WO2011102435A1 - Hydrogen-storage material container constituted of titanium - Google Patents
Hydrogen-storage material container constituted of titanium Download PDFInfo
- Publication number
- WO2011102435A1 WO2011102435A1 PCT/JP2011/053427 JP2011053427W WO2011102435A1 WO 2011102435 A1 WO2011102435 A1 WO 2011102435A1 JP 2011053427 W JP2011053427 W JP 2011053427W WO 2011102435 A1 WO2011102435 A1 WO 2011102435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- hydrogen
- storage material
- hydrogen storage
- container
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/0005—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
- C01B3/001—Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
- C01B3/0031—Intermetallic compounds; Metal alloys; Treatment thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a titanium hydrogen storage material container that stores a hydrogen storage material such as a hydrogen storage alloy and stores and releases hydrogen from the outside of the container.
- a titanium material has a problem of hydrogen embrittlement in which hydrogen is absorbed in a crystal lattice at a high temperature to form a hydride and embrittle.
- a method for preventing hydrogen embrittlement of the titanium material a method of forming a layer that prevents entry of hydrogen such as a nitride layer on the surface of titanium has been devised (see, for example, Patent Documents 1 to 3).
- a relatively low temperature such as room temperature, the problem of hydrogen embrittlement to titanium is unlikely to occur.
- a container containing a hydrogen storage alloy that absorbs and releases hydrogen at a relatively low temperature such as room temperature. It is considered that a container using a titanium material can be put into practical use without forming a nitride layer or the like as it is or by forming the above layer as necessary without causing hydrogen embrittlement.
- the present invention was made against the background of the above circumstances, and in a titanium container containing a hydrogen storage material such as a hydrogen storage alloy, a titanium hydrogen storage capable of preventing hydrogen embrittlement associated with hydrogen absorption / release.
- An object is to provide a material container.
- the present inventors have found that the above phenomenon is caused by the fact that the hydrogen storage alloy works effectively as a catalyst for dissociating hydrogen molecules into hydrogen atoms, and hydrogen easily enters the titanium material even at room temperature. It is assumed that the titanium material has reached hydrogen embrittlement, and that hydrogen embrittlement cannot be prevented even if a layer that prevents hydrogen intrusion is formed. Further, it is assumed that hydrogen is further solid-phase diffused through the interface between the layer and the container to promote the penetration of hydrogen into the container, and thus the hydrogen embrittlement of the container is caused. It has come to be completed.
- the first present invention is a titanium hydrogen storage material container for storing a hydrogen storage material, wherein the titanium container body and the inner peripheral side of the titanium container body A separator that is interposed between the titanium container body and the hydrogen storage material without being surface-bonded to the titanium container body and prevents contact between the hydrogen storage material and the titanium container body; It is characterized by having.
- the contact between the titanium container body and the hydrogen storage material is prevented by the separator. Moreover, since the separator and the titanium container main body are not surface-bonded, hydrogen that has entered the separator at the interface between the separator and the titanium container main body does not further enter the titanium container main body by solid phase diffusion. . In addition, when hydrogen atoms that have passed through the separator reach the end face of the separator and come into contact with the atmosphere, it becomes easier to recombine and return to hydrogen molecules, and it can be avoided that hydrogen contacts the titanium container body in an atomic state, Hydrogen embrittlement is less likely to occur.
- hydrogen when hydrogen is absorbed and released in an atmosphere such as normal temperature without forced heating or forced cooling, it is possible to reliably prevent hydrogen from entering the titanium container body.
- the separator plate may be prevented from penetrating the hydrogen gas inside the separator plate and moving to the inner side of the titanium container body.
- the hydrogen gas penetrates and moves to the inner side of the titanium vessel body. It is not essential to avoid doing so.
- a relatively low temperature for example, 50 ° C. or less
- it is desirable to secure a sealed structure with a separator so that the hydrogen gas does not come into contact with the titanium container body so that the hydrogen gas stays in this sealed structure. .
- the separator plate since it is necessary to prevent the contact between the hydrogen storage material and the titanium container body on the side wall and bottom surface of the container, the separator plate has a bottomed cylindrical shape along the inner surface shape of the titanium container body. Is desirable. Furthermore, by providing a top plate as necessary, the contact between the hydrogen storage material and the titanium container body can be reliably prevented.
- the bottomed cylindrical shape may be integrally molded, but it surrounds the inner peripheral side along the inner peripheral surface of the titanium container body, and at least both ends in the circumferential direction are arranged without being fixed to each other. It may be constituted by what has a side wall plate and a bottom plate.
- the side wall plate is expanded in diameter by the hydrogen occlusion material expanded by occlusion of hydrogen and effectively makes surface contact with the inner surface of the titanium container main body on the outer peripheral side, the side wall plate is heated through the outer peripheral surface of the titanium container main body.
- the side wall plate and the titanium container body are not surface-bonded, hydrogen hardly diffuses through the solid phase through the boundary between the two.
- the shape of the separator is not limited to a specific one, and any shape that prevents the contact between the hydrogen storage material and the titanium container body may be used.
- the material and thickness of the separator of the present invention are not particularly limited.
- As the material a dense material that prevents the permeation of hydrogen atoms is desirable, and pure aluminum or an aluminum alloy that is light in weight and excellent in processing / deformability and excellent in heat conduction can be suitably used.
- As the thickness of the separator a range of 0.05 to 1 mm can be shown as preferable. When the thickness of the separator is less than 0.05 mm, hydrogen permeation easily occurs, the effect of preventing hydrogen intrusion into the titanium container main body is reduced, and breakage easily occurs along with the hydrogen absorption / release cycle. On the other hand, when the thickness of the separator exceeds 1 mm, the volume ratio of the separator occupying the internal volume increases, and the hydrogen storage amount decreases.
- the hydrogen storage material typically includes a hydrogen storage alloy powder.
- the type of the hydrogen storage material is not limited, and the state of a lump, a powder or the like is not limited. However, it can be said that the effect of the present invention is particularly remarkable in the granular material.
- the hydrogen storage alloy include AB 5 type (LaNi 5 etc.), AB 2 type (TiCr 2 etc.), BCC type (TiCrV etc.), AB type (TiFe etc.), A 2 B type (Mg 2 Ni etc.) and the like. Assuming that the alloy can reversibly absorb and release hydrogen, it is not limited to these.
- the volume filling rate of the storage alloy powder is desirably 40% or more. However, since a filling rate of about 45% is the limit if it is in powder form, it is more desirable to combine it with a resin compounding technology such as those described in Japanese Patent No. 4145339 and Japanese Patent No. 4180105.
- the shape and material of the titanium container main body are not limited to specific ones in the present invention, and any material can be used as long as it is airtight and can accommodate the hydrogen storage material.
- any material can be used as long as it is airtight and can accommodate the hydrogen storage material.
- a cylindrical shape, a spherical shape, a box shape and the like can be mentioned, but the shape is not questioned.
- titanium materials include ⁇ + ⁇ alloys such as Ti-3Al-2.5V, Ti-6Al-4V, Ti-6Al-6V-2Sn, ⁇ alloys such as Ti-5Al-2.5Sn, Ti-6Al Examples include near ⁇ alloys such as -1Mo-1V, ⁇ alloys such as Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, or corrosion resistant alloys such as pure titanium and Ti-0.5Pb. As mentioned.
- FIG. 3A is a cross-sectional view of a separator of a titanium hydrogen storage material container according to another embodiment of the present invention
- FIG. 3B is an exploded perspective view of a titanium hydrogen storage material container according to another embodiment of the present invention.
- FIG. It is the figure which showed the time-dependent change of the circumferential distortion of the container in the Example of this invention. It is the figure which showed the time-dependent change of the circumferential distortion of the container in the comparative example of this invention.
- the titanium container body 1 made of pure titanium or titanium alloy has a bottomed cylindrical shape, and is open at one end in the axial direction.
- the side wall plate separator 2 prepared to be stored in the titanium container body 1 is made of pure aluminum or aluminum alloy and has a plate thickness in the range of 0.05 to 1 mm.
- the separator plate 2 has substantially the same width as the axial length of the titanium container body 1, and when the separator plate 2 is rolled up and stored on the cylinder inner surface of the titanium container body 1, both end portions in the circumferential direction are Overlapping length (overlap). The amount of overlap can be set as appropriate, and it is desirable that the overlap is not performed.
- the separator 3 for the bottom plate disposed on one end side of the separator 2 is made of the same material as the separator 2 and has a thickness within a range of 0.05 to 1 mm. Further, the separator 3 has a low-height peripheral wall 30 erected so as to substantially overlap the inner peripheral surface when the separator 2 is rolled and stored in the titanium container body 1. By inserting the separator 3 into the separator 2 through the peripheral wall 30, the hydrogen storage alloy can be accommodated.
- the separator plate 2 may be housed in the titanium container body 1 by cutting or bending a single plate according to the shape of the titanium container body 1.
- the separator 3 and the separator 2 are combined and stored in a titanium container body 1.
- the cylindrical separator 2 is in close contact with the inner peripheral surface of the titanium container body 1.
- the outer peripheral surface of the separator plate 2 may be brought into close contact with the inner peripheral surface of the titanium container main body 1 after being stored in the titanium container main body 1 by a spring action to expand the diameter of the separator 2.
- a cylindrical separator 2 housed in a titanium container body 1 is filled with hydrogen storage alloy powder 5.
- a separator 3 is located on the bottom side of the separator 2, and the separators 2 and 3 reliably prevent contact between the hydrogen storage alloy powder 5 and the titanium container body 1.
- the hydrogen storage alloy powder 5 is preferably filled in the voids in the titanium container body 1 at a filling rate (volume%) of 40% or more.
- the titanium container body 1 is filled with the hydrogen storage alloy powder 5 and then covered with a thin plate-like inner lid 6 provided with a hydrogen conduction port 60 so as to close the opening, and further covers the inner lid 6 and is made of titanium.
- a cup-shaped outer lid 7 that seals the container body 1 is joined to the titanium container body 1.
- the inner lid 6 is preferably made of a material that hardly causes hydrogen embrittlement.
- the outer lid 7 can be made of a titanium material, and the outer lid 7 is provided with a hydrogen pipe 70 communicating with the hydrogen conduction port 60. Hydrogen can be transferred between the outside and the titanium container body 1 through the hydrogen pipe 70.
- the titanium hydrogen storage material container of the embodiment of the present invention is configured by the above configuration.
- the hydrogen-occlusion alloy powder 5 expands and acts to expand the diameter of the separator 2, and the surface contact between the separator 2 and the titanium container body 1 becomes closer. Thereafter, hydrogen can be released from the hydrogen-absorbing alloy powder 5 by contact with ambient temperature atmosphere or seawater through the outer peripheral surface of the titanium container body 1. At the time of the absorption and release of hydrogen, hydrogen enters the separators 2 and 3, but there is no solid-phase diffusion from the separators 2 and 3 to the titanium container body 1, and the hydrogen does not enter the titanium container body 1. Invasion is suppressed, and hydrogen embrittlement can be prevented.
- the separator 2 may be formed into a bottomed cylindrical separator 10 as shown in FIG. 3A by integral molding in addition to cutting, rounding, bending and the like of the plate material as described above.
- the separator 10 has a cylindrical side wall part 11 and a bottom part 12 integrated with the side wall part 11.
- the separator 10 is integrally formed by processing such as deep drawing.
- the hydrogen storage alloy powder is stored as described above, and the titanium container body is used by using an inner lid, an outer lid, and the like. 1 is sealed and hydrogen is absorbed and released. Also in the titanium hydrogen storage material container using the separator 10, hydrogen embrittlement of the titanium container main body is prevented and the container can be used as a lightweight container as in the above embodiment.
- a bottomed cylindrical container (outer diameter 34 mm, wall thickness 2 mm, length 80 mm) made of Ti-6Al-4V was prepared as a titanium container body.
- a thin aluminum plate having a thickness of 0.2 mm a side wall plate, a bottom plate, and a lid plate having a shape suitable for the inside of the cylindrical container were produced as separators in the same manner as shown in FIGS.
- the side wall plate was produced by cutting a thin plate into a suitable size, bending it into a cylindrical shape, and overlapping both ends in the circumferential direction.
- the bottom plate and the cover plate were made into a cup shape by deep drawing, and a hydrogen conduction hole was provided in the cover plate.
- the produced side wall plate and bottom plate were inserted into the cylindrical container, and AB type 5 hydrogen storage alloy powder was filled at a filling rate of 55% by volume in terms of the internal volume ratio. Thereafter, a lid plate was put on, and an outer lid made of titanium having a hydrogen introduction tube was put on and sealed. Further, in order to measure the strain of the titanium container body, strain gauges are provided on the outer peripheral surface of the container body at four locations at angles of 0 °, 90 °, 180 °, and 270 ° with respect to the central axis of the cylindrical container. Pasted.
- hydrogen was repeatedly absorbed and released, and the amount of deformation of the container body at that time was measured with the strain gauge.
- Specific conditions for absorbing and releasing hydrogen are as follows. First, after evacuating the container at 80 ° C., activation was performed by introducing 0.99 MPa of hydrogen at 20 ° C. or lower. After activation, a cycle test of 0.99 MPa hydrogen absorption and atmospheric pressure hydrogen release was performed in a 20 ° C. water bath.
- FIG. 4 shows the change over time of the container body strain in this example.
- Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body.
- the level of strain was a maximum of 170 ⁇ 10 ⁇ 6 or less at the stage after 35 days, and was within the range of elastic deformation.
- the burst pressure was 125 MPa, which was approximately equal to the calculated value of 124 MPa. From the results of the cross-sectional structure observation, it was confirmed that the same structure as before the test was retained.
- the hydrogen concentration in the titanium container body was 20 ppm before the test, and 34 ppm after the test, which was within the expected range. From the above, it was found that hydrogen embrittlement hardly occurred.
- FIG. 5 shows changes with time in the container body strain in this comparative example.
- Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body. The strain gradually increased with time and reached a maximum of 9590 ⁇ 10 ⁇ 6 after 40 days from the test. After 40 days, the test was interrupted, and a water pressure burst test was conducted on the container body. As a result, although the calculated burst pressure was 124 MPa, it broke brittlely at 53 MPa. When the cross-sectional structure of the titanium container body was observed, a hydride layer was observed on the inner surface. The hydrogen concentration in the titanium container body was 20 ppm before the test, and reached 4000 ppm after the test. From the above, it was clear that hydrogen embrittlement occurred.
- the present invention is not limited to the above-described embodiment, and can be appropriately modified and improved.
- the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
- the separator that prevents the contact between the hydrogen storage material and the titanium container body is interposed between the hydrogen storage material and the container body, and the titanium container body and the separator are Because it is not surface-bonded, hydrogen atoms generated by the catalytic effect of the hydrogen storage material enter the separator and solid-phase diffuse, and further reach the surface of the container body and prevent it from entering the interior. Hydrogen embrittlement of the container body can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
A hydrogen-storage material container constituted of titanium is provided in which hydrogen embrittlement accompanying the occlusion/release of hydrogen can be prevented. The hydrogen-storage material container constituted of titanium is for containing a hydrogen-storage material (hydrogen-storage alloy powder (5)) and comprises: a container main body (1) constituted of titanium; and partitions (a side wall plate 2 and a bottom plate 3) which are located on the inner side of the container main body (1) constituted of titanium and are interposed between the container main body (1) constituted of titanium and the hydrogen-storage material without being areally bonded to the container main body (1) constituted of titanium and which prevent the hydrogen-storage material from coming into contact with the container main body (1) constituted of titanium. In the container, hydrogen atoms generated by the catalytic effect of the hydrogen-storage alloy powder (5) during hydrogen occlusion/release are prevented from reaching to the surface of the container main body (1) constituted of titanium and penetrating into the container main body (1) constituted of titanium, and the container main body constituted of titanium is inhibited from suffering hydrogen embrittlement.
Description
本発明は、水素吸蔵合金などの水素吸蔵材を収容して容器外部との間で水素の吸蔵、放出を行うチタン製水素吸蔵材容器に関する。
The present invention relates to a titanium hydrogen storage material container that stores a hydrogen storage material such as a hydrogen storage alloy and stores and releases hydrogen from the outside of the container.
水素吸蔵合金を収容して水素を吸放出させる容器の材質には、種々の材料が使用されているが、最近では、軽量高強度なチタン材料の使用が検討されている。
一般に、チタン材料は、高温時に水素を結晶格子内に吸収し、水素化物を形成して脆化するという水素脆化の問題がある。このため、チタン材料の水素脆化を防ぐ方法として、チタンの表面に窒化物層などの水素の侵入を防ぐ層を形成する方法が考案されている(例えば特許文献1~3参照)。
一方、常温などの比較的低い温度では、チタンに対する水素脆化の問題は生じにくいものとされており、したがって、常温などの比較的低い温度で水素を吸放出する水素吸蔵合金を収容する容器では、窒化物層などを形成することなくそのまま、または必要に応じて上記層を形成することで、水素脆化を招くことなくチタン材料を用いた容器の実用化が可能であると考えられる。 Various materials are used for the material of the container that contains the hydrogen storage alloy and absorbs and releases hydrogen. Recently, the use of a lightweight and high-strength titanium material has been studied.
In general, a titanium material has a problem of hydrogen embrittlement in which hydrogen is absorbed in a crystal lattice at a high temperature to form a hydride and embrittle. For this reason, as a method for preventing hydrogen embrittlement of the titanium material, a method of forming a layer that prevents entry of hydrogen such as a nitride layer on the surface of titanium has been devised (see, for example,Patent Documents 1 to 3).
On the other hand, at a relatively low temperature such as room temperature, the problem of hydrogen embrittlement to titanium is unlikely to occur. Therefore, in a container containing a hydrogen storage alloy that absorbs and releases hydrogen at a relatively low temperature such as room temperature. It is considered that a container using a titanium material can be put into practical use without forming a nitride layer or the like as it is or by forming the above layer as necessary without causing hydrogen embrittlement.
一般に、チタン材料は、高温時に水素を結晶格子内に吸収し、水素化物を形成して脆化するという水素脆化の問題がある。このため、チタン材料の水素脆化を防ぐ方法として、チタンの表面に窒化物層などの水素の侵入を防ぐ層を形成する方法が考案されている(例えば特許文献1~3参照)。
一方、常温などの比較的低い温度では、チタンに対する水素脆化の問題は生じにくいものとされており、したがって、常温などの比較的低い温度で水素を吸放出する水素吸蔵合金を収容する容器では、窒化物層などを形成することなくそのまま、または必要に応じて上記層を形成することで、水素脆化を招くことなくチタン材料を用いた容器の実用化が可能であると考えられる。 Various materials are used for the material of the container that contains the hydrogen storage alloy and absorbs and releases hydrogen. Recently, the use of a lightweight and high-strength titanium material has been studied.
In general, a titanium material has a problem of hydrogen embrittlement in which hydrogen is absorbed in a crystal lattice at a high temperature to form a hydride and embrittle. For this reason, as a method for preventing hydrogen embrittlement of the titanium material, a method of forming a layer that prevents entry of hydrogen such as a nitride layer on the surface of titanium has been devised (see, for example,
On the other hand, at a relatively low temperature such as room temperature, the problem of hydrogen embrittlement to titanium is unlikely to occur. Therefore, in a container containing a hydrogen storage alloy that absorbs and releases hydrogen at a relatively low temperature such as room temperature. It is considered that a container using a titanium material can be put into practical use without forming a nitride layer or the like as it is or by forming the above layer as necessary without causing hydrogen embrittlement.
しかし、本発明者らの研究によれば、水素吸蔵合金をチタン合金製容器に充填し、室温で水素吸放出を行ったにも拘わらず、経時的にチタン合金製容器の水素脆化が進行することが分かった。
この水素脆化現象は、室温のような比較的低い温度で進行したため、先行文献が対象としているような高温における水素ガスとチタン合金の反応とは異なる現象であると考えられる。すなわち、単なる水素ガスとの接触によって水素脆化が発生するのではなく、水素吸蔵合金の介在により、水素脆化速度が非常に大きくなったものと考えられる。また、本発明者らの研究によれば、チタン合金製容器の内面に窒化物層などの水素の侵入を防ぐ層を形成して室温で水素の吸放出を行っても、上記と同様に容器に水素脆化が生じることが分かった。 However, according to the study by the present inventors, hydrogen embrittlement of the titanium alloy container progressed over time despite filling the titanium alloy container into the titanium alloy container and performing hydrogen absorption / release at room temperature. I found out that
Since this hydrogen embrittlement phenomenon progressed at a relatively low temperature such as room temperature, it is considered that this reaction is different from the reaction between hydrogen gas and titanium alloy at a high temperature, which is the subject of the prior art. That is, hydrogen embrittlement is not caused by contact with simple hydrogen gas, but the hydrogen embrittlement rate is considered to be very large due to the interposition of the hydrogen storage alloy. Further, according to the study by the present inventors, even when a layer for preventing hydrogen intrusion such as a nitride layer is formed on the inner surface of a titanium alloy container and hydrogen is absorbed and released at room temperature, the container is similar to the above. It was found that hydrogen embrittlement occurred.
この水素脆化現象は、室温のような比較的低い温度で進行したため、先行文献が対象としているような高温における水素ガスとチタン合金の反応とは異なる現象であると考えられる。すなわち、単なる水素ガスとの接触によって水素脆化が発生するのではなく、水素吸蔵合金の介在により、水素脆化速度が非常に大きくなったものと考えられる。また、本発明者らの研究によれば、チタン合金製容器の内面に窒化物層などの水素の侵入を防ぐ層を形成して室温で水素の吸放出を行っても、上記と同様に容器に水素脆化が生じることが分かった。 However, according to the study by the present inventors, hydrogen embrittlement of the titanium alloy container progressed over time despite filling the titanium alloy container into the titanium alloy container and performing hydrogen absorption / release at room temperature. I found out that
Since this hydrogen embrittlement phenomenon progressed at a relatively low temperature such as room temperature, it is considered that this reaction is different from the reaction between hydrogen gas and titanium alloy at a high temperature, which is the subject of the prior art. That is, hydrogen embrittlement is not caused by contact with simple hydrogen gas, but the hydrogen embrittlement rate is considered to be very large due to the interposition of the hydrogen storage alloy. Further, according to the study by the present inventors, even when a layer for preventing hydrogen intrusion such as a nitride layer is formed on the inner surface of a titanium alloy container and hydrogen is absorbed and released at room temperature, the container is similar to the above. It was found that hydrogen embrittlement occurred.
本願発明は、上記事情を背景としてなされたものであり、水素吸蔵合金などの水素吸蔵材を収容するチタン製容器において、水素の吸放出に伴う水素脆化を防止することができるチタン製水素吸蔵材容器を提供することを目的とする。
The present invention was made against the background of the above circumstances, and in a titanium container containing a hydrogen storage material such as a hydrogen storage alloy, a titanium hydrogen storage capable of preventing hydrogen embrittlement associated with hydrogen absorption / release. An object is to provide a material container.
本発明者らは、鋭意研究した結果、上記現象の原因としては、水素吸蔵合金が水素分子を水素原子に解離する触媒として効果的に働いて、室温においてもチタン材料中に水素が侵入しやすくなり、チタン材料の水素脆化に至ったと想定されること、また、水素の侵入を防ぐ層を形成しても水素脆化を防止できないのは、該層に水素が侵入して固相拡散し、さらに該層と容器との界面を介してさらに水素が固相拡散することで容器への水素の侵入を助長し、よって容器の水素脆化を招いたと想定されることから、本発明を完成するに至ったものである。
As a result of diligent research, the present inventors have found that the above phenomenon is caused by the fact that the hydrogen storage alloy works effectively as a catalyst for dissociating hydrogen molecules into hydrogen atoms, and hydrogen easily enters the titanium material even at room temperature. It is assumed that the titanium material has reached hydrogen embrittlement, and that hydrogen embrittlement cannot be prevented even if a layer that prevents hydrogen intrusion is formed. Further, it is assumed that hydrogen is further solid-phase diffused through the interface between the layer and the container to promote the penetration of hydrogen into the container, and thus the hydrogen embrittlement of the container is caused. It has come to be completed.
すなわち、本発明のチタン製水素吸蔵材容器のうち、第1の本発明は、水素吸蔵材を収容するチタン製水素吸蔵材容器において、チタン製容器本体と、該チタン製容器本体の内周側にあって該チタン製容器本体と面接合されることなく該チタン製容器本体と前記水素吸蔵材との間に介在して該水素吸蔵材と前記チタン製容器本体との接触を妨げる隔離板とを有することを特徴とする。
That is, among the titanium hydrogen storage material containers of the present invention, the first present invention is a titanium hydrogen storage material container for storing a hydrogen storage material, wherein the titanium container body and the inner peripheral side of the titanium container body A separator that is interposed between the titanium container body and the hydrogen storage material without being surface-bonded to the titanium container body and prevents contact between the hydrogen storage material and the titanium container body; It is characterized by having.
本発明によれば、チタン製容器本体と水素吸蔵材とが隔離板で接触が妨げられる。しかも、隔離板とチタン製容器本体とは面接合されていないため、隔離板とチタン製容器本体の界面において隔離板を侵入した水素が固相拡散によってさらにチタン製容器本体に侵入することはない。また、隔離板を透過した水素原子が隔離板端面に至って雰囲気に触れる際に再結合して水素分子に戻りやすくなり、原子状の状態でチタン製容器本体に水素が接触することを回避でき、水素脆化が一層起こりにくくなる。
According to the present invention, the contact between the titanium container body and the hydrogen storage material is prevented by the separator. Moreover, since the separator and the titanium container main body are not surface-bonded, hydrogen that has entered the separator at the interface between the separator and the titanium container main body does not further enter the titanium container main body by solid phase diffusion. . In addition, when hydrogen atoms that have passed through the separator reach the end face of the separator and come into contact with the atmosphere, it becomes easier to recombine and return to hydrogen molecules, and it can be avoided that hydrogen contacts the titanium container body in an atomic state, Hydrogen embrittlement is less likely to occur.
これにより水素がチタン製容器本体に侵入するのを妨げることができる。特に強制加熱や強制冷却を伴わない常温のような雰囲気で水素の吸放出を行わせる場合には、確実にチタン製容器本体に水素が侵入するのを防止することができる。
なお、隔離板は、隔離板内部の水素ガスが浸透してチタン製容器本体内面側に移動しないようにしてもよいが、本発明としては水素ガスが浸透してチタン製容器本体内面側に移動することを回避することが必須とされるものではない。特に常温のように比較的低い温度(例えば50℃以下)で水素の吸放出を行う場合には、水素ガスとチタン製容器本体との接触は大きな問題にならない。ただし、高温で水素ガスを扱う場合には、水素ガスとチタン製容器本体とが接触しないように、隔離板で密閉構造を確保し、この密閉構造内に水素ガスが留まるようにするのが望ましい。 This can prevent hydrogen from entering the titanium container body. In particular, when hydrogen is absorbed and released in an atmosphere such as normal temperature without forced heating or forced cooling, it is possible to reliably prevent hydrogen from entering the titanium container body.
The separator plate may be prevented from penetrating the hydrogen gas inside the separator plate and moving to the inner side of the titanium container body. However, in the present invention, the hydrogen gas penetrates and moves to the inner side of the titanium vessel body. It is not essential to avoid doing so. In particular, when hydrogen is absorbed and released at a relatively low temperature (for example, 50 ° C. or less) such as normal temperature, the contact between the hydrogen gas and the titanium container body does not pose a serious problem. However, when handling hydrogen gas at high temperatures, it is desirable to secure a sealed structure with a separator so that the hydrogen gas does not come into contact with the titanium container body so that the hydrogen gas stays in this sealed structure. .
なお、隔離板は、隔離板内部の水素ガスが浸透してチタン製容器本体内面側に移動しないようにしてもよいが、本発明としては水素ガスが浸透してチタン製容器本体内面側に移動することを回避することが必須とされるものではない。特に常温のように比較的低い温度(例えば50℃以下)で水素の吸放出を行う場合には、水素ガスとチタン製容器本体との接触は大きな問題にならない。ただし、高温で水素ガスを扱う場合には、水素ガスとチタン製容器本体とが接触しないように、隔離板で密閉構造を確保し、この密閉構造内に水素ガスが留まるようにするのが望ましい。 This can prevent hydrogen from entering the titanium container body. In particular, when hydrogen is absorbed and released in an atmosphere such as normal temperature without forced heating or forced cooling, it is possible to reliably prevent hydrogen from entering the titanium container body.
The separator plate may be prevented from penetrating the hydrogen gas inside the separator plate and moving to the inner side of the titanium container body. However, in the present invention, the hydrogen gas penetrates and moves to the inner side of the titanium vessel body. It is not essential to avoid doing so. In particular, when hydrogen is absorbed and released at a relatively low temperature (for example, 50 ° C. or less) such as normal temperature, the contact between the hydrogen gas and the titanium container body does not pose a serious problem. However, when handling hydrogen gas at high temperatures, it is desirable to secure a sealed structure with a separator so that the hydrogen gas does not come into contact with the titanium container body so that the hydrogen gas stays in this sealed structure. .
なお、隔離板は、容器の側壁および底面において水素吸蔵材とチタン製容器本体との接触を妨げることが必要となるので、チタン製容器本体の内面形状に沿った有底の筒形状とするものが望ましい。さらに、必要に応じて天板を備えることで、水素吸蔵材とチタン製容器本体との接触を確実に妨げることができる。
また、上記有底筒形状は一体成形したものが挙げられるが、チタン製容器本体の内周面に沿って内周側を囲み、かつ少なくとも周方向両端部を互いに固定することなく重ねて配置された側壁板と、底板とを有するものによって構成するものであってもよい。
該側壁板は、水素を吸蔵して膨張した水素吸蔵材によって拡径動作が生じ、外周側のチタン製容器本体内面に効果的に面接触するようにすれば、チタン製容器本体外周面を通して熱交換を行う際に、熱伝導効率を高める効果がある。この際にも、側壁板とチタン製容器本体とは面接合されているものではないので、両者の境界を通して水素が固相拡散することは殆どない。ただし、本発明としては隔離板の形状が特定のものに限定されるものではなく、水素吸蔵材とチタン製容器本体との接触を妨げるものであればよい。 In addition, since it is necessary to prevent the contact between the hydrogen storage material and the titanium container body on the side wall and bottom surface of the container, the separator plate has a bottomed cylindrical shape along the inner surface shape of the titanium container body. Is desirable. Furthermore, by providing a top plate as necessary, the contact between the hydrogen storage material and the titanium container body can be reliably prevented.
In addition, the bottomed cylindrical shape may be integrally molded, but it surrounds the inner peripheral side along the inner peripheral surface of the titanium container body, and at least both ends in the circumferential direction are arranged without being fixed to each other. It may be constituted by what has a side wall plate and a bottom plate.
If the side wall plate is expanded in diameter by the hydrogen occlusion material expanded by occlusion of hydrogen and effectively makes surface contact with the inner surface of the titanium container main body on the outer peripheral side, the side wall plate is heated through the outer peripheral surface of the titanium container main body. When exchanging, there is an effect of increasing the heat conduction efficiency. Also in this case, since the side wall plate and the titanium container body are not surface-bonded, hydrogen hardly diffuses through the solid phase through the boundary between the two. However, in the present invention, the shape of the separator is not limited to a specific one, and any shape that prevents the contact between the hydrogen storage material and the titanium container body may be used.
また、上記有底筒形状は一体成形したものが挙げられるが、チタン製容器本体の内周面に沿って内周側を囲み、かつ少なくとも周方向両端部を互いに固定することなく重ねて配置された側壁板と、底板とを有するものによって構成するものであってもよい。
該側壁板は、水素を吸蔵して膨張した水素吸蔵材によって拡径動作が生じ、外周側のチタン製容器本体内面に効果的に面接触するようにすれば、チタン製容器本体外周面を通して熱交換を行う際に、熱伝導効率を高める効果がある。この際にも、側壁板とチタン製容器本体とは面接合されているものではないので、両者の境界を通して水素が固相拡散することは殆どない。ただし、本発明としては隔離板の形状が特定のものに限定されるものではなく、水素吸蔵材とチタン製容器本体との接触を妨げるものであればよい。 In addition, since it is necessary to prevent the contact between the hydrogen storage material and the titanium container body on the side wall and bottom surface of the container, the separator plate has a bottomed cylindrical shape along the inner surface shape of the titanium container body. Is desirable. Furthermore, by providing a top plate as necessary, the contact between the hydrogen storage material and the titanium container body can be reliably prevented.
In addition, the bottomed cylindrical shape may be integrally molded, but it surrounds the inner peripheral side along the inner peripheral surface of the titanium container body, and at least both ends in the circumferential direction are arranged without being fixed to each other. It may be constituted by what has a side wall plate and a bottom plate.
If the side wall plate is expanded in diameter by the hydrogen occlusion material expanded by occlusion of hydrogen and effectively makes surface contact with the inner surface of the titanium container main body on the outer peripheral side, the side wall plate is heated through the outer peripheral surface of the titanium container main body. When exchanging, there is an effect of increasing the heat conduction efficiency. Also in this case, since the side wall plate and the titanium container body are not surface-bonded, hydrogen hardly diffuses through the solid phase through the boundary between the two. However, in the present invention, the shape of the separator is not limited to a specific one, and any shape that prevents the contact between the hydrogen storage material and the titanium container body may be used.
さらに、本発明の隔離板の材質、厚さなどは特に限定されるものではない。材質としては、水素原子の透過が妨げられる密な材料が望ましく、さらには軽量で加工・変形性の優れた熱伝導が良好な純アルミニウムまたはアルミニウム合金を好適に用いることができる。隔離板の厚さとしては0.05~1mmの範囲を好適なものとして示すことができる。隔離板の厚さが0.05mm未満であると、水素の透過がしやすく、チタン製容器本体に対する水素侵入の防止効果が小さくなるとともに、水素吸放出サイクルに伴って破損しやすくなる。また、隔離板の厚さが1mmを超えると、内容積に占める隔離板の体積比が大きくなるため、水素貯蔵量が低下してしまう。
Furthermore, the material and thickness of the separator of the present invention are not particularly limited. As the material, a dense material that prevents the permeation of hydrogen atoms is desirable, and pure aluminum or an aluminum alloy that is light in weight and excellent in processing / deformability and excellent in heat conduction can be suitably used. As the thickness of the separator, a range of 0.05 to 1 mm can be shown as preferable. When the thickness of the separator is less than 0.05 mm, hydrogen permeation easily occurs, the effect of preventing hydrogen intrusion into the titanium container main body is reduced, and breakage easily occurs along with the hydrogen absorption / release cycle. On the other hand, when the thickness of the separator exceeds 1 mm, the volume ratio of the separator occupying the internal volume increases, and the hydrogen storage amount decreases.
前記水素吸蔵材は、代表的には水素吸蔵合金粉末が挙げられる。ただし、本発明としては水素吸蔵材の種別が限定されるものではなく、塊状物、粉粒物などの状態も限定されるものではない。ただし、本発明の効果は粉粒物において特に顕著であるといえる。
水素吸蔵合金としては、AB5型(LaNi5など)、AB2型(TiCr2など)、BCC型(TiCrVなど)、AB型(TiFeなど)、A2B型(Mg2Niなど)などが想定されるが、可逆的に水素を吸放出できる合金であれば、これらに限定しない。
水素貯蔵密度をできるだけ高くするため、吸蔵合金粉末の体積充填率は40%以上であるのが望ましい。ただし、粉末のままでは充填率45%程度が限界であるため、日本国特許第4145339号や日本国特許第4180105号に挙げるような樹脂複合化技術と組み合わせるのがより望ましい。 The hydrogen storage material typically includes a hydrogen storage alloy powder. However, in the present invention, the type of the hydrogen storage material is not limited, and the state of a lump, a powder or the like is not limited. However, it can be said that the effect of the present invention is particularly remarkable in the granular material.
Examples of the hydrogen storage alloy include AB 5 type (LaNi 5 etc.), AB 2 type (TiCr 2 etc.), BCC type (TiCrV etc.), AB type (TiFe etc.), A 2 B type (Mg 2 Ni etc.) and the like. Assuming that the alloy can reversibly absorb and release hydrogen, it is not limited to these.
In order to make the hydrogen storage density as high as possible, the volume filling rate of the storage alloy powder is desirably 40% or more. However, since a filling rate of about 45% is the limit if it is in powder form, it is more desirable to combine it with a resin compounding technology such as those described in Japanese Patent No. 4145339 and Japanese Patent No. 4180105.
水素吸蔵合金としては、AB5型(LaNi5など)、AB2型(TiCr2など)、BCC型(TiCrVなど)、AB型(TiFeなど)、A2B型(Mg2Niなど)などが想定されるが、可逆的に水素を吸放出できる合金であれば、これらに限定しない。
水素貯蔵密度をできるだけ高くするため、吸蔵合金粉末の体積充填率は40%以上であるのが望ましい。ただし、粉末のままでは充填率45%程度が限界であるため、日本国特許第4145339号や日本国特許第4180105号に挙げるような樹脂複合化技術と組み合わせるのがより望ましい。 The hydrogen storage material typically includes a hydrogen storage alloy powder. However, in the present invention, the type of the hydrogen storage material is not limited, and the state of a lump, a powder or the like is not limited. However, it can be said that the effect of the present invention is particularly remarkable in the granular material.
Examples of the hydrogen storage alloy include AB 5 type (LaNi 5 etc.), AB 2 type (TiCr 2 etc.), BCC type (TiCrV etc.), AB type (TiFe etc.), A 2 B type (Mg 2 Ni etc.) and the like. Assuming that the alloy can reversibly absorb and release hydrogen, it is not limited to these.
In order to make the hydrogen storage density as high as possible, the volume filling rate of the storage alloy powder is desirably 40% or more. However, since a filling rate of about 45% is the limit if it is in powder form, it is more desirable to combine it with a resin compounding technology such as those described in Japanese Patent No. 4145339 and Japanese Patent No. 4180105.
また、チタン製容器本体の形状、材質も本発明としては特定のものに限定されるものではなく、気密にして水素吸蔵材を収容できるものであればよい。例えば、円筒形、球形、箱型などが挙げられるが、形状を問うものではない。また、チタン材料としては、Ti-3Al-2.5V、Ti-6Al-4V、Ti-6Al-6V-2Snのようなα+β合金、Ti-5Al-2.5Snのようなα合金、Ti-6Al-1Mo-1Vのようなニアα合金、Ti-13V-11Cr-3Al、Ti-8Mo-8V-2Fe-3Alのようなβ合金、あるいは純チタンやTi-0.5Pbのような耐食合金が例として挙げられる。
Further, the shape and material of the titanium container main body are not limited to specific ones in the present invention, and any material can be used as long as it is airtight and can accommodate the hydrogen storage material. For example, a cylindrical shape, a spherical shape, a box shape and the like can be mentioned, but the shape is not questioned. Also, titanium materials include α + β alloys such as Ti-3Al-2.5V, Ti-6Al-4V, Ti-6Al-6V-2Sn, α alloys such as Ti-5Al-2.5Sn, Ti-6Al Examples include near α alloys such as -1Mo-1V, β alloys such as Ti-13V-11Cr-3Al, Ti-8Mo-8V-2Fe-3Al, or corrosion resistant alloys such as pure titanium and Ti-0.5Pb. As mentioned.
以下に、本発明の一実施形態を図1に基づいて説明する。
純チタンまたはチタン合金製のチタン製容器本体1は、有底円筒形状を有しており、軸方向一端側は開口している。
該チタン製容器本体1に収納するべく用意される側壁板用の隔離板2は、純アルミニウムまたはアルミニウム合金からなり、0.05~1mmの範囲内の板厚を有している。該隔離板2は、チタン製容器本体1の軸方向長さとほぼ同じ幅を有し、筒状に丸めてチタン製容器本体1の筒内面に重ねて収納した際に、周方向の両端部が重なる長さ(重ねしろ)を有している。重ねしろ量は適宜設定することができ、該重ねしろでは互いに接合することは行わないのが望ましい。
また、隔離板2の一端側に配置される底板用の隔離板3は、前記隔離板2と同材料からなり、0.05~1mmの範囲内の板厚を有している。また、隔離板3は、前記隔離板2をチタン製容器本体1に丸めて収納した際に、その内周面にほぼ重なるように立設した低い高さの周囲壁30を有しており、該隔離板3を周囲壁30を介して隔離板2に内挿することで水素吸蔵合金の収容が可能になる。なお、隔離板2は、チタン製容器本体1の形状に合わせて一枚板を切断したり折り曲げたりしてチタン製容器本体1内に収納するようにしてもよい。 Below, one Embodiment of this invention is described based on FIG.
Thetitanium container body 1 made of pure titanium or titanium alloy has a bottomed cylindrical shape, and is open at one end in the axial direction.
The sidewall plate separator 2 prepared to be stored in the titanium container body 1 is made of pure aluminum or aluminum alloy and has a plate thickness in the range of 0.05 to 1 mm. The separator plate 2 has substantially the same width as the axial length of the titanium container body 1, and when the separator plate 2 is rolled up and stored on the cylinder inner surface of the titanium container body 1, both end portions in the circumferential direction are Overlapping length (overlap). The amount of overlap can be set as appropriate, and it is desirable that the overlap is not performed.
Further, theseparator 3 for the bottom plate disposed on one end side of the separator 2 is made of the same material as the separator 2 and has a thickness within a range of 0.05 to 1 mm. Further, the separator 3 has a low-height peripheral wall 30 erected so as to substantially overlap the inner peripheral surface when the separator 2 is rolled and stored in the titanium container body 1. By inserting the separator 3 into the separator 2 through the peripheral wall 30, the hydrogen storage alloy can be accommodated. The separator plate 2 may be housed in the titanium container body 1 by cutting or bending a single plate according to the shape of the titanium container body 1.
純チタンまたはチタン合金製のチタン製容器本体1は、有底円筒形状を有しており、軸方向一端側は開口している。
該チタン製容器本体1に収納するべく用意される側壁板用の隔離板2は、純アルミニウムまたはアルミニウム合金からなり、0.05~1mmの範囲内の板厚を有している。該隔離板2は、チタン製容器本体1の軸方向長さとほぼ同じ幅を有し、筒状に丸めてチタン製容器本体1の筒内面に重ねて収納した際に、周方向の両端部が重なる長さ(重ねしろ)を有している。重ねしろ量は適宜設定することができ、該重ねしろでは互いに接合することは行わないのが望ましい。
また、隔離板2の一端側に配置される底板用の隔離板3は、前記隔離板2と同材料からなり、0.05~1mmの範囲内の板厚を有している。また、隔離板3は、前記隔離板2をチタン製容器本体1に丸めて収納した際に、その内周面にほぼ重なるように立設した低い高さの周囲壁30を有しており、該隔離板3を周囲壁30を介して隔離板2に内挿することで水素吸蔵合金の収容が可能になる。なお、隔離板2は、チタン製容器本体1の形状に合わせて一枚板を切断したり折り曲げたりしてチタン製容器本体1内に収納するようにしてもよい。 Below, one Embodiment of this invention is described based on FIG.
The
The side
Further, the
図1に示すように、上記隔離板3と隔離板2とは組み合わされて、チタン製容器本体1内に収納される。筒状とされた隔離板2は、チタン製容器本体1の内周面にほぼ密着する。また、隔離板2の拡径しようとするばね作用によってチタン製容器本体1に収納した後に隔離板2の外周面がチタン製容器本体1の内周面に確実に密着するようにしてもよい。
チタン製容器本体1に収納された筒状の隔離板2内には水素吸蔵合金粉末5が充填される。隔離板2の底部側には隔離板3が位置しており、隔離板2、3によって、水素吸蔵合金粉末5とチタン製容器本体1との接触は確実に妨げられる。この際に水素吸蔵合金粉末5は、チタン製容器本体1内の空隙に対し、好適には40%以上の充填率(体積%)で充填する。 As shown in FIG. 1, theseparator 3 and the separator 2 are combined and stored in a titanium container body 1. The cylindrical separator 2 is in close contact with the inner peripheral surface of the titanium container body 1. Alternatively, the outer peripheral surface of the separator plate 2 may be brought into close contact with the inner peripheral surface of the titanium container main body 1 after being stored in the titanium container main body 1 by a spring action to expand the diameter of the separator 2.
Acylindrical separator 2 housed in a titanium container body 1 is filled with hydrogen storage alloy powder 5. A separator 3 is located on the bottom side of the separator 2, and the separators 2 and 3 reliably prevent contact between the hydrogen storage alloy powder 5 and the titanium container body 1. At this time, the hydrogen storage alloy powder 5 is preferably filled in the voids in the titanium container body 1 at a filling rate (volume%) of 40% or more.
チタン製容器本体1に収納された筒状の隔離板2内には水素吸蔵合金粉末5が充填される。隔離板2の底部側には隔離板3が位置しており、隔離板2、3によって、水素吸蔵合金粉末5とチタン製容器本体1との接触は確実に妨げられる。この際に水素吸蔵合金粉末5は、チタン製容器本体1内の空隙に対し、好適には40%以上の充填率(体積%)で充填する。 As shown in FIG. 1, the
A
上記チタン製容器本体1は、水素吸蔵合金粉末5を充填した後、開口を塞ぐように、水素導通口60を設けた薄板状の内蓋6を被せ、さらに、内蓋6を覆ってチタン製容器本体1を密閉するカップ形状の外蓋7をチタン製容器本体1に接合する。内蓋6は、好ましくは、水素脆化が生じにくい材料で構成する。外蓋7はチタン材料で構成することができ、該外蓋7には、前記水素導通口60に連通する水素配管70が設けられている。該水素配管70を通して外部とチタン製容器本体1との間で水素の移動が可能になっている。上記構成によって本発明の実施形態のチタン製水素吸蔵材容器が構成されている。
The titanium container body 1 is filled with the hydrogen storage alloy powder 5 and then covered with a thin plate-like inner lid 6 provided with a hydrogen conduction port 60 so as to close the opening, and further covers the inner lid 6 and is made of titanium. A cup-shaped outer lid 7 that seals the container body 1 is joined to the titanium container body 1. The inner lid 6 is preferably made of a material that hardly causes hydrogen embrittlement. The outer lid 7 can be made of a titanium material, and the outer lid 7 is provided with a hydrogen pipe 70 communicating with the hydrogen conduction port 60. Hydrogen can be transferred between the outside and the titanium container body 1 through the hydrogen pipe 70. The titanium hydrogen storage material container of the embodiment of the present invention is configured by the above configuration.
上記チタン製水素吸蔵材容器では、例えば、高圧の水素ガスを水素配管70を通してチタン製容器本体1内に導入し、水素吸蔵合金粉末5に水素を吸蔵させる。この吸蔵によって水素吸蔵合金粉末5は膨張し、隔離板2を拡径する作用が働き、隔離板2とチタン製容器本体1との面接触がより緊密になる。
その後は、チタン製容器本体1の外周面を通した常温の雰囲気や海水などの接触によって水素吸蔵合金粉末5からの水素放出が可能になる。
上記水素の吸放出の際に、水素は隔離板2、3へと侵入するものの、隔離板2、3からチタン製容器本体1への固相拡散はなく、チタン製容器本体1への水素の侵入が抑制され、よって水素脆化を防ぐことができる。 In the titanium hydrogen storage material container, for example, high-pressure hydrogen gas is introduced into thetitanium container body 1 through the hydrogen pipe 70, and the hydrogen storage alloy powder 5 stores hydrogen. By this occlusion, the hydrogen-occlusion alloy powder 5 expands and acts to expand the diameter of the separator 2, and the surface contact between the separator 2 and the titanium container body 1 becomes closer.
Thereafter, hydrogen can be released from the hydrogen-absorbingalloy powder 5 by contact with ambient temperature atmosphere or seawater through the outer peripheral surface of the titanium container body 1.
At the time of the absorption and release of hydrogen, hydrogen enters the separators 2 and 3, but there is no solid-phase diffusion from the separators 2 and 3 to the titanium container body 1, and the hydrogen does not enter the titanium container body 1. Invasion is suppressed, and hydrogen embrittlement can be prevented.
その後は、チタン製容器本体1の外周面を通した常温の雰囲気や海水などの接触によって水素吸蔵合金粉末5からの水素放出が可能になる。
上記水素の吸放出の際に、水素は隔離板2、3へと侵入するものの、隔離板2、3からチタン製容器本体1への固相拡散はなく、チタン製容器本体1への水素の侵入が抑制され、よって水素脆化を防ぐことができる。 In the titanium hydrogen storage material container, for example, high-pressure hydrogen gas is introduced into the
Thereafter, hydrogen can be released from the hydrogen-absorbing
At the time of the absorption and release of hydrogen, hydrogen enters the
また、隔離板2は、上記のように板材の切断、丸め、折り曲げ等の他に、一体成形によって、図3(a)に示すように有底筒形状の隔離板10としてもよい。該隔離板10は、図3(a)に示すように、筒状の側壁部11と該側壁部11と一体になった底部12とを有している。隔離板10は、深絞り等の加工によって一体に成形される。
該隔離板10は、チタン製容器本体1に収納した際に、該チタン製容器本体1と側壁部11の外周面とがほぼ接触するように外径が設定されている。図3(b)に示すように、チタン製容器本体1に隔離板10を収納した後、上記のように、水素吸蔵合金粉末を収容し、中蓋、外蓋などを用いてチタン製容器本体1を密閉し、水素の吸放出を行う。
該隔離板10を用いたチタン製水素吸蔵材容器においても、上記実施形態と同様に、チタン製容器本体の水素脆化が防止され、軽量な容器として使用することができる。 Further, theseparator 2 may be formed into a bottomed cylindrical separator 10 as shown in FIG. 3A by integral molding in addition to cutting, rounding, bending and the like of the plate material as described above. As shown in FIG. 3A, the separator 10 has a cylindrical side wall part 11 and a bottom part 12 integrated with the side wall part 11. The separator 10 is integrally formed by processing such as deep drawing.
When theseparator 10 is stored in the titanium container body 1, the outer diameter is set so that the titanium container body 1 and the outer peripheral surface of the side wall portion 11 are substantially in contact with each other. As shown in FIG. 3 (b), after the separator 10 is stored in the titanium container body 1, the hydrogen storage alloy powder is stored as described above, and the titanium container body is used by using an inner lid, an outer lid, and the like. 1 is sealed and hydrogen is absorbed and released.
Also in the titanium hydrogen storage material container using theseparator 10, hydrogen embrittlement of the titanium container main body is prevented and the container can be used as a lightweight container as in the above embodiment.
該隔離板10は、チタン製容器本体1に収納した際に、該チタン製容器本体1と側壁部11の外周面とがほぼ接触するように外径が設定されている。図3(b)に示すように、チタン製容器本体1に隔離板10を収納した後、上記のように、水素吸蔵合金粉末を収容し、中蓋、外蓋などを用いてチタン製容器本体1を密閉し、水素の吸放出を行う。
該隔離板10を用いたチタン製水素吸蔵材容器においても、上記実施形態と同様に、チタン製容器本体の水素脆化が防止され、軽量な容器として使用することができる。 Further, the
When the
Also in the titanium hydrogen storage material container using the
なお、上記実施形態は、本発明の一例にすぎず、本発明の趣旨を逸脱しないものであれば、その形態を特に限定するものではない。
In addition, the said embodiment is only an example of this invention and will not specifically limit the form, if it does not deviate from the meaning of this invention.
以下に、本発明の実施例を説明する。
チタン製容器本体として、Ti-6Al-4V製の有底円筒容器(外径34mm、肉厚2mm、長さ80mm)を用意した。次に、厚さ0.2mmのアルミニウム製薄板を用いて、図1、2に示すものと同様に、隔離板として該円筒容器内部に合う形状の側壁板、底板、および蓋板を作製した。側壁板は、薄板を適したサイズに切断し、これを円筒状に曲げ、周方向の両端部を重ね合わせることで作製した。底板および蓋板は深絞り加工によりカップ形状に作製し、蓋板には水素導通孔を設けた。
次に、作製した側壁板および底板を前記円筒容器内部に挿入し、AB5型水素吸蔵合金粉末を内容積比で55体積%の充填率で充填した。その後、蓋板を被せ、水素導入管を有するチタン製の外蓋を被せて密閉した。
さらに、上記チタン製容器本体の歪みを測定するため、該容器本体外周面に、円筒容器の中心軸に対して0°、90°、180°、270°の角度となる4箇所に歪みゲージを貼り付けた。 Examples of the present invention will be described below.
A bottomed cylindrical container (outer diameter 34 mm,wall thickness 2 mm, length 80 mm) made of Ti-6Al-4V was prepared as a titanium container body. Next, using a thin aluminum plate having a thickness of 0.2 mm, a side wall plate, a bottom plate, and a lid plate having a shape suitable for the inside of the cylindrical container were produced as separators in the same manner as shown in FIGS. The side wall plate was produced by cutting a thin plate into a suitable size, bending it into a cylindrical shape, and overlapping both ends in the circumferential direction. The bottom plate and the cover plate were made into a cup shape by deep drawing, and a hydrogen conduction hole was provided in the cover plate.
Next, the produced side wall plate and bottom plate were inserted into the cylindrical container, and AB type 5 hydrogen storage alloy powder was filled at a filling rate of 55% by volume in terms of the internal volume ratio. Thereafter, a lid plate was put on, and an outer lid made of titanium having a hydrogen introduction tube was put on and sealed.
Further, in order to measure the strain of the titanium container body, strain gauges are provided on the outer peripheral surface of the container body at four locations at angles of 0 °, 90 °, 180 °, and 270 ° with respect to the central axis of the cylindrical container. Pasted.
チタン製容器本体として、Ti-6Al-4V製の有底円筒容器(外径34mm、肉厚2mm、長さ80mm)を用意した。次に、厚さ0.2mmのアルミニウム製薄板を用いて、図1、2に示すものと同様に、隔離板として該円筒容器内部に合う形状の側壁板、底板、および蓋板を作製した。側壁板は、薄板を適したサイズに切断し、これを円筒状に曲げ、周方向の両端部を重ね合わせることで作製した。底板および蓋板は深絞り加工によりカップ形状に作製し、蓋板には水素導通孔を設けた。
次に、作製した側壁板および底板を前記円筒容器内部に挿入し、AB5型水素吸蔵合金粉末を内容積比で55体積%の充填率で充填した。その後、蓋板を被せ、水素導入管を有するチタン製の外蓋を被せて密閉した。
さらに、上記チタン製容器本体の歪みを測定するため、該容器本体外周面に、円筒容器の中心軸に対して0°、90°、180°、270°の角度となる4箇所に歪みゲージを貼り付けた。 Examples of the present invention will be described below.
A bottomed cylindrical container (outer diameter 34 mm,
Next, the produced side wall plate and bottom plate were inserted into the cylindrical container, and AB type 5 hydrogen storage alloy powder was filled at a filling rate of 55% by volume in terms of the internal volume ratio. Thereafter, a lid plate was put on, and an outer lid made of titanium having a hydrogen introduction tube was put on and sealed.
Further, in order to measure the strain of the titanium container body, strain gauges are provided on the outer peripheral surface of the container body at four locations at angles of 0 °, 90 °, 180 °, and 270 ° with respect to the central axis of the cylindrical container. Pasted.
上記水素吸蔵材容器において、水素の吸放出を繰り返し、そのときの容器本体変形量を前記歪みゲージにより計測した。具体的な水素の吸放出の条件は以下のとおりである。まず、80℃で該容器を真空引きした後、20℃以下で0.99MPaの水素を導入して活性化を行った。活性化後、20℃の水槽で0.99MPa水素吸収⇔大気圧水素放出のサイクル試験を行った。
In the hydrogen storage material container, hydrogen was repeatedly absorbed and released, and the amount of deformation of the container body at that time was measured with the strain gauge. Specific conditions for absorbing and releasing hydrogen are as follows. First, after evacuating the container at 80 ° C., activation was performed by introducing 0.99 MPa of hydrogen at 20 ° C. or lower. After activation, a cycle test of 0.99 MPa hydrogen absorption and atmospheric pressure hydrogen release was performed in a 20 ° C. water bath.
図4に本実施例における容器本体歪みの経時変化を示す。また、表1に容器本体の最大周方向歪み、バースト圧およびチタン製容器本体内部の水素濃度を示す。
歪みのレベルは35日後の段階で最大170×10-6以下であり、弾性変形の範囲内に収まった。35日後に試験を中断し、容器本体の水圧バースト試験をしたところ、バースト圧は125MPaとなり、計算値の124MPaとほぼ一致した。断面の組織観察の結果からも、試験前と同じ組織を保持していることが確認された。チタン製容器本体中における水素濃度は、試験前が20ppmであるところ、試験後は34ppmであり、予測される範囲に収まった。以上より、水素脆化が殆ど起きていないことが分かった。 FIG. 4 shows the change over time of the container body strain in this example. Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body.
The level of strain was a maximum of 170 × 10 −6 or less at the stage after 35 days, and was within the range of elastic deformation. When the test was interrupted 35 days later and a water pressure burst test was conducted on the container body, the burst pressure was 125 MPa, which was approximately equal to the calculated value of 124 MPa. From the results of the cross-sectional structure observation, it was confirmed that the same structure as before the test was retained. The hydrogen concentration in the titanium container body was 20 ppm before the test, and 34 ppm after the test, which was within the expected range. From the above, it was found that hydrogen embrittlement hardly occurred.
歪みのレベルは35日後の段階で最大170×10-6以下であり、弾性変形の範囲内に収まった。35日後に試験を中断し、容器本体の水圧バースト試験をしたところ、バースト圧は125MPaとなり、計算値の124MPaとほぼ一致した。断面の組織観察の結果からも、試験前と同じ組織を保持していることが確認された。チタン製容器本体中における水素濃度は、試験前が20ppmであるところ、試験後は34ppmであり、予測される範囲に収まった。以上より、水素脆化が殆ど起きていないことが分かった。 FIG. 4 shows the change over time of the container body strain in this example. Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body.
The level of strain was a maximum of 170 × 10 −6 or less at the stage after 35 days, and was within the range of elastic deformation. When the test was interrupted 35 days later and a water pressure burst test was conducted on the container body, the burst pressure was 125 MPa, which was approximately equal to the calculated value of 124 MPa. From the results of the cross-sectional structure observation, it was confirmed that the same structure as before the test was retained. The hydrogen concentration in the titanium container body was 20 ppm before the test, and 34 ppm after the test, which was within the expected range. From the above, it was found that hydrogen embrittlement hardly occurred.
(比較例)
実施例と同じTi-6Al-4V製の円筒容器(外径34mm、肉厚2mm、長さ80mm)をチタン製容器本体として用意し、その内部に、隔離板としての前記アルミニウム製薄板を挿入せずに、直接、AB5型水素吸蔵合金粉末を内容積比で55体積%の充填率で詰めた。他の条件は実施例と同じにして、水素吸放出のサイクル試験を行い、歪み変化を測定した。 (Comparative example)
Prepare the same Ti-6Al-4V cylindrical container (outside diameter 34 mm,wall thickness 2 mm, length 80 mm) as the example as a titanium container body, and insert the aluminum sheet as a separator into the inside. Instead, AB type 5 hydrogen storage alloy powder was directly packed at a filling rate of 55% by volume by internal volume ratio. The other conditions were the same as those in the example, a hydrogen absorption / release cycle test was performed, and the strain change was measured.
実施例と同じTi-6Al-4V製の円筒容器(外径34mm、肉厚2mm、長さ80mm)をチタン製容器本体として用意し、その内部に、隔離板としての前記アルミニウム製薄板を挿入せずに、直接、AB5型水素吸蔵合金粉末を内容積比で55体積%の充填率で詰めた。他の条件は実施例と同じにして、水素吸放出のサイクル試験を行い、歪み変化を測定した。 (Comparative example)
Prepare the same Ti-6Al-4V cylindrical container (outside diameter 34 mm,
図5に本比較例における容器本体歪みの経時変化を示す。また、表1に容器本体の最大周方向歪み、バースト圧およびチタン製容器本体内部の水素濃度を示す。
歪みは時間とともに徐々に増加し、試験から40日後には最大9590×10-6にまで達した。40日後に試験を中断し、容器本体の水圧バースト試験をしたところ、計算バースト圧は124MPaであるのにも拘わらず、53MPaで脆性的に破断した。チタン製容器本体の断面組織を観察すると、水素化物層が内面に認められた。チタン製容器本体中における水素濃度は、試験前が20ppmであるところ、試験後は4000ppmに達していた。以上より、水素脆化が起きたことは明らかであった。 FIG. 5 shows changes with time in the container body strain in this comparative example. Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body.
The strain gradually increased with time and reached a maximum of 9590 × 10 −6 after 40 days from the test. After 40 days, the test was interrupted, and a water pressure burst test was conducted on the container body. As a result, although the calculated burst pressure was 124 MPa, it broke brittlely at 53 MPa. When the cross-sectional structure of the titanium container body was observed, a hydride layer was observed on the inner surface. The hydrogen concentration in the titanium container body was 20 ppm before the test, and reached 4000 ppm after the test. From the above, it was clear that hydrogen embrittlement occurred.
歪みは時間とともに徐々に増加し、試験から40日後には最大9590×10-6にまで達した。40日後に試験を中断し、容器本体の水圧バースト試験をしたところ、計算バースト圧は124MPaであるのにも拘わらず、53MPaで脆性的に破断した。チタン製容器本体の断面組織を観察すると、水素化物層が内面に認められた。チタン製容器本体中における水素濃度は、試験前が20ppmであるところ、試験後は4000ppmに達していた。以上より、水素脆化が起きたことは明らかであった。 FIG. 5 shows changes with time in the container body strain in this comparative example. Table 1 shows the maximum circumferential strain of the container body, the burst pressure, and the hydrogen concentration inside the titanium container body.
The strain gradually increased with time and reached a maximum of 9590 × 10 −6 after 40 days from the test. After 40 days, the test was interrupted, and a water pressure burst test was conducted on the container body. As a result, although the calculated burst pressure was 124 MPa, it broke brittlely at 53 MPa. When the cross-sectional structure of the titanium container body was observed, a hydride layer was observed on the inner surface. The hydrogen concentration in the titanium container body was 20 ppm before the test, and reached 4000 ppm after the test. From the above, it was clear that hydrogen embrittlement occurred.
以上のように、アルミニウムの薄板を水素吸蔵合金とチタン製容器本体との間に、面接合することなく介在させることで、効果的に水素脆化を抑制できることが確認された。
As described above, it was confirmed that hydrogen embrittlement can be effectively suppressed by interposing an aluminum thin plate between the hydrogen storage alloy and the titanium container body without surface bonding.
本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。
The present invention is not limited to the above-described embodiment, and can be appropriately modified and improved. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
本出願は、2010年2月19日出願の日本特許出願(特願2010-034944)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application filed on February 19, 2010 (Japanese Patent Application No. 2010-034944), the contents of which are incorporated herein by reference.
以上のように、本発明によれば、水素吸蔵材とチタン製容器本体との接触を妨げる隔離板を水素吸蔵材と該容器本体の間に介在させ、かつチタン製容器本体と隔離板とを面接合させていないため、水素吸蔵材の触媒効果によって発生した水素原子が隔離板に侵入して固相拡散し、さらに該容器本体表面に達して内部に侵入することを妨げ、結果としてチタン製容器本体の水素脆化を抑制することができる。
As described above, according to the present invention, the separator that prevents the contact between the hydrogen storage material and the titanium container body is interposed between the hydrogen storage material and the container body, and the titanium container body and the separator are Because it is not surface-bonded, hydrogen atoms generated by the catalytic effect of the hydrogen storage material enter the separator and solid-phase diffuse, and further reach the surface of the container body and prevent it from entering the interior. Hydrogen embrittlement of the container body can be suppressed.
1 チタン製容器本体
2 隔離板
3 隔離板
5 水素吸蔵合金粉末
10 隔離板
11 側壁部
12 底部 DESCRIPTION OFSYMBOLS 1 Titanium container body 2 Separation plate 3 Separation plate 5 Hydrogen storage alloy powder 10 Separation plate 11 Side wall portion 12 Bottom portion
2 隔離板
3 隔離板
5 水素吸蔵合金粉末
10 隔離板
11 側壁部
12 底部 DESCRIPTION OF
Claims (9)
- 水素吸蔵材を収容するチタン製水素吸蔵材容器において、チタン製容器本体と、該チタン製容器本体の内周側にあって該チタン製容器本体と面接合されることなく該チタン製容器本体と前記水素吸蔵材との間に介在して該水素吸蔵材と前記チタン製容器本体との接触を妨げる隔離板とを有するチタン製水素吸蔵材容器。 In a titanium hydrogen storage material container for storing a hydrogen storage material, a titanium container main body, and the titanium container main body on the inner peripheral side of the titanium container main body without being surface-bonded to the titanium container main body, A titanium hydrogen storage material container having a separator interposed between the hydrogen storage material and preventing contact between the hydrogen storage material and the titanium container body.
- 前記隔離板は、前記チタン製容器本体の内面形状に沿って有底の筒形状を有する請求項1記載のチタン製水素吸蔵材容器。 2. The titanium hydrogen storage material container according to claim 1, wherein the separator has a bottomed cylindrical shape along an inner surface shape of the titanium container main body.
- 前記隔離板は、一体成形されたものである請求項2記載のチタン製水素吸蔵材容器。 3. The titanium hydrogen storage material container according to claim 2, wherein the separator is integrally formed.
- 前記隔離板は、チタン製容器本体の内周面に沿って内周側を囲み、かつ少なくとも周方向両端部を互いに固定することなく重ねて配置された側壁板と、底板とを有する請求項2記載のチタン製水素吸蔵材容器。 The said separator plate has a side wall board and the bottom board which have been arrange | positioned without enclosing the inner peripheral side along the inner peripheral surface of a titanium container main body, and fixing at least the circumferential direction both ends mutually. The titanium hydrogen storage material container as described.
- 前記隔離板の前記側壁板は、少なくとも前記水素吸蔵材の水素吸蔵時に前記チタン製容器本体内周面に面接触するように配置されている請求項4記載のチタン製水素吸蔵材容器。 5. The titanium hydrogen storage material container according to claim 4, wherein the side wall plate of the separator is disposed so as to be in surface contact with the inner peripheral surface of the titanium container body at least when the hydrogen storage material stores hydrogen.
- 前記隔離板は、純アルミニウムまたはアルミニウム合金からなる請求項1~5のいずれか1項に記載のチタン製水素吸蔵材容器。 The titanium hydrogen storage material container according to any one of claims 1 to 5, wherein the separator is made of pure aluminum or an aluminum alloy.
- 前記隔離板は、厚さ0.05~1mmである請求項1~6のいずれか1項に記載のチタン製水素吸蔵材容器。 The titanium hydrogen storage material container according to any one of claims 1 to 6, wherein the separator has a thickness of 0.05 to 1 mm.
- 前記チタン製容器本体の外周面を通して熱交換されるものである請求項1~7のいずれか1項に記載のチタン製水素吸蔵材容器。 The titanium hydrogen storage material container according to any one of claims 1 to 7, wherein heat exchange is performed through an outer peripheral surface of the titanium container main body.
- 前記水素吸蔵材が、充填率40%以上で前記チタン製容器本体内に収容される水素吸蔵合金粉末である請求項1~8のいずれか1項に記載のチタン製水素吸蔵材容器。 The titanium hydrogen storage material container according to any one of claims 1 to 8, wherein the hydrogen storage material is a hydrogen storage alloy powder accommodated in the titanium container body at a filling rate of 40% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010034944A JP5637429B2 (en) | 2010-02-19 | 2010-02-19 | Titanium hydrogen storage container |
JP2010-034944 | 2010-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011102435A1 true WO2011102435A1 (en) | 2011-08-25 |
Family
ID=44483021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053427 WO2011102435A1 (en) | 2010-02-19 | 2011-02-17 | Hydrogen-storage material container constituted of titanium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5637429B2 (en) |
WO (1) | WO2011102435A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169420A (en) * | 2010-02-19 | 2011-09-01 | Japan Steel Works Ltd:The | Titanium-made hydrogen storage material container |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018142491A1 (en) * | 2017-01-31 | 2018-08-09 | 株式会社ジャパンブルーエナジー | Hydrogen storage cartridge |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004100926A (en) * | 2002-09-13 | 2004-04-02 | Japan Metals & Chem Co Ltd | Hydrogen absorbing alloy storage container and manufacturing method for this container |
JP2007278482A (en) * | 2006-04-12 | 2007-10-25 | Toyota Motor Corp | Hydrogen tank |
JP2008291862A (en) * | 2007-05-22 | 2008-12-04 | Toyota Motor Corp | Method of manufacturing metal member, hydrogen storage tank, and graphite-coated metal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59146901A (en) * | 1983-02-08 | 1984-08-23 | Sekisui Chem Co Ltd | Metallic hydride reaction vessel and its manufacture |
JPH1160201A (en) * | 1997-08-04 | 1999-03-02 | Sanritsuku:Kk | Storage container for hydrogen storage alloy |
JP4686865B2 (en) * | 2001-02-05 | 2011-05-25 | ソニー株式会社 | Hydrogen storage / release device |
JP5637429B2 (en) * | 2010-02-19 | 2014-12-10 | 株式会社日本製鋼所 | Titanium hydrogen storage container |
-
2010
- 2010-02-19 JP JP2010034944A patent/JP5637429B2/en not_active Expired - Fee Related
-
2011
- 2011-02-17 WO PCT/JP2011/053427 patent/WO2011102435A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004100926A (en) * | 2002-09-13 | 2004-04-02 | Japan Metals & Chem Co Ltd | Hydrogen absorbing alloy storage container and manufacturing method for this container |
JP2007278482A (en) * | 2006-04-12 | 2007-10-25 | Toyota Motor Corp | Hydrogen tank |
JP2008291862A (en) * | 2007-05-22 | 2008-12-04 | Toyota Motor Corp | Method of manufacturing metal member, hydrogen storage tank, and graphite-coated metal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011169420A (en) * | 2010-02-19 | 2011-09-01 | Japan Steel Works Ltd:The | Titanium-made hydrogen storage material container |
Also Published As
Publication number | Publication date |
---|---|
JP5637429B2 (en) | 2014-12-10 |
JP2011169420A (en) | 2011-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105371105B (en) | A kind of suction hydrogen low strain dynamic hydride hydrogen-storing cylinder | |
KR101448572B1 (en) | Fluid enclosure and methods related thereto | |
US4133426A (en) | Hydride container | |
US7648568B2 (en) | Hydrogen storage tank system based on gas adsorption on high-surface materials comprising an integrated heat exchanger | |
US20110302933A1 (en) | Storage and supply system of liquefied and condensed hydrogen | |
US20100068561A1 (en) | Permeation protection for pressurized hydrogen storage tank | |
WO2008033740A3 (en) | Mitigating hydrogen flux through solid and liquid barrier materials | |
JP2008151282A (en) | Gas storage vessel | |
JP2004530628A (en) | How to store hydrogen in a hybrid state | |
US10511039B2 (en) | Solid state hydrogen storage device and solid state hydrogen storage system | |
WO2011102435A1 (en) | Hydrogen-storage material container constituted of titanium | |
US8481151B2 (en) | Hydrogen storage alloy and hydrogen storage unit using same | |
JP2008531445A (en) | Hydrogen storage structure | |
WO2007008105A1 (en) | Hydrogen storage container | |
EP2164626A1 (en) | Hydrogen storage in nanoporous inorganic networks | |
JP2015522139A (en) | tank | |
US12077838B2 (en) | Non-pyrophoric hydrogen storage alloys and hydrogen storage systems using the alloys | |
CA2435965C (en) | Multilayered hydrogen absorbing body | |
KR100673149B1 (en) | Submarine | |
JP6242263B2 (en) | Radioactive material storage container | |
WO2016019316A1 (en) | Hydrogen gas storage tank with supporting filter tube(s) | |
JPH05213601A (en) | Method for activating or stabilizing metallic material | |
JP2004261739A (en) | Hydrogen occlusion composite material | |
JP2014217735A (en) | Antibacterial agent housing body | |
JP4098043B2 (en) | Method for producing hydrogen storage alloy storage container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11744721 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11744721 Country of ref document: EP Kind code of ref document: A1 |