and τ s4 is the dead time or dose rate of the handheld instrument for four stages (drum center height). it means.)
상기 제4 단계에서는 절대교정 확인검사를 수행하는 그룹에 최적화된 드럼표면 선량율의 평균과 상대교정 확인검사를 수행하는 그룹에 최적화된 드럼표면 선량율의 평균을 이용하여 측정구조 그룹의 보정인자(CFGi)를 아래의 식에 따라 계산한다. 아울러 저방사능 표준방사선원의 물리적 반감기로 인하여 1 반감기 이상 표준방사선원을 사용한 경우 표준방사선원의 세기가 감소하므로, 절대교정 확인검사의 범위는 축소되고, 상대교정 확인검사 그룹이 2개 이상으로 변경될 수 있다. 따라서 상대교정확인검사 그룹의 개수만큼 본 보정인자(CFGi)를 계산한다. 이 보정인자(CFGi)를 이용하면, 상대교정 확인검사를 수행하는 그룹의 최적 불감시간 또는 선량율을 계산할 수 있다. In the fourth step, a correction factor of the measurement structure group (CF Gi) is obtained by using the average of the drum surface dose rates optimized for the group performing the absolute calibration check and the average of the drum surface dose rates optimized for the group performing the relative calibration check. ) Is calculated according to the following equation. In addition, since the intensity of the standard radiation source decreases when the standard radiation source with one half-life is used due to the physical half-life of the low-radiation standard radiation source, the scope of the absolute calibration check may be reduced and the relative calibration check group may be changed to two or more. . Therefore, this correction factor CF Gi is calculated for the number of relative calibration check groups. Using this correction factor CF Gi , it is possible to calculate the optimal dead time or dose rate of the group performing the relative calibration check.
Figure PCTKR2011000967-appb-I000003
Figure PCTKR2011000967-appb-I000003
(여기서 CFGi는 i번째 상대교정 확인검사 그룹의 불감시간 또는 선량율 보정인자이고,
Figure PCTKR2011000967-appb-I000004
는 절대교정 확인검사 그룹에 최적화된 드럼표면 선량율의 평균이며,
Figure PCTKR2011000967-appb-I000005
는 i번째 상대교정 확인검사 그룹에 최적화된 드럼표면 선량율의 평균이다.)
Where CF Gi is the dead time or dose rate correction factor of the ith relative calibration test group,
Figure PCTKR2011000967-appb-I000004
Is the average of the drum surface dose rate optimized for the absolute calibration test group,
Figure PCTKR2011000967-appb-I000005
Is the average of the drum surface dose rate optimized for the i-th relative verification test group.)
상기 제5 단계에서는 상기 제1 내지 제4 단계까지의 준비과정이 완료된 다음으로 아래의 수식을 이용하여 상대교정 확인검사 그룹에 적합한 불감시간 또는 선량율(τOi)을 계산한다. 이후 교정용 드럼의 밀도(약 0.5 g/cc ; 200리터 드럼의 경우, 드럼무게 약 100 kg)와 유사한 방사성폐기물 드럼에 한정하여 1 단계에서 측정한 위치(드럼 중간 높이와 이격거리)와 동일한 상태에서 드럼의 불감시간 또는 선량율을 측정하여 상대교정 확인검사에 적합한 불감시간 또는 선량율을 갖는 드럼을 선별한다. 이때 계산된 불감시간 또는 선량율은 측정불확도의 범위를 고려하여 적합유무를 결정한다. 만약 상대교정 확인검사의 그룹이 2개 이상이면, 그룹의 개수에 해당하는 최적불감시간을 계산하고 드럼을 선별한다. 본 과정을 통하여 선택된 드럼은 해당 그룹에 적합한 방사능 농도임을 확인할 수 있다.In the fifth step, after the preparation process from the first to the fourth step is completed, the dead time or the dose rate τ Oi suitable for the relative calibration check group is calculated using the following equation. The same condition as the position measured in step 1 (middle drum height and separation distance), limited to radioactive waste drums similar to the density of the calibration drum (approximately 0.5 g / cc; drum weight approx. 100 kg for 200 liter drums). By measuring the dead time or dose rate of the drum in the drum and select a drum having a dead time or dose rate suitable for the relative calibration check. At this time, the calculated dead time or dose rate is determined by considering the range of measurement uncertainty. If there are two or more groups of relative calibration checks, the optimal dead time corresponding to the number of groups is calculated and the drums are sorted. Through this process, the selected drum can be confirmed that the radiation concentration suitable for the group.
Figure PCTKR2011000967-appb-I000006
Figure PCTKR2011000967-appb-I000006
(여기서 τOi는 i번째 상대교정 확인검사 그룹의 최적화된 불감시간 또는 선량율이고, τr은 저방사능 표준방사선원 및 교정용 드럼을 이용하여 측정한 불감시간 또는 선량율이며, CFGi는 i번째 상대교정 확인검사 그룹의 불감시간 또는 선량율 보정인자이다.)Where τ Oi is the optimized dead time or dose rate of the i th relative calibration test group, τ r is the dead time or dose rate measured using a low-radiation standard radiation source and calibration drum, and CF Gi is the i th relative calibration Dead time or dose rate correction factor of the confirmatory test group.)
상기 제6 단계에서는 상기 제5 단계에서 선별된 드럼에 한하여, 드럼균등분할구간에 대하여 상기 제1 단계와 동일한 이격거리에서 휴대용측정기를 이용하여 불감시간 또는 선량율을 측정한다. 단 본 측정에서는 드럼의 1단부터 8단까지 모든 분할구간에 대하여 측정한다. 측정결과를 아래의 식을 이용하여 각단에 대한 위치보정인자(CFSi)를 적용하여 측정된 불감시간 또는 선량율을 표준화한다. 표준화된 불감시간은 1단 측정결과를 기준으로 상대비(Relative Ratio)로 계산하고 모든 분할구간에 대한 상대비가 1인 드럼을 선별한다. 이때 선별 기준은 측정불확도를 포함하여 이 구간 내에 상대비를 갖는 드럼을 적합한 것으로 판정한다. 본 과정을 통하여 드럼의 방사선원의 균일성과 매질의 균질도를 동시에 확인할 수 있다.In the sixth step, only the drum selected in the fifth step, the dead time or dose rate is measured with respect to the drum equalization section using a portable measuring instrument at the same separation distance as the first step. In this measurement, however, all divisions from the first to eighth stages of the drum are measured. Standardize the measured dead time or dose rate by applying the position correction factor (CF Si ) to each stage using the following equation. Standardized dead time is calculated as relative ratio based on the result of 1st stage measurement, and drums with a relative ratio of 1 for all divided sections are selected. The selection criteria then determine that a drum having a relative ratio within this interval, including the uncertainty of measurement, is suitable. Through this process it is possible to check the uniformity of the radiation source of the drum and the homogeneity of the medium at the same time.
Figure PCTKR2011000967-appb-I000007
Figure PCTKR2011000967-appb-I000007
(여기서 τCi는 표준화된 i단의 불감시간 또는 선량율이고, τr은 i단에 대한 휴대용측정기의 불감시간 측정결과이며, CFSi는 i단에 대한 위치보정인자이다.)(Where τ Ci is the dead time or dose rate of the standardized stage i, τ r is the dead time measurement result of the handheld meter for stage i, and CF Si is the position correction factor for stage i).
Figure PCTKR2011000967-appb-I000008
Figure PCTKR2011000967-appb-I000008
(여기서 Ri는 i단의 표준화된 불감시간 또는 선량율의 상대비이고, τCi는 i단의 표준화된 불감시간 또는 선량율이며, τC1은 1단의 표준화된 불감시간 또는 선량율이다.)(Where R i is the relative ratio of the standardized dead time or dose rate at stage i, τ Ci is the standardized dead time or dose rate at stage i, and τ C1 is the standardized dead time or dose rate at stage 1).
상기 제7 단계에서는 상기 제1 내지 제6 단계를 거쳐 선별된 드럼을 휴대용측정기 또는 드럼핵종분석장치를 이용하여 간단한 분광분석을 실시함으로써 기준핵종인 Cs-137과 Co-60의 존재유무를 판정할 수 있게 되고 결과적으로 최종적인 기준방사성폐기물드럼으로 확정할 수 있게 된다.In the seventh step, the presence or absence of reference species Cs-137 and Co-60 may be determined by performing simple spectroscopic analysis on the drum selected through the first to sixth steps using a portable measuring instrument or a drum nuclide analysis device. And, consequently, the final reference radioactive waste drum.
다수의 휴대용측정기를 이용하여 드럼균등분할구간에 대해 동시에 불감시간 또는 선량율을 측정하는 경우, 아래의 식과 같이 휴대용측정기의 감도보정인자를 추가하여 본 검색에 대한 측정시간을 단축할 수 있다.When the dead time or dose rate is simultaneously measured for the drum equal division using a plurality of portable measuring instruments, the measurement time for this search can be shortened by adding the sensitivity correction factor of the portable measuring apparatus as shown in the following equation.
Figure PCTKR2011000967-appb-I000009
Figure PCTKR2011000967-appb-I000009
(여기서 τCi는 표준화된 i단의 불감시간 또는 선량율이고, CFSi는 i단에 대한 위치보정인자이며, CFRi는 i단의 불감시간 또는 선량율 측정에 사용한 휴대용측정기의 감도보정인자이다.)(Where τ Ci is the dead time or dose rate of standardized stage i, CF Si is the positional correction factor for stage i, and CF Ri is the sensitivity calibration factor of the portable measuring instrument used to measure dead time or dose rate of stage i).
본 발명에 따른 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼 검색방법에 의해 기준방사성폐기물드럼을 매우 용이하게 선정하여 교정을 수행할 수 있음과 아울러 하기에 기재되는 본 발명에 따른 교정확인검사 방법을 이용하면, 저방사능 표준방사선원의 사용기간을 연장할 수 있으며, 이를 통해 기준방서성 폐기물드럼의 검색 및 교정확인에 대한 비용을 절감할 수 있다.Drum radionuclide analysis device according to the present invention can be selected by the reference radioactive waste drum search method for the indirect calibration validity test very easily to perform the calibration and calibration verification according to the present invention described below The use of inspection methods can extend the service life of low-radiation standard radioactive sources, thereby reducing the cost of screening and verifying the reference radioactive waste drums.
교정에 사용하는 표준방사선원의 사용기간은 방사성핵종의 고유 반감기로 인하여 자연적으로 감소하기 때문에 그 기간이 유한하다. 일반적인 권장사용기간은 선원에 포함된 핵종의 1 반감기까지 사용할 수 있으며, 권장사용기간을 초과한 경우 재구매하여 사용한다. 특히 드럼핵종분석장치의 기준선원은 Cs-137과 Co-60으로 가장 짧은 반감기를 갖는 선원은 5년이다. 때문에 드럼핵종분석장치의 교정에 사용하는 표준방사선원은 매 5년 마다 구매하여 교정해야 한다. 하지만 본 발명에 따른 교정확인 검사방법을 이용하면, 표준방사선원의 사용기간을 초과한 경우라도, 절대교정 확인검사를 축소하고 상대교정 확인검사를 확장하여 동일한 교정정확도를 유지하면서 그 사용기간을 증가할 수 있다. 표 1은 권장사용기간의 경과 유무에 따라 변경되는 교정확인검사 방법을 나타낸 것이다.The duration of use of standard radioactive sources for calibration is finite because they naturally decrease due to the inherent half-life of radionuclides. The general recommended service life is up to one half-life of the nuclides included in the source. If the recommended service life is exceeded, repurchase it. In particular, the reference source of the drum nucleus analyzer was Cs-137 and Co-60, and the shortest half-life was 5 years. For this reason, the standard radiation source used to calibrate the drum nucleus analyzer should be purchased and calibrated every five years. However, by using the calibration check test method according to the present invention, even if the service period of the standard radiation source is exceeded, it is possible to reduce the absolute calibration check test and extend the relative calibration check test to increase the service life while maintaining the same calibration accuracy. Can be. Table 1 shows the calibration verification test methods that change according to the recommended period of use.
이하에서는 표 1을 참조로 하여 본 발명의 교정확인 검사방법(2식)에 대해 보다 구체적으로 설명하기로 한다. Hereinafter, with reference to Table 1 will be described in more detail with respect to the calibration confirmation test method (two expressions) of the present invention.
표 1- 표준방사선원의 사용기간을 연장하는 교정확인검사 방법Table 1-Calibration verification method for extending the service life of standard radiation sources
Figure PCTKR2011000967-appb-I000010
Figure PCTKR2011000967-appb-I000010
상기 제1 단계에서는 저준위용 측정구조에 대하여 저방사능 표준방사선원과 교정용드럼을 이용하여 절대교정 확인검사를 수행한다. 이때 표준방사성물질인 표준방사선원의 권장사용기간이 초과되었기 때문에 절대교정 확인검사의 측정구조(TGS-NOW, SGS-NOW)는 저준위용으로만 제한한다. 본 검사의 합격기준은 1식과 동일한 정확도 판정기준(편차 10% 이하)을 사용한다. In the first step, an absolute calibration check is performed on a low level measurement structure using a low radiation standard radiation source and a calibration drum. At this time, because the recommended period of use of standard radioactive material, which is a standard radioactive material, is exceeded, the measurement structure (TGS-NOW, SGS-NOW) of the absolute calibration check is limited to low level use only. The acceptance criteria of this test shall be the same as the one used in the same accuracy criteria (deviation less than 10%).
상기 제2 단계에서는 2식의 상대교정 확인검사가 1식(권장사용기간 경과전)에서 제1 절대교정 확인검사를 수행하는 측정구조 그룹(TGS-NOW, SGS-NOW, TGS-FON 및 SGS-FON)과 제1 상대교정 확인검사를 수행하는 측정구조 그룹(TGS-FON, SGS-FON, SGS-FAN, SGS-FBN 및 SGS-FCN)에 대하여 각각 1군 상대교정 확인검사 및 2군 상대교정 확인검사로 이루어진 상대교정 확인검사를 수행한다. 상대교정 확인검사를 수행하는 측정구조의 구성은 제1 절대교정 확인검사를 통과한 일부 측정구조(TGS-NOW, SGS-NOW) 또는 직전 제1 상대교정 확인검사를 통과한 일부 측정구조(TGS-FON, SGS-FON, SGS-FAN, SGS-FBN 및 SGS-FCN)를 반드시 포함해야 하며, 동일한 기준방사성폐기물 드럼을 해당 그룹의 측정구조에 대하여 반복 측정하여 모든 측정구조의 편차가 아래의 기준을 충족하면 교정을 완료한다.In the second step, the two types of relative calibration checks are performed by the measurement structure group (TGS-NOW, SGS-NOW, TGS-FON, and SGS-) which performs the first absolute calibration check in one meal (before the recommended period of use). FON) and 1st group relative calibration check and 2nd group relative calibration for the measurement structure group (TGS-FON, SGS-FON, SGS-FAN, SGS-FBN and SGS-FCN). Perform a relative calibration confirmation test consisting of a confirmation test. The structure of the measurement structure for performing the relative calibration check may be a part of the measurement structure (TGS-NOW, SGS-NOW) that passed the first absolute calibration check or a part of the measurement structure (TGS-NO that passed the first relative calibration check). FON, SGS-FON, SGS-FAN, SGS-FBN, and SGS-FCN) must be included, and the same reference radioactive waste drum is repeatedly measured against the group's measurement structure so that the deviations of all measurement structures meet the following criteria: If satisfied, complete the calibration.
- 1군 상대교정 확인검사 : 측정편차 ± 20 % 이하 (1식의 제1 절대교정 확인검사의 정확도와 제1 상대교정 확인검사의 정확도의 평균)-Group 1 relative calibration confirmation test: measurement deviation ± 20% or less (average of the accuracy of the first absolute calibration confirmation test of the formula 1 and the accuracy of the first relative calibration confirmation test)
- 2군 상대교정 확인검사 : 측정편차 ± 30 % 이하 (1식의 제1 상대교정 확인검사의 정확도와 동일)-Group 2 relative calibration confirmation test: measurement deviation ± 30% or less (same as the accuracy of the first relative calibration confirmation test of Formula 1)
본 발명에 따른 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼의 검색 및 표준방사성물질의 사용기간을 극대화하는 교정확인 검사방법은 절대교정 확인검사에 사용하는 저방사능 표준방사선원과 교정용 드럼을 이용하여 휴대용측정기의 불감시간 또는 방사선량율을 측정하고, 휴대용측정기의 감도보정인자, 드럼분할구간의 위치보정인자 및 측정구조의 불감시간 보정인자를 통하여 휴대용측정기의 측정결과를 표준화하며, 동시에 상대교정확인 측정그룹의 최적 불감시간 또는 방사선량을 계산한 결과를 사용하여 최적의 방사능농도를 갖는 드럼을 선별하고, 드럼분할구간에 대한 상대비를 이용하여 방사선원의 균일성 및 매질의 균질성을 갖는 기준방사성폐기물드럼을 선정하는 방법을 제공함으로써, 휴대용측정기의 별도 교정을 필요로 하지 않고, 드럼당 측정시간이 수분 미만으로 단시간내에 확인이 가능하며, 매질의 균질성 확인을 위해 사용하였던 기존의 방사성동위원소를 이용한 투과시험 없이도 신속히 폐기물 드럼의 상태를 판정할 수 있도록 한다.Calibration method for the detection of the reference radioactive waste drum and the use of standard radioactive material for maximizing the use period of the standard radioactive material for the indirect calibration validity of the drum nucleus analysis device according to the present invention. The dead time or radiation dose rate of the portable measuring instrument is measured by using the sensor, and the measurement result of the portable measuring instrument is standardized through the sensitivity correction factor of the portable measuring instrument, the position correction factor of the drum division, and the dead time correction factor of the measuring structure. Using the result of calculating the optimal dead time or radiation dose of the calibration check measurement group, the drum having the optimal radioactivity concentration is selected, and the standard having the uniformity of the radiation source and the homogeneity of the medium by using the relative ratio to the drum division section. By providing a method for selecting radioactive waste drums, It does not require calibration, and it can be checked in a short time with less than a few minutes per drum measurement, and it is possible to quickly determine the condition of the waste drum without permeation test using the existing radioisotope used for the homogeneity of the medium. do.

Claims (3)

  1. 교정용 드럼에 저방사능 표준방사선원을 삽입한 후 하나 이상의 휴대용측정기를 통해 불감시간 또는 선량율을 측정하는 제1 단계와;Inserting a low-radiation standard radiation source into a calibration drum and measuring a dead time or dose rate through one or more portable measuring instruments;
    복수개의 상기 휴대용측정기를 사용하는 경우, 어느 하나를 기준 휴대용측정기로 선정하여 그로부터 감도보정인자(CFRi)를 계산하는 제2 단계와;A second step of selecting one of the plurality of portable measuring instruments as a reference portable measuring instrument and calculating a sensitivity correction factor CF Ri therefrom;
    상기 휴대용측정기를 통해 상기 교정용 드럼의 균등분할구간 위치에 따른 불감시간 또는 선량율을 측정하여 위치보정인자(CFSi)를 계산하는 제3 단계와;A third step of calculating a position correction factor (CF Si ) by measuring a dead time or a dose rate according to the position of the equally divided section of the calibration drum through the portable measuring device;
    절대교정확인검사를 수행하는 그룹에서의 드럼 표면 선량율 평균과 상대교정확인검사를 수행하는 그룹에서의 드럼 표면 선량율 평균을 이용하여 상기 교정용 드럼의 측정그룹 불감시간 또는 선량율 보정인자(CFGi)를 계산하는 제4 단계와;Using the mean of the drum surface dose rate in the group performing the absolute calibration check and the mean of the drum surface dose rate in the group performing the relative calibration test, the dead time or dose rate correction factor CF Gi of the measuring drum was determined. A fourth step of calculating;
    상기 불감시간 또는 선량율 보정인자(CFGi)를 통해 상기 상대교정확인검사 그룹의 불감시간 또는 선량율(τOi)을 계산하여 그에 해당하는 방사성폐기물 드럼을 선별하는 제5 단계와;A fifth step of selecting a radioactive waste drum corresponding to the dead time or the dose rate τ Oi of the relative calibration test group by using the dead time or the dose rate correction factor CF Gi ;
    상기 제5 단계에서 선별된 드럼의 균등분할구간 전체에 대해 상기 휴대용측정기를 이용하여 불감시간 또는 선량율을 측정한 다음으로 각 구간에 상기 위치보정인자(CFSi)를 적용하여 그 측정된 불감시간 또는 선량율을 표준화하고, 표준화된 불감시간의 1구간 측정결과를 기준으로 상대비를 계산하여 전체 분할구간에 대해 그 상대비가 1인 드럼을 선별하는 제6 단계와;The dead time or the dose rate was measured using the portable measuring device for the entire equal division section of the drum selected in the fifth step, and then the dead time or the measured dead time was applied by applying the position correction factor (CF Si ) to each section. A sixth step of standardizing the dose rate, calculating a relative ratio based on the measurement result of one section of the standardized dead time, and selecting drums having a relative ratio of 1 for the entire divided section;
    선별된 드럼을 상기 휴대용측정기 또는 드럼핵종분석장치를 이용하여 분광분석을 실시함으로써 기준핵종의 존재여부를 판정하는 제7 단계;로 이루어지는 것을 특징으로 하는 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼 검색방법.A seventh step of determining whether a reference nuclide is present by performing a spectroscopic analysis on the selected drum using the portable measuring instrument or the drum nuclide analysis device. How to find a waste drum.
  2. 청구항 1에 있어서,The method according to claim 1,
    복수개의 상기 휴대용측정기를 사용하는 경우, 상기 표준화된 불감시간(τCi)은,When using a plurality of the portable meter, the standardized dead time (τ Ci ),
    Figure PCTKR2011000967-appb-I000011
    Figure PCTKR2011000967-appb-I000011
    (여기서 τCi는 표준화된 i단의 불감시간 또는 선량율이고, CFSi는 i단에 대한 위치보정인자이고, CFRi는 i단 불감시간 또는 선량율 측정에 사용한 휴대용측정기의 감도보정인자이며, τi는 i번째 휴대용측정기의 불감시간 또는 선량율)Where τ Ci is the dead time or dose rate of the standardized stage i, CF Si is the positional correction factor for stage i, CF Ri is the sensitivity correction factor of the portable measuring instrument used to measure the dead time or dose rate of stage i , τ i Is the dead time or dose rate of the i th meter
    에 의해 취해지는 것을 특징으로 하는 드럼핵종분석장치 간접교정 유효성 검사를 위한 기준방사성 폐기물드럼 검색방법.A reference radioactive waste drum retrieval method for drum nuclide analysis device indirect calibration validity check, characterized in that taken by.
  3. 청구항 1 또는 청구항 2에 따라 검색된 기준방사성 폐기물드럼에 표준방사선원을 사용하여 교정을 확인하는 검사방법에 있어서,In the inspection method for confirming the calibration using a standard radioactive source to the reference radioactive waste drum retrieved according to claim 1 or 2,
    권장사용기간이 초과된 표준방사선원을 이용하여 절대교정 확인검사의 범위를 저준위용 측정구조만으로 축소하여 수행하는 제1 단계와;A first step of reducing the scope of the absolute calibration check using only a standard radiation source whose recommended period of use has been exceeded to only a low level measurement structure;
    상대교정확인검사의 범위를 권장사용기간이 초과하지 아니할 때 수행하는 절대교정 확인검사의 측정구조 그룹 및 상대교정 확인검사의 측정구조 그룹에 대해 각각 상대교정 확인검사를 수행하는 제2 단계;로 이루어지되,A second step of performing a relative calibration check on the measurement structure group of the absolute calibration check test and the measurement structure group of the relative calibration check test performed when the scope of the relative calibration check test does not exceed the recommended period of use; Understand,
    상기 제2 단계에서 상대교정 확인검사 수행에 해당하는 측정구조의 구성은 제1 단계의 절대교정 확인검사를 통과한 일부 측정구조 또는 직전 상대교정 확인검사를 통과한 일부측정 구조를 포함하는 것을 특징으로 하는 표준방사성물질 사용기간을 극대화하는 교정확인 검사방법.In the second step, the configuration of the measurement structure corresponding to performing the relative calibration check may include some measurement structures that pass the absolute calibration check of the first step or some measurement structures that pass the previous relative calibration check. Calibration check method to maximize the use period of standard radioactive material.
PCT/KR2011/000967 2010-02-19 2011-02-14 Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material WO2011102625A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100015400A KR100979559B1 (en) 2010-02-19 2010-02-19 Search method for reference radioactivity waste drum to verify the indirect calibration of gamma scanner and new verification method to extend the life of radioactive standard material
KR10-2010-0015400 2010-02-19

Publications (2)

Publication Number Publication Date
WO2011102625A2 true WO2011102625A2 (en) 2011-08-25
WO2011102625A3 WO2011102625A3 (en) 2011-12-29

Family

ID=43009623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000967 WO2011102625A2 (en) 2010-02-19 2011-02-14 Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material

Country Status (2)

Country Link
KR (1) KR100979559B1 (en)
WO (1) WO2011102625A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297774A (en) * 2014-09-19 2015-01-21 中国船舶重工集团公司第七一九研究所 Detection device for surface dose rate of wastebin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071048B1 (en) * 2019-09-02 2020-01-29 주식회사 고도기술 Improved operation method of non-destructive assay for over-pack drum containing compacted drums
KR102071049B1 (en) * 2019-09-03 2020-01-29 주식회사 고도기술 Calibration method of non-destructive assay for overpact drum containing compacted drums
KR102394944B1 (en) * 2021-11-17 2022-05-09 (주) 뉴케어 Apparatus for measuring and amending activity concentration density of radioactive material and operation calibration methode thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163988A1 (en) * 2001-05-03 2002-11-07 Nisius David T. Waste inspection tomography and non-destructive assay
KR100339038B1 (en) * 1997-11-21 2002-11-13 한국전력공사 the Integral Controlling Method of Radioactive Waste Assay System
US20030042426A1 (en) * 2000-04-14 2003-03-06 Mcgregor Douglas S. Method and system for detecting ionizing radiation
US20080084960A1 (en) * 2006-07-13 2008-04-10 Stephen Croft Extending the Dynamic Range of the TGS Through the Use of a Dual Intensity Transmission Beam

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509116C2 (en) 1997-04-16 1998-12-07 Asea Atom Ab Device for detecting noble gases in exhaust gases from a nuclear reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339038B1 (en) * 1997-11-21 2002-11-13 한국전력공사 the Integral Controlling Method of Radioactive Waste Assay System
US20030042426A1 (en) * 2000-04-14 2003-03-06 Mcgregor Douglas S. Method and system for detecting ionizing radiation
US20020163988A1 (en) * 2001-05-03 2002-11-07 Nisius David T. Waste inspection tomography and non-destructive assay
US20080084960A1 (en) * 2006-07-13 2008-04-10 Stephen Croft Extending the Dynamic Range of the TGS Through the Use of a Dual Intensity Transmission Beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297774A (en) * 2014-09-19 2015-01-21 中国船舶重工集团公司第七一九研究所 Detection device for surface dose rate of wastebin

Also Published As

Publication number Publication date
KR100979559B1 (en) 2010-09-01
WO2011102625A3 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
CN104330815A (en) Method applied to detection of air kerma conventional true value
WO2011102625A2 (en) Method for searching for a reference radioactive waste drum to verify effectiveness of indirect calibration of a gamma scanner and method for verifying a calibration to extend life of standard radioactive material
Smith et al. Signatures and Methods for the Automated Nondestructive Assay of ${\rm UF} _ {6} $ Cylinders at Uranium Enrichment Plants
CN103064101A (en) Gama scanning measuring method through adoption of asymmetrical standard sample calibration
Bae et al. Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil
Miller et al. The uranium cylinder assay system for enrichment plant safeguards
Bai et al. An improved method for the non-destructive characterization of radioactive waste by gamma scanning
Herranz et al. Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield
KR101657577B1 (en) Measurement device and method of total gamma activity for clearance
RU99237U1 (en) SETTING THE MEASUREMENT OF NUCLEAR FUEL BURNING
De With et al. Development of a European harmonised standard to determine the natural radioactivity concentrations in building materials
US11796690B2 (en) Method and device for the quantification of radionuclides in liquid media
JP2635860B2 (en) Radioactivity evaluation method for solidified radioactive waste
RU2798506C1 (en) Method for detecting nuclear fuel fragments and determining their parameters in nuclear reactor graphite blocks
Unz et al. Characterizing Inorganic Scintillation Detectors for Determining Radiation Exposure-11358
Ensslin et al. Attribute and Semiquantitative Measurements
Kalb et al. Deployment of in situ measurement techniques and the MARSSIM process for characterization of the Brookhaven Graphite Research Reactor
Sannié et al. Scintilla: A new international platform for the development, evaluation and benchmarking of technologies to detect radioactive and nuclear material
Thomas et al. SISTec: Mathematical Calibration of Large Clearance Monitors-18265
Smith et al. Measurement Plan for Uncertainty Contributions to 252Cf Waste Measurements
CN117970414A (en) Nondestructive gamma measurement and hot spot reconstruction method adopting multiple NaI detectors
Herranz Soler et al. Radiological characterisation in view of nuclear reactor decommissioning: On-site benchmarking exercise of a biological shield
Joo et al. Development of a Multifunctional Radiation Measurement System for the Rapid Radiological Characterization of a Decommissioned Nuclear Facility Site
Khedra et al. Absolute Measurements for Uranium Verification Content in Radiographic Containers
Simpson et al. International perspective on the application of non-destructive assay technology platforms for sentencing and disposal of radioactive waste-12113

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744867

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744867

Country of ref document: EP

Kind code of ref document: A2